Onaizi, Sagheer A
2018-03-01
The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.
NASA Astrophysics Data System (ADS)
Yossifon, Gilad; Park, Sinwook
2016-11-01
Previously, it has been shown that for a prescribed system, the diffusion length may be affected by any number of mechanisms including natural and forced convection, electroosmotic flow of the second kind and electro-convective instability. In all of the above mentioned cases the length of the diffusion layer is indirectly prescribed by the complicated competition between several mechanisms which are primarily dictated by the various system parameters and applied voltage. In contrast, we suggest that by embedding electrodes/heaters within a microchannel interfacing a permselective medium, the diffusion layer length may be controlled regardless of the dominating overlimiting current mechanism and system parameters. As well as demonstrating that the simple presence of electrodes can enhance mixing via induced-charge electrokinetic effects, we also offer a means of externally activating embedded electrodes and heaters to maintain external, dynamic control of the diffusion length. Such control is particularly important in applications requiring intense ion transport, such as electrodialysis. At the same time, we will also investigate means of suppressing these mechanisms which is of fundamental importance for sensing applications.
Diffusion modulation of DNA by toehold exchange
NASA Astrophysics Data System (ADS)
Rodjanapanyakul, Thanapop; Takabatake, Fumi; Abe, Keita; Kawamata, Ibuki; Nomura, Shinichiro M.; Murata, Satoshi
2018-05-01
We propose a method to control the diffusion speed of DNA molecules with a target sequence in a polymer solution. The interaction between solute DNA and diffusion-suppressing DNA that has been anchored to a polymer matrix is modulated by the concentration of the third DNA molecule called the competitor by a mechanism called toehold exchange. Experimental results show that the sequence-specific modulation of the diffusion coefficient is successfully achieved. The diffusion coefficient can be modulated up to sixfold by changing the concentration of the competitor. The specificity of the modulation is also verified under the coexistence of a set of DNA with noninteracting base sequences. With this mechanism, we are able to control the diffusion coefficient of individual DNA species by the concentration of another DNA species. This methodology introduces a programmability to a DNA-based reaction-diffusion system.
Investigation of Reaction Mechanism on the Lime-Free Roasting of Chromium-Containing Slag
NASA Astrophysics Data System (ADS)
Yu, Kai-ping; Zhang, Hong-ling; Chen, Bo; Xu, Hong-bin; Zhang, Yi
2015-12-01
The lime-free roasting process of trivalent chromium-containing slag was investigated. The effect of Fe and liquid phase on the conversion reaction of chromium was discussed. The oxidation of trivalent chromium depends greatly on the diffusion of Na+ and O2. Both the raw material Na2CO3 and the intermediate product NaFeO2 serve as the carriers of Na+. The Na+ diffusion is improved by the binary liquid phase of Na2CrO4-Na2CO3, whereas excess liquid phase results in a low conversion rate of chromium by hindering the diffusion of oxygen towards the reaction interface. With the increasing of liquid volume, the controlled step of chromium oxidation changes from Na+ diffusion to oxygen diffusion. The mechanism study showed that the volume of liquid phase increased while raising the reaction temperature or prolonging the reaction time. Based on the role of both liquid phase and Fe, the oxidation process of chromium was summarized as a three-stage model: the Na+ diffusion-controlled stage, the O2 diffusion-controlled stage, and the oxidation reaction halted stage.
Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.
1993-01-01
Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.
Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.
Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego
2017-10-01
Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.
The fluid mechanics of thrombus formation
NASA Technical Reports Server (NTRS)
1972-01-01
Experimental data are presented for the growth of thrombi (blood clots) in a stagnation point flow of fresh blood. Thrombus shape, size and structure are shown to depend on local flow conditions. The evolution of a thrombus is described in terms of a physical model that includes platelet diffusion, a platelet aggregation mechanism, and diffusion and convection of the chemical species responsible for aggregation. Diffusion-controlled and convection-controlled regimes are defined by flow parameters and thrombus location, and the characteristic growth pattern in each regime is explained. Quantitative comparisons with an approximate theoretical model are presented, and a more general model is formulated.
NASA Astrophysics Data System (ADS)
Dohmen, R.; Marschall, H.; Wiedenbeck, M.; Polednia, J.; Chakraborty, S.
2016-12-01
Diffusion of trace elements, often with ionic charge that differs from those of ions in the regular structural sites of a mineral, controls a number of important processes in rocks, such as: (i) Closure of radiogenic isotopic systems, (e.g. Pb diffusion in rutile; REE diffusion in garnet); (ii) Closure of trace element thermometers (e.g., Zr in rutile, Mg in plagioclase, Al in olivine); (iii) Closure of element exchange between melt inclusions and host minerals (e.g., H, REE in olivine). In addition, preserved trace element zoning profiles in minerals can be used for diffusion chronometry (e.g. Nb in rutile, Mg in plagioclase). However, experimentally determined diffusion coefficients of these trace elements are in many cases controversial (e.g., REE in olivine: [1] vs. [2]; Mg in plagioclase: [3] vs. [4]). We have carried out experiments to study the diffusion behavior in olivine, rutile, and plagioclase, and are able to show that two mechanisms of diffusion, differing in rates by up to four orders of magnitude, may operate simultaneously in a given crystal. The two mechanisms result in complex diffusion profile shapes. As a general rule, the incorporation of heterovalent substituting elements in relatively high concentrations is necessary to activate two diffusion mechanisms. This behavior is produced by the control of these elements on the point defect chemistry of a mineral - these impurities become a majority point defect when a threshold concentration limit is exceeded. In certain cases, e.g., for Li in olivine, the trace element can also be incorporated in different sites, resulting in interaction of the different species with other point defects (vacancies) during diffusion. Thus, depending on the diffusion couple used in the experiment, the associated concentration gradients within the mineral, and the analytical techniques used to measure the diffusion profile, only one diffusion mechanism may be activated or detected. These studies allow us to explain some of the differing results noted above and such considerations need to be taken into account when modelling diffusion in natural systems. [1] Cherniak 2010, Am Mineral 95:362-368; [2] Spandler and O'Neill 2010, Contrib Mineral Petrol 159:791-818; [3] Faak et al. 2013 Geochim Cosmochim Acta 123:195-217; [4] Van Orman et al. 2014 Earth Planet Sci Lett 385:79-88
Study of controlled diffusion stator blading. 1. Aerodynamic and mechanical design report
NASA Technical Reports Server (NTRS)
Canal, E.; Chisholm, B. C.; Lee, D.; Spear, D. A.
1981-01-01
Pratt & Whitney Aircraft is conducting a test program for NASA in order to demonstrate that a controlled-diffusion stator provides low losses at high loadings and Mach numbers. The technology has shown great promise in wind tunnel tests. Details of the design of the controlled diffusion stator vanes and the multiple-circular-arc rotor blades are presented. The stage, including stator and rotor, was designed to be suitable for the first-stage of an advanced multistage, high-pressure compressor.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Enhanced diffusion on oscillating surfaces through synchronization
NASA Astrophysics Data System (ADS)
Wang, Jin; Cao, Wei; Ma, Ming; Zheng, Quanshui
2018-02-01
The diffusion of molecules and clusters under nanoscale confinement or absorbed on surfaces is the key controlling factor in dynamical processes such as transport, chemical reaction, or filtration. Enhancing diffusion could benefit these processes by increasing their transport efficiency. Using a nonlinear Langevin equation with an extensive number of simulations, we find a large enhancement in diffusion through surface oscillation. For helium confined in a narrow carbon nanotube, the diffusion enhancement is estimated to be over three orders of magnitude. A synchronization mechanism between the kinetics of the particles and the oscillating surface is revealed. Interestingly, a highly nonlinear negative correlation between diffusion coefficient and temperature is predicted based on this mechanism, and further validated by simulations. Our results provide a general and efficient method for enhancing diffusion, especially at low temperatures.
Sweeney, Yann; Hellgren Kotaleski, Jeanette; Hennig, Matthias H.
2015-01-01
Gaseous neurotransmitters such as nitric oxide (NO) provide a unique and often overlooked mechanism for neurons to communicate through diffusion within a network, independent of synaptic connectivity. NO provides homeostatic control of intrinsic excitability. Here we conduct a theoretical investigation of the distinguishing roles of NO-mediated diffusive homeostasis in comparison with canonical non-diffusive homeostasis in cortical networks. We find that both forms of homeostasis provide a robust mechanism for maintaining stable activity following perturbations. However, the resulting networks differ, with diffusive homeostasis maintaining substantial heterogeneity in activity levels of individual neurons, a feature disrupted in networks with non-diffusive homeostasis. This results in networks capable of representing input heterogeneity, and linearly responding over a broader range of inputs than those undergoing non-diffusive homeostasis. We further show that these properties are preserved when homeostatic and Hebbian plasticity are combined. These results suggest a mechanism for dynamically maintaining neural heterogeneity, and expose computational advantages of non-local homeostatic processes. PMID:26158556
Active Brownian motion in a narrow channel
NASA Astrophysics Data System (ADS)
Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.
2014-12-01
We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.
Modeling the rate-controlled sorption of hexavalent chromium
Grove, D.B.; Stollenwerk, K.G.
1985-01-01
Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.
NASA Astrophysics Data System (ADS)
Camley, Brian A.; Zhao, Yanxiang; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan
2017-01-01
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers
NASA Astrophysics Data System (ADS)
Olsen, B. D.; Wang, M.
2012-02-01
Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.
O(minus 2) grain boundary diffusion and grain growth in pure dense MgO
NASA Technical Reports Server (NTRS)
Kapadia, C. M.; Leipold, M. H.
1973-01-01
Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.
Tao, Lei; Shahsavari, Rouzbeh
2017-07-19
Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.
Small, high pressure ratio compressor: Aerodynamic and mechanical design
NASA Technical Reports Server (NTRS)
Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.
1973-01-01
The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.
Rayhan, Rakib U; Stevens, Benson W; Timbol, Christian R; Adewuyi, Oluwatoyin; Walitt, Brian; VanMeter, John W; Baraniuk, James N
2013-01-01
Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction. Gulf War veterans (n = 31) and sedentary veteran and civilian controls (n = 20) completed fMRI scans for diffusion tensor imaging. A combination of dolorimetry, subjective reports of pain and fatigue were correlated to white matter diffusivity properties to identify tracts associated with symptom constructs. Gulf War Illness subjects had significantly correlated fatigue, pain, hyperalgesia, and increased axial diffusivity in the right inferior fronto-occipital fasciculus. ROC generated thresholds and subsequent binary regression analysis predicted CMI classification based upon axial diffusivity in the right inferior fronto-occipital fasciculus. These correlates were absent for controls in dichotomous regression analysis. The right inferior fronto-occipital fasciculus may be a potential biomarker for Gulf War Illness. This tract links cortical regions involved in fatigue, pain, emotional and reward processing, and the right ventral attention network in cognition. The axonal neuropathological mechanism(s) explaining increased axial diffusivity may account for the most prominent symptoms of Gulf War Illness.
Simulations of Xe and U diffusion in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Vyas, Shyam; Tonks, Michael R.
2012-09-10
Diffusion of xenon (Xe) and uranium (U) in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. Based on the vacancy and cluster diffusion mechanisms established from density functional theory (DFT) calculations, we derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2}. In order to capture the effects of irradiation, vacancies (Va) are explicitly coupled to the Xe and U dynamics. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the bulk diffusion model with models of the interaction between Xe atoms andmore » vacancies with grain boundaries, which were derived from atomistic calculations. The diffusion and segregation models were implemented in the MOOSE-Bison-Marmot (MBM) finite element (FEM) framework and the Xe/U redistribution was simulated for a few simple microstructures.« less
Cross-linked high amylose starch derivatives for drug release III. Diffusion properties.
Mulhbacher, Jérôme; Mateescu, Mircea Alexandru
2005-06-13
Acetate (Ac-), aminoethyl (AE-) and carboxymethyl (CM-) derivatives of cross-linked high amylose starch (HASCL-6) were previously shown to control the release of drugs over 20 h from highly loaded (up to 60% drug) monolithic tablets. This report presents a diffusion analysis, aimed to facilitate a better understanding of the mechanisms involved in the control of the drug release from these hydrogels. The diffusion was found to depend on the molecular weight of the diffusant, whereas the partition coefficient depended on the affinities of the diffusant for the polymers and for the dissolution media via attractive or repulsive ionic interactions. The diffusion was also affected by the swelling of CM-HASCL-6, which, unexpectedly, increased with the decrease of the ionic strength. This diffusion analysis completes the swelling studies of HASCL-6 and of its derivatives, allowing the prediction of release kinetics of various active agents.
Controlling mechanisms of moisture diffusion in convective drying of leather
NASA Astrophysics Data System (ADS)
Benmakhlouf, Naima; Azzouz, Soufien; Monzó-Cabrera, Juan; Khdhira, Hechmi; ELCafsi, Afif
2017-04-01
Leather manufacturing involves a crucial energy-intensive drying stage in the finishing process to remove its residual moisture. It occurs several times in the tanning course. As it is the target of this paper to depict an experimental way to determine moisture diffusion in the convective drying of leather. The effective diffusion coefficient is estimated by a method derived from Fick's law and by analytic method. The effective diffusion coefficients are obtained from drying tests and the diffusivity behaviour is studied versus the controlling parameter such as the convective airflow temperature. The experiments were conducted at hot air temperatures of 40, 45, 50, 55 and 60 °C and hot air speed of 1 m/s. The hot air temperature had significant effect on the effective moisture diffusivity of the leather sample. The average effective moisture diffusivity in rosehip ranged between 5.87 × 10-11 and 14.48 × 10-11 m2/s for leather at the temperatures studied. Activation energy for convective drying was found to be 38.46 kJ/mol for leather. The obtained results fully confirm the theoretical study in which an exponentially increasing relationship between effective diffusivity and temperature is predicted. The results of this study provide a better understanding of the drying mechanisms and may lead to a series of recommendations for leather drying optimization. It opens the possibility for further investigations on the description of drying conditions.
Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter
2017-11-07
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.
Elevated Temperature Creep Deformation in Solid Solution <001> NiAL-3.6Ti Single Crystals
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Noebe, Ronald D.; Darolia, Ram
2003-01-01
The 1100 to 1500 K slow plastic strain rate compressive properties of <001> oriented NiAl-3.6Ti single crystals have been measured, and the results suggests that two deformation processes exist. While the intermediate temperature/faster strain rate mechanism is uncertain, plastic flow at elevated temperature/slower strain rates in NiAl-3.6Ti appears to be controlled by solute drag as described by the Cottrell-Jaswon solute drag model for gliding b = a(sub 0)<101> dislocations. While the calculated activation energy of deformation is much higher (approximately 480 kJ/mol) than the activation energy for diffusion (approximately 290 kJ/mol) used in the Cottrell-Jaswon creep model, a forced temperature compensated - power law fit using the activation energy for diffusion was able to adequately (greater than 90%) predict the observed creep properties. Thus we conclude that the rejection of a diffusion controlled mechanism can not be simply based on a large numerical difference between the activation energies for deformation and diffusion.
NASA Astrophysics Data System (ADS)
Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajcmanová, Lucie
2016-04-01
Compositional zoning in metamorphic minerals have been generally recognized as an important geological feature to decipher the metamorphic history of rocks. The observed chemical zoning of, e.g. garnet, is commonly interpreted as disequilibrium between the fractionated inner core and the surrounding matrix. However, chemically zoned minerals were also observed in high grade rocks (T>800 degree C) where the duration of metamorphic processes was independently dated to take several Ma. This implies that temperature may not be the only factor that controls diffusion timescales, and grain scale pressure variation was proposed to be a complementary factor that may significantly contribute to the formation and preservation of chemical zoning in high temperature metamorphic minerals [Tajcmanová 2013, 2015]. Here, a coupled model is developed to simulate viscous deformation and chemical diffusion. The numerical approach considers the conservation of mass, momentum, and a constitutive relation developed from equilibrium thermodynamics. A compressible viscoelastic rheology is applied, which associates the volumetric change triggered by deformation and diffusion to a change of pressure. The numerical model is applied to the chemically zoned plagioclase rim described by [Tajcmanová 2014]. The diffusion process operating during the plagioclase rim formation can lead to a development of a pressure gradient. Such a pressure gradient, if maintained during ongoing viscous relaxation, can lead to the preservation of the observed chemical zonation in minerals. An important dimensionless number, the Deborah number, is defined as the ratio between the Maxwell viscoelastic relaxation time and the characteristic diffusion time. It characterizes the relative influence between the maintenance of grain scale pressure variation and chemical diffusion. Two extreme regimes are shown: the mechanically-controlled regime (high Deborah number) and diffusion-controlled regime (low Deborah number). In the mechanically-controlled regime, the grain scale pressure variation and thus the chemical zonation can be maintained due to slow viscous relaxation. Furthermore, by utilizing experimental flow laws and diffusion coefficients, the Deborah number is estimated in a variety of physical conditions. References Tajcmanová, L., Y. Podladchikov, R. Powell, E. Moulas, J.C. Vrijmoed, and J.A.D. Connolly, 2014. Journal of Metamorphic Geology, 32(2):195-207. Tajcmanová, L., J.C. Vrijmoed, and E. Moulas, 2015. Lithos, 216-217:338-351.
Solid-state diffusion-controlled growth of the phases in the Au-Sn system
NASA Astrophysics Data System (ADS)
Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke
2018-01-01
The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.
MARMOT simulations of Xe segregation to grain boundaries in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael; Casillas, Luis
2012-06-20
Diffusion of Xe and U in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2} based on the vacancy and cluster diffusion mechanisms established from recent density functional theory (DFT) calculations. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finitemore » element (FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this report we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the coupled diffusion of vacancies and Xe have also been implemented, but results are not included in this report.« less
Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved
NASA Astrophysics Data System (ADS)
Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.
2017-07-01
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.
Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J
2016-03-15
This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.
1999-01-01
Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.
Active Flow Control in an Aggressive Transonic Diffuser
NASA Astrophysics Data System (ADS)
Skinner, Ryan W.; Jansen, Kenneth E.
2017-11-01
A diffuser exchanges upstream kinetic energy for higher downstream static pressure by increasing duct cross-sectional area. The resulting stream-wise and span-wise pressure gradients promote extensive separation in many diffuser configurations. The present computational work evaluates active flow control strategies for separation control in an asymmetric, aggressive diffuser of rectangular cross-section at inlet Mach 0.7 and Re 2.19M. Corner suction is used to suppress secondary flows, and steady/unsteady tangential blowing controls separation on both the single ramped face and the opposite flat face. We explore results from both Spalart-Allmaras RANS and DDES turbulence modeling frameworks; the former is found to miss key physics of the flow control mechanisms. Simulated baseline, steady, and unsteady blowing performance is validated against experimental data. Funding was provided by Northrop Grumman Corporation, and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas
2013-01-01
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
Yasoshima, Nobuhiro; Fukuoka, Mizuki; Kitano, Hiromi; Kagaya, Shigehiro; Ishiyama, Tatsuya; Gemmei-Ide, Makoto
2017-05-18
Recrystallization behaviors of water sorbed into four poly(meth)acrylates, poly(2-methoxyethyl acrylate), poly(tetrahydrofurfuryl acrylate), poly(methyl acrylate), and poly(methyl methacrylate), are investigated by variable-temperature mid-infrared (VT-MIR) spectroscopy and molecular dynamics (MD) simulation. VT-MIR spectra demonstrate that recrystallization temperatures of water sorbed into the polymers are positively correlated with their glass-transition temperatures reported previously. The present MD simulation shows that a lower-limit temperature of the diffusion for the sorbed water and the glass-transition temperatures of the polymers also have a positive correlation, indicating that the recrystallization is controlled by diffusion mechanism rather than reorientation mechanism. Detailed molecular processes of not only recrystallization during rewarming but also crystallization during cooling and hydrogen-bonding states of water in the polymers are systematically analyzed and discussed.
Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns
NASA Astrophysics Data System (ADS)
Conder, J. A.
2005-12-01
It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km closer to the trench and the degree of melting is larger than when only diffusion is allowed. The rate of dehydration depends on the thermal structure which can affect the permeability. The dependence of permeability and diffusion with temperature may explain the variations in volcanic front location as observed at different arcs.
Stress versus temperature dependence of activation energies for creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1992-01-01
The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.
Ariane, Mostapha; Kassinos, Stavros; Velaga, Sitaram; Alexiadis, Alessio
2018-04-01
In this paper, the mass transfer coefficient (permeability) of boundary layers containing motile cilia is investigated by means of discrete multi-physics. The idea is to understand the main mechanisms of mass transport occurring in a ciliated-layer; one specific application being inhaled drugs in the respiratory epithelium. The effect of drug diffusivity, cilia beat frequency and cilia flexibility is studied. Our results show the existence of three mass transfer regimes. A low frequency regime, which we called shielding regime, where the presence of the cilia hinders mass transport; an intermediate frequency regime, which we have called diffusive regime, where diffusion is the controlling mechanism; and a high frequency regime, which we have called convective regime, where the degree of bending of the cilia seems to be the most important factor controlling mass transfer in the ciliated-layer. Since the flexibility of the cilia and the frequency of the beat changes with age and health conditions, the knowledge of these three regimes allows prediction of how mass transfer varies with these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling transport kinetics in clinoptilolite-phosphate rock systems
NASA Technical Reports Server (NTRS)
Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.
1995-01-01
Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.
Optimizing diffusion in multiplexes by maximizing layer dissimilarity
NASA Astrophysics Data System (ADS)
Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.
2017-05-01
Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.
A reaction-diffusion-based coding rate control mechanism for camera sensor networks.
Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki
2010-01-01
A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.
Bioactive films of zein/magnetite magnetically stimuli-responsive for controlled drug release
NASA Astrophysics Data System (ADS)
Marín, Tíffany; Montoya, Paula; Arnache, Oscar; Pinal, Rodolfo; Calderón, Jorge
2018-07-01
The Zein films in two configurations with magnetite nanoparticles (zein/NPs) and magnetite-acetaminophen (zein/NPs/Drug) were used as magnetically stimuli-responsive systems to propose a model of controlled release by dissolution and diffusion mechanism. Composite material films of zein/NPs and zein/NPs/Drug were made by dispersion of magnetite nanoparticles into zein solution then solvent casting of the solution on a flat Teflon substrate. The properties of composite films were analyzed by magnetization curves of (MvsH) and measurements of magnetic force microscopy (MFM). Drug release from the zein/NPs/Drug composite films was determined using a type II dissolution apparatus for a period of 2 h under applied magnetic field conditions. In addition, the diffusion mechanism was tested with zein/NPs films into diffusion cell containing acetaminophen solution for 24 h and using a permanent magnet as a remote trigger device. The results showed that the magnetite nanoparticles contained in the zein/NPs and zein/NPs/Drug composite films are stable, i.e., they do not undergo sufficiently high levels of oxidation as to alter their magnetic properties. Furthermore, the dissolution and diffusion results lead us to conclude that zein composite films effectively behave as stimuli-responsive systems triggered by an external magnetic field applied. The result is a model controlled release system whereby drug release can be controlled by adjusting the magnitude of the applied magnetic field.
Recording and Analysis of Bowel Sounds.
Zaborski, Daniel; Halczak, Miroslaw; Grzesiak, Wilhelm; Modrzejewski, Andrzej
2015-01-01
The aim of this study was to construct an electronic bowel sound recording system and determine its usefulness for the diagnosis of appendicitis, mechanical ileus and diffuse peritonitis. A group of 67 subjects aged 17 to 88 years including 15 controls was examined. Bowel sounds were recorded using an electret microphone placed on the right side of the hypogastrium and connected to a laptop computer. The method of adjustable grids (converted into binary matrices) was used for bowel sounds analysis. Significantly, fewer (p ≤ 0.05) sounds were found in the mechanical ileus (1004.4) and diffuse peritonitis (466.3) groups than in the controls (2179.3). After superimposing adjustable binary matrices on combined sounds (interval between sounds <0.01 s), significant relationships (p ≤ 0.05) were found between particular positions in the matrices (row-column) and the patient groups. These included the A1_T1 and A1_T2 positions and mechanical ileus as well as the A1_T2 and A1_T4 positions and appendicitis. For diffuse peritonitis, significant positions were A5_T4 and A1_T4. Differences were noted in the number of sounds and binary matrices in the groups of patients with acute abdominal diseases. Certain features of bowel sounds characteristic of individual abdominal diseases were indicated. BS: bowel sound; APP: appendicitis; IL: mechanical ileus; PE: diffuse peritonitis; CG: control group; NSI: number of sound impulses; NCI: number of combined sound impulses; MBS: mean bit-similarity; TMIN: minimum time between impulses; TMAX: maximum time between impulses; TMEAN: mean time between impulses. Zaborski D, Halczak M, Grzesiak W, Modrzejewski A. Recording and Analysis of Bowel Sounds. Euroasian J Hepato-Gastroenterol 2015;5(2):67-73.
Memoryless control of boundary concentrations of diffusing particles.
Singer, A; Schuss, Z; Nadler, B; Eisenberg, R S
2004-12-01
Flux between regions of different concentration occurs in nearly every device involving diffusion, whether an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory has calculated that flux since the time of Fick (1855), and the flux has been known to arise from the stochastic behavior of Brownian trajectories since the time of Einstein (1905), yet the mathematical description of the behavior of trajectories corresponding to different types of boundaries is not complete. We consider the trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations. Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain average concentrations at the boundaries of the region at their values in the baths, a control mechanism is needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference between the time evolution and the steady state concentrations. While the time evolution of the density is governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator. The boundary conditions for the time dependent density depend on the model of the controller; however, this dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers, however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, because even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains concentrations of noninteracting particles without creating spurious boundary layers at the interface requires the solution of the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a source of ingoing trajectories on the boundary (the so called albedo problem).
Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric
2013-09-10
The two main purposes of this work were: (i) to critically consider the use of thermodynamic parameters of activation for elucidating the drug release mechanism from hydroxypropyl methylcellulose (HPMC) matrices, and (ii) to examine the effect of neutral (pH 6) and acidic (pH 2) media on the release mechanism. For this, caffeine was chosen as model drug and various processes were investigated for the effect of temperature and pH: caffeine diffusion in solution and HPMC gels, and drug release from and water penetration into the HPMC tablets. Generally, the kinetics of the processes was not significantly affected by pH. As for the temperature dependence, the activation energy (E(a)) values calculated from caffeine diffusivities were in the range of Fickian transport (20-40 kJ mol⁻¹). Regarding caffeine release from HPMC matrices, fitting the profiles using the Korsmeyer-Peppas model would indicate anomalous transport. However, the low apparent E(a) values obtained were not compatible with a swelling-controlled mechanism and can be assigned to the dimensional change of the system during drug release. Unexpectedly, negative apparent E(a) values were calculated for the water uptake process, which can be ascribed to the exothermic dissolution of water into the initially dry HPMC, the expansion of the matrix and the polymer dissolution. Taking these contributions into account, the true E(a) would fall into the range valid for Fickian diffusion. Consequently, a relaxation-controlled release mechanism can be dismissed. The apparent anomalous drug release from HPMC matrices results from a coupled Fickian diffusion-erosion mechanism, both at pH 6 and 2. Copyright © 2013 Elsevier B.V. All rights reserved.
Phenomenology and energetics of diffusion across cell phase states.
Ashrafuzzaman, Md
2015-11-01
Cell based transport properties have been mathematically addressed. Cell contained cross boundary diffusion of materials has been explained using valid formalisms and related analytical expressions have been developed. Various distinguishable physical structures and their properties raise different general structure specific diffusion mechanisms and controlled transport related parameters. Some of these parameters play phenomenological roles and some cause regulatory effects. The cell based compartments may be divided into three major physical phase states namely liquid, plasma and solid phase states. Transport of ions, nutrients, small molecules like proteins, etc. across inter phase states and intraphase states follows general transport related formalisms. Creation of some localized permanent and/or temporary structures e.g., ion channels, clustering of constituents, etc. and the transitions between such structures appear as regulators of the transport mechanisms. In this article, I have developed mainly a theoretical analysis of the commonly observed cell transport phenomena. I have attempted to develop formalisms on general cell based diffusion followed by a few numerical computations to address the analytical expression phenomenologically. I have then extended the analysis to adopting with the local structure originated energetics. Independent or correlated molecular transport naturally relies on some general parameters that define the nature of local cell environment as well as on some occasionally raised or transiently active stochastic resonance due to localized interactions. Short and long range interaction energies play crucial roles in this regard. Physical classification of cellular compartments has led us developing analytical expressions on both biologically observed diffusion mechanisms and the diffusions's occasional stochasticity causing energetics. These analytical expressions help us address the diffusion phenomena generally considering the physical properties of the biostructures across the diffusion pathways. A specific example case of single molecule transport and localized interaction energetics in a specific cell phase has been utilized to address the diffusion quite clearly. This article helps to address the mechanisms of cell based diffusion and nutrient movements and thus helps develop strategic templates to manipulate the diffusion mechanisms. Application of the theoretical knowledge into designing or discovering drugs or small molecule inhibitors targeting cell based structures may open up new avenues in biomedical sciences.
Diffusion Behaviour in Superconducting Ti/Au bilayers for SAFARI TES Detectors
NASA Astrophysics Data System (ADS)
van der Heijden, N. J.; Khosropanah, P.; van der Kuur, J.; Ridder, M. L.
2014-08-01
Controlling the critical temperature () of Ti/Au bilayers is vital in the development of practical TES detectors. Previously empirical studies have been done on aging effects in Ti/Au and other superconducting bilayers but no link with theory has been made. Here we attempt to explain the change in with a diffusion mechanism. The change in has been measured for a set of Ti/Au bilayer samples that have been given a variety of bake-out treatments, where we found a trend that can be partly explained by an inter-diffusion mechanism. With an empirical model based on diffusion a safe zone can be defined as a region of bake-out treatments, where the is not affected beyond the requirements. This will shine light on the bake-out and the storage condition boundaries of these detectors.
Effects of bilingualism on white matter integrity in older adults.
Anderson, John A E; Grundy, John G; De Frutos, Jaisalmer; Barker, Ryan M; Grady, Cheryl; Bialystok, Ellen
2018-02-15
Bilingualism can delay the onset of dementia symptoms and has thus been characterized as a mechanism for cognitive or brain reserve, although the origin of this reserve is unknown. Studies with young adults generally show that bilingualism is associated with a strengthening of white matter, but there is conflicting evidence for how bilingualism affects white matter in older age. Given that bilingualism has been shown to help stave off the symptoms of dementia by up to four years, it is crucial that we clarify the mechanism underlying this reserve. The current study uses diffusion tensor imaging (DTI) to compare monolinguals and bilinguals while carefully controlling for potential confounds (e.g., I.Q., MMSE, and demographic variables). We show that group differences in Fractional Anisotropy (FA) and Radial Diffusivity (RD) arise from multivariable interactions not adequately controlled for by sequential bivariate testing. After matching and statistically controlling for confounds, bilinguals still had greater axial diffusivity (AD) in the left superior longitudinal fasciculus than monolingual peers, supporting a neural reserve account for healthy older bilinguals. Copyright © 2017 Elsevier Inc. All rights reserved.
Water diffusion in silicate glasses: the effect of glass structure
NASA Astrophysics Data System (ADS)
Kuroda, M.; Tachibana, S.
2016-12-01
Water diffusion in silicate melts (glasses) is one of the main controlling factors of magmatism in a volcanic system. Water diffusivity in silicate glasses depends on its own concentration. However, the mechanism causing those dependences has not been fully understood yet. In order to construct a general model for water diffusion in various silicate glasses, we performed water diffusion experiments in silica glass and proposed a new water diffusion model [Kuroda et al., 2015]. In the model, water diffusivity is controlled by the concentration of both main diffusion species (i.e. molecular water) and diffusion pathways, which are determined by the concentrations of hydroxyl groups and network modifier cations. The model well explains the water diffusivity in various silicate glasses from silica glass to basalt glass. However, pre-exponential factors of water diffusivity in various glasses show five orders of magnitude variations although the pre-exponential factor should ideally represent the jump frequency and the jump distance of molecular water and show a much smaller variation. Here, we attribute the large variation of pre-exponential factors to a glass structure dependence of activation energy for molecular water diffusion. It has been known that the activation energy depends on the water concentration [Nowak and Behrens, 1997]. The concentration of hydroxyls, which cut Si-O-Si network in the glass structure, increases with water concentration, resulting in lowering the activation energy for water diffusion probably due to more fragmented structure. Network modifier cations are likely to play the same role as water. With taking the effect of glass structure into account, we found that the variation of pre-exponential factors of water diffusivity in silicate glasses can be much smaller than the five orders of magnitude, implying that the diffusion of molecular water in silicate glasses is controlled by the same atomic process.
CCR scientists tease out mechanisms of immune cell communication | Center for Cancer Research
Researchers from the Cancer and Inflammation Program at the Center for Cancer Research and the Ben-Gurion University of the Negev in Israel have discovered that the simple processes of molecular diffusion and absorption control the spread of cytokines through dense body tissues. The simple control mechanisms enable the immune response to tailor itself to the nature and
Controlled growth of vertically aligned carbon nanotubes on metal substrates
NASA Astrophysics Data System (ADS)
Gao, Zhaoli
Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their distribution, heights and alignments. Catalyst loss is controlled by the catalyst diffusion time and catalyst diffusion coefficients. A shorter catalyst diffusion time and smaller diffusion coefficient enhance VACNT growth on metals due to reduced catalyst loss during the pretreatment process. The dewetting behaviors of the thin film catalysts are influenced by the physical surface heterogeneity of the substrates which leads to non-uniform growth of VACNTs. The GLAD process facilitates the deposition of a relatively thick catalyst layer for the creation of dense and uniform catalyst nanoparticles. Applications of VACNT-metal structures in TIMs and microelectrodes are demonstrated. The VACNT-TIMs fabricated on Al alloy substrates have a typical thermal contact resistivity of 17.1 mm2˙K/W and their effective application in high-brightness LED thermal management was demonstrated. Electrochemical characterization was carried out on VACNT microelectrodes for the development of high resolution retinal prostheses and a satisfactory electrochemical property was again demonstrated.
Bannister, Kirsty; Patel, Ryan; Goncalves, Leonor; Townson, Louisa; Dickenson, Anthony H
2015-09-01
Diffuse noxious inhibitory controls (DNICs) utilize descending inhibitory controls through poorly understood brain stem pathways. The human counterpart, conditioned pain modulation, is reduced in patients with neuropathy aligned with animal data showing a loss of descending inhibitory noradrenaline controls together with a gain of 5-HT3 receptor-mediated facilitations after neuropathy. We investigated the pharmacological basis of DNIC and whether it can be restored after neuropathy. Deep dorsal horn neurons were activated by von Frey filaments applied to the hind paw, and DNIC was induced by a pinch applied to the ear in isoflurane-anaesthetized animals. Spinal nerve ligation was the model of neuropathy. Diffuse noxious inhibitory control was present in control rats but abolished after neuropathy. α2 adrenoceptor mechanisms underlie DNIC because the antagonists, yohimbine and atipamezole, markedly attenuated this descending inhibition. We restored DNIC in spinal nerve ligated animals by blocking 5-HT3 descending facilitations with the antagonist ondansetron or by enhancing norepinephrine modulation through the use of reboxetine (a norepinephrine reuptake inhibitor, NRI) or tapentadol (μ-opioid receptor agonist and NRI). Additionally, ondansetron enhanced DNIC in normal animals. Diffuse noxious inhibitory controls are reduced after peripheral nerve injury illustrating the central impact of neuropathy, leading to an imbalance in descending excitations and inhibitions. Underlying noradrenergic mechanisms explain the relationship between conditioned pain modulation and the use of tapentadol and duloxetine (a serotonin, NRI) in patients. We suggest that pharmacological strategies through manipulation of the monoamine system could be used to enhance DNIC in patients by blocking descending facilitations with ondansetron or enhancing norepinephrine inhibitions, so possibly reducing chronic pain.
Diffusion in energy materials: Governing dynamics from atomistic modelling
NASA Astrophysics Data System (ADS)
Parfitt, D.; Kordatos, A.; Filippatos, P. P.; Chroneos, A.
2017-09-01
Understanding diffusion in energy materials is critical to optimising the performance of solid oxide fuel cells (SOFCs) and batteries both of which are of great technological interest as they offer high efficiency for cleaner energy conversion and storage. In the present review, we highlight the insights offered by atomistic modelling of the ionic diffusion mechanisms in SOFCs and batteries and how the growing predictive capability of high-throughput modelling, together with our new ability to control compositions and microstructures, will produce advanced materials that are designed rather than chosen for a given application. The first part of the review focuses on the oxygen diffusion mechanisms in cathode and electrolyte materials for SOFCs and in particular, doped ceria and perovskite-related phases with anisotropic structures. The second part focuses on disordered oxides and two-dimensional materials as these are very promising systems for battery applications.
2012-01-01
Background Body weight is at least partly controlled by the choices made by a human in response to external stimuli. Changes in body weight are mainly caused by energy intake. By analyzing the mechanisms involved in food intake, we considered that molecular diffusion plays an important role in body weight changes. We propose a model based on Fick's second law of diffusion to simulate the relationship between energy intake and body weight. Results This model was applied to food intake and body weight data recorded in humans; the model showed a good fit to the experimental data. This model was also effective in predicting future body weight. Conclusions In conclusion, this model based on molecular diffusion provides a new insight into the body weight mechanisms. Reviewers This article was reviewed by Dr. Cabral Balreira (nominated by Dr. Peter Olofsson), Prof. Yang Kuang and Dr. Chao Chen. PMID:22742862
Pectin gel vehicles for controlled fragrance delivery.
Liu, LinShu; Chen, Guoying; Fishman, Marshall L; Hicks, Kevin B
2005-01-01
Using citronellal as a model compound, pectin gels formulations were evaluated for the controlled fragrance release by kinetic and static methods. The pectins with higher degrees of esterification induced a stronger molecular association with the nonpolar fragrance. This resulted in a prolonged duration of fragrance release and the limitation of fragrance adsorption to the receptor skin layers. The increase in pectin concentrations suppressed the fragrance release by a diffusion mechanism. Blocking the carboxyl groups of pectin with calcium ions reduces the hydrophilicity of pectin and provides physical barriers for citronellal diffusion. The pectin/calcium microparticles are promising materials for controlled fragrance release.
Kinetics of pack aluminization of nickel
NASA Technical Reports Server (NTRS)
Seigle, L. L.; Gupta, B. K.; Shankar, R.; Sarkhel, A. K.
1978-01-01
The kinetics of pack aluminization of unalloyed nickel in packs of varying aluminum activity with various halide activators were studied. Surface compositions of the coatings as functions of time, temperature, and pack composition were obtained in order to establish the boundary conditions for diffusion in the system. The structure of the packs was also examined in order to clarify the mechanism of aluminum transport. The results indicate that the kinetics of pack aluminization are controlled jointly by gas diffusion in the pack and solid diffusion in the coating. Levine and Caves' model for gas diffusion was combined with calculations of rates of diffusion in the solid to formulate a more complete theory for the kinetics of pack aluminization.
NASA Astrophysics Data System (ADS)
Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao
2018-04-01
The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.
NASA Astrophysics Data System (ADS)
Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao
2018-06-01
The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.
LEE, CHANYOUNG; RICHTSMEIER, JOAN T.; KRAFT, REUBEN H.
2017-01-01
Bones of the murine cranial vault are formed by differentiation of mesenchymal cells into osteoblasts, a process that is primarily understood to be controlled by a cascade of reactions between extracellular molecules and cells. We assume that the process can be modeled using Turing’s reaction-diffusion equations, a mathematical model describing the pattern formation controlled by two interacting molecules (activator and inhibitor). In addition to the processes modeled by reaction-diffusion equations, we hypothesize that mechanical stimuli of the cells due to growth of the underlying brain contribute significantly to the process of cell differentiation in cranial vault development. Structural analysis of the surface of the brain was conducted to explore the effects of the mechanical strain on bone formation. We propose a mechanobiological model for the formation of cranial vault bones by coupling the reaction-diffusion model with structural mechanics. The mathematical formulation was solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data that provide precise three dimensional (3D) measures of murine cranial geometry and cranial vault bone formation for specific embryonic time points. The results of this study suggest that mechanical strain contributes information to specific aspects of bone formation. Our mechanobiological model predicts some key features of cranial vault bone formation that were verified by experimental observations including the relative location of ossification centers of individual vault bones, the pattern of cranial vault bone growth over time, and the position of cranial vault sutures. PMID:29225392
Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M
2012-03-01
Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.
Patterning of alloy precipitation through external pressure
NASA Astrophysics Data System (ADS)
Franklin, Jack A.
Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang
2016-01-01
The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms.more » We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.« less
Moens, Pierre D.J.; Digman, Michelle A.; Gratton, Enrico
2015-01-01
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. PMID:25809257
Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico
2015-03-24
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Scorer, Richard S.
The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…
Pattern dynamics of the reaction-diffusion immune system.
Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie
2018-01-01
In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.
Rate limiting mechanisms in lithium-molybdenum disulfide batteries
NASA Astrophysics Data System (ADS)
Laman, F. C.; Stiles, J. A. R.; Brandt, K.; Shank, R. J.
1985-03-01
One limitation of secondary lithium batteries using intercalation cathodes is generally related to relatively low power densities. Significant advances towards overcoming this limitation have been made in cells based on a utilization of lithium-molybdenum disulfide technology. Rate limiting mechanisms in cells of the lithium-molybdenum disulfide system have been studied with the aid of a frequency response analysis. It was found that diffusion-related contributions to cell impedance, and interfacial and resistive contributions to cell impedance, can be readily segregated by virtue of the fact that the diffusion-controlled mechanisms dominate the low frequency end of the impedance spectra, while the other mechanisms dominate the high frequency end. The present investigation is concerned with rate limitations at the high end of the frequency spectrum in lithium-molybdenum disulfide cathodes.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Partitioning and diffusion of PBDEs through an HDPE geomembrane.
Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison
2016-09-01
Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics
NASA Astrophysics Data System (ADS)
Matse, Mpumelelo; Chubynsky, Mykyta V.; Bechhoefer, John
2017-10-01
The mechanism of diffusing diffusivity predicts that, in environments where the diffusivity changes gradually, the displacement distribution becomes non-Gaussian, even though the mean-square displacement grows linearly with time. Here, we report single-particle tracking measurements of the diffusion of colloidal spheres near a planar substrate. Because the local effective diffusivity is known, we have been able to carry out a direct test of this mechanism for diffusion in inhomogeneous media.
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-07-25
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.
Shen, Feng; Pompano, Rebecca R; Kastrup, Christian J; Ismagilov, Rustem F
2009-10-21
This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da(2), was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as "diffusion acting", which is distinct from "diffusion sensing". The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological "on" and "off" processes that are controlled by thresholds.
Effects of g-Jitter on Diffusion in Binary Liquids
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
1999-01-01
The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.
Diffusivity of hydrogen in iron-bearing olivine at 3 GPa
NASA Astrophysics Data System (ADS)
Demouchy, Sylvie; Thoraval, Catherine; Bolfan-Casanova, Nathalie; Manthilake, Geeth
2016-11-01
The kinetics of hydrogenation of dry iron-bearing olivine single crystals was determined by performing hydration experiments under hydrothermal conditions at high pressure. The experiments were performed in a multi-anvil press at 3 GPa, for a temperature range between 900 and 1200 °C and for various durations. The oxygen fugacity was buffered along Ni-NiO joint. Polarized Fourier transform infrared spectroscopy and recent empirical calibration were used to quantify the hydroxyl distributions in the samples along crystallographic axes after the experiments. The chemical diffusion coefficients are similar (barely slower) than in olivine hydrated at lower pressure (0.2 and 0.3 GPa) for the same diffusion mechanism. Under the given experimental conditions, the anisotropy of diffusion is the same as for proton-vacancy mechanism, with diffusion along the [0 0 1] axis faster than along the [1 0 0]. However, the anisotropy at 3 GPa is weaker compared to measurements at lower pressures and the analysis of concentration profiles using 3D models shows that an isotropic solution could also be relevant. Fits of the diffusion data to an Arrhenius law yield activation energies for the slightly faster [0 0 1] axis of the crystallographic axes around 198 ± 5 kJ mol-1, a value only slightly lower than the results from previous experimental studies for natural iron-bearing olivine hydrogenated at lower confining pressure. At 3 GPa, hydrogenation can be well approximated by a single mechanism controlled by coupled diffusion of protons and octahedral vacancies (di- and tri-valent ions). The diffusion rates are fast enough to alter hydrogen concentration within olivine in xenoliths ascending from the mantle or experiencing hydrogen-rich metasomatism events, but too slow to permit complete homogenization of hydrogen in olivine-rich rocks at kilometer scale in less than one My.
Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters
NASA Astrophysics Data System (ADS)
Zhang, Yifan; Forrest, Stephen R.
2013-12-01
In organic materials, triplet-triplet annihilation (TTA) can be dominated by triplet diffusion or triplet-to-triplet energy transfer. Here, we discuss the diffusion and transfer dominated mechanisms in the context of photoluminescence (PL) transient measurements from thin films of archetype phosphorescent organic light emitters based on Ir and Pt complexes. We find that TTA in these emitters is controlled by diffusion due to a Dexter-type exchange interaction, suggesting triplet radiative decay and TTA are independent processes. Minimizing the PL and absorption spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at high brightness.
Turing mechanism for homeostatic control of synaptic density during C. elegans growth
NASA Astrophysics Data System (ADS)
Brooks, Heather A.; Bressloff, Paul C.
2017-07-01
We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans is an important animal model for understanding cellular mechanisms underlying learning and memory. Our mathematical model consists of two interacting chemical species, where one is passively diffusing and the other is actively trafficked by molecular motors, which switch between forward and backward moving states (bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the insertion of new concentration peaks as the length increases. Taking the passive component to be the protein kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites can be maintained.
Molecular dynamics computer simulation of permeation in solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.
1997-12-31
In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8more » {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.« less
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-01-01
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25–6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5–4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = −0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema. PMID:25657707
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
Fournier, R.O.
1990-01-01
Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.
Wang, Hao; Cheng, Weimin; Sun, Biao; Yu, Haiming; Jin, Hu
2018-03-01
To understand the impacts of the axial-to-radial airflow quantity ratio (denoted as R) and the suction distance (denoted as D s ) on air curtain dust control in a fully mechanized coal face, the 3 down 610 coal face in Jiangzhuang coal mine was numerically simulated in this study. A mathematic model was established to describe the airflow migration and dust diffusion in a coal face, and a scaled physical model was constructed. The comparison between simulation results and field measurements validated the model and the parameter settings. Furthermore, the airflow migration and dust diffusion at various R and D s are analyzed using Ansys CFD. The results show that a reduction of R and D s is conducive to the formation of an effective axial dust control air curtain; the dust diffusion distance decreases with the decrease of both R and D s . By analyzing the simulation results, the optimal parameter for air curtain dust control in the 3 down 610 coal face and those faces with similar production conditions is determined as R = 1/9 and D s = 2 m. Under the optimal parameter condition, the high-concentration dust can be confined in front of the mining driver within a space 5.8 m away from the coal face.
Diffusion and scaling during early embryonic pattern formation.
Gregor, Thomas; Bialek, William; de Ruyter van Steveninck, Rob R; Tank, David W; Wieschaus, Eric F
2005-12-20
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime.
CCR scientists tease out mechanisms of immune cell communication | Center for Cancer Research
Researchers from the Cancer and Inflammation Program at the Center for Cancer Research and the Ben-Gurion University of the Negev in Israel have discovered that the simple processes of molecular diffusion and absorption control the spread of cytokines through dense body tissues. The simple control mechanisms enable the immune response to tailor itself to the nature and severity of a pathogenic attack and to prevent dangerous autoimmune reactions. Read more...
Aluminum/water reactions under extreme conditions
NASA Astrophysics Data System (ADS)
Hooper, Joseph
2013-03-01
We discuss mechanisms that may control the reaction of aluminum and water under extreme conditions. We are particularly interested in the high-temperature, high-strain regime where the native oxide layer is destroyed and fresh aluminum is initially in direct contact with liquid or supercritical water. Disparate experimental data over the years have suggested rapid oxidation of aluminum is possible in such situations, but no coherent picture has emerged as to the basic oxidation mechanism or the physical processes that govern the extent of reaction. We present theoretical and computational analysis of traditional metal/water reaction mechanisms that treat diffusion through a dynamic oxide layer or reaction limited by surface kinetics. Diffusion through a fresh solid oxide layer is shown to be far too slow to have any effect on the millisecond timescale (even at high temperatures). Quantum molecular dynamics simulations of liquid Al and water surface reactions show rapid water decomposition at the interface, catalyzed by adjacent water molecules in a Grotthus-like relay mechanism. The surface reaction barriers are far too low for this to be rate-limiting in any way. With these straightforward mechanisms ruled out, we investigate two more complex possibilities for the rate-limiting factor; first, we explore the possibility that newly formed oxide remains a metastable liquid well below its freezing point, allowing for diffusion-limited reactions through the oxide shell but on a much faster timescale. The extent of reaction would then be controlled by the solidification kinetics of alumina. Second, we discuss preliminary analysis on surface erosion and turbulent mixing, which may play a prominent role during hypervelocity penetration of solid aluminum projectiles into water.
Determination of krypton diffusion coefficients in uranium dioxide using atomic scale calculations
Vathonne, Emerson; Andersson, David Ragnar Anders; Freyss, Michel; ...
2016-12-16
We present a study of the diffusion of krypton in UO 2 using atomic scale calculations combined with diffusion models adapted to the system studied. The migration barriers of the elementary mechanisms for interstitial or vacancy assisted migration are calculated in the DFT + U framework using the nudged elastic band method. The attempt frequencies are obtained from the phonon modes of the defect at the initial and saddle points using empirical potential methods. The diffusion coefficients of Kr in UO 2 are then calculated by combining this data with diffusion models accounting for the concentration of vacancies and themore » interaction of vacancies with Kr atoms. We determined the preferred mechanism for Kr migration and the corresponding diffusion coefficient as a function of the oxygen chemical potential μ O or nonstoichiometry. For very hypostoichiometric (or U-rich) conditions, the most favorable mechanism is interstitial migration. For hypostoichiometric UO 2, migration is assisted by the bound Schottky defect and the charged uranium vacancy, V U 4–. Around stoichiometry, migration assisted by the charged uranium–oxygen divacancy (V UO 2–) and V U 4– is the favored mechanism. Finally, for hyperstoichiometric or O-rich conditions, the migration assisted by two V U 4– dominates. Kr migration is enhanced at higher μ O, and in this regime, the activation energy will be between 4.09 and 0.73 eV depending on nonstoichiometry. The experimental values available are in the latter interval. Since it is very probable that these values were obtained for at least slightly hyperstoichiometric samples, our activation energies are consistent with the experimental data, even if further experiments with precisely controlled stoichiometry are needed to confirm these results. Finally, the mechanisms and trends with nonstoichiometry established for Kr are similar to those found in previous studies of Xe.« less
Shen, Feng; Pompano, Rebecca R.; Kastrup, Christian J.; Ismagilov, Rustem F.
2009-01-01
Abstract This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da2, was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as “diffusion acting”, which is distinct from “diffusion sensing”. The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological “on” and “off” processes that are controlled by thresholds. PMID:19843446
Self-Learning Off-Lattice Kinetic Monte Carlo method as applied to growth on metal surfaces
NASA Astrophysics Data System (ADS)
Trushin, Oleg; Kara, Abdelkader; Rahman, Talat
2007-03-01
We propose a new development in the Self-Learning Kinetic Monte Carlo (SLKMC) method with the goal of improving the accuracy with which atomic mechanisms controlling diffusive processes on metal surfaces may be identified. This is important for diffusion of small clusters (2 - 20 atoms) in which atoms may occupy Off-Lattice positions. Such a procedure is also necessary for consideration of heteroepitaxial growth. The new technique combines an earlier version of SLKMC [1] with the inclusion of off-lattice occupancy. This allows us to include arbitrary positions of adatoms in the modeling and makes the simulations more realistic and reliable. We have tested this new approach for the case of the diffusion of small 2D Cu clusters diffusion on Cu(111) and found good performance and satisfactory agreement with results obtained from previous version of SLKMC. The new method also helped reveal a novel atomic mechanism contributing to cluster migration. We have also applied this method to study the diffusion of Cu clusters on Ag(111), and find that Cu atoms generally prefer to occupy off-lattice sites. [1] O. Trushin, A. Kara, A. Karim, T.S. Rahman Phys. Rev B 2005
Mechanisms Underlying the Confined Diffusion of Cholera Toxin B-Subunit in Intact Cell Membranes
Day, Charles A.; Kenworthy, Anne K.
2012-01-01
Multivalent glycolipid binding toxins such as cholera toxin have the capacity to cluster glycolipids, a process thought to be important for their functional uptake into cells. In contrast to the highly dynamic properties of lipid probes and many lipid-anchored proteins, the B-subunit of cholera toxin (CTxB) diffuses extremely slowly when bound to its glycolipid receptor GM1 in the plasma membrane of living cells. In the current study, we used confocal FRAP to examine the origins of this slow diffusion of the CTxB/GM1 complex at the cell surface, relative to the behavior of a representative GPI-anchored protein, transmembrane protein, and fluorescent lipid analog. We show that the diffusion of CTxB is impeded by actin- and ATP-dependent processes, but is unaffected by caveolae. At physiological temperature, the diffusion of several cell surface markers is unchanged in the presence of CTxB, suggesting that binding of CTxB to membranes does not alter the organization of the plasma membrane in a way that influences the diffusion of other molecules. Furthermore, diffusion of the B-subunit of another glycolipid-binding toxin, Shiga toxin, is significantly faster than that of CTxB, indicating that the confined diffusion of CTxB is not a simple function of its ability to cluster glycolipids. By identifying underlying mechanisms that control CTxB dynamics at the cell surface, these findings help to delineate the fundamental properties of toxin-receptor complexes in intact cell membranes. PMID:22511973
Bandyopadhyay, Promode R; Hellum, Aren M
2014-10-23
Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.
Revisiting the diffusion mechanism of helium in UO2: A DFT+U study
NASA Astrophysics Data System (ADS)
Liu, X.-Y.; Andersson, D. A.
2018-01-01
The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO2 is revisited by using the DFT+U simulation methodology employing the "U-ramping" method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the "asymmetric hop" mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. The new mechanism is shown to be the dominant one over a wide temperature range.
Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.
Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael
2009-09-24
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun
2005-04-27
Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.
First-principles investigation of diffusion and defect properties of Fe and Ni in Cr2O3
NASA Astrophysics Data System (ADS)
Rak, Zs.; Brenner, D. W.
2018-04-01
Diffusion of Fe and Ni and the energetics of Fe- and Ni-related defects in chromium oxide (α-Cr2O3) are investigated using first-principles Density Functional Theory calculations in combination with the climbing-image nudged elastic band method. The orientations of the spin magnetic moments of the migrating ions are taken into account and their effects on migration barriers are examined. Several possible diffusion pathways were explored through interstitial and vacancy mechanisms, and it was found that the principal mode of ion transport in Cr2O3 is via vacancies. Both interstitial- and vacancy-mediated diffusions are anisotropic, with diffusion being faster in the z-direction. The energetics of defect formation indicates that the Ni-related defects are less stable than the Fe-related ones. This is consistent with Ni-diffusion being faster than Fe-diffusion. The results are compared with previous theoretical and experimental data and possible implications in corrosion control are discussed.
Bacterial flagella grow through an injection-diffusion mechanism.
Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc
2017-03-06
The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.
NASA Astrophysics Data System (ADS)
Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard
2008-06-01
The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.
ELECTRON IRRADIATION OF SOLIDS
Damask, A.C.
1959-11-01
A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.
Review of problems in application of supersonic combustion
NASA Technical Reports Server (NTRS)
Ferri, A.
1977-01-01
The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.
Inferring nonlinear mantle rheology from the shape of the Hawaiian swell.
Asaadi, N; Ribe, N M; Sobouti, F
2011-05-26
The convective circulation generated within the Earth's mantle by buoyancy forces of thermal and compositional origin is intimately controlled by the rheology of the rocks that compose it. These can deform either by the diffusion of point defects (diffusion creep, with a linear relationship between strain rate and stress) or by the movement of intracrystalline dislocations (nonlinear dislocation creep). However, there is still no reliable map showing where in the mantle each of these mechanisms is dominant, and so it is important to identify regions where the operative mechanism can be inferred directly from surface geophysical observations. Here we identify a new observable quantity--the rate of downstream decay of the anomalous seafloor topography (swell) produced by a mantle plume--which depends only on the value of the exponent in the strain rate versus stress relationship that defines the difference between diffusion and dislocation creep. Comparison of the Hawaiian swell topography with the predictions of a simple fluid mechanical model shows that the swell shape is poorly explained by diffusion creep, and requires a dislocation creep rheology. The rheology predicted by the model is reasonably consistent with laboratory deformation data for both olivine and clinopyroxene, suggesting that the source of Hawaiian lavas could contain either or both of these components.
Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X. -Y.; Andersson, D. A.
The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less
Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study
Liu, X. -Y.; Andersson, D. A.
2017-11-03
The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less
NASA Astrophysics Data System (ADS)
Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu
2018-02-01
We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.
Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won
2015-09-14
The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.
Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species
NASA Astrophysics Data System (ADS)
Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe
2018-04-01
Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ackerman, David M.; Lin, Victor S.-Y.
2013-04-02
Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reactionmore » and restricted transport.« less
Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua
2005-08-01
The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.
Vasylkiv, Oleg; Demirskyi, Dmytro; Sakka, Yoshio; Ragulya, Andrey; Borodianska, Hanna
2012-06-01
Two-stage densification process of nanosized 3 mol% yttria-stabilized zirconia (3Y-SZ) polycrystalline compacts during consolidation via microwave and spark-plasma sintering have been observed. The values of activation energies obtained for microwave and spark-plasma sintering 260-275 kJ x mol(-1) are quite similar to that of conventional sintering of zirconia, suggesting that densification during initial stage is controlled by the grain-boundary diffusion mechanism. The sintering behavior during microwave sintering was significantly affected by preliminary pressing conditions, as the surface diffusion mechanism (230 kJ x mol(-1)) is active in case of cold-isostatic pressing procedure was applied.
Ye, Zhongfei; Wang, Pei; Dong, Hong; Li, Dianzhong; Zhang, Yutuo; Li, Yiyi
2016-01-01
Clarification of the microscopic events that occur during oxidation is of great importance for understanding and consequently controlling the oxidation process. In this study the oxidation product formed on T91 ferritic/martensitic steel in oxygen saturated liquid lead-bismuth eutectic (LBE) at 823 K was characterized at the nanoscale using focused-ion beam and transmission electron microscope. An internal oxidation zone (IOZ) under the duplex oxide scale has been confirmed and characterized systematically. Through the microscopic characterization of the IOZ and the inner oxide layer, the micron-scale and nano-scale diffusion of Cr during the oxidation in LBE has been determined for the first time. The micron-scale diffusion of Cr ensures the continuous advancement of IOZ and inner oxide layer, and nano-scale diffusion of Cr gives rise to the typical appearance of the IOZ. Finally, a refined oxidation mechanism including the internal oxidation and the transformation of IOZ to inner oxide layer is proposed based on the discussion. The proposed oxidation mechanism succeeds in bridging the gap between the existing models and experimental observations. PMID:27734928
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.
Boron diffusion in bcc-Fe studied by first-principles calculations
NASA Astrophysics Data System (ADS)
Xianglong, Li; Ping, Wu; Ruijie, Yang; Dan, Yan; Sen, Chen; Shiping, Zhang; Ning, Chen
2016-03-01
The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is D0 = 1.05 × 10-7 exp (-0.75 eV/kT) m2 · s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 = 1.22 × 10-6 f1 exp (-2.27 eV/kT) m2 · s-1 and D2 ≈ 8.36 × 10-6 exp (-4.81 eV/kT) m2 · s-1, respectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments. Project supported by the National Natural Science Foundation of China (Grant No. 51276016) and the National Basic Research Program of China (Grant No. 2012CB720406).
Interplay between translational diffusion and large-amplitude angular jumps of water molecules
NASA Astrophysics Data System (ADS)
Liu, Chao; Zhang, Yangyang; Zhang, Jian; Wang, Jun; Li, Wenfei; Wang, Wei
2018-05-01
Understanding the microscopic mechanism of water molecular translational diffusion is a challenging topic in both physics and chemistry. Here, we report an investigation on the interplay between the translational diffusion and the large-amplitude angular jumps of water molecules in bulk water using molecular dynamics simulations. We found that large-amplitude angular jumps are tightly coupled to the translational diffusions. Particularly, we revealed that concurrent rotational jumps of spatially neighboring water molecules induce inter-basin translational jumps, which contributes to the fast component of the water translational diffusion. Consequently, the translational diffusion shows positional heterogeneity; i.e., the neighbors of the water molecules with inter-basin translational jumps have larger probability to diffuse by inter-basin translational jumps. Our control simulations showed that a model water molecule with moderate hydrogen bond strength can diffuse much faster than a simple Lennard-Jones particle in bulk water due to the capability of disturbing the hydrogen bond network of the surrounding water molecules. Our results added to the understanding of the microscopic picture of the water translational diffusion and demonstrated the unique features of water diffusion arising from their hydrogen bond network structure compared with those of the simple liquids.
Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.
Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J
2014-12-12
Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis. Copyright © 2014, American Association for the Advancement of Science.
Structural and Mechanical Repair of Diffuse Damage in Cortical Bone in vivo
Seref-Ferlengez, Zeynep; Basta-Pljakic, Jelena; Kennedy, Oran D.; Philemon, Claudy J.; Schaffler, Mitchell B.
2014-01-01
Physiological wear and tear causes bone microdamage at several hierarchical levels, and these have different biological consequences. Bone remodeling is widely held to be the mechanism by which bone microdamage is repaired. However, recent studies showed that unlike typical linear microcracks, small crack damage, the clusters of submicron-sized matrix cracks also known as diffuse damage (Dif.Dx), does not activate remodeling. Thus, the fate of diffuse damage in vivo is not known. To examine this, we induced selectively Dif.Dx in rat ulnae in vivo by using end-load ulnar bending creep model. Changes in damage content were assessed by histomorphometry and mechanical testing immediately after loading (i.e., acute loaded) or at 14 days after damage induction (i.e., survival ulnae). Dif.Dx area was markedly reduced over the 14-day survival period after loading (p<0.02). We did not observe any intracortical resorption and there was no increase in cortical bone area in survival ulnae. The reduction in whole bone stiffness in acute loaded ulnae was restored to baseline levels in survival ulnae (p>0.6). Microindentation studies showed that Dif.Dx caused a highly localized reduction in elastic modulus in diffuse damage regions of the ulnar cortex. Moduli in these previously damaged bone areas were restored to control values by 14 days after loading. Our current findings indicate that small crack damage in bone can be repaired without bone remodeling, and suggest that alternative repair mechanisms exist in bone to deal with submicron-sized matrix cracks. Those mechanisms are currently unknown and further investigations are needed to elucidate the mechanisms by which this direct repair occurs. PMID:25042459
Diffusion and scaling during early embryonic pattern formation
Gregor, Thomas; Bialek, William; van Steveninck, Rob R. de Ruyter; Tank, David W.; Wieschaus, Eric F.
2005-01-01
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime. PMID:16352710
Kinetic nanofriction: a mechanism transition from quasi-continuous to ballistic-like Brownian regime
2012-01-01
Surface diffusion of mobile adsorbates is not only the key to control the rate of dynamical processes on solid surfaces, e.g. epitaxial growth, but also of fundamental importance for recent technological applications, such as nanoscale electro-mechanical, tribological, and surface probing devices. Though several possible regimes of surface diffusion have been suggested, the nanoscale surface Brownian motion, especially in the technologically important low friction regimes, remains largely unexplored. Using molecular dynamics simulations, we show for the first time, that a C60 admolecule on a graphene substrate exhibits two distinct regimes of nanoscale Brownian motion: a quasi-continuous and a ballistic-like. A crossover between these two regimes is realized by changing the temperature of the system. We reveal that the underlying physical origin for this crossover is a mechanism transition of kinetic nanofriction arising from distinctive ways of interaction between the admolecule and the graphene substrate in these two regimes due to the temperature change. Our findings provide insight into surface mass transport and kinetic friction control at the nanoscale. PMID:22353343
Mathematical abilities in dyslexic children: a diffusion tensor imaging study.
Koerte, Inga K; Willems, Anna; Muehlmann, Marc; Moll, Kristina; Cornell, Sonia; Pixner, Silvia; Steffinger, Denise; Keeser, Daniel; Heinen, Florian; Kubicki, Marek; Shenton, Martha E; Ertl-Wagner, Birgit; Schulte-Körne, Gerd
2016-09-01
Dyslexia is characterized by a deficit in language processing which mainly affects word decoding and spelling skills. In addition, children with dyslexia also show problems in mathematics. However, for the latter, the underlying structural correlates have not been investigated. Sixteen children with dyslexia (mean age 9.8 years [0.39]) and 24 typically developing children (mean age 9.9 years [0.29]) group matched for age, gender, IQ, and handedness underwent 3 T MR diffusion tensor imaging as well as cognitive testing. Tract-Based Spatial Statistics were performed to correlate behavioral data with diffusion data. Children with dyslexia performed worse than controls in standardized verbal number tasks, such as arithmetic efficiency tests (addition, subtraction, multiplication, division). In contrast, the two groups did not differ in the nonverbal number line task. Arithmetic efficiency, representing the total score of the four arithmetic tasks, multiplication, and division, correlated with diffusion measures in widespread areas of the white matter, including bilateral superior and inferior longitudinal fasciculi in children with dyslexia compared to controls. Children with dyslexia demonstrated lower performance in verbal number tasks but performed similarly to controls in a nonverbal number task. Further, an association between verbal arithmetic efficiency and diffusion measures was demonstrated in widespread areas of the white matter suggesting compensatory mechanisms in children with dyslexia compared to controls. Taken together, poor fact retrieval in children with dyslexia is likely a consequence of deficits in the language system, which not only affects literacy skills but also impacts on arithmetic skills.
Analysis of alterations in white matter integrity of adult patients with comitant exotropia.
Li, Dan; Li, Shenghong; Zeng, Xianjun
2018-05-01
Objective This study was performed to investigate structural abnormalities of the white matter in patients with comitant exotropia using the tract-based spatial statistics (TBSS) method. Methods Diffusion tensor imaging data from magnetic resonance images of the brain were collected from 20 patients with comitant exotropia and 20 age- and sex-matched healthy controls. The FMRIB Software Library was used to compute the diffusion measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). These measures were obtained using voxel-wise statistics with threshold-free cluster enhancement. Results The FA values in the right inferior fronto-occipital fasciculus (IFO) and right inferior longitudinal fasciculus were significantly higher and the RD values in the bilateral IFO, forceps minor, left anterior corona radiata, and left anterior thalamic radiation were significantly lower in the comitant exotropia group than in the healthy controls. No significant differences in the MD or AD values were found between the two groups. Conclusions Alterations in FA and RD values may indicate the underlying neuropathologic mechanism of comitant exotropia. The TBSS method can be a useful tool to investigate neuronal tract participation in patients with this disease.
Slowdown of surface diffusion during early stages of bacterial colonization
NASA Astrophysics Data System (ADS)
Vourc'h, T.; Peerhossaini, H.; Léopoldès, J.; Méjean, A.; Chauvat, F.; Cassier-Chauvat, C.
2018-03-01
We study the surface diffusion of the model cyanobacterium Synechocystis sp. PCC6803 during the incipient stages of cell contact with a glass surface in the dilute regime. We observe a twitching motility with alternating immobile tumble and mobile run periods, resulting in a normal diffusion described by a continuous-time random walk with a coefficient of diffusion D . Surprisingly, D is found to decrease with time down to a plateau. This is observed only when the cyanobacterial cells are able to produce released extracellular polysaccharides, as shown by a comparative study between the wild-type strain and various polysaccharides-depleted mutants. The analysis of the trajectories taken by the bacterial cells shows that the temporal characteristics of their intermittent motion depend on the instantaneous fraction of visited sites during diffusion. This describes quantitatively the time dependence of D , related to the progressive surface coverage by the polysaccharides. The observed slowdown of the surface diffusion may constitute a basic precursor mechanism for microcolony formation and provides clues for controlling biofilm formation.
The impact of physiological crowding on the diffusivity of membrane bound proteins.
Houser, Justin R; Busch, David J; Bell, David R; Li, Brian; Ren, Pengyu; Stachowiak, Jeanne C
2016-02-21
Diffusion of transmembrane and peripheral membrane-bound proteins within the crowded cellular membrane environment is essential to diverse biological processes including cellular signaling, endocytosis, and motility. Nonetheless we presently lack a detailed understanding of the influence of physiological levels of crowding on membrane protein diffusion. Utilizing quantitative in vitro measurements, here we demonstrate that the diffusivities of membrane bound proteins follow a single linearly decreasing trend with increasing membrane coverage by proteins. This trend holds for homogenous protein populations across a range of protein sizes and for heterogeneous mixtures of proteins of different sizes, such that protein diffusivity is controlled by the total coverage of the surrounding membrane. These results demonstrate that steric exclusion within the crowded membrane environment can fundamentally limit the diffusive rate of proteins, regardless of their size. In cells this "speed limit" could be modulated by changes in local membrane coverage, providing a mechanism for tuning the rate of molecular interaction and assembly.
Hinze, Thomas; Schumann, Mathias; Bodenstein, Christian; Heiland, Ines; Schuster, Stefan
2011-01-01
Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically. PMID:22046179
Park, Jin Woo; Subramanian, Arunprabaharan; Mahadik, Mahadeo A; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk
2018-03-28
In this paper, we focus on the controlled growth mechanism of α-Fe 2 O 3 nanostructures via the hydrothermal method. The field emission scanning electron microscopy (FESEM) results reveal that at a lower hydrothermal time, the initial nucleation involves the formation of short and thin β-FeOOH nanorods. The subsequent increase in the hydrothermal time leads β-FeOOH to form thicker and longer nanorods. However, high-temperature quenching (HTQ) at 800 °C for 10 min causes the conversion of akaganeite to the hematite phase and activation of hematite by Sn 4+ diffusion from a FTO substrate. Sn 4+ diffusion from the FTO substrate to the hematite nanostructure was elaborated by X-ray photoelectron spectroscopy (XPS). An α-Fe 2 O 3 nanorod photoanode prepared by a hydrothermal reaction for 3 h and HTQ exhibits the highest photocurrent density of 1.04 mA cm -2 . The excellent photoelectrochemical performance could be ascribed to the synergistic effect of the optimum growth of α-Fe 2 O 3 nanorod arrays and Sn 4+ diffusion. Intensity modulated photovoltage spectroscopy (IMVS) studies revealed that the α-Fe 2 O 3 photoanodes prepared at 3 h and HTQ exhibited a long electron lifetime (132.69 ms), and contribute to the enhanced PEC performance. The results confirmed that the controlled growth of the β-FeOOH nanorods, as well as Sn 4+ diffusion, played a key role in charge transfer during the photoelectrochemical application. The charge transfer mechanisms in α-Fe 2 O 3 nanostructure photoanodes prepared at different hydrothermal times and high-temperature quenching are also investigated.
Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells
NASA Astrophysics Data System (ADS)
Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.
2016-03-01
Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.
Specific features of defect and mass transport in concentrated fcc alloys
Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.
2016-06-15
We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less
Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zh.M.; Seydmohamadi, Sh.; Lee, J.H.
Self-organized surface ordering of (In,Ga)As quantum dots in a GaAs matrix was investigated using stacked multiple quantum dot layers prepared by molecular-beam epitaxy. While one-dimensional chain-like ordering is formed on singular and slightly misorientated GaAs(100) surfaces, we report on two-dimensional square-like ordering that appears on GaAs(n11)B, where n is 7, 5, 4, and 3. Using a technique to control surface diffusion, the different ordering patterns are found to result from the competition between anisotropic surface diffusion and anisotropic elastic matrix, a similar mechanism suggested before by Solomon [Appl. Phys. Lett. 84, 2073 (2004)].
Drift diffusion model of reward and punishment learning in rare alpha-synuclein gene carriers.
Moustafa, Ahmed A; Kéri, Szabolcs; Polner, Bertalan; White, Corey
To understand the cognitive effects of alpha-synuclein polymorphism, we employed a drift diffusion model (DDM) to analyze reward- and punishment-guided probabilistic learning task data of participants with the rare alpha-synuclein gene duplication and age- and education-matched controls. Overall, the DDM analysis showed that, relative to controls, asymptomatic alpha-synuclein gene duplication carriers had significantly increased learning from negative feedback, while they tended to show impaired learning from positive feedback. No significant differences were found in response caution, response bias, or motor/encoding time. We here discuss the implications of these computational findings to the understanding of the neural mechanism of alpha-synuclein gene duplication.
Electrochemical Study of Cobalt in Urea and Choline Chloride
NASA Astrophysics Data System (ADS)
Li, Min; Shi, Zhongning; Wang, Zhaowen; Reddy, Ramana G.
The nucleation mechanism of Co(II) in urea-choline chloride-CoCl2 melt at 373 K was studied using chronoamperometry. Chronoamperometry experiments confirm that the electrodeposition of cobalt on tungsten electrode is governed by three-dimensional (3D) progressive nucleation and diffusion-controlled growth mechanisms. The average diffusion coefficient of Co(II) in the melt at 373 K is 1.1 × 10-6 cm2 s-1, which is in good agreement with the estimated value obtained from cyclic voltammetry data. Characterization of the Co electrodeposit using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques indicate that the electrodeposit obtained at -0.75 V and 373 K contain dense and compact surface formed from pure cobalt metal.
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
NASA Astrophysics Data System (ADS)
Chen, Wei-Jhen; Lee, Yue-Lin; Wu, Ti-Yuan; Chen, Tzu-Ching; Hsu, Chih-Hui; Lin, Ming-Tzer
2018-01-01
This study investigated the effects of electric current and external stress on electromigration of intermetallic compounds (IMC) between solder and copper substrate. Different samples were tested under three different sets of conditions: (1) thermal aging only, (2) thermal aging with electric current ,where resistivity changes were measured using four-point probe measurements, (3) thermal aging with electric current and external stress provided using a four-point bending apparatus. The micro-structural changes in the samples were observed. The results were closely examined; particularly the coupling effect of electric current and external stress to elucidate the electromigration mechanism, as well as the formation of IMC in the samples. For thermal-aging-only samples, the IMC growth mechanism was controlled by grain boundary diffusion. Meanwhile, for thermal aging and applied electric current samples, the IMC growth mechanism was dominated by volume diffusion and interface reaction. Lastly, the IMC growth mechanism in the electric current and external stress group was dominated by grain boundary diffusion with grain growth. The results reveal that the external stress/strain and electric current play a significant role in the electromigration of copper-tin IMC. The samples exposed to tensile stress have reduced electromigration, while those subjected under compressive stress have enhanced electromigration.
Nonlinear Layer-by-Layer Films: Effects of Chain Diffusivity on Film Structure and Swelling
Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.
2017-08-09
Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less
NASA Astrophysics Data System (ADS)
Sonde, Sushant; Dolocan, Andrei; Lu, Ning; Corbet, Chris; Kim, Moon J.; Tutuc, Emanuel; Banerjee, Sanjay K.; Colombo, Luigi
2017-06-01
Chemical vapor deposition (CVD) of two-dimensional (2D) hexagonal boron nitride (h-BN) is at the center of numerous studies for its applications in novel electronic devices. However, a clear understanding of the growth mechanism is lacking for its wider industrial adoption on technologically relevant substrates such as SiO2. Here, we demonstrate a controllable growth method of thin, wafer scale h-BN films on arbitrary substrates. We also clarify the growth mechanism to be diffusion and surface segregation (D-SS) of boron (B) and nitrogen (N) in Ni and Co thin films on SiO2/Si substrates after exposure to diborane and ammonia precursors at high temperature. The segregation was found to be independent of the cooling rates employed in this report, and to our knowledge has not been found nor reported for 2D h-BN growth so far, and thus provides an important direction for controlled growth of h-BN. This unique segregation behavior is a result of a combined effect of high diffusivity, small film thickness and the inability to achieve extremely high cooling rates in CVD systems. The resulting D-SS h-BN films exhibit excellent electrical insulating behavior with an optical bandgap of about 5.8 eV. Moreover, graphene-on-h-BN field effect transistors using the as-grown D-SS h-BN films show a mobility of about 6000 cm2 V-1 s-1 at room temperature.
A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism
NASA Astrophysics Data System (ADS)
Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo
2015-03-01
In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.
First-principles investigation of point defect and atomic diffusion in Al2Ca
NASA Astrophysics Data System (ADS)
Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu
2017-04-01
Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.
Yamamoto, Naomi; Oshima, Masamitsu; Tanaka, Chie; Ogawa, Miho; Nakajima, Kei; Ishida, Kentaro; Moriyama, Keiji; Tsuji, Takashi
2015-01-01
The tooth is an ectodermal organ that arises from a tooth germ under the regulation of reciprocal epithelial-mesenchymal interactions. Tooth morphogenesis occurs in the tooth-forming field as a result of reaction-diffusion waves of specific gene expression patterns. Here, we developed a novel mechanical ligation method for splitting tooth germs to artificially regulate the molecules that control tooth morphology. The split tooth germs successfully developed into multiple correct teeth through the re-regionalisation of the tooth-forming field, which is regulated by reaction-diffusion waves in response to mechanical force. Furthermore, split teeth erupted into the oral cavity and restored physiological tooth function, including mastication, periodontal ligament function and responsiveness to noxious stimuli. Thus, this study presents a novel tooth regenerative technology based on split tooth germs and the re-regionalisation of the tooth-forming field by artificial mechanical force. PMID:26673152
Hot particles attract in a cold bath
NASA Astrophysics Data System (ADS)
Tanaka, Hidenori; Lee, Alpha A.; Brenner, Michael P.
2017-04-01
Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles and demonstrate a mechanism for long-range attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction. Strikingly, the interaction range is more than an order of magnitude larger than the particle radius, well beyond the range of the conventional depletion force. Although the mechanism occurs outside the parameter regime of typical biological swimmers, the mechanism could be realized in the laboratory.
Bacterial flagella grow through an injection-diffusion mechanism
Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc
2017-01-01
The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. DOI: http://dx.doi.org/10.7554/eLife.23136.001 PMID:28262091
NASA Technical Reports Server (NTRS)
Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.
1973-01-01
Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.
Self-diffusion on iridium (100). A structure investigation by field-ion microscopy
NASA Astrophysics Data System (ADS)
Friedl, A.; Schütz, O.; Müller, K.
1992-04-01
An iridium atom was thermally activated for diffusion on the (100) terrace of an Ir tip. The residence sites of the atom between diffusion cycles were recorded by means of a computer-controlled video system which generates a map of all occupied sites. For a field evaporated tip at low temperature this map is a c(2 × 2) grid indicating that only every other fourfold hollow in every other row of an undistor ted (100) surface can be occupied by a diffusing atom. This extraordinary behaviour was already reported by Chen and Tsong [Phys. Rev. Lett. 64 (1990) 3147]. The authors base their interpretation on an exchange diffusion mechanism. As an alternative explanation we propose a local adsorbate induced (2 × 2) reconstruction of the substrate. After heating the same terrace to temperatures above 500 K the residence map of the Ir atom indicates a (1 × 1) structure which, however, contains residues of a c(2 × 2) diffusion pattern: while the diffusion still takes place mainly on a c(2 × 2) sublattice, the diffusion path changes occasionally from one sublattice to the other. This can also be understood by local adsorbate induced distortions.
On The Molecular Mechanism Of Positive Novolac Resists
NASA Astrophysics Data System (ADS)
Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost
1989-08-01
A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.
Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A
2014-04-14
ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Zhong, Zheng
2017-10-01
To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.
Diffusion-advection within dynamic biological gaps driven by structural motion
NASA Astrophysics Data System (ADS)
Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo
2018-04-01
To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.
Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning
Holmes, AN; Williams, LE; Brosnan, SF
2013-01-01
Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella) or marmosets (Callithrix jacchus). To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis) which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran “open diffusion” tests with monkeys housed in two social groups (N = 23). Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the “Slide-box”). Two thirds (67%) of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a ‘ghost’ display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect) and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions) and paired controls (28% were successful) but none were successful in the ghost control. We propose that the squirrel monkeys’ learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert; in this case, those mechanisms are most likely object movement reenactment and social facilitation. We discuss the interplay of these mechanisms and how they related to learning shown by other primate species. PMID:23638347
ERIC Educational Resources Information Center
Social Science Education Consortium, Inc., Boulder, CO.
In this document conference participants consider characteristics of the communications network for diffusion of new instructional materials and practices. Responses to these questions are presented: What are the communication mechanisms within the diffusion system that encourage or discourage the diffusion of innovation? What role do journal…
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
Serotonin Affects Movement Gain Control in the Spinal Cord
Glaser, Joshua I.; Deng, Linna; Thompson, Christopher K.; Stevenson, Ian H.; Wang, Qining; Hornby, Thomas George; Heckman, Charles J.; Kording, Konrad P.
2014-01-01
A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input–output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production. PMID:25232107
Aquaporins and membrane diffusion of CO2 in living organisms.
Kaldenhoff, Ralf; Kai, Lei; Uehlein, Norbert
2014-05-01
Determination of CO2 diffusion rates in living cells revealed inconsistencies with existing models about the mechanisms of membrane gas transport. Mainly, these discrepancies exist in the determined CO2 diffusion rates of bio-membranes, which were orders of magnitudes below those for pure lipid bilayers or theoretical considerations as well as in the observation that membrane insertion of specific aquaporins was rescuing high CO2 transport rates. This effect was confirmed by functional aquaporin protein analysis in heterologous expression systems as well as in bacteria, plants and partly in mammals. This review summarizes the arguments in favor of and against aquaporin facilitated membrane diffusion of CO2 and reports about its importance for the physiology of living organisms. Most likely, the aquaporin tetramer forming an additional fifth pore is required for CO2 diffusion facilitation. Aquaporin tetramer formation, membrane integration and disintegration could provide a mechanism for regulation of cellular CO2 exchange. The physiological importance of aquaporin mediated CO2 membrane diffusion could be shown for plants and cyanobacteria and partly for mammals. Taking the mentioned results into account, consequences for our current picture of cell membrane transport emerge. It appears that in some or many instances, membranes might not be as permeable as it was suggested by current bio-membrane models, opening an additional way of controlling the cellular influx or efflux of volatile substances like CO2. This article is part of a Special Issue entitled Aquaporins. © 2013.
Stochastic mechanics of reciprocal diffusions
NASA Astrophysics Data System (ADS)
Levy, Bernard C.; Krener, Arthur J.
1996-02-01
The dynamics and kinematics of reciprocal diffusions were examined in a previous paper [J. Math. Phys. 34, 1846 (1993)], where it was shown that reciprocal diffusions admit a chain of conservation laws, which close after the first two laws for two disjoint subclasses of reciprocal diffusions, the Markov and quantum diffusions. For the case of quantum diffusions, the conservation laws are equivalent to Schrödinger's equation. The Markov diffusions were employed by Schrödinger [Sitzungsber. Preuss. Akad. Wiss. Phys. Math Kl. 144 (1931); Ann. Inst. H. Poincaré 2, 269 (1932)], Nelson [Dynamical Theories of Brownian Motion (Princeton University, Princeton, NJ, 1967); Quantum Fluctuations (Princeton University, Princeton, NJ, 1985)], and other researchers to develop stochastic formulations of quantum mechanics, called stochastic mechanics. We propose here an alternative version of stochastic mechanics based on quantum diffusions. A procedure is presented for constructing the quantum diffusion associated to a given wave function. It is shown that quantum diffusions satisfy the uncertainty principle, and have a locality property, whereby given two dynamically uncoupled but statistically correlated particles, the marginal statistics of each particle depend only on the local fields to which the particle is subjected. However, like Wigner's joint probability distribution for the position and momentum of a particle, the finite joint probability densities of quantum diffusions may take negative values.
Shahcheraghi, Seyed Hadi; Schaffie, Mahin; Ranjbar, Mohammad
2018-06-01
The main objective of this study was the development of a simple, clean, and industrial applicable electrochemical process for production of high pure nano-copper oxides from mining and industrial resources (e.g., ore, spent, slag and wastewater). To conduct the proposed process, a special set up containing an electrochemical cell in an ultrasonic system (28 kHz and 160 W) was proposed. Accordingly, using this set up and applying appropriate voltage (≈ 5 V) at 25 °C, in the presence of N 2 gas, the simultaneous anode dissolution and nano-copper oxides formation (≈ 24 nm) can be occurred, rapidly (less than 45 min). Then, the effect of N 2 gas and free radicals generated by ultrasonic irradiation was studied. The results showed, in the absence of ultrasonic irradiation and N 2 , an increase of electrolyte pH from 6.42 to 10.92, a decrease of electrolyte Eh from 285 mV to -1.14 V, and formation of copper nanoparticles. While, in the presence of ultrasonic and N 2 , the CuO nanoparticles were formed due to presence of H 2 O 2 generated by interaction of free radicals. Moreover, a novel method for kinetics modeling of nanoparticles agglomeration was proposed according to distributed activation energy model and Arrhenius parameters variation. The results showed that, in the absence of ultrasonic irradiation, the nanoparticle agglomerates were firstly formed (interface controlled mechanism) and then, the diffusion of nanoparticle agglomerates was occurred (diffusion controlled mechanism). Therefore, the control of nanoparticles size and shape may be impossible without surfactant. Also, in the presence of ultrasonic irradiation, the whole of agglomeration process followed interface controlled mechanism. Therefore, using ultrasonic irradiation, the nanoparticles shape and size don't change due to prevention of agglomerates diffusion. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of grain size evolution on mantle dynamics
NASA Astrophysics Data System (ADS)
Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris
2016-04-01
The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin, N. J. and Evans, B. (2007). Geology, 35(4):343. Hirth, G. and Kohlstedt, D. (2003). Geophysical Monograph Series, page 83105. Hüttig, C., Tosi, N., and Moore, W. B. (2013). Physics of the Earth and Planetary Interiors, 220:11-18. Karato, S.-i. and Wu, P. (1993). Science, 260(5109):771778. Rozel, A., Ricard, Y., and Bercovici, D. (2010). Geophysical Journal International, 184(2):719728.
Ianof, Jéssica Natuline; Fraga, Francisco José; Ferreira, Leonardo Alves; Ramos, Renato Teodoro; Demario, José Luiz Carlos; Baratho, Regina; Basile, Luís Fernando Hindi; Nitrini, Ricardo; Anghinah, Renato
2017-01-01
Alzheimer's disease (AD) is a dementia that affects a large contingent of the elderly population characterized by the presence of neurofibrillary tangles and senile plaques. Traumatic brain injury (TBI) is a non-degenerative injury caused by an external mechanical force. One of the main causes of TBI is diffuse axonal injury (DAI), promoted by acceleration-deceleration mechanisms. To understand the electroencephalographic differences in functional mechanisms between AD and DAI groups. The study included 20 subjects with AD, 19 with DAI and 17 healthy adults submitted to high resolution EEG with 128 channels. Cortical sources of EEG rhythms were estimated by exact low-resolution electromagnetic tomography (eLORETA) analysis. The eLORETA analysis showed that, in comparison to the control (CTL) group, the AD group had increased theta activity in the parietal and frontal lobes and decreased alpha 2 activity in the parietal, frontal, limbic and occipital lobes. In comparison to the CTL group, the DAI group had increased theta activity in the limbic, occipital sublobar and temporal areas. The results suggest that individuals with AD and DAI have impairment of electrical activity in areas important for memory and learning.
Al-Hanbali, Othman A; Hamed, Rania; Arafat, Mosab; Bakkour, Youssef; Al-Matubsi, Hisham; Mansour, Randa; Al-Bataineh, Yazan; Aldhoun, Mohammad; Sarfraz, Muhammad; Dardas, Abdel Khaleq Yousef
2018-01-01
In this study, hydrophilic hydroxypropyl methylcellulose matrices with various concentrations of Poloxamer 188 were used in the development of oral controlled release tablets containing diclofenac sodium. Four formulations of hydrophilic matrix tablets containing 16.7% w/w HPMC and 0, 6.7, 16.7 and 25.0% w/w Poloxamer 188, respectively, were developed. Tablets were prepared by direct compression and characterized for diameter, hardness, thickness, weight and uniformity of content. The influence of various blends of hydroxypropyl methylcellulose and Poloxamer 188 on the in vitro dissolution profile and mechanism of drug release of was investigated. In the four formulations, the rate of drug release decreased with increasing the concentration of Poloxamer 188 at the initial dissolution stages due to the increase in the apparent viscosity of the gel diffusion layer. However, in the late dissolution stages, the rate of drug release increased with increasing Poloxamer 188 concentration due to the increase in wettability and dissolution of the matrix. The kinetic of drug release from the tablets followed non-Fickian mechanism, as predicted by Korsmeyer-Peppas model, which involves diffusion through the gel layer and erosion of the matrix system.
Lateral Membrane Diffusion Modulated by a Minimal Actin Cortex
Heinemann, Fabian; Vogel, Sven K.; Schwille, Petra
2013-01-01
Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner. PMID:23561523
Heat conductance, diffusion theory and intracellular metabolic regulation.
Wheatley, D N; Malone, P C
1993-01-01
Diffusion theory played a major role in the development of biology as an exact science. The question is raised, however, as to its relevance and applicability in the molecular interactions which occur in metabolism in the living cell. This review looks at diffusion theory from its inception and subsequent introduction into biology, its shortcomings with regard not only to whole-body physiology, but more pertinently at the intracellular level, with its failure to offer a rational basis for metabolic regulation in the internum of the cell. The conclusion is reached that although diffusion inevitably occurs within cells, its role is of little importance with regard to most metabolic activity. In comparison, perfusion of the internal surfaces of the cell by streaming of the fluid compartment of the cytoplasm seems to be the modus operandi which allows molecular interactions to occur at rates far beyond those that diffusion would permit, and at the same time offers a mechanism which permits sensitive control of metabolic activity.
Analysis of mass incident diffusion in Weibo based on self-organization theory
NASA Astrophysics Data System (ADS)
Pan, Jun; Shen, Huizhang
2018-02-01
This study introduces some theories and methods of self-organization system to the research of the diffusion mechanism of mass incidents in Weibo (Chinese Twitter). Based on the analysis on massive Weibo data from Songjiang battery factory incident happened in 2013 and Jiiangsu Qidong OJI PAPER incident happened in 2012, we find out that diffusion system of mass incident in Weibo satisfies Power Law, Zipf's Law, 1/f noise and Self-similarity. It means this system is the self-organization criticality system and dissemination bursts can be understood as one kind of Self-organization behavior. As the consequence, self-organized criticality (SOC) theory can be used to explain the evolution of mass incident diffusion and people may come up with the right strategy to control such kind of diffusion if they can handle the key ingredients of Self-organization well. Such a study is of practical importance which can offer opportunities for policy makers to have good management on these events.
Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission.
Murphy-Royal, Ciaran; Dupuis, Julien P; Varela, Juan A; Panatier, Aude; Pinson, Benoît; Baufreton, Jérôme; Groc, Laurent; Oliet, Stéphane H R
2015-02-01
Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.
Red, purple and pink: the colors of diffusion on pinterest.
Bakhshi, Saeideh; Gilbert, Eric
2015-01-01
Many lab studies have shown that colors can evoke powerful emotions and impact human behavior. Might these phenomena drive how we act online? A key research challenge for image-sharing communities is uncovering the mechanisms by which content spreads through the community. In this paper, we investigate whether there is link between color and diffusion. Drawing on a corpus of one million images crawled from Pinterest, we find that color significantly impacts the diffusion of images and adoption of content on image sharing communities such as Pinterest, even after partially controlling for network structure and activity. Specifically, Red, Purple and pink seem to promote diffusion, while Green, Blue, Black and Yellow suppress it. To our knowledge, our study is the first to investigate how colors relate to online user behavior. In addition to contributing to the research conversation surrounding diffusion, these findings suggest future work using sophisticated computer vision techniques. We conclude with a discussion on the theoretical, practical and design implications suggested by this work-e.g. design of engaging image filters.
Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields
NASA Astrophysics Data System (ADS)
Wang, Lihua; Zhou, Yunxuan; Shen, Fang
2018-01-01
The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.
NMR (Nuclear Magnetic Resonance) and macromolecular migration in a melt or in concentrated solutions
NASA Technical Reports Server (NTRS)
Addad, J. P. C.
1983-01-01
The purpose of this paper is to analyze the migration process of long polymer molecules in a melt or in concentrated solutions as it may be observed from the dynamics of the transverse magnetization of nuclear spins linked to these chains. The low frequency viscoelastic relaxation of polymer systems is known to be mainly controlled by the mechanism of dissociation of topological constraints excited on chains and which are called entanglements. This mechanism exhibits a strong dependence upon the chain molecular weight. These topological constraints also govern the diffusion process of polymer chains. So, the accurate description of the diffusion motion of a chain may be a convenient way to characterize disentanglement processes necessarily involved in any model proposed to explain viscoelastic effects.
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David
Diffusion of H+ and OH- along water wires provides an efficient mechanism for charge transport that is exploited by biological systems and shows promise in technological applications. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we consider H+ and OH- in finite water wires using density functional theory. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition of the charge. We employ thermostated ring polymer molecular dynamics and extract a ``universal'' diffusion coefficient from simulations with different wire sizes by considering Langevin dynamics on the potential of mean force of the charged species. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate O-O distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire, presumably making them more robust to environment fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, R.D.; Godbee, H.W.; Tallent, O.K.
1991-01-01
Despite the demonstrated importance of diffusion control in leaching, other mechanisms have been observed to play a role and leaching from porous solid bodies is not simple diffusion. Only simple diffusion theory has been developed well enough for extrapolation, as yet. The well developed diffusion theory, used in data analysis by ANSI/ANS-16.1 and the NEWBOX program, can help in trying to extrapolate and predict the performance of solidified waste forms over decades and centuries, but the limitations and increased uncertainty must be understood in so doing. Treating leaching as a semi-infinite medium problem, as done in the Cote model, resultsmore » in simpler equations, but limits, application to early leaching behavior when less than 20% of a given component has been leached. 18 refs., 2 tabs.« less
Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.
NASA Astrophysics Data System (ADS)
Carlen, Eric Anders
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.
Diffusion of excitons in materials for optoelectronic device applications
NASA Astrophysics Data System (ADS)
Singh, Jai; Narayan, Monishka Rita; Ompong, David
2015-06-01
The diffusion of singlet excitonsis known to occur through the Förster resonance energy transfer (FRET) mechanism and that of singlet and triplet excitonscan occur through the Dexter carrier transfer mechanism. It is shown here that if a material possesses the strong exciton-spin-orbit-photon interaction then triplet excitonscan also be transported /diffused through a mechanism like FRET. The theory is applicable to the diffusion of excitonsin optoelectronic devices like organic solar cells, organic light emitting devices and inorganic scintillators.
How to Enhance Gas Removal from Porous Electrodes?
Kadyk, Thomas; Bruce, David; Eikerling, Michael
2016-01-01
This article presents a structure-based modeling approach to optimize gas evolution at an electrolyte-flooded porous electrode. By providing hydrophobic islands as preferential nucleation sites on the surface of the electrode, it is possible to nucleate and grow bubbles outside of the pore space, facilitating their release into the electrolyte. Bubbles that grow at preferential nucleation sites act as a sink for dissolved gas produced in electrode reactions, effectively suctioning it from the electrolyte-filled pores. According to the model, high oversaturation is necessary to nucleate bubbles inside of the pores. The high oversaturation allows establishing large concentration gradients in the pores that drive a diffusion flux towards the preferential nucleation sites. This diffusion flux keeps the pores bubble-free, avoiding deactivation of the electrochemically active surface area of the electrode as well as mechanical stress that would otherwise lead to catalyst degradation. The transport regime of the dissolved gas, viz. diffusion control vs. transfer control at the liquid-gas interface, determines the bubble growth law. PMID:28008914
Yang, Shan; Yan, Binggong; Wu, Jiaxiong; Lu, Li; Zeng, Kaiyang
2017-04-26
This paper presents the in situ mapping of temperature-dependent lithium-ion diffusion at the nanometer level in thin film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode using electrochemical strain microscopy. The thin-film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode exhibits higher lithium-ion diffusivities with increasing temperature, which explains the higher capacity observed in the lithium-ion batteries with a Li-rich cathode at elevated temperature. In addition, the activation energy for lithium-ion diffusion can be extracted in an Arrhenius-type plot at the level of grain structure with the assumption that the ionic movement is diffusion controlled. Compared with the grain interiors, the grain boundaries show relatively lower activation energy; hence, it is the preferred diffusion path for lithium ions. This study has bridged the gap between atomistic calculations and traditional macroscopic experiments, showing direct evidence as well as mechanisms for ionic diffusion for Li-rich cathode material.
Leapfrog Diffusion Mechanism for One-Dimensional Chains on Missing-Row Reconstructed Surfaces
NASA Astrophysics Data System (ADS)
Montalenti, F.; Ferrando, R.
1999-02-01
We analyze the in-channel diffusion of dimers and longer n-adatom chains on Au and Pt (110) \\(1×2\\) surfaces by molecular dynamics simulations. From our calculations it arises that, on the missing-row reconstructed surface, a novel diffusion process, called leapfrog, dominates over concerted jumps, thus becoming the most frequent diffusion mechanism.
Effective Stochastic Model for Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.
2017-12-01
We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.
Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo
2016-06-21
The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism ismore » in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.« less
Chernia, Z; Ben-Eliyahu, Y; Kimmel, G; Braun, G; Sariel, J
2006-11-23
In this work, an oxidation model for alpha-uranium is presented. It describes the internally lateral stress field built in the oxide scale during the reaction. The thickness of the elastic, stress-preserving oxide (UO(2+x)) scale is less than 0.5 microm. A lateral, 6.5 GPa stress field has been calculated from strains derived from line shifts (delta(2theta)) as measured by the X-ray diffraction of UO(2). It is shown that in the elastic growth domain, (110) is the main UO(2) growth plane for gas-solid oxidation. The diffusion-limited oxidation mechanism discussed here is based on the known "2:2:2" cluster theory which describes the mechanism of fluorite-based hyperstoichiometric oxides. In this study, it is adapted to describe oxygen-anion hopping. Anion hopping toward the oxide-metal interface proceeds at high rates in the [110] direction, hence making this pipeline route the principal growth direction in UO(2) formation. It is further argued that growth in the pure elastic domain of the oxide scale should be attributed entirely to anion hopping in 110. Anions, diffusing isotropically via grain boundaries and cracks, are shown to have a significant impact on the overall oxidation rate in relatively thick (>0.35 microm) oxide scales if followed by an avalanche break off in the postelastic regime. Stress affects oxidation in the elastic domain by controlling the hopping rate directly. In the postelastic regime, stress weakens hopping, indirectly, by enhancing isotropic diffusion. Surface roughness presents an additional hindering factor for the anion hopping. In comparison to anisotropic hopping, diffusion of isotropic hopping has a lower activation energy barrier. Therefore, a relatively stronger impact at lower temperatures due to isotropic diffusion is displayed.
Stress versus temperature dependent activation energies in creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1990-01-01
The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.
Segregation control in vertical Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Tao, Y.; Kou, S.
1996-11-01
To help the crystal grow at a constant dopant concentration in vertical Bridgman crystal growth, the dopant concentration of the growth melt, i.e. the melt from which the crystal grows, was kept constant. To achieve this, three different methods were used to replenish the growth melt at a controlled rate and suppress dopant diffusion between the growth melt and the replenishing melt. In method one, a replenishing crucible having a long melt passageway was immersed in the growth melt. In method two, a replenishing crucible having an independent feed-rate control mechanism was held above the growth melt. In method three, a submerged diffusion baffle was used to form a long melt passageway between the growth melt and the replenishing melt. NaNO 3 was used as a model material for crystal growth. Single crystals were grown by these three methods with effective segregation control. Method two was applied to InSb and single crystals were also grown with effective segregation control.
Probing the oxidation kinetics of small permalloy particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiaolei; Song, Xiao; Yin, Shiliu
2017-02-15
The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only give insight knowledge about the oxidation and diffusion processes of small permalloy particles, but also, provides a useful tool for analyzing solid-gas reactions of other materials. - Highlights: • The oxidation kinetics of small NiFe particles were studied by using thermoanalysis. • Grain boundary, lattice, and phase conversion induced diffusions were recognized. • The activation energy of oxidation increases with the Fe content in the alloy. • Each diffusion process corresponds to a characteristic temperature in TPO analysis. • NiFe alloys with ~5–10 wt% Fe content have the lowest oxidation rates.« less
The breakup mechanism of biomolecular and colloidal aggregates in a shear flow
NASA Astrophysics Data System (ADS)
Ó Conchúir, Breanndán; Zaccone, Alessio
2014-03-01
The theory of self-assembly of colloidal particles in shear flow is incomplete. Previous analytical approaches have failed to capture the microscopic interplay between diffusion, shear and intermolecular interactions which controls the aggregates fate in shear. In this work we analytically solved the drift-diffusion equation for the breakup rate of a dimer in flow. Then applying rigidity percolation theory, we found that the lifetime of a generic cluster formed under shear is controlled by the typical lifetime of a single bond in its interior, which in turn depends on the efficiency of the stress transmitted from other bonds in the cluster. We showed that aggregate breakup is a thermally-activated process where the activation energy is controlled by the interplay between intermolecular forces and the shear drift, and where structural parameters determine whether cluster fragmentation or surface erosion prevails. In our latest work, we analyzed floppy modes and nonaffine deformations to derive a lower bound on the fractal dimension df below which aggregates are mechanically unstable, ie. for large aggregates df ~= 2.4. This theoretical framework is in quantitative agreement with experiments and can be used for population balance modeling of colloidal and protein aggregation.
NASA Astrophysics Data System (ADS)
Gautheron, C.; Mbongo-Djimbi, D.; Gerin, C.; Roques, J.; Bachelet, C.; Oliviero, E.; Tassan-Got, L.
2015-12-01
The apatite (U-Th)/He (AHe) system has rapidly become a very popular thermochronometer, however, interpretation of AHe age depends on a precise knowledge of He diffusion. Several studies suggest that He retention is function of the amount of damage that is controlled by U-Th concentration, grain chemistry and thermal history. Still, the models are not well constrained and do not fully explain the mechanism of He retention. In order to have a deeper insight into this issue, a multidisciplinary study on apatite combining physical methods such as multi-scale theoretical diffusion calculations based on Density Functional Theory (DFT) with diffusion experiments by ion beam Elastic Recoil Diffusion Analysis (ERDA) were performed. Quantum calculations permit to quantify He diffusivity base level for damage-free crystal and to estimate the additional energy cost to extract He atoms trapped in point defects (i.e. vacancies). On the other hand ion beam ERDA experiments allow to measure He diffusivity in artificially damaged crystals. We show that damage-free apatite crystals are characterized by low retention behavior and closure temperature of ~35°C for pure F-apatite to higher value for Cl rich apatite (up to 12°C higher), for typical grain size and cooling rate (Mbongo-Djimbi et al., 2015). Our computed closure temperature is slightly lower than previously reported experimental values (~50°C). Using ERDA and DFT modeling of damage, we show how He diffusivity is influenced by damage. Finally, we are able to propose a new modeling of He diffusion incorporating mechanisms not included in classical damage models, and taking into account the level of damage and apatite chemistry. We show that it could affect significantly AHe age interpretation. Mbongo-Djimbi D. et al. 2015. Apatite composition effect on (U-Th)/He thermochronometer: an atomistic point of view. Geohimica Cosmochim. Acta.
NASA Astrophysics Data System (ADS)
Chen, Yung-Sheng; Wang, Jeng-Yau
2015-09-01
Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.
NASA Astrophysics Data System (ADS)
Rudno-Rudziński, W.; Biegańska, D.; Misiewicz, J.; Lelarge, F.; Rousseau, B.; Sek, G.
2018-01-01
We investigate the diffusion of photo-generated carriers (excitons) in hybrid two dimensional-zero dimensional tunnel injection structures, based on strongly elongated InAs quantum dots (called quantum dashes, QDashes) of various heights, designed for emission at around 1.5 μm, separated by a 3.5 nm wide barrier from an 8 nm wide In0.64Ga0.36As0.78P0.22 quantum well (QW). By measuring the spectrally filtered real space images of the photoluminescence patterns with high resolution, we probe the spatial extent of the emission from QDashes. Deconvolution with the exciting light spot shape allows us to extract the carrier/exciton diffusion lengths. For the non-resonant excitation case, the diffusion length depends strongly on excitation power, pointing at carrier interactions and phonons as its main driving mechanisms. For the case of excitation resonant with absorption in the adjacent QW, the diffusion length does not depend on excitation power for low excitation levels since the generated carriers do not have sufficient excess kinetic energy. It is also found that the diffusion length depends on the quantum-mechanical coupling strength between QW and QDashes, controlled by changing the dash size. It influences the energy difference between the QDash ground state of the system and the quantum well levels, which affects the tunneling rates. When that QW-QDash level separation decreases, the probability of capturing excitons generated in the QW by QDashes increases, which is reflected by the decreased diffusion length from approx. 5 down to 3 μm.
The Kinetics of TiAl3 Formation in Explosively Welded Ti-Al Multilayers During Heat Treatment
NASA Astrophysics Data System (ADS)
Foadian, Farzad; Soltanieh, Mansour; Adeli, Mandana; Etminanbakhsh, Majid
2016-10-01
Metallic-intermetallic laminate (MIL) composites, including Ti/TiAl3 composite, are promising materials for many applications, namely, in the aerospace industry. One method to produce Ti/TiAl3 laminate composite is to provide close attachment between desired number of titanium and aluminum plates, so that by applying heat and/or pressure, the formation of intermetallic phases between the layers becomes possible. In this work, explosive welding was used to make a strong bond between six alternative Ti and Al layers. The welded samples were annealed at three different temperatures: 903 K, 873 K, and 843 K (630 °C, 600 °C, and 570 °C) in ambient atmosphere, and the variation of the intermetallic layer thickness was used to study the growth kinetics. Microstructural investigations were carried out on the welded and annealed samples using optical microscopy and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (EDS). X-ray diffraction (XRD) technique was used to identify the formed intermetallic phases. It was found that at each temperature, two different mechanisms govern the process: reaction controlled and diffusion controlled. The calculated values of activation energies for reaction-controlled and diffusion-controlled mechanisms are 232.1 and 17.4 kJ, respectively.
The mechanism of grain growth in ceramics
NASA Technical Reports Server (NTRS)
Kapadia, C. M.; Leipold, M. H.
1972-01-01
The theory of grain boundary migration as a thermally activated process is reviewed, the basic mechanisms in ceramics being the same as in metals. However, porosity and non-stochiometry in ceramic materials give an added dimension to the theory and make quantitative treatment of real systems rather complex. Grain growth is a result of several simultaneous (and sometimes interacting) processes; these are most easily discussed separately, but the overall rate depends on their interaction. Sufficient insight into the nature of rate controlling diffusion mechanisms is necessary before a qualitative understanding of boundary mobility can be developed.
Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T
1993-01-01
Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions. Images PMID:8508772
Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T
1993-06-01
Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions.
A calibration mechanism based on worm drive for space telescope
NASA Astrophysics Data System (ADS)
Chong, Yaqin; Li, Chuang; Xia, Siyu; Zhong, Peifeng; Lei, Wang
2017-08-01
In this paper, a new type of calibration mechanism based on worm drive is presented for a space telescope. This calibration mechanism based on worm drive has the advantages of compact size and self-lock. The mechanism mainly consists of thirty-six LEDs as the light source for flat calibration, a diffuse plate, a step motor, a worm gear reducer and a potentiometer. As the main part of the diffuse plate, a PTFE tablet is mounted in an aluminum alloy frame. The frame is fixed on the shaft of the worm gear, which is driven by the step motor through the worm. The shaft of the potentiometer is connected to that of the worm gear to measure the rotation angle of the diffuse plate through a flexible coupler. Firstly, the calibration mechanism is designed, which includes the LEDs assembly design, the worm gear reducer design and the diffuse plate assembly design. The counterweight blocks and two end stops are also designed for the diffuse plate assembly. Then a modal analysis with finite element method for the diffuse plate assembly is completed.
Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.
Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick
2014-03-26
The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.
NASA Astrophysics Data System (ADS)
Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang
2014-12-01
Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.
NASA Technical Reports Server (NTRS)
Hoffmann, E. K.; Bird, R. K.; Bales, T. T.
1989-01-01
A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Michael K.; Parish, Chad M.; Bei, Hongbin
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
Miller, Michael K.; Parish, Chad M.; Bei, Hongbin
2014-12-18
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
NASA Astrophysics Data System (ADS)
Miller, M. K.; Parish, C. M.; Bei, H.
2015-07-01
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.
Intensification of the Process of Flame Combustion of a Pulverized Coal Fuel
NASA Astrophysics Data System (ADS)
Popov, V. I.
2017-11-01
Consideration is given to a method of mechanoactivation intensification of the flame combustion of a pulverized coal fuel through the formation of a stressed state for the microstructure of its particles; the method is based on the use of the regularities of their external (diffusion) and internal (relaxation) kinetics. A study has been made of mechanoactivation nonequilibrium processes that occur in fuel particles during the induced relaxation of their stressed state with a resumed mobility of the microstructure of the particles and intensify diffusion-controlled chemical reactions in them under the assumption that the time of these reactions is much shorter than the times of mechanical action on a particle and of stress relaxation in it. The influence of the diffusion and relaxation factors on the burnup time of a fuel particle and on the flame distance has been analyzed. Ranges of variation in the parameters of flame combustion have been singled out in which the flame distance is determined by the mechanisms of combustion of the fuel and of mixing of combustion products.
Physiological importance of RNA and protein mobility in the cell nucleus
2007-01-01
Trafficking of proteins and RNAs is essential for cellular function and homeostasis. While it has long been appreciated that proteins and RNAs move within cells, only recently has it become possible to visualize trafficking events in vivo. Analysis of protein and RNA motion within the cell nucleus have been particularly intriguing as they have revealed an unanticipated degree of dynamics within the organelle. These methods have revealed that the intranuclear trafficking occurs largely by energy-independent mechanisms and is driven by diffusion. RNA molecules and non-DNA binding proteins undergo constrained diffusion, largely limited by the spatial constraint imposed by chromatin, and chromatin binding proteins move by a stop-and-go mechanism where their free diffusion is interrupted by random association with the chromatin fiber. The ability and mode of motion of proteins and RNAs has implications for how they find nuclear targets on chromatin and in nuclear subcompartments and how macromolecular complexes are assembled in vivo. Most importantly, the dynamic nature of proteins and RNAs is emerging as a means to control physiological cellular responses and pathways. PMID:17994245
Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.
Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven
2015-09-21
Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
NASA Astrophysics Data System (ADS)
Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre
2018-02-01
We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.
Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices
NASA Technical Reports Server (NTRS)
Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.
2014-01-01
We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.
Two-stage bulk electron heating in the diffusion region of anti-parallel symmetric reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Ari Yitzchak; Egedal, Jan; Daughton, William Scott
2016-10-13
Electron bulk energization in the diffusion region during anti-parallel symmetric reconnection entails two stages. First, the inflowing electrons are adiabatically trapped and energized by an ambipolar parallel electric field. Next, the electrons gain energy from the reconnection electric field as they undergo meandering motion. These collisionless mechanisms have been described previously, and they lead to highly structured electron velocity distributions. Furthermore, a simplified control-volume analysis gives estimates for how the net effective heating scales with the upstream plasma conditions in agreement with fully kinetic simulations and spacecraft observations.
Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.
Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S
2017-01-01
The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.
Dow, J M
2017-01-01
Cell-to-cell signals of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids of differing chain length and branching pattern. DSF signalling has been described in diverse bacteria to include plant and human pathogens where it acts to regulate functions such as biofilm formation, antibiotic tolerance and the production of virulence factors. DSF family signals can also participate in interspecies signalling with other bacteria and interkingdom signalling such as with the yeast Candida albicans. Interference with DSF signalling may afford new opportunities for the control of bacterial disease. Such strategies will depend in part on detailed knowledge of the molecular mechanisms underlying the processes of signal synthesis, perception and turnover. Here, I review both recent progress in understanding DSF signalling at the molecular level and prospects for translating this knowledge into approaches for disease control. © 2016 The Society for Applied Microbiology.
Control of scroll wave turbulence in a three-dimensional reaction-diffusion system with gradient.
Qiao, Chun; Wu, Yabi; Lu, Xiaochuan; Wang, Chunyan; Ouyang, Qi; Wang, Hongli
2008-06-01
In this paper, we summarize our recent experimental and theoretical works on observation and control of scroll wave (SW) turbulence. The experiments were conducted in a three-dimensional Belousov-Zhabotinsky reaction-diffusion system with chemical concentration gradients in one dimension. A spatially homogeneous external forcing was used in the experiments as a control; it was realized by illuminating white light on the light sensitive reaction medium. We observed that, in the oscillatory regime of the system, SW can appear automatically in the gradient system, which will be led to spatiotemporal chaos under certain conditions. A suitable periodic forcing may stabilize inherent turbulence of SW. The mechanism of the transition to SW turbulence is due to the phase twist of SW in the presence of chemical gradients, while modulating the phase twist with a proper periodic forcing can delay this transition. Using the FitzHugh-Nagumo model with an external periodic forcing, we confirmed the control mechanism with numerical simulation. Moreover, we also show in the simulation that adding temporal external noise to the system may have the same control effect. During this process, we observed a new state called "intermittent turbulence," which may undergo a transition into a new type of SW collapse when the noise intensity is further increased. The intermittent state and the collapse could be explained by a random process.
Laser-assisted ignition and combustion characteristics of consolidated aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Saceleanu, Florin; Wen, John Z.; Idir, Mahmoud; Chaumeix, Nabiha
2016-11-01
Aluminum (Al) nanoparticles have drawn much attention due to their high energy density and tunable ignition properties. In comparison with their micronscale counterpart, Al nanoparticles possess large specific surface area and low apparent activation energy of combustion, which reduce ignition delay significantly. In this paper, ignition and subsequently burning of consolidated Al nanoparticle pellets are performed via a continuous wave (CW) argon laser in a closed spherical chamber filled with oxygen. Pellets are fabricated using two types of nanoparticle sizes of 40-60 and 60-80 nm, respectively. A photodiode is used to measure the ignition delay, while a digital camera captures the location of the flame front. It is found that for the 40-60-nm nanoparticle pellets, ignition delay reduces with increasing the oxygen pressure or using the higher laser power. Analysis of the flame propagation rate suggests that oxygen diffusion is an important mechanism during burning of these porous nanoparticle pellets. The combustion characteristics of the Al pellets are compared to a simplified model of the diffusion-controlled oxidation mechanism. While experimental measurements of pellets of 40-60 nm Al particles agree with the computed diffusion-limiting mechanism, a shifted behavior is observed from the pellets of 60-80 nm Al particles, largely due to the inhomogeneity of their porous structures.
A Reaction-Diffusion Model for Synapse Growth and Long-Term Memory
NASA Astrophysics Data System (ADS)
Liu, Kang; Lisman, John; Hagan, Michael
Memory storage involves strengthening of synaptic transmission known as long-term potentiation (LTP). The late phase of LTP is associated with structural processes that enlarge the synapse. Yet, synapses must be stable, despite continual subunit turnover, over the lifetime of an encoded memory. These considerations suggest that synapses are variable-size stable structure (VSSS), meaning they can switch between multiple metastable structures with different sizes. The mechanisms underlying VSSS are poorly understood. While experiments and theory have suggested that the interplay between diffusion and receptor-scaffold interactions can lead to a preferred stable size for synaptic domains, such a mechanism cannot explain how synapses adopt widely different sizes. Here we develop a minimal reaction-diffusion model of VSSS for synapse growth, incorporating the recent observation from super-resolution microscopy that neural activity can build compositional heterogeneities within synaptic domains. We find that introducing such heterogeneities can change the stable domain size in a controlled manner. We discuss a potential connection between this model and experimental data on synapse sizes, and how it provides a possible mechanism to structurally encode graded long-term memory. We acknowledge the support from NSF INSPIRE Award number IOS-1526941 (KL, MFH, JL) and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR- 1420382 (MFH).
Diffusion mechanism in the sodium-ion battery material sodium cobaltate.
Willis, T J; Porter, D G; Voneshen, D J; Uthayakumar, S; Demmel, F; Gutmann, M J; Roger, M; Refson, K; Goff, J P
2018-02-16
High performance batteries based on the movement of Li ions in Li x CoO 2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO 2 . Here we have determined the diffusion mechanism for Na 0.8 CoO 2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.
Solid-phase diffusion mechanism for GaAs nanowire growth.
Persson, Ann I; Larsson, Magnus W; Stenström, Stig; Ohlsson, B Jonas; Samuelson, Lars; Wallenberg, L Reine
2004-10-01
Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.
Toward modeling wingtip vortices
NASA Technical Reports Server (NTRS)
Zeman, O.
1993-01-01
Wingtip vortices are generated by lifting airfoils; their salient features are compactness and relatively slow rate of decay. The principal motivation for studying the far field evolution of wingtip vortices is the need to understand and predict the extent of the vortex influence during aircraft take-off or landing. On submarines a wingtip vortex ingested into a propeller can be a source of undesirable noise. The main objectives of this research are (1) to establish theoretical understanding of the principal mechanisms that govern the later (diffusive) stages of a turbulent vortex, (2) to develop a turbulence closure model representing the basic physical mechanisms that control the vortex diffusive stage, and further (3) to investigate coupling between the near and far field evolutions; in other words, to study the effect of initial conditions on the vortex lifetime and the ultimate state.
NASA Astrophysics Data System (ADS)
Bringuier, E.
2009-11-01
The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact that, near equilibrium, particle transport should occur down the gradient of the chemical potential. This yields Fick's law with two additional advantages. First, splitting the chemical potential into 'mechanical' and 'chemical' contributions shows how transport and mechanics are linked through the diffusivity-mobility relationship. Second, splitting the chemical potential into entropic and energetic contributions discloses the respective roles of entropy maximization and energy minimization in driving diffusion. The paper addresses first unary diffusion, where there is only one mobile species in an immobile medium, and next turns to binary diffusion, where two species are mobile with respect to each other in a fluid medium. The interrelationship between unary and binary diffusivities is brought out and it is shown how binary diffusion reduces to unary diffusion in the limit of high dilution of one species amidst the other one. Self- and mutual diffusion are considered and contrasted within the thermodynamic framework; self-diffusion is a time-dependent manifestation of the Gibbs paradox of mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yiheng; Xia, Guangrui; Yasuda, Hiroshi
2014-10-14
The use of carbon (C) in SiGe base layers is an important approach to control the base layer dopant phosphorus (P) diffusion and thus enhance PNP heterojunction bipolar transistor (HBT) performance. This work quantitatively investigated the carbon impacts on P diffusion in Si₀.₈₂Ge₀.₁₈:C and Si:C under rapid thermal anneal conditions. The carbon molar fraction is up to 0.32%. The results showed that the carbon retardation effect on P diffusion is less effective for Si₀.₈₂Ge₀.₁₈:C than for Si:C. In Si₀.₈₂Ge₀.₁₈:C, there is an optimum carbon content at around 0.05% to 0.1%, beyond which more carbon incorporation does not retard P diffusionmore » any more. This behavior is different from the P diffusion behavior in Si:C and the B in Si:C and low Ge SiGe:C, which can be explained by the decreased interstitial-mediated diffusion fraction f{sub I}{sup P,SiGe} to 95% as Ge content increases to 18%. Empirical models were established to calculate the time-averaged point defect concentrations and effective diffusivities as a function of carbon and was shown to agree with previous studies on boron, phosphorus, arsenic and antimony diffusion with carbon.« less
NASA Astrophysics Data System (ADS)
Tomašević, D. D.; Kozma, G.; Kerkez, Dj. V.; Dalmacija, B. D.; Dalmacija, M. B.; Bečelić-Tomin, M. R.; Kukovecz, Á.; Kónya, Z.; Rončević, S.
2014-08-01
The objective of this study was to investigate the possibility of using supported nanoscale zero-valent iron with bentonite and kaolinite for immobilization of As, Pb and Zn in contaminated sediment from the Nadela river basin (Serbia). Assessment of the sediment quality based on the pseudo-total metal content (As, Pb and Zn) according to the corresponding Serbian standards shows its severe contamination, such that it requires disposal in special reservoirs and, if possible, remediation. A microwave-assisted sequential extraction procedure was employed to assess potential metal mobility and risk to the aquatic environment. According to these results, As showed lower risk to the environment than Pb and Zn, which both represent higher risk to the environment. The contaminated sediment, irrespective of the different speciation of the treated metals, was subjected to the same treatment. Semi-dynamic leaching test, based on leachability index and effective diffusion coefficients, was conducted for As-, Pb- and Zn-contaminated sediments in order to assess the long-term leaching behaviour. In order to simulate "worst case" leaching conditions, the test was modified using acetic and humic acid solution as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms; in the majority of samples, the controlling leaching mechanism appeared to be diffusion. Three different single-step leaching tests were applied to evaluate the extraction potential of examined metals. Generally, the test results indicated that the treated sediment is safe for disposal and could even be considered for "controlled utilization".
Assessment and diffusion of medical innovations in France: an overview
Dubromel, Amélie; Geffroy, Loïc; Aulagner, Gilles; Dussart, Claude
2018-01-01
ABSTRACT Background: In France, a significant part of health expenditure is publicly funding. This put a heavy burden on society. In an economic context requiring tight control of public spending, it seems relevant to control the diffusion of medical innovations. That is why health technology assessment is subject to an increasing interest at national level for management and approval decisions. This article provides an overview of the assessment and diffusion of medical innovation in France. Method: The data are extracted from French authorities or organisations websites and documents and from French legislative texts. In addition, regarding discussion, a search in MEDLINE database was carried out. Results: An overview of the assessment and diffusion of medical innovation in France is given by presenting the different types of medical innovations according to French health system definition (I); introducing French authorities participating to health technology assessment and describe assessment procedures of medical innovations (II); and giving details about market access process of innovative health product in France (III). Key opportunities and challenges of medical innovation assessment and diffusion in France are discussed at the end of this article. Conclusion: In France, medical innovation is considered as a crucial component for quality of care and performance of healthcare system. The aim of health technology assessment is to promote a secure and timely access to innovation for patients. Nevertheless, it appears necessary to improve regulatory mechanisms. PMID:29686802
Assessment and diffusion of medical innovations in France: an overview.
Dubromel, Amélie; Geffroy, Loïc; Aulagner, Gilles; Dussart, Claude
2018-01-01
Background: In France, a significant part of health expenditure is publicly funding. This put a heavy burden on society. In an economic context requiring tight control of public spending, it seems relevant to control the diffusion of medical innovations. That is why health technology assessment is subject to an increasing interest at national level for management and approval decisions. This article provides an overview of the assessment and diffusion of medical innovation in France. Method: The data are extracted from French authorities or organisations websites and documents and from French legislative texts. In addition, regarding discussion, a search in MEDLINE database was carried out. Results: An overview of the assessment and diffusion of medical innovation in France is given by presenting the different types of medical innovations according to French health system definition (I); introducing French authorities participating to health technology assessment and describe assessment procedures of medical innovations (II); and giving details about market access process of innovative health product in France (III). Key opportunities and challenges of medical innovation assessment and diffusion in France are discussed at the end of this article. Conclusion: In France, medical innovation is considered as a crucial component for quality of care and performance of healthcare system. The aim of health technology assessment is to promote a secure and timely access to innovation for patients. Nevertheless, it appears necessary to improve regulatory mechanisms.
NASA Astrophysics Data System (ADS)
Tajcmanova, L.; Moulas, E.; Vrijmoed, J.; Podladchikov, Y.
2016-12-01
Estimation of pressure-temperature (P-T) from petrographic observations in metamorphic rocks has become a common practice in petrology studies during the last 50 years. This data often serves as a key input in geodynamic reconstructions and thus directly influences our understanding of lithospheric processes. Such an approach might have led the metamorphic geology field to a certain level of quiescence. In the classical view of metamorphic quantification approaches, fast viscous relaxation (and therefore constant pressure across the rock microstructure) is assumed, with chemical diffusion being the limiting factor in equilibration. Recently, we have focused on the other possible scenario - fast chemical diffusion and slow viscous relaxation - and brings an alternative interpretation of chemical zoning found in high-grade rocks. The aim has been to provide insight into the role of mechanically maintained pressure variations on multi-component chemical zoning in minerals. Furthermore, we used the pressure information from the mechanically-controlled microstructure for rheological constrains. We show an unconventional way of relating the direct microstructural observations in rocks to the nonlinearity of rheology at time scales unattainable by laboratory measurements. Our analysis documents that mechanically controlled microstructures that have been preserved over geological times can be used to deduce flow-law parameters and in turn estimate stress levels of minerals in their natural environment. The development of the new quantification approaches has opened new horizons in understanding the phase transformations in the Earth's lithosphere. Furthermore, the new data generated can serve as a food for thought for the next generation of fully coupled numerical codes that involve reacting materials while respecting conservation of mass, momentum and energy.
Au/Ti resistors used for Nb/Pb-alloy Josephson junctions. II. Thermal stability
NASA Astrophysics Data System (ADS)
Murakami, Masanori; Kim, K. K.
1984-10-01
In the preceding paper bilayered Au/Ti resistors were found to have excellent electrical stability during storage at room temperature after preannealing at an elevated temperature, which is essential to design logic and memory circuits of Nb/Pb-alloy Josephson junction devices. The resistors could contact directly with the Pb-alloy control lines in which Pb and In atoms which are known to intermix easily with Au atoms are contained. Since Pb and In atoms in the control lines are separated from Au atoms of the resistors by thin Ti layers, thermal stability at the contacts is a major concern for use of the Au/Ti resistor material in the Josephson devices. In the present study, surface morphology change and diffusion mechanism at the resistor/control-line contacts were studied using x-ray diffraction and scanning electron microscopy for square-shaped Au/Ti resistors covered by Pb-In layers. The samples were isothermally annealed at temperatures ranging from 353 to 423 K. The diffusion did not occur immediately after annealing at these temperatures. After the incubation period, the interdiffusion was observed to initiate at the edges of the resistors facing to the center of the cathode. Significant amounts of the In atoms in the Pb-In layers were observed to diffuse into the Au layers of the resistors, forming AuIn2 compounds under the Ti layers. By measuring growth rates of the AuIn2 layers, the diffusion coefficients and the activation energy for the layer growth were determined. Also, by analyzing changes in the In concentration in the Pb-In layers during annealing, interdiffusion coefficients of In atoms in the Pb-In layers were determined using a computer simulation technique. The activation energy was about 1.1 eV. Since these diffusion coefficients were found to be very close to those determined previously in bulk materials, the diffusion kinetics is believed to be controlled by the lattice diffusion. Based on the present results, several methods to reduce the interdiffusion between Pb-alloy and Au/Ti resistors were proposed.
Mechanisms and behavioural functions of structural coloration in cephalopods
Mäthger, Lydia M.; Denton, Eric J.; Marshall, N. Justin; Hanlon, Roger T.
2008-01-01
Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review the recent anatomical and experimental evidence regarding the mechanisms of reflection and diffusion of light by the different cell types (iridophores and leucophores) of various cephalopod species. The structures that are responsible for the optical effects of some iridophores and leucophores have recently been shown to be proteins. Optical interactions with the overlying pigmented chromatophores are complex, and the recent measurements are presented and synthesized. Polarized light reflected from iridophores can be passed through the chromatophores, thus enabling the use of a discrete communication channel, because cephalopods are especially sensitive to polarized light. We illustrate how structural coloration contributes to the overall appearance of the cephalopods during intra- and interspecific behavioural interactions including camouflage. PMID:19091688
Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques.
Duarte, Ana Rita C; Roy, Christelle; Vega-González, Arlette; Duarte, Catarina M M; Subra-Paternault, Pascale
2007-03-06
The possibility of preparation of ophthalmic drug delivery systems using compressed anti-solvent technology was evaluated. Eudragit RS 100 and RL 100 were used as drug carriers, acetazolamide was the model drug processed. Compressed anti-solvent experiments were carried out as a semi-continuous or a batch operation from a liquid solution of polymer(s)+solute dissolved in acetone. Both techniques allowed the recovery of composite particles, but the semi-continuous operation yielded smaller and less aggregated populations than the batch operation. The release behaviour of acetazolamide from the prepared microparticles was studied and most products exhibited a slower release than the single drug. Moreover, the release could be controlled to some extent by varying the ratio of the two Eudragit used in the formulation and by selecting one or the other anti-solvent technique. Simple diffusion models satisfactorily described the release profiles. Composites specifically produced by semi-continuous technique have a drug release rate controlled by a diffusion mechanism, whereas for composites produced by the batch operation, the polymer swelling also contributes to the overall transport mechanism.
Controlling mechanisms of metals release form cement-based waste form in acetic acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kuang Ye.
1991-01-01
The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less
Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Pippin, H. Gary
1995-01-01
Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.
NASA Astrophysics Data System (ADS)
Tang, Evelyn; Giusti, Chad; Baum, Graham; Gu, Shi; Pollock, Eli; Kahn, Ari; Roalf, David; Moore, Tyler; Ruparel, Kosha; Gur, Ruben; Gur, Raquel; Satterthwaite, Theodore; Bassett, Danielle
Motivated by a recent demonstration that the network architecture of white matter supports emerging control of diverse neural dynamics as children mature into adults, we seek to investigate structural mechanisms that support these changes. Beginning from a network representation of diffusion imaging data, we simulate network evolution with a set of simple growth rules built on principles of network control. Notably, the optimal evolutionary trajectory displays a striking correspondence to the progression of child to adult brain, suggesting that network control is a driver of development. More generally, and in comparison to the complete set of available models, we demonstrate that all brain networks from child to adult are structured in a manner highly optimized for the control of diverse neural dynamics. Within this near-optimality, we observe differences in the predicted control mechanisms of the child and adult brains, suggesting that the white matter architecture in children has a greater potential to increasingly support brain state transitions, potentially underlying cognitive switching.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials
Huang, Changjin; Quinn, David; Suresh, Subra
2018-01-01
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. PMID:29255037
Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves.
Nan, Tianxiang; Yang, Jianguang; Chen, Bing
2018-04-01
Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.
Fine, Daniel; Grattoni, Alessandro; Hosali, Sharath; Ziemys, Arturas; De Rosa, Enrica; Gill, Jaskaran; Medema, Ryan; Hudson, Lee; Kojic, Milos; Milosevic, Miljan; Brousseau Iii, Louis; Goodall, Randy; Ferrari, Mauro; Liu, Xuewu
2010-11-21
This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.
Patel, H C; Tokarski, J S; Hopfinger, A J
1997-10-01
The purpose of this study was to identify the key physicochemical molecular properties of polymeric materials responsible for gaseous diffusion in the polymers. Quantitative structure-property relationships, QSPRs were constructed using a genetic algorithm on a training set of 16 polymers for which CO2, N2, O2 diffusion constants were measured. Nine physicochemical properties of each of the polymers were used in the trial basis set for QSPR model construction. The linear cross-correlation matrices were constructed and investigated for colinearity among the members of the training sets. Common water diffusion measures for a limited training set of six polymers was used to construct a "semi-QSPR" model. The bulk modulus of the polymer was overwhelmingly found to be the dominant physicochemical polymer property that governs CO2, N2 and O2 diffusion. Some secondary physicochemical properties controlling diffusion, including conformational entropy, were also identified as correlation descriptors. Very significant QSPR diffusion models were constructed for all three gases. Cohesive energy was identified as the main correlation physicochemical property with aqueous diffusion measures. The dominant role of polymer bulk modulus on gaseous diffusion makes it difficult to develop criteria for selective transport of gases through polymers. Moreover, high bulk moduli are predicted to be necessary for effective gas barrier materials. This property requirement may limit the processing and packaging features of the material. Aqueous diffusion in polymers may occur by a different mechanism than gaseous diffusion since bulk modulus does not correlate with aqueous diffusion, but rather cohesive energy of the polymer.
Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity
NASA Astrophysics Data System (ADS)
Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun
2017-09-01
Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry
Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.
Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂
Andersson, David A.; Tonks, Michael R.; Casillas, Luis; ...
2015-07-01
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less
Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes
NASA Astrophysics Data System (ADS)
Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.
2018-03-01
A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.
Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer PTB7 and a Homopolymer P3HT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Sung; Rolczynski, Brian S.; Xu, Tao
2015-06-18
Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast,more » P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.« less
Cho, Sung; Rolczynski, Brian S; Xu, Tao; Yu, Luping; Chen, Lin X
2015-06-18
Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast, P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani, M; Sefidgar, M; Bazmara, H
2015-06-15
Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on amore » 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of the diffusion phenomenon prevents these factors from modulating FDG distribution.« less
Versace, Amelia; Almeida, Jorge R C; Hassel, Stefanie; Walsh, Nicholas D; Novelli, Massimiliano; Klein, Crystal R; Kupfer, David J; Phillips, Mary L
2008-09-01
Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Cross-sectional, case-control, whole-brain DTI using TBSS. University research institute. Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Subjects with BD vs controls had significantly greater FA (t > 3.0, P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.
Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less
Chaban, Victor V; Cho, Taehoon; Reid, Christopher B; Norris, Keith C
2013-01-01
Cell-cell communication occurs via a variety of mechanisms, including long distances (hormonal), short distances (paracrine and synaptic) or direct coupling via gap junctions, antigen presentation, or ligand-receptor interactions. We evaluated the possibility of neuro-hormonal independent, non-diffusible, physically disconnected pathways for cell-cell communication using dorsal root ganglion (DRG) neurons. We assessed intracellular calcium ([Ca(2+)]) in primary culture DRG neurons that express ATP-sensitive P2X3, capsaicinsensitive TRPV1 receptors modulated by estradiol. Physically disconnected (dish-in-dish system; inner chamber enclosed) mouse DRG were cultured for 12 hours near: a) media alone (control 1), b) mouse DRG (control 2), c) human neuroblastoma SHSY-5Y cells (cancer intervention), or d) mouse DRG treated with KCl (apoptosis intervention). Chemosensitive receptors [Ca(2+)](i) signaling did not differ between control 1 and 2. ATP (10 μM) and capsaicin (100nM) increased [Ca(2+)](i) transients to 425.86 + 49.5 nM, and 399.21 ± 44.5 nM, respectively. 17β-estradiol (100 nM) exposure reduced ATP (171.17 ± 48.9 nM) and capsaicin (175.01±34.8 nM) [Ca(2+)](i) transients. The presence of cancer cells reduced ATP- and capsaicin-induced [Ca(2+)](i) by >50% (p<0.05) and abolished the 17β-estradiol effect. By contrast, apoptotic DRG cells increased initial ATP-induced [Ca(2+)](i), flux four fold and abolished subsequent [Ca(2+)](i), responses to ATP stimulation (p<0.001). Capsaicin (100nM) induced [Ca(2+)](i) responses were totally abolished. The local presence of apoptotic DRG or human neuroblastoma cells induced differing abnormal ATP and capsaicin-mediated [Ca(2+)](i) fluxes in normal DRG. These findings support physically disconnected, non-diffusible cell-to-cell signaling. Further studies are needed to delineate the mechanism(s) of and model(s) of communication.
The secondary drying and the fate of organic solvents for spray dried dispersion drug product.
Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark
2015-05-01
To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.
Red, Purple and Pink: The Colors of Diffusion on Pinterest
Bakhshi, Saeideh; Gilbert, Eric
2015-01-01
Many lab studies have shown that colors can evoke powerful emotions and impact human behavior. Might these phenomena drive how we act online? A key research challenge for image-sharing communities is uncovering the mechanisms by which content spreads through the community. In this paper, we investigate whether there is link between color and diffusion. Drawing on a corpus of one million images crawled from Pinterest, we find that color significantly impacts the diffusion of images and adoption of content on image sharing communities such as Pinterest, even after partially controlling for network structure and activity. Specifically, Red, Purple and pink seem to promote diffusion, while Green, Blue, Black and Yellow suppress it. To our knowledge, our study is the first to investigate how colors relate to online user behavior. In addition to contributing to the research conversation surrounding diffusion, these findings suggest future work using sophisticated computer vision techniques. We conclude with a discussion on the theoretical, practical and design implications suggested by this work—e.g. design of engaging image filters. PMID:25658423
The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil
NASA Astrophysics Data System (ADS)
Ganot, Y.; Weisbrod, N.; Dragila, M. I.
2011-12-01
Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.
Reactive solid surface morphology variation via ionic diffusion.
Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih
2012-08-14
In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.
NASA Astrophysics Data System (ADS)
Karato, Shun-ichiro
2015-11-01
Nominally anhydrous minerals such as olivine dissolve hydrogen in a variety of forms including free (or interstitial) proton (Hrad) and two protons trapped at the M-site ((2 H)M×). The strength of chemical bonding between protons and the surrounding atoms are different among different species, and consequently protons belonging to different species likely have different mobility (diffusion coefficients). I discuss the role of diffusion of protons in different species in the isotope exchange and hydrogen-assisted electrical conductivity adding a few notes to the previous work by Karato (2013) including a new way to test the model. I conclude that in the case of isotope exchange, the interaction among these species is strong because diffusion is heterogeneous, whereas there is no strong interaction among different species in electrical conduction where diffusion is homogeneous (in an infinite crystal). Consequently, the slowest diffusing species controls the rate of isotope exchange, whereas the fastest diffusing species controls electrical conductivity leading to a different temperature dependence of activation energy and anisotropy. This model explains the differences in the activation energy and anisotropy between isotope diffusion and electrical conductivity, and predicts that the mechanism of electrical conductivity changes with temperature providing an explanation for most of the discrepancies among different experimental observations at different temperatures except for those by Poe et al. (2010) who reported anomalously high water content dependence and highly anisotropic activation energy. When the results obtained at high temperatures are used, most of the geophysically observed high and highly anisotropic electrical conductivity in the asthenosphere can be explained without invoking partial melting.
NASA Astrophysics Data System (ADS)
Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu
2014-04-01
In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.
Exposure to buffer solution alters tendon hydration and mechanics.
Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M
2017-08-16
A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.
Juan Chen; Zhuang, Bo; Chen, YangQuan; Cui, Baotong
2017-05-09
This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
An investigation on the electrochemical behavior of the Co/Cu multilayer system.
Mahshid, S S; Dolati, A
2010-09-01
Co/Cu multilayers were deposited in a sulfate solution by controlling the current and potential for the deposition of cobalt and copper layer respectively. The electrochemical behavior of these multilayers was studied by cyclic voltammetry and current transients. In addition, a mathematical analysis was used to characterize the electrodeposition system. Simultaneously, the nucleation and growth mechanisms were monitored by these techniques. In this case, the results clearly showed that electrodeposition of cobalt layers was a kinetically controlled process while the reduction of copper ions was a diffusion-control process. Although nucleation mechanism of the single Co deposit was found as a progressive system, it was found as an instantaneous system with three-dimensional growth mechanism in the Co/Cu bilayer deposition. Atomic Forced Microscopy images of the Co/Cu multilayer also confirmed the aforementioned nucleation mechanism, where it was expected that the growth of multilayer films would form a laminar-type structure containing a large number of equally-sized rounded grains in each layer.
Electron transport and light-harvesting switches in cyanobacteria
Mullineaux, Conrad W.
2014-01-01
Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales. PMID:24478787
Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer
1976-01-01
We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619
Jensen, Frank B; Rohde, Sabina
2010-04-01
Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell
Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.« less
Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.
2018-01-01
In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122
Control of a Normal Shock Boundary Layer Interaction with Ramped Vanes of Various Sizes
NASA Astrophysics Data System (ADS)
Lee, Sang; Loth, Eric
2017-11-01
A novel vortex generator design positioned upstream of a normal shock and a subsequent diffuser was investigated using large eddy simulations. In particular, ``ramped-vane'' flow control devices with three difference heights relative to the incoming boundary layer thickness (0.34 δ 0.52 δ and 0.75 δ were placed in a supersonic boundary layer with a freestream Mach number of 1.3 and a Reynolds number of 2,400 based on momentum thickness. These devices are similar to subsonic vanes but are designed to be more mechanically robust while having low wave drag. The devices generated strong streamwise vortices that entrained high momentum fluid to the near-wall region and increased turbulent mixing. The devices also decreased shock-induced flow separation, which resulted in a higher downstream skin friction in the diffuser. In general, the largest ramped-vane (0.75 δ) produced the largest reductions in flow separation, shape factor and overall unsteadiness. However, the medium-sized ramped vane (0.52 δ) was able to also reduce both the separation area and the diffuser displacement thickness. The smallest device (0.34 δ) had a weak impact of the flow in the diffuser, though a 10% reduction in the shape factor was achieved.
Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.
Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong
2018-03-28
Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.
Karalunas, Sarah L.; Geurts, Hilde M.; Konrad, Kerstin; Bender, Stephan; Nigg, Joel T.
2014-01-01
Background Intraindividual variability in reaction time (RT) has received extensive discussion as an indicator of cognitive performance, a putative intermediate phenotype of many clinical disorders, and a possible trans-diagnostic phenotype that may elucidate shared risk factors for mechanisms of psychiatric illnesses. Scope and Methodology Using the examples of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD), we discuss RT variability. We first present a new meta-analysis of RT variability in ASD with and without comorbid ADHD. We then discuss potential mechanisms that may account for RT variability and statistical models that disentangle the cognitive processes affecting RTs. We then report a second meta-analysis comparing ADHD and non-ADHD children on diffusion model parameters. We consider how findings inform the search for neural correlates of RT variability. Findings Results suggest that RT variability is increased in ASD only when children with comorbid ADHD are included in the sample. Furthermore, RT variability in ADHD is explained by moderate to large increases (d = 0.63–0.99) in the ex-Gaussian parameter τ and the diffusion parameter drift rate, as well as by smaller differences (d = 0.32) in the diffusion parameter of nondecision time. The former may suggest problems in state regulation or arousal and difficulty detecting signal from noise, whereas the latter may reflect contributions from deficits in motor organization or output. The neuroimaging literature converges with this multicomponent interpretation and also highlights the role of top-down control circuits. Conclusion We underscore the importance of considering the interactions between top-down control, state regulation (e.g. arousal), and motor preparation when interpreting RT variability and conclude that decomposition of the RT signal provides superior interpretive power and suggests mechanisms convergent with those implicated using other cognitive paradigms. We conclude with specific recommendations for the field for next steps in the study of RT variability in neurodevelopmental disorders. PMID:24628425
NASA Astrophysics Data System (ADS)
Babey, T.; De Dreuzy, J. R.; Pinheiro, M.; Garnier, P.; Vieublé-Gonod, L.; Rapaport, A.
2015-12-01
Micro-organisms and substrates may be heterogeneously distributed in soils. This repartition as well as transport mechanisms bringing them into contact are expected to impact the biodegradation rates. Pinheiro et al [2015] have measured in cm-large reconstructed soil cores the fate of an injection of 2,4-D pesticide for different injection conditions and initial distributions of soil pesticide degraders. Through the calibration of a reactive transport model of these experiments, we show that: i) biodegradation of diffusion-controlled pesticide fluxes is favored by a high Damköhler number (high reaction rate compared to flux rate); ii) abiotic sorption processes are negligible and do not interact strongly with biodegradation; iii) biodegradation is primarily governed by the initial repartition of pesticide and degraders for diffusion-controlled transport, as diffusion greatly limits the flux of pesticide reaching the microbial hotspot due to dilution. These results suggest that for biodegradation to be substantial, a spatial heterogeneity in the repartition of microbes and substrate has to be associated with intermittent and fast transport processes to mix them.
Tuning Adsorption Duration To Control the Diffusion of a Nanoparticle in Adsorbing Polymers.
Cao, Xue-Zheng; Merlitz, Holger; Wu, Chen-Xu
2017-06-15
Controlling the nanoparticle (NP) diffusion in polymers is a prerequisite to obtain polymer nanocomposites (PNCs) with desired dynamical and rheological properties and to achieve targeted delivery of nanomedicine in biological systems. Here we determine the suppression mechanism of direct NP-polymer attraction to hamper the NP mobility in adsorbing polymers and then quantify the dependence of the effective viscosity η eff felt by the NP on the adsorption duration τ ads of polymers on the NP using scaling theory analysis and molecular dynamics simulations. We propose and confirm that participation of adsorbed chains in the NP motion break up at time intervals beyond τ ads due to the rearrangement of polymer segments at the NP surface, which accounts for the onset of Fickian NP diffusion on a time scale of t ≈ τ ads . We develop a power law, η eff ∼ (τ ads ) ν , where ν is the scaling exponent of the dependence of polymer coil size on the chain length, which leads to a theoretical basis for the design of PNCs and nanomedicine with desired applications through tuning the polymer adsorption duration.
Piovesan, Elcio Juliato; Di Stani, Fabrizio; Kowacs, Pedro André; Mulinari, Rogério Andrade; Radunz, Victor Hugo; Utiumi, Marco; Muranka, Eder B; Giublin, Mario Luiz; Werneck, Lineu César
2007-09-01
Activation of the trigemino-cervical system constitutes one of the first steps in the genesis of migraine. The objective of this study was to confirm the presence of trigemino-cervical convergence mechanisms and to establish whether such mechanisms may also be of inhibitory origin. We describe a case of a 39-years-old woman suffering from episodic migraine who showed a significant improvement in her frontal headache during migraine attacks if the greater occipital nerve territory was massaged after the appearance of static mechanical allodynia (cortical sensitization). We review trigemino-cervical convergence and diffuse nociceptive inhibitory control (DNIC) mechanisms and suggest that the convergence mechanisms are not only excitatory but also inhibitory.
Knowledge diffusion in the collaboration hypernetwork
NASA Astrophysics Data System (ADS)
Yang, Guang-Yong; Hu, Zhao-Long; Liu, Jian-Guo
2015-02-01
As knowledge constitutes a primary productive force, it is important to understand the performance of knowledge diffusion. In this paper, we present a knowledge diffusion model based on the local-world non-uniform hypernetwork, which introduces the preferential diffusion mechanism and the knowledge absorptive capability αj, where αj is correlated with the hyperdegree dH(j) of node j. At each time step, we randomly select a node i as the sender; a receiver node is selected from the set of nodes that the sender i has published with previously, with probability proportional to the number of papers they have published together. Applying the average knowledge stock V bar(t) , the variance σ2(t) and the variance coefficient c(t) of knowledge stock to measure the growth and diffusion of knowledge and the adequacy of knowledge diffusion, we have made 3 groups of comparative experiments to investigate how different network structures, hypernetwork sizes and knowledge evolution mechanisms affect the knowledge diffusion, respectively. As the diffusion mechanisms based on the hypernetwork combine with the hyperdegree of node, the hypernetwork is more suitable for investigating the performance of knowledge diffusion. Therefore, the proposed model could be helpful for deeply understanding the process of the knowledge diffusion in the collaboration hypernetwork.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep
Cadmium diffusion experiments were performed on polished copper indium gallium diselenide (Cu(In,Ga)Se{sub 2} or CIGS) samples with resulting cadmium diffusion profiles measured by time-of-flight secondary ion mass spectroscopy. Experiments done in the annealing temperature range between 275 °C and 425 °C reveal two-stage cadmium diffusion profiles which may be indicative of multiple diffusion mechanisms. Each stage can be described by the standard solutions of Fick's second law. The slower cadmium diffusion in the first stage can be described by the Arrhenius equation D{sub 1} = 3 × 10{sup −4} exp (− 1.53 eV/k{sub B}T) cm{sup 2} s{sup −1}, possibly representing vacancy-meditated diffusion. The faster second-stage diffusion coefficients determined in these experiments matchmore » the previously reported cadmium diffusion Arrhenius equation of D{sub 2} = 4.8 × 10{sup −4} exp (−1.04 eV/k{sub B}T) cm{sup 2} s{sup −1}, suggesting an interstitial-based mechanism.« less
Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Rubin, Allison E; Gravley, Darren; Deering, Chad; Cole, Jim; Bose, Maitrayee
2017-12-22
In a recent paper, we used Li concentration profiles and U-Th ages to constrain the thermal conditions of magma storage. Wilson and co-authors argue that the data instead reflect control of Li behavior by charge balance during partitioning and not by experimentally determined diffusion rates. Their arguments are based on (i) a coupled diffusion mechanism for Li, which has been postulated but has not been documented to occur, and (ii) poorly constrained zircon growth rates combined with the assumption of continuous zircon crystallization. Copyright © 2017, American Association for the Advancement of Science.
The kinetics of ulvoespinel reduction - Synthetic study and applications to lunar rocks.
NASA Technical Reports Server (NTRS)
Mccallister, R. H.; Taylor, L. A.
1973-01-01
The kinetics of Fe2TiO4 reduction to FeTiO3 + Fe were studied using CO-CO2 gas mixtures with fO2 measured by a solid ceramic (calcia-zirconia) oxygen electrolyte cell. Isothermal rate studies at 900 C suggest that the mechanism of Fe2TiO4 reduction is one of nucleation and growth, where the growth stage may be controlled by the diffusion of the reactant through the product layer or volume diffusion. The activation energy for the growth stage of the process was determined to be 46 plus or minus 4 kcal/mole.
2010-01-01
Three types of carbon paste electrodes (CPEs) with different liquid binders were fabricated, and their electrochemical behavior was characterized via a potassium hexacyanoferrate(II) probe. 1-Octyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) as a hydrophobic conductive pasting binder showed better electrochemical performance compared with the commonly employed binder. The IL-contained CPEs demonstrated excellent electroactivity for oxidation of hydroquinone. A diffusion control mechanism was confirmed and the diffusion coefficient (D) of 5.05 × 10-4 cm2 s-1 was obtained. The hydrophobic IL-CPE is promising for the determination of hydroquinone in terms of high sensitivity, easy operation, and good durability. PMID:20977733
Time-derivative preconditioning for viscous flows
NASA Technical Reports Server (NTRS)
Choi, Yunho; Merkle, Charles L.
1991-01-01
A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Diffusion mechanism of non-interacting Brownian particles through a deformed substrate
NASA Astrophysics Data System (ADS)
Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen
2018-02-01
We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.
Metasurfaced Reverberation Chamber.
Sun, Hengyi; Li, Zhuo; Gu, Changqing; Xu, Qian; Chen, Xinlei; Sun, Yunhe; Lu, Shengchen; Martin, Ferran
2018-01-25
The concept of metasurfaced reverberation chamber (RC) is introduced in this paper. It is shown that by coating the chamber wall with a rotating 1-bit random coding metasurface, it is possible to enlarge the test zone of the RC while maintaining the field uniformity as good as that in a traditional RC with mechanical stirrers. A 1-bit random coding diffusion metasurface is designed to obtain all-direction backscattering under normal incidence. Three specific cases are studied for comparisons, including a (traditional) mechanical stirrer RC, a mechanical stirrer RC with a fixed diffusion metasurface, and a RC with a rotating diffusion metasurface. Simulation results show that the compact rotating diffusion metasurface can act as a stirrer with good stirring efficiency. By using such rotating diffusion metasurface, the test region of the RC can be greatly extended.
Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.
Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan
2018-05-30
Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.
An Experiment Investigation of Fully-Modulated, Turbulent Diffusion Flames in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Stocker, D. P.; Nagashima, T.; Obata, S.
1999-01-01
Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The ultimate objective of this program is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This can give rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. In addition, the fully-modulated injection approach avoids the strong acoustic forcing present in pulsed combustion devices, significantly simplifying the mixing and combustion processes. Relatively little is known of the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. The goal of this Flight-Definition experiment (PUFF, for PUlsed-Fully Flames) is to establish the behavior of fully-modulated, turbulent diffusion flames under microgravity conditions. Fundamental issues to be addressed in this experiment include the mechanisms responsible for the flame length decrease for fully-modulated, turbulent diffusion flames compared with steady flames, the impact of buoyancy on the mixing and combustion characteristics of these flames, and the characteristics of turbulent flame puffs under fully momentum-dominated conditions.
Smith, Earl L; Huang, Juan; Hung, Li-Fang; Blasdel, Terry L; Humbird, Tammy L; Bockhorst, Kurt H
2009-11-01
To determine whether refractive development in primates is mediated by local retinal mechanisms, the authors examined the effects of hemiretinal form deprivation on ocular growth and the pattern of peripheral refractions in rhesus monkeys. Beginning at approximately 3 weeks of age, nine infant monkeys were reared wearing monocular diffuser lenses that eliminated form vision in the nasal field (nasal field diffuser [NFD]). Control data were obtained from the nontreated fellow eyes, 24 normal monkeys, and 19 monkeys treated with full-field diffusers. Refractive development was assessed by retinoscopy performed along the pupillary axis and at eccentricities of 15 degrees, 30 degrees, and 45 degrees. Central axial dimensions and eye shape were assessed by A-scan ultrasonography and magnetic resonance imaging, respectively. Hemiretinal form deprivation altered refractive development in a regionally selective manner, typically producing myopia in the treated hemifields. In particular, six of the NFD monkeys exhibited substantial amounts (-1.81 to -9.00 D) of relative myopia in the nasal field that were most obvious at the 15 degrees and 30 degrees nasal field eccentricities. The other three NFD monkeys exhibited small amounts of relative hyperopia in the treated field. The alterations in peripheral refraction were associated with local, region-specific alterations in vitreous chamber depth in the treated hemiretina. The effects of form deprivation on refractive development and eye growth in primates are mediated by mechanisms, presumably retinal, that integrate visual signals in a spatially restricted manner and exert their influence locally.
Sartorel, Elodie; Ünlü, Caner; Jose, Mini; Massoni-Laporte, Aurélie; Meca, Julien; Sibarita, Jean-Baptiste; McCusker, Derek
2018-04-18
The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatio-temporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity. Movie S1 Movie S1 sptPALM imaging of live yeast expressing Pil1-mEOS expressed at the genomic locus. Pil1-mEOS was simultaneously photo-converted with a 405 nm laser and imaged with a 561 nm laser using HiLo illumination. Images were acquired at 20 ms intervals, of which 300 frames are shown at 7 frames per second.
Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics.
Faraji, Fariborz; Golmohammadzadeh, Rabeeh; Rashchi, Fereshteh; Alimardani, Navid
2018-07-01
In this study, Aspergillus niger (A. niger) as an environmentally friendly agent for fungal bioleaching of waste printed circuit boards (WPCBs) was employed. D-optimal response surface methodology (RSM) was utilized for optimization of the bioleaching parameters including bioleaching method (one step, two step and spent medium) and pulp densities (0.5 g L -1 to 20 g L -1 ) to maximize the recovery of Zn, Ni and Cu from WPCBs. According to the high performance liquid chromatography analysis, citric, oxalic, malic and gluconic acids were the most abundant organic acids produced by A.niger in 21 days experiments. Maximum recoveries of 98.57% of Zn, 43.95% of Ni and 64.03% of Cu were achieved based on acidolysis and complexolysis dissolution mechanisms of organic acids. Based on the kinetic studies, the rate controlling mechanism for Zn dissolution at one step approach was found to be diffusion through liquid film, while it was found to be mixed control for both two step and spent medium. Furthermore, rate of Cu dissolution which is controlled by diffusion in one step and two step approaches, detected to be controlled by chemical reaction at spent medium. It was shown that for Ni, the rate is controlled by chemical reaction for all the methods studied. Eventually, it was understood that A. niger is capable of leaching 100% of Zn, 80.39% of Ni and 85.88% of Cu in 30 days. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Araki, Takumi; Cruz-Silva, Rodolfo; Tejima, Syogo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Terrones, Mauricio; Endo, Morinobu
2018-02-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The mechanism of water diffusion across reverse osmosis nanocomposite membranes made of carbon nanotubes (CNTs) and aromatic polyamide is not completely understood despite its high potential for desalination applications. While most of the groups have proposed that superflow inside the CNT might positively impact the water flow across membranes, here we show theoretical evidence that this is not likely the case in composite membranes because CNTs are usually oriented parallel to the membrane surface, not to mention that sometimes the nanotube cores are occluded. Instead, we propose an oriented diffusion mechanism that explains the high water permeation by decreasing the diffusion path of water molecules across the membranes, even in the presence of CNTs that behave as impermeable objects. Finally, we provide a comprehensive description of the molecular dynamics occurring in water desalination membranes by considering the bond polarizability caused by dynamic charge transfer and explore the use of molecular-dynamics-derived stochastic diffusion simulations. The proposed water diffusion mechanism offers an alternative and most likely explanation for the high permeation phenomena observed in CNTs and PA nanocomposite membranes, and its understanding can be helpful to design the next generation of reverse osmosis desalination membranes.
Shehata, F A; Attallah, M F; Borai, E H; Hilal, M A; Abo-Aly, M M
2010-02-01
A novel impregnated polymeric resin was practically tested as adsorbent material for removal of some hazardous radionuclides from radioactive liquid waste. The applicability for the treatment of low-level liquid radioactive waste was investigated. The material was prepared by loading 4,4'(5')di-t-butylbenzo 18 crown 6 (DtBB18C6) onto poly(acrylamide-acrylic acid-acrylonitril)-N, N'-methylenediacrylamide (P(AM-AA-AN)-DAM). The removal of (134)Cs, (60)Co, (65)Zn , and ((152+154))Eu onto P(AM-AA-AN)-DAM/DtBB18C6 was investigated using a batch equilibrium technique with respect to the pH, contact time, and temperature. Kinetic models are used to determine the rate of sorption and to investigate the mechanism of sorption process. Five kinetics models, pseudo-first-order, pseudo-second-order, intra-particle diffusion, homogeneous particle diffusion (HPDM), and Elovich models, were used to investigate the sorption process. The obtained results of kinetic models predicted that, pseudo-second-order is applicable; the sorption is controlled by particle diffusion mechanism and the process is chemisorption. The obtained values of thermodynamics parameters, DeltaH degrees , DeltaS degrees , and DeltaG degrees indicated that the endothermic nature, increased randomness at the solid/solution interface and the spontaneous nature of the sorption processes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting
2016-01-01
Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders. PMID:27199831
Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d'Oleire Uquillas, Federico; Huang, Xiting
2016-01-01
Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders.
Kuruvilla, Sujith; Janardhanan, Rajesh; Antkowiak, Patrick; Keeley, Ellen C; Adenaw, Nebiyu; Brooks, Jeremy; Epstein, Frederick H; Kramer, Christopher M; Salerno, Michael
2015-02-01
The goal of this study was to assess the relationship among extracellular volume (ECV), native T1, and systolic strain in hypertensive patients with left ventricular hypertrophy (HTN LVH), hypertensive patients without LVH (HTN non-LVH), and normotensive controls. Diffuse myocardial fibrosis in HTN LVH patients, as reflected by increased ECV and native T1, may be an underlying mechanism contributing to increased cardiovascular risk compared with HTN non-LVH subjects and controls. Furthermore, increased diffuse fibrosis in HTN LVH subjects may be associated with reduced peak systolic and early diastolic strain rate compared with the other 2 groups. T1 mapping was performed in 20 HTN LVH (mean age, 55 ± 11 years), 23 HTN non-LVH (mean age, 61 ± 12 years), and 22 control subjects (mean age, 54 ± 7 years) on a Siemens 1.5-T Avanto (Siemens Healthcare, Erlangen, Germany) using a previously validated modified look-locker inversion-recovery pulse sequence. T1 was measured pre-contrast and 10, 15, and 20 min after injection of 0.15 mmol/kg gadopentetate dimeglumine, and the mean ECV and native T1 were determined for each subject. Measurement of circumferential strain parameters were performed using cine displacement encoding with stimulated echoes. HTN LVH subjects had higher native T1 compared with controls (p < 0.05). HTN LVH subjects had higher ECV compared with HTN non-LVH subjects and controls (p < 0.05). Peak systolic circumferential strain and early diastolic strain rates were reduced in HTN LVH subjects compared with HTN non-LVH subjects and controls (p < 0.05). Increased levels of ECV and native T1 were associated with reduced peak systolic and early diastolic circumferential strain rate across all subjects. HTN LVH patients had higher ECV, longer native T1 and associated reduction in peak systolic circumferential strain, and early diastolic strain rate compared with HTN non-LVH and control subjects. Measurement of ECV and native T1 provide a noninvasive assessment of diffuse fibrosis in hypertensive heart disease. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Protein adsorption in microengraving immunoassays.
Song, Qing
2015-10-16
Microengraving is a novel immunoassay for characterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales and determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 10⁴-10⁵ single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample.
Protein Adsorption in Microengraving Immunoassays
Song, Qing
2015-01-01
Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282
Evaporation, diffusion and self-assembly at drying interfaces.
Roger, K; Sparr, E; Wennerström, H
2018-04-18
Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.
Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P
2015-11-11
Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.
Gan, Qintao; Lv, Tianshi; Fu, Zhenhua
2016-04-01
In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.
NASA Astrophysics Data System (ADS)
Patel, Dhaval
Supersaturating Drug Delivery Systems (SDDS) could enhance oral bioavailability of poorly water soluble drugs (PWSD). Precipitation inhibitors (PIs) in SDDS could maintain supersaturation by inhibiting nucleation, crystal growth, or both. The mechanisms by which these effects are realized are generally unknown. The goal of this dissertation was to explore the mechanisms underpinning the effects of model PIs including hydroxypropyl beta-cyclodextrins (HP-beta-CD), hydroxypropyl methylcellulose (HPMC), and polyvinylpyrrolidone (PVP) on the crystal growth of indomethacin, a model PWSD. At high degrees of supersaturation (S), the crystal growth kinetics of indomethacin was bulk diffusion-controlled, which was attributed to a high energy form deposited on the seed crystals. At lower S, indomethacin growth kinetics was surface integration-controlled. The effect of HP-beta-CD at high S was successfully modeled using the reactive diffusion layer theory. The superior effects of PVP and HPMC as compared to HP-beta-CD at high S were attributed to a change in the rate limiting step from bulk diffusion to surface integration largely due to prevention of the high energy form formation. The effects of PIs at low S were attributed to significant retardation of the surface integration rate, a phenomenon that may reflect the adsorption of PIs onto the growing surface. PVP was selected to further understand the relationship between adsorption and crystal growth inhibition. The Langmuir adsorption isotherm model fit the adsorption isotherms of PVP and N-vinylpyrrolidone well. The affinity and extent of adsorption of PVP were significantly higher than those of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and indomethacin. The extent of PVP adsorption on a weight-basis was greater for higher molecular weight PVP but less on a molar-basis indicating an increased percentage of loops and tails for higher molecular weight PVPs. PVP significantly inhibited indomethacin crystal growth at high S as compared to N-vinylpyrrolidone, which was attributed to a change in the growth mechanism resulting in a change in the rate limiting step from bulk diffusion to surface integration. Higher molecular weight PVPs were better inhibitors than lower molecular weight PVPs, which was attributed to a greater crystal growth barrier provided by a thicker adsorption layer.
Integrating impairments in reaction time and executive function using a diffusion model framework
Karalunas, Sarah L.; Huang-Pollock, Cynthia L.
2013-01-01
Using Ratcliff’s diffusion model and ex-Gaussian decomposition, we directly evaluate the role individual differences in reaction time (RT) distribution components play in the prediction of inhibitory control and working memory (WM) capacity in children with and without ADHD. Children with (n=92, x̄ age= 10.2 years, 67% male) and without ADHD (n=62, x̄ age=10.6 years, 46% male) completed four tasks of WM and a stop signal reaction time (SSRT) task. Children with ADHD had smaller WM capacities and less efficient inhibitory control. Diffusion model analyses revealed that children with ADHD had slower drift rates (v) and faster non-decision times (Ter), but there were no group differences in boundary separations (a). Similarly, using an ex-Gaussian approach, children with ADHD had larger τ values than non-ADHD controls, but did not differ in µ or σ distribution components. Drift rate mediated the association between ADHD status and performance on both inhibitory control and WM capacity. τ also mediated the ADHD-executive function impairment associations; however, models were a poorer fit to the data. Impaired performance on RT and executive functioning tasks has long been associated with childhood ADHD. Both are believed to be important cognitive mechanisms to the disorder. We demonstrate here that drift rate, or the speed at which information accumulates towards a decision, is able to explain both. PMID:23334775
NASA Astrophysics Data System (ADS)
Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.
2010-03-01
Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.
Correlation of rates of tritium migration through porous concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukada, S.; Katayama, K.; Takeishi, T.
In a nuclear facility when tritium leaks from a glovebox to room accidentally, an atmosphere detritiation system (ADS) starts operating, and HTO released is recovered by ADS. ADS starts when tritium activity in air becomes higher than its controlled level. Before ADS operates, the laboratory walls are the final enclosure facing tritium and are usually made of porous concrete coated with a hydrophobic paint. In the present study, previous data on the diffusivity and adsorption coefficient of concrete and paints are reviewed. Tritium penetrates and migrates into concrete by following 3 ways. First, gaseous HT or T{sub 2} easily penetratesmore » into porous concrete. Its diffusivity is almost equal to that of H{sub 2}. When a gaseous molecule diffuses through pores with a smaller diameter than a mean free path, its migration rate is described by the Knudsen diffusion formula. The second mechanism is H{sub 2}O vapor diffusion in pores. Concrete holds a lot of structural water. Therefore, H{sub 2}O or HTO vapor can diffuse inside concrete pores along with adsorption-desorption and isotopic exchange with structural water, which is the third mechanism. Literature shows that the diffusivity of HTO through the epoxy-resin paint is determined as D(HTO)=1.0*10{sup -16} m{sup 2}/s. We have used this data to set a model and we have applied it to estimate residual tritium in laboratory walls. We have considered 2 accidental cases and a normal case: first, ADS starts operating 1 hour after 100 Ci HTO is released in the room, secondly, ADS starts 24 hours after 100 Ci HTO release and thirdly, when the walls are exposed to HTO for 10 years of normal operation. It appears that the immediate start up of ADS is indispensable for safety.« less
Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep
We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less
Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics
Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep; ...
2016-05-13
We conducted two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) in order to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se 2 (CIGS) and Cu 2ZnSn(S, Se) 4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases themore » equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. And according to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.« less
Ivanova, Maria V; Isaev, Dmitry Yu; Dragoy, Olga V; Akinina, Yulia S; Petrushevskiy, Alexey G; Fedina, Oksana N; Shklovsky, Victor M; Dronkers, Nina F
2016-12-01
A growing literature is pointing towards the importance of white matter tracts in understanding the neural mechanisms of language processing, and determining the nature of language deficits and recovery patterns in aphasia. Measurements extracted from diffusion-weighted (DW) images provide comprehensive in vivo measures of local microstructural properties of fiber pathways. In the current study, we compared microstructural properties of major white matter tracts implicated in language processing in each hemisphere (these included arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior frontal-occipital fasciculus (IFOF), uncinate fasciculus (UF), and corpus callosum (CC), and corticospinal tract (CST) for control purposes) between individuals with aphasia and healthy controls and investigated the relationship between these neural indices and language deficits. Thirty-seven individuals with aphasia due to left hemisphere stroke and eleven age-matched controls were scanned using DW imaging sequences. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) values for each major white matter tract were extracted from DW images using tract masks chosen from standardized atlases. Individuals with aphasia were also assessed with a standardized language test in Russian targeting comprehension and production at the word and sentence level. Individuals with aphasia had significantly lower FA values for left hemisphere tracts and significantly higher values of MD, RD and AD for both left and right hemisphere tracts compared to controls, all indicating profound impairment in tract integrity. Language comprehension was predominantly related to integrity of the left IFOF and left ILF, while language production was mainly related to integrity of the left AF. In addition, individual segments of these three tracts were differentially associated with language production and comprehension in aphasia. Our findings highlight the importance of fiber pathways in supporting different language functions and point to the importance of temporal tracts in language processing, in particular, comprehension. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2010-01-01
Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is expressed as a function of the dimensionless Peclet number, which defines the relative effect of advection as compared to diffusion. This analysis is general enough to elucidate an important role of electrochemistry in ionization efficiency of any arrayed ion sources, be they mechanically-driven or electrosprays, and is vital for determining optimal design and operation conditions. PMID:20607111
Zhang, Q B; Hua, Y X
2014-12-28
The electrochemical nucleation and growth kinetics of copper nanoparticles on a Ni electrode have been studied with cyclic voltammetry and chronoamperometry in the choline chloride (ChCl)-urea based deep eutectic solvent (DES). The copper source was introduced into the solvent by the dissolution of Cu(I) oxide (Cu2O). Cyclic voltammetry indicates that the electroreduction of Cu(I) species in the DES is a diffusion-controlled quasi-reversible process. The analysis of the chronoamperometric transient behavior during electrodeposition suggests that the deposition of copper on the Ni electrode at low temperatures follows a progressive nucleation and three-dimensional growth controlled by diffusion. The effect of temperature on the diffusion coefficient of Cu(I) species that is present in the solvent and electron transfer rate constant obeys the Arrhenius law, according to which the activation energies are estimated to be 49.20 and 21.72 kJ mol(-1), respectively. The initial stage of morphological study demonstrates that both electrode potential and temperature play important roles in controlling the nucleation and growth kinetics of the nanocrystals during the electrodeposition process. Electrode potential is observed to affect mainly the nucleation process, whereas temperature makes a major contribution to the growth process.
Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.
1987-01-01
A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, W. J.
2015-03-01
This study reported that a combination of strip casting and high-ratio differential speed rolling (HRDSR) can produce flame-resistant Mg alloy sheets (0.7 wt%Ca-AZ31: 0.7Ca-AZ31) with good room-temperature mechanical properties and high-temperature formability. HRDSR effectively refined the coarse microstructure of the strip-casting processed 0.7Ca-AZ31 alloy. As the result, the (true) grain size was reduced to as small as 2.7 μm and the (Mg, Al)2Ca phase was broken up to fine particles with an average sizes of 0.5 μm. Due to the advantage of having such a highly refined microstructure, the HRDSR-processed 0.7Ca-AZ31 alloy sheet exhibited a high yield stress over 300 MPa and good superplasticity at elevated temperatures. The deformation mechanism of the fine-grained 0.7Ca-AZ31 alloy in the superplastic regime was identified to be grainboundary-diffusion or lattice-diffusion controlled grain boundary sliding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu
2015-12-28
The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less
Mechanism of Facilitated Diffusion during a DNA Search in Crowded Environments.
Krepel, Dana; Gomez, David; Klumpp, Stefan; Levy, Yaakov
2016-11-03
The key feature explaining the rapid recognition of a DNA target site by its protein lies in the combination of one- and three-dimensional (1D and 3D) diffusion, which allows efficient scanning of the many alternative sites. This facilitated diffusion mechanism is expected to be affected by cellular conditions, particularly crowding, given that up to 40% of the total cellular volume may by occupied by macromolecules. Using coarse-grained molecular dynamics and Monte Carlo simulations, we show that the crowding particles can enhance facilitated diffusion and accelerate search kinetics. This effect originates from a trade-off between 3D and 1D diffusion. The 3D diffusion coefficient is lower under crowded conditions, but it has little influence because the excluded volume effect of molecular crowding restricts its use. Largely prevented from using 3D diffusion, the searching protein dramatically increases its use of the hopping search mode, which results in a higher linear diffusion coefficient. The coefficient of linear diffusion also increases under crowded conditions as a result of increased collisions between the crowding particles and the searching protein. Overall, less 3D diffusion coupled with an increase in the use of the hopping and speed of 1D diffusion results in faster search kinetics under crowded conditions. Our study shows that the search kinetics and mechanism are modulated not only by the crowding occupancy but also by the properties of the crowding particles and the salt concentration.
Li, Lei; Wang, Feijun; Shao, Ziqiang
2018-03-15
A biomass-based magnetic fluorescent nanoparticle (MFNPs) was successively in situ synthesized via a one-step high-gravity approach, which constructed by a magnetic core of Fe 3 O 4 nanoparticles, the fluorescent marker of carbon dots (CDs), and shells of chitosan (CS). The obtained MFNPs had a 10 nm average diameter and narrow particle size distribution, low cytotoxicity, superior fluorescent emission and superparamagnetic properties. The encapsulating and release 5-fluorouracil experiments confirmed that the introduction of CS/CDs effectively improved the drug loading capacity. Mechanism and kinetic studies proved that: (i) the monolayer adsorption was the main sorption mode under the studied conditions; (ii) the whole adsorption process was controlled by intra-liquid diffusion mass transfer and governed by chemisorption; and (iii) the release process was controlled by Fickian diffusion. These results demonstrated this method to one-step continuously produce MFNPs and the construction of non-toxic nanostructure possessed great superiority in currently Nano-delivery systems, which would show high application value in targeted drug delivery, magnetic fluid hyperthermia treatment, magnetic resonance imaging (MRI), in vitro testing and relative research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
NASA Astrophysics Data System (ADS)
Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas
2017-07-01
Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).
Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera
We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less
Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts
Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera; ...
2018-03-06
We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less
Unconventional mechanisms control cyclic respiratory gas release in flying Drosophila.
Lehmann, Fritz-Olaf; Heymann, Nicole
2005-10-01
The high power output of flight muscles places special demands on the respiratory gas exchange system in insects. In small insects, respiration relies on diffusion, and for elevated locomotor performance such as flight, instantaneous gas exchange rates typically co-vary with the animal's metabolic activity. By contrast, under certain conditions, instantaneous release rate of carbon dioxide from the fruit fly Drosophila flying in a virtual-reality flight arena may oscillate distinctly at low frequency (0.37+/-0.055 Hz), even though flight muscle mechanical power output requires constant metabolic activity. Cross-correlation analysis suggests that this uncoupling between respiratory and metabolic rate is not driven by conventional types of convective flow reinforcement such as abdominal pumping, but might result from two unusual mechanisms for tracheal breathing. Simplified analytical modeling of diffusive tracheal gas exchange suggests that cyclic release patterns in the insect occur as a consequence of the stochastically synchronized control of spiracle opening area by the four large thoracic spiracles. Alternatively, in-flight motion analysis of the abdomen and proboscis using infra-red video imaging suggests utilization of the proboscis extension reflex (PER) for tracheal convection. Although the respiratory benefit of synchronized spiracle opening activity in the fruit fly is unclear, proboscis-induced tracheal convection might potentially help to balance the local oxygen supply between different body compartments of the flying animal.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials.
Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy
2018-01-02
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.
Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis
2015-06-01
To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Goddard, Marcia N; van Rijn, Sophie; Rombouts, Serge A R B; Swaab, Hanna
2016-12-01
Klinefelter syndrome (47,XXY) is associated with physical, behavioral, and cognitive consequences. Deviations in brain structure and function have been reported, but structural characteristics of white matter have barely been assessed. This exploratory diffusion tensor imaging study assessed white matter microstructure in boys with 47,XXY compared with non-clinical, male controls. Additionally, both similarities and differences between 47,XXY and autism spectrum disorders (ASD) have been reported in cognition, behavior and neural architecture. To further investigate these brain-behavior pathways, white matter microstructure in boys with 47,XXY was compared to that of boys with ASD. Fractional anisotropy (FA), radial diffusivity (Dr), axial diffusivity (Da), and mean diffusivity (MD) were assessed in 47,XXY (n = 9), ASD (n = 18), and controls (n = 14), using tract-based spatial statistics. Compared with controls, boys with 47,XXY have reduced FA, coupled with reduced Da, in the corpus callosum. Boys with 47,XXY also have reduced Dr. in the left anterior corona radiata and sagittal striatum compared with controls. Compared with boys with ASD, boys with 47,XXY show reduced Da in the right inferior fronto-occipital fasciculus. Although this study is preliminary considering the small sample size, reduced white matter integrity in the corpus callosum may be a contributing factor in the cognitive and behavioral problems associated with 47,XXY. In addition, the differences in white matter microstructure between 47,XXY and ASD may be important for our understanding of the mechanisms that are fundamental to behavioral outcome in social dysfunction, and may be targeted through intervention.
Synthesis and materialization of a reaction-diffusion French flag pattern
NASA Astrophysics Data System (ADS)
Zadorin, Anton S.; Rondelez, Yannick; Gines, Guillaume; Dilhas, Vadim; Urtel, Georg; Zambrano, Adrian; Galas, Jean-Christophe; Estevez-Torres, André
2017-10-01
During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction-diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose 'phenotype' can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction-diffusion models and fabricate soft materials following an autonomous developmental programme.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1992-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Subdiffusive exciton transport in quantum dot solids.
Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulović, Vladimir; Tisdale, William A
2014-06-11
Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.
NASA Astrophysics Data System (ADS)
Monasson, R.; Rosay, S.
2014-03-01
The dynamics of a neural model for hippocampal place cells storing spatial maps is studied. In the absence of external input, depending on the number of cells and on the values of control parameters (number of environments stored, level of neural noise, average level of activity, connectivity of place cells), a "clump" of spatially localized activity can diffuse or remains pinned due to crosstalk between the environments. In the single-environment case, the macroscopic coefficient of diffusion of the clump and its effective mobility are calculated analytically from first principles and corroborated by numerical simulations. In the multienvironment case the heights and the widths of the pinning barriers are analytically characterized with the replica method; diffusion within one map is then in competition with transitions between different maps. Possible mechanisms enhancing mobility are proposed and tested.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1993-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Two-dimensional enzyme diffusion in laterally confined DNA monolayers.
Castronovo, Matteo; Lucesoli, Agnese; Parisse, Pietro; Kurnikova, Anastasia; Malhotra, Aseem; Grassi, Mario; Grassi, Gabriele; Scaggiante, Bruna; Casalis, Loredana; Scoles, Giacinto
2011-01-01
Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon.
Characteristics of diffusion zone in changing glass-metal composite processing conditions
NASA Astrophysics Data System (ADS)
Lyubimova, O. N.; Morkovin, A. V.; Andreev, V. V.
2018-03-01
The influence of manufacturing technology on the characteristics of the glass and steel contact zone in manufacturing new structural material - glass-metal composite is studied theoretically and experimentally. Different types of structures in the contact zone and its dimensions affect the strength characteristics of the composite. Knowledge about changing the width of the glass and steel contact zone after changing such parameters of the technological regime as temperature, holding time and use of solders will allow one to control the structure and characteristics of the glass-metal composite. Experimental measurements of the width of the diffusion zone in the glass-metal composite for different regimes and their statistical processing according to the full factor experiment are presented in this article. The results of analysis of some mechanical characteristics of the diffusion zone are presented: microhardness and modulus of elasticity for samples, prepared according to different processing regimes.
Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.
Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru
2013-01-15
We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.
Conceptual models governing leaching behavior and their long-term predictive capability
Claassen, Hans C.
1981-01-01
Six models that may be used to describe the interaction of radioactive waste solids with aqueous solutions are as follows:Simple linear mass transfer;Simple parabolic mass transfer;Parabolic mass transfer with the formation of a diffusion-limiting surface layer at an arbitrary time;Initial parabolic mass transfer followed by linear mass transfer at an arbitrary time;Parabolic (or linear) mass transfer and concomitant surface sorption; andParabolic (or linear) mass transfer and concomitant chemical precipitation.Some of these models lead to either illogical or unrealistic predictions when published data are extrapolated to long times. These predictions result because most data result from short-term experimentation. Probably for longer times, processes will occur that have not been observed in the shorter experiments. This hypothesis has been verified by mass-transfer data from laboratory experiments using natural volcanic glass to predict the composition of groundwater. That such rate-limiting mechanisms do occur is reassuring, although now it is not possible to deduce a single mass-transfer limiting mechanism that could control the solution concentration of all components of all waste forms being investigated. Probably the most reasonable mechanisms are surface sorption and chemical precipitation of the species of interest. Another is limiting of mass transfer by chemical precipitation on the waste form surface of a substance not containing the species of interest, that is, presence of a diffusion-limiting layer. The presence of sorption and chemical precipitation as factors limiting mass transfer has been verified in natural groundwater systems, whereas the diffusion-limiting mechanism has not been verified yet.
A study on atomic diffusion behaviours in an Al-Mg compound casting process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongning; Chen, Yiqing; Yang, Chunhui, E-mail: r.yang@uws.edu.au
Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg andmore » then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.« less
Bucy, Daniel S; Brown, Mark S; Bielefeldt-Ohmann, Helle; Thompson, Jesse; Bachand, Annette M; Morges, Michelle; Elder, John H; Vandewoude, Sue; Kraft, Susan L
2011-08-01
HIV infection results in a highly prevalent syndrome of cognitive and motor disorders designated as HIV-associated dementia (HAD). Neurologic dysfunction resembling HAD has been documented in cats infected with strain PPR of the feline immunodeficiency virus (FIV), whereas another highly pathogenic strain (C36) has not been known to cause neurologic signs. Animals experimentally infected with equivalent doses of FIV-C36 or FIV-PPR, and uninfected controls were evaluated by magnetic resonance diffusion-weighted imaging (DW-MRI) and spectroscopy (MRS) at 17.5-18 weeks post-infection, as part of a study of viral clade pathogenesis in FIV-infected cats. The goals of the MR imaging portion of the project were to determine whether this methodology was capable of detecting early neuropathophysiology in the absence of outward manifestation of neurological signs and to compare the MR imaging results for the two viral strains expected to have differing degrees of neurologic effects. We hypothesized that there would be increased diffusion, evidenced by the apparent diffusion coefficient as measured by DW-MRI, and altered metabolite ratios measured by MRS, in the brains of FIV-PPR-infected cats relative to C36-infected cats and uninfected controls. Increased apparent diffusion coefficients were seen in the white matter, gray matter, and basal ganglia of both the PPR and C36-infected (asymptomatic) cats. Thalamic MRS metabolite ratios did not differ between groups. The equivalently increased diffusion by DW-MRI suggests similar indirect neurotoxicity mechanisms for the two viral genotypes. DW-MRI is a sensitive tool to detect neuropathophysiological changes in vivo that could be useful during longitudinal studies of FIV.
Baslow, Morris H; Hu, Caixia; Guilfoyle, David N
2012-07-01
In a human magnetic resonance diffusion-weighted imaging (DWI) investigation at 3 T and high diffusion sensitivity weighting (b = 1,800 s/mm(2)), which emphasizes the contribution of water in the extra-vascular compartment and minimizes that of the vascular compartment, we observed that visual stimulation with a flashing checkerboard at 8 Hz for a period of 600 s in eight subjects resulted in significant increases in DWI signals (mean +2.70%, range +0.51 to 8.54%). The increases in DWI signals in activated areas of the visual cortex indicated that during stimulation, the apparent diffusion coefficient (ADC) of extra-vascular compartment water decreased. In response to continuous stimulation, DWI signals gradually increased from pre-stimulation controls, leveling off after 400-500 s. During recovery from stimulation, DWI signals gradually decreased, approaching control levels in 300-400 s. In this study, we show for the first time that the effects of visual stimulation on DWI signals in the human visual cortex are cumulative over an extended period of time. We propose that these relatively slow stimulation-induced changes in the ADC of water in the extra-vascular compartment are due to transient changes in the ratio of faster diffusing free water to slower diffusing bound water and reflect brain water transport processes between the vascular and extra-vascular compartments at the cellular level. The nature of these processes including possible roles of the putative glucose water import and N-acetylaspartate water export molecular water pumps in brain function are discussed.
Diffusion anisotropy of poor metal solute atoms in hcp-Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotti, Lucia, E-mail: lxs234@bham.ac.uk; Mottura, Alessandro, E-mail: a.mottura@bham.ac.uk
2015-05-28
Atom migration mechanisms influence a wide range of phenomena: solidification kinetics, phase equilibria, oxidation kinetics, precipitation of phases, and high-temperature deformation. In particular, solute diffusion mechanisms in α-Ti alloys can help explain their excellent high-temperature behaviour. The purpose of this work is to study self- and solute diffusion in hexagonal close-packed (hcp)-Ti, and its anisotropy, from first-principles using the 8-frequency model. The calculated diffusion coefficients show that diffusion energy barriers depend more on bonding characteristics of the solute rather than the size misfit with the host, while the extreme diffusion anisotropy of some solute elements in hcp-Ti is a resultmore » of the bond angle distortion.« less
Social influences on corporate political donations in Britain.
Bond, Matthew
2004-03-01
It is argued that institutional features of the British state create collective action problems for the mobilization of corporations as donors to the Conservative Party. Social factors are necessary for overcoming these problems. Using social network analyses, the effect that interlocking directorates have on 250 large British corporations' decisions to donate are analysed. Instead of the central mobilizing factor being diffuse inner circle mechanisms positively influencing the decision to make a donation, the results show that more particularistic mechanisms such as information bias and control are equally important.
Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.
Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C
2010-09-30
Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint
NASA Astrophysics Data System (ADS)
Mokhtari, Omid; Nishikawa, Hiroshi
2014-11-01
In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.
Open-circuit voltage improvements in low-resistivity solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Klucher, T. M.; Mazaris, G. A.; Weizer, V. G.
1979-01-01
Mechanisms limiting the open-circuit voltage in 0.1 ohm-cm solar cells were investigated. It was found that a rather complicated multistep diffusion process could produce cells with significantly improved voltages. The voltage capabilities of various laboratory cells were compared independent of their absorption and collection efficiencies. This was accomplished by comparing the cells on the basis of their saturation currents or, equivalently, comparing their voltage outputs at a constant current-density level. The results show that for both the Lewis diffused emitter cell and the Spire ion-implanted emitter cell the base component of the saturation current is voltage controlling. The evidence for the University of Florida cells, although not very conclusive, suggests emitter control of the voltage in this device. The data suggest further that the critical voltage-limiting parameter for the Lewis cell is the electron mobility in the cell base.
Gurevich, Svetlana V
2014-10-28
The dynamics of a single breathing localized structure in a three-component reaction-diffusion system subjected to time-delayed feedback is investigated. It is shown that variation of the delay time and the feedback strength can lead either to stabilization of the breathing or to delay-induced periodic or quasi-periodic oscillations of the localized structure. A bifurcation analysis of the system in question is provided and an order parameter equation is derived that describes the dynamics of the localized structure in the vicinity of the Andronov-Hopf bifurcation. With the aid of this equation, the boundaries of the stabilization domains as well as the dependence of the oscillation radius on delay parameters can be explicitly derived, providing a robust mechanism to control the behaviour of the breathing localized structure in a straightforward manner. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge
2006-05-09
A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated.
Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential.
Kampmann, Martin
2005-08-01
The interaction between a protein and a specific DNA site is the molecular basis for vital processes in all organisms. Location of the DNA target site by the protein commonly involves facilitated diffusion. Mechanisms of facilitated diffusion vary among proteins; they include one- and two-dimensional sliding along DNA, direct transfer between uncorrelated sites, as well as combinations of these mechanisms. Facilitated diffusion has almost exclusively been studied in vitro. This review discusses facilitated diffusion in the context of the living cell and proposes a theoretical model for facilitated diffusion in chromatin lattices. Chromatin structure differentially affects proteins in different modes of diffusion. The interplay of facilitated diffusion and chromatin structure can determine the rate of protein association with the target site, the frequency of association-dissociation events at the target site, and, under particular conditions, the occupancy of the target site. Facilitated diffusion is required in vivo for efficient DNA repair and bacteriophage restriction and has potential roles in fine-tuning gene regulatory networks and kinetically compartmentalizing the eukaryotic nucleus.
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
Light-induced Self-Assembly and Diffusion of Nanoclusters
NASA Astrophysics Data System (ADS)
Lian, Wenxuan
Novel methods to build multiple types of three-dimensional structures from various nanoscale components are the most exciting and challenging questions in nano-science. The properties of the assembled structures can be potentially and designed, but the development of such approaches is challenging. In order to realize such rational assembly, a tunable interaction medium is often introduced into the system. Soft matter, such as polymers, surfactants and biomolecules are used to modify the surfaces of the nanoscale building blocks. Deoxyribonucleic acid (DNA) strands are known as polynucleotides since they are composed of simpler units called nucleotides. There are unique base pairing rules that are predictable and programmable, which can be used to regulate self-assembly process with high degree of control. Besides controlling static structure, it is important to develop methods for controlling systems in dynamic matter, with chemical stimuli or external fields. For example, here we study the use of azobezene-trimethylammonium bromide (AzoTAB) as a molecular agent that can control self-assembly via light excitation. In this thesis, DNA assisted self-assembly was conducted. The ability of AzoTAB as a light induced surfactant to control DNA assisted self-assembly was confirmed. The mechanism of AzoTAB as a light controlled self-assembly promoter was studied. In the second project, diffusion of nanoclusters was studied. The presence of polymers brings strong entanglement with nanoclusters. This entanglement is more obvious when the nanocluster is a framed structure like the octahedron in the study. The diffusion coefficient of the octahedron becomes larger during traveling. The following up studies are required to elucidate the origin of the observed effect.
Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation
NASA Astrophysics Data System (ADS)
Baushev, A. N.
2018-04-01
We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.
NASA Astrophysics Data System (ADS)
Yan, Fuhan; Li, Zhaofeng; Jiang, Yichuan
2016-05-01
The issues of modeling and analyzing diffusion in social networks have been extensively studied in the last few decades. Recently, many studies focus on uncertain diffusion process. The uncertainty of diffusion process means that the diffusion probability is unpredicted because of some complex factors. For instance, the variety of individuals' opinions is an important factor that can cause uncertainty of diffusion probability. In detail, the difference between opinions can influence the diffusion probability, and then the evolution of opinions will cause the uncertainty of diffusion probability. It is known that controlling the diffusion process is important in the context of viral marketing and political propaganda. However, previous methods are hardly feasible to control the uncertain diffusion process of individual opinion. In this paper, we present suitable strategy to control this diffusion process based on the approximate estimation of the uncertain factors. We formulate a model in which the diffusion probability is influenced by the distance between opinions, and briefly discuss the properties of the diffusion model. Then, we present an optimization problem at the background of voting to show how to control this uncertain diffusion process. In detail, it is assumed that each individual can choose one of the two candidates or abstention based on his/her opinion. Then, we present strategy to set suitable initiators and their opinions so that the advantage of one candidate will be maximized at the end of diffusion. The results show that traditional influence maximization algorithms are not applicable to this problem, and our algorithm can achieve expected performance.
The high temperature creep deformation of Si3N4-6Y2O3-2Al2O3
NASA Technical Reports Server (NTRS)
Todd, J. A.; Xu, Zhi-Yue
1988-01-01
The creep properties of silicon nitride containing 6 wt percent yttria and 2 wt percent alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation epsilon dot varies as sigma sup n, was determined to be 2.00 + or - 0.15 and the true activation energy was found to be 692 + or - 25 kJ/mol. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.
NASA Astrophysics Data System (ADS)
Thiele, Michael
1998-04-01
Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.
Water-Mediated Proton Hopping on an Iron Oxide Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merte, L. R.; Peng, Guowen; Bechstein, Ralf
2012-05-18
The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociationmore » is a key step in proton diffusion.« less
NASA Astrophysics Data System (ADS)
Yao, Lingxing; Mori, Yoichiro
2017-12-01
Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.
NASA Astrophysics Data System (ADS)
Hecht, Matthew D.; Picard, Yoosuf N.; Webler, Bryan A.
2017-05-01
We have examined spheroidization and coarsening of cementite in an initially pearlitic 2C-4Cr ultrahigh carbon steel containing a cementite network. Coarsening kinetics of spheroidized cementite and growth of denuded zones adjacent to the cementite network were investigated by analyzing particle sizes from digital micrographs of water-quenched steel etched with Nital. Denuded zones grew at a rate proportional to t 1/4- t 1/5. Spheroidization of pearlite was completed within 90 minutes at 1073 K and 1173 K (800 °C and 900 °C), and within 5 minutes at 1243 K (970 °C). Bimodal particle size distributions were identified in most of the samples and were more pronounced at higher temperatures and hold times. Peaks in the distributions were attributed to the coarsening of intragranular and grain boundary particles at different rates. A third, non-coarsening peak of particles was present at 1073 K (800 °C) only and was attributed to particles existing prior to the heat treatment. Particle sizes were plotted vs time to investigate possible coarsening mechanisms. The coarsening exponent for the growth of grain boundary carbides was closest to 4, indicating grain boundary diffusion control. The coarsening exponent was closest to 5 for intragranular carbides, indicating suppression of volumetric diffusion (possibly due to reduced effective diffusivity because of Cr alloying) and control by dislocation diffusion.
Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments
Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal
2007-01-01
One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979
Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiaorui, E-mail: gxr_1320@sina.com; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA
Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and amore » diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.« less
Chen, Juan; Cui, Baotong; Chen, YangQuan
2018-06-11
This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Field theory and diffusion creep predictions in polycrystalline aggregates
NASA Astrophysics Data System (ADS)
Villani, A.; Busso, E. P.; Forest, S.
2015-07-01
In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.
An evolutionary game for the diffusion of rumor in complex networks
NASA Astrophysics Data System (ADS)
Li, Dandan; Ma, Jing; Tian, Zihao; Zhu, Hengmin
2015-09-01
In this paper, we investigate the rumor diffusion process according to the evolutionary game framework. By using three real social network datasets, we find that increasing the judgment ability of individuals could curb the diffusion of rumor effectively. Under the same level of punishment cost, there are more spreaders in the network that has larger average degree. Moreover, the punishment fraction has more significant impact than the risk coefficient on the controlling of rumor diffusion. There exist some optimal risk coefficients and punishment fractions that could help more people refusing to spread rumor. In addition, the effect of the tie strength on the final fraction of spreaders is investigated. The results indicate that the rumor can be suppressed soon if the individuals preferentially select the neighbor either weaker or stronger ties persistently to update their strategy. However, choosing neighbor blindly may promote the spread of rumor. Finally, by comparing three kinds of punishment mechanisms, we show that taking the lead in punishing the higher degree nodes is the most effective measure to reduce the coverage of rumor.
The influence of mass transfer on solute transport in column experiments with an aggregated soil
NASA Astrophysics Data System (ADS)
Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter
1987-06-01
The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.
Cheboyina, Sreekhar; Wyandt, Christy M
2008-07-09
A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.
NASA Astrophysics Data System (ADS)
Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.
2017-07-01
This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.
Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko
Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) themore » stochastic diffusion does not have a considerable influence on the confinement of energetic ions.« less
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.
Strohm, S; Tyson, R C; Powell, J A
2013-10-01
Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.
Capillary and Gas Trapping Controls on Pumice Buoyancy in Water
NASA Astrophysics Data System (ADS)
Fauria, K. E.; Manga, M.; Wei, Z.
2016-12-01
Pumice can float on water for months to years. The longevity of pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography images of partially saturated pumice to demonstrate that gas trapping occurs in both ambient-temperature and hot (500°C) pumice. Furthermore, we show that the distribution of trapped gas clusters matches percolation theory predictions. Finally, we propose that diffusion out of trapped gaseous bubbles determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time scales like τ L2/(Dθ2) where is the floatation time, L is the characteristic length of the pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation.
Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry
NASA Astrophysics Data System (ADS)
Holycross, M.; Watson, E. B.
2017-12-01
In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact how Li-in-plagioclase geospeedometry is used to time igneous processes. Giletti, B.J., and T.M. Shanahan (1997) Alkali diffusion in plagioclase feldspar, Chem. Geol., 139, 3-20
Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.
2015-01-01
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.
New mechanisms of cluster diffusion on metal fcc(100) surfaces
NASA Astrophysics Data System (ADS)
Trushin, Oleg; Salo, Petri; Alatalo, Matti; Ala-Nissila, Tapio
2001-03-01
We have studied atomic mechanisms of the diffusion of small clusters on the fcc(100) metal surfaces using semi-empirical and ab-initio molecular static calculations. Primary goal of these studies was to investigate possible many-body mechanisms of cluster motion which can contribute to low temperature crystal growth. We used embedded atom and Glue potentials in semi-empirical simulations of Cu and Al. Combination of the Nudged Elastic Band and Eigenvector Following methods allowed us to find all the possible transition paths for cluster movements on flat terrace. In case of Cu(001) we have found several new mechanisms for diffusion of clusters, including mechanisms called row-shearing and dimer-rotating in which a whole row inside an island moves according to a concerted jump and a dimer rotates at the periphery of an island, respectively. In some cases these mechanisms yield a lower energy barrier than the standard mechanisms.
First Principles Study for Proton Transport and Diffusion Behavior in Hydrous Hexagonal WO3
NASA Astrophysics Data System (ADS)
Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; QPAM Team
2013-03-01
Proton transport is of great importance in biological species and energy storage and conversion systems. Previous studies have shown fast proton conduction in liquids and polymers but seldom in inorganic materials. In this work, first principles density functional theory (DFT) reveals that the formation of hydronium and water chains inside the hexagonal channels plays the key roles for the anomalously fast proton transport, by following modified Grotthuss mechanism. Our DFT study shows the detailed microscopic proton diffusion mechanism along the channel in hydrous WO3 with 50% water composition, which is proper for water chain formation. The water chain in the channel serves as a possible diffusion media for hydronium (H3O +) . With the continuous formation and cleavage of hydrogen bonds in the channel, the hydronium diffuses by hydrogen bonds exchange between water molecules. This mechanism is very similar with Grotthuss relay mechanism for proton transport in liquid. The possible proton diffusion were studied for hydronium is either far away from the water chain bond defect or next to H2O defect at the end of water chain. The diffusion barriers for both conditions are around 150 meV to 200 meV, and water defects reorganization in the chain is the rate-limited step for proton diffusion. These small diffusion barriers could explain the fast 1-D proton transport in hydrous WO3 channel. Further studies about fast proton transport in other inorganic materials could be an important topic in not only biochemistry but also clean energy applications like fuel cell applications.
Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure
Choi, Yoon-Young; Sharma, Pankaj; Phatak, Charudatta; ...
2015-02-01
Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale tip that enhances the local piezoresponse. This process can control the nanoscale material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of beta-phase extended chain crystals via sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believemore » that this technique can be useful for local enhancement of piezoresponse in ferroelectric polymer thin films.« less
Thin-film diffusion brazing of titanium alloys
NASA Technical Reports Server (NTRS)
Mikus, E. B.
1972-01-01
A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.
Malipeddi, Venkata Ramana; Awasthi, Rajendra; Ghisleni, Daniela Dal Molim; de Souza Braga, Marina; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Dua, Kamal
2017-02-01
The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.
Pathways for diffusion in the potential energy landscape of the network glass former SiO2
NASA Astrophysics Data System (ADS)
Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.
2017-10-01
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
NASA Astrophysics Data System (ADS)
Tang, Ming; Rudnick, Roberta L.; McDonough, William F.; Bose, Maitrayee; Goreva, Yulia
2017-09-01
Micron- to submicron-scale observations of Li distribution and Li isotope composition profiles can be used to infer the mechanisms of Li diffusion in natural zircon. Extreme fractionation (20-30‰) within each single crystal studied here confirms that Li diffusion commonly occurs in zircon. Sharp Li concentration gradients frequently seen in zircons suggest that the effective diffusivity of Li is significantly slower than experimentally determined (Cherniak and Watson, 2010; Trail et al., 2016), otherwise the crystallization/metamorphic heating of these zircons would have to be unrealistically fast (years to tens of years). Charge coupling with REE and Y has been suggested as a mechanism that may considerably reduce Li diffusivity in zircon (Ushikubo et al., 2008; Bouvier et al., 2012). We show that Li diffused in the direction of decreasing Li/Y ratio and increasing Li concentration (uphill diffusion) in one of the zircons, demonstrating charge coupling with REE and Y. Quantitative modeling reveals that Li may diffuse in at least two modes in natural zircons: one being slow and possibly coupled with REE+Y, and the other one being fast and not coupled with REE+Y. The partitioning of Li between these two modes during its diffusion may depend on the pre-diffusion substitution mechanism of REE and Y in the zircon lattice. Based on our results, sharp Li concentration gradients are not indicative of limited diffusion, and can be preserved at temperatures >700 °C on geologic timescales. Finally, large δ7 Li variations observed in the Hadean Jack Hills zircons may record kinetic fractionation, rather than a record of ancient intense weathering in the granite source materials.
Sigmund, E E; Baete, S H; Luo, T; Patel, K; Wang, D; Rossi, I; Duarte, A; Bruno, M; Mossa, D; Femia, A; Ramachandran, S; Stoffel, D; Babb, J S; Franks, A; Bencardino, J
2018-06-04
Dermatomyositis (DM) is an idiopathic inflammatory myopathy involving severe debilitation in need of diagnostics. We evaluated the proximal lower extremity musculature with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and dynamic DTI in DM patients and controls and compared with standard clinical workup. METHODS: In this IRB-approved, HIPAA-compliant study with written informed consent, anatomical, Dixon fat/water and diffusion imaging were collected in bilateral thigh MRI of 22 controls and 27 DM patients in a 3T scanner. Compartments were scored on T1/T2 scales. Single voxel dynamic DTI metrics in quadriceps before and after 3-min leg exercise were measured. Spearman rank correlation and mixed model analysis of variance/covariance (ANOVA/ANCOVA) were used to correlate with T1 and T2 scores and to compare patients with controls. DM patients showed significantly lower pseudo-diffusion and volume in quadriceps than controls. All subjects showed significant correlation between T1 score and signal-weighted fat fraction; tissue diffusion and pseudo-diffusion varied significantly with T1 and T2 score in patients. Radial and mean diffusion exercise response in patients was significantly higher than controls. Static and dynamic diffusion imaging metrics show correlation with conventional imaging scores, reveal spatial heterogeneity, and provide means to differentiate dermatomyositis patients from controls. • Diffusion imaging shows regional differences between thigh muscles of dermatomyositis patients and controls. • Signal-weighted fat fraction and diffusion metrics correlate with T1/T2 scores of disease severity. • Dermatomyositis patients show significantly higher radial diffusion exercise response than controls.
From single molecule to single tubules
NASA Astrophysics Data System (ADS)
Guo, Chin-Lin
2012-02-01
Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Integrating impairments in reaction time and executive function using a diffusion model framework.
Karalunas, Sarah L; Huang-Pollock, Cynthia L
2013-07-01
Using Ratcliff's diffusion model and ex-Gaussian decomposition, we directly evaluate the role individual differences in reaction time (RT) distribution components play in the prediction of inhibitory control and working memory (WM) capacity in children with and without ADHD. Children with (n = 91, [Formula: see text] age = 10.2 years, 67 % male) and without ADHD (n = 62, [Formula: see text] age = 10.6 years, 46 % male) completed four tasks of WM and a stop signal reaction time (SSRT) task. Children with ADHD had smaller WM capacities and less efficient inhibitory control. Diffusion model analyses revealed that children with ADHD had slower drift rates (v) and faster non-decision times (Ter), but there were no group differences in boundary separations (a). Similarly, using an ex-Gaussian approach, children with ADHD had larger τ values than non-ADHD controls, but did not differ in μ or σ distribution components. Drift rate mediated the association between ADHD status and performance on both inhibitory control and WM capacity. τ also mediated the ADHD-executive function impairment associations; however, models were a poorer fit to the data. Impaired performance on RT and executive functioning tasks has long been associated with childhood ADHD. Both are believed to be important cognitive mechanisms to the disorder. We demonstrate here that drift rate, or the speed at which information accumulates towards a decision, is able to explain both.
Thermal diffusivity study of aged Li-ion batteries using flash method
NASA Astrophysics Data System (ADS)
Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim
Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houle, Frances A.; Wiegel, Aaron A.; Wilson, Kevin R.
Here, we examine in a simple organic aerosol the transition between heterogeneous chemistry under well-mixed conditions to chemistry under interfacial confinement. A single reaction mechanism, shown to reproduce observed OH oxidation chemistry for liquid and semisolid C 30H 62, is used in reaction-diffusion simulations to explore reactivity over a broad viscosity range. The results show that when internal mixing of the aerosol is fast and the particle interface is enriched in C-H groups, ketone and alcohol products, formed via peroxy radical disproportionation, predominate. As viscosity increases the reactions become confined to a shell at the gas-aerosol interface. The confinement ismore » accompanied by emergence of acyloxy reaction pathways that are particularly active when the shell is 1 nm or less. We quantify this trend using a reaction-diffusion index, allowing the parts of the mechanism that control reactivity as viscosity increases to be identified.« less
NASA Astrophysics Data System (ADS)
Okumus, Burak; Landgraf, Dirk; Lai, Ghee Chuan; Bakhsi, Somenath; Arias-Castro, Juan Carlos; Yildiz, Sadik; Huh, Dann; Fernandez-Lopez, Raul; Peterson, Celeste N.; Toprak, Erdal; El Karoui, Meriem; Paulsson, Johan
2016-05-01
Many key regulatory proteins in bacteria are present in too low numbers to be detected with conventional methods, which poses a particular challenge for single-cell analyses because such proteins can contribute greatly to phenotypic heterogeneity. Here we develop a microfluidics-based platform that enables single-molecule counting of low-abundance proteins by mechanically slowing-down their diffusion within the cytoplasm of live Escherichia coli (E. coli) cells. Our technique also allows for automated microscopy at high throughput with minimal perturbation to native physiology, as well as viable enrichment/retrieval. We illustrate the method by analysing the control of the master regulator of the E. coli stress response, RpoS, by its adapter protein, SprE (RssB). Quantification of SprE numbers shows that though SprE is necessary for RpoS degradation, it is expressed at levels as low as 3-4 molecules per average cell cycle, and fluctuations in SprE are approximately Poisson distributed during exponential phase with no sign of bursting.
Single cell model for simultaneous drug delivery and efflux.
Yi, C; Saidel, G M; Gratzl, M
1999-01-01
Multidrug resistance (MDR) of some cancer cells is a major challenge for chemotherapy of systemic cancers to overcome. To experimentally uncover the cellular mechanisms leading to MDR, it is necessary to quantitatively assess both drug influx into, and efflux from, the cells exposed to drug treatment. By using a novel molecular microdelivery system to enforce continuous and adjustable drug influx into single cells by controlled diffusion through a gel plug in a micropipet tip, drug resistance studies can now be performed on the single cell level. Our dynamic model of this scheme incorporates drug delivery, diffusive mixing, and accumulation inside the cytoplasm, and efflux by both passive and active membrane transport. Model simulations using available experimental information on these processes can assist in the design of MDR related experiments on single cancer cells which are expected to lead to a quantitative evaluation of mechanisms. Simulations indicate that drug resistance of a cancer cell can be quantified better by its dynamic response than by steady-state analysis.
Houle, Frances A.; Wiegel, Aaron A.; Wilson, Kevin R.
2018-02-14
Here, we examine in a simple organic aerosol the transition between heterogeneous chemistry under well-mixed conditions to chemistry under interfacial confinement. A single reaction mechanism, shown to reproduce observed OH oxidation chemistry for liquid and semisolid C 30H 62, is used in reaction-diffusion simulations to explore reactivity over a broad viscosity range. The results show that when internal mixing of the aerosol is fast and the particle interface is enriched in C-H groups, ketone and alcohol products, formed via peroxy radical disproportionation, predominate. As viscosity increases the reactions become confined to a shell at the gas-aerosol interface. The confinement ismore » accompanied by emergence of acyloxy reaction pathways that are particularly active when the shell is 1 nm or less. We quantify this trend using a reaction-diffusion index, allowing the parts of the mechanism that control reactivity as viscosity increases to be identified.« less
Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.
Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng
2015-01-07
An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.
Jinawath, Natini; Furukawa, Yoichi; Hasegawa, Suguru; Li, Meihua; Tsunoda, Tatsuhiko; Satoh, Seiji; Yamaguchi, Toshiharu; Imamura, Hiroshi; Inoue, Masatomo; Shiozaki, Hitoshi; Nakamura, Yusuke
2004-09-02
Gastric cancer is the fourth leading cause of cancer-related death in the world. Two histologically distinct types of gastric carcinoma, 'intestinal' and 'diffuse', have different epidemiological and pathophysiological features that suggest different mechanisms of carcinogenesis. A number of studies have investigated intestinal-type gastric cancers at the molecular level, but little is known about mechanisms involved in the diffuse type, which has a more invasive phenotype and poorer prognosis. To clarify the mechanisms that underlie its development and/or progression, we compared the expression profiles of 20 laser-microbeam-microdissected diffuse-type gastric-cancer tissues with corresponding noncancerous mucosae by means of a cDNA microarray containing 23,040 genes. We identified 153 genes that were commonly upregulated and more than 1500 that were commonly downregulated in the tumors. We also identified a number of genes related to tumor progression. Furthermore, comparison of the expression profiles of diffuse-type with those of intestinal-type gastric cancers identified 46 genes that may represent distinct molecular signatures of each histological type. The putative signature of diffuse-type cancer exhibited altered expression of genes related to cell-matrix interaction and extracellular-matrix (ECM) components, whereas that of intestinal-type cancer represented enhancement of cell growth. These data provide insight into different mechanisms underlying gastric carcinogenesis and may also serve as a starting point for identifying novel diagnostic markers and/or therapeutic targets for diffuse-type gastric cancers.
Transport mechanisms of contaminants released from fine sediment in rivers
NASA Astrophysics Data System (ADS)
Cheng, Pengda; Zhu, Hongwei; Zhong, Baochang; Wang, Daozeng
2015-12-01
Contaminants released from sediment into rivers are one of the main problems to study in environmental hydrodynamics. For contaminants released into the overlying water under different hydrodynamic conditions, the mechanical mechanisms involved can be roughly divided into convective diffusion, molecular diffusion, and adsorption/desorption. Because of the obvious environmental influence of fine sediment (D_{90}= 0.06 mm), non-cohesive fine sediment, and cohesive fine sediment are researched in this paper, and phosphorus is chosen for a typical adsorption of a contaminant. Through theoretical analysis of the contaminant release process, according to different hydraulic conditions, the contaminant release coupling mathematical model can be established by the N-S equation, the Darcy equation, the solute transport equation, and the adsorption/desorption equation. Then, the experiments are completed in an open water flume. The simulation results and experimental results show that convective diffusion dominates the contaminant release both in non-cohesive and cohesive fine sediment after their suspension, and that they contribute more than 90 % of the total release. Molecular diffusion and desorption have more of a contribution for contaminant release from unsuspended sediment. In unsuspension sediment, convective diffusion is about 10-50 times larger than molecular diffusion during the initial stages under high velocity; it is close to molecular diffusion in the later stages. Convective diffusion is about 6 times larger than molecular diffusion during the initial stages under low velocity, it is about a quarter of molecular diffusion in later stages, and has a similar level with desorption/adsorption. In unsuspended sediment, a seepage boundary layer exists below the water-sediment interface, and various release mechanisms in that layer mostly dominate the contaminant release process. In non-cohesive fine sediment, the depth of that layer increases linearly with shear stress. In cohesive fine sediment, the range seepage boundary is different from that in non-cohesive sediment, and that phenomenon is more obvious under a lower shear stress.
Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics
NASA Astrophysics Data System (ADS)
Beatrici, Carine P.; de Almeida, Rita M. C.; Brunnet, Leonardo G.
2017-03-01
Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td /d +2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.
Johari, Priya; Qi, Yue; Shenoy, Vivek B
2011-12-14
In order to realize Si as a negative electrode material in commercial Li-ion batteries, it is important to understand the mixing mechanism of Li and Si, and stress evolution during lithiation in Si negative electrode of Li-ion batteries. Available experiments mainly provide the diffusivity of Li in Si as an averaged property, neglecting information regarding diffusivity of Si. However, if Si can diffuse as fast as Li, the stress generated during Li diffusion can be reduced. We, therefore, studied the diffusivity of Li as well as Si atoms in the Si-anode of Li-ion battery using an ab initio molecular dynamics-based methodology. The electrochemical insertion of Li into crystalline Si prompts a crystalline-to-amorphous phase transition. We considered this situation and thus examined the diffusion kinetics of Li and Si atoms in both crystalline and amorphous Si. We find that Li diffuses faster in amorphous Si as compared to crystalline Si, while Si remains relatively immobile in both cases and generates stresses during lithiation. To further understand the mixing mechanism and to relate the structure with electrochemical mixing, we analyzed the evolution of the structure during lithiation and studied the mechanism of breaking of Si-Si network by Li. We find that Li atoms break the Si rings and chains and create ephemeral structures such as stars and boomerangs, which eventually transform to Si-Si dumbbells and isolated Si atoms in the LiSi phase. Our results are found to be in agreement with the available experimental data and provide insights into the mixing mechanism of Li and Si in Si negative electrode of Li-ion batteries.
Particle deposition due to turbulent diffusion in the upper respiratory system
NASA Technical Reports Server (NTRS)
Hamill, P.
1979-01-01
Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.
Chemistry and Formation of the Beilby Layer During Polishing of Fused Silica Glass
Suratwala, Tayyab; Steele, William; Wong, Lana; ...
2015-05-19
The chemical characteristics and the proposed formation mechanisms of the modified surface layer (called the Beilby layer) on polished fused silica glasses are described. Fused silica glass samples were polished using different slurries, polyurethane pads, and at different rotation rates. The concentration profiles of several key contaminants, such as Ce, K, and H, were measured in the near surface layer of the polished samples using Secondary Ion Mass Spectroscopy (SIMS). The penetration of K, originating from KOH used for pH control during polishing, decreased with increase in polishing material removal rate. In contrast, penetration of the Ce and H increasedmore » with increase in polishing removal rate. In addition, Ce penetration was largely independent of the other polishing parameters (e.g., particle size distribution and the properties of the polishing pad). The resulting K concentration depth profiles are described using a two-step diffusion process: (1) steady-state moving boundary diffusion (due to material removal during polishing) followed by (2) simple diffusion during ambient postpolishing storage. Using known alkali metal diffusion coefficients in fused silica glass, this diffusion model predicts concentration profiles that are consistent with the measured data at various polishing material removal rates. On the other hand, the observed Ce profiles are inconsistent with diffusion based transport. Rather we propose that Ce penetration is governed by the ratio of Ce–O–Si and Si–O–Si hydrolysis rates; where this ratio increases with interface temperature (which increases with polishing material removal rate) resulting in greater Ce penetration into the Beilby layer. Calculated Ce surface concentrations using this mechanism are in good agreement to the observed change in measured Ce surface concentrations with polishing material removal rate. In conclusion, these new insights into the chemistry of the Beilby layer, combined together with details of the single particle removal function during polishing, are used to develop a more detailed and quantitative picture of the polishing process and the formation of the Beilby layer.« less
Reversed nanoscale Kirkendall effect in Au–InAs hybrid nanoparticles
Liu, Jing; Amit, Yorai; Li, Yuanyuan; ...
2016-10-10
Metal–semiconductor hybrid nanoparticles (NPs) offer interesting synergistic properties, leading to unique behaviors that have already been exploited in photocatalysis, electrical, and optoelectronic applications. A fundamental aspect in the synthesis of metal–semiconductor hybrid NPs is the possible diffusion of the metal species through the semiconductor lattice. The importance of understanding and controlling the co-diffusion of different constituents is demonstrated in the synthesis of various hollow-structured NPs via the Kirkendall effect. Here, we used a postsynthesis room-temperature reaction between AuCl 3 and InAs nanocrystals (NCs) to form metal–semiconductor core–shell hybrid NPs through the “reversed Kirkendall effect”. In the presented system, the diffusionmore » rate of the inward diffusing species (Au) is faster than that of the outward diffusing species (InAs), which results in the formation of a crystalline metallic Au core surrounded by an amorphous, oxidized InAs shell containing nanoscale voids. We used time-resolved X-ray absorption fine-structure (XAFS) spectroscopy to monitor the diffusion process and found that both the size of the Au core and the extent of the disorder of the InAs shell depend strongly on the Au-to-NC ratio. We have determined, based on multielement fit analysis, that Au diffuses into the NC via the kick-out mechanism, substituting for In host atoms; this compromises the structural stability of the lattice and triggers the formation of In–O bonds. These bonds were used as markers to follow the diffusion process and indicate the extent of degradation of the NC lattice. Time-resolved X-ray diffraction (XRD) was used to measure the changes in the crystal structures of InAs and the nanoscale Au phases. By combining the results of XAFS, XRD, and electron microscopy, we correlated the changes in the local structure around Au, As, and In atoms and the changes in the overall InAs crystal structure. This correlative analysis revealed a co-dependence of different structural consequences when introducing Au into the InAs NCs. As a result this study of diffusion effects in nanocrystals has relevance to powerful concepts in solid-state nanochemistry related to processes of cation exchange, doping reactions, and diffusion mechanisms.« less
Reversed Nanoscale Kirkendall Effect in Au–InAs Hybrid Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Amit, Yorai; Li, Yuanyuan
2016-11-08
Metal–semiconductor hybrid nanoparticles (NPs) offer interesting synergistic properties, leading to unique behaviors that have already been exploited in photocatalysis, electrical, and optoelectronic applications. A fundamental aspect in the synthesis of metal–semiconductor hybrid NPs is the possible diffusion of the metal species through the semiconductor lattice. The importance of understanding and controlling the co-diffusion of different constituents is demonstrated in the synthesis of various hollow-structured NPs via the Kirkendall effect. Here, we used a postsynthesis room-temperature reaction between AuCl 3 and InAs nanocrystals (NCs) to form metal–semiconductor core–shell hybrid NPs through the “reversed Kirkendall effect”. In the presented system, the diffusionmore » rate of the inward diffusing species (Au) is faster than that of the outward diffusing species (InAs), which results in the formation of a crystalline metallic Au core surrounded by an amorphous, oxidized InAs shell containing nanoscale voids. We used time-resolved X-ray absorption fine-structure (XAFS) spectroscopy to monitor the diffusion process and found that both the size of the Au core and the extent of the disorder of the InAs shell depend strongly on the Au-to-NC ratio. We have determined, based on multielement fit analysis, that Au diffuses into the NC via the kick-out mechanism, substituting for In host atoms; this compromises the structural stability of the lattice and triggers the formation of In–O bonds. These bonds were used as markers to follow the diffusion process and indicate the extent of degradation of the NC lattice. Time-resolved X-ray diffraction (XRD) was used to measure the changes in the crystal structures of InAs and the nanoscale Au phases. By combining the results of XAFS, XRD, and electron microscopy, we correlated the changes in the local structure around Au, As, and In atoms and the changes in the overall InAs crystal structure. This correlative analysis revealed a co-dependence of different structural consequences when introducing Au into the InAs NCs. Therefore, this study of diffusion effects in nanocrystals has relevance to powerful concepts in solid-state nanochemistry related to processes of cation exchange, doping reactions, and diffusion mechanisms.« less
Chen, Yinshan; Zhu, Men; Laventure, Audrey; ...
2017-06-26
Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C 2H 5, OCH 3, and NHCH 3, and referred to as “Et”, “OMe”, and “NHMe”, respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow asmore » the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. Here, this result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.« less
Xue, Qiang; Wang, Ping; Li, Jiang-Shan; Zhang, Ting-Ting; Wang, Shan-Yong
2017-01-01
Long-term leaching behavior of contaminant from stabilization/solidification (S/S) treated waste stays unclear. For the purpose of studying long-term leaching behavior and leaching mechanism of lead from cement stabilized soil under different pH environment, semi-dynamic leaching test was extended to two years to investigate leaching behaviors of S/S treated lead contaminated soil. Effectiveness of S/S treatment in different scenarios was evaluated by leachability index (LX) and effective diffusion coefficient (D e ). In addition, the long-term leaching mechanism was investigated at different leaching periods. Results showed that no significant difference was observed among the values of the cumulative release of Pb, D e and LX in weakly alkaline and weakly acidic environment (pH value varied from 5.00 to 10.00), and all the controlling leaching mechanisms of the samples immersed in weakly alkaline and weakly acidic environments turned out to be diffusion. Strong acid environment would significantly affect the leaching behavior and leaching mechanism of lead from S/S monolith. The two-year variation of D e appeared to be time dependent, and D e values increased after the 210 th day in weakly alkaline and weakly acidic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE R&D Accomplishments Database
Weinberg, Alvin M.; Noderer, L. C.
1951-05-15
The large scale release of nuclear energy in a uranium fission chain reaction involves two essentially distinct physical phenomena. On the one hand there are the individual nuclear processes such as fission, neutron capture, and neutron scattering. These are essentially quantum mechanical in character, and their theory is non-classical. On the other hand, there is the process of diffusion -- in particular, diffusion of neutrons, which is of fundamental importance in a nuclear chain reaction. This process is classical; insofar as the theory of the nuclear chain reaction depends on the theory of neutron diffusion, the mathematical study of chain reactions is an application of classical, not quantum mechanical, techniques.
Transport of neutral solute across articular cartilage: the role of zonal diffusivities.
Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A
2015-07-01
Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.
Reduction of Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times.
Baron, Corey Allan; Kate, Mahesh; Gioia, Laura; Butcher, Kenneth; Emery, Derek; Budde, Matthew; Beaulieu, Christian
2015-08-01
Diffusion-weighted imaging (DWI) of tissue water is a sensitive and specific indicator of acute brain ischemia, where reductions of the diffusion of tissue water are observed acutely in the stroke lesion core. Although these diffusion changes have been long attributed to cell swelling, the precise nature of the biophysical mechanisms remains uncertain. The potential cause of diffusion reductions after stroke was investigated using an advanced DWI technique, oscillating gradient spin-echo DWI, that enables much shorter diffusion times and can improve specificity for alterations of structure at the micron level. Diffusion measurements in the white matter lesions of patients with acute ischemic stroke were reduced by only 8% using oscillating gradient spin-echo DWI, in contrast to a 37% decrease using standard DWI. Neurite beading has recently been proposed as a mechanism for the diffusion changes after ischemic stroke with some ex vivo evidence. To explore whether beading could cause such differential results, simulations of beaded cylinders and axonal swelling were performed, yielding good agreement with experiment. Short diffusion times result in dramatically reduced diffusion contrast of human stroke. Simulations implicate a combination of neuronal beading and axonal swelling as the key structural changes leading to the reduced apparent diffusion coefficient after stroke. © 2015 American Heart Association, Inc.
Emergent spatial synaptic structure from diffusive plasticity.
Sweeney, Yann; Clopath, Claudia
2017-04-01
Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Vianco, P. T.; Neilsen, M. K.; Rejent, J. A.; Grant, R. P.
2015-10-01
A study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. The cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: ɛc = A D o m Z n , (2) DRX to be cyclic: D o < 2 D r, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0- μm and 4.9- μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. A first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.
Vianco, Paul T.; Neilsen, Michael K.; Rejent, Jerome A.; ...
2015-05-01
Our study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. Themore » cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: εc = A D o m Z n , (2) DRX to be cyclic: D o < 2D r, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0-μm and 4.9-μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. Furthermore, a first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.« less
Shirazi, Reyhaneh Neghabat; Ronan, William; Rochev, Yury; McHugh, Peter
2016-02-01
Scaffolding plays a critical rule in tissue engineering and an appropriate degradation rate and sufficient mechanical integrity are required during degradation and healing of tissue. This paper presents a computational investigation of the molecular weight degradation and the mechanical performance of poly(lactic-co-glycolic acid) (PLGA) films and tissue engineering scaffolds. A reaction-diffusion model which predicts the degradation behaviour is coupled with an entropy-based mechanical model which relates Young׳s modulus and the molecular weight. The model parameters are determined based on experimental data for in-vitro degradation of a PLGA film. Microstructural models of three different scaffold architectures are used to investigate the degradation and mechanical behaviour of each scaffold. Although the architecture of the scaffold does not have a significant influence on the degradation rate, it determines the initial stiffness of the scaffold. It is revealed that the size of the scaffold strut controls the degradation rate and the mechanical collapse. A critical length scale due to competition between diffusion of degradation products and autocatalytic degradation is determined to be in the range 2-100μm. Below this range, slower homogenous degradation occurs; however, for larger samples monomers are trapped inside the sample and faster autocatalytic degradation occurs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microfabricated diffusion source
Oborny, Michael C [Albuquerque, NM; Frye-Mason, Gregory C [Cedar Crest, NM; Manginell, Ronald P [Albuquerque, NM
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.
2015-01-21
Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less
Wanted: Scalable Tracers for Diffusion Measurements
2015-01-01
Scalable tracers are potentially a useful tool to examine diffusion mechanisms and to predict diffusion coefficients, particularly for hindered diffusion in complex, heterogeneous, or crowded systems. Scalable tracers are defined as a series of tracers varying in size but with the same shape, structure, surface chemistry, deformability, and diffusion mechanism. Both chemical homology and constant dynamics are required. In particular, branching must not vary with size, and there must be no transition between ordinary diffusion and reptation. Measurements using scalable tracers yield the mean diffusion coefficient as a function of size alone; measurements using nonscalable tracers yield the variation due to differences in the other properties. Candidate scalable tracers are discussed for two-dimensional (2D) diffusion in membranes and three-dimensional diffusion in aqueous solutions. Correlations to predict the mean diffusion coefficient of globular biomolecules from molecular mass are reviewed briefly. Specific suggestions for the 3D case include the use of synthetic dendrimers or random hyperbranched polymers instead of dextran and the use of core–shell quantum dots. Another useful tool would be a series of scalable tracers varying in deformability alone, prepared by varying the density of crosslinking in a polymer to make say “reinforced Ficoll” or “reinforced hyperbranched polyglycerol.” PMID:25319586
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto
The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less
Does Diffusion Sequester Heavy Metals in Old Contamination Soils?
NASA Astrophysics Data System (ADS)
Ma, J.; Jennings, A. A.
2002-12-01
Old soil contamination refers to soil contamination that has aged over a long period of time. For example, at some brownfields, the soil heavy metal contamination can be one hundred or more years old. When contamination is young, the heavy metals are bound relatively weakly to the soil. However, the speciation and/or mechanisms of association evolve with aging into much more stable forms. It also appears that the metals migrate deeper into the bulk soil matrix where they are less available to participate in surface-related phenomena. Previous research showed elevated heavy metal extraction result after the soil was pulverized, with all other experiment conditions remaining unchanged. This indicates the presence of sequestered heavy metal contamination within the large soil particles (aggregate). The mechanisms of sequestering are uncertain, but diffusion appears to be a major factor. There are two possible pathways of diffusion that can account for heavy metal sequestering: solid-state diffusion through the bulk aggregate or liquid-phase diffusion through micro-pores within the aggregate structure. The second diffusion mechanism can be coupled with sorption (or other surface-related phenomena) on the pore walls. The remediation of sequestered heavy metals is also impacted by diffusion. Grinding a soil significantly reduces its average particle size. This exposes more of its internal bulk volume to extraction and results in much shorter diffusion pathway for the sequestered heavy metals to be released. Evidence has illustrated that this both improves remediation efficiency and provides a method by which the degree of sequestering can be quantified. This paper will present the results of ongoing research that is developing methods to identify the mechanisms of, quantify the magnitude of and determine the relative importance of (i.e. risk analysis) heavy metals sequestered in old contamination soils.
Cyclic voltammetric study of Co-Ni-Fe alloys electrodeposition in sulfate medium
NASA Astrophysics Data System (ADS)
Hanafi, I.; Daud, A. R.; Radiman, S.
2013-11-01
Electrochemical technique has been used to study the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy on indium tin oxide (ITO) coated glass substrate. To obtain the nucleation mechanism, cyclic voltammetry is used to characterize the Co-Ni-Fe system. The scanning rate effect on the deposition process was investigated. Deposition of single metal occurs at potential values more positive than that estimated stability potential. Based on the cyclic voltammetry results, the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy clearly show that the process of diffusion occurs is controlled by the typical nucleation mechanism.
Reaction-diffusion systems in natural sciences and new technology transfer
NASA Astrophysics Data System (ADS)
Keller, André A.
2012-12-01
Diffusion mechanisms in natural sciences and innovation management involve partial differential equations (PDEs). This is due to their spatio-temporal dimensions. Functional semi-discretized PDEs (with lattice spatial structures or time delays) may be even more adapted to real world problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of populations with migration, and the adopters’ dynamics of new products in innovation models. In biology, these events are related to variations in the environment, population densities and overcrowding, migration and spreading of humans, animals, plants and other cells and organisms. In chemical reactions, molecules of different species interact locally and diffuse. In the management of new technologies, the diffusion processes of innovations in the marketplace (e.g., the mobile phone) are a major subject. These innovation diffusion models refer mainly to epidemic models. This contribution introduces that modeling process by using PDEs and reviews the essential features of the dynamics and control in biological, chemical and new technology transfer. This paper is essentially user-oriented with basic nonlinear evolution equations, delay PDEs, several analytical and numerical methods for solving, different solutions, and with the use of mathematical packages, notebooks and codes. The computations are carried out by using the software Wolfram Mathematica®7, and C++ codes.
Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.
2013-01-01
Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855
Influence of Acoustic Reflection on the Inertial Cavitation Dose in a Franz Diffusion Cell.
Robertson, Jeremy; Becker, Sid
2018-05-01
The exposure of the skin to low-frequency (20-100 kHz) ultrasound is a well-established method for increasing its permeability to drugs. The mechanism underlying this permeability increase has been found to be inertial cavitation within the coupling fluid. This study investigated the influence of acoustic reflections on the inertial cavitation dose during low-frequency (20 kHz) exposure in an in vitro skin sonoporation setup. This investigation was conducted using a passive cavitation detector that monitored the broadband noise emission within a modified Franz diffusion cell. Two versions of this diffusion cell were employed. One version had acoustic conditions that were similar to those of a standard Franz diffusion cell surrounded by air, whereas the second was designed to greatly reduce the acoustic reflection by submerging the diffusion cell in a water bath. The temperature of the coupling fluid in both setups was controlled using a novel thermoelectric cooling system. At an ultrasound intensity of 13.6 W/cm 2 , the median inertial cavitation dose when the acoustic reflections were suppressed, was found to be only about 15% lower than when reflections were not suppressed. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yinshan; Zhu, Men; Laventure, Audrey
Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C 2H 5, OCH 3, and NHCH 3, and referred to as “Et”, “OMe”, and “NHMe”, respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow asmore » the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. Here, this result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.« less
Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W
2008-01-01
Plants modify nutrient availability by releasing chemicals in the rhizosphere. This change in availability induced by roots (bioavailability) is known to improve nutrient uptake by individual plants releasing such compounds. Can this bioavailability alter plant competition for nutrients and under what conditions? To address these questions, we have developed a model of nutrient competition between plant species based on mechanistic descriptions of nutrient diffusion, plant exudation, and plant uptake. The model was parameterized using data of the effects of root citrate exudation on phosphorus availability. We performed a sensitivity analysis for key parameters to test the generality of these effects. Our simulations suggest the following. (1) Nutrient uptake depends on the number of roots when nutrients and exudates diffuse little, because individual roots are nearly independent in terms of nutrient supply. In this case, bioavailability profits only species with exudates. (2) Competition for nutrients depends on the spatial arrangement of roots when nutrients diffuse little but exudates diffuse widely. (3) Competition for nutrients depends on the nutrient uptake capacity of roots when nutrients and exudates diffuse widely. In this case, bioavailability profits all species. Mechanisms controlling competition for bioavailable nutrients appear to be diverse and strongly depend on soil, nutrient, and plant properties.
Kinetics of the reduction of bushveld complex chromite ore at 1416 °C
NASA Astrophysics Data System (ADS)
Soykan, O.; Eric, R. H.; King, R. P.
1991-12-01
The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.
NASA Astrophysics Data System (ADS)
Monkhoev, R. D.; Budnev, N. M.; Chiavassa, A.; Dyachok, A. N.; Gafarov, A. R.; Gress, O. A.; Gress, T. I.; Grishin, O. G.; Ivanova, A. L.; Kalmykov, N. N.; Kazarina, Yu. A.; Korosteleva, E. E.; Kozhin, V. A.; Kuzmichev, L. A.; Lenok, V. V.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Mirgazov, R. R.; Mirzoyan, R.; Osipova, E. A.; Pakhorukov, A. L.; Panasyuk, M. I.; Pankov, L. V.; Poleschuk, V. A.; Popova, E. G.; Postnikov, E. B.; Prosin, V. V.; Ptuskin, V. S.; Pushnin, A. A.; Samoliga, V. S.; Semeney, Y. A.; Sveshnikova, L. G.; Silaev, A. A.; Silaev, A. A., Jr.; Skurikhin, A. V.; Sulakov, V. P.; Tabolenko, V. A.; Voronin, D. M.; Fedorov, O. L.; Spiering, C.; Zagorodnikov, A. V.; Zhurov, D. P.; Zurbanov, V. L.
2017-06-01
The investigation of energy spectrum and mass composition of primary cosmic rays in the energy range 1016-1018 eV and the search for diffuse cosmic gamma rays are of the great interest for understanding mechanisms and nature of high-energy particle sources, the problem of great importance in modern astrophysics. Tunka-Grande scintillator array is a part of the experimental complex TAIGA (Tunka Advanced Instrument for Cosmic Ray and Gamma Astronomy) which is located in the Tunka Valley, about 50 km from Lake Baikal. The purpose of this array is the study of diffuse gamma rays and cosmic rays of ultra-high energies by detecting extensive air showers. We describe the design, specifications of the read-out, data acquisition (DAQ) and control systems of the array.
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
Water has no effect on oxygen self-diffusion rate in forsterite
NASA Astrophysics Data System (ADS)
Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.
2014-12-01
Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.
Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles.
Levitas, Valery I
2013-11-28
A recently suggested melt-dispersion mechanism (MDM) for fast reaction of aluminium (Al) nano- and a few micrometre-scale particles during fast heating is reviewed. Volume expansion of 6% during Al melting produces pressure of several GPa in a core and tensile hoop stresses of 10 GPa in an oxide shell. Such stresses cause dynamic fracture and spallation of the shell. After spallation, an unloading wave propagates to the centre of the particle and creates a tensile pressure of 3-8 GPa. Such a tensile pressure exceeds the cavitation strength of liquid Al and disperses the melt into small, bare clusters (fragments) that fly at a high velocity. Reaction of the clusters is not limited by diffusion through a pre-existing oxide shell. Some theoretical and experimental results related to the MDM are presented. Various theoretical predictions based on the MDM are in good qualitative and quantitative agreement with experiments, which resolves some basic puzzles in combustion of Al particles. Methods to control and improve reactivity of Al particles are formulated, which are exactly opposite to the current trends based on diffusion mechanism. Some of these suggestions have experimental confirmation.
Moral disengagement in the perpetration of inhumanities.
Bandura, A
1999-01-01
Moral agency is manifested in both the power to refrain from behaving inhumanely and the proactive power to behave humanely. Moral agency is embedded in a broader sociocognitive self theory encompassing self-organizing, proactive, self-reflective, and self-regulatory mechanisms rooted in personal standards linked to self-sanctions. The self-regulatory mechanisms governing moral conduct do not come into play unless they are activated, and there are many psychosocial maneuvers by which moral self-sanctions are selectively disengaged from inhumane conduct. The moral disengagement may center on the cognitive restructuring of inhumane conduct into a benign or worthy one by moral justification, sanitizing language, and advantageous comparison; disavowal of a sense of personal agency by diffusion or displacement of responsibility; disregarding or minimizing the injurious effects of one's actions; and attribution of blame to, and dehumanization of, those who are victimized. Many inhumanities operate through a supportive network of legitimate enterprises run by otherwise considerate people who contribute to destructive activities by disconnected subdivision of functions and diffusion of responsibility. Given the many mechanisms for disengaging moral control, civilized life requires, in addition to humane personal standards, safeguards built into social systems that uphold compassionate behavior and renounce cruelty.
Evaporation enhancement in soils: a critical review
NASA Astrophysics Data System (ADS)
Rutten, Martine; van de Giesen, Nick
2015-04-01
Temperature gradients in the top layer of the soil are, especially during the daytime, steeper than would be expected if thermal conduction was the primary heat transfer mechanism. Evaporation seems to have significant influence on the soil heat budget. Only part of the surface soil heat flux is conducted downwards, increasing the soil temperatures, and part is used for evaporation, acting as a sink to the soil heat budget. For moist soils, the evaporation is limited by the transport of water molecules to the surface. The classical view is that water vapor is transported from the evaporation front to the surface by diffusion. Diffusion is mixing due to the random movement of molecules resulting in flattening concentration gradients. In soil, the diffusive vapor flux and the resulting latent heat flux are generally small. We found that transport enhancement is necessary in order to sustain vapor fluxes that are large enough to sustain latent heat fluxes, as well as being large enough to explain the observed temperature gradients. Enhancement of vapor diffusion is a known phenomenon, subject to debate on the explanations of underlying mechanism. In an extensive literature review on vapor enhancement in soils, the plausibility of various mechanisms was assessed. We reviewed mechanisms based on (combinations of) diffusive, viscous, buoyant, capillary and external pressure forces including: thermodiffusion, dispersion, Stefan's flow, Knudsen diffusion, liquid island effect, hydraulic lift, free convection, double diffusive convection and forced convection. The analysis of the order of magnitude of the mechanisms based on first principles clearly distinguished between plausible and implausible mechanisms. Thermodiffusion, Stefan's flow, Knudsen effects, liquid islands do not significantly contribute to enhanced evaporation. Double diffusive convection seemed unlikely due to lack of experimental evidence, but could not be completely excluded from the list of potential mechanisms. Hydraulic lift, the mechanism that small capillaries lift liquid water to the surface where it evaporates, does significantly contribute to enhanced evaporation from soils, also from dryer soils. The experimental evidence for and the theoretical underpinnings of this mechanism are convincing. However, we sought mechanisms that both explain enhanced evaporation and steep temperature gradients in the soil during the daytime. These often observed gradients consist of a sharp decrease of temperature with a depth up to the depth of the evaporation front. Hydraulic lift cannot explain this because the evaporation front is located at the surface. One remaining mechanism is forced convection due to atmospheric pressure fluctuations, also referred to as wind pumping. Wind pumping causes displacement and flow velocities too small for significant convective and too small for significant dispersive transport, when steady state dispersion formulations are used. However, experiments do indicate significant dispersive transport that can be explained by dispersion under unsteady flow conditions. Forced convection due to pressure fluctuations seems to be the only mechanism that can explain both enhanced evaporation and the steep temperature gradients.
Femtosecond Laser Microstructuring and Chalcogen Inclusion in Silicon
2011-02-12
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...material a potential candidate for a variety of optoelectronic devices. In this report, we demonstrate the capability of chalcogen (S, Se, Te...the diffusion behavior of dopants in silicon matrix. Our findings contribute to a better understanding of the mechanism of infrared absorption in
Amoeba behavior of UO/sub 2/ coated particle fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner-Loeffler, M.
1977-09-01
The data extracted from numerous irradiation tests were used to derive amoeba endurance parameters for UO/sub 2/. The data do not yet allow an unambiguous definition of the controlling mechanism, which may be due to either gaseous or solid-state diffusion processes. Adequate data on the amoeba effect are available for design of a steam-raising high-temperature gas-cooled reactor using UO/sub 2/ fuel.
Deformation Driven Alloying and Transformation
2015-03-03
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Wisconsin - Madison RESERACH & SPONSORED PROGRAMS 21 N. PARK...STREET SUITE 6401 MADISON, WI 53715 -1218 4-Dec-2014 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published in non peer...diffusion. Further study of the underlying mechanisms is warranted. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers
Adaptive Grid Generation Using Elliptic Generating Equations with Precise Coordinate Controls
1986-07-08
nonhomogeneous terms, which are strong eration that are of critical importance in choosing a and typically greatly slow the iterative convergence grid...computational mechan- calcuiauons. particulary three-dimensionai turbuient studies. ics in October 1989. 1 do not : hink that the overall cost of -te...flow in gas turbine diffusers, and from the National Science Foundation (Mathematics Division) on "Robust and Fast Numerical Grid Generation". The
NASA Astrophysics Data System (ADS)
Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward
2016-10-01
Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
Acheampong, Mike A; Pereira, Joana P C; Meulepas, Roel J W; Lens, Piet N L
2012-01-01
Adsorption kinetic studies are of great significance in evaluating the performance of a given adsorbent and gaining insight into the underlying mechanism. This work investigated the sorption kinetics of Cu(II) on to coconut shell and Moringa oleifera seeds using batch techniques. To understand the mechanisms of the biosorption process and the potential rate-controlling steps, kinetic models were used to fit the experimental data. The results indicate that kinetic data were best described by the pseudo-second-order model with correlation coefficients (R2) of 0.9974 and 0.9958 for the coconut shell and Moringa oleifera seeds, respectively. The initial sorption rates obtained for coconut shell and Moringa oleifera seeds were 9.6395 x 10(-3) and 8.3292 x 10(-2) mg g(-1) min(-1), respectively. The values of the mass transfer coefficients obtained for coconut shell (1.2106 x 10(-3) cm s(-1)) and Moringa oleifera seeds (8.965 x 10(-4) cm s(-1)) indicate that the transport of Cu(II) from the bulk liquid to the solid phase was quite fast for both materials investigated. The results indicate that intraparticle diffusion controls the rate of sorption in this study; however, film diffusion cannot be neglected, especially at the initial stage of sorption.
Induced polarization: Simulation and inversion of nonlinear mineral electrodics
NASA Astrophysics Data System (ADS)
Agunloye, Olu
1983-02-01
Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.
A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
CJ Larkin; JD Edington; BJ Close
2006-02-21
Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components tomore » prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.« less
Gas transport in unsaturated porous media: the adequacy of Fick's law
Thorstenson, D.C.; Pollock, D.W.
1989-01-01
The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors
NASA Astrophysics Data System (ADS)
Kimizuka, Hajime; Ogata, Shigenobu; Shiga, Motoyuki
2018-01-01
Understanding the underlying mechanism of the nanostructure-mediated high diffusivity of H in Pd is of recent scientific interest and also crucial for industrial applications. Here, we present a decisive scenario explaining the emergence of the fast lattice-diffusion mode of interstitial H in face-centered cubic Pd, based on the quantum mechanical natures of both electrons and nuclei under finite strains. Ab initio path-integral molecular dynamics was applied to predict the temperature- and strain-dependent free energy profiles for H migration in Pd over a temperature range of 150-600 K and under hydrostatic tensile strains of 0.0%-2.4%; such strain conditions are likely to occur in real systems, especially around the elastic fields induced by nanostructured defects. The simulated results revealed that, for preferential H location at octahedral sites, as in unstrained Pd, the activation barrier for H migration (Q ) was drastically increased with decreasing temperature owing to nuclear quantum effects. In contrast, as tetrahedral sites increased in stability with lattice expansion, nuclear quantum effects became less prominent and ceased impeding H migration. This implies that the nature of the diffusion mechanism gradually changes from quantum- to classical-like as the strain is increased. For H atoms in Pd at the hydrostatic strain of ˜2.4 % , we determined that the mechanism promoted fast lattice diffusion (Q =0.11 eV) of approximately 20 times the rate of conventional H diffusion (Q =0.23 eV) in unstrained Pd at a room temperature of 300 K.
Jez, Joseph M; Noel, Joseph P
2002-01-11
Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of bicyclic chalcones into tricyclic (S)-flavanones. The activity of CHI is essential for the biosynthesis of flavanone precursors of floral pigments and phenylpropanoid plant defense compounds. We have examined the spontaneous and CHI-catalyzed cyclization reactions of 4,2',4',6'-tetrahydroxychalcone, 4,2',4'-trihydroxychalcone, 2',4'-dihydroxychalcone, and 4,2'-dihydroxychalcone into the corresponding flavanones. The pH dependence of flavanone formation indicates that both the non-enzymatic and enzymatic reactions first require the bulk phase ionization of the substrate 2'-hydroxyl group and subsequently on the reactivity of the newly formed 2'-oxyanion during C-ring formation. Solvent viscosity experiments demonstrate that at pH 7.5 the CHI-catalyzed cyclization reactions of 4,2',4',6'-tetrahydroxychalcone, 4,2',4'-trihydroxychalcone, and 2',4'-dihydroxychalcone are approximately 90% diffusion-controlled, whereas cyclization of 4,2'-dihydroxychalcone is limited by a chemical step that likely reflects the higher pK(a) of the 2'-hydroxyl group. At pH 6.0, the reactions with 4,2',4',6'-tetrahydroxychalcone and 4,2',4'-trihydroxychalcone are approximately 50% diffusion-limited, whereas the reactions of both dihydroxychalcones are limited by chemical steps. Comparisons of the 2.1-2.3 A resolution crystal structures of CHI complexed with the products 7,4'-dihydroxyflavanone, 7-hydroxyflavanone, and 4'-hydroxyflavanone show that the 7-hydroxyflavanones all share a common binding mode, whereas 4'-hydroxyflavanone binds in an altered orientation at the active site. Our functional and structural studies support the proposal that CHI accelerates the stereochemically defined intramolecular cyclization of chalcones into biologically active (2S)-flavanones by selectively binding an ionized chalcone in a conformation conducive to ring closure in a diffusion-controlled reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Bobby
2012-06-01
The Advanced Multi-Physics (AMP) code, in its present form, will allow a user to build a multi-physics application code for existing mechanics and diffusion operators and extend them with user-defined material models and new physics operators. There are examples that demonstrate mechanics, thermo-mechanics, coupled diffusion, and mechanical contact. The AMP code is designed to leverage a variety of mathematical solvers (PETSc, Trilinos, SUNDIALS, and AMP solvers) and mesh databases (LibMesh and AMP) in a consistent interchangeable approach.
Control of hydrodynamic cavitation using ultrasonic
NASA Astrophysics Data System (ADS)
Chatterjee, Dhiman; Arakeri, Vijay H.
2003-11-01
Hydrodynamic cavitation is known to have many harmful effects like surface damage and generation of noise. We investigated the use of ultrasonics to control traveling bubble cavitation. Ultrasonic pressure field, produced by a piezoelectric crystal, was applied to modify the nuclei size distribution. Effects of continuous-wave (CW) and pulsed excitations were studied. At low dissolved gas content the CW-mode performed better than the pulsed one, whereas for high gas content the pulsed one was more effective. The dominant mechanisms were Bjerknes force and rectified diffusion in these two cases. Simultaneous excitation by two crystals in CW and pulsed modes was seen to control cavitation better.
Mayville, Francis C; Wigent, Rodney J; Schwartz, Joseph B
2006-01-01
The purpose of this work was to determine the total amount of water contained in dry powder and wet bead samples of microcrystalline cellulose, MCC, (Avicel PH-101), taken from various stages of the extrusion/marumerization process used to make beads and to determine the kinetic rates of water release from each sample. These samples were allowed to equilibrate in controlled humidity chambers at 25 degrees C. The total amount of water in each sample, after equilibration, was determined by thermogravimetric analysis (TGA) as a function of temperature. The rates of water release from these samples were determined by using isothermal gravimetric analysis (ITGA) as a function of time. Analysis of the results for these studies suggest that water was released from these systems by several different kinetic mechanisms. The water release mechanisms for these systems include: zero order, second order, and diffusion controlled kinetics. It is believed that all three kinetic mechanisms will occur at the same time, however; only one mechanism will be prominent. The prominent mechanism was based on the amount of water present in the sample.
Exploring the Complex Pattern of Information Spreading in Online Blog Communities
Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A.
2015-01-01
Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors. PMID:25985081
Exploring the complex pattern of information spreading in online blog communities.
Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A
2015-01-01
Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors.
Osmosis and Diffusion Conceptual Assessment
Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts
2011-01-01
Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified from the previously published Diffusion and Osmosis Diagnostic Test (DODT) and some newly developed items. The ODCA, a validated instrument containing fewer items than the DODT and emphasizing different content areas within the realm of osmosis and diffusion, better aligns with our curriculum. Creation of the ODCA involved removal of six DODT item pairs, modification of another six DODT item pairs, and development of three new item pairs addressing basic osmosis and diffusion concepts. Responses to ODCA items testing the same concepts as the DODT were remarkably similar to responses to the DODT collected from students 15 yr earlier, suggesting that student mastery regarding the mechanisms of diffusion and osmosis remains elusive. PMID:22135375
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
NASA Astrophysics Data System (ADS)
Bhattacharya, Jishnu
We perform first-principles investigations of thermally activated phase transitions and diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles total energy calculations for different structural and configurational microstates. Effective Hamiltonians constructed from the total energies are subjected to Monte Carlo simulations to study thermodynamic and kinetic properties of the solids at finite temperatures. Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic approximation. As an example, stoichiometric TiH2 is studied where a cubic phase becomes stable at high temperature while ab-initio energy calculations predict the cubic phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher temperature. The importance of anharmonic terms is emphasized and the true nature of the high temperature phase is elucidated beyond the traditional Landau-like explanation. In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms in spinel-Li1+xTi2 O4 is performed. Two distinct phases are predicted at different lithium compositions. The predicted voltage curve qualitatively matches with experimental observation. The predicted fast diffusion arises from crystallographic features unique to the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion in intercalation compounds. Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion in spinel-LixTiS2. We predict strong composition dependence of the diffusion coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li-hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at non-dilute concentrations with very different migration barriers. The strong dependence of hop mechanisms on local Li-arrangement is at the origin of large concentration dependence of the diffusion coefficients. This contrasts with spinel-Li xTiO2 where the transition states are coordinated only by the end states of the hop, thereby restricting hops to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate in TiS 2 host compared to Li ions.
O the Derivation of the Schroedinger Equation from Stochastic Mechanics.
NASA Astrophysics Data System (ADS)
Wallstrom, Timothy Clarke
The thesis is divided into four largely independent chapters. The first three chapters treat mathematical problems in the theory of stochastic mechanics. The fourth chapter deals with stochastic mechanisms as a physical theory and shows that the Schrodinger equation cannot be derived from existing formulations of stochastic mechanics, as had previously been believed. Since the drift coefficients of stochastic mechanical diffusions are undefined on the nodes, or zeros of the density, an important problem has been to show that the sample paths stay away from the nodes. In Chapter 1, it is shown that for a smooth wavefunction, the closest approach to the nodes can be bounded solely in terms of the time -integrated energy. The ergodic properties of stochastic mechanical diffusions are greatly complicated by the tendency of the particles to avoid the nodes. In Chapter 2, it is shown that a sufficient condition for a stationary process to be ergodic is that there exist positive t and c such that for all x and y, p^{t} (x,y) > cp(y), and this result is applied to show that the set of spin-1over2 diffusions is uniformly ergodic. In stochastic mechanics, the Bopp-Haag-Dankel diffusions on IR^3times SO(3) are used to represent particles with spin. Nelson has conjectured that in the limit as the particle's moment of inertia I goes to zero, the projections of the Bopp -Haag-Dankel diffusions onto IR^3 converge to a Markovian limit process. This conjecture is proved for the spin-1over2 case in Chapter 3, and the limit process identified as the diffusion naturally associated with the solution to the regular Pauli equation. In Chapter 4 it is shown that the general solution of the stochastic Newton equation does not correspond to a solution of the Schrodinger equation, and that there are solutions to the Schrodinger equation which do not satisfy the Guerra-Morato Lagrangian variational principle. These observations are shown to apply equally to other existing formulations of stochastic mechanics, and it is argued that these difficulties represent fundamental inadequacies in the physical foundation of stochastic mechanics.
Pai, Yi-Hao; Lin, Gong-Ru
2011-01-17
By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.
NASA Astrophysics Data System (ADS)
Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto
2016-02-01
The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia
NASA Technical Reports Server (NTRS)
Good, Brian
2011-01-01
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.
NASA Astrophysics Data System (ADS)
Carlson, William D.
1989-09-01
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.; Agartan Karacaer, E.; Vargas-Johnson, J.; Cihan, A.; Birkholzer, J. T.
2017-12-01
It is expected that heterogeneity of the deep geologic formation to play a key role in both trapping of supercritical CO2 and its mixing in the formation brine. In previously reported research by the authors, a set of laboratory experiments and field-scale simulations were used to show that convective mixing and diffusion controlled trapping are two important mechanisms that contribute to the dissolution trapping in multilayered systems with homogeneous low-permeability zones such as shale. However, these low-permeability layers (e.g. shale) are not always homogeneous due to their composition and texture variations in addition to the presence of faults, fractures and fissures. In this study, we investigated the potential outcomes of heterogeneity present within these semi-confining low-permeability layers in regards to mixing and storage of dissolved CO2. An intermediate-scale laboratory experiment was designed to investigate the contribution of convective mixing, diffusion controlled trapping and back diffusion to long-term storage of dissolved CO2 in multilayered formations with heterogeneous low-permeability layers. The experiment was performed using a surrogate fluid combination to represent dissolved CO2 and brine under ambient pressure and temperature conditions. After verifying the numerical model with the experimental results, different distributions of the same low-permeability materials having similar volume ratios with the experimentally studied scenario were tested numerically. The experiment and modeling results showed that connectivity of higher permeability material within the semi-confining low-permeability layers contributes to mixing through brine leakage between upper and lower aquifers, storage through diffusion, and in the long term, back diffusion of stored mass due to reversed concentration gradient.
Zhang, Yong; Green, Christopher T; Tick, Geoffrey R
2015-01-01
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Ion beam analyses of radionuclide migration in heterogeneous rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel
2013-07-18
The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less
Room-temperature ballistic energy transport in molecules with repeating units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong
2015-06-07
In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport inmore » molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.« less
Czarnobilska, Ewa; Thor, Piotr; Kaszuba-Zwoinska, Jolanta; Słodowska-Hajduk, Zofia; Stobiecki, Marcin; Dyga, Wojciech; Wsołek, Katarzyna; Obtułowicz, Krystyna
2006-01-01
Nickel is knows as the most common cause of allergic contact dermatitis, as well as diffuse eczema, allergic rhinitis and bronchial asthma. The mechanism of contact allergy to nickel is well known. In spite of numerous investigations, the mechanism of systemic allergy to nickel is still not clear. 22 patients with positive patch tests to nickel were analyzed. On basis of clinical symptoms the patients were divided into two groups: 1. with contact allergy dermatitis to nickel--8 patients 2. with systemic allergy to nickel (allergic rhinitis and/or diffuse eczema--14 patients. The control group included non-atopic patients with negative patch test to nickel--6 patients. 10 ml of blood were taken from each patient and peripheral mononuclear blood cells (PMBC) were isolated. In PBMC culture, NiSO4 and PHA were stimulated. The control group was non-stimulated cells. The supernatants were collected after 3 and 6 days of culture and the levels of cytokines IL-5, 4 and IFNgamma were measured (ELISA). The concentration of IFNgamma in supernatants from stimulated as well as non-stimulated cells from patients with contact allergy to nickel was higher in comparison to the control group. The concentration of IL-5 in this group was low. There was an increase in the production of IFNgamma and IL-5 after NiSO4 stimulation in patients with systemic allergy to nickel. The higher concentration of IFNgamma in the same groups of patients investigated was in supernatants from the third day of PBMC culture were compared to the sixth day. After 3 and 6 days of culture, the concentration of IL-4 (ELISA) was below detection level in all supernatants analyzed. IFNgamma plays an essential role in the mechanism of developing of contact allergy to nickel; and IFNgamma as well as IL-5 play a role in the mechanism of developing systemic allergy to nickel. The third day of PBMC culture is more reliable for IFNgamma estimation.
Understanding and influencing behaviour change by farmers to improve water quality.
Blackstock, K L; Ingram, J; Burton, R; Brown, K M; Slee, B
2010-11-01
Diffuse pollution from agriculture remains a significant challenge to many countries seeking to improve and protect their water environments. This paper reviews literature relating to the provision of information and advice as a mechanism to encourage farmers to mitigate diffuse pollution. The paper presents findings from a literature review on influencing farmer behaviour and synthesizes three main areas of literature: psychological and institutional theories of behaviour; shifts in the approach to delivery of advice (from knowledge transfer to knowledge exchange); and the increased interest in heterogeneous farming cultures. These three areas interconnect in helping to understand how best to influence farmer behaviour in order to mitigate diffuse pollution. They are, however, literatures that are rarely cited in the water management arena. The paper highlights the contribution of the 'cultural turn' taken by rural social scientists in helping to understand collective and individual voluntary behaviour. The paper explores how these literatures can contribute to the existing understanding of water management in the agricultural context, particularly: when farmers question the scientific evidence; when there are increased calls for collaborative planning and management; and when there is increased value placed on information as a business commodity. The paper also highlights where there are still gaps in knowledge that need to be filled by future research - possibly in partnership with farmers themselves. Whilst information and advice has long been seen as an important part of diffuse pollution control, increasing climate variability that will require farmers to practice adaptive management is likely to make these mechanisms even more important. Copyright © 2009 Elsevier B.V. All rights reserved.
Kile, D.E.; Eberl, D.D.
2003-01-01
Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Cobbett, Neil; Rodger, Craig J.; Brundell, James B.; Denton, Michael H.; Hartley, David P.; Rodriguez, Juan V.; Danskin, Donald; Raita, Tero; Spanswick, Emma L.
2013-11-01
from two autonomous VLF radio receiver systems installed in a remote region of the Antarctic in 2012 is used to take advantage of the juxtaposition of the L = 4.6 contour, and the Hawaii-Halley, Antarctica, great circle path as it passes over thick Antarctic ice shelf. The ice sheet conductivity leads to high sensitivity to changing D region conditions, and the quasi constant L shell highlights outer radiation belt processes. The ground-based instruments observed several energetic electron precipitation events over a moderately active 24 h period, during which the outer radiation belt electron flux declined at most energies and subsequently recovered. Combining the ground-based data with low and geosynchronous orbiting satellite observations on 27 February 2012, different driving mechanisms were observed for three precipitation events with clear signatures in phase space density and electron anisotropy. Comparison between flux measurements made by Polar-orbiting Operational Environmental Satellites (POES) in low Earth orbit and by the Antarctic instrumentation provides evidence of different cases of weak and strong diffusion into the bounce loss cone, helping to understand the physical mechanisms controlling the precipitation of energetic electrons into the atmosphere. Strong diffusion events occurred as the <600 keV fluxes began to recover as a result of adiabatic transport of electrons. One event appeared to have a factor of about 10 to 100 times more flux than was reported by POES, consistent with weak diffusion into the bounce loss cone. Two events had a factor of about 3 to 10 times more >30 keV flux than was reported by POES, more consistent with strong diffusion conditions.
NASA Astrophysics Data System (ADS)
Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.
2018-07-01
The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Hegde, Shreedatta; Sagar, Rohan N.
2018-04-01
ZnO nano particles were synthesized using a chemical precipitation method. Pure and ZnO nano particle doped PVA-NaAlg blend composite films were prepared using solution casing method. Structural information of these composites was studied using FTIR. Diffusion kinetics of these polymer blend composite were studied using Flory-Huggins theory. Using these diffusion studies, cross-linking density and swelling properties of the films were analyzed. Mechanical properties of these composite are also studied.
Surface diffusion in homoepitaxial SrTiO3 thin films
NASA Astrophysics Data System (ADS)
Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho; Charm Lab Team; Nano Spintronics Lab Collaboration
The development of growth techniques such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) has facilitated growths of complex oxide thin films at the atomic level .... Systematic studies on surface diffusion process of adatoms using theoretical and experimental methods allow us to understand growth mechanism enabling atomically flat thin film surface. In this presentation, we introduce the synthesis of homoepitaxial SrTiO3 thin films using a PLD equipped with reflection of high energy electron diffraction (RHEED). We determine the surface diffusion time as a function of growth temperature and extract the activation energy of diffusion on the surface by in-situ monitoring the RHEED intensity recovery during the film deposition. From the extracted experimental results, we discuss the microscopic mechanism of the diffusion process
Chemistry in motion: tiny synthetic motors.
Colberg, Peter H; Reigh, Shang Yik; Robertson, Bryan; Kapral, Raymond
2014-12-16
CONSPECTUS: Diffusion is the principal transport mechanism that controls the motion of solute molecules and other species in solution; however, the random walk process that underlies diffusion is slow and often nonspecific. Although diffusion is an essential mechanism for transport in the biological realm, biological systems have devised more efficient transport mechanisms using molecular motors. Most biological motors utilize some form of chemical energy derived from their surroundings to induce conformational changes in order to carry out specific functions. These small molecular motors operate in the presence of strong thermal fluctuations and in the regime of low Reynolds numbers, where viscous forces dominate inertial forces. Thus, their dynamical behavior is fundamentally different from that of macroscopic motors, and different mechanisms are responsible for the production of useful mechanical motion. There is no reason why our interest should be confined to the small motors that occur naturally in biological systems. Recently, micron and nanoscale motors that use chemical energy to produce directed motion by a number of different mechanisms have been made in the laboratory. These small synthetic motors also experience strong thermal fluctuations and operate in regimes where viscous forces dominate. Potentially, these motors could be directed to perform different transport tasks, analogous to those of biological motors, for both in vivo and in vitro applications. Although some synthetic motors execute conformational changes to effect motion, the majority do not, and, instead, they use other mechanisms to convert chemical energy into directed motion. In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
Jackman, A.P.; Walters, R.A.; Kennedy, V.C.
1984-01-01
Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.
Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang
2017-01-01
Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109
Abioye, Amos Olusegun; Kola-Mustapha, Adeola
2015-06-01
The direct effect of electrostatic interaction between ibuprofen and cationic dextran on the system-specific physicochemical parameters and intrinsic dissolution characteristics of ibuprofen was evaluated in order to develop drug-polymer nanoconjugate as a delivery strategy for poorly soluble drugs. Amorphous ibuprofen-DEAE dextran (Ddex) nanoconjugate was prepared using a low energy, controlled amphiphile-polyelectrolyte electrostatic self-assembly technique optimized by ibuprofen critical solubility and Ddex charge screening. Physicochemical characteristics of the nanoconjugates were evaluated using FTIR, DSC, TGA, NMR and SEM relative to pure ibuprofen. The in vitro release profiles and mechanism of ibuprofen release were determined using mathematical models including zero and first order kinetics; Higuchi; Hixson-Crowell and Korsmeyer-Peppas. Electrostatic interaction between ibuprofen and Ddex was confirmed with FT-IR, (1)H NMR and (13)C NMR spectroscopy. The broad and diffused DSC peaks of the nanoconjugate as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. Low concentrations of Ddex up to 1.0 × 10(-6) g/dm(3) enhanced dissolution of ibuprofen to a maximum of 81.32% beyond which retardation occurred steadily. Multiple release mechanisms including diffusion; discrete drug dissolution; anomalous transport and super case II transport were noted. Controlled assembly of ibuprofen and Ddex produced a novel formulation with potential extended drug release dictated by Ddex concentration.
The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators
Ryan, Robert P.; An, Shi-qi; Allan, John H.; McCarthy, Yvonne; Dow, J. Maxwell
2015-01-01
Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling. PMID:26181439
Di Marco, Fabiano; Guazzi, Marco; Sferrazza Papa, Giuseppe Francesco; Vicenzi, Marco; Santus, Pierachille; Busatto, Paolo; Piffer, Federico; Blasi, Francesco; Centanni, Stefano
2012-02-01
The cardiovascular component associated with chronic obstructive pulmonary disease (COPD) plays a major role in disease prognosis, accounting for 25% of the deaths. Experimental and initial clinical data suggest that beta-adrenergic agonists accelerate fluid clearance from the alveolar airspace, with potentially positive effects on cardiogenic and noncardiogenic pulmonary oedema. This pilot study investigated the acute effects of the long-acting beta-2 agonist, salmeterol, on alveolar fluid clearance after rapid saline intravenous infusion by evaluating diffusive and mechanical lung properties. Ten COPD and 10 healthy subjects were treated with salmeterol or placebo 4 h before the patient's mechanical and diffusive lung properties were measured during four non consecutive days, just before and after a rapid saline infusion, or during a similar period without an infusion. In both COPD and healthy subjects, rapid saline infusion with placebo or salmeterol premedication lead to a significant decrease in diffusion capacity for carbon monoxide (DLCO) and forced expiratory volume in 1 s (FEV1). Nonetheless, salmeterol pretreatment lead to a significantly reduced gas exchange impairment caused by saline infusion (-64% of DLCO reduction compared with placebo), whereas it did not affect changes in FEV1. In the control setting with no infusion, we found no significant change in either DLCO or mechanical properties of the lung. Salmeterol appears to provide a protective effect, not related to bronchodilation, against an acute alveolar fluid clearance challenge secondary to lung fluid overload in COPD patients. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Tong; Wang, Yak-Nam; Khokhlova, Tatiana D.; D’Andrea, Samantha; Starr, Frank; Chen, Hong; McCune, Jeannine S.; Risler, Linda J.; Mashadi-Hossein, Afshin; Hwang, Joo Ha
2015-01-01
Pancreatic cancer is characterized by extensive stromal desmoplasia which decreases blood perfusion and impedes chemotherapy delivery. Breaking the stromal barrier could both increase perfusion and permeabilize the tumor, enhancing chemotherapy penetration. Mechanical disruption of the stroma can be achieved using ultrasound-induced bubble activity – cavitation. Cavitation is also known to result in microstreaming and could have the added benefit of actively enhancing diffusion into the tumors. Here, we report the ability to enhance chemotherapeutic drug doxorubicin (Dox) penetration using ultrasound-induced cavitation in a genetically engineered mouse model (KPC mouse) of pancreatic ductal adenocarcinoma. To induce localized inertial cavitation in pancreatic tumors, pulsed high intensity focused ultrasound (pHIFU) was used either during or before doxorubicin administration to elucidate the mechanisms of enhanced drug delivery (active versus passive drug diffusion). For both types, the pHIFU exposures which were associated with high cavitation activity resulted in disruption of the highly fibrotic stromal matrix and enhanced the normalized Dox concentration by up to 4.5 fold compared to controls. Furthermore, normalized Dox concentration was associated with the cavitation metrics (p < 0.01), indicating that high and sustained cavitation results in increased chemotherapy penetration. No significant difference between the outcomes of the two types, i.e., Dox infusion during or after pHIFU treatment, was observed, suggesting that passive diffusion into previously permeabilized tissue is the major mechanism for the increase in drug concentration. Together, the data indicate that pHIFU treatment of pancreatic tumors when resulting in high and sustained cavitation can efficiently enhance chemotherapy delivery to pancreatic tumors. PMID:26216548
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Chao; Gao, Yanfei; Wang, Yanli
To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points.more » Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.« less
Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes
NASA Technical Reports Server (NTRS)
Philipp, W. H.; May, C. E.
1983-01-01
The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.
Lin, Joanne C; Jan, Reem K; Kydd, Rob R; Russell, Bruce R
2015-04-01
Methamphetamine is a highly addictive psychostimulant and the medical, social, and economic consequences associated with its use have become a major international problem. Current evidence has shown methamphetamine to be particularly neurotoxic to dopamine neurons and striatal structures within the basal ganglia. A previous study from our laboratory demonstrated larger putamen volumes in actively using methamphetamine-dependent participants. The purpose of this current study was to determine whether striatal structures in the same sample of participants also exhibit pathology on the microstructural and molecular level. Diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were carried out in current methamphetamine users (n = 18) and healthy controls (n = 22) to investigate diffusion indices and neurometabolite levels in the basal ganglia. Contrary to findings from previous DTI and MRS studies, no significant differences in diffusion indices or metabolite levels were observed in the basal ganglia regions of current methamphetamine users. These findings differ from those reported in abstinent users and the absence of diffusion and neurochemical abnormalities may suggest that striatal enlargement in current methamphetamine use may be due to mechanisms other than edema and glial proliferation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effect of advective flow in fractures and matrix diffusion on natural gas production
Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; ...
2015-10-12
Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
NASA Astrophysics Data System (ADS)
Colegrove, E.; Yang, J.-H.; Harvey, S. P.; Young, M. R.; Burst, J. M.; Duenow, J. N.; Albin, D. S.; Wei, S.-H.; Metzger, W. K.
2018-02-01
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate that As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex situ Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 1016 cm-3 hole density in polycrystalline CdTe films by As and P diffusion.
Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries
Benitez, Laura; Seminario, Jorge M.
2017-05-17
Understanding the transport properties of the solid electrolyte interface (SEI) is a critical piece in the development of lithium ion batteries (LIB) with better performance. We studied the lithium ion diffusivity in the main components of the SEI found in LIB with silicon anodes and performed classical molecular dynamics (MD) simulations on lithium fluoride (LiF), lithium oxide (Li 2O) and lithium carbonate (Li 2CO 3) in order to provide insights and to calculate the diffusion coefficients of Li-ions at temperatures in the range of 250 K to 400 K, which is within the LIB operating temperature range. We find amore » slight increase in the diffusivity as the temperature increases and since diffusion is noticeable at high temperatures, Li-ion diffusion in the range of 130 to 1800 K was also studied and the diffusion mechanisms involved in each SEI compound were analyzed. We observed that the predominant mechanisms of Li-ion diffusion included vacancy assisted and knock-off diffusion in LiF, direct exchange in Li 2O, and vacancy and knock-off in Li 2CO 3. Moreover, we also evaluated the effect of applied electric fields in the diffusion of Li-ions at room temperature.« less
Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez, Laura; Seminario, Jorge M.
Understanding the transport properties of the solid electrolyte interface (SEI) is a critical piece in the development of lithium ion batteries (LIB) with better performance. We studied the lithium ion diffusivity in the main components of the SEI found in LIB with silicon anodes and performed classical molecular dynamics (MD) simulations on lithium fluoride (LiF), lithium oxide (Li 2O) and lithium carbonate (Li 2CO 3) in order to provide insights and to calculate the diffusion coefficients of Li-ions at temperatures in the range of 250 K to 400 K, which is within the LIB operating temperature range. We find amore » slight increase in the diffusivity as the temperature increases and since diffusion is noticeable at high temperatures, Li-ion diffusion in the range of 130 to 1800 K was also studied and the diffusion mechanisms involved in each SEI compound were analyzed. We observed that the predominant mechanisms of Li-ion diffusion included vacancy assisted and knock-off diffusion in LiF, direct exchange in Li 2O, and vacancy and knock-off in Li 2CO 3. Moreover, we also evaluated the effect of applied electric fields in the diffusion of Li-ions at room temperature.« less
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colegrove, E.; Yang, J-H; Harvey, S. P.
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
Colegrove, E.; Yang, J-H; Harvey, S. P.; ...
2018-01-29
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Asken, Breton Michael; DeKosky, Steven T; Clugston, James R; Jaffee, Michael S; Bauer, Russell M
2018-04-01
This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and the presence or absence of persistent functional disturbances. DTI research in adult mTBI would benefit from more standardized imaging and analytic approaches. We also found significant overlap in white matter abnormalities reported in mTBI with those commonly affected by SES or the presence of MDD and ADHD. We conclude that DTI is sensitive to a wide range of group differences in diffusion metrics, but that it currently lacks the specificity necessary for meaningful clinical application. Properly controlled longitudinal studies with consistent and standardized functional outcomes are needed before establishing the utility of DTI in the clinical management of mTBI and concussion.
Swelling mechanism of urea cross-linked starch-lignin films in water.
Sarwono, Ariyanti; Man, Zakaria; Bustam, M Azmi; Subbarao, Duvvuri; Idris, Alamin; Muhammad, Nawshad; Khan, Amir Sada; Ullah, Zahoor
2018-06-01
Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10 -7 cm 2 /s at 25°C, from 5.3 to 2.9 × 10 -7 cm 2 /s at 35°C and from 6.2 to 3.8 × 10 -7 cm 2 /s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.
Sahara, Naruhiko; Perez, Pablo D.; Lin, Wen-Lang; Dickson, Dennis W.; Ren, Yan; Zeng, Huadong; Lewis, Jada; Febo, Marcelo
2016-01-01
Elevated expression of human hyperphosphorylated tau is associated with neuronal loss and white matter (WM) pathology in Alzheimer’s disease (AD) and related neurodegenerative disorders. Using in vivo diffusion tensor magnetic resonance imaging (DT-MRI) at 11.1 Tesla we measured age-related alterations in WM diffusion anisotropy indices in a mouse model of human tauopathy (rTg4510) and nontransgenic (nonTg) control mice at the age of 2.5, 4.5, and 8 months. Similar to previous DT-MRI studies in AD subjects, 8-month-old rTg4510 mice showed lower fractional anisotropy (FA) values in WM structures than nonTg. The low WM FA in rTg4510 mice was observed in the genu and splenium of the corpus callosum, anterior commissure, fimbria, and internal capsule and was associated with a higher radial diffusivity than nonTg. Interestingly, rTg4510 mice showed lower estimates for the mode of anisotropy than controls at 2.5 months suggesting that changes in this diffusivity metric are detectable at an early stage preceding severe tauopathy. Immunogold electron microscopy partly supports our diffusion tensor imaging findings. At the age of 4 months, rTg4510 mice show axonal tau inclusions and unmyelinated processes. At later ages (12 months and 14 months) we observed inclusions in myelin sheath, axons, and unmyelinated processes, and a “disorganized” pattern of myelinated fiber arrangement with enlarged inter-axonal spaces in rTg4510 but not in nonTg mice. Our data support a role for the progression of tau pathology in reduced WM integrity measured by DT-MRI. Further in vivo DT-MRI studies in the rTg4510 mouse should help better discern the detailed mechanisms of reduced FA and anisotropy mode, and the specific role of tau during neurodegeneration. PMID:24411290
Lateral diffusion of rhodopsin in photoreceptor membrane: a reappraisal.
Govardovskii, Victor I; Korenyak, Darya A; Shukolyukov, Sergei A; Zueva, Lidia V
2009-08-28
In a series of works between 1972 and 1984, it was established that rhodopsin undergoes rotational and lateral Brownian motion in the plane of photoreceptor membrane. The concept of free movement of proteins of phototransduction cascade is an essential principle of the present scheme of vertebrate phototransduction. This has recently been challenged by findings that show that in certain conditions rhodopsin in the membrane may be dimeric and form extended areas of paracrystalline organization. Such organization seems incompatible with earlier data on free rhodopsin diffusion. Thus we decided to reinvestigate lateral diffusion of rhodopsin and products of its photolysis in photoreceptor membrane specifically looking for indications of possible oligomeric organization. Diffusion exchange by rhodopsin and its photoproducts between bleached and unbleached halves of rod outer segment was traced using high-speed dichroic microspectrophotometer. Measurements were conducted on amphibian (frog, toad, and salamander) and gecko rods. We found that the curves that are supposed to reflect the process of diffusion equilibration of rhodopsin in nonuniformly bleached outer segment largely show production of long-lived bleaching intermediate, metarhodopsin III (Meta III). After experimental elimination of Meta III contribution, we observed rhodopsin equilibration time constant was threefold to tenfold longer than estimated previously. However, after proper correction for the geometry of rod discs, it translates into generally accepted value of diffusion constant of approximately 5 x 10(-9) cm(2) s(-1). Yet, we found that there exists an immobile rhodopsin fraction whose size can vary from virtually zero to 100%, depending on poorly defined factors. Controls suggest that the formation of the immobile fraction is not due to fragmentation of rod outer segment discs but supposedly reflects oligomerization of rhodopsin. Implications of the new findings for the present model of phototransduction are discussed. We hypothesize that formation of paracrystalline areas, if controlled physiologically, could be an extra mechanism of cascade regulation.
Nie, Yifan; Liang, Chaoping; Cha, Pil-Ryung; Colombo, Luigi; Wallace, Robert M; Cho, Kyeongjae
2017-06-07
Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.
Silar, P; Lalucque, H; Haedens, V; Zickler, D; Picard, M
2001-01-01
Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring. PMID:11514440
NASA Astrophysics Data System (ADS)
Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.
2016-01-01
This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.
Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis
Goodkin, Olivia; Altmann, Daniel R.; Jenkins, Thomas M.; Miszkiel, Katherine; Mirigliani, Alessia; Fini, Camilla; Gandini Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga; Toosy, Ahmed T.
2016-01-01
Abstract In multiple sclerosis, microstructural damage of normal-appearing brain tissue is an important feature of its pathology. Understanding these mechanisms is vital to help develop neuroprotective strategies. The visual pathway is a key model to study mechanisms of damage and recovery in demyelination. Anterograde trans-synaptic degeneration across the lateral geniculate nuclei has been suggested as a mechanism of tissue damage to explain optic radiation abnormalities seen in association with demyelinating disease and optic neuritis, although evidence for this has relied solely on cross-sectional studies. We therefore aimed to assess: (i) longitudinal changes in the diffusion properties of optic radiations after optic neuritis suggesting trans-synaptic degeneration; (ii) the predictive value of early optic nerve magnetic resonance imaging measures for late optic radiations changes; and (iii) the impact on visual outcome of both optic nerve and brain post-optic neuritis changes. Twenty-eight consecutive patients with acute optic neuritis and eight healthy controls were assessed visually (logMAR, colour vision, and Sloan 1.25%, 5%, 25%) and by magnetic resonance imaging, at baseline, 3, 6, and 12 months. Magnetic resonance imaging sequences performed (and metrics obtained) were: (i) optic nerve fluid-attenuated inversion-recovery (optic nerve cross-sectional area); (ii) optic nerve proton density fast spin-echo (optic nerve proton density-lesion length); (iii) optic nerve post-gadolinium T 1 -weighted (Gd-enhanced lesion length); and (iv) brain diffusion-weighted imaging (to derive optic radiation fractional anisotropy, radial diffusivity, and axial diffusivity). Mixed-effects and multivariate regression models were performed, adjusting for age, gender, and optic radiation lesion load. These identified changes over time and associations between early optic nerve measures and 1-year global optic radiation/clinical measures. The fractional anisotropy in patients’ optic radiations decreased ( P = 0.018) and radial diffusivity increased ( P = 0.002) over 1 year following optic neuritis, whereas optic radiation measures were unchanged in controls. Also, smaller cross-sectional areas of affected optic nerves at 3 months post-optic neuritis predicted lower fractional anisotropy and higher radial diffusivity at 1 year ( P = 0.007) in the optic radiations, whereas none of the inflammatory measures of the optic nerve predicted changes in optic radiations. Finally, greater Gd-enhanced lesion length at baseline and greater optic nerve proton density-lesion length at 1 year were associated with worse visual function at 1 year ( P = 0.034 for both). Neither the cross-sectional area of the affected optic nerve after optic neuritis nor the damage in optic radiations was associated with 1-year visual outcome. Our longitudinal study shows that, after optic neuritis, there is progressive damage to the optic radiations, greater in patients with early residual optic nerve atrophy, even after adjusting for optic radiation lesions. These findings provide evidence for trans-synaptic degeneration. PMID:26912640
Haggerty, Christopher M; Suever, Jonathan D; Pulenthiran, Arichanah; Mejia-Spiegeler, Abba; Wehner, Gregory J; Jing, Linyuan; Charnigo, Richard J; Fornwalt, Brandon K; Fogel, Mark A
2017-12-11
Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (β = 0.67) and peak LV radial strain (β = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (β = 0.37). We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.
Oil and drug control the release rate from lyotropic liquid crystals.
Martiel, Isabelle; Baumann, Nicole; Vallooran, Jijo J; Bergfreund, Jotam; Sagalowicz, Laurent; Mezzenga, Raffaele
2015-04-28
The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro
2018-05-01
Extreme-ultraviolet (EUV) lithography will be applied to the high-volume production of semiconductor devices with 16 nm half-pitch resolution and is expected to be extended to that of devices with 11 nm half-pitch resolution. With the reduction in the feature sizes, the control of acid diffusion becomes a significant concern. In this study, the dependence of resist image quality on T PEB D acid and photodecomposable quencher concentration was investigated by the Monte Carlo method on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. Here, T PEB and D acid are the postexposure baking (PEB) time and the acid diffusion constant, respectively. The resist image quality of 11 nm line-and-space patterns is discussed in terms of line edge roughness (LER) and stochastic defect generation. For the minimization of LER, it is necessary to design and control not only the photodecomposable quencher concentration but also T PEB D acid. In this case, D acid should be adjusted to be 0.3–1.5 nm2 s‑1 for a PEB time of 60 s with optimization of the balance among LER and stochastic pinching and bridging. Even if it is difficult to decrease D acid to the range of 0.3–1.5 nm2 s‑1, the image quality can still be controlled via only the photodecomposable quencher concentration, although LER and stochastic pinching and bridging are slightly increased. In this case, accurate control of the photodecomposable quencher concentration and the reduction in the initial standard deviation of the number of protected units are required.
Flexible and polarization-controllable diffusion metasurface with optical transparency
NASA Astrophysics Data System (ADS)
Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Guo, Wenlong; Zhang, Qingfeng
2017-11-01
In this paper, a novel coding metasurface is proposed to realize polarization-controllable diffusion scattering. The anisotropic Jerusalem-cross unit cell is employed as the basic coding element due to its polarization-dependent phase response. The isotropic random coding sequence is firstly designed to obtain diffusion scattering, and the anisotropic random coding sequence is subsequently realized by adding different periodic coding sequences to the original isotropic one along different directions. For demonstration, we designed and fabricated a flexible polarization-controllable diffusion metasurface (PCDM) with both chessboard diffusion and hedge diffusion under different polarizations. The specular scattering reduction performance of the anisotropic metasurface is better than the isotropic one because the scattered energies are redirected away from the specular reflection direction. For potential applications, the flexible PCDM wrapped around a cylinder structure is investigated and tested for polarization-controllable diffusion scattering. The numerical and experimental results coincide well, indicating anisotropic low scatterings with comparable performances. This paper provides an alternative approach for designing high-performance, flexible, low-scattering platforms.
The large lungs of elite swimmers: an increased alveolar number?
Armour, J; Donnelly, P M; Bye, P T
1993-02-01
In order to obtain further insight into the mechanisms relating to the large lung volumes of swimmers, tests of mechanical lung function, including lung distensibility (K) and elastic recoil, pulmonary diffusion capacity, and respiratory mouth pressures, together with anthropometric data (height, weight, body surface area, chest width, depth and surface area), were compared in eight elite male swimmers, eight elite male long distance athletes and eight control subjects. The differences in training profiles of each group were also examined. There was no significant difference in height between the subjects, but the swimmers were younger than both the runners and controls, and both the swimmers and controls were heavier than the runners. Of all the training variables, only the mean total distance in kilometers covered per week was significantly greater in the runners. Whether based on: (a) adolescent predicted values; or (b) adult male predicted values, swimmers had significantly increased total lung capacity ((a) 145 +/- 22%, (mean +/- SD) (b) 128 +/- 15%); vital capacity ((a) 146 +/- 24%, (b) 124 +/- 15%); and inspiratory capacity ((a) 155 +/- 33%, (b) 138 +/- 29%), but this was not found in the other two groups. Swimmers also had the largest chest surface area and chest width. Forced expiratory volume in one second (FEV1) was largest in the swimmers ((b) 122 +/- 17%) and FEV1 as a percentage of forced vital capacity (FEV1/FVC)% was similar for the three groups. Pulmonary diffusing capacity (DLCO) was also highest in the swimmers (117 +/- 18%). All of the other indices of lung function, including pulmonary distensibility (K), elastic recoil and diffusion coefficient (KCO), were similar. These findings suggest that swimmers may have achieved greater lung volumes than either runners or control subjects, not because of greater inspiratory muscle strength, or differences in height, fat free mass, alveolar distensibility, age at start of training or sternal length or chest depth, but by developing physically wider chests, containing an increased number of alveoli, rather than alveoli of increased size. However, in this cross-sectional study, hereditary factors cannot be ruled out, although we believe them to be less likely.
Shih, Po-Hsun; Wu, Sheng Yun
2017-07-21
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.
Load Diffusion in Composite Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Simmonds, J. G.
2000-01-01
This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.
Locating and characterizing a crack in concrete with diffuse ultrasound: A four-point bending test.
Larose, Eric; Obermann, Anne; Digulescu, Angela; Planès, Thomas; Chaix, Jean-Francois; Mazerolle, Frédéric; Moreau, Gautier
2015-07-01
This paper describes an original imaging technique, named Locadiff, that benefits from the diffuse effect of ultrasound waves in concrete to detect and locate mechanical changes associated with the opening of pre-existing cracks, and/or to the development of diffuse damage at the tip of the crack. After giving a brief overview of the theoretical model to describe the decorrelation of diffuse waveforms induced by a local change, the article introduces the inversion procedure that produces the three dimensional maps of density of changes. These maps are interpreted in terms of mechanical changes, fracture opening, and damage development. In addition, each fracture is characterized by its effective scattering cross section.
NASA Astrophysics Data System (ADS)
Xu, Qingchuan
The purpose of this thesis is to show the technique of predicting thermodynamic and kinetic properties from first-principles using density functional theory (DFT) calculations, cluster expansion methods and Monte Carlo simulations instead of experiments. Two material systems are selected as examples: one is an interstitial system (Ti-H system) and another is a substitutional compound (B2-NiAl alloy). For Ti-H system, this thesis investigated hydride stability, exploring the role of configurational degrees of freedom, zero-point vibrational energy and coherency strains. The tetragonal gamma-TiH phase was predicted to be unstable relative to hcp alpha-Ti and fcc based delta-TiH2. Zero point vibrational energy makes the gamma phase even less stable. The coherency strains between hydride precipitates and alpha-Ti matrix stabilize gamma-TiH relative to alpha-Ti and delta-TiH2. We also found that hydrogen prefers octahedral sites at low hydrogen concentration and tetrahedral sites at high concentration. For B2-NiAl, this thesis investigated the point defects and various diffusion mechanisms. A low barrier collective hop was discovered that could mediate Al diffusion through the anti-structural-bridge (ASB) mechanism. We also found an alternative hop sequence for the migration of a triple defect and a six-jump-cycle than that proposed previously. Going beyond the mean field approximation, we found that the inclusion of interactions among point defects is crucial to predict the concentration of defect complexes. Accounting for interactions among defects and incorporating all diffusion mechanisms proposed for B2-NiAl in Monte Carlo simulation, we calculated tracer diffusion coefficients. For the first time, the relative importance of various diffusion mechanisms is revealed. The ASB hop is the dominant mechanism for Ni in Ni-rich alloy and for Al diffusion in Al-rich alloys. Other mechanisms also play a role to various extents. We also calculated the self and interdiffusion coefficients for B2-NiAl. We found in Al-rich alloys that the thermodynamic factor of Al is much greater than that of Ni while in Ni-rich alloys they are very similar. This difference in thermodynamic factors results in a much higher self-diffusion coefficient of Al compared to that of Ni in Al-rich alloys and also causes two different interdiffusion coefficients.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Mandal, A.; Mukherjee, S.
2003-01-01
Fluorescence quenching of some important aromatic bio-molecules (ABM) such as 3-aminophthalhydrazide (luminol), tryptophan (Try), phenylalanine and tyrosine (Tyr) by methyl glyoxal (MG) has been studied employing different spectroscopic techniques. The interaction of MG with ABM in the excited state has been analysed using Stern-Volmer (S-V) mechanism. In the case of MG-luminol system time correlated single photon counting (TCSPC) technique has also been applied to explain the S-V mechanism. The bimolecular rate constants obtained are found to be higher than the rate constant for diffusion controlled process. A plausible explanation of the quenching mechanism has been discussed on the basis of hydrogen bonding, charge transfer and energy transfer interaction between the colliding species.
Stressed Oxidation Life Prediction for C/SiC Composites
NASA Technical Reports Server (NTRS)
Levine, Stanley R.
2004-01-01
The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.
Saberi, Fatemeh; Kamali, Mehdi; Najafi, Ali; Yazdanparast, Alavieh; Moghaddam, Mehrdad Moosazadeh
2016-01-01
Naturally occurring antisense RNAs are small, diffusible, untranslated transcripts that pair to target RNAs at specific regions of complementarity to control their biological function by regulating gene expression at the post-transcriptional level. This review focuses on known cases of antisense RNA control in prokaryotes and provides an overview of some natural RNA-based mechanisms that bacteria use to modulate gene expression, such as mRNA sensors, riboswitches and antisense RNAs. We also highlight recent advances in RNA-based technology. The review shows that studies on both natural and synthetic systems are reciprocally beneficial.
Activation volume for phosphorus diffusion in silicon and Si0.93Ge0.07
NASA Astrophysics Data System (ADS)
Zhao, Yuechao; Aziz, Michael J.; Zangenberg, Nikolaj R.; Larsen, Arne Nylandsted
2005-04-01
The hydrostatic pressure dependence of the diffusivity of P in compressively strained Si0.93Ge0.07 and unalloyed Si has been measured. In both cases the diffusivity is almost independent of pressure, characterized by an activation volume V* of (+0.09±0.11) times the atomic volume Ω for the unalloyed Si, and (+0.01±0.06) Ω for Si0.93Ge0.07. The results are used in conjunction with the reported effect of biaxial strain on diffusion normal to the surface to test the prediction for an interstitialcy-based mechanism of Aziz's phenomenological thermodynamic treatment of diffusion under uniform nonhydrostatic stress states. The prediction agrees well with measured behavior, lending additional credence to the interstitial-based mechanism and supporting the nonhydrostatic thermodynamic treatment.
Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi
2018-07-01
This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Haijian; Huang, Hanchen; Wang, Jian
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Generation of enteroendocrine cell diversity in midgut stem cell lineages
Beehler-Evans, Ryan; Micchelli, Craig A.
2015-01-01
The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages. PMID:25670792
Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth
NASA Astrophysics Data System (ADS)
Liu, Xin; Gao, Bing; Nakano, Satoshi; Kakimoto, Koichi
2017-09-01
Generation, incorporation, and accumulation of carbon (C) were investigated by transient global simulations of heat and mass transport during the melting process of Czochralski silicon (CZ-Si) crystal growth. Contact reaction between the quartz crucible and graphite susceptor was introduced as an extra origin of C contamination. The contribution of the contact reaction on C accumulation is affected by the back diffusion of C monoxide (CO) from the gap between the gas-guide and the crucible. The effect of the gas-guide coating on C reduction was elucidated by taking the reaction between the silicon carbide (SiC) coating and gaseous Si monoxide (SiO) into account. Application of the SiC coating on the gas-guide could effectively reduce the C contamination because of its higher thermochemical stability relative to that of graphite. Gas flow control on the back diffusion of the generated CO was examined by the parametric study of argon gas flow rate. Generation and back diffusion of CO were both effectively suppressed by the increase in the gas flow rate because of the high Péclet number of species transport. Strategies for C content reduction were discussed by analyzing the mechanisms of C accumulation process. According to the elucidated mechanisms of C accumulation, the final C content depends on the growth duration and contamination flux at the gas/melt interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.
The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less
Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.; ...
2017-08-29
The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The paper suggests that room temperature deformation was determined by dislocation glide at largermore » layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. Finally, a deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.« less
Microencapsulation and Electrostatic Processing Method
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)
2000-01-01
Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.
Permeability of DOPC bilayers under photoinduced oxidation: Sensitivity to photosensitizer.
Bacellar, Isabel O L; Baptista, Mauricio S; Junqueira, Helena C; Wainwright, Mark; Thalmann, Fabrice; Marques, Carlos M; Schroder, André P
2018-06-07
The modification of lipid bilayer permeability is one of the most striking yet poorly understood physical transformations that follow photoinduced lipid oxidation. We have recently proposed that the increase of permeability of photooxidized 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers is controlled by the time required by the oxidized lipid species to diffuse and aggregate into pores. Here we further probe this mechanism by studying photosensitization of DOPC membranes by methylene blue (MB) and DO15, a more hydrophobic phenothiazinium photosensitizer, under different irradiation powers. Our results not only reveal the interplay between the production rate and the diffusion of the oxidized lipids, but highlight also the importance of photosensitizer localization in the kinetics of oxidized membrane permeability. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, Jie; Zippilli, Stefano; Zhang, Jing; Vitali, David
2016-05-01
Collapse models postulate the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality. Assessing the validity of these models is extremely challenging because it is nontrivial to discriminate unambiguously their presence in experiments where other hardly controllable sources of noise compete to the overall decoherence. Here we provide a simple procedure that is able to probe the hypothetical presence of the collapse noise with a levitated nanosphere in a Fabry-Pérot cavity. We show that the stationary state of the system is particularly sensitive, under specific experimental conditions, to the interplay between the trapping frequency, the cavity size, and the momentum diffusion induced by the collapse models, allowing one to detect them even in the presence of standard environmental noises.
NASA Astrophysics Data System (ADS)
Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav
2018-04-01
We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.
NASA Astrophysics Data System (ADS)
Baker, D. R.
2012-12-01
Measurements of volcanic gas compositions are often presumed to be directly related to equilibrium compositions of fluids exsolved at depth in magmatic systems that rapidly escape into the atmosphere. In particular, changes in the ratios of volatile species concentrations in volcanic gases have been interpreted to reflect influx of new magma batches or changes in the degassing depth. However, other mechanisms can also yield changes in volcanic gas compositions. One such mechanism is diffusive fractionation during rapid bubble growth. Such fractionation can occur because radial growth rates of bubbles in magmas are estimated to be in the range of 10-6 to 10-3 m s-1 and diffusion coefficients of minor volatiles (e.g., Cl, F, S, CO2) are orders of magnitude slower, 10-12 to 10-9 m2 s-1. Thus a bubble that rapidly grows and subsequently loses its volatiles to the surface may contribute a fluid sample whose concentration is affected by the interplay between the kinetics of bubble growth and volatile diffusion in the melt. A finite difference code was developed to calculate the effects of rapid bubble growth on the concentration of minor elements in the bubble for a spherical growth geometry. The bubble is modeled with a fixed growth rate and a constant equilibrium fluid-melt partition coefficient, KD. Bubbles were modeled to grow to a radius of 50 μm, the size at which the dominant bubble growth mechanism appears to change from diffusion to coalescence. The critical variables that control the departure from equilibrium behavior are the K D and the ratio of the growth velocity, V, to the diffusivity, D. Modeling bubble growth in a magma chamber at 100 MPa demonstrates that when KD is in the range of 10 to 1000 at low V/D values (e.g., 103 m-1) the composition of the fluid is at, or near, equilibrium with the melt. However, as V/D increases the bubble composition deviates increasingly from equilibrium. For V/D ratios of 105 and equilibrium KD's of either 50 or 100 (similar to estimates for S), a bubble with a 50 μm radius will contain a fluid whose concentration was apparently determined by a KD of less than 10. These models also demonstrate that the combination of rapid bubble growth with slow diffusion can deplete the melt in the volatile species only within the immediate neighborhood, on the order of 100 μm. If bubbles are spaced further apart the melts may retain significant concentrations of dissolved volatiles, which could lead to secondary and tertiary nucleation events. These models for diffusive fractionation during rapid bubble growth suggest that changes in the ratios of minor elements in volcanic gases may be influenced by bubble growth rate changes. Volatiles with lower diffusivities and volatiles with very high or very low partition coefficients will be more influenced by this process. Diffusive fractionation may be responsible for the drop in the CO2/SO2 ratios sometimes observed prior to large eruptions of Stromboli volcano.
Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control.
Zhang, Kuan; Fraxedas, Jordi; Sepulveda, Borja; Esplandiu, Maria J
2017-12-27
Self-propelled micro/nanomotors that can transform chemical energy from the surrounding environment into mechanical motion are cutting edge nanotechnologies with potential applications in biomedicine and environmental remediation. These applications require full understanding of the propulsion mechanisms to improve the performance and controllability of the motors. In this work, we demonstrate that there are two competing chemomechanical mechanisms at semiconductor/metal (Si/Pt) micromotors in a pump configuration under visible light exposure. The first propulsion mechanism is driven by an electro-osmotic process stemmed from a photoactivation reaction mediated by H 2 O 2 , which takes place in two separated redox reactions at the Si and Pt interfaces. One reaction involves the oxidation of H 2 O 2 at the silicon side, and the other the H 2 O 2 reduction at the metal side. The second mechanism is not light responsive and is triggered by the redox decomposition of H 2 O 2 exclusively at the Pt surface. We show that it is possible to enhance/suppress one mechanism over the other by tuning the surface roughness of the micromotor metal. More specifically, the actuation mechanism can be switched from light-controlled electrokinetics to light-insensitive diffusio-osmosis by only increasing the metal surface roughness. The different actuation mechanisms yield strikingly different fluid flow velocities, electric fields, and light sensitivities. Consequently, these findings are very relevant and can have a remarkable impact on the design and optimization of photoactivated catalytic devices and, in general, on bimetallic or insulating-metallic motors.
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...
2017-03-08
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
Dynamics of the DNA repair proteins WRN and BLM in the nucleoplasm and nucleoli.
Bendtsen, Kristian Moss; Jensen, Martin Borch; May, Alfred; Rasmussen, Lene Juel; Trusina, Ala; Bohr, Vilhelm A; Jensen, Mogens H
2014-11-01
We have investigated the mobility of two EGFP-tagged DNA repair proteins, WRN and BLM. In particular, we focused on the dynamics in two locations, the nucleoli and the nucleoplasm. We found that both WRN and BLM use a "DNA-scanning" mechanism, with rapid binding-unbinding to DNA resulting in effective diffusion. In the nucleoplasm WRN and BLM have effective diffusion coefficients of 1.62 and 1.34 μm(2)/s, respectively. Likewise, the dynamics in the nucleoli are also best described by effective diffusion, but with diffusion coefficients a factor of ten lower than in the nucleoplasm. From this large reduction in diffusion coefficient we were able to classify WRN and BLM as DNA damage scanners. In addition to WRN and BLM we also classified other DNA damage proteins and found they all fall into one of two categories. Either they are scanners, similar to WRN and BLM, with very low diffusion coefficients, suggesting a scanning mechanism, or they are almost freely diffusing, suggesting that they interact with DNA only after initiation of a DNA damage response.
Self-diffusion in MgO--a density functional study.
Runevall, Odd; Sandberg, Nils
2011-08-31
Density functional theory calculations have been performed to study self-diffusion in magnesium oxide, a model material for a wide range of ionic compounds. Formation energies and entropies of Schottky defects and divacancies were obtained by means of total energy and phonon calculations in supercell configurations. Transition state theory was used to estimate defect migration rates, with migration energies taken from static calculations, and the corresponding frequency factors estimated from the phonon spectrum. In all static calculations we corrected for image effects using either a multipole expansion or an extrapolation to the low concentration limit. It is shown that both methods give similar results. The results for self-diffusion of Mg and O confirm the previously established picture, namely that in materials of nominal purity, Mg diffuses extrinsically by a single vacancy mechanism, while O diffuses intrinsically by a divacancy mechanism. Quantitatively, the current results are in very good agreement with experiments concerning O diffusion, while for Mg the absolute diffusion rate is generally underestimated by a factor of 5-10. The reason for this discrepancy is discussed.
Intestinal absorption and biomagnification of organochlorines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gobas, F.A.P.C.; McCorquodale, J.R.; Haffner, G.D.
1993-03-01
Dietary uptake rates of several organochlorines from diets with different lipid contents were measured in goldfish (Carassius auratus) to investigate the mechanism of intestinal absorption and biomagnification of organic chemical. The results suggest that intestinal absorption is predominantly controlled by chemical diffusion rather than lipid cotransport. Data for chemical uptake in human infants are presented to illustrate that biomagnification is caused by the digestion of food in the gastrointestinal tract. The findings are discussed in the context of two conflicting theories for the mechanism of biomagnification, and a mechanistic model is presented for the dietary uptake and biomagnification of organicmore » chemicals in fish and mammals.« less
NASA Astrophysics Data System (ADS)
Fouad, Mohamed Ahmed; Zewail, Taghreed Mohamed; Amine, Nieven Kamal Abbes
2017-06-01
Rate of diffusion controlled corrosion in 90° Copper Elbow acidified dichromate has been investigated in relation to the following parameters: effect of solution velocity in the absence and presence of drag- reducing polymer on the rate of diffusion controlled corrosion, and effect of the presence of suspended solids on the rate of diffusion controlled corrosion. It was found that the presence of drag reducing polymer inhibited the rate of mass transfer, while the presence of suspended solid increased significantly the rate of mass transfer.
Gate-driven pure spin current in graphene
NASA Astrophysics Data System (ADS)
Lin, Xiaoyang; Su, Li; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Zhao, Weisheng; Fert, Albert
An important challenge of spin current based devices is to realize long-distance transport and efficient manipulation of pure spin current without frequent spin-charge conversions. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of conductivity and spin diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with Elliot-Yafet spin relaxation mechanism, D'yakonov-Perel spin relaxation mechanism results in more appreciable demultiplexing performance, which also implies a feasible strategy to characterize the spin relaxation mechanisms. The unique feature of the pure spin current demultiplexing operation would pave a way for ultra-low power spin logic beyond CMOS. Supported by the NSFC (61627813, 51602013) and the 111 project (B16001).
NASA Technical Reports Server (NTRS)
Williams, Powtawche N.
1998-01-01
To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.
A note on stress-driven anisotropic diffusion and its role in active deformable media.
Cherubini, Christian; Filippi, Simonetta; Gizzi, Alessio; Ruiz-Baier, Ricardo
2017-10-07
We introduce a new model to describe diffusion processes within active deformable media. Our general theoretical framework is based on physical and mathematical considerations, and it suggests to employ diffusion tensors directly influenced by the coupling with mechanical stress. The proposed generalised reaction-diffusion-mechanics model reveals that initially isotropic and homogeneous diffusion tensors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear coupling. We study the physical properties leading to these effects, and investigate mathematical conditions for its occurrence. Together, the mathematical model and the numerical results obtained using a mixed-primal finite element method, clearly support relevant consequences of stress-driven diffusion into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings also indicate the applicability of this novel approach in the description of mechano-electric feedback in actively deforming bio-materials such as the cardiac tissue. Copyright © 2017. Published by Elsevier Ltd.
Photo-Controlled Waves and Active Locomotion.
Epstein, Irving R; Gao, Qingyu
2017-08-22
Waves of chemical concentration, created by the interaction between reaction and diffusion, occur in a number of chemical systems far from equilibrium. In appropriately chosen polymer gels, these waves generate mechanical forces, which can result in locomotion. When a component of the system is photosensitive, light can be used to modulate and control these waves. In this Concept article, we examine various forms of photo-control of such systems, focusing particularly on the Belousov-Zhabotinsky oscillating chemical reaction. The phenomena we consider include image storage and image processing, feedback-control and feedback-induced clustering of waves, and phototropic and photophobic locomotion. Several of these phenomena have analogues in or potential applications to biological systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kleinhans, Kelsey L; Jaworski, Lukas M; Schneiderbauer, Michaela M; Jackson, Alicia R
2015-10-01
Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure-function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.
Counsell, Serena J; Shen, Yuji; Boardman, James P; Larkman, David J; Kapellou, Olga; Ward, Philip; Allsop, Joanna M; Cowan, Frances M; Hajnal, Joseph V; Edwards, A David; Rutherford, Mary A
2006-02-01
Diffuse excessive high signal intensity (DEHSI) is observed in the majority of preterm infants at term-equivalent age on conventional MRI, and diffusion-weighted imaging has shown that apparent diffusion coefficient values are elevated in the white matter (WM) in DEHSI. Our aim was to obtain diffusion tensor imaging on preterm infants at term-equivalent age and term control infants to test the hypothesis that radial diffusivity was significantly different in the WM in preterm infants with DEHSI compared with both preterm infants with normal-appearing WM on conventional MRI and term control infants. Diffusion tensor imaging was obtained on 38 preterm infants at term-equivalent age and 8 term control infants. Values for axial (lambda1) and radial [(lambda2 + lambda3)/2] diffusivity were calculated in regions of interest positioned in the central WM at the level of the centrum semiovale, frontal WM, posterior periventricular WM, occipital WM, anterior and posterior portions of the posterior limb of the internal capsule, and the genu and splenium of the corpus callosum. Radial diffusivity was elevated significantly in the posterior portion of the posterior limb of the internal capsule and the splenium of the corpus callosum, and both axial and radial diffusivity were elevated significantly in the WM at the level of the centrum semiovale, the frontal WM, the periventricular WM, and the occipital WM in preterm infants with DEHSI compared with preterm infants with normal-appearing WM and term control infants. There was no significant difference between term control infants and preterm infants with normal-appearing WM in any region studied. These findings suggest that DEHSI represents an oligodendrocyte and/or axonal abnormality that is widespread throughout the cerebral WM.
NASA Astrophysics Data System (ADS)
Rodriguez, A. K.; Kridli, G.; Ayoub, G.; Zbib, H.
2013-10-01
This article investigates the effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B sheets. This was achieved through static heating and through tensile test performed at strain rates from 10-4 to 10-1 s-1 and temperatures between room temperature (RT) and 300 °C. While brittle fracture with high stresses and limited elongation was observed at the RT, ductile behavior was obtained at higher temperatures with low strain rates. The strain rate sensitivity and activation energy calculations indicate that grain boundary diffusion and lattice diffusion are the two rate-controlling mechanisms at warm and high temperatures, respectively. An analysis of the evolution of the microstructure provided some indications of the most probable deformation mechanisms in the material: twinning operates at lower temperatures, and dynamic recrystallization dominates at higher temperatures. The static evolution of the microstructure was also studied, proving a gradual static grain growth of the AZ31B with annealing temperature and time.
Okumus, Burak; Landgraf, Dirk; Lai, Ghee Chuan; Bakhsi, Somenath; Arias-Castro, Juan Carlos; Yildiz, Sadik; Huh, Dann; Fernandez-Lopez, Raul; Peterson, Celeste N.; Toprak, Erdal; El Karoui, Meriem; Paulsson, Johan
2016-01-01
Many key regulatory proteins in bacteria are present in too low numbers to be detected with conventional methods, which poses a particular challenge for single-cell analyses because such proteins can contribute greatly to phenotypic heterogeneity. Here we develop a microfluidics-based platform that enables single-molecule counting of low-abundance proteins by mechanically slowing-down their diffusion within the cytoplasm of live Escherichia coli (E. coli) cells. Our technique also allows for automated microscopy at high throughput with minimal perturbation to native physiology, as well as viable enrichment/retrieval. We illustrate the method by analysing the control of the master regulator of the E. coli stress response, RpoS, by its adapter protein, SprE (RssB). Quantification of SprE numbers shows that though SprE is necessary for RpoS degradation, it is expressed at levels as low as 3–4 molecules per average cell cycle, and fluctuations in SprE are approximately Poisson distributed during exponential phase with no sign of bursting. PMID:27189321
Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi
2014-01-01
The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.
Controlled cellular energy conversion in brown adipose tissue thermogenesis
NASA Technical Reports Server (NTRS)
Horowitz, J. M.; Plant, R. E.
1978-01-01
Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.
Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-12-29
Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.
Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke
Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan
2017-06-01
Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.
Gritti, Fabrice; Guiochon, Georges
2012-08-24
The column-to-column repeatability of the mass transfer mechanism in columns packed with sub-3μm shell particles was investigated. The parameters of this mechanism were measured for twelve columns (six 2.1mm×100mm and six 4.6mm×100mm) packed with the same batch of 2.6μm Kinetex-C(18) particles (Phenomenex, CA, USA). For both series, the manufacturer provided columns at different positions in the efficiency distribution given by the quality test control. Three compounds were used, uracil, naphthalene and insulin. The reduced longitudinal diffusion term was measured with the peak parking (PP) method, the reduced solid-liquid mass transfer resistance term was given by a combination of the PP results and a model of effective diffusion in ternary composite materials (non-porous cores, concentric porous shell, and eluent matrix), validated previously. The overall eddy diffusion term was obtained by subtraction of these two HETP terms from the overall reduced HETP measured by numerical integration of the entire peak profiles. The results demonstrate that the dispersion of the column efficiencies is only due to the random nature of the packing process. At the highest reduced velocity achieved, the relative standard deviations (RSDs) of the eddy diffusion term for the 2.1mm I.D. columns were ca. 7% and 3% for the low molecular weight compounds and for insulin, respectively. For the 4.6mm I.D. columns, these RSDs were 15% and 5%, respectively. The larger RSDs for the 4.6mm I.D. columns is explained by the exceptionally low value of the eddy diffusion term. Copyright © 2012 Elsevier B.V. All rights reserved.
A reconsideration for forming mechanism of optic fiber probe fabricated by static chemical etching
NASA Astrophysics Data System (ADS)
Chen, Yiru; Shen, Ruiqi
2016-07-01
The studies on the mechanism of static chemical etching are supplemented in this paper. Surface tension and diffusion effect are both taken into account. Theoretical analysis and data fitting show that the slant angle of the liquid-liquid interface leads to the maximum liquid rising, when diffusion effect is negligible.
Osmosis and Diffusion Conceptual Assessment
ERIC Educational Resources Information Center
Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts
2011-01-01
Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…
Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE
NASA Astrophysics Data System (ADS)
Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.
2009-12-01
Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer arrays. The radial diffusion coefficient can be given from the magnetic field power spectral density as a function of L, frequency (f) and m-number (m) in the Pc 5 frequency range during the REE related magnetic storms [see Brautigam et al., 2005]. We can fit Pc 5 power spectral density (L, f, m) using the ULTIMA data. The m-number of global Pc 5 pulsation on the ground is found to be almost less than 5. This is consistent with m-number required in the radial diffusion theory by Elkington et al. [1999, 2003]. We will compare the observationally estimated diffusion coefficient with theoretical diffusion coefficient [e.g. Elkington et al., 2006], and discuss adequacy of our diffusion coefficient.
NASA Technical Reports Server (NTRS)
Juhasz, A.
1974-01-01
The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.
Shih, Po-Hsun
2017-01-01
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion. PMID:28754030
Effect of the Microstructure on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminium Alloys
NASA Astrophysics Data System (ADS)
Venugopal, S.; Mahendran, G.
2018-05-01
Rolled plates of aluminium alloys AA5083, AA6082 and AA7075 of 5 mm thickness are joined by diffusion bonding at varied parameters. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys is characterized by Transmission Electron Microscopy (TEM). Metallurgical investigations and mechanical tests are also performed to correlate the results of the TEM investigations with the mechanical properties of the produced diffusion bonded joints. It is observed that the bonding and shear strength of the alloys increase with the increase in bonding temperature, due to the diffusion of micro-constituents in the interface. High temperature enhances the uniform distribution of secondary phase particles and reduces pore formation/defects in the bonded joints.
Security Analysis of Some Diffusion Mechanisms Used in Chaotic Ciphers
NASA Astrophysics Data System (ADS)
Zhang, Leo Yu; Zhang, Yushu; Liu, Yuansheng; Yang, Anjia; Chen, Guanrong
As a variant of the substitution-permutation network, the permutation-diffusion structure has received extensive attention in the field of chaotic cryptography over the last three decades. Because of the high implementation speed and nonlinearity over GF(2), the Galois field of two elements, mixing modulo addition/multiplication and Exclusive OR becomes very popular in various designs to achieve the desired diffusion effect. This paper reports that some diffusion mechanisms based on modulo addition/multiplication and Exclusive OR are not resistant to plaintext attacks as claimed. By cracking several recently proposed chaotic ciphers as examples, it is demonstrated that a good understanding of the strength and weakness of these crypto-primitives is crucial for designing more practical chaotic encryption algorithms in the future.