Science.gov

Sample records for diffusion electrical mobility

  1. Diffusion and Electric Mobility of Ions within Isolated Cuticles of Citrus aurantium 1

    PubMed Central

    Tyree, Melvin T.; Wescott, Charles R.; Tabor, Christopher A.

    1991-01-01

    We report a new method for measuring cation and anion permeability across cuticles of sour orange, Citrus aurantium, leaves. The method requires the measurement of two electrical parameters: the diffusion potential arising when the two sides of the cuticle are bathed in unequal concentrations of a Cl− salt; and the electrical conductance of the cuticle measured at a salt concentration equal to the average of that used in the diffusion-potential measurement. The permeabilities of H+, Li+, Na+, K+, and Cs+ ranged from 2 × 10−8 to 0.6 × 10−8 meters per second when cuticles were bathed in 2 moles per cubic meter Cl− salts. The permeability of Cl− was 3 × 10−9 meters per second. The permeability of Li+, Na+, and K+ was about five times less when measured in 500 moles per cubic meter Cl− salts. We also report an asymmetry in cuticle-conductance values depending on the magnitude and the direction of current flow. The asymmetry disappears at low current-pulse magnitude and increases linearly with the magnitude of the current pulse. This phenomenon is explained in terms of transport-number effects in a bilayer model of the cuticle. Conductance is not augmented by current carried by exchangeable cations in cuticles; conductance is rate limited by the outer waxy layer of the cuticle. PMID:16668382

  2. Nonlocal electrical diffusion equation

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  3. The role of external electric fields in enhancing ion mobility, drift velocity, and drift-diffusion rates in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Murad, Sohail

    2011-03-01

    Molecular simulations have been carried out using the method of molecular dynamics to investigate the role of external electric fields on the ion mobility, drift velocity, and drift-diffusion rate of ions in aqueous electrolyte solutions. These properties are critical for a range of processes including electrodialysis, electro-deionization, electrophoresis, and electroosmosis. Our results show that external electric fields relax the hydrated ion structure at significantly larger time scales (between 300 and 800 ps), than most other relaxation processes in solutions (generally of the order of 1 ps). Previous studies that did not account for the much longer relaxation times did not observe this behavior for ions even with very high electric fields. External electric fields must also overcome several (at least two or more) activation energy barriers to significantly change the structure of hydrated ions. As a result, the dynamic behavior changes almost in bands as a function of electric field strengths, rather than linearly. Finally, the effect of the field is much less dramatic on water than the ions. Thus electric fields will be of more significance in processes that involve the transport of ions (such as electro-deionization) than the transport of water (electroosmosis).

  4. Mobile electric power

    NASA Astrophysics Data System (ADS)

    Bloomfield, Valerie J.; Bloomfield, David P.; Johnson, Bradley Q.

    1992-01-01

    Analytic Power has proven the feasibility of a mobile electric power unit in the form of a hydride fueled ion-exchange membrane (IEM) fuel cell stack. We have over 5 years experience building and testing IEM fuel cells. The power section of a 350 watt fuel cell stack weighs 4.65 pounds based on our five cell sub-stack component weights. The composite stack structure is fabricated from two components; a unitized flow field and catalyzed membrane. The lightweight unitized flow field concept was proven in the first three months of the contract. A single unit flow field weighs 0.155 pounds and can seal to 60 psi. The single cell catalyzed Nafion membrane exceeded our performance goal of 0.6 volts at 100 ASF. Stack performance points were 0.42 volts at 113 ASF and .75 volts at 96 ASF.

  5. Mobile electric power

    SciTech Connect

    Bloomfield, V.J.; Bloomfield, D.P.; Johnson, B.Q.

    1992-01-30

    Analytic Power has proven the feasibility of a mobile electric power unit in the form of a hydride fueled ion-exchange membrane (IEM) fuel cell stack. We have over 5 years experience building and testing IEM fuel cells. The power section of a 350 watt fuel cell stack weighs 4.65 pounds based on our five cell sub-stack component weights. The composite stack structure is fabricated from two components; a unitized flow field and catalyzed membrane. The lightweight unitized flow field concept was proven in the first three months of the contract. A single unit flow field weighs 0.155 pounds and can seal to 60 psi. The single cell catalyzed Nafion membrane exceeded our performance goal of 0.6 volts at 100 ASF. Stack performance points were 0.42 volts at 113 ASF and .75 volts at 96 asf.

  6. Diffusion coefficients of two mobile ions in three AB3In7VI12 single crystals (AB=Cu and Ag VI=Se or Te). Proposition of an equivalent electrical circuit

    NASA Astrophysics Data System (ADS)

    Díaz, R.

    2012-06-01

    Diffusion coefficients of two mobile ions are computed from the conductivity variation with time of three In-rich chalcopyrite single crystals of the ABn-3Inn+1VI2n system (AB=Cu and Ag and VI=Se or Te). The coefficients have similar values in the three compounds, higher than in chalcopyrite compounds (ABInSe2) due to a higher number of (2VCu+InCu) defect pairs in the lattice. In each compound, the potential across the sample or the current intensity, Vm and I, can increase or decrease within time due to a change in the interface potential by the ion arrival, where the decrease could be explained by a charge decrease. Mobile ions arrive while others, with higher charge, should leave related to the formation or disappearance of (2VCu+InCu) defect pairs. Compositional measurements confirm the motion of Cu ions and In antisites, InCu, in the Cu sublattice. Therefore, these compounds are mixed ionic and electronic conductors, MIECs, with two mobile ions, where the electronic and ionic conductions are non-blocked and blocked in the metal/semiconductor interface respectively. An equivalent electrical circuit is proposed, extensible at MIECs with j mobile ions, where the interface potential is similar to the potential drop in the charge or discharge in the capacitor. The analysis of the total flux of ions due to diffusion, jdiff, and to the action of electrical field, jdrift, permits compute the number of ions, their diffusion coefficients and the change of the potential drop within time in the interface in compounds with several mobile ions. This electrical model is checked using the experimental data in the three single crystals in a computer program. To know different mobile ions in In-rich chalcopyrites and their diffusion coefficients will permit to understand and have mechanisms of control in solar cell fabrication based in chalcopyrite thin films.

  7. Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell.

    PubMed

    Santoro, P A; de Paula, J L; Lenzi, E K; Evangelista, L R

    2011-09-21

    The electrical response of an electrolytic cell in which the diffusion of mobile ions in the bulk is governed by a fractional diffusion equation of distributed order is analyzed. The boundary conditions at the electrodes limiting the sample are described by an integro-differential equation governing the kinetic at the interface. The analysis is carried out by supposing that the positive and negative ions have the same mobility and that the electric potential profile across the sample satisfies the Poisson's equation. The results cover a rich variety of scenarios, including the ones connected to anomalous diffusion.

  8. Electric wind in a Differential Mobility Analyzer

    SciTech Connect

    Palo, Marus; Meelis Eller; Uin, Janek; Tamm, Eduard

    2015-10-25

    Electric wind -- the movement of gas, induced by ions moving in an electric field -- can be a distorting factor in size distribution measurements using Differential Mobility Analyzers (DMAs). The aim of this study was to determine the conditions under which electric wind occurs in the locally-built VLDMA (Very Long Differential Mobility Analyzer) and TSI Long-DMA (3081) and to describe the associated distortion of the measured spectra. Electric wind proved to be promoted by the increase of electric field strength, aerosol layer thickness, particle number concentration and particle size. The measured size spectra revealed three types of distortion: widening of the size distribution, shift of the mode of the distribution to smaller diameters and smoothing out the peaks of the multiply charged particles. Electric wind may therefore be a source of severe distortion of the spectrum when measuring large particles at high concentrations.

  9. Electric wind in a Differential Mobility Analyzer

    DOE PAGES

    Palo, Marus; Meelis Eller; Uin, Janek; ...

    2015-10-25

    Electric wind -- the movement of gas, induced by ions moving in an electric field -- can be a distorting factor in size distribution measurements using Differential Mobility Analyzers (DMAs). The aim of this study was to determine the conditions under which electric wind occurs in the locally-built VLDMA (Very Long Differential Mobility Analyzer) and TSI Long-DMA (3081) and to describe the associated distortion of the measured spectra. Electric wind proved to be promoted by the increase of electric field strength, aerosol layer thickness, particle number concentration and particle size. The measured size spectra revealed three types of distortion: wideningmore » of the size distribution, shift of the mode of the distribution to smaller diameters and smoothing out the peaks of the multiply charged particles. Electric wind may therefore be a source of severe distortion of the spectrum when measuring large particles at high concentrations.« less

  10. Income, Inequality, Market Potential, and Diffusion of Mobile Telephony

    ERIC Educational Resources Information Center

    Kim, Sungjoong

    2009-01-01

    The diffusion of many previous innovations eventually slowed down and reached an equilibrium level. Despite continued rapid growth, it is possible that the diffusion of mobile telephony will also begin to decelerate and reach a saturation level. Whether universal service can be achieved with the help of mobile telephony will therefore depend…

  11. The mobility and diffusion of ions in gases

    NASA Technical Reports Server (NTRS)

    Mcdaniel, E. W.; Mason, E. A.

    1973-01-01

    Experimental and theoretical aspects of the mobility and diffusion of ions in gases are studied in detail. Some of the subjects discussed include ion-ion interaction, boundary condition and ion and electron behavior. Also discussed in separate chapters are the problems of the diffusion coefficients and the afterglow techniques. Finally, a special chapter studies the kinetic theory of diffusion and mobility, stressing the low-, medium- and high-field theory.

  12. Solid state cloaking for electrical charge carrier mobility control

    DOEpatents

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  13. Electrical Circuit Analogues of Thermal Conduction and Diffusion

    ERIC Educational Resources Information Center

    Tomlin, D. H.; Fullarton, G. K.

    1978-01-01

    After briefly reviewing equations of conduction and diffusion, and voltage and charge in electrical circuits, a simple experiment is given that allows students practical experience in a theoretical realm of physics. (MDR)

  14. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.

    PubMed

    Maynes, Daniel; Tenny, Joseph; Webbd, Brent W; Lee, Milton L

    2008-02-01

    Recently the use electric field gradient focusing (EFGF) to enhance focusing of proteins has been proposed and explored to provide significant improvement in separation resolution. The objective of EFGF is to focus proteins of specific electrophoretic mobilities at distinct stationary locations in a column or channel. This can be accomplished in a capillary by allowing the electric potential to vary in the streamwise direction. Because the electric field is varying, so also is the electrokinetic force exerted on the proteins and the electroosmotic velocity of the buffer solution. Due to the varying electric field, the Taylor diffusion characteristics will also vary along the column, causing a degradation of peak widths of some proteins, dependent on their equilibrium positions and local velocity distributions. The focus of this paper is an analysis that allows characterization of the local Taylor diffusion and resulting protein band peak width as a function of the local magnitude of the EOF relative to the average fluid velocity for both cylindrical and rectangular channels. In general the analysis shows that as the ratio of the local electroosmotic velocity to the average velocity deviates from unity, the effective diffusion increases significantly. The effectiveness of EFGF devices over a range of protein diffusivities, capillary diameters, flow velocities, and electric field gradient is discussed.

  15. Modeling the Determinants Influencing the Diffusion of Mobile Internet

    NASA Astrophysics Data System (ADS)

    Alwahaishi, Saleh; Snášel, Václav

    2013-04-01

    Understanding individual acceptance and use of Information and Communication Technology (ICT) is one of the most mature streams of information systems research. In Information Technology and Information System research, numerous theories are used to understand users' adoption of new technologies. Various models were developed including the Innovation Diffusion Theory, Theory of Reasoned Action, Theory of Planned Behavior, Technology Acceptance Model, and recently, the Unified Theory of Acceptance and Use of Technology. This research composes a new hybrid theoretical framework to identify the factors affecting the acceptance and use of Mobile Internet -as an ICT application- in a consumer context. The proposed model incorporates eight constructs: Performance Expectancy (PE), Effort Expectancy (EE), Facilitating Conditions (FC), Social Influences (SI), Perceived Value (PV), Perceived Playfulness (PP), Attention Focus (AF), and Behavioral intention (BI). Individual differences-namely, age, gender, education, income, and experience are moderating the effects of these constructs on behavioral intention and technology use.

  16. 77 FR 71607 - Mobile Offshore Drilling Unit (MODU) Electrical Equipment Certification Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... independent third party lab. The Coast Guard believes that certification of electrical equipment intended for... SECURITY Coast Guard Mobile Offshore Drilling Unit (MODU) Electrical Equipment Certification Guidance... regarding electrical equipment installed in hazardous areas on foreign-flagged Mobile Offshore...

  17. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  18. Drift Mobility Measurements and Electrical Characterization in Thin Film Cadmium Telluride Solar Cells

    NASA Astrophysics Data System (ADS)

    Long, Qi

    Thin film CdTe solar cells are leading the production in the thin film photovoltaic industry for the recent few years. The electric properties and mechanism for fabrication of high efficiency solar cells are still not well established. In this thesis, I'll report electron and hole drift mobilities measurements in thin film CdTe solar cells based on two characterization methods: time-of-flight and photocapacitance. For a deposition process similar to that used for high-efficiency cells, the electron drift mobilities are in the range 10-1 -- 100 cm2/Vs, and holes are in the range 100 -- 101 cm2/Vs. The electron drift mobilities are three orders of magnitude smaller than those measured in single crystal CdTe, the hole mobilities are about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl2; treatment had little effect on the hole drift mobility, but decreased the electron mobility. The electron mobility shows an interesting inverse correlation with the open-circuit voltage for the CdTe coupons with and without the CdCl2 treatment. We speculate that this correlation is due to the diffusion limited recombination. We also discuss the mechanisms reducing the mobilities from the single crystal values. In this thesis, we are able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in thin film CdTe. Other mechanisms like classic scattering, grain boundaries effect, and also polaron interaction will also be discussed in this thesis. All mechanisms mentioned above show little evidence on the influence to the mobility value. The true reason for such a huge change of the drift mobility from its single crystal values still need more interpretations.

  19. How dangerous are mobile phones, transmission masts, and electricity pylons?

    PubMed

    Wood, A W

    2006-04-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence.

  20. Nanostructured Silicon Used for Flexible and Mobile Electricity Generation.

    PubMed

    Sun, Baoquan; Shao, Mingwang; Lee, Shuitong

    2016-12-01

    The use of nanostructured silicon for the generation of electricity in flexible and mobile devices is reviewed. This field has attracted widespread interest in recent years due to the emergence of plastic electronics. Such developments are likely to alter the nature of power sources in the near future. For example, flexible photovoltaic cells can supply electricity to rugged and collapsible electronics, biomedical devices, and conformable solar panels that are integrated with the curved surfaces of vehicles or buildings. Here, the unique optical and electrical properties of nanostructured silicon are examined, with regard to how they can be exploited in flexible photovoltaics, thermoelectric generators, and piezoelectric devices, which serve as power generators. Particular emphasis is placed on organic-silicon heterojunction photovoltaic devices, silicon-nanowire-based thermoelectric generators, and core-shell silicon/silicon oxide nanowire-based piezoelectric devices, because they are flexible, lightweight, and portable.

  1. Factors That Influence the Diffusion Process of Mobile Devices in Higher Education in Botswana and Namibia

    ERIC Educational Resources Information Center

    Asino, Tutaleni I.

    2015-01-01

    This comparative study uses the Diffusion of Innovation (DoI) theoretical framework to explore factors that influence diffusion of mobile devices in higher education in Botswana and Namibia. The five attributes (Relative Avantage, Compatability, Complexity, Trialability, and Observability) of the persuasion stage, which have been found in previous…

  2. Mental Health Mobile Apps: From Infusion to Diffusion in the Mental Health Social System.

    PubMed

    East, Marlene Lynette; Havard, Byron C

    2015-01-01

    The roles of mental health educators and professionals in the diffusion of mental health mobile apps are addressed in this viewpoint article. Mental health mobile apps are emerging technologies that fit under the broad heading of mobile health (mHealth). mHealth, encompassed within electronic health (eHealth), reflects the use of mobile devices for the practice of public health. Well-designed mental health mobile apps that present content in interactive, engaging, and stimulating ways can promote cognitive learning, personal growth, and mental health enhancement. As key influencers in the mental health social system, counselor educators and professional associations may either help or hinder diffusion of beneficial mHealth technologies. As mental health mobile apps move towards ubiquity, research will continue to be conducted. The studies published thus far, combined with the potential of mental health mobile apps for learning and personal growth, offer enough evidence to compel mental health professionals to infuse these technologies into education and practice. Counselor educators and professional associations must use their influential leadership roles to train students and practitioners in how to research, evaluate, and integrate mental health mobile apps into practice. The objectives of this article are to (1) increase awareness of mHealth and mental health mobile apps, (2) demonstrate the potential for continued growth in mental health mobile apps based on technology use and acceptance theory, mHealth organizational initiatives, and evidence about how humans learn, (3) discuss evidence-based benefits of mental health mobile apps, (4) examine the current state of mHealth diffusion in the mental health profession, and (5) offer solutions for impelling innovation diffusion by infusing mental health mobile apps into education, training, and clinical settings. This discussion has implications for counselor educators, mental health practitioners, associations

  3. Mental Health Mobile Apps: From Infusion to Diffusion in the Mental Health Social System

    PubMed Central

    2015-01-01

    The roles of mental health educators and professionals in the diffusion of mental health mobile apps are addressed in this viewpoint article. Mental health mobile apps are emerging technologies that fit under the broad heading of mobile health (mHealth). mHealth, encompassed within electronic health (eHealth), reflects the use of mobile devices for the practice of public health. Well-designed mental health mobile apps that present content in interactive, engaging, and stimulating ways can promote cognitive learning, personal growth, and mental health enhancement. As key influencers in the mental health social system, counselor educators and professional associations may either help or hinder diffusion of beneficial mHealth technologies. As mental health mobile apps move towards ubiquity, research will continue to be conducted. The studies published thus far, combined with the potential of mental health mobile apps for learning and personal growth, offer enough evidence to compel mental health professionals to infuse these technologies into education and practice. Counselor educators and professional associations must use their influential leadership roles to train students and practitioners in how to research, evaluate, and integrate mental health mobile apps into practice. The objectives of this article are to (1) increase awareness of mHealth and mental health mobile apps, (2) demonstrate the potential for continued growth in mental health mobile apps based on technology use and acceptance theory, mHealth organizational initiatives, and evidence about how humans learn, (3) discuss evidence-based benefits of mental health mobile apps, (4) examine the current state of mHealth diffusion in the mental health profession, and (5) offer solutions for impelling innovation diffusion by infusing mental health mobile apps into education, training, and clinical settings. This discussion has implications for counselor educators, mental health practitioners, associations

  4. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  5. Interdiffusion and Diffusion Mobility for fcc Ni-Co-Al Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhu, Naqiong; Wang, Hao; Lu, Xiao-Gang

    2016-12-01

    Ternary fcc Ni-Co-Al diffusion couples annealed at 1173 K (900 °C), 1373 K (1100 °C), and 1573 K (1300 °C) have been studied by using electron probe microanalysis. The interdiffusion coefficients were extracted using the Sauer-Freise and Whittle-Green methods from the measured concentration profiles of binary and ternary diffusion couples, respectively. Based on the diffusion coefficients reported in the literature and those determined in the present work, the diffusion mobilities for fcc Ni-Co-Al alloys were assessed. In general, reasonable agreements were reached and the resulted mobility database can be used to study the diffusion behavior of the ternary fcc Ni-Co-Al alloys in a wide composition range.

  6. Interdiffusion and Diffusion Mobility for fcc Ni-Co-Al Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhu, Naqiong; Wang, Hao; Lu, Xiao-Gang

    2017-03-01

    Ternary fcc Ni-Co-Al diffusion couples annealed at 1173 K (900 °C), 1373 K (1100 °C), and 1573 K (1300 °C) have been studied by using electron probe microanalysis. The interdiffusion coefficients were extracted using the Sauer-Freise and Whittle-Green methods from the measured concentration profiles of binary and ternary diffusion couples, respectively. Based on the diffusion coefficients reported in the literature and those determined in the present work, the diffusion mobilities for fcc Ni-Co-Al alloys were assessed. In general, reasonable agreements were reached and the resulted mobility database can be used to study the diffusion behavior of the ternary fcc Ni-Co-Al alloys in a wide composition range.

  7. Using Mobile Agents and Overlay Networks to Secure Electrical Networks

    SciTech Connect

    Dawes, Neal A.; Prosser, Bryan J.; Fulp, Errin W.; McKinnon, Archibald D.

    2013-02-11

    ABSTRACT The use of wandering, mobile agents can provide a robust approach for managing, monitoring, and securing electrical distribution networks. However, the topological structure of electrical networks can affect system performance. For example, if the multi-agent system relies on a regular inspection rate (on average, points of interest are inspected with equal frequency), then locations that are not well connected will on average be inspected less frequently. This paper discusses creation and use of overlay networks that create a virtual grid graph can provide faster coverage and a more uniform average agent sampling rate. Using overlays agents wander a virtual neighborhood consisting of only points of interest that are interconnected in a regular fashion (each point has the same number of neighbors). Experimental results will show that an overlay can often provide better network coverage and a more uniform inspection rate, which can improve cyber security by providing a faster detection of threats.

  8. Using Mobile Agents and Overlay Networks to Secure Electrical Netoworks

    SciTech Connect

    Dawes, Neal A.; Prosser, Bryan J.; Fulp, Errin W.; McKinnon, Archibald D.

    2013-04-01

    ABSTRACT The use of wandering, mobile agents can provide a robust approach for managing, monitoring, and securing electrical distribution networks. However, the topological structure of electrical networks can affect system performance. For example, if the multi-agent system relies on a regular inspection rate (on average, points of interest are inspected with equal frequency), then locations that are not well connected will on average be inspected less frequently. This paper discusses creation and use of overlay networks that create a virtual grid graph can provide faster coverage and a more uniform average agent sampling rate. Using overlays agents wander a virtual neighborhood consisting of only points of interest that are interconnected in a regular fashion (each point has the same number of neighbors). Experimental results will show that an overlay can often provide better network coverage and a more uniform inspection rate, which can improve cyber security by providing a faster detection of threats

  9. Mobile Electric Power Technologies for the Army of the Future: Engines, Power Source, and Electrical Aspects

    DTIC Science & Technology

    1988-01-01

    cobalt SOFC Solid oxide fuel cell SPE Sulfonic-acid polymer SPL Sound pressure level SR Switched reluctance SSDED Signature-suppressed Diesel Engine...of the committee’s analysis , including the committee’s major conclusions and recommendations. MOBILE ELECTRIC POWER IN THE ARMY The Army currently...operating on a Brayton, Rankine, or Stirling cycle. Based on considerations of cost, safety, and weight, the committee concluded that, below 1 MW , there is

  10. Monte Carlo Demonstration of Solid-State Diffusion in an Electric Field.

    ERIC Educational Resources Information Center

    Murch, G. E.

    1979-01-01

    Describes the phenomenological and microscopic aspects of solid-state diffusion in an electric field and presents a Monte Carlo method which is used to stimulate an atomistic model of diffusion in an electric field. The Nernst-Einstein relation is also discussed. (HM)

  11. Diffusivities and Atomic Mobilities of Sn-Ag and Sn-In Melts

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Min; Zhang, Li-Jun; Du, Yong; Huang, Bai-Yun

    2014-04-01

    The recently developed Arrhenius formula for the modified Sutherland equation was employed to calculate the self- and impurity diffusivities in liquid Sn, Ag, and In. The reliability of the calculated self- and impurity diffusivities was validated by comparing the presently calculated results with critically reviewed literature data. Based on reliable tracer and chemical diffusivities available in literature, the atomic mobility parameters in Sn-Ag and Sn-In melts were then evaluated with the aid of the available thermodynamic description for the liquid phase. Comprehensive comparisons showed that most of the measured and theoretical diffusivities in Sn-Ag and Sn-In melts can be reasonably reproduced by the currently obtained atomic mobilities. Moreover, the atomic mobilities were further verified by comparing the model-predicted concentration profiles with the measured ones in various liquid Sn-In diffusion couples. In addition, a simulation of Ag dissolution into liquid Sn-Ag solder during a reflow process was performed via the presently obtained atomic mobilities in the Sn-Ag melt.

  12. Contrasting Diffusion Patterns for PC and Mobile Videos: A User-Centric View of the Influencing Factors

    ERIC Educational Resources Information Center

    Wu, Baixue

    2010-01-01

    As both computer and mobile phone reach nearly ubiquity in the U.S. market, the slow uptake of mobile video, in contrast to the thriving usage of PC-based video, warrants a deeper understanding of user-oriented factors contributing to the two diffusion paths. Unlike the majority of existing diffusion research practices, the dissertation…

  13. Analysing the diffusion and adoption of mobile IT across social worlds.

    PubMed

    Nielsen, Jeppe Agger; Mengiste, Shegaw Anagaw

    2014-06-01

    The diffusion and adoption of information technology innovations (e.g. mobile information technology) in healthcare organizations involves a dynamic process of change with multiple stakeholders with competing interests, varying commitments, and conflicting values. Nevertheless, the extant literature on mobile information technology diffusion and adoption has predominantly focused on organizations and individuals as the unit of analysis, with little emphasis on the environment in which healthcare organizations are embedded. We propose the social worlds approach as a promising theoretical lens for dealing with this limitation together with reports from a case study of a mobile information technology innovation in elderly home care in Denmark including both the sociopolitical and organizational levels in the analysis. Using the notions of social worlds, trajectories, and boundary objects enables us to show how mobile information technology innovation in Danish home care can facilitate negotiation and collaboration across different social worlds in one setting while becoming a source of tension and conflicts in others. The trajectory of mobile information technology adoption was shaped by influential stakeholders in the Danish home care sector. Boundary objects across multiple social worlds legitimized the adoption, but the use arrangement afforded by the new technology interfered with important aspects of home care practices, creating resistance among the healthcare personnel.

  14. Rock matrix diffusivity determinations by in-situ electrical conductivity measurements.

    PubMed

    Ohlsson, Y; Löfgren, M; Neretnieks, I

    2001-02-01

    A fast method to determine rock matrix diffusion properties directly in the bedrock would be valuable in the investigation of a possible site for disposal of nuclear waste. An "effective diffusivity borehole log" would provide important information on the variability of this entity over the area studied. As opposed to traditional matrix diffusion laboratory experiments, electrical conductivity measurements are fast, inexpensive and also easy to carry out in-situ. In this study, electrical resistivity data from borehole logging, as well as from measurements on the actual core, is evaluated with the purpose of extracting matrix diffusivity data. The influence of migration of ions in the electrical double layer, which can be of great importance in low ionic strength pore water, is also considered in evaluating the in-situ data to accurately determine the effective pore diffusivity. The in-situ data compare fairly well to those measured in the rock core.

  15. Ammonia mobility in chabazite: insight into the diffusion component of the NH3-SCR process.

    PubMed

    O'Malley, Alexander J; Hitchcock, Iain; Sarwar, Misbah; Silverwood, Ian P; Hindocha, Sheena; Catlow, C Richard A; York, Andrew P E; Collier, P J

    2016-06-29

    The diffusion of ammonia in commercial NH3-SCR catalyst Cu-CHA was measured and compared with H-CHA using quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations to assess the effect of counterion presence on NH3 mobility in automotive emission control relevant zeolite catalysts. QENS experiments observed jump diffusion with a jump distance of 3 Å, giving similar self-diffusion coefficient measurements for both Cu- and H-CHA samples, in the range of ca. 5-10 × 10(-10) m(2) s(-1) over the measured temperature range. Self-diffusivities calculated by MD were within a factor of 6 of those measured experimentally at each temperature. The activation energies of diffusion were also similar for both studied systems: 3.7 and 4.4 kJ mol(-1) for the H- and Cu-chabazite respectively, suggesting that counterion presence has little impact on ammonia diffusivity on the timescale of the QENS experiment. An explanation is given by the MD simulations, which showed the strong coordination of NH3 with Cu(2+) counterions in the centre of the chabazite cage, shielding other molecules from interaction with the ion, and allowing for intercage diffusion through the 8-ring windows (consistent with the experimentally observed jump length) to carry on unhindered.

  16. Determination of electrolyte friction from measurements of the tracer diffusion coefficients, mutual diffusion coefficients, and electrophoretic mobilities of charged spheres

    NASA Astrophysics Data System (ADS)

    Gorti, Sridhar; Plank, Lindsay; Ware, B. R.

    1984-07-01

    The technique of fluorescence recovery after photobleaching has been used to measure the tracer diffusion coefficient of fluorescein-labeled charged polystyrene spheres in dilute solutions as a function of solution ionic strength. As the ratio of the particle radius (a) to the Debye-Hückel screening length (κ-1) was varied from 13 to 0.6, a 20% reduction in tracer diffusion coefficient was observed. The mutual diffusion coefficient, measured by quasielastic light scattering, increased as κa was reduced, demonstrating the dominant effect of thermodynamic factors on this parameter. The tracer data have been compared with theoretical predictions of other workers describing the influence of small-ion interactions with a charge sphere on its translational friction. The theoretical results of Schurr, and Booth, involve an explicit dependence on the electrokinetic charge of the sphere and yield estimates of this parameter (by least squares) which are significantly smaller than those obtained from laser Doppler electrophoretic light scattering results for the electrophoretic mobility of the labeled spheres. Approximations in the theoretical analyses are expected to account for these discrepancies.

  17. Influence of diffusive porosity architecture on kinetically-controlled reactions in mobile-immobile models

    NASA Astrophysics Data System (ADS)

    Babey, T.; Ginn, T. R.; De Dreuzy, J. R.

    2014-12-01

    Solute transport in porous media may be structured at various scales by geological features, from connectivity patterns of pores to fracture networks. This structure impacts solute repartition and consequently reactivity. Here we study numerically the influence of the organization of porous volumes within diffusive porosity zones on different reactions. We couple a mobile-immobile transport model where an advective zone exchanges with diffusive zones of variable structure to the geochemical modeling software PHREEQC. We focus on two kinetically-controlled reactions, a linear sorption and a nonlinear dissolution of a mineral. We show that in both cases the structure of the immobile zones has an important impact on the overall reaction rates. Through the Multi-Rate Mass Transfer (MRMT) framework, we show that this impact is very well captured by residence times-based models for the kinetic linear sorption, as it is mathematically equivalent to a modification of the initial diffusive structure; Consequently, the overall reaction rate could be easily extrapolated from a conservative tracer experiment. The MRMT models however struggle to reproduce the non-linearity and the threshold effects associated with the kinetic dissolution. A slower reaction, by allowing more time for diffusion to smooth out the concentration gradients, tends to increase their relevance. Figure: Left: Representation of a mobile-immobile model with a complex immobile architecture. The mobile zone is indicated by an arrow. Right: Total remaining mass of mineral in mobile-immobile models and in their equivalent MRMT models during a flush by a highly under-saturated solution. The models only differ by the organization of their immobile porous volumes.

  18. Neuromuscular Electrical Stimulation for Mobility Support of Elderly

    PubMed Central

    2015-01-01

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within “MOBIL” we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  19. Nd3+ and Yb3+ doped phosphate glass waveguides fabricated using electric field assisted Ag+ diffusion

    SciTech Connect

    Patel, F.D.; Honea, E.C.; Krol, D.; Payne, S.A.; Hayden, J.S.

    1997-12-17

    Solid-state waveguide lasers offer several attractive features that may make high efficiency and effective thermal management possible. Due to the ability to confine pump light to high intensity over distances much longer than the Rayleigh range, as well as maintaining good overlap between the pump and Iasing modes over the entire guiding region, effcient operation with high slope efficiency should be possible, even for quasi-three level laser systems. Since the waveguide region is typically only a few microns of thickness, heat can be extracted efficiently from the structure. The effects of heating are of less significance than in bulk solid-state lasers because mode confinement is maintained by an index of refraction difference, usually much larger than tnat induced by dn/dT or stress-optic effects. Rare earth doped waveguide laser action has been reported in numerous papers [14]. The processes for fabricating waveguides include film deposition methods such as epitaxial growth, RF sputtering, and most recently, thermal bonding of precision finished crystals [5]. In addition, ion implantation, ion exchange in a molten salt and electric field assisted solid film diffusion [6] have been utilized. The ion exchange method remains the simplest, particularly for many common laser glasses that already have mobile ions, and has received considerable attention in recent years. An excellent review is found in reference [7]. Our work has focused on developing process conditions for the fabrication of waveguides in phosphate laser glasses using solid silver film diffusion. These processes are important in determining the overall structure and properties of the guiding region, such as propagation loss, modal profile, and modal overlap between the pump and laser wavelengths. Phosphate laser glass was chosen as the solid state laser medium due to the useful spectroscopic properties of rare earth ions in these materials, as well as the range of material properties and

  20. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    SciTech Connect

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; Jerauld, Gary R.

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to the transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.

  1. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  2. Self-report of physical symptoms associated with using mobile phones and other electrical devices.

    PubMed

    Korpinen, Leena H; Pääkkönen, Rauno J

    2009-09-01

    The aim of our work was to study the working-age population's self-reported physical symptoms associated with using mobile phones and other electrical devices. A qualitative method was applied using an open-ended question in a questionnaire, which included questions about the possible influence of new technical equipment on health. We then created subgroups of respondents for different self-reported symptoms associated with mobile phones and other electrical devices. The research questions were: (1) how the respondents described physical symptoms associated with using mobile phones and other electrical devices and (2) how the answers can be classified into subgroups based on symptoms or devices. We identified the following categories: (1) respondents with different self-reported symptoms which they associated with using mobile phones (headache, earache, or warmth sensations), (2) respondents who had skin symptoms when they stayed in front of a computer screen, (3) respondents who mentioned physical symptoms associated with using mobile phones and other electrical devices. Total prevalence of self-reported physical symptoms associated with using mobile phones and other electrical devices (categories 1 and 2) was 0.7%. In the future it will be possible to obtain new knowledge of these topics by using qualitative methods.

  3. Electric and magnetic radial diffusion coefficients using the Van Allen probes data

    NASA Astrophysics Data System (ADS)

    Ali, Ashar F.; Malaspina, David M.; Elkington, Scot R.; Jaynes, Allison N.; Chan, Anthony A.; Wygant, John; Kletzing, Craig A.

    2016-10-01

    ULF waves are a common occurrence in the inner magnetosphere and they contribute to particle motion, significantly, at times. We used the magnetic and the electric field data from the Electric and Magnetic Field Instrument Suite and Integrated Sciences (EMFISIS) and the Electric Field and Waves instruments (EFW) on board the Van Allen Probes to estimate the ULF wave power in the compressional component of the magnetic field and the azimuthal component of the electric field, respectively. Using L∗, Kp, and magnetic local time (MLT) as parameters, we conclude that the noon sector contains higher ULF Pc-5 wave power compared with the other MLT sectors. The dawn, dusk, and midnight sectors have no statistically significant difference between them. The drift-averaged power spectral densities are used to derive the magnetic and the electric component of the radial diffusion coefficient. Both components exhibit little to no energy dependence, resulting in simple analytic models for both components. More importantly, the electric component is larger than the magnetic component by one to two orders of magnitude for almost all L∗ and Kp; thus, the electric field perturbations are more effective in driving radial diffusion of charged particles in the inner magnetosphere. We also present a comparison of the Van Allen Probes radial diffusion coefficients, including the error estimates, with some of the previous published results. This allows us to gauge the large amount of uncertainty present in such estimates.

  4. Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-Doped Lanthanum Manganites

    NASA Astrophysics Data System (ADS)

    Yasuda, Isamu; Hishinuma, Masakazu

    1996-05-01

    Electrical conductivity and chemical diffusion coefficient of Sr-doped lanthanum manganites, La 1- xSr xMnO 3±δ( x= 0.05 - 0.20), were measured by the dc four-probe technique and relaxation type experiments where a sudden change of oxygen chemical potential was imposed on the pre-equilibrated sample and the change of electrical conductivity was followed as a function of elapsed time. A defect model is proposed to elucidate the oxygen partial pressure dependence of the measured conductivity and the reported oxygen nonstoichiometry. The transient conductivity behavior after an abrupt change of oxygen partial pressure was successfully described by a diffusion model with consideration of partial control by surface reaction. The determined chemical diffusion coefficients, of the order of 10 -5to 10 -4cm 2s -1at 1000°C, increased with decreased oxygen partial pressure due to the thermodynamic enhancement effect. Using the enhancement factor estimated by combination of the proposed defect model and the ambipolar diffusion theory, the oxygen vacancy diffusion coefficients were derived. High vacancy diffusivity comparable to that of Fe- or Co-based perovskites predicts fast oxide ion diffusion under conditions where the manganites show oxygen deficient type non-stoichiometry.

  5. On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential.

    PubMed

    Lai, W M; Mow, V C; Sun, D D; Ateshian, G A

    2000-08-01

    The main objective of this study is to determine the nature of electric fields inside articular cartilage while accounting for the effects of both streaming potential and diffusion potential. Specifically, we solve two tissue mechano-electrochemical problems using the triphasic theories developed by Lai et al. (1991, ASME J. Biomech Eng., 113, pp. 245-258) and Gu et al. (1998, ASME J. Biomech. Eng., 120, pp. 169-180) (1) the steady one-dimensional permeation problem; and (2) the transient one-dimensional ramped-displacement, confined-compression, stress-relaxation problem (both in an open circuit condition) so as to be able to calculate the compressive strain, the electric potential, and the fixed charged density (FCD) inside cartilage. Our calculations show that in these two technically important problems, the diffusion potential effects compete against the flow-induced kinetic effects (streaming potential) for dominance of the electric potential inside the tissue. For softer tissues of similar FCD (i.e., lower aggregate modulus), the diffusion potential effects are enhanced when the tissue is being compressed (i.e., increasing its FCD in a nonuniform manner) either by direct compression or by drag-induced compaction; indeed, the diffusion potential effect may dominate over the streaming potential effect. The polarity of the electric potential field is in the same direction of interstitial fluid flow when streaming potential dominates, and in the opposite direction of fluid flow when diffusion potential dominates. For physiologically realistic articular cartilage material parameters, the polarity of electric potential across the tissue on the outside (surface to surface) may be opposite to the polarity across the tissue on the inside (surface to surface). Since the electromechanical signals that chondrocytes perceive in situ are the stresses, strains, pressures and the electric field generated inside the extracellular matrix when the tissue is deformed, the

  6. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  7. Redistribution of mobile surface charges of an oil droplet in water in applied electric field.

    PubMed

    Li, Mengqi; Li, Dongqing

    2016-10-01

    Most researches on oil droplets immersed in aqueous solutions assume that the surface charges of oil droplets are, similar to that of solid particles, immobile and distributed uniformly under external electric field. However, the surface charges at the liquid-liquid interface are mobile and will redistribute under external electric field. This paper studies the redistribution of surface charges on an oil droplet under the influence of the external electrical field. Analytical expressions of the local zeta potential on the surface of an oil droplet after the charge redistribution in a uniform electrical field were derived. The effects of the initial zeta potential, droplet radius and strength of applied electric field on the surface charge redistribution were studied. In analogy to the mobile surface charges, the redistribution of Al2O3-passivated aluminum nanoparticles on the oil droplet surface was observed under applied electrical field. Experimental results showed that these nanoparticles moved and accumulated towards one side of the oil droplet under electric field. The redistribution of the nanoparticles is in qualitative agreement with the redistribution model of the mobile surface charges developed in this work.

  8. Progress in utilization of a mobile laboratory for making storm electricity measurements

    NASA Technical Reports Server (NTRS)

    Rust, W. David

    1988-01-01

    A mobile atmospheric science laboratory has been used to intercept and track storms on the Great Plains region of the U.S., with the intention of combining the data obtained with those from Doppler and conventional radars, NASA U-2 aircraft overflights, balloon soundings, and fixed-base storm electricity measurements. The mobile lab has proven to be valuable in the gathering of ground truth verifications for the two commercially operated lightning ground-strike locating systems. Data acquisition has recently been expanded by means of mobile ballooning before and during storms.

  9. An electrical conductivity method for measuring the effects of additives on effective diffusivities in Portland cement pastes

    SciTech Connect

    Kyi, A.A. ); Batchelor, B. . Civil Engineering)

    1994-01-01

    Effective diffusivities are important in describing corrosion and leaching of contaminants in cementitious systems. An electrical conductivity procedure has been used to measure the effective diffusivities of compounds in cementitious systems containing the additives fly ash, silica fume, sodium silicate and bentonite. Silica fume was the most effective additive in reducing the effective diffusivity, but fly ash was the most cost effective. Diffusivities that have been measured with techniques that rely on flux of a compound through the solid were generally lower than those measured with the electrical conductivity procedure. Porosity and bulk density are not well correlated with effective diffusivity in systems containing additives.

  10. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  11. Electric field structure inside the secondary island in the reconnection diffusion region

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Deng, X. H.; Huang, S. Y.

    2012-04-01

    Secondary islands have recently been intensively studied because of their essential role in dissipating energy during reconnection. Secondary islands generally form by tearing instability in a stretched current sheet, with or without guide field. In this article, we study the electric field structure inside a secondary island in the diffusion region using large-scale two-and-half dimensional particle-in-cell (PIC) simulation. Intense in-plane electric fields, which point toward the center of the island, form inside the secondary island. The magnitudes of the in-plane electric fields Ex and Ez inside the island are much larger than those outside the island in the surrounding diffusion region. The maximum magnitudes of the fields are about three times the B0VA, where B0 is the asymptotic magnetic field strength and VA is the Alfvén speed based on B0 and the initial current sheet density. Our results could explain the intense electric field (~100 mV/m) inside the secondary island observed in the Earth's magnetosphere. The electric field Ex inside the secondary island is primarily balanced by the Hall term (j × B)/ne, while Ez is balanced by a combination of (j × B)/ne, -(vi × B), and the divergence of electron pressure tensor, with (j × B)/ne term being dominant. This large Hall electric field is due to the large out-of-plane current density jy inside the island, which consists mainly of accelerated electrons forming a strong bulk flow in the -y direction. The electric field Ey shows a bipolar structure across the island, with negative Ey corresponding to negative Bz and positive Ey corresponding to positive Bz. It is balanced by (j × B)/ne and the convective electric field. There are significant parallel electric fields, forming a quadrupolar structure inside the island, with maximum amplitude of about 0.3B0VA.

  12. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    NASA Astrophysics Data System (ADS)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  13. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization

    PubMed Central

    Bueno-Orovio, Alfonso; Kay, David; Grau, Vicente; Rodriguez, Blanca; Burrage, Kevin

    2014-01-01

    Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media. PMID:24920109

  14. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  15. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    SciTech Connect

    Mirigian, Stephen E-mail: smirigian@gmail.com; Schweizer, Kenneth S. E-mail: smirigian@gmail.com

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  16. Modeling ion exchange in glass with concentration-dependent diffusion coefficients and mobilities

    NASA Astrophysics Data System (ADS)

    Lupascu, Alexandru I.; Kevorkian, Antoine P.; Boudet, Thierry; Saint-Andre, Francoise; Persegol, Dominique; Levy, Michel

    1996-06-01

    Multimode buried waveguides made in silicate glass by field-assisted ion exchange present very asymmetric profiles. We show how this phenomenon originates in the large dependence of the kinetics on the local ion concentrations. For this purpose, we derive an interdiffusion equation that includes the effects of concentration-dependent diffusion coefficients and mobilities. We show how to deduce this dependence from measurements on ion- diffused samples. The maximum concentration of the incoming ions is computed from surface equilibrium conditions and is used in the interdiffusion equation as a limiting parameter for coefficient variations. To control the model accuracy for surface as well as buried waveguides, we measure ion profiles with three independent methods: M-lines, scanning electron microscopy, and near-field refractometry. When applied to Ag+-Na+ exchange in silicate glass, the model yields theoretical estimations in good agreement with experiments. This approach underlines the fundamentally nonlinear process that takes place during ion exchange and is also valuable to properly model singlemode waveguide fabrication.

  17. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    SciTech Connect

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    2015-10-07

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.

  18. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-01

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  19. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure.

    PubMed

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-03

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  20. Diffusion in phthalocyanine thin film layers: study by AES, EELS, EPES and electrical measurements

    NASA Astrophysics Data System (ADS)

    Gamoudi, M.; El Beqqali, O.; Benkaddour, M.; Sadoun, M. Al; Guillaud, G.; Miloua, F.; Khelifa, B.; El Ourzaz, L.; Jardin, C.

    1991-12-01

    Diffusion studies are necessary to the feasibility of molecular pn junctions. Electrical and spectroscopic measurements have been done in two superimposed phthalocyanine thin layers: Zinc phthaiocyanine (PcZn) (p material) and Lutetium bisphthalocyanine (PC2Lu) (n material). These measurements are in a good agreement. In spite of the very large dimensions of these molecules, diffusion and doping of PcZn by PC2Lu occur. Moreover, elastic peak electron spectroscopy (EPES) seems more available than Auger electron spectroscopy (AES) to follow the diffusion in such samples. Les études de diffusion sont nécessaires pour utiliser pratiquement les semiconducteurs organiques en particulier pour la réalisation de jonctions pn. Des mesures électriques et spectroscopiques ont été faites sur des couches minces de phtalocyanines superposées : phtalocyanine de Zinc(PcZn) (matériau de type p) et bisphtalocyanine de Lutetium (PC2Lu) (matériau de type n). L'ensemble de ces mesures est en bon accord, la diffusion et le dopage de PcZn par PC2Lu se produisent malgré la taille importante de ces molécules. De plus la spectroscopie de pic élastique (EPES) semble être plus adaptée à ces mesures que la spectroscopie d'électrons Auger (AES) pour suivre la diffusion dans ces échantillons.

  1. Theoretical model for the heat diffusion in an electrically calibrated laser power meter

    NASA Astrophysics Data System (ADS)

    Sporea, Dan G.; Miron, Nicolae; Dumitru, Gabriel; Timus, Bogdan

    1995-09-01

    The theoretical model for the heat diffusion in the case of a high power IR electrically calibrated laser powermeter, developed at the Institute for Atomic Physics in Bucharest, is presented. The IR laser beam falls onto a laser detector, a special design copper disc wafer which absorbs the laser beam, heats its center. A daisy-chain of thermocouple elements having one set of junctions thermally connected to the central region of the disc and the other ones to the disc's boundary is used to detect temperature rise induced by the exposure to the laser beam. For calibration, the copper disc is electrically heated and the electric power that produces the same temperature rise as one induced by an incident laser beam, should equal the laser beam power. The electric heater is designed to provide a uniform heating of the copper disc. The solution for heat diffusion equation was searched as a series of Bessel functions of zero order, the cold junction's temperature was imposed as boundary condition and the heat induced by the laser beam in the disc's center was regarded as input data. To find the correct solutions, there must be taken into account the designing elements of the copper disc: termic material's properties (caloric capacity, termic conductibility), laser detector's geometry, copper's density. The electric power for calibration was injected using a precision power injection circuit which allows a stability of the calibration power, better than 0.1%.

  2. Electric Current Enhanced Point Defect Mobility in Ni3Ti Intermetallic

    SciTech Connect

    Anselmi-Tamburini, U; Asoka-Kumar, P; Garay, J E; Munir, Z A; Glade, S C

    2004-02-05

    The effect of the application of a DC current on the annealing of point defects in Ni{sub 3}Ti was investigated by positron annihilation spectroscopy (PAS). An increased rate of point defect annealing is observed under the influence of a current and is attributed to a 24% decrease in the mobility activation energy. The results are interpreted in terms of the electron wind effect and the complex nature of diffusion in ordered intermetallic phases. This work represents the first direct evidence of the role of the current on the mobility of point defects in intermetallic systems.

  3. Electronic transport in a model tetraphenylbenzidine main-chain polymer: Direct comparison of time-of-flight hole drift mobility and electrochemical determinations of hole diffusion

    NASA Astrophysics Data System (ADS)

    Abkowitz, M. A.; Facci, J. S.; Limburg, W. W.; Yanus, J. F.

    1992-09-01

    Electronic transport behavior is analyzed in a model polytetraphenylbenzidine (PTPB) hole transport polymer in which electroactive tetraphenylbenzidine sites are covalently bonded within the polymer main chain. Time-of-flight (TOF) techniques are used to measure the hole drift mobility as a function of electric field and temperature. The TOF data are parametrized using the phenomenological model originally proposed by Gill. For comparative purposes, the disorder model developed by the Marburg group is also used to analyze the data. Transport of holes in PTPB is demonstrated to occur via hopping among the TPB functional units. A pattern of convoluted field and temperature-dependent features, now known to be shared by a broad class of disordered molecular materials, is revealed by the TOF data. Thin solid film electrochemical techniques are applied in parallel with the TOF technique to independently obtain hole diffusion coefficients (Dh) in thin films of PTPB. As a unique consequence of this comparison, it is established that mobilities, computed from solid-state hole diffusion data using the Einstein relation, converge with zero-field extrapolated TOF mobilities over a wide temperature range when the extrapolation is computed from log μ vs E1/2 plots. Therefore, the functional dependence of the logarithm of the drift mobility on the square root of field, a much discussed general feature of electronic transport in disordered molecular materials, is demonstrated to persist through the critical low-field limit. At the same time it is demonstrated that the contribution of thermally driven diffusive broadening, which can now be calculated directly from the independently determined electrochemical hole diffusion coefficients, makes an insignificant contribution to the experimentally observed width of the time-of-flight transit pulse. A comparison of the PTPB data with analogous TOF data on solid solutions of TPD (the functional unit in PTPB) dispersed in polycarbonate

  4. Reliability and Validity Study of the Mobile Learning Adoption Scale Developed Based on the Diffusion of Innovations Theory

    ERIC Educational Resources Information Center

    Celik, Ismail; Sahin, Ismail; Aydin, Mustafa

    2014-01-01

    In this study, a mobile learning adoption scale (MLAS) was developed on the basis of Rogers' (2003) Diffusion of Innovations Theory. The scale that was developed consists of four sections. These sections are as follows: Stages in the innovation-decision process, Types of m-learning decision, Innovativeness level and attributes of m-learning.…

  5. Reliability and Validity Study of the Mobile Learning Adoption Scale Developed Based on the Diffusion of Innovations Theory

    ERIC Educational Resources Information Center

    Celik, Ismail; Sahin, Ismail; Aydin, Mustafa

    2014-01-01

    In this study, a mobile learning adoption scale (MLAS) was developed on the basis of Rogers' (2003) Diffusion of Innovations Theory. The scale that was developed consists of four sections. These sections are as follows: Stages in the innovation-decision process, Types of m-learning decision, Innovativeness level and attributes of m-learning. There…

  6. Electrical control of Co/Ni magnetism adjacent to gate oxides with low oxygen ion mobility

    SciTech Connect

    Yan, Y. N.; Zhou, X. J.; Li, F.; Cui, B.; Wang, Y. Y.; Wang, G. Y.; Pan, F.; Song, C.

    2015-09-21

    We investigate the electrical manipulation of Co/Ni magnetization through a combination of ionic liquid and oxide gating, where HfO{sub 2} with a low O{sup 2−} ion mobility is employed. A limited oxidation-reduction process at the metal/HfO{sub 2} interface can be induced by large electric field, which can greatly affect the saturated magnetization and Curie temperature of Co/Ni bilayer. Besides the oxidation/reduction process, first-principles calculations show that the variation of d electrons is also responsible for the magnetization variation. Our work discloses the role of gate oxides with a relatively low O{sup 2−} ion mobility in electrical control of magnetism, and might pave the way for the magneto-ionic memory with low power consumption and high endurance performance.

  7. Cell stimulation and calcium mobilization by picosecond electric pulses.

    PubMed

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H; Pakhomov, Andrei G

    2015-10-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca(2+) was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca(2+) in both GH3 (by 114 ± 48 nM) and NG108 cells (by 6 ± 1.1 nM). Trains of 100 psEP amplified the response to 379 ± 33 nM and 719 ± 315 nM, respectively. Ca(2+) responses peaked within 2-15s and recovered for over 100 s; they were 80-100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na(+) with N-methyl-D-glucamine. There was no response to psEP in Ca(2+)-free medium, but adding external Ca(2+) even 10s later evoked Ca(2+) response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 K per psEP), or membrane depolarization by opening of VG Na(+) channels.

  8. Cell stimulation and calcium mobilization by picosecond electric pulses

    PubMed Central

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H.; Pakhomov, Andrei G.

    2015-01-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca2+ was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca2+ in both GH3 (by 114+/−48 nM) and NG108 cells (by 6 +/−1.1 nM). Trains of 100 psEP amplified the response to 379+/−33 nM and 719+/−315 nM, respectively. Ca2+ responses peaked within 2–15 s and recovered for over 100 s; they were 80–100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na+ with N-methyl-D-glucamine. There was no response to psEP in Ca2+-free medium, but adding external Ca2+ even 10 s later evoked Ca2+ response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 °K per psEP), or membrane depolarization by opening of VG Na+ channels. PMID:26011130

  9. A study of rock matrix diffusion properties by electrical conductivity measurements

    SciTech Connect

    Ohlsson, Y.; Neretnieks, I.

    1999-07-01

    Traditional rock matrix diffusion experiments on crystalline rock are very time consuming due to the low porosity and extensive analysis requirements. Electrical conductivity measurements are, on the other hand, very fast and larger samples can be used than are practical in ordinary diffusion experiments. The effective diffusivity of a non-charged molecule is readily evaluated from the measurements, and influences from surface conductivity on diffusion of cations can be studied. A large number of samples of varying thickness can be measured within a short period, and the changes in transport properties with position in a rock core can be examined. In this study the formation factor of a large number of Aespoe diorite samples is determined by electrical conductivity measurements. The formation factor is a geometric factor defined as the ratio between the effective diffusivity of a non-charged molecule, to that of the same molecule in free liquid. The variation of this factor with position among a borecore and with sample length, and its coupling to the porosity of the sample is studied. Also the surface conductivity is studied. This was determined as the residual conductivity after leaching of the pore solution ions. The formation factor of most of the samples is in the range 1E-5 to 1E-4, with a mean value of about 5E-5. Even large samples (4--13 cm) give such values. The formation factor increases with increasing porosity and the change in both formation factor and porosity with position in the borecore can be large, even for samples close to each other. The surface conductivity increases with increasing formation factor for the various samples but the influence on the pore diffusion seems to be higher for samples of lower formation factor. This suggests that the relation between the pore surface area and the pore volume is larger for samples of low formation factor.

  10. Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite

    NASA Astrophysics Data System (ADS)

    Glaus, M. A.; Aertsens, M.; Appelo, C. A. J.; Kupcik, T.; Maes, N.; Van Laer, L.; Van Loon, L. R.

    2015-09-01

    Enhanced mass transfer rates have been frequently observed in diffusion studies with alkaline and earth alkaline elements in compacted clay minerals and clay rocks. Whether this phenomenon - often termed surface diffusion - is also relevant for more strongly sorbing species is an open question. We therefore investigated the diffusion of Sr2+, Co2+ and Zn2+ in compacted illite with respect to variations of the concentration of the background electrolyte, pH and carbonate. New experimental techniques were developed in order to avoid artefacts stemming from the confinement of the clay sample. A distinct dependence of the effective diffusion coefficients on the concentration of the background electrolyte was observed for all three elements. A similar correlation was found for the sorption distribution ratio (Rd) derived from tracer breakthrough in the case of Sr2+, while this dependence was much weaker for Co2+ and Zn2+. Model calculations using Phreeqc resulted in a good agreement with the experimental data when it was assumed that the cationic species, present in the electrical double layer (EDL) of the charged clay surface, are mobile. Species bound to the specific surface complexation sites at the clay edges were assumed to be immobile. An assessment of the mobility of the type of cationic elements studied here in argillaceous media thus requires an analysis of their distribution among specifically sorbed surface species and species in the EDL. The normal approach of deriving unknown effective diffusion coefficients from reference values of an uncharged water tracer may significantly underestimate the mobility of metal cations in argillaceous media.

  11. Primary and secondary use of electric mobility batteries from a life cycle perspective

    NASA Astrophysics Data System (ADS)

    Faria, Ricardo; Marques, Pedro; Garcia, Rita; Moura, Pedro; Freire, Fausto; Delgado, Joaquim; de Almeida, Aníbal T.

    2014-09-01

    With age and cycling, batteries used in Electric Vehicles (EVs) will reach a point in which they will no longer be suitable for electric mobility; however, they still can be used in stationary energy storage. This article aims at assessing the Life-Cycle (LC) environmental impacts associated with the use of a battery in an EV and secondly, at assessing the LC environmental impacts/benefits of using a battery, no longer suitable for electric mobility, for energy storage in a household. Three electricity mixes with different shares of renewable, nuclear and fossil energy sources are considered. For the primary battery use, three in-vehicle use scenarios are assessed, addressing three different driving profiles. For the secondary use, two scenarios of energy storage strategies are analyzed: peak shaving and load shifting. Results show that a light use of the battery in the EV has 42-50% less impacts per km than an intensive use. After its use in the vehicle, the battery life can be extended by 1.8-3.3 years; however, this is not always beneficial from an environmental point of view, since the impacts are strongly dependent on the electricity generation mix and on the additional efficiency losses in the battery.

  12. Design Of An Electrical Flywheel For Surge Power Applications In Mobile Robots

    NASA Astrophysics Data System (ADS)

    Wright, David D.

    1987-01-01

    An energy boost system based on a flywheel has been designed to supply the surge power needs of mobile robots for operating equipment like transmitters, drills, manipulator arms, mobility augmenters, and etc. This flywheel increases the average power available from a battery, fuel cell, generator, RPG or solar array by one or more orders of magnitude for short periods. Flywheels can be charged and discharged for thousands of battery lifetimes. Flywheels can deliver more than ten times the power per unit weight of batteries. The electromechanical details of a reliable, energy efficient and (relatively) low cost flywheel are described. This flywheel is the combination of a highly efficient brushless motor and a laminated steel rotor operating in an hermetically sealed container with only electrical input and output. This design approach overcomes the inefficiencies generally associated with mechanically geared devices. Electrical round trip efficiency is 94% under optimum operating conditions.

  13. Mobile phone use among motorcyclists and electric bike riders: A case study of Hanoi, Vietnam.

    PubMed

    Truong, Long T; Nguyen, Hang T T; De Gruyter, Chris

    2016-06-01

    Motorcyclist injuries and fatalities are a major concern of many developing countries. In Vietnam, motorcycles are involved in more than 70% of all road traffic crashes. This paper aims to explore the prevalence and factors associated with mobile phone use among motorcyclists and electric bike riders, using a case study of Hanoi, Vietnam. A cross-sectional observation survey was undertaken at 12 sites, in which each site was surveyed during a two-hour peak period from 16:30 to 18:30 for two weekdays and one weekend day. A total of 26,360 riders were observed, consisting of 24,759 motorcyclists and 1601 electric bike riders. The overall prevalence of mobile phone use while riding was 8.4% (95% CI: 8.06-8.74%) with calling having higher prevalence than screen operation: 4.64% (95% CI: 4.39-4.90%) vs. 3.76% (95% CI: 3.52-3.99%) respectively. Moreover, the prevalence of mobile phone use was higher among motorcyclists than electric bike riders: 8.66% (95%CI: 8.30-9.01%) vs. 4.43% (95% CI: 3.40-5.47%) respectively. Logistic regression analyses revealed that mobile phone use while riding was associated with vehicle type, age, gender, riding alone, weather, day of week, proximity to city centre, number of lanes, separate car lanes, red traffic light duration, and police presence. Combining greater enforcement of existing legislations with extensive education and publicity programs is recommended to reduce potential deaths and injuries related to the use of mobile phones while riding.

  14. Self-diffusion measurements by a mobile single-sided NMR sensor with improved magnetic field gradient.

    PubMed

    Rata, D G; Casanova, F; Perlo, J; Demco, D E; Blümich, B

    2006-06-01

    A simple and fast method of measuring self-diffusion coefficients of protonated systems with a mobile single-sided NMR sensor is discussed. The NMR sensor uses a magnet geometry that generates a highly flat sensitive volume where a strong and highly uniform static magnetic field gradient is defined. Self-diffusion coefficients were measured by Hahn- and stimulated echoes detected in the presence of the uniform magnetic field gradient of the static field. To improve the sensitivity of these experiments, a Carr-Purcell-Meiboom-Gill pulse sequence was applied after the main diffusion-encoding period. By adding the echo train the experimental time was strongly shortened, allowing the measurement of complete diffusion curves in less than 1min. This method has been tested by measuring the self-diffusion coefficients D of various organic solvents and poly(dimethylsiloxane) samples with different molar masses. Diffusion coefficients were also measured for n-hexane absorbed at saturation in natural rubber with different cross-link densities. The results show a dependence on the concentration that is in good agreement with the theoretical prediction. Moreover, the stimulated-echo sequence was successfully used to measure the diffusion coefficient as a function of the evolution time in systems with restricted diffusion. This type of experiment proves the pore geometry and gives access to the surface-to-volume ratio. It was applied to measure the diffusion of water in sandstones and sheep Achilles tendon. Thanks to the strong static gradient G(0), all diffusion coefficients could be measured without having to account for relaxation during the pulse sequence.

  15. Optical and electrical investigation of a cylindrical diffuse-discharge chamber

    SciTech Connect

    Teng, Yun; Li, Lee Cheng, Yong; Ma, Ning; Peng, Ming-yang; Liu, Ming-hai

    2015-03-15

    More and more attention has been attached to atmospheric-pressure air diffuse plasma due to its enormous potential applications. In this paper, we designed a large-scale, cylindrical diffuse-plasma chamber using wire electrodes and a repetitive nanosecond pulse generator. The plasma chamber can be completely exposed in the open air without any barrier dielectric, and the length of cylindrical plasma chamber was extensible. Using optical and electrical measurements, we investigated the effects of electrode distance, electrode length, pulse repetition frequency, and electrode angle on the uniformity of discharge space. Four discharge regions were distinguished based on different spectral characteristics. Additionally, it was found that the discharge uniformity was improved as the electrode distance decreases, but remained almost constant with the variations of electrode length and pulse repetition frequency. Both of the plasma uniformity and the power density increased significantly as the electrode angle reduced.

  16. Diffusion-driven proton exchange membrane fuel cell for converting fermenting biomass to electricity.

    PubMed

    Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R

    2015-10-01

    A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity.

  17. Electric-field-induced Labyrinthine Patterns in Ferrofluids--- A Two Dimensional Diffusion Model

    NASA Astrophysics Data System (ADS)

    Riley, Brett; Duan, Xiaodong; Luo, Weili

    2001-03-01

    A two-dimension particle diffusion equation is derived to model the observed labyrinthine patterns induced by electric fields [1]. The numerical solution of the equation was obtained and it shows patterns similar to experiment. The stripe width increases with time in both experiment and calculation. The time increase can be described by a power law with exponent of 1/3. The field-induced phase separation is attributed to the competition between the electrostatic energy and the entropy. Reference [1] Xiaodong Duan and Weili Luo, "Electric-field-induced second order phase transition in a ferrofluid," Bull. Ame. Phys. Soc. Vol. 45, P 864; Xiaodong Duan, Weili Luo, Brent Wacaser and Robert C. Davis, "Field-Induced Universal Labyrinthine Patterns in Nanocolloids." Preprint , 2000.

  18. A novel lateral diffused metal oxide semiconductor (LDMOS) by attracting the electric field Lines

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Hanaei, Mahsa

    2015-11-01

    In this paper, a novel silicon on insulator (SOI) lateral diffused metal oxide semiconductor (LDMOS) transistor with high voltage and high frequency performance is presented. In this work we try to reduce the electric field crowding in the drift region. The proposed structure consists of a metal in the buried oxide and also connected to the source. The inserted metal attracts the electric field lines in the buried oxide. It causes 67% improvement in the breakdown voltage in comparison with a conventional SOI-LDMOS (C-LDMOS). Our simulations with two dimensional ATLAS simulator show that the gate-drain capacitance improves in the proposed structure. The unilateral power gain also enhances. So, the proposed structure is suitable for high voltage and high frequency applications.

  19. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    NASA Astrophysics Data System (ADS)

    Riegler, W.

    2016-11-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of `bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  20. [A case of the fatal injury by technical electricity from a mobile device (cell phone) connected to the circuit].

    PubMed

    Rudenko, I A; Kil'dyushov, E M; Koludarova, E M; Morozov, V Yu; Fetisov, V A

    2015-01-01

    The authors report a case of the fatal injury by technical electricity from a mobile device (cell phone) attached to the circuit in a moist environment as a result of the unsafe handling of the gadget (when taking the bath).

  1. Mobility of Xe atoms within the Oxygen Diffusion Channel of Cytochrome ba3 Oxidase

    PubMed Central

    Luna, V. Mitch; Fee, James A.; Deniz, Ashok A.; Stout, C. David

    2012-01-01

    We use a form of “freeze-trap, kinetic-crystallography” to explore the migration of Xe atoms away from the dinuclear heme-a3/CuB center in Thermus thermophilus cytochrome ba3 oxidase. This enzyme is a member of the heme-copper oxidase super-family, and is thus crucial for dioxygen dependent life. The mechanisms involved in the migration of oxygen, water, electrons, and protons into and/or out of the specialized channels of the heme-copper oxidases are generally not well understood. Pressurization of crystals with Xe gas previously revealed a O2 diffusion channel in cytochrome ba3 oxidase that is continuous, Y-shaped, 18–20 Å in length and comprised of hydrophobic residues, connecting the protein surface within the bilayer to the a3-CuB center in the active site. To understand movement of gas molecules within the O2 channel, we performed crystallographic analysis of 19 Xe laden crystals freeze-trapped in liquid nitrogen at selected times between 0 and 480 seconds while undergoing out-gassing at room temperature. Variation in Xe crystallographic occupancy at five discrete sites as a function of time leads to a kinetic model revealing relative degrees of mobility of Xe atoms within the channel. Xe egress occurs primarily through the channel formed by the Xe1 → Xe5 → Xe3 → Xe4 sites, suggesting that ingress of O2 is likely to occur by the reverse of this process. The channel itself appears not to undergo significant structural changes during Xe migration, thereby indicating a passive role in this important physiological function. PMID:22607023

  2. Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System

    DTIC Science & Technology

    2009-07-30

    Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System Jarrett Goodell and...TITLE AND SUBTITLE Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System 5a...for ~ 22 ton tracked vehicle • Tested and Developed: – Motors, Generators, Batteries, Inverters, DC-DC Converters , Thermal Management, Pulse Power

  3. Electron mobilities of n-type organic semiconductors from time-dependent wavepacket diffusion method: pentacenequinone derivatives.

    PubMed

    Zhang, WeiWei; Zhong, XinXin; Zhao, Yi

    2012-11-26

    The electron mobilities of two n-type pentacenequinone derivative organic semiconductors, 5,7,12,14-tetraaza-6,13-pentacenequinone (TAPQ5) and 1,4,8,11-tetraaza-6,13-pentacenequinone (TAPQ7), are investigated with use of the methods of electronic structure and quantum dynamics. The electronic structure calculations reveal that the two key parameters for the control of electron transfer, reorganization energy and electronic coupling, are similar for these two isomerization systems, and the charge carriers essentially display one-dimensional transport properties. The mobilities are then calculated by using the time-dependent wavepacket diffusion approach in which the dynamic fluctuations of the electronic couplings are incorporated via their correlation functions obtained from molecular dynamics simulations. The predicted mobility of TAPQ7 crystal is about six times larger than that of TAPQ5 crystal. Most interestingly, Fermi's golden rule predicts the mobilities very close to those from the time-dependent wavepacket diffusion method, even though the electronic couplings are explicitly large enough to make the perturbation theory invalid. The possible reason is analyzed from the dynamic fluctuations.

  4. Pumping of electrolytes by electrical forces induced on the diffusion layer: A weakly nonlinear analysis.

    PubMed

    García-Sánchez, Pablo; Loucaides, Neophytos G; Ramos, Antonio

    2017-02-01

    Pumping of electrolytes in microchannels can be achieved with the use of microelectrodes subjected to AC potentials. Experiments have shown an influence of Faradaic currents in the pumping performance, and theoretical studies for asymmetric electrolytes suggest that induced charges in the diffusion layer play an important role. In this work we consider the case of a diffusion layer induced by an array of electrodes subjected to a traveling wave potential and we include Faradaic currents. Previous theoretical studies considered the case of very small applied voltages, which allowed for two major simplifications: (i) Butler-Volmer (B-V) equation was linearized, and (ii) the presence of gradients in ion concentration was neglected. We extend previous results and used the full nonlinear B-V equation. A comparison with the linear limit shows that the flow rate in both cases coincides for voltages around and below ≈0.25 V. For voltages larger than this, the nonlinear equations show that gradients in ion concentration appear and have an important influence, therefore, the predictions deviate from the linear model. We show that the electrical force in the diffusion layer can induce pumping either in the same or the opposite direction of the applied traveling-wave potential and it could be responsible for the reversal of the flow as observed in experiments.

  5. Pumping of electrolytes by electrical forces induced on the diffusion layer: A weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    García-Sánchez, Pablo; Loucaides, Neophytos G.; Ramos, Antonio

    2017-02-01

    Pumping of electrolytes in microchannels can be achieved with the use of microelectrodes subjected to AC potentials. Experiments have shown an influence of Faradaic currents in the pumping performance, and theoretical studies for asymmetric electrolytes suggest that induced charges in the diffusion layer play an important role. In this work we consider the case of a diffusion layer induced by an array of electrodes subjected to a traveling wave potential and we include Faradaic currents. Previous theoretical studies considered the case of very small applied voltages, which allowed for two major simplifications: (i) Butler-Volmer (B-V) equation was linearized, and (ii) the presence of gradients in ion concentration was neglected. We extend previous results and used the full nonlinear B-V equation. A comparison with the linear limit shows that the flow rate in both cases coincides for voltages around and below ≈0.25 V. For voltages larger than this, the nonlinear equations show that gradients in ion concentration appear and have an important influence, therefore, the predictions deviate from the linear model. We show that the electrical force in the diffusion layer can induce pumping either in the same or the opposite direction of the applied traveling-wave potential and it could be responsible for the reversal of the flow as observed in experiments.

  6. Mobility of nanometer-size solutes in water driven by electric field

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V.

    2016-12-01

    We investigate the mobility of nanometer-size solutes in water in a uniform external electric field. General arguments are presented to show that a closed surface cutting a volume from a polar liquid will carry an effective non-zero surface charge density when preferential orientation of dipoles exists in the interface. This effective charge will experience a non-vanishing drag in an external electric field even in the absence of free charge carriers. Numerical simulations of model solutes are used to estimate the magnitude of the surface charge density. We find it to be comparable to the values typically reported from the mobility measurements. Hydrated ions can potentially carry a significant excess of the effective charge due to over-polarization of the interface. As a result, the electrokinetic charge can significantly deviate from the physical charge of free charge carriers. We propose to test the model by manipulating the polarizability of hydrated semiconductor nanoparticles with light. The inversion of the mobility direction can be achieved by photoexcitation, which increases the nanoparticle polarizability and leads to an inversion of the dipolar orientations of water molecules in the interface.

  7. Effect of electric arc vitrification of bottom ash on the mobility and fate of metals.

    PubMed

    Ecke, H; Sakanakura, H; Matsuto, T; Tanaka, N; Lagerkvist, A

    2001-04-01

    Increasing amounts of municipal solid waste incineration (MSWI) residues are treated prior to landfilling or reuse. In Japan, electric arc melting is used for bottom ash vitrification that generates a glasslike slag. The objective of this paper was to assess this pretreatment technique with respect to its effect on metal mobility and metal content. Both bottom ash and slag were sampled and analyzed on total solids (TS), fixed solids (FS), particle density (pp), specific BET surface area, particle size distribution, and total element content. A six-step wet sequential extraction procedure was used for assessing metal mobility. The results were qualitatively verified by scanning electron microscopy. The major conclusion was that the availability of various metals was affected differently by electric arc vitrification. Metals were solidified, stabilized, and/or separated from the slag. The mobility of Cr, Cu, Zn, Pb, and Ca was reduced. In slag, majorfractions of these elements were found in moderately reducible phases or in the residual slag lattice. The approximately three-fourths of Pb [174 +/- 7 mg (kg of FS)-1] and half of Zn content [676 +/- 352 mg (kg of FS)-1] were most likely removed from bottom ash through evaporation. The total content increases of Al, Cr, Ni, and Cd (51 +/- 3, 621 +/- 27, 138 +/- 19, and 99 +/- 32%, respectively) were probably caused by the wear of furnace refractories.

  8. Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid

    NASA Astrophysics Data System (ADS)

    Sangoro, J.; Iacob, C.; Serghei, A.; Naumov, S.; Galvosas, P.; Kärger, J.; Wespe, C.; Bordusa, F.; Stoppa, A.; Hunger, J.; Buchner, R.; Kremer, F.

    2008-06-01

    Broadband dielectric and terahertz spectroscopy (10-2-10+12 Hz) are combined with pulsed field gradient nuclear magnetic resonance (PFG-NMR) to explore charge transport and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. The dielectric spectra are interpreted as superposition of high-frequency relaxation processes associated with dipolar librations and a conductivity contribution. The latter originates from hopping of charge carriers on a random spatially varying potential landscape and quantitatively fits the observed frequency and temperature dependence of the spectra. A further analysis delivers the hopping rate and enables one to deduce-using the Einstein-Smoluchowski equation-the translational diffusion coefficient of the charge carriers in quantitative agreement with PFG-NMR measurements. By that, the mobility is determined and separated from the charge carrier density; for the former, a Vogel-Fulcher-Tammann and for the latter, an Arrhenius temperature dependence is obtained. There is no indication of a mode arising from the reorientation of stable ion pairs.

  9. Measurement of minority carrier lifetime, mobility and diffusion length in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swirhun, S. E.; Swanson, R. M.

    1986-01-01

    Carrier transport and recombination parameters in heavily doped silicon were examined. Data were presented for carrier diffusivity in both p- and n-type heavily doped silicon covering a broad range of doping concentrations from 10 to the 15th power to 10 to the 20th power atoms/cu cm. One of the highlights of the results showed that minority carrier diffusivities are higher by a factor of 2 in silicon compared to majority carrier diffusivities.

  10. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells

    PubMed Central

    Reuter, Marcel; Zelensky, Alex; Smal, Ihor; Meijering, Erik; van Cappellen, Wiggert A.; de Gruiter, H. Martijn; van Belle, Gijsbert J.; van Royen, Martin E.; Houtsmuller, Adriaan B.; Essers, Jeroen; Kanaar, Roland

    2014-01-01

    Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2. PMID:25488918

  11. Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure

    PubMed Central

    Pal, Shovon; Nong, Hanond; Markmann, Sergej; Kukharchyk, Nadezhda; Valentin, Sascha R.; Scholz, Sven; Ludwig, Arne; Bock, Claudia; Kunze, Ulrich; Wieck, Andreas D.; Jukam, Nathan

    2015-01-01

    The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically switched from an uncoupled to a strongly coupled regime by tuning the ISR with epitaxially grown transparent gate. The asymmetric potential in the HEMT structure enables ultrawide electrical tuning of ISR, which is an order of magnitude higher as compared to an equivalent square well. For a single heterojunction with a triangular confinement, we achieve an avoided splitting of 0.52 THz, which is a significant fraction of the bare intersubband resonance at 2 THz. PMID:26578287

  12. Technology diffusion and environmental regulation: Evidence from electric power plants under the Clean Air Act

    NASA Astrophysics Data System (ADS)

    Frey, Elaine F.

    Even though environmental policy can greatly affect the path of technology diffusion, the economics literature contains limited empirical evidence of this relationship. My research will contribute to the available evidence by providing insight into the technology adoption decisions of electric generating firms. Since policies are often evaluated based on the incentives they provide to promote adoption of new technologies, it is important that policy makers understand the relationship between technological diffusion and regulation structure to make informed decisions. Lessons learned from this study can be used to guide future policies such as those directed to mitigate climate change. I first explore the diffusion of scrubbers, a sulfur dioxide (SO 2) abatement technology, in response to federal market-based regulations and state command-and-control regulations. I develop a simple theoretical model to describe the adoption decisions of scrubbers and use a survival model to empirically test the theoretical model. I find that power plants with strict command-and-control regulations have a high probability of installing a scrubber. These findings suggest that although market-based regulations have encouraged diffusion, many scrubbers have been installed because of state regulatory pressure. Although tradable permit systems are thought to give firms more flexibility in choosing abatement technologies, I show that interactions between a permit system and pre-existing command-and-control regulations can limit that flexibility. In a separate analysis, I explore the diffusion of combined cycle (CC) generating units, which are natural gas-fired generating units that are cleaner and more efficient than alternative generating units. I model the decision to consider adoption of a CC generating unit and the extent to which the technology is adopted in response to environmental regulations imposed on new sources of pollutants. To accomplish this, I use a zero-inflated Poisson

  13. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  14. Diffusion in liquid metal systems. [information on electrical resistivity and thermal conductivity

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1975-01-01

    Physical properties of twenty liquid metals are reported; some of the data on such liquid metal properties as density, electrical resistivity, thermal conductivity, and heat capacity are summarized in graphical form. Data on laboratory handling and safety procedure are summarized for each metal; heat-transfer-correlations for liquid metals under various conditions of laminar and turbulent flow are included. Where sufficient data were available, temperature equations of properties were obtained by the method of least-squares fit. All values of properties given are valid in the given liquid phase ranges only. Additional tabular data on some 40 metals are reported in the appendix. Included is a brief description of experiments that were performed to investigate diffusion in liquid indium-gallium systems.

  15. Simulation of diffuse-charge capacitance in electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Gersappe, Dilip

    2017-01-01

    We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson-Nernst-Planck (MPNP) equations and compared with regular Poisson-Nernst-Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.

  16. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Asempah, Isaac; Dong, Song-Tao; Yin, Pian-Pian; Jin, Lei

    2017-03-01

    It has been shown that enhanced electric field intensity (0-4.0 kV/cm) has an obvious effect on accelerating atom diffusion in Cu/Ta/Si interconnect stacks at 650 °C. The theoretical deduction proves that diffusion coefficient is accelerated proportional to an acceleration factor (1 + a·αE/0.8)2. The analysis indicates that the accelerating effect is mainly attributed to the perturbation of the electric state of the defects and enhanced vacancy and dislocation densities.

  17. Thermal relaxation, electrical conductivity, and charge diffusion in a hot QCD medium

    NASA Astrophysics Data System (ADS)

    Mitra, Sukanya; Chandra, Vinod

    2016-08-01

    The response of electromagnetic (EM) fields that are produced in noncentral heavy-ion collisions to electromagnetically charged quark gluon plasma can be understood in terms of charge transport and charge diffusion in the hot QCD medium. This article presents a perspective on these processes by investigating the temperature behavior of the related transport coefficients, viz. electrical conductivity and the charge diffusion coefficients along with charge susceptibility. In the process of estimating them, thermal relaxation times for quarks and gluons have been determined first. These transport coefficients have been studied by solving the relativistic transport equation in the Chapman-Enskog method. For the analysis, 2 →2 , quark-quark, quark-gluon and gluon-gluon scattering processes are taken into account along with an effective description of hot QCD equations of state (EOSs) in terms of temperature dependent effective fugacities of quasiquarks (antiquarks) and quasigluons. Both improved perturbative hot QCD EOSs at high temperature and a lattice QCD EOS are included for the analysis. The hot QCD medium effects entering through the quasiparticle momentum distributions along with an effective coupling, are seen to have significant impact on the temperature behavior of these transport parameters along with the thermal relaxation times for the quasigluons and quasiquarks.

  18. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models.

    PubMed

    Butson, Christopher R; Cooper, Scott E; Henderson, Jaimie M; McIntyre, Cameron C

    2006-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of movement disorders, and has shown promising results for the treatment of a wide range of other neurological disorders. However, little is known about the mechanism of action of DBS or the volume of brain tissue affected by stimulation. We have developed methods that use anatomical and diffusion tensor MRI (DTI) data to predict the volume of tissue activated (VTA) during DBS. We co-register the imaging data with detailed finite element models of the brain and stimulating electrode to enable anatomically and electrically accurate predictions of the spread of stimulation. One critical component of the model is the DTI tensor field that is used to represent the 3-dimensionally anisotropic and inhomogeneous tissue conductivity. With this system we are able to fuse structural and functional information to study a relevant clinical problem: DBS of the subthalamic nucleus for the treatment of Parkinsons disease (PD). Our results show that inclusion of the tensor field in our model caused significant differences in the size and shape of the VTA when compared to a homogeneous, isotropic tissue volume. The magnitude of these differences was proportional to the stimulation voltage. Our model predictions are validated by comparing spread of predicted activation to observed effects of oculomotor nerve stimulation in a PD patient. In turn, the 3D tissue electrical properties of the brain play an important role in regulating the spread of neural activation generated by DBS.

  19. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile Electricity" technologies and opportunities

    NASA Astrophysics Data System (ADS)

    Williams, Brett D.; Kurani, Kenneth S.

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H 2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" is characterized. Mobile Electricity (Me-) redefines H 2FCVs as innovative products able to import and export electricity across the traditional vehicle boundary. Such vehicles could provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. This study integrates and extends previous analyses of H 2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. Further, it uses a new electric-drive-vehicle and vehicular-distributed-generation model to estimate zero-emission-power versus zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. By framing market development in terms of new consumer value flowing from Me-, this study suggests a way to move beyond the battery versus fuel-cell zero-sum game and towards the development of integrated plug-in/plug-out hybrid platforms. As one possible extension of this Me- product platform, H 2FCVs might supply clean, high-power, and profitable Me- services as the technologies and markets mature.

  20. An electric scooter simulation program for training the driving skills of stroke patients with mobility problems: a pilot study.

    PubMed

    Jannink, Michiel J A; Erren-Wolters, C Victorien; de Kort, Alexander C; van der Kooij, Herman

    2008-12-01

    This paper describes an electric scooter simulation program and a first evaluation study in which we explored if it is possible to train the driving skills of future users of electric mobility scooters by means of an electric scooter simulation program in addition to conventional electric scooter training. Within this explorative study,10 stroke survivors were randomly assigned to either the control (n=5) or the electric scooter simulation intervention group (n=5). Participants were assessed twice on the functional evaluating rating scale. During the followup measurement, subjective experiences regarding both forms of electric scooter training were elicited by a questionnaire. After a training period of 5 weeks, both groups improved on the Functional Evaluation Rating Scale. It can be concluded that the patients with stroke were satisfied with the electric scooter simulation training.

  1. Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths.

    PubMed

    Yettapu, Gurivi Reddy; Talukdar, Debnath; Sarkar, Sohini; Swarnkar, Abhishek; Nag, Angshuman; Ghosh, Prasenjit; Mandal, Pankaj

    2016-08-10

    Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron-hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm(2) V(-1) s(-1)), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal quantum dot system.

  2. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices.

    PubMed

    Eichelkraut, T; Heilmann, R; Weimann, S; Stützer, S; Dreisow, F; Christodoulides, D N; Nolte, S; Szameit, A

    2013-01-01

    Within all physical disciplines, it is accepted that wave transport is predetermined by the existence of disorder. In this vein, it is known that ballistic transport is possible only when a structure is ordered, and that disorder is crucial for diffusion or (Anderson-)localization to occur. As this commonly accepted picture is based on the very foundations of quantum mechanics where Hermiticity of the Hamiltonian is naturally assumed, the question arises whether these concepts of transport hold true within the more general context of non-Hermitian systems. Here we demonstrate theoretically and experimentally that in ordered time-independent -symmetric systems, which are symmetric under space-time reflection, wave transport can undergo a sudden change from ballistic to diffusive after a specific point in time. This transition as well as the diffusive transport in general is impossible in Hermitian systems in the absence of disorder. In contrast, we find that this transition depends only on the degree of dissipation.

  3. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

    NASA Astrophysics Data System (ADS)

    Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.

    2017-03-01

    The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, predicts a noise spectrum, in accordance with the measured values.

  4. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

    DOE PAGES

    Kim, E.; Safavi-Naini, A.; Hite, D. A.; ...

    2017-03-01

    The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by detailed scanned probe microscopy and density functional theory how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. Lastly, a simple model for the diffusion noise,more » which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.« less

  5. Pd diffusion on MgO(1 0 0): The role of defects and small cluster mobility

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Henkelman, Graeme; Campbell, Charles T.; Jónsson, Hannes

    2006-03-01

    Density functional theory is used to explore the energy landscape of Pd atoms adsorbed on the terrace of MgO(1 0 0) and at oxygen vacancy sites. Saddle point finding methods reveal that small Pd clusters diffuse on the terrace in interesting ways. The monomer and dimer diffuse via single atom hops between oxygen sites with barriers of 0.34 eV and 0.43 eV respectively. The trimer and tetramer, however, form 3D clusters by overcoming a 2D-3D transition barrier of less than 60 meV. The trimer diffuses along the surface either by a walking or flipping motion, with comparable barriers of ca. 0.5 eV. The tetramer rolls along the terrace with a lower barrier of 0.42 eV. Soft rotational modes at the saddle point lead to an anomalously high prefactor of 1.3 × 10 14 s -1 for tetramer diffusion. This prefactor is two order of magnitude higher than for monomer diffusion, making the tetramer the fastest diffusing species on the terrace at all temperatures for which diffusion is active (above 200 K). Neutral oxygen vacancy sites are found to bind Pd monomers with a 2.63 eV stronger binding energy than the terrace. A second Pd atom, however, binds to this trapped monomer with a smaller energy of 0.56 eV, so that dimers at defects dissociate on a time scale of milliseconds at room temperature. Larger clusters bind more strongly at defects. Trimers and tetramers dissociate from monomer-bound-defects at elevated temperatures of ca. 600 K. These species are also mobile on the terrace, suggesting they are important for the ripening observed at ⩾600 K during Pd vapor deposition on MgO(1 0 0) by Haas et al. [G. Haas, A. Menck, H. Brune, J.V. Barth, J.A. Venables, K. Kern, Phys. Rev. B 61 (2000) 11105].

  6. Innovators in Teacher Education: Diffusing Mobile Technologies in Teacher Preparation Curriculum

    ERIC Educational Resources Information Center

    Foulger, Teresa S.; Waker, Mary L.; Burke, Diane; Hansen, Randall; Williams, Mia Kim; Slykhuis, David A.

    2013-01-01

    The purpose of this study is to establish a snapshot of the extent to which teacher educators are preparing teacher candidates to use mobile learning technologies in PK-12 classrooms, with the goal of drawing more teacher credentialing institutions into the conversations surrounding this initiative. We used a questionnaire consisting of open-ended…

  7. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  8. Magmas, Mushes and Mobility: Thermal Histories of Magma Reservoirs from Combined U-Series and Diffusion Ages

    NASA Astrophysics Data System (ADS)

    Cooper, K. M.; Rubin, A. E.; Schrecengost, K.; Kent, A. J.; Huber, C.

    2014-12-01

    The thermal conditions of magma storage control many aspects of the dynamics of a magma reservoir system. For example, the temperature of magma storage directly relates to the crystallinity, and magmas stored at relatively low temperatures in a crystal mush (more than 40-50% crystalline) must be remobilized (e.g., by heating) before they can be erupted. A better understanding of the duration of magma storage at largely-liquid vs. largely-solid conditions is thus critical to understanding crustal magmatic processes such as magma mixing and for quantifying the hazard potential of a given volcano. Although mineral thermometry reflects the conditions of crystal growth or equilibration, these may not correspond to the thermal conditions of crystal storage. The duration of crystal storage at high temperatures can be quantified by comparing U-series crystal ages with the time scales over which disequilibrium trace-element profiles in the same crystals would be erased by diffusion. In the case of Mount Hood, OR, such a comparison for the two most recent eruptions shows that <12% of the total lifetime of plagioclase crystals (minimum 21 kyr) was spent at temperatures high enough that the magma would be easily mobilized. Partial data sets for other systems suggest such behavior is common, although the diffusion and U-series ages in these cases are from different samples and may not be directly comparable. We will present preliminary data combining U-series dating and diffusion timescales on the same samples for other volcanic systems (e.g., Lassen Volcanic Center, Mount St. Helens, Okataina Volcanic Center, New Zealand). Combining these data with numerical models offers additional insights into the controls on the conditions of storage. In addition, extension of this approach to combining U-Th ages with time scales of Li diffusion in zircon offers a promising new method to quantify thermal histories of silicic reservoir systems.

  9. Mean diffusivity as a potential diffusion tensor biomarker of motor rehabilitation after electrical stimulation incorporating task specific exercise in stroke: a pilot study.

    PubMed

    Boespflug, Erin L; Storrs, Judd M; Allendorfer, Jane B; Lamy, Martine; Eliassen, James C; Page, Stephen

    2014-09-01

    Changes in diffusion tensor imaging (DTI) values co-occur with neurological and functional changes after stroke. However, quantitative DTI metrics have not been examined in response to participation in targeted rehabilitative interventions in chronic stroke. The primary purpose of this pilot study was to examine whether changes in DTI metrics co-occur with paretic arm movement changes among chronic stroke patients participating in a regimen of electrical stimulation targeting the paretic arm. Three subjects exhibiting stable arm hemiparesis were administered 30-minute (n = 1) or 120-minute (n = 2) therapy sessions emphasizing paretic arm use during valued, functional tasks and incorporating an electrical stimulation device. These sessions occurred every weekday for 8 weeks. A fourth subject served as a treatment control, participating in a 30-minute home exercise regimen without electrical stimulation every weekday for 8 weeks. DTI and behavioral outcome measures were acquired at baseline and after intervention. DTI data were analyzed using a region of interest (ROI) approach, with ROIs chosen based on tract involvement in sensorimotor function or as control regions. Behavioral outcome measures were the Fugl-Meyer Scale (FM) and the Action Research Arm Test (ARAT). The treatment control subject exhibited gains in pinch and grasp, as shown by a 5-point increase on the ARAT. The subject who participated in 30-minute therapy sessions exhibited no behavioral gains. Subjects participating in 120-minute therapy sessions displayed consistent impairment reductions and distal movement changes. DTI changes were largest in subjects two and three, with mean diffusivity (MD) decreases in the middle cerebellar peduncle and posterior limb of the internal capsule following treatment. No changes in fractional anisotropy (FA) were observed for sensorimotor tracts. Our preliminary results suggest that active rehabilitative therapies augmented by electrical stimulation may

  10. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    PubMed Central

    Ghazikhanlou-sani, K.; Firoozabadi, S. M. P.; Agha-ghazvini, L.; Mahmoodzadeh, H.

    2016-01-01

    Introduction There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690.  With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). Conclusion DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues.  It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments. PMID:27672627

  11. Mobilization

    DTIC Science & Technology

    1987-01-01

    istic and romantic emotionalism that typifies this genre. Longino, James C., et al. “A Study of World War Procurement and Industrial Mobilization...States. Harrisburg, PA: Military Service Publishing Co., 1941. CARL 355.22 J72b. Written in rough prose , this World War II era document explains the

  12. Satellite applications to electric-utility communications needs. [land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Horstein, M.; Barnett, R.

    1981-01-01

    Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.

  13. Mercury mobilization in estuarine sediment porewaters: a diffusive gel time-series study.

    PubMed

    Merritt, Karen A; Amirbahman, Aria

    2007-02-01

    To assess the lability of porewater and sediment solid-phase mercury (Hg), mercapto-substituted siloxane gels were deployed within the sediments of the Penobscot estuary in Maine. Gel deployments occurred in time series and at discrete sediment depths. A sediment distribution coefficient (K(D)) was estimated by modeling the resultant gel Hg uptake. For deployments > 1 day, depth-averaged gel Hg uptake was significantly greater at depth (Zone B 6-20 cm) than in the vicinity of the sediment-water interface (Zone A 0-5 cm), with uptake ultimately reaching 16.7 +/- 4.9 ng Hg g(-1) gel versus 35.5 +/- 3.8 ng Hg g(-1) gel for Zone A versus Zone B, respectively. For Zone A, a simple diffusive model adequately describes gel mass flux, suggesting that Hg repartitioning from the solid phase does not generate a net Hg source term within the time frame of gel deployment. For Zone B, model-determined values of K(D) (K(D) = 25-75) were considerably smaller than literature values typically based on total sediment Hg concentration. The magnitude of the modeled K(D) suggests that it is a small fraction of total sediment-sequestered Hg that is likely sensitive, via interaction with porewater ligands, to the presence of an external sink. These observations of low general Hg reactivity suggest that the net porewater Hg pool may be properly defined as a function of porewater ligand production. Such a definition highlights the importance of microbially mediated diagenesis in controlling Hg cycling within estuarine sediments.

  14. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits.

    PubMed

    Wang, Hong; Yi, Su-in; Pu, Xiong; Yu, Choongho

    2015-05-13

    Electrical conductivity and thermopower of isotropic materials typically have inversely proportional correlation because both are strongly affected in the opposite way by the electronic carrier concentration. This behavior has been one of the major hurdles in developing high-performance thermoelectrics whose figure-of-merit enhances with large thermopower and high electrical conductivity. Here we report a promising method of simultaneously improving both properties with polyaniline (PANI) composites filled by carbon nanotubes (CNTs). With addition of double-wall CNTs (DWCNTs), the electronic mobility of PANI doped with camphorsulfonic acid (PANI-CSA) was raised from ∼0.15 to ∼7.3 cm(2)/(V s) (∼50 time improvement) while the carrier concentration was decreased from ∼2.1 × 10(21) to ∼5.6 × 10(20) cm(-3) (∼4 time reduction). The larger increase of mobility increased electrical conductivity despite the carrier concentration reduction that enlarges thermopower. The improvement in the carrier mobility could be attributed to the band alignment that attracts hole carriers to CNTs whose mobility is much higher than that of PANI-CSA. The electrical conductivity of the PANI-CSA composites with 30-wt % DWCNTs was measured to be ∼610 S/cm with a thermopower value of ∼61 μV/K at room temperature, resulting in a power factor value of ∼220 μW/(m K(2)), which is more than two orders higher than that of PANI-CSA as well as the highest among those of the previously reported PANI composites. Further study may result in high performance thermoelectric organic composites uniquely offering mechanical flexibility, light weight, low toxicity, and easy manufacturing. unlike conventional inorganic semiconductors.

  15. The effects of mobile-phone electromagnetic fields on brain electrical activity: a critical analysis of the literature.

    PubMed

    Marino, Andrew A; Carrubba, Simona

    2009-01-01

    We analyzed the reports in which human brain electrical activity was compared between the presence and absence of radio-frequency and low-frequency electromagnetic fields (EMFs) from mobile phones, or between pre- and post-exposure to the EMFs. Of 55 reports, 37 claimed and 18 denied an EMF-induced effect on either the baseline electro encephalogram (EEG), or on cognitive processing of visual or auditory stimuli as reflected in changes in event-related potentials. The positive reports did not adequately consider the family-wise error rate, the presence of spike artifacts in the EEG, or the confounding role of the two different EMFs. The negative reports contained neither positive controls nor power analyses. Almost all reports were based on the incorrect assumption that the brain was in equilibrium with its surroundings. Overall, the doubt regarding the existence of reproducible mobile-phone EMFs on brain activity created by the reports appeared to legitimate the knowledge claims of the mobile-phone industry. However, it funded, partly or wholly, at least 87% of the reports. From an analysis of their cognitive framework, the common use of disclaimers, the absence of information concerning conflicts of interest, and the industry's donations to the principal EMF journal, we inferred that the doubt was manufactured by the industry. The crucial scientific question of the pathophysiology of mobile-phone EMFs as reflected in measurements of brain electrical activity remains unanswered, and essentially unaddressed.

  16. Precise determination of nonlinear function of ion mobility for explosives and drugs at high electric fields for microchip FAIMS.

    PubMed

    Guo, Dapeng; Wang, Yonghuan; Li, Lingfeng; Wang, Xiaozhi; Luo, Jikui

    2015-01-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions by utilizing the characteristics of nonlinear ion mobility at high and low electric fields. Accurate ion discrimination depends on the precise solution of nonlinear relationships and is essential for accurate identification of ion species for applications. So far, all the nonlinear relationships of ion mobility obtained are based at low electric fields (E/N <65 Td). Microchip FAIMS (μ-FAIMS) with small dimensions has high electric field up to E/N = 250 Td, making the approximation methods and conclusions for nonlinear relationships inappropriate for these systems. In this paper, we deduced nonlinear functions based on the first principle and a general model. Furthermore we considered the hydrodynamics of gas flow through microchannels. We then calculated the specific alpha coefficients for cocaine, morphine, HMX, TNT and RDX, respectively, based on their FAIMS spectra measured by μ-FAIMS system at ultra-high fields up to 250 Td. The results show that there is no difference in nonlinear alpha functions obtained by the approximation and new method at low field (<120 Td), but the error induced by using approximation method increases monotonically with the increase in field, and could be as much as 30% at a field of 250 Td.

  17. Diffusion zone between high-chromium cast iron and high-manganese steel during electric-slag facing

    SciTech Connect

    Ponomarenko, V.P.; Shvartser, A.Y.; Stroganova, G.V.

    1986-05-01

    The authors investigate extending the service lives of components by the method of electric-slag facing of working surfaces. Steel 45 was used in the annealed state. Electric-slag remelting was the method used to determine the bending strength. Metallographic examinations were conducted under an MIM-8m microscope, while x-ray analysis of the built-up and base metals were performed on a DRON-2 diffractometer. BAsic alloying elements, chromium and manganese were studied on a ''Cameca MS-46'' microanalyzer. During the electri-slag facing of a high-chromium cast iron containing 8% of Mn on high-manganese steel 11OG13L diffusion equalization of the manganese content occurs in the fusion zone. Diffusion displacement of carbon, chromium, and manganese from high-chromium cast iron into the high-manganese steel during electric-slag facing gies rise to a smooth change in the structure of the metal in the fusion zone, and to increased strength of the joint between the unlike materials investigated.

  18. Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components

    NASA Astrophysics Data System (ADS)

    Inoue, Gen; Yokoyama, Kouji; Ooyama, Junpei; Terao, Takeshi; Tokunaga, Tomomi; Kubo, Norio; Kawase, Motoaki

    2016-09-01

    The reduction of oxygen transfer resistance through porous components consisting of a gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL) is very important to reduce the cost and improve the performance of a PEFC system. This study involves a systematic examination of the relationship between the oxygen transfer resistance of the actual porous components and their three-dimensional structure by direct measurement with FIB-SEM and X-ray CT. Numerical simulations were carried out to model the properties of oxygen transport. Moreover, based on the model structure and theoretical equations, an approach to the design of new structures is proposed. In the case of the GDL, the binder was found to obstruct gas diffusion with a negative effect on performance. The relative diffusion coefficient of the MPL is almost equal to that of the model structure of particle packing. However, that of CL is an order of magnitude less than those of the other two components. Furthermore, an equation expressing the relative diffusion coefficient of each component can be obtained with the function of porosity. The electrical conductivity of MPL, which is lower than that of the carbon black packing, is considered to depend on the contact resistance.

  19. The role of waves and DC electric fields for electron heating and acceleration in the diffusion region

    NASA Astrophysics Data System (ADS)

    Graham, Daniel; Khotyaintsev, Yuri; Vaivads, Andris; Norgren, Cecilia; Andre, Mats; Lindqvist, Per-Arne; Le Contel, Olivier; Ergun, Robert; Goodrich, Katherine; Torbert, Roy; Burch, James; Russell, Christopher; Magnes, Werner; Giles, Barbara; Pollock, Craig; Mauk, Barry; Fuselier, Stephen

    2016-04-01

    Magnetic reconnection is a fundamental process in solar and astrophysical plasmas. The processes operating at electron spatial-scales, which enable magnetic field lines to reconnect, are generally difficult to resolve and identify. However, the recently launched Magnetospheric Multiscale (MMS) mission is specifically designed to resolve electron spatial scales. We use the MMS spacecraft to investigate the process operating within the diffusion region to determine the causes of electron heating and acceleration. In particular, we investigate the type of electrostatic and electromagnetic waves that develop and how they affect the electron distributions. We also compare the roles of wave-particle interactions with DC electric fields to determine which is responsible for the electron heating observed in diffusion regions.

  20. Effect of Epidural Electrical Stimulation and Repetitive Transcranial Magnetic Stimulation in Rats With Diffuse Traumatic Brain Injury

    PubMed Central

    Yoon, Yong-Soon; Cho, Kang Hee; Kim, Eun-Sil; Lee, Mi-Sook

    2015-01-01

    Objective To evaluate the effects of epidural electrical stimulation (EES) and repetitive transcranial magnetic stimulation (rTMS) on motor recovery and brain activity in a rat model of diffuse traumatic brain injury (TBI) compared to the control group. Methods Thirty rats weighing 270-285 g with diffuse TBI with 45 kg/cm2 using a weight-drop model were assigned to one of three groups: the EES group (ES) (anodal electrical stimulation at 50 Hz), the rTMS group (MS) (magnetic stimulation at 10 Hz, 3-second stimulation with 6-second intervals, 4,000 total stimulations per day), and the sham-treated control group (sham) (no stimulation). They were pre-trained to perform a single-pellet reaching task (SPRT) and a rotarod test (RRT) for 14 days. Diffuse TBI was then induced and an electrode was implanted over the dominant motor cortex. The changes in SPRT success rate, RRT performance time rate and the expression of c-Fos after two weeks of EES or rTMS were tracked. Results SPRT improved significantly from day 8 to day 12 in the ES group and from day 4 to day 14 in the MS group (p<0.05) compared to the sham group. RRT improved significantly from day 6 to day 11 in ES and from day 4 to day 9 in MS compared to the sham group. The ES and MS groups showed increased expression of c-Fos in the cerebral cortex compared to the sham group. Conclusion ES or MS in a rat model of diffuse TBI can be used to enhance motor recovery and brain activity. PMID:26161348

  1. Variation in the electrical properties of 100 V/100 a rated mesh and stripe TDMOSFETs (Trench Double-Diffused MOSFETs) for motor drive applications

    NASA Astrophysics Data System (ADS)

    Na, Kyoung-Il; Kah, Dong-Ha; Kim, Sang-Gi; Koo, Jin-Gun; Kim, Jongdae; Yang, Yil-Suk; Lee, Jin-Ho

    2012-05-01

    The vertical power metal-oxide semiconductor field-effect transistors (MOSFETs) with deep trench structures are the most promising candidates to overcome the trade-off relationship between the ON-resistance (R ON ) and the blocking voltage (BV DS ). Especially, 100 V/100 A rated trench power MOSFETs are used in components of many power systems, such as motors and LED lighting drive ICs, DC-DC converters in electric vehicles, and so on. In this work, we studied variations of the electrical characteristics, such as threshold voltage (V TH ), BV DS , and drain current drivability, with p-well doping concentration via the SILVACO simulator. From simulation results, we found the BV DS and the drain current (I D ) as functions of the p-well doping concentration at an ion implantation energy of 80 keV. With increasing of p-well doping concentration in the guard ring region, both V TH and BV DS slowly increased, but I D decreased, because the boron lateral diffusion during the fabrication process below gate trench region affected the doping concentration of the p-body at the active region. Additionally, 100 V/100 A rated trench double-diffused MOSFETs (TDMOSFETs) with meshes and stripes were successfully developed by using a silicon deep etching process. The variations in the electrical properties, such as V TH , BV DS , and drain current drivability, of the two different kinds of fabricated devices, with cell design and density in TDMOSFETs were also studied. The BV DS and the V TH in the stripe-type TDMOSFET were 110 and 3 V, respectively. However, the V TH of mesh-type device was smaller 0.5 V than that of stripe-type because of corner effect. The BV DS improved about 20 V compared to stripe-type TDMOSFET due to edge termination, and the maximum drain current (I D.MAX ) was improved by about 10% due to an increase in the gate width at the same chip size. These effects were reflected in devices with different cell densities. When the cell density was increased, however

  2. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head.

    PubMed

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam

    2016-09-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m  and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart  mobile phones at the frequencies of 900 and 1800 MHz  was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.

  3. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head

    PubMed Central

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Amirhajeloo, Leila Rasouli; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m, respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23% and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone. PMID:27157169

  4. High Electron Mobility Ge n-Channel Metal-Insulator-Semiconductor Field-Effect Transistors Fabricated by the Gate-Last Process with the Solid Source Diffusion Technique

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuro; Morita, Yukinori; Takagi, Shinichi

    2010-06-01

    We fabricate high-k/Ge n-channel metal-insulator-semiconductor field-effect transistors (MISFETs) by the gate-last process with the thermal solid source diffusion to achieve both of high quality source/drain (S/D) and gate stack. The n+/p junction formed by solid source diffusion technique of Sb dopant shows the excellent diode characteristics of ˜1.5×105 on/off ratio between +1 and -1 V and the quite low reverse current density of ˜4.1×10-4 A/cm2 at +1 V after the fabrication of high-k/Ge n-channel MISFETs that enable us to observe well-behaved transistor performances. The extracted electron mobility with the peak of 891 cm2/(V.s) is high enough to be superior to the Si universal electron mobility especially in low Eeff.

  5. Interrelationship between Number of Mobile Protons, Diffusion Coefficient, and AC Conductivity in Superprotonic Conductors, CsHSO4 and Rb3H(SeO4)2

    NASA Astrophysics Data System (ADS)

    Kamazawa, Kazuya; Harada, Masashi; Araki, Toru; Matsuo, Yasumitsu; Tyagi, Madhusudan; Sugiyama, Jun

    2014-07-01

    Using quasielastic neutron scattering (QENS), we investigated the proton dynamics for two superprotonic conductors, CsHSO4 and Rb3H(SeO4)2. To evaluate the self-diffusion coefficients and the number of mobile protons on both superprotonic and normal phases, we focused on proton dynamics not only in the phase above Tc, but also in the phase below Tc. In Rb3H(SeO4)2, the self-diffusion of protons was observed even below the Tc phase. In contrast to popular belief, no large changes in the self-diffusion coefficients were observed across Tc. Nevertheless, the increase in the number of mobile protons across Tc was about 14.5 times, which was estimated from the integrated intensity of QENS spectra, and this change could not account for the increased magnitude of proton conductivity, which is about 500 times. As a large translational self-diffusion coefficient has not been reported in previous works by QENS experiments, there are still unknown factors that contribute to the Nernst-Einstein relation that need to be discovered.

  6. Electrical effect of titanium diffusion on amorphous indium gallium zinc oxide

    SciTech Connect

    Choi, Seung-Ha; Jung, Woo-Shik; Park, Jin-Hong

    2012-11-19

    In this work, thermal diffusion phenomenon of Ti into amorphous indium gallium zinc oxide ({alpha}-IGZO) was carefully investigated with secondary ion mass spectroscopy, I-V, and R{sub s} measurement systems and HSC chemistry simulation tool. According to the experimental and simulated results, the diffused Ti atoms were easily oxidized due to its lowest oxidation free energy. Since oxygen atoms were decomposed from the {alpha}-IGZO during the oxidation of Ti, the number of oxygen vacancies working as electron-donating sites in {alpha}-IGZO was dramatically increased, contributing to the decrease of resistivity ({rho}) from 1.96 {Omega} cm (as-deposited {alpha}-IGZO) to 1.33 Multiplication-Sign 10{sup -3}{Omega} cm (350 Degree-Sign C annealed {alpha}-IGZO).

  7. Field and pore size dependence of the electrophoretic mobility of DNA: a combination of fluorescence recovery after photobleaching and electric birefringence measurements.

    PubMed

    Tinland, B; Pernodet, N; Weill, G

    1996-06-01

    By combining an electrophoretic cell with a setup of fluorescence recovery after photobleaching (FRAP) we can measure the electrophoretic mobility mu of double-stranded lambda DNA in agarose gel as a function of electric field E and gel concentration C. Mobility varies linearly with the field in agreement with the biased reptation model with fluctuations. The slopes are analyzed in term of orientation and compared with birefringence results. The mobility extrapolated at zero field follows the prediction of the reptation theory; we deduced the variation of the pore size with the agarose concentration. With a special use of our setup, we measure directly the free-mobility mu 0 of the DNA.

  8. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine.

  9. Determination of electrokinetic and hydrodynamic parameters of proteins by modeling their electrophoretic mobilities through the electrically charged spherical soft particle.

    PubMed

    Deiber, Julio A; Piaggio, María V; Peirotti, Marta B

    2013-03-01

    This work explores the possibility of using the electrically charged "spherical soft particle" (SSP) to model the electrophoretic mobility of proteins in the low charge regime. The general framework concerning the electrophoretic mobility of the SSP already presented in the literature is analyzed and discussed here in particular for polyampholyte-polypeptide chains. In this regard, this theory is applied to BSA for different protocol pH values. The physicochemical conditions required to model proteins as SSP from their experimentally determined electrophoretic mobilities are established. In particular, the protein charge regulation phenomenon and the SSP particle core are included to study BSA having isoelectric point pI ≈ 5.71, within a wide range of bulk pH values. The results of this case study are compared with previous ones concerning the spherical porous particle and the spherical hard particle with occluded water. A discussion of chain conformations in the SSP polyampholyte layer is presented through estimations of the packing and friction fractal dimensions.

  10. Determination of electrokinetic and hydrodynamic parameters of proteins by modeling their electrophoretic mobilities through the electrically charged spherical porous particle.

    PubMed

    Deiber, Julio A; Piaggio, Maria V; Peirotti, Marta B

    2013-03-01

    This work explores the possibility of using the electrically charged "spherical porous particle" (SPP) to model the electrophoretic mobility of proteins in the low charge regime. In this regard, the electrophoretic mobility expression of the charged SPP (Hermans-Fujita model) is used and applied here to BSA and staphylococcal nuclease for different protocol pH values. The SPP is presented within the general framework of the "spherical soft particle" as described in the literature. The physicochemical conditions required to model proteins as SPP from their experimentally determined electrophoretic mobilities are established. It is shown that particle permeability and porosity and chain packing and friction fractal dimensions are relevant structural properties of proteins when hydrodynamic interaction between amino acid residues is present. The charge regulation phenomenon of BSA and staphylococcal nuclease with pIs ≈ 5.71 and 9.63, respectively, is described through the SPP within a wide range of bulk pH values. These case studies illustrate when the average regulating {pH} of the protein domain is lower and higher than the protocol pH. Further research for using the general spherical soft particle is also proposed on the basis of results and main conclusions.

  11. Diffusion and Electrical Activation After a Rapid Thermal Annealing of an As and B-Co-Implanted Polysilicon Layer

    NASA Astrophysics Data System (ADS)

    Gontrand, C.; Sellitto, P.; Tabikh, S.; Latreche, S.; Kaminski, A.

    1997-01-01

    This work provides an experimental insight into the physical mechanisms involved in the co-diffusion of arsenic and boron in polysilicon/monocrystalline Si bilayers, during the formation of shallow N^+ emitters for the BiCMOS technology. The RTA-induced redistribution of As and B successively implanted in a 380 nm LPCVD polysilicon layer is studied by SIMS measurements. Hall effect, as well as sheet resistance measurements, show that the electrical activation of dopants in the co-implanted structures is satisfactory from a RTA temperature of 1100 °C. Nous présentons ici un travail expérimental mettant en évidence les mécanismes physiques intervenant dans la co-diffusion de l'arsenic et du bore dans une bicouche polysilicium sur silicium polycrystallin, durant la formation des émetteurs étroits N^+ destinés à la technologie BiCMOS. La redistribution de As et B induite par un RTA, successivement implantés dans une couche de polysilicium de 380 nm, est appréhendée par des mesures SIMS. Des mesures par effet Hall et par résistances par carrés mettent en évidence que l'activité électrique des dopants dans les structures implantées est satisfaisante à partir d'une température de 1100 °C.

  12. Noninvasive Electrical Neuroimaging of the Human Brain during Mobile Tasks including Walking and Running

    DTIC Science & Technology

    2012-01-01

    imaging during mobile activities could have far reaching scientific, clinical, and technological benefits . Electroencephalography (EEG) is the only...performing knee and ankle exercises . ............................................ 74 Figure 5-2: AMICA model probabilities for ankle trials (left...dipoles for knee and ankle exercises . ....................... 82 Figure 5-4: Grand average spectrograms for contralateral medial sensorimotor

  13. The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids.

    PubMed

    Liu, Chang; Lee, Hyeonseok; Chang, Ya-Huei; Feng, Shien-Ping

    2016-05-01

    Nanofluids are liquids containing suspensions of solid nanoparticles and have attracted considerable attention because they undergo substantial mass transfer and have many potential applications in energy technologies. Most studies on nanofluids have used low-ionic-strength solutions, such as water and ethanol. However, very few studies have used high-ionic-strength solutions because the aggregation and sedimentation of nanoparticles cause a stability problem. In this study, a stable water-based alumina nanofluid was prepared using stirred bead milling and exhibits a high electrical conductivity of 2420 μS/cm at 23 °C and excellent stability after five severe freezing-melting cycles. We then developed a process for mixing the water-based nanofluid with a high-ionic-strength potassium ferro/ferricyanide electrolyte and sodium dodecyl sulfate by using stirred bead milling and ultrasonication, thus forming a stable electrolyte-based nanofluid. According to the rotating disk electrode study, the electrolyte-based alumina nanofluid exhibits an unusual increase in the limiting current at high angular velocities, resulting from a combination of local percolation behavior and shear-induced diffusion. The electrolyte-based alumina nanofluid was demonstrated in a possible thermogalvanic application, since it is considered to be an alternative electrolyte for thermal energy harvesters because of the increased electrical conductivity and confined value of thermal conductivity.

  14. Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane

    NASA Technical Reports Server (NTRS)

    Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.

    2011-01-01

    Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.

  15. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    PubMed

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  16. Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon; Kim, Useong; Kim, Tai Hoon; Kim, Jiyeon; Kim, Hoon Min; Jeon, Byung-Gu; Lee, Woong-Jhae; Mun, Hyo Sik; Hong, Kwang Taek; Yu, Jaejun; Char, Kookrin; Kim, Kee Hoon

    2012-10-01

    Transparent electronic materials are increasingly in demand for a variety of optoelectronic applications, ranging from passive transparent conductive windows to active thin-film transistors. BaSnO3 is a semiconducting oxide with a large band gap of more than 3.1 eV. Recently, we discovered that BaSnO3 doped with a few percent of La exhibits an unusually high electrical mobility of 320cm2V-1s-1 at room temperature and superior thermal stability at high temperatures [H. J. Kim , Appl. Phys. ExpressAPECE41882-077810.1143/APEX.5.061102 5, 061102 (2012)]. Following that paper, here, we report various physical properties of (Ba,La)SnO3 single crystals and epitaxial films including temperature-dependent transport and phonon properties, optical properties, and first-principles calculations. We find that almost doping-independent mobility of 200-300cm2V-1s-1 is realized in the single crystals in a broad doping range from 1.0×1019 to 4.0×1020 cm-3. Moreover, the conductivity of ˜104Ω-1cm-1 reached at the latter carrier density is comparable to the highest value previously reported in the transparent conducting oxides. We attribute the high mobility to several physical properties of (Ba,La)SnO3: a small effective mass coming from the ideal Sn-O-Sn bonding in a cubic perovskite network, small disorder effects due to the doping away from the SnO6 octahedra, and reduced carrier scattering due to the high dielectric constant. The observation of the reduced mobility of ˜70cm2V-1s-1 in the epitaxial films is mainly attributed to additional carrier scattering due to dislocations and grain boundaries, which are presumably created by the lattice mismatch between the substrate SrTiO3 and (Ba,La)SnO3. The main optical gap coming from the charge transfer from O 2p to Sn 5s bands in (Ba,La)SnO3 single crystals remained at about 3.33 eV, and the in-gap states only slightly increased, thus, maintaining optical transparency in the visible spectral region. Based on all these results, we

  17. Electrically detected electron spin resonance in a high-mobility silicon quantum well.

    PubMed

    Matsunami, Junya; Ooya, Mitsuaki; Okamoto, Tohru

    2006-08-11

    The resistivity change due to electron spin resonance (ESR) absorption is investigated in a high-mobility two-dimensional electron system formed in a Si/SiGe heterostructure. Results for a specific Landau level configuration demonstrate that the primary cause of the ESR signal is a reduction of the spin polarization, not the effect of electron heating. The longitudinal spin relaxation time T1 is obtained to be of the order of 1 ms in an in-plane magnetic field of 3.55 T. The suppression of the effect of the Rashba fields due to high-frequency spin precession explains the very long T1.

  18. Spatio-temporal modelling of electrical supply systems to optimize the site planning process for the "power to mobility" technology

    NASA Astrophysics Data System (ADS)

    Karl, Florian; Zink, Roland

    2016-04-01

    The transformation of the energy sector towards decentralized renewable energies (RE) requires also storage systems to ensure security of supply. The new "Power to Mobility" (PtM) technology is one potential solution to use electrical overproduction to produce methane for i.e. gas vehicles. Motivated by these fact, the paper presents a methodology for a GIS-based temporal modelling of the power grid, to optimize the site planning process for the new PtM-technology. The modelling approach is based on a combination of the software QuantumGIS for the geographical and topological energy supply structure and OpenDSS for the net modelling. For a case study (work in progress) of the city of Straubing (Lower Bavaria) the parameters of the model are quantified. The presentation will discuss the methodology as well as the first results with a view to the application on a regional scale.

  19. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.

    2008-08-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography, chemiluminescence, selected ion flow tube, and mass spectroscopy, have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of AlGaN/GaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer, and other common substances of interest in the biomedical field.

  20. Reusable electrical activity of the heart monitoring patch for mobile/ubiquitous healthcare.

    PubMed

    Lee, Jeong-Whan; Lee, Kang-Hwi; Lee, Young-Jae; Hong, Lee-Yon; Kim, Dong-Jun; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Myoungho

    2009-02-01

    In order to monitor electrical activity of the heart during daily life, we present an electrode of a medical instrument system which is able to measure the body surface potential difference by minimizing the electrode distance. The designed electrode is composed of concentric circles. It was made from the basis of the Laplacian equation, and implemented on PCB coated with gold. So that it does not cause the uncomfortable feeling of contact and possible skin troubles which are typical shortcoming of the conventional ECG measurement. The suggested method utilized three concentric circles on FR-4 substrate, so new amplifier design regarding measuring of small biological signal, is considered which has the characteristics of asymmetric input impedance since the area of concentric circular ring electrodes is not identical. Thereby, electrical activity of the heart was obtained successfully. However, its signal quality is a little bit degraded and the motion artifact still remains as a major problem as is in conventional electrocardiography measurement. Certainly stable measurement setup was needed to reduce the motion artifact originated from variation in static electricity between skin and electrode interfaces.

  1. Water-Rock Interaction Simulations of Iron Oxide Mobilization and Precipitation: Implications of Cross-diffusion Reactions for Terrestrial and Mars 'Blueberry' Hematite Concretions

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.; Parry, W. T.

    2005-12-01

    Modeling of how terrestrial concretions form can provide valuable insights into understanding water-rock interactions that led to the formation of hematite concretions at Meridiani Planum, Mars. Numerical simulations of iron oxide concretions in the Jurassic Navajo Sandstone of southern Utah provide physical and chemical input parameters for emulating conditions that may have prevailed on Mars. In the terrestrial example, iron oxide coatings on eolian sand grains are reduced and mobilized by methane or petroleum. Precipitation of goethite or hematite occurs as Fe interacts with oxygen. Conditions that produced Navajo Sandstone concretions can range from a regional scale that is strongly affected by advection of large pore volumes of water, to small sub-meter scale features that are dominantly controlled by diffusive processes. Hematite concretions are results of a small-scale cross-diffusional process, where Fe and oxygen are supplied from two opposite sides from the 'middle' zone of mixing where concretions precipitate. This is an ideal natural system where Liesegang banding and other self-organized patterns can evolve. A complicating variable here is the sedimentologic (both mineralogic and textural) heterogeneity that, in reality, may be the key factor controlling the nucleation and precipitation habits (including possible competitive growth) of hematite concretions. Sym.8 water-rock interaction simulator program was used for the Navajo Sandstone concretions. Sym.8 is a water-rock simulator that accounts for advective and diffusive mass-transfer, and equilibrium and kinetic reactions. The program uses a dynamic composite media texture model to address changing sediment composition and texture to be consistent with the reaction progress. Initial one-dimensional simulation results indicate precipitation heterogeneity in the range of sub-meters, e.g., possible banding and distribution of iron oxide nodules may be centimeters apart for published diffusivities and

  2. Electrical Mobility of Protons and Proton-Holes in Pure Water Characterized by Physics-Based Water Model

    NASA Astrophysics Data System (ADS)

    Jie, Binbin; Sah, Chihtang

    Pure water has been characterized empirically for nearly a century, as dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. Last March, we reported that the ~40 year experimental industrial standard of chemical equilibrium reaction constant, the ion product, can be accounted for by a statistical-physics-based concentration product of two electrical charge carriers, the positively charged protons, p+, and the negatively charged proton holes or prohols, p-, with a thermal activation energy or proton trapping well depth of Ep + / p - = 576 meV, in the 0-100OC pure liquid water. We now report that the empirically fitted industrial standard experimental data (1985, 1987, 2005) of the two dc ion mobilities in liquid water, can also be accounted for by trapping-limited drift of protons and prohols through proton channels of lower proton electrical potential valleys, Ep+/0 <= Ep-/0 <(Ep + / p -/3), in the tetrahedrally-directed electron-pair-bonded oxygen ions, O2-, in hexagonal lattice based on the 1935 Pauling statistical model using the 1933 Bernal-Fowler water rule.

  3. Surface Exchange and Bulk Diffusivity of LSCF as SOFC Cathode: Electrical Conductivity Relaxation and Isotope Exchange Characterizations

    SciTech Connect

    Li, Yihong; Gerdes, Kirk; Horita, Teruhisa; Liu, Xingbo

    2013-05-05

    The oxygen diffusion coefficient (D) and surface exchange coefficient (k) of a typical SOFC cathode material, La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-δ} (LSCF) were characterized by both electrical conductivity relaxation (ECR) and oxygen isotope exchange (IE) methods. Conductivity relaxation experiments were conducted at 800°C for small step changes in partial pressure of oxygen (P{sub O{sub 2}} ), both decreasing and increasing, from 0.02 atm to 0.20 atm. The results revealed P{sub O{sub 2}} dependent hysteresis with the reduction process requiring more equilibration time than oxidation. Analysis of the experimental data indicated that the surface exchange coefficient is a function of the final oxygen partial pressure in an isothermal system. In addition, both forward and backward oxygen reduction reaction constants, which are vital for the fundamental understanding of SOFC cathode reaction mechanisms, are investigated based on the relationship between surface exchange coefficient and P{sub O{sub 2}} . The direct comparisons between the results from both ECR and IE were presented and the possible experimental errors in both methods were discussed.

  4. Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy.

    PubMed

    Guglietta, Glenn W; Diroll, Benjamin T; Gaulding, E Ashley; Fordham, Julia L; Li, Siming; Murray, Christopher B; Baxter, Jason B

    2015-02-24

    Colloidal semiconductor nanocrystals have been used as building blocks for electronic and optoelectronic devices ranging from field-effect transistors to solar cells. Properties of the nanocrystal films depend sensitively on the choice of capping ligand to replace the insulating synthesis ligands. Thus far, ligands leading to the best performance in transistors result in poor solar cell performance, and vice versa. To gain insight into the nature of this dichotomy, we used time-resolved terahertz spectroscopy measurements to study the mobility and lifetime of PbSe nanocrystal films prepared with five common ligand-exchange reagents. Noncontact terahertz spectroscopy measurements of conductivity were corroborated by contacted van der Pauw measurements of the same samples. The films treated with different displacing ligands show more than an order of magnitude difference in the peak conductivities and a bifurcation of time dynamics. Inorganic chalcogenide ligand exchanges with sodium sulfide (Na2S) or ammonium thiocyanate (NH4SCN) show high mobilities but nearly complete decay of transient photocurrent in 1.4 ns. In contrast, ligand exchanges with 1,2-ethylenediamine (EDA), 1,2-ethanedithiol (EDT), and tetrabutylammonium iodide (TBAI) show lower mobilities but longer carrier lifetimes, resulting in longer diffusion lengths. This bifurcated behavior may explain the divergent performance of field-effect transistors and photovoltaics constructed from nanocrystal building blocks with different ligand exchanges.

  5. Changes in Mice Brain Spontaneous Electrical Activity during Cortical Spreading Depression due to Mobile Phone Radiation

    PubMed Central

    Sallam, Samera M.; Mohamed, Ehab I.; Dawood, Abdel-Fattah B.

    2008-01-01

    The objective of the present study was to investigate changes in spontaneous EEG activity during cortical spreading depression (CSD) in mice brain. The cortical region of anaesthetized mice were exposed to the electromagnetic fields (EMFs) emitted from a mobile phone (MP, 935.2-960.2 MHz, 41.8 mW/cm2). The effect of EMFs on EEG was investigated before and after exposure to different stimuli (MP, 2% KCl, and MP & 2% KCl). The records of brain spontaneous EEG activity, slow potential changes (SPC), and spindle shaped firings were obtained through an interfaced computer. The results showed increases in the amplitude of evoked spindles by about 87%, 17%, and 226% for MP, 2% KCl, and MP & 2% KCl; respectively, as compared to values for the control group. These results showed that the evoked spindle is a more sensitive indicator of the effect of exposure to EMFs from MP. PMID:23675079

  6. Tailoring the electric and magnetic properties of submicron-sized metallic multilayered systems by TVA atomic inter-diffusion engineered processes

    NASA Astrophysics Data System (ADS)

    Miculescu, F.; Jepu, I.; Stan, G. E.; Miculescu, M.; Voicu, S. I.; Cotrut, C.; Pisu, T. Machedon; Ciuca, S.

    2015-12-01

    Thermo-ionic Vacuum Arc evaporation method was selected for the synthesis of Fe/Cu/Ni/Cu multilayer structures on Si (1 0 0) substrates. The aim of the study was the preparation and characterization of structures featuring a giant magnetoresistance effect. This was accomplished by inducing the formation of nanosized ferromagnetic crystallites in multilayer nonmagnetic solutions via atomic inter-diffusion processes by the tuning of deposition parameters. Layer-by-layer and inter-diffused type structures were prepared and comparatively analyzed by scanning electron microscopy, X-ray microanalysis, atomic force microscopy, X-ray diffraction and high-resolution transmission electron microscopy coupled with selected area electron diffraction. We presented the influence of the microstructure on electric and magnetic properties of the submicron-sized multilayers. The dependence of the electric resistance and the magnetoresistance on the composition, structure, morphology and roughness of the layers was established. We obtained an electric resistance value of 1.22 Ω for the layer-by-layer type structure, and 0.46 Ω for the inter-diffusion designed structure. Using the atomic inter-diffusion we succeeded in achieving an improvement of the magnetoresistive effect, from 0.1% to 2.3%.

  7. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  8. Reduction of Mobile Pt Ion Density in SiO 2 and Si-SiO 2 Interface State Density in Pt-diffused Metal-Oxide-Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Deng, Bei; Shu, Chang; Kuwano, Hiroshi

    1995-07-01

    Platinum diffusion into bipolar devices introduces mobile Pt ions into SiO2 films and causes the state density at the Si-SiO2 interface to increase. Mobile Pt ions make the devices unstable and the increase in the interface state density causes enhancement of leakage current. MOS, metal-phosphosilicate glass-oxide-semiconductor (MGOS) and metal-silicon nitride-oxide-semiconductor (MNOS) structures are fabricated on (111) and (100) substrates in order to investigate means of reducing these adverse effects induced by Pt diffusion. Mobile Pt ions, the interface state density and the flat-band voltage for these structures are measured. The experimental results show that the MGOS structure with the (100) oriented substrate is most beneficial in reducing the adverse effects of Pt-diffused devices.

  9. [Erythrocyte sedimentation rate in diluted suspensions and their electrophoretic mobility in a vertical electrical field].

    PubMed

    Balmukhanov, B S; Basenova, A T; Bulegenov, K E

    1989-01-01

    The sedimentation rates (SR) of human red blood cells (RBC) were measured in diluted suspensions using the thin plate chamber. If the suspension medium was phosphate buffer saline or 0,18 M NaCl the SR-dependence on the distance to the chambers wall corresponded to SR distribution of small particles without interaction. The more NaCl content was decreased down to 0.145 M, the more temperature-dependent variations of SR were noted, while SR distribution became distinct with the predicted one for the non-interacting particles. The use of SR distribution is discussed for testing the RBC interaction in diluted suspensions caused by sedimentation. The electrophoretic measurements carried out under vertical oriented electrical field showed the rate of RBC movement to be the linear function of the field gradient and to be not influenced under the SR modifying conditions.

  10. Electrical spin injection and detection in high mobility 2DEG systems

    NASA Astrophysics Data System (ADS)

    Ciorga, M.

    2016-11-01

    In this review paper we present the current status of research related to the topic of electrical spin injection and detection in two-dimensional electron gas (2DEG) systems, formed typically at the interface between two III-V semiconductor compounds. We discuss both theoretical aspects of spin injection in case of ballistic transport as well as give an overview of available reports on spin injection experiments performed on 2DEG structures. In the experimental part we focus particularly on our recent work on all-semiconductor structures with a 2DEG confined at an inverted GaAs/(Al,Ga)As interface and with a ferromagnetic semiconductor (Ga,Mn)As employed as a source of spin-polarized electrons.

  11. Diffusion layer formation drives zone migration in travelling wave electrophoresis.

    PubMed

    Booth, William Albert; Edwards, Boyd; Jo, Kyoo; Timperman, Aaron; Schiffbauer, Jarrod

    2017-04-04

    COMSOL finite element modeling software is used to simulate 2D traveling-wave electrophoresis for microfluidic separations and sample concentration. A four-phase AC potential is applied to a periodic interdigitated four-electrode array to produce a longitudinal electric wave that travels through the channel. Charged particles are carried along with the electric wave or left behind, depending on their mobilities. A simplified model of asymmetric electrode reactions resolves the issue of electric double layer shielding at the electrodes. Selective reactions allow for the formation of diffusion layers of charged particles which follow the traveling electric wave. These diffusion layers determine the transport of charged species through the system. Our model reproduces experimental separations of charged species based on mobility. With easy control over the frequency and direction, one may employ this method for concentrating and/or separating charged particles.

  12. Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging.

    PubMed

    Akhtari, M; Salamon, N; Duncan, R; Fried, I; Mathern, G W

    2006-01-01

    The electrical conductivities (sigma) of freshly excised neocortex and subcortical white matter were studied in the frequency range of physiological relevance for EEG (5-1005 Hz) in 21 patients (ages 0.67 to 55 years) undergoing epilepsy neurosurgery. Surgical patients were classified as having cortical dysplasia (CD) or non-CD pathologies. Diffusion tensor imaging (DTI) for apparent diffusion coefficient (ADC) and fractional anisotropy (FA) was obtained in 9 patients. Results found that electrical conductivities in freshly excised neocortex vary significantly from patient to patient (sigma = 0.0660-0.156 S/m). Cerebral cortex from CD patients had increased conductivities compared with non-CD cases. In addition, longer seizure durations positively correlated with conductivities for CD tissue, while they negatively correlated for non-CD tissue. DTI ADC eigenvalues inversely correlated with electrical conductivity in CD and non-CD tissue. These results in a small initial cohort indicate that electrical conductivity of freshly excised neocortex from epilepsy surgery patients varies as a consequence of clinical variables, such as underlying pathology and seizure duration, and inversely correlates with DTI ADC values. Understanding how disease affects cortical electrical conductivity and ways to non-invasively measure it, perhaps through DTI, could enhance the ability to localize EEG dipoles and other relevant information in the treatment of epilepsy surgery patients.

  13. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  14. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    NASA Technical Reports Server (NTRS)

    Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2010-01-01

    We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( < or = 10(exp 5) Ohms-sq cm). It can be used to leverage new advances in thin-film and nanostructured materials for the fabrication of new miniature thermoelectric devices. It may also enable monolithic integration of large devices or tandem arrays of devices on flexible or curved surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (<100 K) temperature differences. At higher, more realistic temperature differences, approx.500 K, where the efficiency of these materials greatly improves, this power density would scale to between 0.5 and 1 Watt/cm2. These results highlight the excellent potential for the generation and scavenging of electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.

  15. Making tuba in the Torres Strait Islands: the cultural diffusion and geographic mobility of an alcoholic drink.

    PubMed

    Brady, Maggie; McGrath, Vic

    2010-01-01

    There is relatively scant evidence of the Indigenous production and consumption of intoxicating drinks on the Australian mainland prior to the arrival of outsiders. Although Australian Aboriginal peoples had mastered fermentation in some regions, the Indigenous manufacture of much stronger drinks by distillation was unknown on the Australian mainland. However, following contact with Pacific Island and Southeast Asian peoples in the 19th century, Islanders in the Torres Strait adopted techniques for fermenting and distilling what became a quasi-indigenous alcoholic drink known as tuba. This paper discusses the historical process of the diffusion of this substance as a result of labour migration and internationalisation in the Strait, and provides present-day accounts of tuba production from Torres Strait Islanders.

  16. Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe

    NASA Astrophysics Data System (ADS)

    Wanwan, Li; Zechun, Cao; Bin, Zhang; Feng, Zhan; Hongtao, Liu; Wenbin, Sang; Jiahua, Min; Kang, Sun

    2006-06-01

    In order to meet the requirements for the device design of radiation detectors, CdZnTe (or Cd 1-xZn xTe) crystals grown by Vertical Bridgman Method often need subsequent annealing to increase their resistivity. The nature of this treatment is a diffusion process. Thus, it is meaningful to relate the change of resistivity to the diffusion parameters. A model correlating resistivity and conduction type of CdZnTe with the main diffusion parameter—diffusion coefficient—is put forward in this paper. Combining the model with the analysis of our experimental data, DCd=1.464×10 -10, 1.085×10 -11 and 4.167×10 -13 cm 2/s are the values of Cd self-diffusion coefficient in Cd 0.9Zn 0.1Te at 1073, 973 and 873 K, respectively. The data coincide closely with the Cd self-diffusion coefficient in CdTe provided by different authors [E.D. Jones, N.M. Stewart, Self-diffusion of cadmium in cadmium telluride, J. Crystal Growth 84 (1987) 289-294; P.M. Borsenberger, D.A. Stevenson, J. Phys. Chem. Solids 29 (1968) 1277; R.C. Whelan, D. Shaw, in: D.G. Thomas (Ed.), II -VI Semiconductor Compounds, Benjamin, New York, 1967, p. 451]. With the data, the effects of annealing time on the change of resistivity and conduction type for Cd 0.9Zn 0.1Te wafers, which are annealed in saturated Cd vapor at 1073, 973 and 873 K, were simulated, and good consistency was found. This work suggests an alternative way to obtain the diffusion coefficient in semiconductor materials and also enables ones to analyze the diffusion process quantitatively and predict the annealing results.

  17. Extracellular Ca(2+) entry and mobilization of inositol trisphosphate-dependent Ca(2+) stores modulate histamine and electrical field stimulation induced contractions of the guinea-pig prostate.

    PubMed

    Lam, Michelle; Kerr, Karen; Ventura, Sabatino; Exintaris, Betty

    2011-09-01

    This investigation aimed to examine the source of Ca(2+) mobilization that leads to the contractile response to either exogenously added histamine (1 μM-1mM) or electrical field stimulation (10Hz, 0.5ms, 60V). Removal of extracellular Ca(2+) by removal of Ca(2+) from the bathing medium reduced histamine (1mM) induced responses by 34% and responses induced by electrical field stimulation by 94%. Similarly, blockade of L-type Ca(2+) channels by nifedipine (1 μM) reduced histamine (1mM) induced responses by 43% and responses induced by electrical field stimulation by 77%. Application of cyclopiazonic acid (CPA) (10 μM) to inhibit Ca(2+) reuptake to the sarcoplasmic reticulum enhanced both histamine-induced and electrical field stimulation induced responses to a small degree, while the addition of the inosotol triphosphate (IP(3)) receptor antagonist, 2-aminophenoxyethane borane (2-APB) (100 μM) inhibited histamine induced responses by 70% and electrical field stimulation induced responses by 57%. Ryanodine (1 μM) did not affect contractile responses to either histamine or electrical field stimulation, either in the absence or presence of 2-APB (100 μM). During both histamine and electrical field stimulation induced contractions, prostate smooth muscle generates IP(3) receptor mediated Ca(2+) release in conjunction with Ca(2+) entry from the extracellular environment. Ryanodine receptors on the other hand, appear not to play a role in this physiological mechanism.

  18. The effect of electric field geometry on the performance of electromembrane extraction systems: footprints of a third driving force along with migration and diffusion.

    PubMed

    Moazami, Hamid Reza; Hosseiny Davarani, Saied Saeed; Mohammadi, Jamil; Nojavan, Saeed; Abrari, Masoud

    2015-09-03

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m(-1) and 111 kV m(-1) in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form.

  19. Self-consistent modeling for estimation of the reduced electric field in a DC excited diffusion controlled CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Bhagat, M. S.; Biswas, A. K.; Rana, L. B.; Pakhare, Jagdish; Rawat, B. S.; Kukreja, L. M.

    2016-07-01

    The results of a numerical simulation method that estimate various discharge parameters in the positive column of a DC glow discharge controlled by ambipolar diffusion are presented. The parameters like reduced electric field (E/N), electron temperature, ionization rates, ambipolar diffusion losses and the average gas temperature were numerically evaluated for several mixtures of CO2, N2 and He in low pressure regime. The estimated E/N value which is a primary governing parameter of positive column was verified experimentally using a double probe in diffusion controlled CW CO2 laser for a variety of CO2, N2 and He mixtures. The role of auxiliary ionization source like pulser used for pre-ionization and its effect on the steady state E/N value was also studied. A reasonably good agreement was found between the theoretical and the experimental results. Based on the results of this simulation a zigzag folded, diffusion-cooled, 500 W CW CO2 laser has been designed and developed for research in gas phase nanoparticle synthesis.

  20. Scanning and mobile multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo, Uruguay

    NASA Astrophysics Data System (ADS)

    Frins, E.; Bobrowski, N.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U.

    2014-12-01

    In March 2012 the emissions of NO2 and SO2 from a power station located on the east side of Montevideo Bay (34° 53‧ 10″ S, 56° 11‧ 49″ W) were quantified by simultaneously using mobile and scanning multi-axis differential optical absorption spectroscopy (in the following mobile DOAS and scanning DOAS, respectively). The facility produces electricity by means of two technologies: internal combustion motors and steam generators. The motors are powered with centrifuged heavy oil and produce a maximum power of 80 MW approximately. The steam generators produce approximately 305 MW and are powered with heavy fuel oil. We compare the emissions obtained from the measured slant column densities (mobile DOAS and scanning DOAS) with the emissions estimated from fuel mass balance. On one occasion it was possible to distinguish between the two types of sources, observing two plumes with different SO2 and NO2 emission rates. During the period of the campaign the mean SO2 emission flux was determined to be 0.36 (±0.12) kg s-1 and 0.26 (±0.09) kg s-1 retrieved from mobile and scanning DOAS respectively, while the calculated SO2 flux from the sulphur content of the fuel was 0.34 (±0.03) kg s-1. The average NO2 flux calculated from mobile DOAS was determined to be 11 (±3) × 10-3 kg s-1. Using the scanning DOAS approach a mean NO2 flux of 5.4 (±1.7) × 10-3 kg s-1 was obtained, which is significantly lower than by the mobile measurements. The differences between the results of mobile MAX-DOAS measurements and scanning DOAS measurements are most probably caused by the variability and the limited knowledge of the wind speed and direction.

  1. A study of the properties of beryllium doped silicon with particular emphasis on diffusion mechanisms: Profiles of depth dependent conductivity as determined by electrical surface probes

    NASA Technical Reports Server (NTRS)

    Franks, R. K.; Robertson, J. B.

    1972-01-01

    Very large diffusion coefficients were encountered and required the determination of impurity profiles for samples approximately 1 cm thick. Since conductivity values are readily converted into concentrations of electrically active impurities, the major problem became that of accurately determining the conductivity profiles of beryllium diffused silicon samples. Four-point probe measurements on samples having depth conductivities are interpreted in terms of conductivity profiles, based on an exact solution of the problem of exponentially depth dependent conductivity. Applications include surface conductivity determination where the form of the conductivity profile is known, and conductivity profile determination from probe measurements taken as the sample surface is progressively lapped away. The application is limited to samples having conductivity monotonically decreasing with depth from the probed surface.

  2. Diffusion of hydrogen interstitials in the near-surface region of Pd(111) under the influence of surface coverage and external static electric fields

    SciTech Connect

    Blanco-Rey, M.; Tremblay, J. C.

    2015-04-21

    Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emerge from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.

  3. Surface morphology and electrical transport of rapid thermal annealed chromium-doped indium zinc oxides: The influence of zinc interstitials and out-diffusion

    SciTech Connect

    Hsu, C. Y.

    2013-12-09

    We investigate the complex impedance (CI) spectra of chromium-doped indium zinc oxide (CIZO) films with different rapid thermal annealing (RTA) temperatures. The CI spectra drawn from the impedance contributions of Zn-O and In-O bondings in CIZO films were analyzed by two sets of parallel resistance and capacitance components in series. The result demonstrates that zinc interstitials controls electron concentration and transition of electrical transport from semiconducting to metallic. At higher RTA temperature, high-density zinc interstitial promotes Zn atom diffusion from the surface, modifying surface morphology.

  4. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu

    2015-03-01

    Now the lithium ion batteries are widely used in electrical vehicles (EV). The battery modeling and state estimation is of great significance. The rigorous physic based electrochemical model is too complicated for on-line simulation in vehicle. In this work, the simplification of physics-based model lithium ion battery for application in battery management system (BMS) on real electrical vehicle is proposed. Approximate method for solving the solid phase diffusion and electrolyte concentration distribution problems is introduced. The approximate result is very close to the rigorous model but fewer computations are needed. An extended single particle model is founded based on these approximated results and the on-line state of charge (SOC) estimation algorithm using the extended Kalman filter with this single particle model is discussed. This SOC estimation algorithm could be used in the BMS in real vehicle.

  5. A simple theoretical analysis of the Einstein relation for the DMR (diffusivity-mobility ratio) in Nono compounds on the basis of k.p formalism

    NASA Astrophysics Data System (ADS)

    Singha Roy, Subhamoy

    2011-10-01

    An attempt is made to study the Einstein relation for the diffusivity-mobility ratio (DMR) in nonlinear optical and Optoelectronic compounds on the basis of a newly formulated electron energy spectrum. The results for ternary, III-V and quaternary types of optoelectronic materials form a special case of our generalized investigation. I have also studied the DMR in II-VI, Bi, IV-VI and stressed materials on the basis of various band models as applicable for such focused materials. It has been found taking n-Cd3As2, n-CdGeAs2, n-InAs, n-InSb, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, CdS, Bi, PbS, PbTe, PbSe and stressed InSb as examples of the aforementioned compounds that the DMR increases with increasing electron concentration in various manners for different band constants of the said materials and the rates of variation are totally band structure dependent. Now the well-known results for non-degenerate wide gap optical and Optoelectronic materials have been obtained as special cases of our generalized theory under definite limiting background.

  6. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Brewer, Eli Henry

    We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The

  7. Long-term exposure to mobile communication radiation: an analysis of time-variability of electric field level in GSM900 downlink channels.

    PubMed

    Miclaus, Simona; Bechet, Paul; Gheorghevici, Marius

    2013-04-01

    Interest for knowing long-term human exposure levels due to mobile communications has increased in the last years. It has been shown that short-term exposure assessment made under standard procedural restrictions is not reliable when it comes to conclusions on long-term exposure levels. The present work is the result of a several week analysis of time variability of electric field level inside traffic and control channels of the GSM900 mobile communication downlink band and it indicates that a temporal model to allow future predictions of exposure on the long run is obtainable. Collecting, processing and statistically analysing the data provide expression of the maximum and weighted field strengths and their evolution in time. Specific electromagnetic footprints of the channels have been extracted, differentiations between their characteristics have been emphasised and practical advice is provided, with the scope of contributing to the development of reliable procedures for long-term exposure assessment.

  8. Soil phosphorus mobility and solid-to-solution phase resupply studied by diffusive gradients in thin films: background soil properties driving their variation

    NASA Astrophysics Data System (ADS)

    Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Philip, Haygarth

    2015-04-01

    The mobility and resupply of inorganic phosphorus (P) from the solid phase was studied in 32 representative soils from the UK. The objective was to identify the background soil properties driving the variation of soil inorganic P desorption kinetics across different soil types. Diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the DGT-induced fluxes in sediments model (DIFS) were used as tools for exploring solid-to-solution desorption kinetics. Previously characterized physicochemical properties of the same soils were used for correlation analysis. On average and across soil types, the inorganic P maximum distance of depletion was 0.42±0.10 cm, the equilibration time (Tc) was 3.63 h, the desorption rate constant (k-1) was 0.0046 h-1, and the desorption rate was 4.71 nmol l-1 s-1. The correlation between P in Olsen extractcs (POlsen) with PDGT, PDET and phosphorus effective concentration (PE) was enhanced when similar soils were isolated and used in the comparison, clearly showing that these parameters are affected differently by soil types. The PE was better correlated to Ptot, POlsen, PFeO, and PNaOH/EDTA than PDGT. This may indicate that PE is a better representation of P availability across soil types than PDGT. While the relative DGT-induced inorganic P flux in the first hour is mainly a function of soil wetting properties and % Corg, at longer times it is a function of the resupply capacity (R-Rdiff) of the soil solid phase. In general, resupply of P from the solid phase was less than that for other chemical elements, as shown by high Tc and low k-1 values. Desorption rates and resupply from the solid phase were fundamentally influenced by P saturation status, as reflected by their strong correlation with P concentration in water, FeO strips, Olsen and NaOH-EDTA extracts. Soil pH and particle size distribution had little or no effect on the evaluated parameters. The DGT and DET techniques, along with the DIFS model

  9. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  10. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    SciTech Connect

    Katsuno, Takashi Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu; Manaka, Takaaki; Iwamoto, Mitsumasa

    2014-06-23

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 μs) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 μm from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  11. In Situ XPS Chemical Analysis of MnSiO3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures.

    PubMed

    Byrne, Conor; Brennan, Barry; McCoy, Anthony P; Bogan, Justin; Brady, Anita; Hughes, Greg

    2016-02-03

    Copper/SiO2/Si metal-oxide-semiconductor (MOS) devices both with and without a MnSiO3 barrier layer at the Cu/SiO2 interface have been fabricated in an ultrahigh vacuum X-ray photoelectron spectroscopy (XPS) system, which allows interface chemical characterization of the barrier formation process to be directly correlated with electrical testing of barrier layer effectiveness. Capacitance voltage (CV) analysis, before and after tube furnace anneals of the fabricated MOS structures showed that the presence of the MnSiO3 barrier layer significantly improved electric stability of the device structures. Evidence of improved adhesion of the deposited copper layer to the MnSiO3 surface compared to the clean SiO2 surface was apparent both from tape tests and while probing the samples during electrical testing. Secondary ion mass spectroscopy (SIMS) depth profiling measurements of the MOS test structures reveal distinct differences of copper diffusion into the SiO2 dielectric layers following the thermal anneal depending on the presence of the MnSiO3 barrier layer.

  12. Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm

    SciTech Connect

    Jiang, J.; Kuang, C.; Chen, M.; Attoui, M.; McMurry, P. H.

    2011-02-01

    We report a new scanning mobility particle spectrometer (SMPS) for measuring number size distributions of particles down to {approx}1 nm mobility diameter. This SMPS includes an aerosol charger, a TSI 3085 nano differential mobility analyzer (nanoDMA), an ultrafine condensation particle counter (UCPC) using diethylene glycol (DEG) as the working fluid, and a conventional butanol CPC (the 'booster') to detect the small droplets leaving the DEG UCPC. The response of the DEG UCPC to negatively charged sodium chloride particles with mobility diameters ranging from 1-6 nm was measured. The sensitivity of the DEG UCPC to particle composition was also studied by comparing its response to positively charged 1.47 and 1.70 nm tetra-alkyl ammonium ions, sodium chloride, and silver particles. A high resolution differential mobility analyzer was used to generate the test particles. These results show that the response of this UCPC to sub-2 nm particles is sensitive to particle composition. The applicability of the new SMPS for atmospheric measurement was demonstrated during the Nucleation and Cloud Condensation Nuclei (NCCN) field campaign (Atlanta, Georgia, summer 2009). We operated the instrument at saturator and condenser temperatures that allowed the efficient detection of sodium chloride particles but not of air ions having the same mobility. We found that particles as small as 1 nm were detected during nucleation events but not at other times. Factors affecting size distribution measurements, including aerosol charging in the 1-10 nm size range, are discussed. For the charger used in this study, bipolar charging was found to be more effective for sub-2 nm particles than unipolar charging. No ion induced nucleation inside the charger was observed during the NCCN campaign.

  13. Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes.

    PubMed

    Garate, José-Antonio; English, Niall J; MacElroy, J M D

    2009-09-21

    Water-self-diffusion through single-walled carbon nanotubes (SWCNTs) inserted normal to a phospholipid membrane has been studied using equilibrium and nonequilibrium molecular dynamics simulations in the presence of static and alternating electrical fields. Four different SWCNTs were investigated: (5,5), (6,6), (8,8), and (11,11) and also three arrays of four (6,6) SWCNTs separated by 15, 20, and 25 A, respectively. The (5,5) system shows interesting behavior, where an increase in the applied field frequency in the z direction decreases the water permeation rates, reaching values at higher frequencies similar to zero-field conditions. The (6,6) arrays simulations demonstrated that there is a friction effect, when the nanotubes are closely packed, which retards the movement of the individual water files.

  14. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile electricity" technologies, early California household markets, and innovation management

    NASA Astrophysics Data System (ADS)

    Williams, Brett David

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" (Me-) is characterized. Me- redefines H2 FCVs as innovative products able to provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. To characterize such opportunities, this study first integrates and extends previous analyses of H2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. It uses a new model to estimate zero-emission-power vs. zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. Next, the initial market potential for Me- enabled vehicles, such as H2FCVs and plug-in hybrids, is estimated by eliminating unlikely households from consideration for early adoption. 5.2 million of 33.9 million Californians in the 2000 Census live in households pre-adapted to Me-, 3.9 million if natural gas is required for home refueling. The possible sales base represented by this population is discussed. Several differences in demographic and other characteristics between the target market and the population as a whole are highlighted, and two issues related to the design of H2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments-which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing Me- innovations. Next, Me-H2FCV commercialization issues are raised from the perspectives of innovation, product development, and strategic marketing. Starting with today's internalcombustion hybrids, this discussion suggests a way to move beyond the battery vs. fuel-cell zero-sum game and towards the

  15. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission

    PubMed Central

    Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.

    2014-01-01

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330

  16. Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission.

    PubMed

    Zhang, Mingming; Ladas, Thomas P; Qiu, Chen; Shivacharan, Rajat S; Gonzalez-Reyes, Luis E; Durand, Dominique M

    2014-01-22

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission.

  17. A mobile Sn nanowire inside a β-Ga2 O3 tube: a practical nanoscale electrically/thermally driven switch.

    PubMed

    Zou, Rujia; Zhang, Zhenyu; Tian, Qiwei; Ma, Guanxing; Song, Guosheng; Chen, Zhigang; Hu, Junqing

    2011-12-02

    Nanoelectromechanical system switches are seen as key devices for fast switching in communication networks since they can be switched between transmitting and receiving states with an electrostatic command. Herein, the fabrication of practical, nanoscale electrically/thermally driven switches is reported based on a mobile Sn nanowire inside a β-Ga2 O3 tube. The melting point of Sn inside the Ga2 O3 tube is found to be as low as 58 °C-far below the value of bulk Sn (231.89 °C)-and its crystal phase (β-Sn) remains unchanged even at temperatures as low as -170 °C. Thus a miniaturization of the unique wide-temperature-range thermometer based on the linear thermal expansion of liquid Sn fillings in the Ga2 O3 tube is realized. In addition, the electrical properties of the Sn-nanowire-filled β-Ga2 O3 tubes are carefully determined: importantly, the resistance demonstrates a sudden drop (rise) when two Sn nanowires contact (separate), due to the thermally driven motion of the liquid Sn fillings inside the tube. Thus this structure can be switched between its on and off states by controlling the motion, merging or splitting, of the Sn nanowires inside the tube, either electrically, by applying a current, or thermally, at a predetermined temperature.

  18. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility

    NASA Astrophysics Data System (ADS)

    Rezvanizaniani, Seyed Mohammad; Liu, Zongchang; Chen, Yan; Lee, Jay

    2014-06-01

    As hybrid and electric vehicle technologies continue to advance, car manufacturers have begun to employ lithium ion batteries as the electrical energy storage device of choice for use in existing and future vehicles. However, to ensure batteries are reliable, efficient, and capable of delivering power and energy when required, an accurate determination of battery performance, health, and life prediction is necessary. This paper provides a review of battery prognostics and health management (PHM) techniques, with a focus on major unmet needs in this area for battery manufacturers, car designers, and electric vehicle drivers. A number of approaches are presented that have been developed to monitor battery health status and performance, as well as the evolution of prognostics modeling methods. The goal of this review is to render feasible and cost effective solutions for dealing with battery life issues under dynamic operating conditions.

  19. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis.

    PubMed

    Firnkes, Matthias; Pedone, Daniel; Knezevic, Jelena; Döblinger, Markus; Rant, Ulrich

    2010-06-09

    Solid-state nanopores bear great potential to be used to probe single proteins; however, the passage of proteins through nanopores was found to be complex, and unexpected translocation behavior with respect to the passage direction, rate, and duration was observed. Here we study the translocation of a model protein (avidin) through silicon nitride nanopores focusing on the electrokinetic effects that facilitate protein transport across the pore. The nanopore zeta potential zeta(pore) and the protein zeta potential zeta(protein) are measured independently as a function of solution pH. Our results reveal that electroosmotic transport may enhance or dominate and reverse electrophoretic transport in nanopores. The translocation behavior is rationalized by accounting for the charging states of the protein and the pore, respectively; the resulting translocation direction can be predicted according to the difference in zeta potentials, zeta(protein) - zeta(pore). When electrophoresis and electroosmosis cancel each other out, diffusion becomes an effective (and bias-independent) mechanism which facilitates protein transport across the pore at a significant rate.

  20. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    NASA Astrophysics Data System (ADS)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  1. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.

    PubMed

    Chung, In; Song, Jung-Hwan; Im, Jino; Androulakis, John; Malliakas, Christos D; Li, Hao; Freeman, Arthur J; Kenney, John T; Kanatzidis, Mercouri G

    2012-05-23

    CsSnI(3) is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI(3) have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI(3), coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI(3). The black orthorhombic form of CsSnI(3) demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI(3) indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of ∼ 10(17) cm(-3) and a hole mobility of ∼585 cm(2) V(-1) s(-1). The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise

  2. A randomised controlled trial of integrated electrical stimulation and physiotherapy to improve mobility for people less than 6 months post stroke.

    PubMed

    Wilkinson, Ingrid A; Burridge, Jane; Strike, Paul; Taylor, Paul

    2014-05-14

    Abstract Purpose: To investigate the feasibility of combining physiotherapy and functional electrical stimulation to improve gait post stroke. Methods: A parallel group partially single-blinded randomised clinical trial. Adults living at home, less than 6 months post stroke, were randomised to Group A (physiotherapy, n = 10) or Group B (physiotherapy and common peroneal nerve stimulation, n = 10). Assessments were conducted before randomisation (Week 1), after intervention (Week 8) and after 12 weeks follow-up (Week 20). Results: No between group differences were observed. There were statistically significant within group differences after the intervention period in both groups for walking speed and distance walked (without stimulation), Rivermead Mobility Index and Canadian Occupational Performance Measure, maintained at Week 20. There was statistically significant improvement in 10-m walking speed (Group B) when the stimulator was used at Week 8 (p = 0.03, median 0.04 m/s (8%)). Only Group B had statistically significant within group change in Rivermead Visual Gait Analysis (Week 8), maintained at Week 20. Conclusions: Integrating electrical stimulation and physiotherapy was feasible and improved walking speed. There was no evidence of a training effect compared with physiotherapy alone. One-hundred forty-four participants per group would produce an adequately powered study based on this protocol. Implications for Rehabilitation At the end of the intervention period participants using electrical stimulation to correct dropped foot walked faster. It was feasible for electrical stimulation to be combined with physiotherapy for people less than 6 months post stroke. A larger adequately powered study is required to establish whether there are training effects associated with use of stimulation in this population.

  3. Dielectric properties and ion mobility in erythrocytes.

    PubMed

    Pauly, H; Schwan, H P

    1966-09-01

    The impedance of erythrocytes of man, cattle, sheep, dog, cat, rabbit, and chicken was measured in the range from 0.5 to 250 Mc. The dielectric constant of the red cell interior is 50 at 250 Mc, varies but little with species, and can readily be accounted for by the cells' hemoglobin content. The electrical conductivity of the red cell interior was determined between 70 and 100 Mc. The values differ from species to species within the rather limited range from 4.4 to 5.3 mmho/cm. Removal of the cell membranes does not affect the conductivity. Hence, the cell interior behaves, from an electrical point of view, like a highly concentrated hemoglobin solution. A theoretical value for the electrical conductivity of erythrocyte interiors, which is calculated on the basis of the salt content of the cell, ion mobility, and the volume concentration of the hemoglobin, is roughly twice as large as the measured value. This discrepancy is typical not only of the red blood cell. Pertinent measurements show that it is probably caused by hydrodynamic and possibly by electrostatic effects also, which lower the mobility of the ions. From the lower electrical mobility it appears that a lowered diffusion constant of the electrolytes and nonelectrolytes within the cell is indicated.

  4. DNA capture into a nanopore: interplay of diffusion and electrohydrodynamics.

    PubMed

    Grosberg, Alexander Y; Rabin, Yitzhak

    2010-10-28

    We present a detailed analysis of the process of voltage driven capture of DNA molecules by nanopores. We show that ionic current generates a nonuniform electric field that acts on both the DNA and on its counterions and that the response of DNA to the electric field is affected by its electroosmotic coupling to the mobile counterions. We calculate the voltage and molecular mass dependence of the radius of capture and of the capture rate in the diffusion limited regime. We argue that electroosmotic flow through the DNA coil is suppressed in the vicinity of the pore and present a tentative estimate of the capture rate in the barrier limited regime.

  5. DNA capture into a nanopore: Interplay of diffusion and electrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Grosberg, Alexander Y.; Rabin, Yitzhak

    2010-10-01

    We present a detailed analysis of the process of voltage driven capture of DNA molecules by nanopores. We show that ionic current generates a nonuniform electric field that acts on both the DNA and on its counterions and that the response of DNA to the electric field is affected by its electroosmotic coupling to the mobile counterions. We calculate the voltage and molecular mass dependence of the radius of capture and of the capture rate in the diffusion limited regime. We argue that electroosmotic flow through the DNA coil is suppressed in the vicinity of the pore and present a tentative estimate of the capture rate in the barrier limited regime.

  6. Ultrafast bulk diffusion of AlHx in high-entropy dehydrogenation intermediates of NaAlH4 [Highly mobile AlHx species and the dehydogenation kinetics of NaAlH4

    DOE PAGES

    Zhang, Feng; Wood, Brandon C.; Wang, Yan; ...

    2014-07-21

    Using first-principles molecular dynamics (FPMD) and total-energy calculations, we demonstrate low-barrier bulk diffusion of Al-bearing species in γ-NaAlH4, a recently proposed high-entropy polymorph of NaAlH4. For charged AlH4– and neutral AlH3 vacancies, the computed barriers for diffusion are <0.1 eV, and we directly observe the predicted diffusive pathways in FPMD simulations at picosecond time scales. In contrast, such diffusion in the α phase is inaccessible to FPMD, consistent with much higher barriers. The transport behavior of γ-NaAlH4, in addition to key dynamical and structural signatures, is consistent with experimental observations of high-mobility species, strongly supporting the idea that an intermediatemore » transition from the α phase to a high-entropy polymorph facilitates the hydrogen-releasing decomposition of NaAlH4. Lastly, our results provide an answer to longstanding questions regarding the responsible agent for the experimentally observed efficient Al transport during dehydrogenation and suggest that mass transport and phase transformation kinetics are coupled. Implications for understanding the (de)hydrogenation of undoped and catalyzed NaAlH4 are discussed.« less

  7. Specific absorption rate and electric field measurements in the near field of six mobile phone base station antennas.

    PubMed

    Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari

    2009-05-01

    In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm.

  8. Three-dimensional current collapse imaging of AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Katsuno, Takashi; Manaka, Takaaki; Ishikawa, Tsuyoshi; Soejima, Narumasa; Uesugi, Tsutomu; Iwamoto, Mitsumasa

    2016-11-01

    Three-dimensional (3D) current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistor devices was achieved by a combination of two-dimensional (2D) and depth directional electric field-induced optical second-harmonic generation (EFISHG) measurements. EFISHG can detect the electric field produced by trapped carriers, which causes the current collapse. In the 2D measurement, the strong second-harmonic (SH) signals appeared within 1 μm from the gate edge on the drain side at 0.8 μs after the transition from the off- to no bias- state in both unpassivated and passivated samples. In the depth measurement, the SH signals were generated mainly from the AlGaN surface region of the unpassivated sample due to the presence of high-density trap sites in the AlGaN layer, and SH signals from bulk GaN region were also detected at 50 μs after the transition from the off- to no bias- state in the passivated sample. The origin of the traps is presumably the nitrogen vacancies in the GaN buffer layer.

  9. Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5 nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1 ng/ml using a 20x50 {mu}m{sup 2} gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  10. Electrical detection of kidney injury molecule-1 with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-01

    AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1ng/ml using a 20×50μm2 gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  11. Electric field dependence of optical phonon frequencies in wurtzite GaN observed in GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Bagnall, Kevin R.; Dreyer, Cyrus E.; Vanderbilt, David; Wang, Evelyn N.

    2016-10-01

    Due to the high dissipated power densities in gallium nitride (GaN) high electron mobility transistors (HEMTs), temperature measurement techniques with high spatial resolution, such as micro-Raman thermography, are critical for ensuring device reliability. However, accurately determining the temperature rise in the ON state of a transistor from shifts in the Raman peak positions requires careful decoupling of the simultaneous effects of temperature, stress, strain, and electric field on the optical phonon frequencies. Although it is well-known that the vertical electric field in the GaN epilayers can shift the Raman peak positions through the strain and/or stress induced by the inverse piezoelectric (IPE) effect, previous studies have not shown quantitative agreement between the strain and/or stress components derived from micro-Raman measurements and those predicted by electro-mechanical models. We attribute this discrepancy to the fact that previous studies have not considered the impact of the electric field on the optical phonon frequencies of wurtzite GaN apart from the IPE effect, which results from changes in the atomic coordinates within the crystal basis and in the electronic configuration. Using density functional theory, we calculated the zone center E2 (high), A1 (LO), and E2 (low) modes to shift by -1.39 cm-1/(MV/cm), 2.16 cm-1/(MV/cm), and -0.36 cm-1/(MV/cm), respectively, due to an electric field component along the c -axis, which are an order of magnitude larger than the shifts associated with the IPE effect. Then, we measured changes in the E2 (high) and A1 (LO) Raman peak positions with ≈1 μm spatial resolution in GaN HEMTs biased in the pinched OFF state and showed good agreement between the strain, stress, and electric field components derived from the measurements and our 3D electro-mechanical model. This study helps to explain the reason the pinched OFF state is a suitable reference for removing the contributions of the electric field and

  12. Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors.

    PubMed

    Sammito, Davide; De Salvador, Davide; Zilio, Pierfrancesco; Biasiol, Giorgio; Ongarello, Tommaso; Massari, Michele; Ruffato, Gianluca; Morpurgo, Margherita; Silvestri, Davide; Maggioni, Gianluigi; Bovo, Gianluca; Gaio, Michele; Romanato, Filippo

    2014-01-01

    We report the design of an integrated platform for on-chip electrical transduction of the surface plasmon resonance supported by a nanostructured metal grating. The latter is fabricated on the active area of a GaAs/AlGaAs photo-HEMT and simultaneously works as the electronic gate of the device. The gold plasmonic crystal has a V-groove profile and has been designed by numerical optical simulations. By showing that the numerical models accurately reproduce the phototransistors experimental response, we demonstrate that the proposed architecture is suitable for the development of a new class of compact and scalable SPR sensors.

  13. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    NASA Technical Reports Server (NTRS)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  14. The long-lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile.

    PubMed Central

    Sowers, A E

    1987-01-01

    The long-lived fusogenic state induced in spherical-shaped erythrocyte ghosts by electric field pulses (Sowers, A.E. 1984. J. Cell Biol. 99:1989-1996; Sowers, A.E. 1986. J. Cell Biol. 102:1358-1362) was studied in terms of how the fusion yield depended on both (a) the location where membrane-membrane contact took place with respect to the orientation of the electric pulse and (b) the time interval between the pulse treatment and membrane-membrane contact. Fusion yields were greater for membrane-membrane contact locations closer to where the pulse-induced transmembrane voltage was expected to be greatest and showed a time interval-dependent accelerating decay. The portion of the membrane that became fusogenic included the area up to a latitude of approximately 38 degrees of arc towards the equators of the membranes. A time interval-dependent increase or decrease in rate of decay in the fusion yield for membrane-membrane contacts induced closer to the equator of the membranes did not occur showing that the pulse-induced fusogenic state is immobile in the early 5-45-s interval after induction and has a rate of decay, which does not permit long time interval changes in lateral position to be measured. PMID:3427195

  15. Global properties and propensity to dimerization of the amyloid-beta (12-28) peptide fragment through the modeling of its monomer and dimer diffusion coefficients and electrophoretic mobilities.

    PubMed

    Deiber, Julio A; Peirotti, Marta B; Piaggio, Maria V

    2015-03-01

    Neuronal activity loss may be due to toxicity caused mainly by amyloid-beta (1-40) and (1-42) peptides forming soluble oligomers. Here the amyloid-beta (12-28) peptide fragment (monomer) and its dimer are characterized at low pH through the modeling of their diffusion coefficients and effective electrophoretic mobilities. Translational diffusion coefficient experimental values of monomer and dimer analogs of this peptide fragment and monomer and dimer mixtures at thermodynamic equilibrium are used as reported in the literature for different monomer initial concentrations. The resulting electrokinetic and hydrodynamic global properties are employed to evaluate the amyloid-beta (12-28) peptide fragment propensity to dimerization through a thermodynamic theoretical framework. Therefore equilibrium constants are considered at pH 2.9 to elucidate one of the amyloidogenic mechanisms involving the central hydrophobic region LVFFA of the peptide spanning residues 17-21 associated with phenylalanine at positions 19 and 20 in the amino acid sequence of amyloid-beta peptides. An analysis demonstrating that peptide aggregation is a concentration-dependent process is provided, where both pair and intraparticle charge regulation phenomena become relevant. It is shown that the modeling of the effective electrophoretic mobility of the amyloid-beta (12-28) peptide fragment is crucial to understand the effect of hydrophobic region LVFFA in the amyloidogenic process.

  16. Magnetotransport in high mobility InSbCdTe heterojunctions: Electric spin-splitting of subbands and high pressure effects

    NASA Astrophysics Data System (ADS)

    Singleton, J.; Greene, S. K.; Golding, T. D.; Pepper, M.; Skierbiszewski, C.; Wisniewski, P.; van der Wel, P. J.; van Thor, P. H. E.; Dinan, J.

    Magneto-transport measurements are reported on the high-mobility, low-carrier-density (μ = 16 000 - 22 000 cm 2V -1s -1 and Ns = 1.8 - 4.2 × 10 11 cm -2), two dimensional electron gas in InSbCdTe heterojunctions, realised as a result of improvements in growth techniques. Measurements carried out at hydrostatic pressures up to 10 kbar show that Ns decreases with increasing pressure, suggesting that the electrons in the 2DEG originate from a band of interface states ˜ 100 meV above the InSb conduction band edge at the InSbCdTe interface. The temperature dependence of the Hall effect suggests that the persistent photoconductivity observed in InSbCdTe heterojunctions is due to charge separation in InSb. The low-field magnetoresistance of the heterojunctions is at first positive and then negative due to the presence of a spin-splitting of the subbands of around 3 meV at the Fermi energy, present even in zero applied magnetic field, and the experimental results aer compared with self-consistent calculations of this effect.

  17. Measuring the Effect of Ion-Induced Drift-Gas Polarization on the Electrical Mobilities of Multiply-Charged Ionic Liquid Nanodrops in Air

    NASA Astrophysics Data System (ADS)

    Fernández-García, Juan; Fernández de la Mora, Juan

    2013-12-01

    The electrical mobilities of multiply-charged nanodrops of the ionic liquid 1-ethyl, 3-methylimidazolium dicyanamide (EMI-N[CN]2) were accurately measured in air at 20 °C for mass-selected clusters of composition [EMI-N[CN]2] n [EMI+] z , with 2 ≤ n ≤ 369 and 1 ≤ z ≤ 10. We confirm prior reports that the mobility Z of a globular ion of mass m is given approximately by the modified Stokes-Millikan law for spheres, Z = Z SM, mod ( d m + d g , z, m), where d m = (6 m/ πρ)1/3 is the nanodrop mass-diameter based on the density ρ of the liquid (corrected for the capillary compression and electrostatic deformation of the nanodrop), and d g is an effective air molecule diameter. There is however a measurable (up to 7 %) and systematic z-dependent departure of Z from Z SM,mod . As theoretically expected at small ɛ * , this effect is accurately described by a simple correction factor of the form Z/ Z SM, mod = δ(1 - βɛ *), where kTɛ * is the potential energy due to the ion-induced dipole ( polarization) attraction between a perfectly-conducting charged nanodrop and a polarized neutral gas-molecule at a distance ( d m + d g )/2 from its center. An excellent fit of this model to hundreds of data points is found for d g ≈ 0.26 nm, β ≈ 0.36, and δ ≈ 0.954. Accounting for the effect of polarization decreases d g considerably with respect to values inferred from earlier nanodrop measurements that ignored this effect. In addition, and in spite of ambiguities in the mobility calibration scale, the measured constant δ smaller than unity increases Millikan's drag enhancement factor from the accepted value ξ m ≈ 1.36 to the new value ξ ≈ ξ m / δ ≈ 1.42 ± 0.03.

  18. DNA electrophoresis in agarose gels: Effects of electric field and gel concentration on the exponential dependence of reciprocal mobility on DNA length

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin; van Winkle, David; Randolph, Rill

    2002-03-01

    Electrophoresis was performed on double stranded DNA fragments ranging in length from 200 bp to 48502 bp at agarose gel concentrations T = 0.5% - 1.5% and electric fields E = 0.71 V/cm to 5 V/cm. A wide range of electric fields and gel concentrations were used to find what range of conditions work with the new interpolation equation, 1/μ(L) = 1/μl - (1/μl - 1/μ_s)e^-L/γ. The equation fit extremely well (\\chi^2 >= 0.999) to data with E = 2.5 V/cm to 5 V/cm and for lower fields (E < 2.5 V/cm) at low gel concentrations (T = 0.5% and 0.7%). This exponential relation seemed to hold when there is a smooth transition from the Ogston sieving regime to the reptation regime when looking at the “reptation plots” (plotting 3μL/μo vs. L) (Rousseau, J., Drouin, G., and Slater, G. W., Phys Rev Lett. 1997, 79, 1945-1948). For separations of single-stranded DNA in polyacrylamide, similar reptation plots have a region with a negative slope between the Ogston sieving regime and the reptation regime which has been interpreted as the signature of entropic trapping. When separating double-stranded DNA in agarose it was observed that fits deviate from the data when three different slopes are observed in the reptation plots. Failure of the simple exponential relationship between reciprocal mobility and DNA length appears to be the consequence of entropic trapping.

  19. Direct label-free electrical immunodetection of transplant rejection protein biomarker in physiological buffer using floating gate AlGaN/GaN high electron mobility transistors.

    PubMed

    Tulip, Fahmida S; Eteshola, Edward; Desai, Suchita; Mostafa, Salwa; Roopa, Subramanian; Evans, Boyd; Islam, Syed Kamrul

    2014-06-01

    Monokine induced by interferon gamma (MIG/CXCL9) is used as an immune biomarker for early monitoring of transplant or allograft rejection. This paper demonstrates a direct electrical, label-free detection method of recombinant human MIG with anti-MIG IgG molecules in physiologically relevant buffer environment. The sensor platform used is a biologically modified GaN-based high electron mobility transistor (HEMT) device. Biomolecular recognition capability was provided by using high affinity anti-MIG monoclonal antibody to form molecular affinity interface receptors on short N-hydroxysuccinimide-ester functionalized disulphide (DSP) self-assembled monolayers (SAMs) on the gold sensing gate of the HEMT device. A floating gate configuration has been adopted to eliminate the influences of external gate voltage. Preliminary test results with the proposed chemically treated GaN HEMT biosensor show that MIG can be detected for a wide range of concentration varying from 5 ng/mL to 500 ng/mL.

  20. Electricity in the Atmosphere.

    ERIC Educational Resources Information Center

    Sampath, S.; Kumar, V. Sasi

    1991-01-01

    The theory of the atmospheric electric circuit and a discussion of the fair-weather electrical are presented. The ion concentration, mobility, conductivity, and electric field altitudinal profiles are explained. An outline of the electrical processes inside thunderstorms along with a description of the lightning strike are included. (Author)

  1. Characterization of ionic, dipolar and molecular mobility in polymer systems

    NASA Astrophysics Data System (ADS)

    Guo, Zhenrong

    Changes in the ionic and dipolar molecular mobility in a polymer system are the basis for the changes in the dielectric mechanical properties of polymer materials. Frequency Dependent Dielectric Measurements (FDEMS) and Ion Time-of-Flight (ITOF) are two important techniques to investigate ionic and dipolar molecular mobility in polymer systems. The results can be related to the macro- and molecular dielectric, electrical and dynamic properties of polymeric materials. The combination of these two methods provides a full view of electric, dielectric and dynamic behavior for the systems as they undergo chemical and/or physical changes during polymerization crystallization, vitrification, and/or phase separation. The research on microscopic mass mobility in polymer systems was done on three aspects: (1) ion mobility in an epoxy-amine reaction system; (2) dipolar mobility and relaxation during dimethacrylate resin cure and (3) dye molecule migration and diffusion in polymer films. In the ion mobility study, we separately monitor the changes in the ion mobility and the number of charge carriers during the epoxy-amine polymerization with FDEMS and ITOF measurements. The isolation of the number of carriers and their mobility allows significant improvement in monitoring changes in the state and structure of a material as it cures. For the dipolar mobility and relaxation study, FDEMS measurements were used to detect structural evolution and spatial heterogeneity formation during the polymerization process of dimethacrylate resins. The dielectric spectra, glass transition (Tg) profiles and dynamic mechanical measurements were used to investigate the existence of two cooperative regions of sufficient size to create two alpha-relaxation processes representing oligomer rich and polymer microgel regions during the polymerization. For the dye migration research, we tried to develop a visually color changing paper (VCP) due to dye molecule migration in polymer films. The mobility

  2. Mobile Genetic Elements Related to the Diffusion of Plasmid-Mediated AmpC β-Lactamases or Carbapenemases from Enterobacteriaceae: Findings from a Multicenter Study in Spain

    PubMed Central

    Zamorano, L.; Miró, E.; Juan, C.; Gómez, L.; Bou, G.; González-López, J. J.; Martínez-Martínez, L.; Aracil, B.; Conejo, M. C.; Oliver, A.

    2015-01-01

    We examined the genetic context of 74 acquired ampC genes and 17 carbapenemase genes from 85 of 640 Enterobacteriaceae isolates collected in 2009. Using S1 pulsed-field gel electrophoresis and Southern hybridization, 37 of 74 blaAmpC genes were located on large plasmids of different sizes belonging to six incompatibility groups. We used sequencing and PCR mapping to investigate the regions flanking the acquired ampC genes. The blaCMY-2-like genes were associated with ISEcp1; the surrounding blaDHA genes were similar to Klebsiella pneumoniae plasmid pTN60013 associated with IS26 and the psp and sap operons; and the blaACC-1 genes were associated with IS26 elements inserted into ISEcp1. All of the carbapenemase genes (blaVIM-1, blaIMP-22, and blaIMP-28) were located in class 1 integrons. Therefore, although plasmids are the main cause of the rapid dissemination of ampC genes among Enterobacteriaceae, we need to be aware that other mobile genetic elements, such as insertion sequences, transposons, or integrons, can be involved in the mobilization of these genes of chromosomal origin. Additionally, three new integrons (In846 to In848) are described in this study. PMID:26077249

  3. Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions.

    PubMed

    Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos

    2012-03-08

    Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers.

  4. Improved electrical mobility in highly epitaxial La:BaSnO{sub 3} films on SmScO{sub 3}(110) substrates

    SciTech Connect

    Wadekar, P. V.; O'Sullivan, M.; Flack, N. L. O.; Manning, T. D.; Claridge, J. B.; Rosseinsky, M. J.; Alaria, J.; Phillips, L. J.; Durose, K.; Lozano, O.; Lucas, S.

    2014-08-04

    Heteroepitaxial growth of BaSnO{sub 3} and Ba{sub 1−x}La{sub x}SnO{sub 3} (x = 7%) lanthanum doped barium stannate thin films on different perovskite single crystal (SrTiO{sub 3} (001) and SmScO{sub 3} (110)) substrates has been achieved by pulsed laser deposition under optimized deposition conditions. X-ray diffraction measurements indicate that the films on either of these substrates are relaxed due to the large mismatch and present a high degree of crystallinity with narrow rocking curves and smooth surface morphology while analytical quantification by proton induced X-ray emission confirms the stoichiometric La transfer from a polyphasic target, producing films with measured La contents above the bulk solubility limit. The films show degenerate semiconducting behavior on both substrates, with the observed room temperature resistivities, Hall mobilities, and carrier concentrations of 4.4 mΩ cm, 10.11 cm{sup 2} V{sup −1} s{sup −1}, and 1.38 × 10{sup 20} cm{sup −3} on SmScO{sub 3} and 7.8 mΩ cm, 5.8 cm{sup 2} V{sup −1} s{sup −1}, and 1.36 × 10{sup 20} cm{sup −3} on SrTiO{sub 3} ruling out any extrinsic contribution from the substrate. The superior electrical properties observed on the SmScO{sub 3} substrate are attributed to reduction in dislocation density from the lower lattice mismatch.

  5. Effect of OFF-state stress induced electric field on trapping in AlGaN/GaN high electron mobility transistors on Si (111)

    SciTech Connect

    Anand, M. J. E-mail: eging@ntu.edu.sg; Ng, G. I. E-mail: eging@ntu.edu.sg; Syamal, B.; Zhou, X.; Arulkumaran, S.; Manoj Kumar, C. M.; Ranjan, K.; Vicknesh, S.; Foo, S. C.

    2015-02-23

    The influence of electric field (EF) on the dynamic ON-resistance (dyn-R{sub DS[ON]}) and threshold-voltage shift (ΔV{sub th}) of AlGaN/GaN high electron mobility transistors on Si has been investigated using pulsed current-voltage (I{sub DS}-V{sub DS}) and drain current (I{sub D}) transients. Different EF was realized with devices of different gate-drain spacing (L{sub gd}) under the same OFF-state stress. Under high-EF (L{sub gd} = 2 μm), the devices exhibited higher dyn-R{sub DS[ON]} degradation but a small ΔV{sub th} (∼120 mV). However, at low-EF (L{sub gd} = 5 μm), smaller dyn-R{sub DS[ON]} degradation but a larger ΔV{sub th} (∼380 mV) was observed. Our analysis shows that under OFF-state stress, the gate electrons are injected and trapped in the AlGaN barrier by tunnelling-assisted Poole-Frenkel conduction mechanism. Under high-EF, trapping spreads towards the gate-drain access region of the AlGaN barrier causing dyn-R{sub DS[ON]} degradation, whereas under low-EF, trapping is mostly confined under the gate causing ΔV{sub th}. A trap with activation energy 0.33 eV was identified in the AlGaN barrier by I{sub D}-transient measurements. The influence of EF on trapping was also verified by Silvaco TCAD simulations.

  6. Coarse grained model for calculating the ion mobility of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kuroboshi, Y.; Takemura, K.

    2016-12-01

    Hydrocarbons are widely used as insulating compounds. However, their fundamental characteristics in conduction phenomena are not completely understood. A great deal of effort is required to determine reasonable ionic behavior from experiments because of their complicated procedures and tight controls of the temperature and the purity of the liquids. In order to understand the conduction phenomena, we have theoretically calculated the ion mobilities of hydrocarbons and investigated their characteristics using the coarse grained model in molecular dynamics simulations. We assumed a molecule of hydrocarbons to be a bead and simulated its dependence on the viscosity, electric field, and temperature. Furthermore, we verified the suitability of the conformation, scale size, and long-range interactions for the ion mobility. The results of the simulations show that the ion mobility values agree reasonably well with the values from Walden's rule and depend on the viscosity but not on the electric field. The ion mobility and self-diffusion coefficient exponentially increase with increasing temperature, while the activation energy decreases with increasing molecular size. These values and characteristics of the ion mobility are in reasonable agreement with experimental results. In the future, we can understand not only the ion mobilies of hydrocarbons in conduction, but also we can predict general phenomena in electrochemistry with molecular dynamics simulations.

  7. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    SciTech Connect

    Toušek, J. Toušková, J.; Chomutová, R.; Remeš, Z.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.

    2015-12-15

    Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDT{sub THD} − DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.

  8. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOEpatents

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  9. Film model approximation for particle-diffusion-controlled binary ion exchange

    SciTech Connect

    Carta, G.; Cincotti, A.; Cao, G.

    1999-01-01

    A new rate expression for particle-diffusion-controlled ion exchange, based on an equivalent pseudosteady-state film resistance model, is developed. The rate expression approximates the electric field effects on intraparticle diffusion in spherical ion-exchangers. With regard to the prediction of batch exchange and column breakthrough curves for both irreversible and reversible processes, the model captures the essential traits of the coupled diffusion phenomenon described by the Nernst-Planck equation with results of accuracy comparable to that obtained when using the linear driving force approximation for systems with constant diffusivity. Numerical results for the exchange of two counterions of equal valence are presented as application examples for different mobility ratios and selectivity coefficients.

  10. Investigation of structural, optical, and electrical characteristics of an AlGaN/GaN high electron mobility transistor structure across a 200 mm Si(1 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Perozek, J.; Lee, H.-P.; Krishnan, B.; Paranjpe, A.; Reuter, K. B.; Sadana, D. K.; Bayram, C.

    2017-02-01

    An AlGaN/GaN high electron mobility transistor (HEMT) structure is grown on a 200 mm Si(1 1 1) substrate. The AlGaN/AlN/GaN heterostructure atop, which forms the 2D electron gas, is studied via transmission electron microscopy (TEM), scanning tunneling microscopy, and TEM chemical analysis. To quantify the uniformity of structural, optical, and electrical properties of these AlGaN/GaN HEMT structures, scanning electron microscopy, optical microscopy, atomic-force microscopy, x-ray diffraction (ω/2θ scan and reciprocal space mapping) and Hall effect measurements are employed across the center, middle, and edge of the 200 mm wafer. Small thickness (<3%) and Al-content (<3%) variations in (Al)GaN layers across the wafer are recorded whereas a considerable change (28%) in the electron mobility is observed across the wafer that correlates with variations in surface roughness, defectivity, and layer stress. We attribute the higher mobility in the middle of the wafer to lower interface scattering, thanks to lower surface roughness and less edge-type dislocation density. Additionally, argon (Ar) ion implantation is used as a means for planar electrical isolation, and a seven orders of magnitude decrease in leakage current is achieved when an optimum Ar dose of 1013 cm-2 is used. The feasibility of scaling AlGaN/GaN HEMTs on a 200 mm Si(1 1 1) platform is discussed.

  11. ELECTRICAL PROPERTIES OF FOODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foods, especially liquid foods, conduct electricity. Unlike in metals, the charge carriers in foods are ions, instead of electrons. Under normal applications, ions carry the charges as the mass of ions moves along the electrical field. The concentration and mobility of ions determine the electrical ...

  12. Surface self-diffusion of organic glasses.

    PubMed

    Brian, Caleb W; Yu, Lian

    2013-12-19

    Surface self-diffusion coefficients have been determined for the organic glass Nifedipine using the method of surface grating decay. The flattening of 1000 nm surface gratings occurs by viscous flow at 12 K or more above the glass transition temperature and by surface diffusion at lower temperatures. Surface diffusion is at least 10(7) times faster than bulk diffusion, indicating a highly mobile surface. Nifedipine glasses have faster surface diffusion than the previously studied Indomethacin glasses, despite their similar bulk relaxation times. Both glasses exhibit fast surface crystal growth, and its rate scales with surface diffusivity. The observed rate of surface diffusion implies substantial surface rearrangement during the preparation of low-energy glasses by vapor deposition. The Random First Order Transition Theory and the Coupling Model successfully predict the large surface-enhancement of mobility and its increase on cooling, but disagree with the experimental observation of the faster surface diffusion of Nifedipine.

  13. THE EFFECT OF ADSORBED SULFUR ON THE SURFACE SELF-DIFFUSION OF COPPER.

    DTIC Science & Technology

    SULFUR), * DIFFUSION ), (*ADSORPTION, (*COPPER, SURFACES, HYDROGEN, SINGLE CRYSTALS, ANNEALING, HYDROGEN COMPOUNDS, SULFIDES, GRAIN BOUNDARIES, HIGH TEMPERATURE, IMPURITIES, ENTHALPY, CHEMISORPTION, MOBILITY.

  14. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  15. Self-diffusion in liquid interfaces.

    PubMed

    Herth, Simone; Ye, Feng; Eggersmann, Martin; Gutfleisch, Oliver; Würschum, Roland

    2004-03-05

    For studying self-diffusion in liquid interfaces, 59Fe tracer diffusion was measured on ultrafine-grained Nd2Fe14B which undergoes an intergranular melting transition for low Nd excess. The diffusion coefficient in the intergranular liquid layers is found to be lower than in bulk melts indicating a hampered atomic mobility due to confinement. Well above the intergranular melting transition, the diffusivity in the liquid interfaces approaches a value characteristic for bulk melts.

  16. Simulation of Electrical Transport in Rocks under Mechanical Action

    NASA Astrophysics Data System (ADS)

    Salgueiro da Silva, M. A.; Seixas, T. M.

    2015-12-01

    Rock's electrical properties can be changed by mechanical action, especially when deformation is accompanied by micro-fracturing processes. Knowing how electrical charge is generated in inelastically deformed rocks, the nature and properties of the generated charge carriers, and their spatial distribution and propagation is crucial to gain insight into the origin of seismo-electromagnetic signals. In this work, we describe briefly a model for the numerical simulation of electrical transport in rocks under mechanical action, assuming that high and low mobility charge carriers of opposite signs can be simultaneously generated by micro-fracturing processes and recombine, diffuse and drift across the sample rock. The electrical behavior can then be described using an adaptation of the formalism applied to semiconductors. We provide simulation results on a one-dimensional lattice using finite-difference discretization. Our results show that a large mobility contrast among charge carriers allows charge separation inside the deformation region, which leads to the formation of charged layers of alternate signs. Inside these layers, rapid electric field variations are observed which can lead to the emission of electromagnetic radiation. With proper positioning of current electrodes inside the deformation region, it is possible to collect electrical current even without any applied voltage. We discuss our results in the light of available experimental results on the generation of electrical and electromagnetic signals in deformed rocks.

  17. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  18. Physical Techniques for the Study of Sorption, Diffusion, Electrical Properties, and Interfacial Effects in Ordered Polymers: Charge Transport and Conduction Mechanisms in Polymer Fibers.

    DTIC Science & Technology

    1986-07-26

    Schematic Representation of Band Structure and Band Gap for (a) Metal, (b) Semiconductor and (c) Insulator .................................. 12 2.3...and the "energy gap " iS 3 4]7 *between the conduction and valence bands . These cases are shown in Figure 2.2. For semiconductors, the jumping of...semiconductors lack long range order and conduction occurs because the band edges are smeared. This leads to a "mobility gap " rather than an energy gap and

  19. Influence of high voltage electric fields applied across a horizontal liquid-liquid interface on the rate of metal extraction using a rotating diffusion cell

    SciTech Connect

    Kuipa, P.K.; Hughes, M.A.

    1999-09-01

    The effect of an applied electrical field across a plane liquid-liquid interface on the rate of metal extraction using hydroxyoximes and dialkylphosphoric acids as extractants is examined. The results indicate that applied electric fields have no marked influence on the observed rate of metal extraction when aliphatic hydrocarbons are employed as the diluents in the organic phase. Increases in mass transfer rates of up to 250% were observed when mixtures of octanol and an aliphatic hydrocarbon were employed as the diluent in the organic phase. The mechanism of transfer is thought to be a combination of movement of charges in the bulk of the nonconducting organic phase and electrohydrodynamic flows due to local variations in the effective interfacial tension as a result of the applied electric fields.

  20. Mobile Learning Using Mobile Phones

    ERIC Educational Resources Information Center

    Vicente, Paula

    2013-01-01

    The participation in mobile learning programs is conditioned by having/using mobile communication technology. Those who do not have or use such technology cannot participate in mobile learning programs. This study evaluates who are the most likely participants of mobile learning programs by examining the demographic profile and mobile phone usage…

  1. Electrotransport and diffusivity of molybdenum, rhenium, tungsten, and zirconium in beta-thorium

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Beck, M. S.; Rehbein, D. K.; Conzemius, R. J.; Carlson, O. N.

    1984-01-01

    The electric mobilities, diffusivities, and effective valences were determined for molybdenum, rhenium, tungsten, and zirconium in beta-thorium. All four solutes migrated in the same direction as the electron flow. Rhenium and molybdenum were found to be very mobile, with tungsten somewhat slower. Zirconium was found to move at a rate near that of the self-diffusion of beta-thorium, viz., about 10 to the -11th sq m/s at 1500 C. The electromigration velocities showed a similar trend. A comparison was made between experimental data obtained by scanning laser mass spectrometry and theoretical transport equations for two purification experiments. Good agreement was obtained with both the concentration profile predicted by DeGroot and the purification ratio predicted by Verhoeven.

  2. Charged particle mobility refrigerant analyzer

    DOEpatents

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  3. Limits of social mobilization

    PubMed Central

    Rutherford, Alex; Cebrian, Manuel; Dsouza, Sohan; Moro, Esteban; Pentland, Alex; Rahwan, Iyad

    2013-01-01

    The Internet and social media have enabled the mobilization of large crowds to achieve time-critical feats, ranging from mapping crises in real time, to organizing mass rallies, to conducting search-and-rescue operations over large geographies. Despite significant success, selection bias may lead to inflated expectations of the efficacy of social mobilization for these tasks. What are the limits of social mobilization, and how reliable is it in operating at these limits? We build on recent results on the spatiotemporal structure of social and information networks to elucidate the constraints they pose on social mobilization. We use the DARPA Network Challenge as our working scenario, in which social media were used to locate 10 balloons across the United States. We conduct high-resolution simulations for referral-based crowdsourcing and obtain a statistical characterization of the population recruited, geography covered, and time to completion. Our results demonstrate that the outcome is plausible without the presence of mass media but lies at the limit of what time-critical social mobilization can achieve. Success relies critically on highly connected individuals willing to mobilize people in distant locations, overcoming the local trapping of diffusion in highly dense areas. However, even under these highly favorable conditions, the risk of unsuccessful search remains significant. These findings have implications for the design of better incentive schemes for social mobilization. They also call for caution in estimating the reliability of this capability. PMID:23576719

  4. Limits of social mobilization.

    PubMed

    Rutherford, Alex; Cebrian, Manuel; Dsouza, Sohan; Moro, Esteban; Pentland, Alex; Rahwan, Iyad

    2013-04-16

    The Internet and social media have enabled the mobilization of large crowds to achieve time-critical feats, ranging from mapping crises in real time, to organizing mass rallies, to conducting search-and-rescue operations over large geographies. Despite significant success, selection bias may lead to inflated expectations of the efficacy of social mobilization for these tasks. What are the limits of social mobilization, and how reliable is it in operating at these limits? We build on recent results on the spatiotemporal structure of social and information networks to elucidate the constraints they pose on social mobilization. We use the DARPA Network Challenge as our working scenario, in which social media were used to locate 10 balloons across the United States. We conduct high-resolution simulations for referral-based crowdsourcing and obtain a statistical characterization of the population recruited, geography covered, and time to completion. Our results demonstrate that the outcome is plausible without the presence of mass media but lies at the limit of what time-critical social mobilization can achieve. Success relies critically on highly connected individuals willing to mobilize people in distant locations, overcoming the local trapping of diffusion in highly dense areas. However, even under these highly favorable conditions, the risk of unsuccessful search remains significant. These findings have implications for the design of better incentive schemes for social mobilization. They also call for caution in estimating the reliability of this capability.

  5. Griffith diffusers

    NASA Technical Reports Server (NTRS)

    Yang, T.-T.; Nelson, C. D.

    1979-01-01

    Contoured wall diffusers are designed by using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffith in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions across the flow channel at various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be removed for the purpose of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs.

  6. Mobile lighting apparatus

    DOEpatents

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  7. Regulatory frameworks for mobile medical applications.

    PubMed

    Censi, Federica; Mattei, Eugenio; Triventi, Michele; Calcagnini, Giovanni

    2015-05-01

    A mobile application (app) is a software program that runs on mobile communication devices such as a smartphone. The concept of a mobile medical app has gained popularity and diffusion but its reference regulatory context has raised discussion and concerns. Theoretically, a mobile app can be developed and uploaded easily by any person or entity. Thus, if an app can have some effects on the health of the users, it is mandatory to identify its reference regulatory context and the applicable prescriptions.

  8. Macromolecule diffusion and confinement in prokaryotic cells.

    PubMed

    Mika, Jacek T; Poolman, Bert

    2011-02-01

    We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes.

  9. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  10. Diffuse phase transition and electrical properties of lead-free piezoelectric (LixNa1-x)NbO3 (0.04 ≤ x ≤ 0.20) ceramics near morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kulkarni, A. R.; Prakash, Om

    2013-08-01

    Temperature-dependent dielectric permittivity of lead-free (LixNa1-x)NbO3 for nominal x = 0.04-0.20, prepared by solid state reaction followed by sintering, was studied to resolve often debated issue pertaining to exactness of morphotropic phase boundary (MPB) location besides structural aspects and phase stability in the system near MPB. Interestingly, a diffuse phase transition has been observed in the dielectric permittivity peak arising from the disorder induced in A-site and structural frustration in the perovskite cell due to Li substitution. A partial phase diagram has been proposed based on temperature-dependent dielectric permittivity studies. The room temperature piezoelectric and ferroelectric properties were investigated and the ceramics with x = 0.12 showed relatively good electrical properties (d33 = 28 pC/N, kp = 13.8%, Qm = 440, Pr = 12.5 μC/cm2, Ec = 43.2 kV/cm, and Tm = 340 °C). These parameter values make this material suitable for piezoelectric resonator and filter applications. Moreover, a high dielectric permittivity (ɛ'r = 2703) with broad diffuse peak near transition temperature, and low dielectric loss (<4%) over a wide temperature range (50-250 °C) found in this material may also have a potential application in high-temperature multilayer capacitors in automotive and aerospace related industries.

  11. Peridynamic thermal diffusion

    SciTech Connect

    Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail

    2014-05-15

    This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.

  12. Influence of gamma irradiation on the electrical properties of LiClO4-gelatin solid polymer electrolytes: Modelling anomalous diffusion through generalized calculus

    NASA Astrophysics Data System (ADS)

    Basu, Tania; Tarafdar, Sujata

    2016-08-01

    Solid polymer electrolytes with gelatin as host polymer are subjected to gamma irradiation with dose varying from 0 to 100 kGy. Two sets of samples are studied, one with and one without addition of lithium perchlorate as ionic salt. The effect of varying plasticizer content, salt fraction and radiation dose on the impedance is measured. The dc (direct current) ion-conductivity is determined from impedance spectroscopy results. It is shown that relative to the unirradiated sample, the room temperature dc ion-conductivity decreases in general on irradiation, by an order of magnitude. However on comparing results for the irradiated samples, a dose of 60 kGy is seen to produce the highest ion-conductivity. Considering the variation of all parameters, the highest dc-conductivity of 6.06x10-2 S/m is obtained for the un-irradiated sample at room temperature, with 12.5 wt% LiClO4 and 35.71 wt% of glycerol as plasticizer. The samples are characterized in addition by XRD, SEM and FTIR respectively. Cyclic voltametry is performed for the confirmation of the electrolytic performance for pristine and gamma irradiated samples. To understand the experimental results, a model incorporating normal, as well as anomalous diffusion has been applied. Generalized calculus is used to model the anomalous diffusion. It is shown that this model successfully reproduces the experimental frequency dependence of the complex impedance for samples subjected to varying gamma dose. The physical interpretation of the model parameters and their variation with sample composition and irradiation dose is discussed.

  13. Mg dopant in Cu{sub 2}SnSe{sub 3}: An n-type former and a promoter of electrical mobility up to 387 cm{sup 2} V{sup −1} s{sup −1}

    SciTech Connect

    Kuo, Dong-Hau Wubet, Walelign

    2014-10-15

    Mg-doped Cu{sub 2}SnSe{sub 3} bulk materials with the (Cu{sub 2−x}Mg{sub x})SnSe{sub 3} (Mg-x-CTSe) formula at x=0, 0.05, 0.1, 0.15, and 0.2 were prepared at 550 °C for 2 h with soluble sintering aids of Sb{sub 2}S{sub 3} and Te. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped Cu{sub 2}SnSe{sub 3} as a function of dopant concentration. Mg-x-CTSe pellets show p-type at x=0, 0.05 and 0.1 and n-type at x=0.15 and 0.2. The low hole concentration of 3.2×10{sup 17} cm{sup −3} and high mobility of 387 cm{sup 2} V{sup −1} s{sup −1} were obtained for (Cu{sub 2−x}Mg{sub x})SnSe{sub 3} bulks at x=0.1 (5% Mg) as compared to 2.2×10{sup 18} cm{sup −3} and 91 cm{sup 2} V{sup −1} s{sup −1} for the undoped one. The explanation based upon the Mg-to-Cu antisite donor defect for the changes in electrical property was declared. A high Mg content for Mg-x-CTSe at x≥0.1 can lead to the formation of second phases. The study in bulk Mg-x-CTSe has been based upon defect states and is consistent and supported by the data of structural and electrical properties. - Graphical abstract: The effects of extrinsic doping of Mg{sup 2+} on the electrical properties of Cu{sub 2}SnSe{sub 3} bulks. - Highlights: • p-Type Mg-CTSe with n{sub p} of 3.2×10{sup 17} cm{sup −3} and μ{sub p} of 387 cm{sup 2} V{sup −1} s{sup −1} was obtained. • This p-type occurred for 5%Mg-doped CTSe with the (Cu{sub 1.9}Mg{sub 0.1})SnSe{sub 3} formula. • Mg dopant acts as a donor to lower n{sub p} and an accelerator to increase mobility. • High Mg content leads to the p-to-n transitions. • Defect was explored by measuring electrical property and lattice parameter.

  14. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  15. An interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations.

    PubMed

    Prakash, Meher K; Marcus, R A

    2007-10-09

    Time-dependent fluctuations in the catalysis rate (deltak(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion deltaomega(0)(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy (deltaE(t)) as a contributor to deltak(t) and relate the latter to deltaomega(0)(t). The resulting relation between deltak(t) and deltaomega(0)(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated deltaE(t) on fluctuations in the radiative component (deltagamma(r)(-1)(t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between deltagamma(r)(-1)(t) and deltaomega(0)(t) is obtained. Experimental tests will determine whether the correlation functions for deltak(t), deltaomega(0)(t), and deltagamma(r)(-1) are indeed similar for any enzyme. Measurements of dielectric dispersion, epsilon(omega), for the enzyme discussed elsewhere will provide further insight into the correlation function for deltaE(t). They also will determine whether fluctuations in the nonradiative component gamma(nr)(-1) of the lifetime decay has a different origin, fluctuations in distance for example.

  16. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  17. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  18. Relevance of Pore Structure and Diffusion-Accessible Porosity for Calcium-Bromide Diffusion in Na-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.

    2013-12-01

    Bentonite is an important hydraulic barrier material in many geotechnical applications, such as geosynthetic clay liners at solid waste landfills, or as proposed backfill material in engineered barrier systems at nuclear waste repositories. The limited permeability of bentonite is at least partially the result of its low porosity and the swelling of Na-montmorillonite, its major mineralogical component, in water. Due to these characteristics, the transport of contaminants through bentonite layers is expected to be limited and dominated by diffusion processes. In bentonite, the majority of the connected porosity is associated with montmorillonite particles, which consist of stacks of negatively-charged smectite layers. As a result, compacted smectite has two types of porosities: (1) large pores between clay particles, where diffusion is less affected by electric-double-layer forces, and (2) very thin interlayer spaces within individual clay particles, where diffusion is strongly impacted by surface charge and ionic strength. As diffusion is expected to take place differently in these two volumes, this essentially creates two 'small-scale diffusion pathways', where each may become dominant under different system conditions. Furthermore, for surface-reactive solutes, these two porous regimes differ with regards to surface complexation reactions. Electrostatic and hydration forces only are thought to govern interlayer binding, whereas chemical bonding with surface ligands is dominant for reactions at edge sites of layered clay particles and for iron oxide nanoparticles on outer basal planes. In this presentation, we will demonstrate the relevance of clay pore structure and diffusion-accessible porosity for solute diffusion rates, and hence, contaminant mobility in bentonites. First, we will discuss the effects of chemical solution conditions on montmorillonite properties, such as clay surface charge, diffusion-accessible porosity, clay tortuosity and constrictivity

  19. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    PubMed Central

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-01-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e. peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths for all species. This peak compression occurs with only a modest reduction of resolution, and which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. PMID:27052738

  20. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    SciTech Connect

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-04-06

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  1. Research and development of electric vehicles for clean transportation.

    PubMed

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  2. Electricity unplugged

    NASA Astrophysics Data System (ADS)

    Karalis, Aristeidis

    2009-02-01

    The judge was driving back late one cold winter night. Entering the garage, the battery-charging indicator in his wirelessly powered electric car came on. "Home at last," crossed his mind. He swiped his personal smartcard on the front-door detector to be let in. He heard a "charging" beep from his mobile phone. The blinking cursor on the half-finished e-mail on the laptop had been waiting all day on the side table. He picked the computer up and walked towards his desk. "Good evening, your honour. Your wirelessly heated robe," said the butler-robot as it approached from the kitchen. Putting on the electric garment, he sat on the medical desk chair. His artificial heart was now beating faster.

  3. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  4. Hydrogen diffusion fuel cell

    SciTech Connect

    Struthers, R.C.

    1987-08-04

    This patent describes a fuel cell comprising; an elongate case; a thin, flat separator part of non-porous, di-electric, hydrogen-permeable material between the ends of and extending transverse the case and defining anode and cathode chambers; a thin, flat anode part of non-porous, electric conductive, hydrogen-permeable metallic material in the anode chamber in flat contacting engagement with and co-extensive with the separator part; a flat, porous, catalytic cathode part in the cathode chamber in contacting engagement with the separator part; hydrogen supply means supplying hydrogen to the anode part within the anode chamber; oxidant gas supply means supplying oxidant gas to the cathode part within the cathode chamber; and, an external electric circuit connected with and between the anode and cathode parts. The anode part absorbs and is permeated by hydrogen supplied to it and diffuses the hydrogen to hydrogen ions and free electrons; the free electrons in the anode part are conducted from the anode part into the electric circuit to perform useful work. The hydrogen ions in the anode part move from the anode part through the separator part and into the cathode part. Free electrons are conducted by the electric circuit into the cathode part. The hydrogen ions, oxidant gas and free electrons in the cathode part react and generate waste, heat and water.

  5. On a Procedure for Analyzing Certain Problems of Diffusion Theory.

    DTIC Science & Technology

    PARTIAL DIFFERENTIAL EQUATIONS, DIFFUSION ), BOUNDARY VALUE PROBLEMS, BOUNDARY VALUE PROBLEMS, INTEGRAL TRANSFORMS, COMPLEX VARIABLES, CONDUCTION(HEAT TRANSFER), ELECTRICAL CONDUCTIVITY, FLUID FLOW, BESSEL FUNCTIONS

  6. Ultrafast bulk diffusion of AlHx in high-entropy dehydrogenation intermediates of NaAlH4 [Highly mobile AlHx species and the dehydogenation kinetics of NaAlH4

    SciTech Connect

    Zhang, Feng; Wood, Brandon C.; Wang, Yan; Wang, Cai -Zhuang; Ho, Kai -Ming; Chou, Mei -Yin

    2014-07-21

    Using first-principles molecular dynamics (FPMD) and total-energy calculations, we demonstrate low-barrier bulk diffusion of Al-bearing species in γ-NaAlH4, a recently proposed high-entropy polymorph of NaAlH4. For charged AlH4– and neutral AlH3 vacancies, the computed barriers for diffusion are <0.1 eV, and we directly observe the predicted diffusive pathways in FPMD simulations at picosecond time scales. In contrast, such diffusion in the α phase is inaccessible to FPMD, consistent with much higher barriers. The transport behavior of γ-NaAlH4, in addition to key dynamical and structural signatures, is consistent with experimental observations of high-mobility species, strongly supporting the idea that an intermediate transition from the α phase to a high-entropy polymorph facilitates the hydrogen-releasing decomposition of NaAlH4. Lastly, our results provide an answer to longstanding questions regarding the responsible agent for the experimentally observed efficient Al transport during dehydrogenation and suggest that mass transport and phase transformation kinetics are coupled. Implications for understanding the (de)hydrogenation of undoped and catalyzed NaAlH4 are discussed.

  7. Amosphous diffusion barriers

    NASA Technical Reports Server (NTRS)

    Kolawa, E.; So, F. C. T.; Nicolet, M-A.

    1986-01-01

    Amorphous W-Zr and W-N alloys were investigated as diffusion barriers in silicon metallization schemes. Data were presented showing that amorphous W-Zr crystallizes at 900 C, which is 200 C higher than amorphous W-Ni films, and that both films react with metallic overlayers at temperatures far below the crystllization temperature. Also, W-N alloys (crystalline temperature of 600 C) were successfully incorporated as a diffusion barrier in contact structures with both Al and Ag overlayers. The thermal stability of the electrical characteristics of shallow n(+)p junctions significantly improved by incorporating W-N layers in the contact system. One important fact demonstated was the critical influence of the deposition parameters during formation of these carriers.

  8. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  9. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  10. Flux Control in Networks of Diffusion Paths

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2009-07-08

    A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.

  11. Single-file diffusion of macroscopic charged particles.

    PubMed

    Coste, C; Delfau, J-B; Even, C; Saint Jean, M

    2010-05-01

    In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.

  12. Diffusion bonding of Stratapax for drill bits

    SciTech Connect

    Middleton, J.N.; Finger, J.T.

    1983-01-01

    A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

  13. High electron mobility in bathophenanthroline

    NASA Astrophysics Data System (ADS)

    Naka, Shigeki; Okada, Hiroyuki; Onnagawa, Hiroyoshi; Tsutsui, Tetsuo

    2000-01-01

    We have measured electron mobility in vacuum-deposited films of 4,7-diphenyl-1,10phenanthroline (bathophenanthroline, or BPhen) using a time-of-flight technique. Electron transport was highly dispersive for BPhen with a dispersion parameter of a value 0.30. The electron mobility in excess of 10-4 cm2/V s has been observed at electric fields of the order of 105 V/cm with weakly dependent on the electric field. The characteristic energy of the distribution is obtained a value 0.09 eV. It is directly confirmed that the BPhen has superior electron-transport capability.

  14. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  15. Diffusion of Hydrogen in Iron-Bearing Olivine at 3 GPa

    NASA Astrophysics Data System (ADS)

    Demouchy, S. A.; Thoraval, C.; Bolfan-Casanova, N.; Manthilake, G. M.

    2015-12-01

    Physical and chemical properties of Earth's mantle are affected by the interactions with volatiles, and especially by water and water-derived species. Thus, the characterization of solubility and kinetics of incorporation for hydrogen in nominally anhydrous minerals is important to understand the behavior of Earth's deep material under hydrous conditions. Experimental studies on the olivine-water system indicate that significant amounts of hydrogen can be incoporated within olivine as point defects. Extending previous studies, we have focused on the kinetics of hydrogen diffusion in the iron-bearing olivine-water system, performing experiments of hydrogenation of crystallographically oriented olivine single crystals using multi-anvils apparatus at high temperature (900-1200°C) and high pressure (3 GPa). We use polarized Fourier transform infrared spectroscopy to characterize the speciation and the quantify the mobility water-derived defects in olivine, to determine diffusion coefficients under upper mantle conditions. Hydrogen diffusivities are obtained by fitting the hydrogen content measured as a function of position along [100] and [001] direction of the olivine sample, by a 1D and 3D numerical models of diffusion, Our current results indicate that incorporation of hydroxyl species into iron-bearing olivine is a one-stage process with hydrogen chemical diffusion coefficients around 2.10-12 m2/s at 900 °C parallel to [001] (with E // to [001]). The diffusivities are in the same order of magnitude than previous results from iron-bearing olivine at low pressure. The analysis of the different concentration profiles show an anisotropy of diffusion, with diffusion parallel to [001] faster than [100]. Consequences for electrical conductivity in the uppermost mantle will be discussed. This study was financially supported by ANR JCJC "HyDeep" awarded to NBC.

  16. Diffusion in porous crystalline materials.

    PubMed

    Krishna, Rajamani

    2012-04-21

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  17. Human mobility and epidemic invasion

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria

    2010-03-01

    The current H1N1 influenza pandemic is just the latest example of how human mobility helps drive infectious diseases. Travel has grown explosively in the last decades, contributing to an emerging complex pattern of traffic flows that unfolds at different scales, shaping the spread of epidemics. Restrictions on people's mobility are thus investigated to design possible containment measures. By considering a theoretical framework in terms of reaction-diffusion processes, it is possible to study the invasion dynamics of epidemics in a metapopulation system with heterogeneous mobility patterns. The system is found to exhibit a global invasion threshold that sets the critical mobility rate below which the epidemic is contained. The results provide a general framework for the understanding of the numerical evidence from detailed data-driven simulations that show the limited benefit provided by travel flows reduction in slowing down or containing an emerging epidemic.

  18. High-mobility diamond

    NASA Astrophysics Data System (ADS)

    Landstrass, Maurice I.

    1994-04-01

    Recent improvements in the CVD diamond deposition process have made possible the fabrication of diamond photoconductive diodes with carrier mobility and lifetime exceeding the values typical of natural gemstones. One of the more surprising recent results is that the best room-temperature carrier properties have been measured on polycrystalline diamond films. The combined electron- hole mobility, as measured by transient photoconductivity at low carrier densities, is 4000 square centimeters per volt per second at electric field of 200 volts per centimeter and is comparable to that of the best single-crystal IIa natural diamonds. Carrier lifetimes measured under the same conditions are 150 picoseconds for the CVD diamond films. The collection distance within the diamond films, at the highest applied fields, is comparable to the average film grain size, indicative of little or no carrier scattering at grain boundaries. A comparison of SIMS measurements with electrical results suggest that impurity incorporation in the near grain boundary regions are responsible for controlling the carrier mobility.

  19. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  20. Investigating the impact of advective and diffusive controls in solute transport on geoelectrical data

    NASA Astrophysics Data System (ADS)

    Wheaton, Daniel D.; Singha, Kamini

    2010-09-01

    Multiple types of physical heterogeneity have been suggested to explain anomalous solute transport behavior, yet determining exactly what controls transport at a given site is difficult from concentration histories alone. Differences in timing between co-located fluid and bulk apparent electrical conductivity data have previously been used to estimate solute mass transfer rates between mobile and less-mobile domains; here, we consider if this behavior can arise from other types of heterogeneity. Numerical models are used to investigate the electrical signatures associated with large-scale hydraulic conductivity heterogeneity and small-scale dual-domain mass transfer, and address issues regarding the scale of the geophysical measurement. We examine the transport behavior of solutes with and without dual-domain mass transfer, in: 1) a homogeneous medium, 2) a discretely fractured medium, and 3) a hydraulic conductivity field generated with sequential Gaussian simulation. We use the finite-element code COMSOL Multiphysics to construct two-dimensional cross-sectional models and solve the coupled flow, transport, and electrical conduction equations. Our results show that both large-scale heterogeneity and subscale heterogeneity described by dual-domain mass transfer produce a measurable hysteresis between fluid and bulk apparent electrical conductivity, indicating a lag between electrical conductivity changes in the mobile and less-mobile domains of an aquifer, or mass transfer processes, at some scale. The shape and magnitude of the observed hysteresis is controlled by the spatial distribution of hydraulic heterogeneity, mass transfer rate between domains, and the ratio of mobile to immobile porosity. Because the rate of mass transfer is related to the inverse square of a diffusion length scale, our results suggest that the shape of the hysteresis curve is indicative of the length scale over which mass transfer is occurring. We also demonstrate that the difference in

  1. Gridless Overtone Mobility Spectrometry

    PubMed Central

    Zucker, Steven M.; Ewing, Michael A.; Clemmer, David E.

    2013-01-01

    A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions towards the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin). PMID:24125033

  2. Mobile Alternative Fueling Station Locator

    SciTech Connect

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  3. A Mobile Phone Faraday Cage

    ERIC Educational Resources Information Center

    French, M. M. J.

    2011-01-01

    A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is…

  4. The Electrophoretic Mobility of a Polyelectrolyte within a Radially Confining Potential Well

    NASA Astrophysics Data System (ADS)

    Shendruk, Tyler; Bertrand, Martin; Slater, Gary W.

    2013-03-01

    We demonstrate that a polyelectrolyte electrophoresing while radially confined by a mechanical force has a conformationally dependent electrophoretic mobility that differs from its free-draining value. The mobility increases as a function of the confining harmonic potential and in the absence of solid walls. Mesoscale MPCD-MD hybrid simulations that include electro-hydrodynamics through a mean-field Debye Hückel approximation will be presented for a variety of well widths and contour lengths, demonstrating that mobility increases with confinement after a critical point but remains independent of polymerization. For this reason, models based on a change of monomer friction coefficient at the confinement boundary (such as those recently put forward to explain experimentally measured mobility polyelectrolytes confined within nano- and microfluidic channels) are not sufficient to explain our observations. Since the potential acts perpendicular to the electric field and only on the monomers, the Electro-Hydrodynamic Equivalence Principle does not predict the mobility to differ. We present a course-grained theory explaining these findings in terms of hydrodynamic coupling within overlapping diffuse layers.

  5. Mobile impurities in ferromagnetic liquids

    NASA Astrophysics Data System (ADS)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  6. Arsenic interstitial diffusion in gallium arsenide: A computational physicist's perspective

    NASA Astrophysics Data System (ADS)

    Papoulias, Panagiotis

    This thesis elucidates the importance of interstitial diffusion in semiconductors. Although more investigations have been made for silicon, the most widely used semiconductor, much less is known about arsenic interstitial diffusion in gallium arsenide -- another important technological material. Because a quantitative and qualitative description of diffusion of the arsenic split interstitial in gallium arsenide is expected to be dependent on the electrical conditions of the material, this thesis begins by examining the convergence of density-functional supercell calculations for defect formation energies, charge transition levels, localized defect state properties, defect atomic structure, relaxation. Supercells containing up to 217 atoms and a variety of k-space sampling schemes are considered. It is shown that a good description of the localized defect state and charge state transition levels requires at least a 217-atom supercell, although the defect structure and atomic relaxations can be well converged in a 65-atom cell. Formation energies are calculated for the arsenic split interstitial, gallium vacancy, and arsenic antisite defects in gallium arsenide, taking into account the dependence upon chemical potential and Fermi energy. It is found that equilibrium concentrations of arsenic interstitials will be much lower than equilibrium concentrations of arsenic antisites in arsenic-rich, n-type or semi-insulating gallium arsenide. The migration barriers for diffusion of arsenic split interstitials that are evaluated indicate that arsenic interstitials are mobile. A qualitative description of the minimum energy path shows that depending on the charge state arsenic interstitials can interact with defects and dopants on either sublattice. These results can be used as inputs into computational simulations of experiments. Also, this thesis shows that under near equilibrium conditions it is expected positively charged interstitials will dominate the diffusion for a

  7. Mobile healthcare.

    PubMed

    Morgan, Stephen A; Agee, Nancy Howell

    2012-01-01

    Mobile technology's presence in healthcare has exploded over the past five years. The increased use of mobile devices by all segments of the US population has driven healthcare systems, providers, and payers to accept this new form of communication and to develop strategies to implement and leverage the use of mobile healthcare (mHealth) within their organizations and practices. As healthcare systems move toward a more value-driven model of care, patient centeredness and engagement are the keys to success. Mobile healthcare will provide the medium to allow patients to participate more in their care. Financially, mHealth brings to providers the ability to improve efficiency and deliver savings to both them and the healthcare consumer. However, mHealth is not without challenges. Healthcare IT departments have been reluctant to embrace this shift in technology without fully addressing security and privacy concerns. Providers have been hesitant to adopt mHealth as a form of communication with patients because it breaks with traditional models. Our healthcare system has just started the journey toward the development of mHealth. We offer an overview of the mobile healthcare environment and our approach to solving the challenges it brings to healthcare organizations.

  8. Mobility in geometrically confined membranes.

    PubMed

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-02

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.

  9. Mobility in geometrically confined membranes

    PubMed Central

    Domanov, Yegor A.; Aimon, Sophie; Toombes, Gilman E. S.; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S.; Bassereau, Patricia

    2011-01-01

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the “membrane size” for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111—3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman–Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336

  10. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in...

  11. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in...

  12. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in...

  13. 46 CFR 111.105-33 - Mobile offshore drilling units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in...

  14. Cell injury by electric forces.

    PubMed

    Lee, Raphael C

    2005-12-01

    The molecular architecture of biological systems is heavily influenced by the highly polar interactions of water. Thus, macromolecules such as proteins that are highly water soluble must be electrically polar. Energy generation methods needed to support cell metabolic processes depend on compartmentalizing mobile ions and thus require electrical ion transport barriers such as membranes. One consequence of these biological design constraints is vulnerability to injury by electrical forces. Supraphysiological electric forces cause damage to cells and tissues by disrupting cell membranes and altering the conformation of biomolecules. In addition, prolonged passage of electrical current leads to damage by thermal mechanisms. This review will focus on the non-thermal effects.

  15. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our

  16. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Li, Weibang; Hu, Rui; Cui, Y.-W.; Zhong, Hong; Chang, Hui; Li, Jinshan; Zhou, Lian

    2010-12-01

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  17. Ambipolar diffusion in complex plasma.

    PubMed

    Losseva, T V; Popel, S I; Yu, M Y; Ma, J X

    2007-04-01

    A self-consistent model of the ambipolar diffusion of electrons and ions in complex (dusty) plasmas accounting for the local electric fields, the dust grain charging process, and the interaction of the plasma particles with the dust grains and neutrals is presented. The dependence of the diffusion coefficient on the interaction of the electrons and ions with the dust grains as well as with the neutrals are investigated. It is shown that increase of the dust density leads to a reduction of the diffusion scale length, and this effect is enhanced at higher electron densities. The dependence of the diffusion scale length on the neutral gas pressure is found to be given by a power law, where the absolute value of the power exponent decreases with increase of the dust density. The electric field gradient and its effects are shown to be significant and should thus be taken into account in studies of complex plasmas with not very small dust densities. The possibility of observing localized coherent dissipative nonlinear dust ion-acoustic structures in an asymmetrically discharged double plasma is discussed.

  18. Mobility Demonstrator

    DTIC Science & Technology

    2013-08-22

    Resilient Technologies (Polaris Defense) Technology: Non- Pneumatic Tire Description: Airless Tire/wheel with honeycombed shaped polymer supporting...self-adjusting track tensioners • The biggest advancement in these systems has been pneumatic external road-arm design (external suspensions...UNCLASSIFIED: Distribution Statement A. Approved for public release. 90 Payoff:  Enabler for silent mobility, hybridization , and export power capabilities

  19. Diffusion of glycophorin A in human erythrocytes.

    PubMed

    Giger, Katie; Habib, Ibrahim; Ritchie, Ken; Low, Philip S

    2016-11-01

    Several lines of evidence suggest that glycophorin A (GPA) interacts with band 3 in human erythrocyte membranes including: i) the existence of an epitope shared between band 3 and GPA in the Wright b blood group antigen, ii) the fact that antibodies to GPA inhibit the diffusion of band 3, iii) the observation that expression of GPA facilitates trafficking of band 3 from the endoplasmic reticulum to the plasma membrane, and iv) the observation that GPA is diminished in band 3 null erythrocytes. Surprisingly, there is also evidence that GPA does not interact with band 3, including data showing that: i) band 3 diffusion increases upon erythrocyte deoxygenation whereas GPA diffusion does not, ii) band 3 diffusion is greatly restricted in erythrocytes containing the Southeast Asian Ovalocytosis mutation whereas GPA diffusion is not, and iii) most anti-GPA or anti-band 3 antibodies do not co-immunoprecipitate both proteins. To try to resolve these apparently conflicting observations, we have selectively labeled band 3 and GPA with fluorescent quantum dots in intact erythrocytes and followed their diffusion by single particle tracking. We report here that band 3 and GPA display somewhat similar macroscopic and microscopic diffusion coefficients in unmodified cells, however perturbations of band 3 diffusion do not cause perturbations of GPA diffusion. Taken together the collective data to date suggest that while weak interactions between GPA and band 3 undoubtedly exist, GPA and band 3 must have separate interactions in the membrane that control their lateral mobility.

  20. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  1. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    SciTech Connect

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando; Cuffari, David; Pilar, Kartik; Hatcher, Jasmine L.; Ramati, Sharon

    2015-10-28

    Multi-nuclear (1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, as shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.

  2. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    DOE PAGES

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando; ...

    2015-10-28

    Multi-nuclear (1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, as shown bymore » their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less

  3. Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments

    PubMed Central

    Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal

    2007-01-01

    One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979

  4. The drift-diffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level

    NASA Astrophysics Data System (ADS)

    Cvikl, B.

    2010-01-01

    The closed solution for the internal electric field and the total charge density derived in the drift-diffusion approximation for the model of a single layer organic semiconductor structure characterized by the bulk shallow single trap-charge energy level is presented. The solutions for two examples of electric field boundary conditions are tested on room temperature current density-voltage data of the electron conducting aluminum/tris(8-hydroxyquinoline aluminum/calcium structure [W. Brütting et al., Synth. Met. 122, 99 (2001)] for which jexp∝Va3.4, within the interval of bias 0.4 V≤Va≤7. In each case investigated the apparent electron mobility determined at given bias is distributed within a given, finite interval of values. The bias dependence of the logarithm of their lower limit, i.e., their minimum values, is found to be in each case, to a good approximation, proportional to the square root of the applied electric field. On account of the bias dependence as incorporated in the minimum value of the apparent electron mobility the spatial distribution of the organic bulk electric field as well as the total charge density turn out to be bias independent. The first case investigated is based on the boundary condition of zero electric field at the electron injection interface. It is shown that for minimum valued apparent mobilities, the strong but finite accumulation of electrons close to the anode is obtained, which characterize the inverted space charge limited current (SCLC) effect. The second example refers to the internal electric field allowing for self-adjustment of its boundary values. The total electron charge density is than found typically to be of U shape, which may, depending on the parameters, peak at both or at either Alq3 boundary. It is this example in which the proper SCLC effect is consequently predicted. In each of the above two cases, the calculations predict the minimum values of the electron apparent mobility, which substantially

  5. Diffusion archeology for diffusion progression history reconstruction.

    PubMed

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  6. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  7. Electrical Systems. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This electrical systems manual is one of a series of power mechanics texts and visual aids for training in the servicing of electrical systems on mobile machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Electricity: How It…

  8. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.

    PubMed

    Larriba, Carlos; Hogan, Christopher J

    2013-05-16

    Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from

  9. Mobile Customer Relationship Management and Mobile Security

    NASA Astrophysics Data System (ADS)

    Sanayei, Ali; Mirzaei, Abas

    The purpose of this study is twofold. First, in order to guarantee a coherent discussion about mobile customer relationship management (mCRM), this paper presents a conceptualization of mCRM delineating its unique characteristics because of Among the variety of mobile services, considerable attention has been devoted to mobile marketing and in particular to mobile customer relationship management services. Second, the authors discusses the security risks in mobile computing in different level(user, mobile device, wireless network,...) and finally we focus on enterprise mobile security and it's subgroups with a series of suggestion and solution for improve mobile computing security.

  10. NIST Diffusion Data Center

    National Institute of Standards and Technology Data Gateway

    NIST Diffusion Data Center (Web, free access)   The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.

  11. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  12. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  13. FRACTIONAL PEARSON DIFFUSIONS.

    PubMed

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-07-15

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.

  14. FRACTIONAL PEARSON DIFFUSIONS

    PubMed Central

    Leonenko, Nikolai N.; Meerschaert, Mark M.

    2013-01-01

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377

  15. Mobility Bibliography.

    DTIC Science & Technology

    1981-11-01

    Abele, G.; Walker, D.A.; Brown, J .; Brewer, M.C.; Atwood, D.M. TI - Effects of low ground pressure vehicle traffic on tundra aL Lonely, Alaska SO...resistance, bulldozing resistance. NTIS ’ DT ’ . [ Acces. J "D-4 CONTENTS Chapter I Snow vehicles or snowmobiles Chapter II Rolling resistance Chapter III...Russian Swe Swedish Eng English Jap Japanese Ger German Pol Polish Czech Czechoslovakian Nor Norwegian P reface This mobility bibliography was

  16. Long-term impacts of battery electric vehicles on the German electricity system

    NASA Astrophysics Data System (ADS)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  17. Going mobile

    NASA Astrophysics Data System (ADS)

    Brus, Eric

    1987-12-01

    By 1990, all metropolitan areas in the U.S. and rural areas close to major cities or towns are expected to have cellular telephone service; 22 Canadian cities also feature cellular service. To supply mobile telecommunication services to sparsely-populated rural areas, a mobile satellite service (MSS) is now being developed. In this paper the projected possibilities of the MSS system are discussed, including a possibility that a piggyback-MSS payload be added to the GSTAR-4 satellite which is scheduled for a launch in 1988 or 1989; one in which some of the hardware from aborted direct-broadcast satellites would be used; and the possibility of building a new MSS satellite with large servicing capacity. Canada is planning to launch its own mobile satellite, MSAT, in the early 1990s. The MSS is expected to be 'generic', serving not only people on land but maritime and aeronautical users as well. It will also offer major benefits to truck and automobile drivers, making it possible for them to conduct business or to call for assistance from locations beyond the range of cellular systems.

  18. Atomic mobility and strain localization in amorphous metals.

    PubMed

    Delogu, Francesco

    2008-02-22

    Molecular dynamics simulations are employed to investigate the atomic mobility in Ni(50)Zr(50) amorphous alloys under both static conditions and shearing. Diffusion occurs under static conditions via cooperative stringlike motion involving atoms with large volumes. Atomic mobility is instead governed by rearrangements localized in shear transformation zones (STZs) under shearing. Local atomic volume plays in both cases a key role, the atomic ensembles involved in diffusion and STZ activity being strongly correlated.

  19. Nonequilibrium free diffusion in seed leachate

    NASA Astrophysics Data System (ADS)

    Ortiz G., Luis; Riquelme P., Pablo; Guzmán, R.

    2013-11-01

    In this work, we use a Schlieren-like Near Field Scattering (SNFS) setup to study nonequilibrium free diffusion behavior of a colloidal solution obtained from seeds leachate. The main objective is to compare the temporal behavior of the diffusion coefficient of seed leachate with an electric conductivity based vigor test. SNFS sizing measurements, based on Mie theory, were carried out to ensure its reliability and sensitivity. Then, we performed a typical nonequilibrium free diffusion experiment of a glycerol-water mixture. In this way, we confirmed that SNFS setup is sensitive to giant concentration fluctuations of nanocolloidal solutions. The results obtained in this stage reproduce properly the data reported elsewhere in literature. Moreover, seed leachate diffuse, in water, in a similar way that glycerol does. In both cases we used the same method (dynamic structure factor) to determine thermo-physical properties. We show that time evolution of diffusion coefficient of Lupinus Albus leachate exhibits three defined regimes as electric conductivity measurements. The results also exhibit a correspondence between the behavior of the diffusion coefficient and electric conductivity values of the two regions in the temporal range studied. Finally, we discuss biological processes involved in germination that could modulate this dependence, and the role played by the electrolytic nature of solutes.

  20. Electric Field Induced Surface Modification of Au

    SciTech Connect

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  1. Diffusion and transport coefficients in synthetic opals

    SciTech Connect

    Sofo, J. O.; Mahan, G. D.

    2000-07-15

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.

  2. Preliminary report on the diffusion of solids

    USGS Publications Warehouse

    Van Orstrand, C. E.; Dewey, F.P.

    1916-01-01

    Although 19 years has elapsed since Roberts-Austen published his classical paper on the diffusion of solid metals, no attempt seems to have been made to verify his important results and conclusions or to extend the investigations to minerals and to the great number of solids in which diffusion may be expected to occur. Progress has been made by means of chemical and electrical methods in the detection of diffusion in a number of metals in the solid state, some progress has been made in explaining the phenomena of diffusion on the basis of osmotic pressure and the kinetic theory, and recent measurements of the vapor pressures of solids have contributed indirectly to the progress of the science, but investigators have not undertaken the difficult and essential task of making definitive determinations of the coefficients of diffusivity at various pressures and temperatures.

  3. Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, John

    2015-09-01

    We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.

  4. Education Policy Mobility: Reimagining Sustainability in Neoliberal Times

    ERIC Educational Resources Information Center

    McKenzie, Marcia; Bieler, Andrew; McNeil, Rebecca

    2015-01-01

    This paper is concerned with the twinning of sustainability with priorities of economic neoliberalization in education, and in particular via the mobility or diffusion of education policy. We discuss the literature on policy mobility as well as overview concerns regarding neoliberalism and education. The paper brings these analyses to bear in…

  5. A mobile phone Faraday cage

    NASA Astrophysics Data System (ADS)

    French, M. M. J.

    2011-05-01

    A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is described in some detail, and this is followed by a explanation of some demonstrations and experiments which I have used.

  6. Dependence of ion drift velocity and diffusion coefficient in parent gas on its temperature

    NASA Astrophysics Data System (ADS)

    Maiorov, Sergey; Golyatina, Rusudan

    2016-09-01

    The results of Monte Carlo calculations of the ion drift characteristics are presented: ions of noble gases and Ti, Fe, Co, Cs, Rb, W and mercury ions in case of constant and uniform electric field are considered. The dependences of the ion mobility on the field strength and gas temperature are analyzed. The parameters of the drift velocity approximation by the Frost formula for gas temperatures of 4.2, 77, 300, 1000, and 2000 K are presented. A universal drift velocity approximation depending on the reduced electric field strength and gas temperature is obtained. In the case of strong electric fields or low gas temperatures, the deviation of the ion distribution function from the Maxwellian one (including the shifted Maxwellian one) can be very significant. The average energies of chaotic motion of ions along and across the electric field can also differ significantly. It is analyzed the kinetic characteristics of ion drift in own gas: ion diffusion coefficient along the field and across the field; thermal spread of velocities (temperature) along the field and across the field. The unexpected and nontrivial fact takes place: collision with backscattering represent only 10-50% of the total number of collisions. This calculation can be used when analyzing experiments with dusty plasma under cryogenic discharge, ultracold plasma. The work was supported by the Russian Science Foundation (grant RNF 14-19-01492).

  7. Characterizing Unsaturated Diffusion in Porous Tuff Gravel

    SciTech Connect

    Hu, Q; Kneafsey, T J; Roberts, J J; Tomutsa, L; Wang, J S

    2003-11-12

    Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (e.g., the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent of surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents are calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could significantly hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel.

  8. Characterizing unsaturated diffusion in porous tuff gravel

    SciTech Connect

    Hu, Qinhong; Kneafsey, Timothy J.; Roberts, Jeffery J.; Tomutsa, Liviu; Wang, Joseph, S.Y.

    2003-11-12

    Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (for example, the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent to which surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents were calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s for tuff gravel. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel at very low water contents.

  9. The ionic DTI model (iDTI) of dynamic diffusion tensor imaging (dDTI)

    PubMed Central

    Makris, Nikos; Gasic, Gregory P.; Garrido, Leoncio

    2014-01-01

    Measurements of water molecule diffusion along fiber tracts in CNS by diffusion tensor imaging (DTI) provides a static map of neural connections between brain centers, but does not capture the electrical activity along axons for these fiber tracts. Here, a modification of the DTI method is presented to enable the mapping of active fibers. It is termed dynamic diffusion tensor imaging (dDTI) and is based on a hypothesized “anisotropy reduction due to axonal excitation” (“AREX”). The potential changes in water mobility accompanying the movement of ions during the propagation of action potentials along axonal tracts are taken into account. Specifically, the proposed model, termed “ionic DTI model”, was formulated as follows.•First, based on theoretical calculations, we calculated the molecular water flow accompanying the ionic flow perpendicular to the principal axis of fiber tracts produced by electrical conduction along excited myelinated and non-myelinated axons.•Based on the changes in molecular water flow we estimated the signal changes as well as the changes in fractional anisotropy of axonal tracts while performing a functional task.•The variation of fractional anisotropy in axonal tracts could allow mapping the active fiber tracts during a functional task. Although technological advances are necessary to enable the robust and routine measurement of this electrical activity-dependent movement of water molecules perpendicular to axons, the proposed model of dDTI defines the vectorial parameters that will need to be measured to bring this much needed technique to fruition. PMID:25431757

  10. Anderson Mobility Gap Probed by Dynamic Coherent Backscattering.

    PubMed

    Cobus, L A; Skipetrov, S E; Aubry, A; van Tiggelen, B A; Derode, A; Page, J H

    2016-05-13

    We use dynamic coherent backscattering to study one of the Anderson mobility gaps in the vibrational spectrum of strongly disordered three-dimensional mesoglasses. Comparison of experimental results with the self-consistent theory of localization allows us to estimate the localization (correlation) length as a function of frequency in a wide spectral range covering bands of diffuse transport and a mobility gap delimited by two mobility edges. The results are corroborated by transmission measurements on one of our samples.

  11. Static electricity of polymers reduced by treatment with iodine

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Landel, R. F.; Rembaum, A.

    1967-01-01

    Treating organic polymers with iodine improves the electrical conductivity. Diffusion enables products of desired properties to be custom formulated. This eliminates a buildup of static electricity and the need for fillers or bound metal salts.

  12. Electrical injury

    MedlinePlus

    ... damage, especially to the heart, muscles, or brain. Electric current can cause injury in three ways: Cardiac arrest ... How long you were in contact with the electricity How the electricity moved through your body Your ...

  13. Electricity Customers

    EPA Pesticide Factsheets

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  14. MR diffusion tensor spectroscopy and imaging.

    PubMed Central

    Basser, P J; Mattiello, J; LeBihan, D

    1994-01-01

    This paper describes a new NMR imaging modality--MR diffusion tensor imaging. It consists of estimating an effective diffusion tensor, Deff, within a voxel, and then displaying useful quantities derived from it. We show how the phenomenon of anisotropic diffusion of water (or metabolites) in anisotropic tissues, measured noninvasively by these NMR methods, is exploited to determine fiber tract orientation and mean particle displacements. Once Deff is estimated from a series of NMR pulsed-gradient, spin-echo experiments, a tissue's three orthotropic axes can be determined. They coincide with the eigenvectors of Deff, while the effective diffusivities along these orthotropic directions are the eigenvalues of Deff. Diffusion ellipsoids, constructed in each voxel from Deff, depict both these orthotropic axes and the mean diffusion distances in these directions. Moreover, the three scalar invariants of Deff, which are independent of the tissue's orientation in the laboratory frame of reference, reveal useful information about molecular mobility reflective of local microstructure and anatomy. Inherently tensors (like Deff) describing transport processes in anisotropic media contain new information within a macroscopic voxel that scalars (such as the apparent diffusivity, proton density, T1, and T2) do not. Images FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8130344

  15. Mg dopant in Cu{sub 2}ZnSnSe{sub 4}: An n-type former and a promoter of electrical mobility up to 120 cm{sup 2} V{sup −1} s{sup −1}

    SciTech Connect

    Kuo, Dong-Hau Wubet, Walelign

    2014-07-01

    Mg-doped Cu{sub 2}ZnSnSe{sub 4} (CZTSe) bulk materials with the (Cu{sub 2−x}Mg{sub x})ZnSnSe{sub 4} formula at x=0, 0.1, 0.2, 0.3, and 0.4 were prepared at 600 °C for 2 h with soluble sintering aids of Sb{sub 2}S{sub 3} and Te. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped CZTSe as a function of dopant concentration. Except at x=0, all Mg-doped CZTSe pellets showed an n-type behavior. The Mg-doped CZTSe pellets showed an n-type behavior. n-Type Mg-CZTSe pellets at x=0.1 showed the highest electrical conductivity of 24.6 S cm{sup −1} and the net hole mobility of 120 cm{sup 2} V{sup −1} s{sup −1}, while they were 11.8 S cm{sup −1} and 36.5 cm{sup 2} V{sup −1} s{sup −1} for the undoped p-type CZTSe. Mg dopant is a strong promoter of electrical mobility. Mg dopant behaves as a donor defect in CZTSe at a 5% doping content, but is also used as an acceptor at a high content above 5%. Mg doping has further developed CZTSe into a promising semiconductor. - Graphical abstract: The effects of extrinsic doping of Mg{sup 2+} on the electrical properties of Cu{sub 2}ZnSnSe{sub 4} bulks. - Highlights: • (Cu{sub 2−x}Mg{sub x})ZnSnSe{sub 4} bulks were fabricated by liquid-phase sintering at 600 °C. • All Mg-x-CZTSe pellets except at x=0 exhibited n-type conductivity. • Electrical properties of CZTSe pellets changed with the Cu and Mg ratios. • Mg{sup 2+} goes to the Cu{sup 1+} site to form the Mg{sub Cu}{sup 1+} donor defect for the n-type CZTSe. • n-Type Mg-0.1-CZTSe bulk with 5% Mg showed the highest mobility of 120 cm{sup 2} V{sup −1} s{sup −1}.

  16. Tiny Molybdenites Tell Diffusion Tales

    NASA Astrophysics Data System (ADS)

    Stein, H. J.; Hannah, J. L.

    2014-12-01

    Diffusion invokes micron-scale exchange during crystal growth and dissolution in magma chambers on short time-scales. Fundamental to interpreting such data are assumptions on magma-fluid dynamics at all scales. Nevertheless, elemental diffusion profiles are used to estimate time scales for magma storage, eruption, and recharge. An underutilized timepiece to evaluate diffusion and 3D mobility of magmatic fluids is high-precision Re-Os dating of molybdenite. With spatially unique molybdenite samples from a young ore system (e.g., 1 Ma) and a double Os spike, analytical errors of 1-3 ka unambiguously separate events in time. Re-Os ages show that hydrous shallow magma chambers locally recharge and expel Cu-Mo-Au-silica as superimposed stockwork vein networks at time scales less than a few thousand years [1]. Re-Os ages provide diffusion rates controlled by a dynamic crystal mush, accumulation and expulsion of metalliferous fluid, and magma reorganization after explosive crystallization events. Importantly, this approach has broad application far from ore deposits. Here, we use Re-Os dating of molybdenite to assess time scales for generating and diffusing metals through the deep crust. To maximize opportunity for chemical diffusion, we use a continental-scale Sveconorwegian mylonite zone for the study area. A geologically constrained suite of molybdenite samples was acquired from quarry exposures. Molybdenite, previously unreported, is extremely scarce. Tiny but telling molybdenites include samples from like occurrences to assure geologic accuracy in Re-Os ages. Ages range from mid-Mesoproterozoic to mid-Neoproterozoic, and correspond to early metamorphic dehydration of a regionally widespread biotite-rich gneiss, localized melting of gneiss to form cm-m-scale K-feldspar ± quartz pods, development of vapor-rich, vuggy mm stringers that serve as volatile collection surfaces in felsic leucosomes, and low-angle (relative to foliation) cross-cutting cm-scale quartz veins

  17. Mobile access control vestibule

    NASA Astrophysics Data System (ADS)

    DePoy, Jennifer M.

    1998-12-01

    The mobile access control vestibule (MACV) is an adaptation of techniques developed for mobile military command centers. The overall configuration of modules acts as an entry control/screening facility or transportable command center. The system would provide the following capabilities: (1) A key element for force protection, rapid deployment units sent to areas having no prepositioned equipment or where there has been a degradation of that equipment as a result of natural disasters or civil unrest. (2) A rapidly deployable security control center to upgrade the security at nonmilitary sites (e.g., diplomatic or humanitarian organizations). (3) Personnel screening, package screening, badge/identification card production for authorized personnel, centralized monitoring of deployed perimeter sensors, and centralized communications for law enforcement personnel. (4) Self-contained screening and threat detection systems, including explosives detection using the system developed by Sandia National Laboratories for the FAA. When coupled with transportable electric generators, the system is self-sufficient. The communication system for the MACV would be a combination of physically wired and wireless communication units that supports by ad hoc networking.

  18. Microfabricated diffusion source

    DOEpatents

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  19. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    DOEpatents

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  20. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  1. Optical investigation of electrical spin injection into an inverted two-dimensional electron gas structure

    NASA Astrophysics Data System (ADS)

    Buchner, M.; Kuczmik, T.; Oltscher, M.; Ciorga, M.; Korn, T.; Loher, J.; Schuh, D.; Schüller, C.; Bougeard, D.; Weiss, D.; Back, C. H.

    2017-01-01

    We report on electrical spin injection from (Ga,Mn)As into a high-mobility two-dimensional electron gas confined at an (Al,Ga)As/GaAs interface. Besides standard nonlocal electrical detection, we use a magneto-optical approach which provides cross-sectional images of the spin accumulation at the cleaved edge of the sample, yielding spin decay lengths on the order of 2 μ m . In some cases we find a nonmonotonic bias voltage dependence of the spin signal, which may be linked to ballistic tunneling effects during spin injection. We observe a clear Hanle depolarization using a technique which is free of dynamic nuclear polarization effects. Fitting the data with the standard drift-diffusion model of spin injection suggests averaged in-plane spin lifetimes on the order of 1 ns.

  2. Electrical Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this electrical program is to prepare students for service, repair, and assembly of electrically driven or controlled devices. The program theory and application includes mechanical assemblies, electrical circuitry, and electronic principles including basic digital circuitry. The electrical program manual includes the following…

  3. Volume 4 - Mobile Sources

    EPA Pesticide Factsheets

    Mobile source reference material for activity data collection from the Emissions Inventory Improvement Program (EIIP). Provides complete methods for collecting key inputs to onroad mobile and nonroad mobile emissions models.

  4. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  5. Electrical aspects of rainout

    SciTech Connect

    Rosenkilde, C.E.

    1981-11-23

    Rainout commonly denotes the aggregate of phenomena associated with precipitation scavenging of radioactivity from a cloud of nuclear debris that is within a natural rain cloud. (In contrast, the term, washout, is applicable when the nuclear cloud is below the rain cloud and the term, fallout, commonly denotes the direct gravitational settling of contaminated solid material from a nuclear cloud.) Nuclear debris aerosols may be scavenged within natural clouds by a variety of different physical processes which may involve diffusion, convection, impaction, nucleation, phoresis, turbulence, and/or electricity among others. Processes which involve electrical aspects are scrutinized for their susceptibility to the intimate presence of the radioactive-cloud environment. This particular choice of electrical processes is not accidental. Nearly all of the listed processes were examined earlier by Williams. His rough estimates suggested that electrical effects, and to a lesser extent turbulence, could enhance the scavenging of those submicron aerosols which reside in the size-range that bridges the minimum in the scavenging rate coefficient which is commonly called the Greenfield gap. This minimum in the scavenging-rate coefficient is created by the simultaneous reduction of scavenging via diffusion and the reduction of scavenging via inertial impaction. However, Williams omitted the specific influence of a radioactive environment. This report aims to remedy this omission.

  6. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    SciTech Connect

    Ramshaw, J.D.; Chang, C.H.

    1995-12-31

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.

  7. Performance implications of chemical mobilization after microchannel IEF.

    PubMed

    Tentori, Augusto M; Herr, Amy E

    2014-05-01

    Chemical mobilization following IEF enables single-point detection of an ideally stationary equilibrium electrophoresis mode. Despite prior studies exploring optimization of chemical mobilization conditions and recent insight from numerical simulations, understanding of both chemical mobilization mechanisms and the implications of mobilization on IEF analytical performance remains limited. In this study, we utilize full-field imaging of microchannel IEF to assess the performance of a range of canonical chemical mobilization schemes. We empirically demonstrate and characterize key areas where limited understanding of performance implications exists, including: the effects of mobilization solution pH and ion concentration, differences between ionic and zwitterionic mobilization, and diffusion as a source of zone broadening. We utilize Simul5 simulations to gain insight into the sources of the measured performance differences. Measurements of the location, linearity, and slope of the IEF pH gradient (via fluorescent pH markers imaged before and during mobilization) as well as mobilization-associated broadening of focused analytes were performed to quantify performance and determine the dominant sources of variability. Our results suggest that nonuniform broadening of the pH gradient and changes in the pH gradient linearity stem from conductivity nonuniformities in the separation channel and not diffusion-associated band broadening during mobilization.

  8. Mobile Schools for a Mobile World

    ERIC Educational Resources Information Center

    Booth, Susan

    2013-01-01

    Overwhelmingly, independent schools are embracing mobile devices--laptops, iPads or other tablets, and smartphones--to enhance teaching and learning. This article describes the results of the "NAIS 2012 Mobile Learning Survey." Among its findings were that 75 percent of NAIS-member schools currently use mobile learning devices in at…

  9. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  10. Diffusion of tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of tungsten hexafluoride

  11. Reduce Confusion about Diffusion.

    ERIC Educational Resources Information Center

    Hebrank, Mary R.

    1997-01-01

    Presents activities that allow students to explore the fundamental but poorly understood concept of diffusion by appealing to their kinesthetic senses first, then challenging their analytical skills as they try to deduce the mathematical principle involved. Presents a computer simulation of diffusion and discusses diffusion's limitations and…

  12. Diffusion Strategy Guide.

    ERIC Educational Resources Information Center

    McCutcheon, James R.; Sanders, John R.

    A methodology is presented for planning and managing the spread of educational innovations. The first portion of the guide develops a theoretical framework for diffusion which summarizes and capitalizes on the latest marketing and on the latest marketing and diffusion research findings. Major stages in the diffusion paradigm discussed include…

  13. A Student Diffusion Activity

    NASA Astrophysics Data System (ADS)

    Kutzner, Mickey; Pearson, Bryan

    2017-02-01

    Diffusion is a truly interdisciplinary topic bridging all areas of STEM education. When biomolecules are not being moved through the body by fluid flow through the circulatory system or by molecular motors, diffusion is the primary mode of transport over short distances. The direction of the diffusive flow of particles is from high concentration toward low concentration.

  14. Handbook on atmospheric diffusion

    SciTech Connect

    Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.

    1982-01-01

    Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)

  15. Aerosol mobility imaging for rapid size distribution measurements

    SciTech Connect

    Wang, Jian; Hering, Susanne Vera; Spielman, Steven Russel; Kuang, Chongai

    2016-07-19

    A parallel plate dimensional electrical mobility separator and laminar flow water condensation provide rapid, mobility-based particle sizing at concentrations typical of the remote atmosphere. Particles are separated spatially within the electrical mobility separator, enlarged through water condensation, and imaged onto a CCD array. The mobility separation distributes particles in accordance with their size. The condensation enlarges size-separated particles by water condensation while they are still within the gap of the mobility drift tube. Once enlarged the particles are illuminated by a laser. At a pre-selected frequency, typically 10 Hz, the position of all of the individual particles illuminated by the laser are captured by CCD camera. This instantly records the particle number concentration at each position. Because the position is directly related to the particle size (or mobility), the particle size spectra is derived from the images recorded by the CCD.

  16. InAlN high electron mobility transistor Ti/Al/Ni/Au Ohmic contact optimisation assisted by in-situ high temperature transmission electron microscopy

    SciTech Connect

    Smith, M. D.; Parbrook, P. J.; O'Mahony, D.; Conroy, M.; Schmidt, M.

    2015-09-14

    This paper correlates the micro-structural and electrical characteristics associated with annealing of metallic multi-layers typically used in the formation of Ohmic contacts to InAlN high electron mobility transistors. The multi-layers comprised Ti/Al/Ni/Au and were annealed via rapid thermal processing at temperatures up to 925 °C with electrical current-voltage analysis establishing the onset of Ohmic (linear IV) behaviour at 750–800 °C. In-situ temperature dependent transmission electron microscopy established that metallic diffusion and inter-mixing were initiated near a temperature of 500 °C. Around 800 °C, inter-diffusion of the metal and semiconductor (nitride) was observed, correlating with the onset of Ohmic electrical behaviour. The sheet resistance associated with the InAlN/AlN/GaN interface is highly sensitive to the anneal temperature, with the range depending on the Ti layer thickness. The relationship between contact resistivity and measurement temperature follow that predicted by thermionic field emission for contacts annealed below 850 °C, but deviated above this due to excessive metal-semiconductor inter-diffusion.

  17. A Simple Single Step diffusion and Emitter Etching Process for High Efficiency Gallium Antimonide Thermophotovoltaic Devices

    SciTech Connect

    G. Rajagopalan; N.S. Reddy; E. Ehsani; I.B. Bhat; P.S. Dutta; R.J. Gutmann; G. Nichols; G.W. Charache; O. Sulima

    2003-08-29

    A single step diffusion followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency GaSb thermophotovoltaic cells. The junction depth was controlled through monitoring of light current-voltage (I-V) curves (photovoltaic response) during the post diffusion emitter etching process. The measured photoresponses (prior to device fabrication) have been correlated with the quantum efficiencies and the open circuit voltages in the fabricated devices. An optimum junction depth for obtaining highest quantum efficiency and open circuit voltage is presented based on diffusion lengths (or monitoring carrier lifetimes), carrier mobility and typical diffused impurity profile in GaSb.

  18. Electrodynamics of soft multilayered particles dispersions: dielectric permittivity and dynamic mobility.

    PubMed

    Merlin, Jenny; Duval, Jérôme F L

    2014-08-07

    We report a theory for the evaluation of the electrodynamics of dispersions of spherical soft multilayered (bio)particles, with microorganisms and polyelectrolyte multilayers-coated particles as illustrative paradigms. These particles generally consist of a hard (ion- and water-impermeable) core component supporting a succession of step-function or diffuse-like concentric soft (permeable) polymeric layers defined by distinct electrostatic, hydrodynamic and structural properties. The formalism is based on a rigorous numerical resolution of the coupled Navier-Stokes-Brinkman equation, continuity equations for the flow and for the ionic species present in solution, and the non-linear Poisson equation corrected for the multilayered nature of the soft interphase. The frequency-dependent dynamic mobility and dielectric permittivity of such soft particles suspensions are discussed as a function of the key electrohydrodynamic features of the constituting particulate peripheral layers and solution salinity. It is shown that the frequency dependent permittivity is mostly affected by the total charge carried by the overall soft interphase. In contrast, the dynamic mobility is mainly determined by the charge and friction characteristics of the layers located within an electrokinetically-active outer particle region whose extension is defined by the electric double layer thickness and the Brinkman length. Results highlight that under particular electrolyte concentration and layer-to-layer thickness ratio conditions, the dynamic mobility may reflect the physico-chemical and structural properties of the only innermost layers of the soft particle coating.

  19. Sodium diffusion in 4H-SiC

    SciTech Connect

    Linnarsson, M. K. Hallén, A.

    2014-09-01

    Sodium diffusion has been studied in p-type 4H-SiC. Heat treatments have been performed from 1200 °C to 1800 °C for 1 min to 4 h. Secondary ion mass spectrometry has been used to measure the sodium distribution. We show that sodium has a considerable mobility at 1200 °C in p-type 4H-SiC. On the other hand for sodium atoms trapped at suitable sites the mobility is limited up to 1800 °C. Trap limited diffusion kinetics is suggested and an effective diffusivity has been extracted with an activation energy of 4 eV for sodium diffusion in p-type 4H-SiC.

  20. Lateral electrophoresis and diffusion of Concanavalin A receptors in the membrane of embryonic muscle cell

    PubMed Central

    Poo, M. M.; Poo, W. J.; Lam, J. W.

    1978-01-01

    A uniform electric field of 10 V/cm applied across the surface of embryonic toad Xenopus muscle cells results in the asymmetric accumulation of concanavalin A (Con A) receptors toward one side of the cells within 10 min, as visualized by postfield fluorescent Con A labeling. This field produces an extracellular voltage difference of 20 mV across these 20-microns wide cells. The effect is reversible in two respects: (a) Additional exposure of the cell to the same field of opposite polarity for 10 min completely reverses the asymmetric accumulation to the other side of the cell. (b) Relaxation occurs after the removal of the field and results in complete recovery of the uniform distribution in 30 min. Both the accumulation and the recovery movements are independent of cell metabolism, and appear to be electrophoretic and diffusional in nature. The threshold field required to induce a detectable accumulation by the present method is between 1.0 and 1.5 V/cm (corresponding to a voltage difference of 2-3 mV across a 20-microns wide cell). The electrophoretic mobility of the most mobile population of nonliganded Con A receptors is estimated to be about 2 x 10(-3) microns/s per V/cm, while their diffusion coefficient is in the range of 4-7 x 10(-10) cm2/s. Extensive accumulation of the Con A receptors by an electric field results in the formation of immobile aggregates. The Con A receptors appear to consist of a heterogeneous population of membrane components different in their charge properties, mobility, and capability in forming aggregates. PMID:10605452

  1. Coupling human mobility and social ties.

    PubMed

    Toole, Jameson L; Herrera-Yaqüe, Carlos; Schneider, Christian M; González, Marta C

    2015-04-06

    Studies using massive, passively collected data from communication technologies have revealed many ubiquitous aspects of social networks, helping us understand and model social media, information diffusion and organizational dynamics. More recently, these data have come tagged with geographical information, enabling studies of human mobility patterns and the science of cities. We combine these two pursuits and uncover reproducible mobility patterns among social contacts. First, we introduce measures of mobility similarity and predictability and measure them for populations of users in three large urban areas. We find individuals' visitations patterns are far more similar to and predictable by social contacts than strangers and that these measures are positively correlated with tie strength. Unsupervised clustering of hourly variations in mobility similarity identifies three categories of social ties and suggests geography is an important feature to contextualize social relationships. We find that the composition of a user's ego network in terms of the type of contacts they keep is correlated with mobility behaviour. Finally, we extend a popular mobility model to include movement choices based on social contacts and compare its ability to reproduce empirical measurements with two additional models of mobility.

  2. Electrical Generation.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Described are two activities designed to help children investigate electrical charges, electric meters, and electromagnets. Included are background information, a list of materials, procedures, and follow-up questions. Sources of additional information are cited. (CW)

  3. Traffic modelling framework for electric vehicles

    NASA Astrophysics Data System (ADS)

    Schlote, Arieh; Crisostomi, Emanuele; Kirkland, Stephen; Shorten, Robert

    2012-07-01

    This article reviews and improves a recently proposed model of road network dynamics. The model is also adapted and generalised to represent the patterns of battery consumption of electric vehicles travelling in the road network. Simulations from the mobility simulator SUMO are given to support and to illustrate the efficacy of the proposed approach. Applications relevant in the field of electric vehicles, such as optimal routing and traffic load control, are provided to illustrate how the proposed model can be used to address typical problems arising in contemporary road network planning and electric vehicle mobility.

  4. Computer-controlled pulsed magnetic field gradient NMR system for electrophoretic mobility measurements

    NASA Astrophysics Data System (ADS)

    Saarinen, Timothy R.; Woodward, W. Stephen

    1988-05-01

    A computer-controlled pulsed magnetic field gradient NMR (PFGNMR) system for making electrophoretic mobility and diffusion measurements is described. Emphasis is placed on the design and capabilities of the gradient and electrophoretic pulse generators. Various pulse sequences can be applied by the programmable gradient generator that can produce 0- to 10-A current pulses for 0 to 13 ms and continuous currents from 0 to 50 mA. The pulse areas are reproducible to within approximately 1 ppm. A pair of opposed Helmholtz coils in the probe create linear magnetic field gradients during the current pulses. Electric fields are applied across a U-tube electrophoretic cell by a 550-V constant current generator.

  5. Zero-flux planes, flux reversals and diffusion paths in ternary and quaternary diffusion

    SciTech Connect

    Dayananda, M.A.

    1986-05-23

    During isothermal multicomponent diffusion, interdiffusion fluxes of individual components can go to zero at zero-flux planes (ZFP) and exhibit flux reversals from one side to the other of such planes. Interdiffusion fluxes as well as the locations and compositions of ZFPs for components are determined directly from the concentration profiles of diffusion couples without the need for prior knowledge of interdiffusion coefficients. The development and identification of ZFPs is reviewed with the aid of single phase and two-phase diffusion couples investigated in the Cu-Ni-Zn system at 775/sup 0/C. ZFP locations in the diffusion zone nearly correspond to sections where the activity of a component is the same as its activity in either of the terminal alloys of a couple. Path slopes at ZFPs are uniquely dictated by the atomic mobility and thermodynamic data for the components. Discontinuous flux reversals for the components can also occur at interfaces in multiphase couples. Identification of ZFPs is also presented for diffusion in the Cu-Ni-Zn-Mn quaternary system. Analytical representation of diffusion paths for both ternary and quaternary diffusion couples is presented with the aid of characteristic path parameters.

  6. A submicrometer lifted diffused-layer MOSFET

    NASA Astrophysics Data System (ADS)

    Inokawa, Hiroshi; Kobayashi, Toshio; Kiuchi, Kazuhide

    1987-03-01

    A new lifted diffused-layer (LID) MOSFET has been devised and fabricated, where the major portions of the source/drain (S/D) diffused layers are placed on top of the field insulator to reduce S/D parasitic capacitances. The primary feature of this MOSFET is that the structure and processing are especially developed for submicrometer gate lengths. The fabricated LID MOSFET with a 0.5-micron gate length and a 10-nm gate oxide thickness showed good electrical characteristics, such as a maximum transconductance of 115 mS/mm and an inverter delay time of 59 ps/stage.

  7. Counterion Effects on Ion Mobility and Mobile Ion Concentration of Doped Polyphosphazenes and Polyphosphazene Ionomers

    NASA Astrophysics Data System (ADS)

    Runt, Jim; Klein, Robert

    2007-03-01

    Previous investigations have shed some light on the ion conduction process in polymer electrolytes, yet ion transport is still not well understood. Here, upon the application of a physical model of electrode polarization to two systems with nearly identical chemical structure, one composed of an ionomer (MI) with a single mobile cation, and the other a salt-doped polymer (M+S) with mobile cation and mobile anion, quantitative comparison of the conductivity parameters is achieved. The polymer electrolyte chemistries of both MI and M+S are based on poly(methoxyethoxy-ethoxy phosphazene) (MEEP). The glass transition was found to be an important factor governing the conductivity and ion mobility. However, even accounting for the glass transition, the mobility of ions in the M+S system is 10 times larger than that in the MI system, which must arise from faster diffusion of the anion than the cation. Values for mobile ion concentration are also approximately 10 times higher in M+S than MI. These differences originate from free volume available for diffusion and local environment surrounding the ion pairs, demonstrating that the location of the ion pairs in the polymer matrix has a crucial effect on both conductivity parameters. Research supported by NSF Polymers Program.

  8. Developing of 2D helical waves in semiconductor under the action of femtosecond laser pulse and external electric field

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Mariya M.

    2015-08-01

    We analyze laser-induced periodic structure developing in a semiconductor under the condition of both optical bistability existence and action of 2D external electric field. Optical bistability occurs because of nonlinear dependence of semiconductor absorption coefficient on charged particles concentration. The electron mobility, diffusion of electrons and laser-induced electric field are taken into account for laser pulse propagation analyzing. 2D external electric field together with electric field, induced by free electrons and ionized donors, governs the charged particle motion. Under certain conditions, the additional positive inverse loop between electron motion and electric field, caused by redistribution of free charged particles, appears. As a result, the helical wave for free charged particle concentration of electron-hole plasma in semiconductor develops under the electric field action. For computer simulation of a problem under consideration, a new finite-difference scheme is proposed. The main feature of proposed method consists in constructed two-step iteration process. We pay a special attention for calculation of initial functions distributions. For their calculation we solve the set of 2D stationary partial differential equations by using additional iteration process that is similar to the iteration process, applied for the main problem solution.

  9. Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement

    PubMed Central

    Kulkarni, Pramod; Qi, Chaolong; Fukushima, Nobuhiko

    2017-01-01

    We describe development of a Portable Aerosol Mobility Spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5 × 22.5 × 15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10–855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15–855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6–436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution, which took approximately 1–2 minutes, depending on the configuration. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments (NIOSH 2012). Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurements of ultrafine and nanoparticle aerosol.

  10. Electric vehicles

    NASA Astrophysics Data System (ADS)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  11. Do TFSA Anions Slither? Pressure Exposes the Role of TFSA Conformational Exchange in Self-Diffusion.

    PubMed

    Suarez, Sophia N; Rúa, Armando; Cuffari, David; Pilar, Kartik; Hatcher, Jasmine L; Ramati, Sharon; Wishart, James F

    2015-11-19

    Multinuclear ((1)H, (2)H, and (19)F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent (2)H T1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, as shown by their respective activation volumes (28.8 ± 2.5 cm(3)/mol for TFSA vs 14.6 ± 1.3 cm(3)/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV(‡)) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis. In addition, (2)H T1 data suggest increased ordering with increasing pressure, with two T1 regimes observed for the MD3 and D2 isotopologues between 0.1-100 and 100-250 MPa, respectively. The activation volumes for T1 were 21 and 25 cm(3)/mol (0-100 MPa) and 11 and 12 cm(3)/mol (100-250 MPa) for the MD3 and D2 isotopologues, respectively.

  12. Hereditary Diffuse Infiltrating Retinoblastoma.

    PubMed

    Schedler, Katharina J E; Traine, Peter G; Lohmann, Dietmar R; Haritoglou, Christos; Metz, Klaus A; Rodrigues, Eduardo B

    2016-01-01

    Retinoblastoma is one of the most common childhood cancers. The diffuse infiltrating retinoblastoma is a rare subtype of this neoplasm. The majority of cases of diffuse infiltrating retinoblastoma are unilateral and occur sporadically. Herein we report on a family with three children affected by retinoblastoma, among them one girl with diffuse infiltrating retinoblastoma. This girl was diagnosed at the age of 8 years with a unilateral diffuse infiltrating retinoblastoma. By contrast, the two brothers became clinically apparent in the first 2 years of life with bilateral retinoblastoma. The parents were clinically unremarkable. Genetic analysis of RB1 gene was performed. The girl with diffuse infiltrating RB was found to be heterozygous for an oncogenic mutation in the RB1 gene that was also carried by both brothers and the father of the family. These results show that diffuse infiltrating retinoblastoma can develop on the background of a hereditary predisposition to retinoblastoma.

  13. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  14. Phase singularity diffusion.

    PubMed

    Cheng, Xiaojun; Lockerman, Yitzchak; Genack, Azriel Z

    2014-06-01

    We follow the trajectories of phase singularities at nulls of intensity in the speckle pattern of waves transmitted through random media as the frequency of the incident radiation is scanned in microwave experiments and numerical simulations. Phase singularities are observed to diffuse with a linear increase of the square displacement 〈R2〉 with frequency shift. The product of the diffusion coefficient of phase singularities in the transmitted speckle pattern and the photon diffusion coefficient through the random medium is proportional to the square of the effective sample length. This provides the photon diffusion coefficient and a method for characterizing the motion of dynamic material systems.

  15. Inpainting using airy diffusion

    NASA Astrophysics Data System (ADS)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  16. 30 CFR 57.12005 - Protection of power conductors from mobile equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... NONMETAL MINES Electricity Surface and Underground § 57.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over...

  17. 30 CFR 56.12005 - Protection of power conductors from mobile equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... MINES Electricity § 56.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over power conductors, unless...

  18. Electrical Systems. FOS: Fundamentals of Service. Fifth Edition.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual, which is part of a series on agricultural and industrial machinery, deals with electrical systems. Special attention is paid to electricity as it is commonly used on mobile machines. The following topics are covered in the individual chapters: electricity and how it works (current, voltage, and resistance; types of circuits;…

  19. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  20. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  1. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  2. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  3. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved...

  4. Kinetic Structure of the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri

    2016-04-01

    We present high-resolution multi-spacecraft observations of electromagnetic fields and particle distributions by Magnetospheric Multiscale (MMS) mission throughout a reconnection layer at the sub-solar magnetopause. We study which terms in the generalized Ohm's law balance the observed electric field throughout the region. We also study waves and particle distribution functions in order to identify kinetic boundaries created due to acceleration and trapping of electrons and ions as well as mixing of electron populations from different sides of the reconnecting layer. We discuss the interplay between particles, waves, and DC electric and magnetic fields, which clearly demonstrates kinetic and multi-scale nature of the reconnection diffusion region.

  5. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  6. Mobile Router Technology Development

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.

  7. Electrically Conductive Porous Membrane

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  8. Effect of manganese doping of BaSrTiO{sub 3} on diffusion and domain wall pinning

    SciTech Connect

    Nadaud, Kevin Borderon, Caroline Renoud, Raphaël; Gundel, Hartmut W.

    2015-02-28

    In the present paper, the influence of manganese doping on the dielectric properties of BaSrTiO{sub 3} thin films is presented. The real and imaginary parts of the material's permittivity have been measured in a large frequency range (100 Hz–1 MHz) and as a function of the electric field. The tunability and the figure of merit of the material have been obtained from the measurement of the permittivity under an applied DC bias electric field. For the undoped material, the dielectric losses become important for a large DC bias which leads to breakdown. At a suitable dopant rate, this effect disappears. In order to better understand the origin of the related phenomena, we measure the permittivity as a function of the AC excitation amplitude and we decompose the obtained permittivity with the hyperbolic law. This enables to extract the different contributions of the bulk (low frequency diffusion and high frequency lattice relaxation) and of the domain wall motions (vibration and pinning/unpinning) to the material's dielectric permittivity and to understand the effect of manganese doping on each contribution. Knowledge of the related mechanisms allows us to establish the optimum dopant rate (mainly conditioned by the lattice contribution) and to reduce the domain wall motion, which finally is beneficial for the desired properties of the ferroelectric thin film. A particular attention is paid to low frequency diffusion, an especially harmful effect when a DC biasing is mandatory (tunable electronic component in mobile telecommunication devices for example)

  9. Effect of manganese doping of BaSrTiO3 on diffusion and domain wall pinning

    NASA Astrophysics Data System (ADS)

    Nadaud, Kevin; Borderon, Caroline; Renoud, Raphaël; Gundel, Hartmut W.

    2015-02-01

    In the present paper, the influence of manganese doping on the dielectric properties of BaSrTiO3 thin films is presented. The real and imaginary parts of the material's permittivity have been measured in a large frequency range (100 Hz-1 MHz) and as a function of the electric field. The tunability and the figure of merit of the material have been obtained from the measurement of the permittivity under an applied DC bias electric field. For the undoped material, the dielectric losses become important for a large DC bias which leads to breakdown. At a suitable dopant rate, this effect disappears. In order to better understand the origin of the related phenomena, we measure the permittivity as a function of the AC excitation amplitude and we decompose the obtained permittivity with the hyperbolic law. This enables to extract the different contributions of the bulk (low frequency diffusion and high frequency lattice relaxation) and of the domain wall motions (vibration and pinning/unpinning) to the material's dielectric permittivity and to understand the effect of manganese doping on each contribution. Knowledge of the related mechanisms allows us to establish the optimum dopant rate (mainly conditioned by the lattice contribution) and to reduce the domain wall motion, which finally is beneficial for the desired properties of the ferroelectric thin film. A particular attention is paid to low frequency diffusion, an especially harmful effect when a DC biasing is mandatory (tunable electronic component in mobile telecommunication devices for example).

  10. Modelling dengue epidemic spreading with human mobility

    NASA Astrophysics Data System (ADS)

    Barmak, D. H.; Dorso, C. O.; Otero, M.

    2016-04-01

    We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly affects the spread of infection by increasing the final size and by changing the morphology of the epidemic outbreaks. When the spreading of the disease is driven only by mosquito dispersal (flight), a main central focus expands diffusively. On the contrary, when human mobility is taken into account, multiple foci appear throughout the evolution of the outbreaks. These secondary foci generated throughout the outbreaks could be of little importance according to their mass or size compared with the largest main focus. However, the coalescence of these foci with the main one generates an effect, through which the latter develops a size greater than the one obtained in the case driven only by mosquito dispersal. This increase in growth rate due to human mobility and the coalescence of the foci are particularly relevant in temperate cities such as the city of Buenos Aires, since they give more possibilities to the outbreak to grow before the arrival of the low-temperature season. The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector epidemics.

  11. The Diffusion of Charged Particles in Collisional Plasmas: Free and Ambipolar Diffusion at Low and Moderate Pressures

    PubMed Central

    Phelps, A. V.

    1990-01-01

    The interpretation of measurements of the properties of weakly ionized plasmas in terms of diffusion of electrons and ions is reviewed both critically and tutorially. A particular effort is made to tie together various aspects of charged particle diffusion phenomena in quiescent, partially ionized plasmas. The concepts of diffusion length and effective diffusion coefficient and the treatment of partially reflecting boundaries are developed in the limit of the space-charge-free motion of the electrons or ions. A simplified derivation of the screening length for space charge electric fields is followed by a review of the conventional derivation of diffusion in the ambipolar limit. A discussion of the scaling parameters of the ratio of the diffusion length to the screening length and the ratio of the diffusion length to the ion mean-free-path leads to a map used to correlate published models covering the complete range of these parameters. The models of measurements of the diffusion of electrons, several types of positive ions, and negative ions are reviewed. The role of diffusion in the decay of charged particle densities and wall currents during the afterglow of a discharge is then considered. The effects of collapse of the space charge field and of diffusion cooling are reviewed. Finally, the application of the diffusion models to a number of different discharges is discussed. PMID:28179784

  12. Diffusion of n-type dopants in germanium

    SciTech Connect

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  13. Simulations of Xe and U diffusion in UO2

    SciTech Connect

    Andersson, Anders D.; Vyas, Shyam; Tonks, Michael R.; Casillas, Luis; Uberuaga, Blas P.; Millett, Paul

    2012-09-10

    Diffusion of xenon (Xe) and uranium (U) in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. Based on the vacancy and cluster diffusion mechanisms established from density functional theory (DFT) calculations, we derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2}. In order to capture the effects of irradiation, vacancies (Va) are explicitly coupled to the Xe and U dynamics. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the bulk diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries, which were derived from atomistic calculations. The diffusion and segregation models were implemented in the MOOSE-Bison-Marmot (MBM) finite element (FEM) framework and the Xe/U redistribution was simulated for a few simple microstructures.

  14. Calcium diffusion in uterine smooth muscle sheets

    PubMed Central

    1982-01-01

    The potassium contracture in the longitudinal muscle of estrogen- treated rat uterus was kinetically investigated. The rates of tension development after Ca addition and relaxation after Ca removal were measured under the high-potassium depolarization. Both rates decreased with an increase in preparation thickness. The relaxation rate had only a slight dependence on temperature. On the contrary, both relaxation and contraction rates in a contraction induced by an electrical stimulation strongly depended on temperature, but not on preparation size. These results suggest that the Ca diffusion process in the extracellular space is the rate-limiting step in relaxation of Ca- dependent contracture under potassium depolarization. The diffusion model, in which the effect of the unstirred layer was considered, could quantitatively explain the experimental results. The apparent diffusion coefficient in the muscle sheet was estimated to be approximately 3 x 10(-7) cm2/s. The difference from that in aqueous solution is discussed. PMID:7119732

  15. Helical auto-waves of electron-hole plasma in semiconductor induced by femtosecond pulse at presence of external electric field

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginovaa, Mariya M.

    2014-09-01

    We analyze laser-induced periodic structure developing in a semiconductor under the condition of both optical bistability existence and external electric field presence. Optical bistability occurs because of nonlinear dependence of semiconductor absorption coefficient on charged particles concentration. This dependence of the semiconductor absorption takes place due to the Burstein-Moss effect. The electron mobility, diffusion of electrons, and laser-induced electric field are taken into account for laser pulse propagation analyzing. We found out that an external electric field could induce helical auto-waves of high absorption domain in semiconductor if electron mobility influences on electron motion. The electron mobility causes electron motion from high absorption domain to domains with lower concentration of free charged particles. As a consequence, the laser energy absorption increases in these domains and new domains with high absorption appear. External electric field together with electric field of free electrons and ionized donors governs the electron motion. As a result, at certain conditions the additional positive inverse loop between electron motion and electric field caused by redistribution of free charged particles appears. Together with an explosive absorption existence, which arises from optical bistability, as a result of these two mechanisms presence the helical wave for free charged particles concentration of electron-hole plasma in semiconductor develops. Such type of wave may be seen also for a propagation of laser pulse with micro-, and nano-, and picoseconds duration because an optical bistability based on increasing absorption takes place for effecting of these pulses as well. For computer simulation of a problem under consideration a new finite-difference scheme is proposed. The main feature of proposed methods consists in constructed iterative process.

  16. Pulsed plasmoid electric propulsion

    NASA Technical Reports Server (NTRS)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  17. Spatial dynamics of a population with stage-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, F.; Coutinho, R. M.; Kraenkel, R. A.

    2015-05-01

    We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.

  18. Anatomy of Particle Diffusion

    ERIC Educational Resources Information Center

    Bringuier, E.

    2009-01-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact…

  19. Diffusion of Botulinum Toxins

    PubMed Central

    Brodsky, Matthew A.; Swope, David M.; Grimes, David

    2012-01-01

    Background It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion. Methods This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method). It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB). Results Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others. Discussion Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected. PMID:23440162

  20. Investigating Diffusion with Technology

    ERIC Educational Resources Information Center

    Miller, Jon S.; Windelborn, Augden F.

    2013-01-01

    The activities described here allow students to explore the concept of diffusion with the use of common equipment such as computers, webcams and analysis software. The procedure includes taking a series of digital pictures of a container of water with a webcam as a dye slowly diffuses. At known time points, measurements of the pixel densities…

  1. The Diffusion of Innovation

    NASA Technical Reports Server (NTRS)

    Earabino, Gerard J.; Heyl, G. Christopher; Percorini, Thomas J.

    1987-01-01

    New ideas encounter obstacles on way to becoming products. Report examines process by which new ideas become products, processes, or accepted standards. Sequence of events called "the diffusion of innovation." Focuses on development of material processing in low gravity as case study in diffusion of innovation.

  2. Cosmology with matter diffusion

    SciTech Connect

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  3. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  4. Electrical stator

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.

    1994-01-01

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  5. Electric propulsion

    NASA Astrophysics Data System (ADS)

    Garrison, Philip W.

    Electric propulsion (EP) is an attractive option for unmanned orbital transfer vehicles (OTV's). Vehicles with solar electric propulsion (SEP) could be used routinely to transport cargo between nodes in Earth, lunar, and Mars orbit. Electric propulsion systems are low-thrust, high-specific-impulse systems with fuel efficiencies 2 to 10 times the efficiencies of systems using chemical propellants. The payoff for this performance can be high, since a principal cost for a space transportation system is that of launching to low Earth orbit (LEO) the propellant required for operations between LEO and other nodes. Several aspects of electric propulsion, including candidate systems and the impact of using nonterrestrial materials, are discussed.

  6. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  7. ECG by mobile technologies.

    PubMed

    Guzik, Przemyslaw; Malik, Marek

    Mobile electrocardiographs consist of three components: a mobile device (e.g. a smartphone), an electrocardiographic device or accessory, and a mobile application. Mobile platforms are small computers with sufficient computational power, good quality display, suitable data storage, and several possibilities of data transmission. Electrocardiographic electrodes and sensors for mobile use utilize unconventional materials, e.g. rubber, e-textile, and inkjet-printed nanoparticle electrodes. Mobile devices can be handheld, worn as vests or T-shirts, or attached to patient's skin as biopatches. Mobile electrocardiographic devices and accessories may additionally record other signals including respiratory rate, activity level, and geolocation. Large-scale clinical studies that utilize electrocardiography are easier to conduct using mobile technologies and the collected data are suitable for "big data" processing. This is expected to reveal phenomena so far inaccessible by standard electrocardiographic techniques.

  8. Diffusion with varying drag; the runaway problem

    SciTech Connect

    Rollins, D.K.

    1986-01-01

    The motion of electrons in an ionized plasma of electrons and ions in an external electric field is studied. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron-runaway phenomenon. The electric field is treated as a small perturbation. Various diffusion coefficients are considered for the one dimensional problem, and the runaway current is determined as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coeffient decays with velocity are then considered. To determine the runaway current, the equivalent Schroedinger eigenvalue problem is analyzed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching, a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.

  9. Diffusion in Coulomb crystals

    SciTech Connect

    Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2011-07-15

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  10. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  11. Combustor diffuser interaction program

    NASA Technical Reports Server (NTRS)

    Srinivasan, Ram; Thorp, Daniel

    1986-01-01

    Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.

  12. Fundamentals of trapped ion mobility spectrometry.

    PubMed

    Michelmann, Karsten; Silveira, Joshua A; Ridgeway, Mark E; Park, Melvin A

    2015-01-01

    Trapped ion mobility spectrometry (TIMS) is a relatively new gas-phase separation method that has been coupled to quadrupole orthogonal acceleration time-of-flight mass spectrometry. The TIMS analyzer is a segmented rf ion guide wherein ions are mobility-analyzed using an electric field that holds ions stationary against a moving gas, unlike conventional drift tube ion mobility spectrometry where the gas is stationary. Ions are initially trapped, and subsequently eluted from the TIMS analyzer over time according to their mobility (K). Though TIMS has achieved a high level of performance (R > 250) in a small device (<5 cm) using modest operating potentials (<300 V), a proper theory has yet to be produced. Here, we develop a quantitative theory for TIMS via mathematical derivation and simulations. A one-dimensional analytical model, used to predict the transit time and theoretical resolving power, is described. Theoretical trends are in agreement with experimental measurements performed as a function of K, pressure, and the axial electric field scan rate. The linear dependence of the transit time with 1/K provides a fundamental basis for determination of reduced mobility or collision cross section values by calibration. The quantitative description of TIMS provides an operational understanding of the analyzer, outlines the current performance capabilities, and provides insight into future avenues for improvement.

  13. Computer simulation of electrical conductivity of colloidal dispersions during aggregation.

    PubMed

    Lebovka, N I; Tarafdar, S; Vygornitskii, N V

    2006-03-01

    The computation approach to the simulation of electrical conductivity of colloidal dispersions during aggregation is considered. We use the two-dimensional diffusion-limited aggregation model with multiple-seed growth. The particles execute a random walk, but lose their mobility after contact with the growing clusters or seeds. The two parameters that control the aggregation are the initial concentration of free particles in the system p and the concentration of seeds psi. The case of psi=1, when all the particles are the immobile seeds, corresponds with the usual random percolation problem. The other limiting case of psi=0, when all the particles walk randomly, corresponds to the dynamical percolation problem. The calculation of electrical conductivity and cluster analysis were done with the help of the algorithms of Frank-Lobb and Hoshen-Kopelman. It is shown that the percolation concentration phi c decreases from 0.5927 at psi=1 to 0 at psi --> 0. Scaling analysis was applied to study exponents of correlation length v and of conductivity t. For all psi>0 this model shows universal behavior of classical 2d random percolation with v approximately t approximately 4/3. The electrical conductivity sigma of the system increases during aggregation reaching up to a maximum at the final stage. The concentration dependence of conductivity sigma(phi) obeys the general effective medium equation with apparent exponent ta(psi) that exceeds t. The kinetics of electrical conductivity changes during the aggregation is discussed. In the range of concentration Pc(phi)

  14. Electrical detection of spin transport in Si two-dimensional electron gas systems

    NASA Astrophysics Data System (ADS)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  15. Hindered Brownian diffusion in a square-shaped geometry.

    PubMed

    Gentile, Francesco S; De Santo, Ilaria; D'Avino, Gaetano; Rossi, Lucio; Romeo, Giovanni; Greco, Francesco; Netti, Paolo A; Maffettone, Pier Luca

    2015-06-01

    We study the spatial dependence of the mobility of microparticles diffusing close to an edge of a square microtube. Confocal particle tracking is used to measure the local diffusion coefficients of fluorescent latex 1.1μm particles suspended in an aqueous solution in a borosilicate square capillary of 50μm section side. Observations are made for a set of planes obtained by confocal sectioning of the capillary volume. The translational diffusion coefficients parallel to the axis channel and perpendicular to one of the walls are measured as a function of the distance from both the two channel walls concurring in an edge. A complete 3D spatial map of the colloid diffusion coefficients is thus obtained. Near the corner, the diffusion is hindered up to about 40% as compared to its bulk value. The three translational diffusion coefficients pertaining to the motions along the channel axis and within the channel cross-section turn out to be different from each other and differently affected by the confinement, i.e., we are in the presence of an anisotropic diffusion. The hindered diffusion phenomenon is also examined by finite element numerical simulations, and the numerical predictions fairly agree with the measured diffusion coefficients.

  16. CO DIFFUSION INTO AMORPHOUS H{sub 2}O ICES

    SciTech Connect

    Lauck, Trish; Karssemeijer, Leendertjan; Cuppen, Herma M.; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I. E-mail: koberg@cfa.harvard.edu

    2015-03-10

    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H{sub 2}O, and diffusion on external and internal (pore) surfaces of H{sub 2}O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H{sub 2}O-dominated ices at low temperatures (15–23 K), by measuring the mixing rate of initially layered H{sub 2}O(:CO{sub 2})/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H{sub 2}O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H{sub 2}O ice. The extracted energy barrier for CO diffusion into amorphous H{sub 2}O ice is ∼160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.

  17. Surface diffusion in reversed-phase liquid chromatography

    SciTech Connect

    Miyabe, Kanji; Guiochon, Georges A

    2010-01-01

    More than 40 years ago, Giddings pointed out in 'Dynamics of Chromatography' that surface diffusion should become an important research topic in the kinetics of chromatographic phenomena. However, few studies on surface diffusion in adsorbents used in chromatography were published since then. Most scientists use ordinary rate equations to study mass transfer kinetics in chromatography. They take no account of surface diffusion and overlook the significant contributions of this mass transfer process to chromatographic behavior and to column efficiency at high mobile phase flow rate. Only recently did the significance of surface diffusion in separation processes begin to be recognized in connection with the development of new techniques of fast flow, high efficiency chromatography. In this review, we revisit the reports on experimental data on surface diffusion and introduce a surface-restricted molecular diffusion model, derived as a first approximation for the mechanism of surface diffusion, on the basis of the absolute rate theory. We also explain how this model accounts for many intrinsic characteristics of surface diffusion that cannot properly be explained by the conventional models of surface diffusion.

  18. Fractionation of macromolecules in an alternating transverse electric field: simulation of the method.

    PubMed

    Stevens, F J

    1990-01-01

    An electric field of alternating polarity applied in a direction transverse to the direction of solute transport is used as the basis of a method for the separation of biological macromolecules. The method derives directly from the ability of an electric field to induce movement of a charged macromolecule and from the physics of laminar fluid flow; no adsorptive immobile phase component is involved. The method is simulated by computer for the case of solute molecules in a solvent flowing through a narrow chamber of rectangular cross section. A voltage differential of periodically reversed polarity generates an electric field orthogonal to the direction of solvent flow. Solute molecules repetitively traverse the solvent channel at rates determined by their electrophoretic mobility. During the transit across the channel, solute molecules are transported in the direction of solvent flow; at the channel wall, solvent velocity is negligible and solute transport is limited to that provided by transient diffusion into a mobile solvent zone. Molecules of different intrinsic electrophoretic mobility are separated. The computer model was used to illustrate the process and to demonstrate the 'tunability' of the method as a function of the oscillation frequency and voltage wave form. Because of this tunability, a single instrument can function as the equivalent of several different chromatographic systems. Because fractionation is effected by direct physicochemical phenomena rather than via interaction with chromatographic sites, variations in fractionation results arising from formation of polymers for gel electrophoresis, packing of chromatography columns, or deterioration of columns with use are avoided. This method may be of particular use for the purification of nucleic acid fragments and for the analysis of protein: nucleic acid interactions.

  19. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    SciTech Connect

    Tang, Jie Jiang, Weiman; Wang, Yishan; Zhao, Wei; Li, Jing; Duan, Yixiang

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  20. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins.

    PubMed

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells.

  1. Mobility and Young Children.

    ERIC Educational Resources Information Center

    Bernard van Leer Foundation Newsletter, 1994

    1994-01-01

    This newsletter theme issue deals with the phenomenon of mobility or transience in India, Kenya, Greece, Ireland, Malaysia, Thailand and Israel. The primary focus is on mobility's effect on young children, specifically their health and education; some of the broader concerns also addressed by the newsletter are the causes of mobility and its…

  2. Mobile Student Information System

    ERIC Educational Resources Information Center

    Asif, Muhammad; Krogstie, John

    2011-01-01

    Purpose: A mobile student information system (MSIS) based on mobile computing and context-aware application concepts can provide more user-centric information services to students. The purpose of this paper is to describe a system for providing relevant information to students on a mobile platform. Design/methodology/approach: The research…

  3. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  4. Helium diffusion in carbonates

    NASA Astrophysics Data System (ADS)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  5. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  6. Thorium Diffusion in Monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-05-01

    Diffusion of thorium has been characterized in synthetic monazite under dry conditions. The synthetic monazites (either pure CePO4, NdPO4, or a mixed LREE phosphate containing Ce, Nd, and Sm) were grown via a Na2CO3-MoO3 flux method. The source of diffusant for the experiments were either synthesized ThSiO4 or CaTh(PO4)2 powders. Experiments were performed by placing source and monazite in Pt capsules and annealing capsules in 1 atm furnaces for times ranging from 10 days to a few hours, at temperatures from 1400 to 1550C. The Th distributions in the monazite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation was obtained for diffusion in monazite: DSm = 7.2x103 exp(-814 kJ mol-1/RT) m2sec-1 The diffusivity of Th was similar for monazites containing a single REE and the mixed LREE phosphates. Th diffusion was also similar for experiments run using the Th silicate and Ca-Th phosphate sources, suggesting that the substitutional mechanism for Th in monazite, i.e, Th+4 + Si+4 for REE+3 + P+5 with the ThSiO4 source, and Th+4 + Ca+2 for 2REE+3 with the CaTh(PO4)2 source, does not significantly affect Th diffusivities, and that Th is likely the rate-limiting species. Th diffusion in monazite is about 4 orders of magnitude slower than Pb diffusion (Cherniak et al., 2004). This contrasts with findings of Gardes et al. (2005) who determined that Pb, Th and REE diffusivities in monazite are similar. Th diffusion in zircon (Cherniak et al., 1997) is about an order of magnitude slower than in monazite, but with similar activation energy for diffusion. The smaller diffusivities in zircon may be a consequence of the larger disparity in size between Th and the Zr site in zircon as compared with Th and the REE site in monazite. Nonetheless, Th is essentially immobile in monazite with respect to exchange by volume diffusion under most geologic conditions; these findings may have implications for containment of high- level actinide

  7. Wide size range fast integrated mobility spectrometer

    SciTech Connect

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  8. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.

    1984-01-01

    Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.

  9. Analytic expressions for ULF wave radiation belt radial diffusion coefficients.

    PubMed

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-03-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp.

  10. Mobile phones, mobile phone base stations and cancer: a review.

    PubMed

    Moulder, J E; Foster, K R; Erdreich, L S; McNamee, J P

    2005-03-01

    There have been reports in the media and claims in the courts that radiofrequency (RF) emissions from mobile phones are a cause of cancer, and there have been numerous public objections to the siting of mobile phone base antennas because of a fear of cancer. This review summarizes the current state of evidence concerning whether the RF energy used for wireless communication might be carcinogenic. Relevant studies were identified by searching MedLine with a combination of exposure and endpoint terms. This was supplemented by a review of the over 1700 citations assembled by the Institute of Electrical and Electronics Engineers (IEEE) International Committee on Electromagnetic Safety as part of their updating of the IEEE C95.1 RF energy safety guidelines. Where there were multiple studies, preference was given to recent reports, to positive reports of effects and to attempts to confirm such positive reports. Biophysical considerations indicate that there is little theoretical basis for anticipating that RF energy would have significant biological effects at the power levels used by modern mobile phones and their base station antennas. The epidemiological evidence for a causal association between cancer and RF energy is weak and limited. Animal studies have provided no consistent evidence that exposure to RF energy at non-thermal intensities causes or promotes cancer. Extensive in vitro studies have found no consistent evidence of genotoxic potential, but in vitro studies assessing the epigenetic potential of RF energy are limited. Overall, a weight-of-evidence evaluation shows that the current evidence for a causal association between cancer and exposure to RF energy is weak and unconvincing. However, the existing epidemiology is limited and the possibility of epigenetic effects has not been thoroughly evaluated, so that additional research in those areas will be required for a more thorough assessment of the possibility of a causal connection between cancer and the

  11. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  12. Teaching Electricity.

    ERIC Educational Resources Information Center

    Iona, Mario

    1982-01-01

    To clarify the meaning of electrical terms, a chart is used to compare electrical concepts and relationships with a more easily visualized system in which water flows from a hilltop reservoir through a pipe to drive a mill at the bottom of the hill. A diagram accompanies the chart. (Author/SK)

  13. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    USGS Publications Warehouse

    Briggs, Martin; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, Jr., John W.

    2014-01-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  14. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  15. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  16. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  17. Mobile Virtual Private Networking

    NASA Astrophysics Data System (ADS)

    Pulkkis, Göran; Grahn, Kaj; Mårtens, Mathias; Mattsson, Jonny

    Mobile Virtual Private Networking (VPN) solutions based on the Internet Security Protocol (IPSec), Transport Layer Security/Secure Socket Layer (SSL/TLS), Secure Shell (SSH), 3G/GPRS cellular networks, Mobile IP, and the presently experimental Host Identity Protocol (HIP) are described, compared and evaluated. Mobile VPN solutions based on HIP are recommended for future networking because of superior processing efficiency and network capacity demand features. Mobile VPN implementation issues associated with the IP protocol versions IPv4 and IPv6 are also evaluated. Mobile VPN implementation experiences are presented and discussed.

  18. Residential mobility microsimulation models

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Wu, Lun

    2010-09-01

    Residential mobility refers to the spatial movement of individuals and households between dwellings within an urban area. This considerable amount of intra-urban movement affects the urban structure and has significant repercussions for urban transportation. In order to understand and project related impacts, a considerable number of residential mobility models has been developed and used in the regional planning process. Within this context, the history and state-of-art residential mobility models are discussed and indicated. Meanwhile, a residential mobility Microsimulation model, called URM-Microsim (Urban Residential Mobility Microsimulation), is introduced and discussed.

  19. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  20. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  1. Electrical Transport of Long DNA Molecules on Liuid-Solid Interfaces

    NASA Astrophysics Data System (ADS)

    Samuilov, Vladimir; Seo, Young-Soo; Sokolov, Jonathan; Rafailovich, Miriam; Chu, Benjamin

    2002-03-01

    The electrical transport properties of long DNA molecules were studied based upon a newly developed method of electrophoresis on flat surfaces [1]. The electrophoretic mobilities of DNA in the presence of Si surface were found to be approximately one order less than in free solution. The electropherogram peaks of 1 kb- and Hind III DNA ladders have been clearly identified. The experimental dependencies of the mobilities on molecular weight were found to be scaled with power law with the exponents of an opposite sign at 2 different buffer concentrations: negative for surface transport at 10 -2 M concentration of TBE buffer and positive at 10 -3 M. A novel mechanism responsible for DNA molecules separation in the presence of the surface at low buffer concentrations has been developed. The multi-ion system is governed by the Nernst-Planck equations (ion movement due to convection, migration and diffusion), in combination with the Poisson-Boltzmann equation. The discrepancy from charge neutrality that occurs in the diffuse double layer very close to the substrate is the driving force for the Navier-Stokes equation, which finally results in a liquid movement very close to the surface that is denoted as electro-osmosis. The adsorbed DNA move due to the electrical field parallel to the surface, and also due the electro-osmotic convection that drags the DNA chains if they are only partly adsorbed. The electric double layer is responsible for a velocity profile of the electroosmotic flow. The net electrophoretic mobility of longer DNA, being trapped closer to the surface, is higher than of the shorter ones in the electric field, oriented along the surface. The main features of the electro-hydrodynamic instability related to λ and T2 DNA molecules aggregation, observed in our system, are consistent with our model. This work was supported by NSF-MRSEC Program. [1]. N. Pernodet, V. Samuilov, K. Shin, J. Sokolov, M.H. Rafailovich, D. Gersappe, B. Chu, DNA Electrophoresis on a

  2. Comparative studies of perceived vibration strength for commercial mobile phones.

    PubMed

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend.

  3. Hydrogen-isotope transport induced by an electric field in α-Al2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Ramírez, R.; Colera, I.; González, R.; Chen, Y.; Kokta, M. R.

    2004-01-01

    Infrared-absorption measurements were used to characterize OH- and OD- stretching frequencies in Al2O3 crystals both nominally pure and doped with either Ti, V, or Mg impurities. Impurities, cooling rates, and ultraviolet irradiation affect the distribution of various OH- (OD-) band intensities. Polarization experiments determined the precise angle of OH- (OD-) ions protruding from the basal plane for several OH- (OD-) bands. Most were <15°, with one at 21°. Diffusion of isotopic species was performed with and without an electric field. Without an electric field, indiffusion is possible only by exchanging with an existing species. With an electric field, indiffusion occurs by exchange as well as occupying new sites. Incorporation of hydrogen (deuterium) was investigated by subjecting the crystals to a moderate electric field both parallel and perpendicular to the crystallographic c axis, in the temperature range 973 1300 K in H2O (or D2O) vapor. An initial linear dependence of the percent of exchange with annealing time and applied voltage was observed, indicating that ionic conduction is the dominant mechanism. The activation energy for the H+iff D+ exchange was determined to be ≈2.4 eV with an electric field of 3000 V/cm applied either parallel or perpendicular to the c axis. The estimated proton (deuteron) mobility is μ=(6±1)×10-8 cm2/(V s).

  4. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Zhang, Wei; Sun, Ye; Ediger, M. D.; Yu, Lian

    2016-08-01

    Surface self-diffusion coefficients of α,α,β-tris-naphthyl benzene (TNB) glasses have been measured using the method of surface grating decay. For 1000 nm wavelength gratings, the decay occurs by viscous flow at temperatures above Tg + 15 K, where Tg is the glass transition temperature (347 K), and by surface diffusion at lower temperatures. Surface diffusion of TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg. Comparing TNB with other molecular glasses, each evaluated at its own Tg, we find that surface diffusion has a greater system-to-system variation than bulk diffusion, slowing down with increasing molecular size and intermolecular hydrogen bonding. Experimentally determined surface diffusion coefficients are in reasonable agreement with those from simulations and theoretical predictions. TNB and other molecular glasses show fast crystal growth on the free surface and the growth velocity is nearly proportional to the surface diffusion coefficient, indicating that the process is supported by surface mobility.

  5. Atomic Mobilities and Interdiffusivities for fcc Ni-Cr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Gaochi; Liu, Yajun; Kang, Zhitao

    2016-10-01

    The atomic mobilities and diffusion characteristics for fcc Ni-Cr-Nb alloys are explored by diffusion couples annealed at 1273 K (1000 °C) for 200 hours. The interdiffusion coefficients are extracted from intersection points of two diffusion paths, after which the atomic mobilities of Ni, Cr, and Nb in fcc Ni-Cr-Nb alloys are inversely obtained within the CALPHAD framework with the aid of related thermodynamic descriptions. In order to verify the quality of obtained kinetic parameters so that an accurate Ni-based atomic mobility database can be established, the composition profiles in diffusion couples and the diffusion paths superimposed upon Gibbs triangle are explored, where the experimentally measured and calculated values show good agreement.

  6. Mobilities of polyatomic ions in gases - Core model.

    NASA Technical Reports Server (NTRS)

    Mason, E. A.; O'Hara, H.; Smith, F. J.

    1972-01-01

    A core model, consisting of a (12-4) central potential displaced from the origin, is suggested as a representation of the interaction of polyatomic ions with neutral molecules. The diffusion collision integral, which describes ion mobility, is computed and tabulated as a function of temperature and core size. The addition of the core reduces the maximum in the mobility against temperature curve, and eventually reduces the mobility below its polarization limit at all temperatures. These results are in accord with limited available experimental data. Comparison is made with other models of ion-neutral interactions.

  7. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  8. Mastocytosis, diffuse cutaneous (image)

    MedlinePlus

    This is a picture of diffuse, cutaneous mastocytosis. Abnormal collections of cells in the skin (mast cells) produce this rash. Unlike bullous mastocytosis, rubbing will not lead to formation of blisters ( ...

  9. Factorized Diffusion Map Approximation.

    PubMed

    Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos

    2012-01-01

    Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework.

  10. Novel Diffusivity Measurement Technique

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2001-01-01

    A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.

  11. Factorized Diffusion Map Approximation

    PubMed Central

    Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos

    2013-01-01

    Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework. PMID:25309676

  12. Diffusion of eccentric microswimmers.

    PubMed

    Debnath, Debajyoti; Ghosh, Pulak K; Li, Yunyun; Marchesoni, Fabio; Li, Baowen

    2016-02-21

    We model the two-dimensional diffusive dynamics of an eccentric artificial microswimmer in a highly viscous medium. We assume that the swimmer's propulsion results from an effective force applied to a center distinct from its center of mass, both centers resting on a body's axis parallel to its average self-propulsion velocity. Moreover, we allow for angular fluctuations of the velocity about the body's axis. We prove, both analytically and numerically, that the ensuing active diffusion of the swimmer is suppressed to an extent that strongly depends on the model parameters. In particular, the active diffusion constant undergoes a transition from a quadratic to a linear dependence on the self-propulsion speed, with practical consequences on the interpretation of the experimental data. Finally, we extend our model to describe the diffusion of chiral eccentric swimmers.

  13. Electrical connector

    DOEpatents

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  14. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  15. Distributed Energy Resources Market Diffusion Model

    SciTech Connect

    Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

    2006-06-16

    Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase

  16. In vivo diffusion MRS investigation of non-water molecules in biological tissues.

    PubMed

    Cao, Peng; Wu, Ed X

    2017-03-01

    Diffusion MRS of non-water molecules offers great potential in directly revealing various tissue microstructures and physiology at both cellular and subcellular levels. In brain, (1) H diffusion MRS has been demonstrated as a new tool for probing normal tissue microstructures and their pathological changes. In skeletal muscle, (1) H diffusion MRS could characterize slow and restricted intramyocellular lipid diffusion, providing a sensitive marker for metabolic alterations, while (31) P diffusion MRS can measure ATP and PCr diffusion, which may reflect the capacity of cellular energy transport, complementing the information from frequently used (31) P MRS in muscle. In intervertebral disk, (1) H diffusion MRS can directly monitor extracellular matrix integrity by quantifying the mobility of macromolecules such as proteoglycans and collagens. In tumor tissue, (13) C diffusion MRS could probe intracellular glycolytic metabolism, while (1) H diffusion MRS may separate the spectrally overlapped lactate and lipid resonances. In this review, recent diffusion MRS studies of these biologically relevant non-water molecules under normal and diseased conditions will be presented. Technical considerations for diffusion MRS experiments will be discussed. With advances in MRI hardware and diffusion methodology, diffusion MRS of non-water molecules is expected to provide increasingly valuable and biologically specific information on tissue microstructures and physiology, complementing the traditional diffusion MRI of small and ubiquitous water molecules. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Theoretical studies of effects of 2D plasmonic grating on electrical properties of organic solar cells

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Choy, Wallace C. H.; Chew, Weng Cho

    2012-09-01

    Although various optical designs and physical mechanisms have been studied both experimentally and theoretically to improve the optical absorption of organic solar cells (OSCs) by incorporating metallic nanostructures, the effects of plasmonic nanostructures on the electrical properties of OSCs is still not fully understood. Hence, it is highly desirable to study the changes of electrical properties induced by plasmonic structures and the corresponding physics for OSCs. In this work, we develop a multiphysics model for plasmonic OSCs by solving the Maxwell's equations and semiconductor equations (Poisson, continuity, and drift-diffusion equations) with unified finite-difference method. Both the optical and electrical properties of OSCs incorporating a 2D metallic grating anode are investigated. For typical active polymer materials, low hole mobility, which is about one magnitude smaller than electron mobility, dominates the electrical property of OSCs. Since surface plasmon resonances excited by the metallic grating will produce concentrated near-field penetrated into the active polymer layer and decayed exponentially away from the metal-polymer interface, a significantly nonuniform and extremely high exciton generation rate is obtained near the grating. Interestingly, the reduced recombination loss and the increased open-circuit voltage can be achieved in plasmonic OSCs. The physical origin of the phenomena lies at direct hole collections to the metallic grating anode with a short transport path. In comparison with the plasmonic OSC, the hole transport in a multilayer planar OSC experiences a long transport path and time because the standard planar OSC has a high exciton generation rate at the transparent front cathode. The unveiled multiphysics is particularly helpful for designing high-performance plasmonic OSCs.

  18. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  19. Biphasic cell responses on laterally mobile films

    NASA Astrophysics Data System (ADS)

    Kourouklis, Andreas; Lerum, Ronald; Bermudez, Harry

    2013-03-01

    The engineering of polymer surfaces or matrices that are capable of controlling cell adhesion has been widely explored. In nearly all of these works, the polymer chains (and ligands) are chemically attached to the underlying substrate, and therefore these systems are inherently static. By contrast, cellular environments such as the extracellular matrix (ECM) are dynamic and remodeled by biochemical reactions and biophysical forces. Borrowing this concept from Nature, we created polymer films by an interfacial self-assembly process, whereby individual chains can exhibit lateral mobility (in-plane diffusive motion). NIH 3T3 fibroblasts seeded on such RGD-presenting polymer films show biphasic responses in spreading and adhesion strength to lateral mobility, with a minimal response for intermediate mobility values. Futhermore, preliminary immuno-staining experiments reveal that the total area of focal adhesions demonstrates a similar biphasic trend to the cellular-scale behaviors. In contrast, actin filaments or stress fibers appear to be unaffected by the substrate lateral mobility. These results show that lateral mobility is an important, although not fully explored aspect of mechano-sensing by cells, and can potentially give new perspectives on cell-ECM interactions. National Science Foundation

  20. Electric versus hydraulics versus pneumatics

    SciTech Connect

    Not Available

    1985-01-01

    This book presents a collection of papers from a conference which considered the advantages and disadvantages of electric, hydraulic and pneumatic drives and actuators. The volume follows on the success of the 1983 conference on electric and hydraulic drives. Topics considered include fork lift trucks - an ideal application for regenerative transmissions; a hybrid-electric power system with hydrostatic transmission; electrics and hydraulics on roadheader machinery; hydraulic, electrical, pneumatic control - which way to go. an electrically-powered servo to drive the two axes of a missile launching platform - pros and cons when compared with the traditional hydraulic solution; the encapsulation of a novel intrinsically safe displacement transducer; mobile cryogenic pumping systems; automation of a wood-turning machine, hydraulic or electric. The choice of a servo motor for a specific application; developments in the design and control of pneumatic linear actuators; compressed air purification for instrumentation in the high technology industries; trends in prime mover choice for powered hand tools; and choosing the drive system for the right application.

  1. Iron diffusion from first principles calculations

    NASA Astrophysics Data System (ADS)

    Wann, E.; Ammann, M. W.; Vocadlo, L.; Wood, I. G.; Lord, O. T.; Brodholt, J. P.; Dobson, D. P.

    2013-12-01

    Research 116, B04307 (2011). 3. Buffett, B. A. Onset and orientation of convection in the inner core. Geophysical Journal International 179, 711-719 (2009). 4. Bergman, M. Measurements of electric anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature 389, 60-63 (1997). 5. Deguen, R. & Cardin, P. Thermochemical convection in Earth's inner core. Geophysical Journal International 187, 1101-1118 (2011). 6. Reaman, D. M., Daehn, G. S. & Panero, W. R. Predictive mechanism for anisotropy development in the Earth's inner core. Earth and Planetary Science Letters 312, 437-442 (2011). 7. Ammann, M. W., Brodholt, J. P., Wookey, J. & Dobson, D. P. First-principles constraints on diffusion in lower-mantle minerals and a weak D'' layer. Nature 465, 462-5 (2010).

  2. Cell mobility after endocytosis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pirbhai, Massooma; Flores, Thomas; Jedlicka, Sabrina; Rotkin, Slava

    2013-03-01

    Directed cell movement plays a crucial role in cellular behaviors such as neuronal cell division, cell migration, and cell differentiation. There is evidence in preclinical in vivo studies that small fields have successfully been used to enhance regrowth of damages spinal cord axons but with a small success rate. Fortunately, the evolution of functional biomaterials and nanotechnology may provide promising solutions for enhancing the application of electric fields in guiding neuron migration and neurogenesis within the central nervous system. In this work, we studied how endocytosis and subsequent retention of carbon nanotubes affects the mobility of cells under the influence of an electric field, including the directed cell movement.

  3. Large photocurrents in single layer graphene thin films: effects of diffusion and drift

    NASA Astrophysics Data System (ADS)

    Loomis, James; Panchapakesan, Balaji

    2012-07-01

    This paper reports large photocurrents in air-assisted depositions of single layer graphene (derived from reduced single layer graphene oxide) upon illumination with near-infrared (NIR) light. NIR-induced charge carrier generation and subsequent separation at the metal-graphene interface resulted in photocurrent generation. Varying bias voltages were applied to test samples and allowed for evaluating photoresponses in either diffusion- or drift-dominated regions. In the diffusion-dominated region, position-dependent effects of photoconductivity were demonstrated. The photocurrent exhibited increase when the positive electrode was illuminated, decrease when the negative electrode was illuminated, and negligible response when the area between the electrodes was illuminated. At a 100 μV bias voltage, a per cent change in current from ˜150% (40 mW NIR) to ˜1800% (335 mW NIR) is reported. Such large photocurrent responses result from built-in electric fields and optically generated temperature gradients (maximum NIR-induced temperature rise ˜70 °C). The per cent photocurrent change was observed to depend on both annealing temperature and NIR power, but not resistance value. In the drift-dominated realm, a Gaussian photocurrent profile was obtained, signaling drift of charge carriers with increase in localized electric field, akin to the classic Haynes-Shockley experiment. A minority carrier mobility value of μ ˜ 700 cm2 V -1 s-1 is reported. The simple low cost graphene devices presented in this paper were fabricated without lithographic processing and are ideal candidates for assorted infrared imaging applications.

  4. Large photocurrents in single layer graphene thin films: effects of diffusion and drift.

    PubMed

    Loomis, James; Panchapakesan, Balaji

    2012-07-05

    This paper reports large photocurrents in air-assisted depositions of single layer graphene (derived from reduced single layer graphene oxide) upon illumination with near-infrared (NIR) light. NIR-induced charge carrier generation and subsequent separation at the metal-graphene interface resulted in photocurrent generation. Varying bias voltages were applied to test samples and allowed for evaluating photoresponses in either diffusion- or drift-dominated regions. In the diffusion-dominated region, position-dependent effects of photoconductivity were demonstrated. The photocurrent exhibited increase when the positive electrode was illuminated, decrease when the negative electrode was illuminated, and negligible response when the area between the electrodes was illuminated. At a 100 μV bias voltage, a per cent change in current from ∼150% (40 mW NIR) to ∼1800% (335 mW NIR) is reported. Such large photocurrent responses result from built-in electric fields and optically generated temperature gradients (maximum NIR-induced temperature rise ∼70 °C). The per cent photocurrent change was observed to depend on both annealing temperature and NIR power, but not resistance value. In the drift-dominated realm, a Gaussian photocurrent profile was obtained, signaling drift of charge carriers with increase in localized electric field, akin to the classic Haynes-Shockley experiment. A minority carrier mobility value of μ ∼700 cm² V⁻¹ s⁻¹ is reported. The simple low cost graphene devices presented in this paper were fabricated without lithographic processing and are ideal candidates for assorted infrared imaging applications.

  5. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Various Recipes of SiNx Passivated AlGaN/GaN High Electron Mobility Transistors in Correlation with Current Slump

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Hao, Yue; Ma, Xiao-Hua; Quan, Si; Hu, Gui-Zhou; Jiang, Shou-Gao; Yang, Li-Yuan

    2009-11-01

    The current slump of different recipes of SiNx passivated AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. The dc and pulsed current-voltage curves of AlGaN/GaN HEMTs using different recipes are analyzed. It is found that passivation leakage has a strong relationship with NH3 flow in the plasma-enhanced chemical vapor phase deposition process, which has impacted on the current collapse of SiNx passivated devices. We analyze the pulsed IDS - VDS characteristics of different recipes of SiNx passivation devices for different combinations of gate and drain quiescent biases (VGS0, VDS0) of (0, 0), (-6, 0), (-6, 15) and (0, 15)V. The possible mechanisms are the traps in SiNx passivation capturing the electrons and the surface states at the SiNx/AlGaN interface, which can affect the channel of two-dimensional electron gas and cause the current collapse.

  6. Diffusion in natural ilmenite

    NASA Astrophysics Data System (ADS)

    Stenhouse, Iona; O'Neill, Hugh; Lister, Gordon

    2010-05-01

    Diffusion rates in natural ilmenite of composition Fe0.842+ Fe0.163+Mn0.07Mg0.01Ti 0.92O3 from the Vishnevye Mountains (Urals, Russia) have been measured at 1000° C. Experiments were carried out in a one atmosphere furnace with oxygen fugacity controlled by flow of a CO-CO2 gas mixture, over a period of four hours. The diffusant source was a synthetic ilmenite (FeTiO3) powder doped with trace amounts of Mg, Co, Ni, Zr, Hf, V, Nb, Ta, Al, Cr, Ga and Y. Since, the natural ilmenite crystal contained Mn it was also possible to study diffusion of Mn from the ilmenite crystal. The experiments were analysed using the electron microprobe and scanning laser ablation ICP-MS. Diffusion profiles were measured for Al, Mg, Mn, Co, Ni, Ga, and Y. Diffusion of Cr, Hf, Zr, V, Nb and Ta was too slow to allow diffusion profiles to be accurately measured for the times and temperatures studied so far. The preliminary results show that diffusion in ilmenite is fast, with the diffusivity determined in this study on the order of 10-13 to 10-16 m2s-1. For comparison, Chakraborty (1997) found interdiffusion of Fe and Mg in olivine at 1000° C on the order of 10-17 to 10-18m2s-1 and Dieckmann (1998) found diffusivity of Fe, Mg, Co in magnetite at 1200° C to be on the order of 10-13 to 10-14 m2s-1. The order in which the diffusivity of the elements decreases is Mn > Co > Mg ≥ Ni > Al ≥ Y ≥ Ga, that is to say that Mn diffuses the fastest and Ga the slowest. Overall, this study intends to determine diffusion parameters such as frequency factor, activation energy and activation volume as a function of temperature and oxygen fugacity. This research is taking place in the context of a larger study focusing on the use of the garnet-ilmenite system as a geospeedometer. Examination of the consequences of simultaneous diffusion of multiple elements is a necessity if we are to develop an understanding of the crystal-chemical controls on diffusion (cf Spandler & O'Neill, in press). Chakraborty

  7. ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES FOR IRON PRIOR TO FILLING MOBILE LADLES. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  8. Anomalous surface diffusion of protons on lipid membranes.

    PubMed

    Wolf, Maarten G; Grubmüller, Helmut; Groenhof, Gerrit

    2014-07-01

    The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of -13.0 ± 0.5 kJ mol(-1). The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery.

  9. A computational kinetic model of diffusion for molecular systems

    NASA Astrophysics Data System (ADS)

    Teo, Ivan; Schulten, Klaus

    2013-09-01

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  10. Modeling diffusion and adsorption in compacted bentonite: a critical review

    NASA Astrophysics Data System (ADS)

    Bourg, Ian C.; Bourg, Alain C. M.; Sposito, Garrison

    2003-03-01

    The current way of describing diffusive transport through compacted clays is a simple diffusion model coupled to a linear adsorption coefficient ( Kd). To fit the observed results of cation diffusion, this model is usually extended with an adjustable "surface diffusion" coefficient. Description of the negative adsorption of anions calls for a further adjustment through the use of an "effective porosity". The final model thus includes many fitting parameters. This is inconvenient where predictive modeling is called for (e.g., for waste confinement using compacted clay liners). The diffusion/adsorption models in current use have been derived from the common hydrogeological equation of advection/dispersion/adsorption. However, certain simplifications were also borrowed without questioning their applicability to the case of compacted clays. Among these simplifications, the assumption that the volume of the adsorbed phase is negligible should be discussed. We propose a modified diffusion/adsorption model that accounts for the volume of the adsorbed phase. It suggests that diffusion through highly compacted clay takes place through the interlayers (i.e., in the adsorbed phase). Quantitative prediction of the diffusive flux will necessitate more detailed descriptions of surface reactivity and of the mobility of interlayer species.

  11. A computational kinetic model of diffusion for molecular systems

    PubMed Central

    Teo, Ivan; Schulten, Klaus

    2013-01-01

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10–100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS. PMID:24089741

  12. Stackable differential mobility analyzer for aerosol measurement

    DOEpatents

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  13. M558 radioactive tracer diffusion. [diffusion coefficients of Zn-65 in liquid zinc under weightlessness conditions

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1974-01-01

    This experiment was performed in Skylab 3 with two objectives in mind. First, the experimental self-diffusion coefficients for liquid zinc were to be determined in a convection-free environment. Secondly the reduction in convective mixing in earth gravity by going into the zero-gravity environment of space was to be estimated. The experiment was designed to utilize high temperatures and linear thermal gradients provided by the M518 Multipurpose Electric Furnace, and the radioactivity of zinc-65 of 245-day half-life to investigate self-diffusion in liquid zinc. The distribution of zinc-65 tracer, after melting, maintaining at soak temperature for 1 hour of soak time and then resolidifying, was obtained by sample sectioning. The concentration of activity of each section (microcurie-gram) was plotted against positions along the sample axial and radial position. Experimental data and theoretical results from solution of Fick's law of diffusion in one dimensional were compared. Samples tested on earth showed very rapid diffusion. Diffusion coefficient in unit gravity was 50 times the zero-gravity diffusion coefficient of Skylab.

  14. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  15. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  16. Development of an advanced mobile base for personal mobility and manipulation appliance generation II robotic wheelchair

    PubMed Central

    Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.

    2013-01-01

    Background This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. Findings The mobile base of PerMMA Gen II has two operating modes: “advanced driving mode” on flat and uneven terrain, and “automatic climbing mode” during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Conclusion Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests. PMID:23820149

  17. Local electric fields in optical glasses during field-assisted ionic exchanges

    NASA Astrophysics Data System (ADS)

    Lupascu, Alexandru I.; Kevorkian, Antoine P.; Cristescu, Constantin P.; Popescu, Ion M.

    2000-02-01

    We study the phenomena connected with high concentration of incoming ions emerging during field-assisted migration in otpical glass. We find that ion dynamics are very different at concentrations higher and lower than a certain parameter called the transition concentration. To explain anomalies at high ionic concentrations, we introduce a supplementary local electric field. This field opposes to the field E0 existing in the glass at all concentrations of incoming ions and is connected with a local space charge. We investigate its dependence on concentration and on E0. These effects are studied using a model with concentration-dependent diffusion coefficients and mobilities. We present a method to obtain the concentration dependence of the relevant quantities. Theoretical curves are compared with experimental results measured in usual silicate glasses, during Ag+-Na+ exchanges.

  18. Electrical conductivity, optical property and ammonia sensing studies on HCl Doped Au@polyaniline nanocomposites

    NASA Astrophysics Data System (ADS)

    Hasan, Mudassir; Ansari, Mohd Omaish; Cho, Moo Hwan; Lee, Moonyong

    2015-01-01

    This paper reports the synthesis of HCl-doped Au@polyaniline (Pani) nanocomposite fibers by the in situ oxidative polymerization of aniline in the presence of gold nanoparticles. Thus prepared nanocomposite fibers were characterized by SEM, TEM, XRD, Raman spectroscopy, XPS, UV-visible diffused reflectance spectroscopy, TGA, and DSC. The Au@Pani nanocomposite fibers showed superior DC electrical conductivity to HCl-doped Pani, which might be due to the increased mobility of the charge carriers after the incorporation of gold nanoparticle in Pani. Au@Pani also exhibited a better ammonia sensing and recovery response than Pani, which might be due to the increase in the surface area of Pani after the incorporation of gold nanoparticles.

  19. Recent trends in assistive technology for mobility.

    PubMed

    Cowan, Rachel E; Fregly, Benjamin J; Boninger, Michael L; Chan, Leighton; Rodgers, Mary M; Reinkensmeyer, David J

    2012-04-20

    Loss of physical mobility makes maximal participation in desired activities more difficult and in the worst case fully prevents participation. This paper surveys recent work in assistive technology to improve mobility for persons with a disability, drawing on examples observed during a tour of academic and industrial research sites in Europe. The underlying theme of this recent work is a more seamless integration of the capabilities of the user and the assistive technology. This improved integration spans diverse technologies, including powered wheelchairs, prosthetic limbs, functional electrical stimulation, and wearable exoskeletons. Improved integration is being accomplished in three ways: 1) improving the assistive technology mechanics; 2) improving the user-technology physical interface; and 3) sharing of control between the user and the technology. We provide an overview of these improvements in user-technology integration and discuss whether such improvements have the potential to be transformative for people with mobility impairments.

  20. Recent trends in assistive technology for mobility

    PubMed Central

    2012-01-01

    Loss of physical mobility makes maximal participation in desired activities more difficult and in the worst case fully prevents participation. This paper surveys recent work in assistive technology to improve mobility for persons with a disability, drawing on examples observed during a tour of academic and industrial research sites in Europe. The underlying theme of this recent work is a more seamless integration of the capabilities of the user and the assistive technology. This improved integration spans diverse technologies, including powered wheelchairs, prosthetic limbs, functional electrical stimulation, and wearable exoskeletons. Improved integration is being accomplished in three ways: 1) improving the assistive technology mechanics; 2) improving the user-technology physical interface; and 3) sharing of control between the user and the technology. We provide an overview of these improvements in user-technology integration and discuss whether such improvements have the potential to be transformative for people with mobility impairments. PMID:22520500

  1. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  2. Evaluation of factors affecting diffusion in compacted bentonite

    SciTech Connect

    Lehikoinen, J.; Carlsson, T.; Muurinen, A.; Olin, M.; Salonen, P.

    1996-08-01

    The information available from the open literature and studies on exclusion, sorption and diffusion mechanisms of ionic and neutral species in bentonite has been compiled and re-examined in relation to the microstructure of bentonite. The emphasis is placed on a more thorough understanding of the diffusion processes taking place in compacted bentonite. Despite the scarcity of experiments performed with neutral diffusants, these imply that virtually all the pores in compacted bentonite are accessible to neutral species. Anion exclusion, induced by the overlap of electrical double layers, may render the accessible porosity for anions considerably less than the porosity obtained from the water content of the clay. On the basis of the compiled data, it is highly probable that surface diffusion plays a significant role in the transport of cations in bentonite clays. Moreover, easily soluble compounds in bentonite can affect the ionic strength of porewater and, consequently, exclusion, equilibrium between cations, and surface diffusion.

  3. SOFCo mobile planar solid oxide generator

    SciTech Connect

    Khandkar, A.C.; Privette, R.M.

    1995-08-01

    This paper presents results from the first phase of a three phase, four-year program with the objective of designing and demonstrating a 10 kW mobile electric power generator operating on logistic fuel. Objectives of the first phase include: the development of a preliminary system design, an assessment of technologies critical to system performance, and the fabrication of three multi-stack test units.

  4. Industrial Mobilization: The Relevant History. Revised

    DTIC Science & Technology

    1983-01-01

    8 3 By 1953, then, Henry H. Fowler, the Director of Defense Mobl - lization had ident!fled four major mobilization jobs remaining to be done. The...electric, power, and certain vital nonferrous minerals. There were good reasons for this decision. First, the technology of Eli modern warfare requires vast...essential in high-temperature al- loy steel. Nickel, tungsten, molybdenum, and cobalt became in- creasingly important as military technology moved toward

  5. Assessing reliable human mobility patterns from higher order memory in mobile communications.

    PubMed

    Matamalas, Joan T; De Domenico, Manlio; Arenas, Alex

    2016-08-01

    Understanding how people move within a geographical area, e.g. a city, a country or the whole world, is fundamental in several applications, from predicting the spatio-temporal evolution of an epidemic to inferring migration patterns. Mobile phone records provide an excellent proxy of human mobility, showing that movements exhibit a high level of memory. However, the precise role of memory in widely adopted proxies of mobility, as mobile phone records, is unknown. Here we use 560 million call detail records from Senegal to show that standard Markovian approaches, including higher order ones, fail in capturing real mobility patterns and introduce spurious movements never observed in reality. We introduce an adaptive memory-driven approach to overcome such issues. At variance with Markovian models, it is able to realistically model conditional waiting times, i.e. the probability to stay in a specific area depending on individuals' historical movements. Our results demonstrate that in standard mobility models the individuals tend to diffuse faster than observed in reality, whereas the predictions of the adaptive memory approach significantly agree with observations. We show that, as a consequence, the incidence and the geographical spread of a disease could be inadequately estimated when standard approaches are used, with crucial implications on resources deployment and policy-making during an epidemic outbreak.

  6. New Chorus Diffusion Matrix

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard, Angelica; Maget, Vincent

    2013-04-01

    Whistler mode chorus waves play a major role in the loss and acceleration of electrons in the Earth's radiation belts. While high time resolution satellite data show that these waves are highly structured in frequency and time, at present their effects on the electron distribution can only be assessed on a global scale by using quasi-linear diffusion theory. Here we present new quasi-linear diffusion coefficients for upper and lower band chorus waves for use in global radiation belt models. Using data from DE 1 CRRES, Cluster 1, Double Star TC1 and THEMIS, we have constructed a database of wave properties and used this to construct new diffusion coefficients for L* = 1.5 to 10 in steps of 0.5, 10 latitude bins between 0o and 60o ,8 bins in MLT and 5 levels of geomagnetic activity as measured by Kp. We find that the peak frequency of lower band chorus is close to 0.2 fce, which is lower than that used in previous models. The combined upper and lower band chorus diffusion shows structure that should result in an energy dependent pitch angle anisotropy, particularly between 1 keV and 100 keV. The diffusion rates suggest that wave-particle interactions should still be very important outside geostationary orbit, out to at least L* = 8. We find significant energy diffusion near 1 keV near the loss cone, consistent with wave growth. By including the new chorus diffusion matrix into the BAS radiation belt (BRB) model we compare the effects on the evolution of the radiation belts against previous models.

  7. ACTS mobile SATCOM experiments

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Frye, Robert E.; Jedrey, Thomas C.

    1993-01-01

    Over the last decade, the demand for reliable mobile satellite communications (satcom) for voice, data, and video applications has increased dramatically. As consumer demand grows, the current spectrum allocation at L-band could become saturated. For this reason, NASA and the Jet Propulsion Laboratory are developing the Advanced Communications Technology Satellites (ACTS) mobile terminal (AMT) and are evaluating the feasibility of K/Ka-band (20/30 GHz) mobile satcom to meet these growing needs. U.S. industry and government, acting as co-partners, will evaluate K/Ka-band mobile satcom and develop new technologies by conducting a series of applications-oriented experiments. The ACTS and the AMT testbed will be used to conduct these mobile satcom experiments. The goals of the ACTS Mobile Experiments Program and the individual experiment configurations and objectives are further presented.

  8. Mobile learning in medicine

    NASA Astrophysics Data System (ADS)

    Serkan Güllüoüǧlu, Sabri

    2013-03-01

    This paper outlines the main infrastructure for implicating mobile learning in medicine and present a sample mobile learning application for medical learning within the framework of mobile learning systems. Mobile technology is developing nowadays. In this case it will be useful to develop different learning environments using these innovations in internet based distance education. M-learning makes the most of being on location, providing immediate access, being connected, and acknowledges learning that occurs beyond formal learning settings, in places such as the workplace, home, and outdoors. Central to m-learning is the principle that it is the learner who is mobile rather than the device used to deliver m learning. The integration of mobile technologies into training has made learning more accessible and portable. Mobile technologies make it possible for a learner to have access to a computer and subsequently learning material and activities; at any time and in any place. Mobile devices can include: mobile phone, personal digital assistants (PDAs), personal digital media players (eg iPods, MP3 players), portable digital media players, portable digital multimedia players. Mobile learning (m-learning) is particularly important in medical education, and the major users of mobile devices are in the field of medicine. The contexts and environment in which learning occurs necessitates m-learning. Medical students are placed in hospital/clinical settings very early in training and require access to course information and to record and reflect on their experiences while on the move. As a result of this paper, this paper strives to compare and contrast mobile learning with normal learning in medicine from various perspectives and give insights and advises into the essential characteristics of both for sustaining medical education.

  9. Mobile computing for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Sharma, Arjun; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Kung, Justin W; Loehfelm, Thomas W; Sherry, Steven J

    2013-12-01

    The rapid advances in mobile computing technology have the potential to change the way radiology and medicine as a whole are practiced. Several mobile computing advances have not yet found application to the practice of radiology, while others have already been applied to radiology but are not in widespread clinical use. This review addresses several areas where radiology and medicine in general may benefit from adoption of the latest mobile computing technologies and speculates on potential future applications.

  10. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  11. Dynamic assembly of DNA and polylysine mediated by electric energy.

    PubMed

    Niu, Lin; Yang, Xuyan; Zhu, Xiaocui; Yin, Yudan; Qu, Wei; Zhou, Jihan; Zhao, Meiping; Liang, Dehai

    2015-01-28

    Under an electric field, the complexes formed by DNA and polylysine exhibit novel features, such as selective merging of particles, ejecting of daughter vehicles, and differentiation of particles of varying mobility. The mobility of the complex could be three times faster than that of free DNA.

  12. Electrical power technology for robotic planetary rovers

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  13. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue

    PubMed Central

    Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H.; Andreassen, Ole A.

    2016-01-01

    Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental

  14. The Electron Diffusion Region: Forces and Currents

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.

  15. The Electron Diffusion Region: Forces and Currents

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2008-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertia1 effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.

  16. Exploring the mobility of mobile phone users

    NASA Astrophysics Data System (ADS)

    Csáji, Balázs Cs.; Browet, Arnaud; Traag, V. A.; Delvenne, Jean-Charles; Huens, Etienne; Van Dooren, Paul; Smoreda, Zbigniew; Blondel, Vincent D.

    2013-03-01

    Mobile phone datasets allow for the analysis of human behavior on an unprecedented scale. The social network, temporal dynamics and mobile behavior of mobile phone users have often been analyzed independently from each other using mobile phone datasets. In this article, we explore the connections between various features of human behavior extracted from a large mobile phone dataset. Our observations are based on the analysis of communication data of 100,000 anonymized and randomly chosen individuals in a dataset of communications in Portugal. We show that clustering and principal component analysis allow for a significant dimension reduction with limited loss of information. The most important features are related to geographical location. In particular, we observe that most people spend most of their time at only a few locations. With the help of clustering methods, we then robustly identify home and office locations and compare the results with official census data. Finally, we analyze the geographic spread of users’ frequent locations and show that commuting distances can be reasonably well explained by a gravity model.

  17. Doctors going mobile.

    PubMed

    Romano, Ron; Baum, Neil

    2014-01-01

    Having a Web page and a blog site are the minimum requirements for an Internet presence in the new millennium. However, a Web page that loads on a personal computer or a laptop will be ineffective on a mobile or cellular phone. Today, with more existing and potential patients having access to cellular technology, it is necessary to reconfigure the appearance of your Web site that appears on a mobile phone. This article discusses mobile computing and suggestions for improving the appearance of your Web site on a mobile or cellular phone.

  18. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  19. Primary diffuse leptomeningeal gliosarcomatosis.

    PubMed

    Moon, Ju Hyung; Kim, Se Hoon; Kim, Eui Hyun; Kang, Seok-Gu; Chang, Jong Hee

    2015-04-01

    Primary diffuse leptomeningeal gliomatosis (PDLG) is a rare condition with a fatal outcome, characterized by diffuse infiltration of the leptomeninges by neoplastic glial cells without evidence of primary tumor in the brain or spinal cord parenchyma. In particular, PDLG histologically diagnosed as gliosarcoma is extremely rare, with only 2 cases reported to date. We report a case of primary diffuse leptomeningeal gliosarcomatosis. A 68-year-old man presented with fever, chilling, headache, and a brief episode of mental deterioration. Initial T1-weighted post-contrast brain magnetic resonance imaging (MRI) showed diffuse leptomeningeal enhancement without a definite intraparenchymal lesion. Based on clinical and imaging findings, antiviral treatment was initiated. Despite the treatment, the patient's neurologic symptoms and mental status progressively deteriorated and follow-up MRI showed rapid progression of the disease. A meningeal biopsy revealed gliosarcoma and was conclusive for the diagnosis of primary diffuse leptomeningeal gliosarcomatosis. We suggest the inclusion of PDLG in the potential differential diagnosis of patients who present with nonspecific neurologic symptoms in the presence of leptomeningeal involvement on MRI.

  20. Multidimensional diffusion MRI

    NASA Astrophysics Data System (ADS)

    Topgaard, Daniel

    2017-02-01

    Principles from multidimensional NMR spectroscopy, and in particular solid-state NMR, have recently been transferred to the field of diffusion MRI, offering non-invasive characterization of heterogeneous anisotropic materials, such as the human brain, at an unprecedented level of detail. Here we revisit the basic physics of solid-state NMR and diffusion MRI to pinpoint the origin of the somewhat unexpected analogy between the two fields, and provide an overview of current diffusion MRI acquisition protocols and data analysis methods to quantify the composition of heterogeneous materials in terms of diffusion tensor distributions with size, shape, and orientation dimensions. While the most advanced methods allow estimation of the complete multidimensional distributions, simpler methods focus on various projections onto lower-dimensional spaces as well as determination of means and variances rather than actual distributions. Even the less advanced methods provide simple and intuitive scalar parameters that are directly related to microstructural features that can be observed in optical microscopy images, e.g. average cell eccentricity, variance of cell density, and orientational order - properties that are inextricably entangled in conventional diffusion MRI. Key to disentangling all these microstructural features is MRI signal acquisition combining isotropic and directional dimensions, just as in the field of multidimensional solid-state NMR from which most of the ideas for the new methods are derived.

  1. Diffuser for wellhead isolation tool

    SciTech Connect

    Surjaatmadja, J.B.

    1981-04-21

    An improved diffuser for a wellhead isolation tool which employs a combination of angles in its bore. This improvement reduces the incidence of erosion caused by the flow of fluids through the diffuser, in both the well production tubing adjacent the end of the diffuser and in the diffuser itself.

  2. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  3. On the Use of Human Mobility Proxies for Modeling Epidemics

    PubMed Central

    Tizzoni, Michele; Bajardi, Paolo; Decuyper, Adeline; Kon Kam King, Guillaume; Schneider, Christian M.; Blondel, Vincent; Smoreda, Zbigniew; González, Marta C.; Colizza, Vittoria

    2014-01-01

    Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control, but may be hindered by data incompleteness or unavailability. Here we explore the opportunity of using proxies for individual mobility to describe commuting flows and predict the diffusion of an influenza-like-illness epidemic. We consider three European countries and the corresponding commuting networks at different resolution scales, obtained from (i) official census surveys, (ii) proxy mobility data extracted from mobile phone call records, and (iii) the radiation model calibrated with census data. Metapopulation models defined on these countries and integrating the different mobility layers are compared in terms of epidemic observables. We show that commuting networks from mobile phone data capture the empirical commuting patterns well, accounting for more than 87% of the total fluxes. The distributions of commuting fluxes per link from mobile phones and census sources are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is observed. This leads to epidemics that spread faster than on census commuting networks, once the mobile phone commuting network is considered in the epidemic model, however preserving to a high degree the order of infection of newly affected locations. Proxies' calibration affects the arrival times' agreement across different models, and the observed topological and traffic discrepancies among mobility sources alter the resulting epidemic invasion patterns. Results also suggest that proxies perform differently in approximating commuting patterns for disease spread at different resolution scales, with the radiation model showing higher accuracy than mobile phone data when the seed is central in the network, the opposite being observed for peripheral locations. Proxies should therefore be

  4. On the use of human mobility proxies for modeling epidemics.

    PubMed

    Tizzoni, Michele; Bajardi, Paolo; Decuyper, Adeline; Kon Kam King, Guillaume; Schneider, Christian M; Blondel, Vincent; Smoreda, Zbigniew; González, Marta C; Colizza, Vittoria

    2014-07-01

    Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control, but may be hindered by data incompleteness or unavailability. Here we explore the opportunity of using proxies for individual mobility to describe commuting flows and predict the diffusion of an influenza-like-illness epidemic. We consider three European countries and the corresponding commuting networks at different resolution scales, obtained from (i) official census surveys, (ii) proxy mobility data extracted from mobile phone call records, and (iii) the radiation model calibrated with census data. Metapopulation models defined on these countries and integrating the different mobility layers are compared in terms of epidemic observables. We show that commuting networks from mobile phone data capture the empirical commuting patterns well, accounting for more than 87% of the total fluxes. The distributions of commuting fluxes per link from mobile phones and census sources are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is observed. This leads to epidemics that spread faster than on census commuting networks, once the mobile phone commuting network is considered in the epidemic model, however preserving to a high degree the order of infection of newly affected locations. Proxies' calibration affects the arrival times' agreement across different models, and the observed topological and traffic discrepancies among mobility sources alter the resulting epidemic invasion patterns. Results also suggest that proxies perform differently in approximating commuting patterns for disease spread at different resolution scales, with the radiation model showing higher accuracy than mobile phone data when the seed is central in the network, the opposite being observed for peripheral locations. Proxies should therefore be

  5. Formation of the space charge region in diffusion p- n junctions under high-density current interruption

    NASA Astrophysics Data System (ADS)

    Grekhov, I. V.; Kyuregyan, A. S.

    2005-07-01

    The recovery of diodes with diffusion p- n junctions in the case of high reverse current density j is analyzed. A condition for quasi-neutrality breaking in the diffusion layers with allowance for the dependence of charge carrier mobility μ on electric field strength E is obtained that is valid for a wide range of j. The problem of formation of the space charge region in a circuit with inductance L and resistance R is reduced to a system of two ordinary differential equations. Approximation of a numerical solution to this system makes it possible to derive crude analytical relationships between interrupted current density {ie88-1}, circuit parameters, diode parameters, and parameters of a forming voltage pulse (with amplitude V m and pulse rise time t p). The limiting parameters of a pulser with an inductive energy storage and current interrupter based on diffusion diodes are studied. The critical density of interrupted current {ie88-2} is determined at which the field in the space charge region near the anode reaches breakdown value E b and intense impact ionization by holes begins. The impact ionization decreases the rates of current decay and voltage increase in the space charge region. As a result, at {ie88-3}, t p starts increasing and the overvoltage factor of the pulser decreases. The value of V m corresponding to {ie88-4} is roughly given by {ie88-5}, where m is the number of diodes in the interrupter, ɛ is the permittivity of the semiconductor, {ie88-6} is the saturated drift velocity of holes, and l p is the depth of the p- n junction (diffusion depth). Theoretical predictions are confirmed by exact numerical simulation of the recovery process and qualitatively agree with the available experimental data.

  6. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.

  7. Positron diffusion in Si

    SciTech Connect

    Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.

    1985-06-01

    Positron diffusion in Si(100) and Si(111) has been studied using a variable energy positron beam. The positron diffusion coefficient is found to be D/sub +/ = 2.7 +- 0.3 cm/sup 2//sec using a Makhov-type positron implantation profile, which is demonstrated to fit the data more reliably than the more commonly applied exponential profile. The diffusion related parameter, E/sub 0/, which results from the exponential profile, is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. A drastic reduction in E/sub 0/ is found after annealing the sample at 1300 K, showing that previously reported low values of E/sub 0/ are probably associated with the thermal history of the sample.

  8. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  9. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  10. Surface Modifications by Field Induced Diffusion

    PubMed Central

    Olsen, Martin; Hummelgård, Magnus; Olin, Håkan

    2012-01-01

    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages. PMID:22253894

  11. Transverse Spin Diffusion

    NASA Astrophysics Data System (ADS)

    Mullin, William

    2014-05-01

    Transverse spin diffusion is a relatively new transport coefficient and a review of its history and physical basis will be presented. In NMR spin diffusion is often measured by spin echo techniques, which involve spin currents perpendicular to the direction of the magnetization, in contrast with the usual longitudinal case where the current is parallel to the magnetization. The first indication that this involved new physics was the Leggett-Rice effect (1970) in which spin waves, new spin-echo behavior, and an altered spin diffusion coefficient were predicted in liquid 3He. This effect gave the possibility of the first measurement of F1a, the parameter of the Landau Fermi-liquid theory mean-field responsible for the effect. In 1982 Lhuillier and Laloe found a transport equation very similar to the Leggett equation, but valid for highly-polarized dilute Boltzmann Bose and Fermi gases, and describing the ``identical spin rotation effect'' (ISRE), the analog of a Landau mean field. Coincidentally Bashkin and Meyerovich had also given equivalent descriptions of transport in polarized Boltzmann gases. That a mean-field effect could exists in dilute Boltzmann gases was theoretically surprising, but was confirmed experimentally. At low polarization the basic transverse diffusion constant D⊥ coincides with the longitudinal value D∥ however Meyerovich first pointed out that they could differ in highly polarized degenerate gases. Indeed detailed calculations (Jeon and Mullin) showed that, while D∥ is proportional to T-2, D⊥ approaches a constant (depending on polarization) at low T. Considerable controversy existed until experimental verification was achieved in 2004. The importance of ISRE again arose in 2008 as the basis of ``anomalous spin-state segregation'' in Duke and JILA experiments. More recently application of the ideas of transverse spin diffusion to strongly interacting Fermi gases has resulted in the observation of the diffusion constants at the quantum

  12. [Microbial diffusion and antibiotherapy].

    PubMed

    Vilain, R

    1982-01-01

    Cleaning leg ulcers depends on tissular and microbial enzymes, the production of which depends on good vascularization. When an aetiological treatment is started, the microbes ensure sufficient cleaning, leading to granulation and epidermization. Antibiotherapy is pointless. Sometimes it can be detrimental, replacing a natural growth with alien strains which cause diffusion. Very exceptionally, a short course of antibiotherapy may be necessary to cope with signs of diffusion, usually signifying a Group A streptococcal infection, with seasonal recrudescence. The Blue Pus Microbe has no special pathological significance. It merely indicates that the case has become chronic.

  13. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    PubMed

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  14. Electrically powered hand tool

    DOEpatents

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  15. Diffusion coefficients in gravel under unsaturated conditions

    SciTech Connect

    Conca, J.L.; Wright, J. )

    1990-05-01

    Diffusion coefficients were experimentally determined in unsaturated gravel to evaluate the effectiveness of gravel as a diffusion barrier to ionic transport in the vadose zone. Water contents were fixed by use of an ultracentrifuge with an ultralow constant rate flow pump supplying solution to the sample via a rotating seal. Once the gravel was at hydraulic steady state, the electrical conductivity was measured, and the diffusion coefficient calculated using the Nernst-Einstein equation. Diffusion coefficient values for potassium ion (D{sub e}) in four types of angular gravel ranged from 1.7 {times} 10{sup {minus}11} m{sup 2}/s (1.7 {times} 10{sup {minus}7} cm{sup 2}/s) for a 6.3-9.5 mm angular granitic gravel at a volumetric water content of 5.5% to 2.2 {times} 10{sup {minus}14} m{sup 2}/s (2.2 {times} 10{sup {minus}10} cm{sup 2}/s) in a 4.0-6.3 mm quartzite gravel at a volumetric water content of 0.47%. Variations in D{sub e} values resulted primarily from differences in water content which depends on gravel type and particle size.

  16. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A

  17. High-temperature tensile deformation behavior of aluminum oxide with and without an applied electric field

    NASA Astrophysics Data System (ADS)

    Campbell, James

    1998-12-01

    MPa. Therefore, grain boundary sliding was likely accommodated by a different diffusion mechanism, namely subboundary or grain boundary diffusion. It is concluded that electro-transport, where there is mass transport of the most mobile ionic species (Al3+), enhanced the deformation rate and induced swelling through the formation of oxygen gas at the Al-depleted grain boundaries. The electric field changed the microstructural and mechanical properties of aluminum oxide, although not in a fashion which enhanced its overall deformation behavior.

  18. Mobile Goes Mainstream

    ERIC Educational Resources Information Center

    Eisele-Dyrli, Kurt

    2011-01-01

    Mobile learning--the use of mobile devices for educational purposes by students--is rapidly moving from an experimental initiative by a few innovative districts over the last five years to a broadly accepted concept in K12. The latest research and surveys, results of pilot programs, and analysis of trends in both public education and the broader…

  19. Mobile Christian - shuttle flight

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Erin Whittle, 14, (seated) and Brianna Johnson, 14, look on as Louis Stork, 13, attempts a simulated landing of a space shuttle at StenniSphere. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

  20. Mobile Learning Anytime, Anywhere

    ERIC Educational Resources Information Center

    Hlodan, Oksana

    2010-01-01

    Some educational institutions are taking the leap to mobile learning (m-learning) by giving out free iPods. For example, Abilene Christian University gave iPods or iPhones to freshman students and developed 15 Web applications specifically for the mobile devices. The iPod is not the only ubiquitous m-learning device. Any technology that connects…