Sample records for diffusion limited cluster

  1. ATCA observations of the MACS-Planck Radio Halo Cluster Project. II. Radio observations of an intermediate redshift cluster sample

    NASA Astrophysics Data System (ADS)

    Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.

    2018-04-01

    Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94

  2. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  3. Diffusion-limited aggregation in two dimensions

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.

    1985-03-01

    We have studied the aggregation of silica microspheres confined to two dimensions at an air-water interface. Under microscopic observation, both monomers and clusters are seen to aggregate by a diffusion-limited process. The clusters' fractal dimension is 1.20+/-0.15, smaller than values obtained from current models of aggregation. We propose that anisotropic repulsive interactions account for the low dimensionality by more effectively repelling particles from the side of an existing dendrite than from the end.

  4. Lattice animals in diffusion limited binary colloidal system

    NASA Astrophysics Data System (ADS)

    Shireen, Zakiya; Babu, Sujin B.

    2017-08-01

    In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.

  5. Effects of stomata clustering on leaf gas exchange.

    PubMed

    Lehmann, Peter; Or, Dani

    2015-09-01

    A general theoretical framework for quantifying the stomatal clustering effects on leaf gaseous diffusive conductance was developed and tested. The theory accounts for stomatal spacing and interactions among 'gaseous concentration shells'. The theory was tested using the unique measurements of Dow et al. (2014) that have shown lower leaf diffusive conductance for a genotype of Arabidopsis thaliana with clustered stomata relative to uniformly distributed stomata of similar size and density. The model accounts for gaseous diffusion: through stomatal pores; via concentration shells forming at pore apertures that vary with stomata spacing and are thus altered by clustering; and across the adjacent air boundary layer. Analytical approximations were derived and validated using a numerical model for 3D diffusion equation. Stomata clustering increases the interactions among concentration shells resulting in larger diffusive resistance that may reduce fluxes by 5-15%. A similar reduction in conductance was found for clusters formed by networks of veins. The study resolves ambiguities found in the literature concerning stomata end-corrections and stomatal shape, and provides a new stomata density threshold for diffusive interactions of overlapping vapor shells. The predicted reduction in gaseous exchange due to clustering, suggests that guard cell function is impaired, limiting stomatal aperture opening. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics

    NASA Astrophysics Data System (ADS)

    Beatrici, Carine P.; de Almeida, Rita M. C.; Brunnet, Leonardo G.

    2017-03-01

    Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td /d +2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.

  7. Formation and structure of stable aggregates in binary diffusion-limited cluster-cluster aggregation processes

    NASA Astrophysics Data System (ADS)

    López-López, J. M.; Moncho-Jordá, A.; Schmitt, A.; Hidalgo-Álvarez, R.

    2005-09-01

    Binary diffusion-limited cluster-cluster aggregation processes are studied as a function of the relative concentration of the two species. Both, short and long time behaviors are investigated by means of three-dimensional off-lattice Brownian Dynamics simulations. At short aggregation times, the validity of the Hogg-Healy-Fuerstenau approximation is shown. At long times, a single large cluster containing all initial particles is found to be formed when the relative concentration of the minority particles lies above a critical value. Below that value, stable aggregates remain in the system. These stable aggregates are composed by a few minority particles that are highly covered by majority ones. Our off-lattice simulations reveal a value of approximately 0.15 for the critical relative concentration. A qualitative explanation scheme for the formation and growth of the stable aggregates is developed. The simulations also explain the phenomenon of monomer discrimination that was observed recently in single cluster light scattering experiments.

  8. Green-noise halftoning with dot diffusion

    NASA Astrophysics Data System (ADS)

    Lippens, Stefaan; Philips, Wilfried

    2007-02-01

    Dot diffusion is a halftoning technique that is based on the traditional error diffusion concept, but offers a high degree of parallel processing by its block based approach. Traditional dot diffusion however suffers from periodicity artifacts. To limit the visibility of these artifacts, we propose grid diffusion, which applies different class matrices for different blocks. Furthermore, in this paper we will discuss two approaches in the dot diffusion framework to generate green-noise halftone patterns. The first approach is based on output dependent feedback (hysteresis), analogous to the standard green-noise error diffusion techniques. We observe that the resulting halftones are rather coarse and highly dependent on the used dot diffusion class matrices. In the second approach we don't limit the diffusion to the nearest neighbors. This leads to less coarse halftones, compared to the first approach. The drawback is that it can only cope with rather limited cluster sizes. We can reduce these drawbacks by combining the two approaches.

  9. Time scales of transient enhanced diffusion: Free and clustered interstitials

    NASA Astrophysics Data System (ADS)

    Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.

    1996-12-01

    Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.

  10. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  11. Metalloid Aluminum Clusters with Fluorine

    DTIC Science & Technology

    2016-12-01

    molecular dynamics, binding energy , siesta code, density of states, projected density of states 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY...high energy density compared to explosives, but typically release this energy slowly via diffusion-limited combustion. There is recent interest in using...examine the cluster binding energy and electronic structure. Partial fluorine substitution in a prototypical aluminum-cyclopentadienyl cluster results

  12. Reaction Rate of Small Diffusing Molecules on a Cylindrical Membrane

    NASA Astrophysics Data System (ADS)

    Straube, Ronny; Ward, Michael J.; Falcke, Martin

    2007-10-01

    Biomembranes consist of a lipid bi-layer into which proteins are embedded to fulfill numerous tasks in localized regions of the membrane. Often, the proteins have to reach these regions by simple diffusion. Motivated by the observation that IP3 receptor channels (IP3R) form clusters on the surface of the endoplasmic reticulum (ER) during ATP-induced calcium release, the reaction rate of small diffusing molecules on a cylindrical membrane is calculated based on the Smoluchowski approach. In this way, the cylindrical topology of the tubular ER is explicitly taken into account. The problem can be reduced to the solution of the diffusion equation on a finite cylindrical surface containing a small absorbing hole. The solution is constructed by matching appropriate `inner' and `outer' asymptotic expansions. The asymptotic results are compared with those from numerical simulations and excellent agreement is obtained. For realistic parameter sets, we find reaction rates in the range of experimentally measured clustering rates of IP3R. This supports the idea that clusters are formed by a purely diffusion limited process.

  13. Classification Order of Surface-Confined Intermixing at Epitaxial Interface

    NASA Astrophysics Data System (ADS)

    Michailov, M.

    The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.

  14. The effect of realistic forces in finite epitaxial islands: Equilibrium structure, stability limits and substrate-induced dissociation of migrating clusters

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Markov, Ivan

    1985-06-01

    The behaviour of finite epitaxial islands in the periodic field of the substrate is theoretically investigated. The harmonic interactions, traditionally adopted in the model of Frank and Van der Merwe, are replaced by Toda and Morse potentials and sets of difference recursion equations, governing the equilibrium properties of the system, are derived and solved numerically. It is shown that allowing for anharmonicity in the interactions in the deposit reveals several qualiatively new effects, such as: (1) The existence of substrate-induced rupture of anharmonic clusters which migrate on the substrate. It is predicted that such dissociation should be enhanced, if (a) the energy barrier for surface diffusion is increased, (b) the natural incompatibility between substrate and deposit is decreased, and (c) the size of the clusters grows. (2) A split in the misfit stability limits for pseudomorphism and for spontaneous generation of misfit dislocations with respect to the sign of the misfit. The limits corresponding to negative misfit rapidly increase while the positive misfit limits decrease (in absolute terms) with growing degree of anharmonicity. (3) A marked asymmetry in the magnitude of various properties of the clusters, such as adhesion to the substrate, activation energy for surface diffusion, mean strain, dislocation lengths, etc., with respect to the sign of the mismatch between surface and deposit.

  15. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane.

    PubMed

    Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel

    2012-12-01

    The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Relative dispersion of clustered drifters in a small micro-tidal estuary

    NASA Astrophysics Data System (ADS)

    Suara, Kabir; Chanson, Hubert; Borgas, Michael; Brown, Richard J.

    2017-07-01

    Small tide-dominated estuaries are affected by large scale flow structures which combine with the underlying bed generated smaller scale turbulence to significantly increase the magnitude of horizontal diffusivity. Field estimates of horizontal diffusivity and its associated scales are however rare due to limitations in instrumentation. Data from multiple deployments of low and high resolution clusters of GPS-drifters are used to examine the dynamics of a surface flow in a small micro-tidal estuary through relative dispersion analyses. During the field study, cluster diffusivity, which combines both large- and small-scale processes ranged between, 0.01 and 3.01 m2/s for spreading clusters and, -0.06 and -4.2 m2/s for contracting clusters. Pair-particle dispersion, Dp2, was scale dependent and grew as Dp2 ∼ t1.83 in streamwise and Dp2 ∼ t0.8 in cross-stream directions. At small separation scale, pair-particle (d < 0.5 m) relative diffusivity followed the Richardson's 4/3 power law and became weaker as separation scale increases. Pair-particle diffusivity was described as Kp ∼ d1.01 and Kp ∼ d0.85 in the streamwise and cross-stream directions, respectively for separation scales ranging from 0.1 to 10 m. Two methods were used to identify the mechanism responsible for dispersion within the channel. The results clearly revealed the importance of strain fields (stretching and shearing) in the spreading of particles within a small micro-tidal channel. The work provided input for modelling dispersion of passive particle in shallow micro-tidal estuaries where these were not previously experimentally studied.

  17. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.

    PubMed

    Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J

    2017-12-20

    One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.

  18. There is a need for new systemic sclerosis subset criteria. A content analytic approach.

    PubMed

    Johnson, S R; Soowamber, M L; Fransen, J; Khanna, D; Van Den Hoogen, F; Baron, M; Matucci-Cerinic, M; Denton, C P; Medsger, T A; Carreira, P E; Riemekasten, G; Distler, J; Gabrielli, A; Steen, V; Chung, L; Silver, R; Varga, J; Müller-Ladner, U; Vonk, M C; Walker, U A; Wollheim, F A; Herrick, A; Furst, D E; Czirjak, L; Kowal-Bielecka, O; Del Galdo, F; Cutolo, M; Hunzelmann, N; Murray, C D; Foeldvari, I; Mouthon, L; Damjanov, N; Kahaleh, B; Frech, T; Assassi, S; Saketkoo, L A; Pope, J E

    2018-01-01

    Systemic sclerosis (SSc) is heterogenous. The objectives of this study were to evaluate the purpose, strengths and limitations of existing SSc subset criteria, and identify ideas among experts about subsets. We conducted semi-structured interviews with randomly sampled international SSc experts. The interview transcripts underwent an iterative process with text deconstructed to single thought units until a saturated conceptual framework with coding was achieved and respondent occurrence tabulated. Serial cross-referential analyses of clusters were developed. Thirty experts from 13 countries were included; 67% were male, 63% were from Europe and 37% from North America; median experience of 22.5 years, with a median of 55 new SSc patients annually. Three thematic clusters regarding subsetting were identified: research and communication; management; and prognosis (prediction of internal organ involvement, survival). The strength of the limited/diffuse system was its ease of use, however 10% stated this system had marginal value. Shortcomings of the diffuse/limited classification were the risk of misclassification, predictions/generalizations did not always hold true, and that the elbow or knee threshold was arbitrary. Eighty-seven percent use more than 2 subsets including: SSc sine scleroderma, overlap conditions, antibody-determined subsets, speed of progression, and age of onset (juvenile, elderly). We have synthesized an international view of the construct of SSc subsets in the modern era. We found a number of factors underlying the construct of SSc subsets. Considerations for the next phase include rate of change and hierarchal clustering (e.g. limited/diffuse, then by antibodies).

  19. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  20. [Study of the clinical phenotype of symptomatic chronic airways disease by hierarchical cluster analysis and two-step cluster analyses].

    PubMed

    Ning, P; Guo, Y F; Sun, T Y; Zhang, H S; Chai, D; Li, X M

    2016-09-01

    To study the distinct clinical phenotype of chronic airway diseases by hierarchical cluster analysis and two-step cluster analysis. A population sample of adult patients in Donghuamen community, Dongcheng district and Qinghe community, Haidian district, Beijing from April 2012 to January 2015, who had wheeze within the last 12 months, underwent detailed investigation, including a clinical questionnaire, pulmonary function tests, total serum IgE levels, blood eosinophil level and a peak flow diary. Nine variables were chosen as evaluating parameters, including pre-salbutamol forced expired volume in one second(FEV1)/forced vital capacity(FVC) ratio, pre-salbutamol FEV1, percentage of post-salbutamol change in FEV1, residual capacity, diffusing capacity of the lung for carbon monoxide/alveolar volume adjusted for haemoglobin level, peak expiratory flow(PEF) variability, serum IgE level, cumulative tobacco cigarette consumption (pack-years) and respiratory symptoms (cough and expectoration). Subjects' different clinical phenotype by hierarchical cluster analysis and two-step cluster analysis was identified. (1) Four clusters were identified by hierarchical cluster analysis. Cluster 1 was chronic bronchitis in smokers with normal pulmonary function. Cluster 2 was chronic bronchitis or mild chronic obstructive pulmonary disease (COPD) patients with mild airflow limitation. Cluster 3 included COPD patients with heavy smoking, poor quality of life and severe airflow limitation. Cluster 4 recognized atopic patients with mild airflow limitation, elevated serum IgE and clinical features of asthma. Significant differences were revealed regarding pre-salbutamol FEV1/FVC%, pre-salbutamol FEV1% pred, post-salbutamol change in FEV1%, maximal mid-expiratory flow curve(MMEF)% pred, carbon monoxide diffusing capacity per liter of alveolar(DLCO)/(VA)% pred, residual volume(RV)% pred, total serum IgE level, smoking history (pack-years), St.George's respiratory questionnaire(SGRQ) score, acute exacerbation in the past one year, PEF variability and allergic dermatitis (P<0.05). (2) Four clusters were also identified by two-step cluster analysis as followings, cluster 1, COPD patients with moderate to severe airflow limitation; cluster 2, asthma and COPD patients with heavy smoking, airflow limitation and increased airways reversibility; cluster 3, patients having less smoking and normal pulmonary function with wheezing but no chronic cough; cluster 4, chronic bronchitis patients with normal pulmonary function and chronic cough. Significant differences were revealed regarding gender distribution, respiratory symptoms, pre-salbutamol FEV1/FVC%, pre-salbutamol FEV1% pred, post-salbutamol change in FEV1%, MMEF% pred, DLCO/VA% pred, RV% pred, PEF variability, total serum IgE level, cumulative tobacco cigarette consumption (pack-years), and SGRQ score (P<0.05). By different cluster analyses, distinct clinical phenotypes of chronic airway diseases are identified. Thus, individualized treatments may guide doctors to provide based on different phenotypes.

  1. Phosphorus-defect interactions during thermal annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Keys, Patrick Henry

    Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.

  2. Hierarchical clustering method for improved prostate cancer imaging in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Kavuri, Venkaiah C.; Liu, Hanli

    2013-03-01

    We investigate the feasibility of trans-rectal near infrared (NIR) based diffuse optical tomography (DOT) for early detection of prostate cancer using a transrectal ultrasound (TRUS) compatible imaging probe. For this purpose, we designed a TRUS-compatible, NIR-based image system (780nm), in which the photo diodes were placed on the trans-rectal probe. DC signals were recorded and used for estimating the absorption coefficient. We validated the system using laboratory phantoms. For further improvement, we also developed a hierarchical clustering method (HCM) to improve the accuracy of image reconstruction with limited prior information. We demonstrated the method using computer simulations laboratory phantom experiments.

  3. Slow-Down in Diffusion in Crowded Protein Solutions Correlates with Transient Cluster Formation.

    PubMed

    Nawrocki, Grzegorz; Wang, Po-Hung; Yu, Isseki; Sugita, Yuji; Feig, Michael

    2017-12-14

    For a long time, the effect of a crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse more slowly in a living cell than in a diluted solution, and further studies suggest that the diffusion depends on the local surroundings. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin headpiece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. Although internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.

  4. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other between the viscosity and hydrodynamic radii, as potential measures of shape anisotropy. We also find a strong correlation between anisotropy and effective fractal dimension. These observations should provide new practical methods for quantifying the nature of particle clustering in diverse contexts.

  5. Characterization of the diffusion of epidermal growth factor receptor clusters by single particle tracking.

    PubMed

    Boggara, Mohan; Athmakuri, Krishna; Srivastava, Sunit; Cole, Richard; Kane, Ravi S

    2013-02-01

    A number of studies have shown that receptors of the epidermal growth factor receptor family (ErbBs) exist as higher-order oligomers (clusters) in cell membranes in addition to their monomeric and dimeric forms. Characterizing the lateral diffusion of such clusters may provide insights into their dynamics and help elucidate their functional relevance. To that end, we used single particle tracking to study the diffusion of clusters of the epidermal growth factor (EGF) receptor (EGFR; ErbB1) containing bound fluorescently-labeled ligand, EGF. EGFR clusters had a median diffusivity of 6.8×10(-11)cm(2)/s and were found to exhibit different modes of transport (immobile, simple, confined, and directed) similar to that previously reported for single EGFR molecules. Disruption of actin filaments increased the median diffusivity of EGFR clusters to 10.3×10(-11)cm(2)/s, while preserving the different modes of diffusion. Interestingly, disruption of microtubules rendered EGFR clusters nearly immobile. Our data suggests that microtubules may play an important role in the diffusion of EGFR clusters either directly or perhaps indirectly via other mechanisms. To our knowledge, this is the first report probing the effect of the cytoskeleton on the diffusion of EGFR clusters in the membranes of live cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Rewiring the network. What helps an innovation to diffuse?

    NASA Astrophysics Data System (ADS)

    Sznajd-Weron, Katarzyna; Szwabiński, Janusz; Weron, Rafał; Weron, Tomasz

    2014-03-01

    A fundamental question related to innovation diffusion is how the structure of the social network influences the process. Empirical evidence regarding real-world networks of influence is very limited. On the other hand, agent-based modeling literature reports different, and at times seemingly contradictory, results. In this paper we study innovation diffusion processes for a range of Watts-Strogatz networks in an attempt to shed more light on this problem. Using the so-called Sznajd model as the backbone of opinion dynamics, we find that the published results are in fact consistent and allow us to predict the role of network topology in various situations. In particular, the diffusion of innovation is easier on more regular graphs, i.e. with a higher clustering coefficient. Moreover, in the case of uncertainty—which is particularly high for innovations connected to public health programs or ecological campaigns—a more clustered network will help the diffusion. On the other hand, when social influence is less important (i.e. in the case of perfect information), a shorter path will help the innovation to spread in the society and—as a result—the diffusion will be easiest on a random graph.

  7. Modeling solute clustering in the diffusion layer around a growing crystal.

    PubMed

    Shiau, Lie-Ding; Lu, Yung-Fang

    2009-03-07

    The mechanism of crystal growth from solution is often thought to consist of a mass transfer diffusion step followed by a surface reaction step. Solute molecules might form clusters in the diffusion step before incorporating into the crystal lattice. A model is proposed in this work to simulate the evolution of the cluster size distribution due to the simultaneous aggregation and breakage of solute molecules in the diffusion layer around a growing crystal in the stirred solution. The crystallization of KAl(SO(4))(2)12H(2)O from aqueous solution is studied to illustrate the effect of supersaturation and diffusion layer thickness on the number-average degree of clustering and the size distribution of solute clusters in the diffusion layer.

  8. Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kiew, Ching-Yee; Hwang, Chorng-Yuan; Zainal Abibin, Zamri

    2017-05-01

    By assuming the dark matter to be composed of neutralinos, we used the detection of upper limit on diffuse radio emission in a sample of galaxy clusters to put constraint on the properties of neutralinos. We showed the upper limit constraint on <σv>-mχ space with neutralino annihilation through b\\bar{b} and μ+μ- channels. The best constraint is from the galaxy clusters A2199 and A1367. We showed the uncertainty due to the density profile and cluster magnetic field. The largest uncertainty comes from the uncertainty in dark matter spatial distribution. We also investigated the constraints on minimal Supergravity (mSUGRA) and minimal supersymmetric standard model (MSSM) parameter space by scanning the parameters using the darksusy package. By using the current radio observation, we managed to exclude 40 combinations of mSUGRA parameters. On the other hand, 573 combinations of MSSM parameters can be excluded by current observation.

  9. Atomistic modeling of dropwise condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L.; Muralidhar, K.

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smallermore » sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.« less

  10. Two-Dimensional Animal-Like Fractals in Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Hong-jun; Xue, Zeng-quan; Wu, Quan-de; Pang, Shi-jin

    1996-02-01

    We present a few unique animal-like fractal patterns in ionized-cluster-beam deposited fullerene-tetracyanoquinodimethane thin films. The fractal patterns consisting of animal-like aggregates such as "fishes" and "quasi-seahorses" have been characterized by transmission electron microscopy. The results indicate that the small aggregates of the animal-like body are composed of many single crystals whose crystalline directions are generally different. The formation of the fractal patterns can be attributed to the cluster-diffusion-limited aggregation.

  11. Diffuse light and building history of the galaxy cluster Abell 2667

    NASA Astrophysics Data System (ADS)

    Covone, G.; Adami, C.; Durret, F.; Kneib, J.-P.; Lima Neto, G. B.; Slezak, E.

    2006-12-01

    Aims.We searched for diffuse intracluster light in the galaxy cluster Abell 2667 (z=0.233) from HST images in three broad band-filters. Methods: .We applied an iterative multi-scale wavelet analysis and reconstruction technique to these images, which allows to subtract stars and galaxies from the original images. Results: .We detect a zone of diffuse emission southwest of the cluster center (DS1) and a second faint object (ComDif) within DS1. Another diffuse source (DS2) may be detected at lower confidence level northeast of the center. These sources of diffuse light contribute to 10-15% of the total visible light in the cluster. Whether they are independent entities or part of the very elliptical external envelope of the central galaxy remains unclear. Deep VLT VIMOS integral field spectroscopy reveals a faint continuum at the positions of DS1 and ComDif but do not allow a redshift to be computed, so we conclude if these sources are part of the central galaxy or not. A hierarchical substructure detection method reveals the presence of several galaxy pairs and groups defining a similar direction to the one drawn by the DS1 - central galaxy - DS2 axis. The analysis of archive XMM-Newton and Chandra observations shows X-ray emission elongated in the same direction. The X-ray temperature map shows the presence of a cool core, a broad cool zone stretching from north to south, and hotter regions towards the northeast, southwest, and northwest. This might suggest shock fronts along these directions produced by infalling material, even if uncertainties remain quite large on the temperature determination far from the center. Conclusions: .These various data are consistent with a picture in which diffuse sources are concentrations of tidal debris and harassed matter expelled from infalling galaxies by tidal stripping and undergoing an accretion process onto the central cluster galaxy; as such, they are expected to be found along the main infall directions. Note, however, that the limited signal to noise of the various data and the apparent lack of large numbers of well-defined independent tidal tails, besides the one named ComDif, preclude definitive conclusions on this scenario.

  12. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001).

    PubMed

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  13. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001)

    PubMed Central

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots. PMID:26285135

  14. Rumor Diffusion in an Interests-Based Dynamic Social Network

    PubMed Central

    Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency. PMID:24453911

  15. Rumor diffusion in an interests-based dynamic social network.

    PubMed

    Tang, Mingsheng; Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency.

  16. Kinetics of carbon clustering in detonation of high explosives: Does theory match experiment?

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Watkins, Erik; Dattelbaum, Dana; Gustavsen, Richard; Aslam, Tariq; Podlesak, David; Firestone, Millicent; Huber, Rachel; Ringstrand, Bryan; Willey, Trevor; Bagge-Hansen, Michael; Hodgin, Ralph; Lauderbach, Lisa; van Buuren, Tony; Sinclair, Nicholas; Rigg, Paulo; Seifert, Soenke; Gog, Thomas

    2017-06-01

    Chemical reactions in detonation of carbon-rich high explosives yield carbon clusters as major constituents of the products. Efforts to model carbon clustering as a diffusion-limited irreversible coagulation of carbon clusters go back to the seminal paper by Shaw and Johnson. However, first direct experimental observations of the kinetics of clustering yielded cluster growth one to two orders of magnitude slower than theoretical predictions. Multiple efforts were undertaken to test and revise the basic assumptions of the model in order to achieve better agreement with experiment. We discuss our very recent direct experimental observations of carbon clustering dynamics and demonstrate that these new results are in much better agreement with the modified Shaw-Johnson model. The implications of this much better agreement on our present understanding of detonation carbon clustering processes and possible ways to increase the agreement between theory and experiment even further are discussed.

  17. Lifetime of Major Histocompatibility Complex Class-I Membrane Clusters Is Controlled by the Actin Cytoskeleton

    PubMed Central

    Lavi, Yael; Gov, Nir; Edidin, Michael; Gheber, Levi A.

    2012-01-01

    Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters. PMID:22500754

  18. Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results

    NASA Astrophysics Data System (ADS)

    M, Esen; A, T. Tüzemen; M, Ozdemir

    2016-01-01

    The mobility of clusters on a semiconductor surface for various values of cluster size is studied as a function of temperature by kinetic Monte Carlo method. The cluster resides on the surface of a square grid. Kinetic processes such as the diffusion of single particles on the surface, their attachment and detachment to/from clusters, diffusion of particles along cluster edges are considered. The clusters considered in this study consist of 150-6000 atoms per cluster on average. A statistical probability of motion to each direction is assigned to each particle where a particle with four nearest neighbors is assumed to be immobile. The mobility of a cluster is found from the root mean square displacement of the center of mass of the cluster as a function of time. It is found that the diffusion coefficient of clusters goes as D = A(T)Nα where N is the average number of particles in the cluster, A(T) is a temperature-dependent constant and α is a parameter with a value of about -0.64 < α < -0.75. The value of α is found to be independent of cluster sizes and temperature values (170-220 K) considered in this study. As the diffusion along the perimeter of the cluster becomes prohibitive, the exponent approaches a value of -0.5. The diffusion coefficient is found to change by one order of magnitude as a function of cluster size.

  19. Phase transition in conservative diffusive contact processes

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.; de Oliveira, Mário J.

    2004-10-01

    We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.

  20. Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity disorder

    PubMed Central

    Chen, Lizhou; Huang, Xiaoqi; Lei, Du; He, Ning; Hu, Xinyu; Chen, Ying; Li, Yuanyuan; Zhou, Jinbo; Guo, Lanting; Kemp, Graham J.; Gong, Qiyong

    2015-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions. Methods We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups. Results Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD. Limitations This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small. Conclusion Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD. PMID:25853285

  1. The Burrell Schmidt Deep Virgo Survey: Tidal Debris, Galaxy Halos, and Diffuse Intracluster Light in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.; Rudick, Craig; Janowiecki, Steven; Morrison, Heather; Slater, Colin; Watkins, Aaron

    2017-01-01

    We present the results of a deep imaging survey of the Virgo cluster of galaxies, concentrated around the cores of Virgo subclusters A and B. The goal of this survey was to detect and study very low surface brightness features present in Virgo, including discrete tidal features, the faint halos of luminous galaxies, and the diffuse intracluster light (ICL). Our observations span roughly 16 degrees2 in two filters, reaching a 3σ limiting depth of {μ }B = 29.5 and {μ }V = 28.5 mag arcsec-2. At these depths, our limiting systematic uncertainties are astrophysical: variations in faint background sources as well as scattered light from galactic dust. We show that this dust-scattered light is well traced by deep far-infrared imaging, making it possible to separate it from true diffuse light in Virgo. We use our imaging to trace and measure the color of the diffuse tidal streams and ICL in the Virgo core near M87, in fields adjacent to the core including the M86/M84 region, and to the south of the core around M49 and subcluster B, along with the more distant W{}\\prime cloud around NGC 4365. Overall, the bulk of the projected ICL is found in the Virgo core and within the W{}\\prime cloud; we find little evidence for an extensive ICL component in the field around M49. The bulk of the ICL we detect is fairly red in color (B - V = 0.7-0.9), indicative of old, evolved stellar populations. Based on the luminosity of the observed ICL features in the cluster, we estimate a total Virgo ICL fraction of 7%-15%. This value is somewhat smaller than that expected for massive, evolved clusters, suggesting that Virgo is still in the process of growing its extended ICL component. We also trace the shape of M87's extremely boxy outer halo out to ˜150 kpc, and show that the current tidal stripping rate from low luminosity galaxies is insufficient to have built M87's outer halo over a Hubble time. We identify a number of previously unknown low surface brightness structures around galaxies projected close to M86 and M84. The extensive diffuse light seen in the infalling W{}\\prime cloud around NGC 4365 is likely to be subsumed in the general Virgo ICL component once the group enters the cluster, illustrating the importance of group infall in generating ICL. Finally, we also identify another large and extremely low surface brightness ultradiffuse galaxy, likely in the process of being shredded by the cluster tidal field. With the survey complete, the full imaging data set is now available for public release.

  2. Enhanced Atom Mobility on the Surface of a Metastable Film

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Fratesi, G.; Brambilla, A.; Bussetti, G.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2014-07-01

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  3. Enhanced atom mobility on the surface of a metastable film.

    PubMed

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  4. Information diffusion, Facebook clusters, and the simplicial model of social aggregation: a computational simulation of simplicial diffusers for community health interventions.

    PubMed

    Kee, Kerk F; Sparks, Lisa; Struppa, Daniele C; Mannucci, Mirco A; Damiano, Alberto

    2016-01-01

    By integrating the simplicial model of social aggregation with existing research on opinion leadership and diffusion networks, this article introduces the constructs of simplicial diffusers (mathematically defined as nodes embedded in simplexes; a simplex is a socially bonded cluster) and simplicial diffusing sets (mathematically defined as minimal covers of a simplicial complex; a simplicial complex is a social aggregation in which socially bonded clusters are embedded) to propose a strategic approach for information diffusion of cancer screenings as a health intervention on Facebook for community cancer prevention and control. This approach is novel in its incorporation of interpersonally bonded clusters, culturally distinct subgroups, and different united social entities that coexist within a larger community into a computational simulation to select sets of simplicial diffusers with the highest degree of information diffusion for health intervention dissemination. The unique contributions of the article also include seven propositions and five algorithmic steps for computationally modeling the simplicial model with Facebook data.

  5. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  6. High-Performance and Traditional Multicrystalline Silicon: Comparing Gettering Responses and Lifetime-Limiting Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellanos, Sergio; Ekstrom, Kai E.; Autruffe, Antoine

    2016-05-01

    In recent years, high-performance multicrystalline silicon (HPMC-Si) has emerged as an attractive alternative to traditional ingot-based multicrystalline silicon (mc-Si), with a similar cost structure but improved cell performance. Herein, we evaluate the gettering response of traditional mc-Si and HPMC-Si. Microanalytical techniques demonstrate that HPMC-Si and mc-Si share similar lifetime-limiting defect types but have different relative concentrations and distributions. HPMC-Si shows a substantial lifetime improvement after P-gettering compared with mc-Si, chiefly because of lower area fraction of dislocation-rich clusters. In both materials, the dislocation clusters and grain boundaries were associated with relatively higher interstitial iron point-defect concentrations after diffusion, which ismore » suggestive of dissolving metal-impurity precipitates. The relatively fewer dislocation clusters in HPMC-Si are shown to exhibit similar characteristics to those found in mc-Si. Given similar governing principles, a proxy to determine relative recombination activity of dislocation clusters developed for mc-Si is successfully transferred to HPMC-Si.« less

  7. Structural disorder in the decagonal Al-Co-Ni. II. Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobas, Miroslav; Weber, Thomas; Steurer, Walter

    2005-06-01

    The hydrodynamic theory of phasonic and phononic disorder is applied successfully to describe the short-range disordered structure of a decagonal Al{sub 71.5}Co{sub 14.6}Ni{sub 13.9} quasicrystal (Edagawa phase, superstructure type I). Moreover, model calculations demonstrate that the main features of diffuse scattering can be equally well described by phasonic disorder and fivefold orientational disorder of clusters. The calculations allow us to distinguish the different cluster types published so far and the best agreement with experimental data could be achieved with the mirror-symmetric Abe cluster. Modeling of phason diffuse scattering associated with the S1 and S2 superstructure reflections indicate disorder of superclusters.more » The former show basically intercluster correlations inside quasiperiodic layers, while the latter exhibit intra- and inter-cluster correlations, both between adjacent and inside quasiperiodic layers. The feasibility, potential, and limits of the Patterson method in combination with the punch-and-fill method employed is shown on the example of a phasonic disordered rhombic Penrose tiling. A variation of the elastic constants does not change qualitatively the way phasonic disorder is realized in the local quasicrystalline structure. For the same model system it is also shown that phasonic fluctuations of the atomic surfaces yield average clusters in the cut space, which correspond to fivefold orientationally disordered clusters.« less

  8. Adsorption and diffusion of fructose in zeolite HZSM-5: selection of models and methods for computational studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.; Curtiss, L. A.; Assary, R. S.

    The adsorption and protonation of fructose in HZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46Tmore » cluster model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.« less

  9. Fractal aggregates in tennis ball systems

    NASA Astrophysics Data System (ADS)

    Sabin, J.; Bandín, M.; Prieto, G.; Sarmiento, F.

    2009-09-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the images of the cluster of balls, following Forrest and Witten's pioneering studies on the aggregation of smoke particles, to estimate their fractal dimension.

  10. Transport and mixing in strongly coupled dusty plasma medium

    NASA Astrophysics Data System (ADS)

    Dharodi, Vikram; Das, Amita; Patel, Bhavesh

    2016-10-01

    The generalized hydrodynamic (GHD) fluid model has been employed to study the transport and mixing properties of Dusty plasma medium in strong coupling limit. The response of lighter electron and ion species to the dust motion is taken to be instantaneous i.e. inertia-less. Thus the electron and ion density are presumed to follow the Boltzman relation. In the incompressible limit (i-GHD) the model supports Transverse Shear wave in contrast to the Hydrodynamic fluids. It has been shown that the presence of these waves leads to a better mixing of fluid in this case. Several cases of flow configuration have been considered for the study. The transport and mixing attributes have been quantified by studying the dynamical evolution of tracer particles in the system. The diffusion and clustering of these test particles are directly linked to the mixing characteristic of a medium. The displacement of these particles provides for a quantitative estimate of the diffusion coefficient of the medium. It is shown that these test particles often organize themselves in spatially inhomogeneous pattern leading to the phenomena of clustering.

  11. Aggregates and Superaggregates of Soot with Four Distinct Fractal Morphologies

    NASA Technical Reports Server (NTRS)

    Sorensen, C. M.; Kim, W.; Fry, D.; Chakrabarti, A.

    2004-01-01

    Soot formed in laminar diffusion flames of heavily sooting fuels evolves through four distinct growth stages which give rise to four distinct aggregate fractal morphologies. These results were inferred from large and small angle static light scattering from the flames, microphotography of the flames, and analysis of soot sampled from the flames. The growth stages occur approximately over four successive orders of magnitude in aggregate size. Comparison to computer simulations suggests that these four growth stages involve either diffusion limited cluster aggregation or percolation in either three or two dimensions.

  12. Relativistic inverse Compton scattering of photons from the early universe.

    PubMed

    Malu, Siddharth; Datta, Abhirup; Colafrancesco, Sergio; Marchegiani, Paolo; Subrahmanyan, Ravi; Narasimha, D; Wieringa, Mark H

    2017-12-05

    Electrons at relativistic speeds, diffusing in magnetic fields, cause copious emission at radio frequencies in both clusters of galaxies and radio galaxies through non-thermal radiation emission called synchrotron. However, the total power radiated through this mechanism is ill constrained, as the lower limit of the electron energy distribution, or low-energy cutoffs, for radio emission in galaxy clusters and radio galaxies, have not yet been determined. This lower limit, parametrized by the lower limit of the electron momentum - p min - is critical for estimating the total energetics of non-thermal electrons produced by cluster mergers or injected by radio galaxy jets, which impacts the formation of large-scale structure in the universe, as well as the evolution of local structures inside galaxy clusters. The total pressure due to the relativistic, non-thermal population of electrons can be measured using the Sunyaev-Zel'dovich Effect, and is critically dependent on p min , making the measurement of this non-thermal pressure a promising technique to estimate the electron low-energy cutoff. We present here the first unambiguous detection of this Sunyaev-Zel'dovich Effect for a non-thermal population of electrons in a radio galaxy jet/lobe, located at a significant distance away from the center of the Bullet cluster of galaxies.

  13. Comparative Study of Broadband Photometry Relations for Ultra-Diffuse and Normal Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Stone, Maria Babakhanyan

    Ultra-diffuse galaxies are a novel type of galaxies discovered first in the Coma cluster. These objects are characterized simultaneously by large sizes and by very low counts of constituent stars. Conflicting theories have been proposed to explain how these large diffuse galaxies could have survived in the harsh environment of clusters. To date, thousands of these new galaxies have been identified in cluster environments. However, further studies are required to understand their relationship to the known giant and dwarf classes of galaxies. The purpose of this study is to compare the trends of inner and outer populations of normal members of the Coma cluster and ultra-diffuse galaxies in color-magnitude space. The present work used several astronomical catalogs to identify the member galaxies based on the coordinates of their positions and to extract available colors and magnitudes. We obtained correlations to convert colors and magnitudes from different systems into the common Sloan Digital Sky Survey system to facilitate the comparative analysis. We showed the quantitative relations describing the color-magnitude trends of galaxies in the core and the outskirts of the cluster. We confirmed that the inner and outer populations of ultra-diffuse galaxies exhibit an offset similar to the normal red sequence galaxies. We presented an initial assessment of stellar population ages and metallicities which correspond to the obtained color offsets. We surveyed the available images of the cluster for outliers, merger candidates, and candidate ultra-diffuse galaxies. We conclude that ultra-diffuse galaxies are an important part of the Coma cluster evolutionary history and future work is needed especially in obtaining spectroscopic data of a larger number of these dim galaxies.

  14. The Stellar Populations of Two Ultra-diffuse Galaxies from Optical and Near-infrared Photometry

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Romanowsky, Aaron J.; Laine, Seppo; Brodie, Jean P.; Johnson, Benjamin D.; Glaccum, William; Villaume, Alexa; Cuillandre, Jean-Charles; Gwyn, Stephen; Krick, Jessica; Lasker, Ronald; Martín-Navarro, Ignacio; Martinez-Delgado, David; van Dokkum, Pieter

    2018-05-01

    We present observational constraints on the stellar populations of two ultra-diffuse galaxies (UDGs) using optical through near-infrared (NIR) spectral energy distribution (SED) fitting. Our analysis is enabled by new Spitzer-IRAC 3.6 and 4.5 μm imaging, archival optical imaging, and the prospector fully Bayesian SED fitting framework. Our sample contains one field UDG (DGSAT I), one Virgo cluster UDG (VCC 1287), and one Virgo cluster dwarf elliptical for comparison (VCC 1122). We find that the optical–NIR colors of the three galaxies are significantly different from each other. We infer that VCC 1287 has an old (≳7.7 Gyr) and surprisingly metal-poor ([Z/Z ⊙] ≲ ‑1.0) stellar population, even after marginalizing over uncertainties on diffuse interstellar dust. In contrast, the field UDG DGSAT I shows evidence of being younger than the Virgo UDG, with an extended star formation history and an age posterior extending down to ∼3 Gyr. The stellar metallicity of DGSAT I is sub-solar but higher than that of the Virgo UDG, with [Z/{Z}ȯ ]=-{0.63}-0.62+0.35; in the case of exactly zero diffuse interstellar dust, DGSAT I may even have solar metallicity. With VCC 1287 and several Coma UDGs, a general picture is emerging where cluster UDGs may be “failed” galaxies, but the field UDG DGSAT I seems more consistent with a stellar feedback-induced expansion scenario. In the future, our approach can be applied to a large and diverse sample of UDGs down to faint surface brightness limits, with the goal of constraining their stellar ages, stellar metallicities, and circumstellar and diffuse interstellar dust content.

  15. Data-driven cluster reinforcement and visualization in sparsely-matched self-organizing maps.

    PubMed

    Manukyan, Narine; Eppstein, Margaret J; Rizzo, Donna M

    2012-05-01

    A self-organizing map (SOM) is a self-organized projection of high-dimensional data onto a typically 2-dimensional (2-D) feature map, wherein vector similarity is implicitly translated into topological closeness in the 2-D projection. However, when there are more neurons than input patterns, it can be challenging to interpret the results, due to diffuse cluster boundaries and limitations of current methods for displaying interneuron distances. In this brief, we introduce a new cluster reinforcement (CR) phase for sparsely-matched SOMs. The CR phase amplifies within-cluster similarity in an unsupervised, data-driven manner. Discontinuities in the resulting map correspond to between-cluster distances and are stored in a boundary (B) matrix. We describe a new hierarchical visualization of cluster boundaries displayed directly on feature maps, which requires no further clustering beyond what was implicitly accomplished during self-organization in SOM training. We use a synthetic benchmark problem and previously published microbial community profile data to demonstrate the benefits of the proposed methods.

  16. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    DOE PAGES

    Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...

    2015-03-05

    In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less

  17. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    NASA Astrophysics Data System (ADS)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  18. Multiple relaxations of the cluster surface diffusion in a homoepitaxial SrTiO3 layer

    NASA Astrophysics Data System (ADS)

    Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho

    2018-03-01

    We examine the surface diffusion process of adatomic clusters on a (001)-oriented SrTiO3 single crystal using reflection high energy electron diffraction (RHEED). We find that the recovery curve of the RHEED intensity acquired after a homoepitaxial half-layer growth can be accurately fit into a double exponential function, indicating the existence of two dominant relaxation mechanisms. The characteristic relaxation times at selected growth temperatures are investigated to determine the diffusion activation barriers of 0.67 eV and 0.91 eV, respectively. The Monte Carlo simulation of the cluster hopping model suggests that the decrease in the number of dimeric and trimeric clusters during surface diffusion is the origin of the observed relaxation phenomena.

  19. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    PubMed

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  20. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGES

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...

    2015-11-23

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  1. A novel magnetic resonance imaging segmentation technique for determining diffuse intrinsic pontine glioma tumor volume.

    PubMed

    Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K; Young, Robert J; Tsiouris, Apostolos John; Thakur, Sunitha B; Souweidane, Mark M

    2016-11-01

    OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post-radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin's concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods highlighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interobserver agreement and produced tumor volumes with delineated borders.

  2. A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.

    We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less

  3. When clusters collide: constraints on antimatter on the largest scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steigman, Gary, E-mail: steigman@mps.ohio-state.edu

    2008-10-15

    Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the {approx}Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clustersmore » of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 Multiplication-Sign 10{sup -9} to <1 Multiplication-Sign 10{sup -6}, strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be <3 Multiplication-Sign 10{sup -6}, can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order {approx}20 Mpc (M{approx}5 Multiplication-Sign 10{sup 15}M{sub sun})« less

  4. Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition.

    PubMed

    Frank, Stefan; Roberts, Daniel E; Rikvold, Per Arne

    2005-02-08

    The influence of nearest-neighbor diffusion on the decay of a metastable low-coverage phase (monolayer adsorption) in a square lattice-gas model of electrochemical metal deposition is investigated by kinetic Monte Carlo simulations. The phase-transformation dynamics are compared to the well-established Kolmogorov-Johnson-Mehl-Avrami theory. The phase transformation is accelerated by diffusion, but remains in accord with the theory for continuous nucleation up to moderate diffusion rates. At very high diffusion rates the phase-transformation kinetic shows a crossover to instantaneous nucleation. Then, the probability of medium-sized clusters is reduced in favor of large clusters. Upon reversal of the supersaturation, the adsorbate desorbs, but large clusters still tend to grow during the initial stages of desorption. Calculation of the free energy of subcritical clusters by enumeration of lattice animals yields a quasiequilibrium distribution which is in reasonable agreement with the simulation results. This is an improvement relative to classical droplet theory, which fails to describe the distributions, since the macroscopic surface tension is a bad approximation for small clusters.

  5. Elasticity and critical bending moment of model colloidal aggregates.

    PubMed

    Pantina, John P; Furst, Eric M

    2005-04-08

    The bending mechanics of singly bonded colloidal aggregates are measured using laser tweezers. We find that the colloidal bonds are capable of supporting significant torques, providing a direct measurement of the tangential interactions between particles. A critical bending moment marks the limit of linear bending elasticity, past which small-scale rearrangements occur. These mechanical properties underlie the rheology and dynamics of colloidal gels formed by diffusion-limited cluster aggregation, and give critical insight into the contact interactions between Brownian particles.

  6. Nucleation and growth of Ag on Sb-terminated Ge( 1 0 0 )

    NASA Astrophysics Data System (ADS)

    Chan, L. H.; Altman, E. I.

    2002-06-01

    The effect of Sb on Ag growth on Ge(1 0 0) was characterized using scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Silver was found to immediately form three-dimensional clusters on the Sb-covered surface over the entire temperature range studied (320-570 K), thus the growth was Volmer-Weber. Regardless of the deposition conditions, there was no evidence that Sb segregated to the Ag surface, despite Sb having a lower surface tension than either Ag or Ge. The failure of Sb to segregate to the surface could be understood in terms of the much stronger interaction between Sb and Ge versus Ag and Ge creating a driving force to maintain an Sb-Ge interface. Silver nucleation on Sb/Ge(1 0 0) was characterized by measuring the Ag cluster density as a function of deposition rate. The results revealed that the cluster density was nearly independent of the deposition rate below 420 K, indicating that heterogeneous nucleation at defects in the Sb-terminated surface competed with homogeneous nucleation. At higher temperatures, the defects were less effective in trapping diffusing Ag atoms and the dependence of the cluster density on deposition rate suggested a critical size of at least two. For temperatures above 420 K, the Ag diffusion barrier plus the dissociation energy of the critical cluster was estimated by measuring the cluster density as a function of temperature; the results suggested a value of 0.84±0.1 eV which is significantly higher than values reported for Ag nucleation on Sb-free surfaces. In comparison to the bare Ge surface, Ag formed a higher density of smaller, lower clusters when Sb was present. Below 420 K the higher cluster density could be attributed to nucleation at defects in the Sb layer while at higher temperatures the high diffusion barrier restricted the cluster size and density. Although Sb does not act as a surfactant in this system since it does not continuously float to the surface and the growth is not layer-by-layer, adding Sb was found to be useful in limiting the Ag cluster size and height which led to smoother, more continuous Ag films and in preventing the formation of metastable Ag-Ge surface alloys.

  7. Diffusion of oxygen interstitials in UO2+x using kinetic Monte Carlo simulations: Role of O/M ratio and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.

    2016-04-01

    Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.

  8. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome.

    PubMed

    Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Alger, Jeffry R; Harper, Ronald M

    2008-09-01

    Congenital central hypoventilation syndrome (CCHS) patients show reduced breathing drive during sleep, decreased hypoxic and hypercapnic ventilatory responses, and autonomic and affective deficits, suggesting both brainstem and forebrain injuries. Forebrain damage was previously described in CCHS, but methodological limitations precluded detection of brainstem injury, a concern because genetic mutations in CCHS target brainstem autonomic nuclei. To assess brainstem and cerebellar areas, we used diffusion tensor imaging-based measures, namely axial diffusivity, reflecting water diffusion parallel to fibers, and sensitive to axonal injury, and radial diffusivity, measuring diffusion perpendicular to fibers, and indicative of myelin injury. Diffusion tensor imaging was performed in 12 CCHS and 26 controls, and axial and radial diffusivity maps were compared between groups using analysis of covariance (covariates; age and gender). Increased axial diffusivity in CCHS appeared within the lateral medulla and clusters with injury extended from the dorsal midbrain through the periaqueductal gray, raphé, and superior cerebellar decussation, ventrally to the basal-pons. Cerebellar cortex and deep nuclei, and the superior and inferior cerebellar peduncles showed increased radial diffusivity. Midbrain, pontine, and lateral medullary structures, and the cerebellum and its fiber systems are injured in CCHS, likely contributing to the characteristics found in the syndrome.

  9. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP).

    PubMed

    Snyder, David A; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A geo-computational algorithm for exploring the structure of diffusion progression in time and space.

    PubMed

    Chin, Wei-Chien-Benny; Wen, Tzai-Hung; Sabel, Clive E; Wang, I-Hsiang

    2017-10-03

    A diffusion process can be considered as the movement of linked events through space and time. Therefore, space-time locations of events are key to identify any diffusion process. However, previous clustering analysis methods have focused only on space-time proximity characteristics, neglecting the temporal lag of the movement of events. We argue that the temporal lag between events is a key to understand the process of diffusion movement. Using the temporal lag could help to clarify the types of close relationships. This study aims to develop a data exploration algorithm, namely the TrAcking Progression In Time And Space (TaPiTaS) algorithm, for understanding diffusion processes. Based on the spatial distance and temporal interval between cases, TaPiTaS detects sub-clusters, a group of events that have high probability of having common sources, identifies progression links, the relationships between sub-clusters, and tracks progression chains, the connected components of sub-clusters. Dengue Fever cases data was used as an illustrative case study. The location and temporal range of sub-clusters are presented, along with the progression links. TaPiTaS algorithm contributes a more detailed and in-depth understanding of the development of progression chains, namely the geographic diffusion process.

  11. Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Halloran, J. W.; Cooper, A. R.

    1984-01-01

    Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.

  12. Clustering on Magnesium Surfaces - Formation and Diffusion Energies.

    PubMed

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.

  13. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  14. Understanding the presence of vacancy clusters in ZnO from a kinetic perspective

    NASA Astrophysics Data System (ADS)

    Bang, Junhyeok; Kim, Youg-Sung; Park, C. H.; Gao, F.; Zhang, S. B.

    2014-06-01

    Vacancy clusters have been observed in ZnO by positron-annihilation spectroscopy (PAS), but detailed mechanisms are unclear. This is because the clustering happens in non-equilibrium conditions, for which theoretical method has not been well established. Combining first-principles calculation and kinetic Monte Carlo simulation, we determine the roles of non-equilibrium kinetics on the vacancies clustering. We find that clustering starts with the formation of Zn and O vacancy pairs (VZn - Vo), which further grow by attracting additional mono-vacancies. At this stage, vacancy diffusivity becomes crucial: due to the larger diffusivity of VZn compared to VO, more VZn-abundant clusters are formed than VO-abundant clusters. The large dissociation energy barriers, e.g., over 2.5 eV for (VZn - Vo), suggest that, once formed, it is difficult for the clusters to dissociate. By promoting mono-vacancy diffusion, thermal annealing will increase the size of the clusters. As the PAS is insensitive to VO donor defects, our results suggest an interpretation of the experimental data that could not have been made without the in-depth calculations.

  15. Modeling the Movement of Homicide by Type to Inform Public Health Prevention Efforts.

    PubMed

    Zeoli, April M; Grady, Sue; Pizarro, Jesenia M; Melde, Chris

    2015-10-01

    We modeled the spatiotemporal movement of hotspot clusters of homicide by motive in Newark, New Jersey, to investigate whether different homicide types have different patterns of clustering and movement. We obtained homicide data from the Newark Police Department Homicide Unit's investigative files from 1997 through 2007 (n = 560). We geocoded the address at which each homicide victim was found and recorded the date of and the motive for the homicide. We used cluster detection software to model the spatiotemporal movement of statistically significant homicide clusters by motive, using census tract and month of occurrence as the spatial and temporal units of analysis. Gang-motivated homicides showed evidence of clustering and diffusion through Newark. Additionally, gang-motivated homicide clusters overlapped to a degree with revenge and drug-motivated homicide clusters. Escalating dispute and nonintimate familial homicides clustered; however, there was no evidence of diffusion. Intimate partner and robbery homicides did not cluster. By tracking how homicide types diffuse through communities and determining which places have ongoing or emerging homicide problems by type, we can better inform the deployment of prevention and intervention efforts.

  16. Fractal patterns formed by growth of radial viscous fingers*

    NASA Astrophysics Data System (ADS)

    Praud, Olivier

    2004-03-01

    We examine fractal patterns formed by the injection of air into oil in a thin (0.13 mm) layer contained between two cylindrical glass plates of 288 mm diameter (a Hele-Shaw cell) [1]. The resultant radially grown patterns are similar to those formed in Diffusion Limited Aggregation (DLA), but the relation between the continuum limit of DLA and continuum (Laplacian) growth remains an open question. Our viscous fingering patterns in the limit of very high pressure difference reach an asymptotic state in which they exhibit a fractal dimension of 1.70± 0.02, in good agreement with a calculation of the fractal dimension of a DLA cluster, 1.713± 0.003 [2]. The generalized dimensions are also computed and show that the observed pattern is self-similar with Dq = 1.70 for all q. Further, the probability density function of shielding angles suggests the existence of a critical angle close to 75 degrees. This result is in accord with numerical and analytical evidence of a critical angle in DLA [3]. Thus fractal viscous fingering patterns and Diffusion Limited Aggregation clusters have a similar geometrical structure. *Work conducted in collaboration with H.L. Swinney, M.G. Moore and Eran Sharon [1] E. Sharon, M. G. Moore, W. D. McCormick, and H. L. Swinney, Phys. Rev. Lett. 91, 205504 (2003). [2] B.Davidovitch et A. Levermann and I. Procaccia, Phys. Rev. E 62, 5919 (2000). [3] D. A. Kessler et al., Phys. Rev. E 57, 6913 (1998).

  17. Extensions to the instantaneous normal mode analysis of cluster dynamics: Diffusion constants and the role of rotations in clusters

    NASA Astrophysics Data System (ADS)

    Adams, John E.; Stratt, Richard M.

    1990-08-01

    For the instantaneous normal mode analysis method to be generally useful in studying the dynamics of clusters of arbitrary size, it ought to yield values of atomic self-diffusion constants which agree with those derived directly from molecular dynamics calculations. The present study proposes that such agreement indeed can be obtained if a sufficiently sophisticated formalism for computing the diffusion constant is adopted, such as the one suggested by Madan, Keyes, and Seeley [J. Chem. Phys. 92, 7565 (1990)]. In order to implement this particular formalism, however, we have found it necessary to pay particular attention to the removal from the computed spectra of spurious rotational contributions. The utility of the formalism is demonstrated via a study of small argon clusters, for which numerous results generated using other approaches are available. We find the same temperature dependence of the Ar13 self-diffusion constant that Beck and Marchioro [J. Chem. Phys. 93, 1347 (1990)] do from their direct calculation of the velocity autocorrelation function: The diffusion constant rises quickly from zero to a liquid-like value as the cluster goes through (the finite-size equivalent of) the melting transition.

  18. Trapping of Li(+) Ions by [ThFn](4-n) Clusters Leading to Oscillating Maxwell-Stefan Diffusivity in the Molten Salt LiF-ThF4.

    PubMed

    Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M

    2016-08-18

    A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the percentage of ThF4 that can be used in the MSR to optimize the neutron economy.

  19. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  20. A novel magnetic resonance imaging segmentation technique for determining diffuse intrinsic pontine glioma tumor volume

    PubMed Central

    Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K.; Young, Robert J.; Tsiouris, Apostolos John; Thakur, Sunitha B.; Souweidane, Mark M.

    2017-01-01

    OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post–radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin’s concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods high-lighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interob-server agreement and produced tumor volumes with delineated borders. PMID:27391980

  1. Report on simulation of fission gas and fission product diffusion in UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni

    2016-07-22

    In UO 2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO 2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functionalmore » theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe U3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe U3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving Xe U3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the Xe U3O cluster for intrinsic conditions than under irradiation. We speculate that differences in the irradiation conditions and their impact on the Xe U3O cluster can explain the wide range of diffusivities reported in experimental studies. However, all vacancy-­mediated mechanisms underestimate the Xe diffusivity compared to the empirical radiation-­enhanced rate used in most fission gas release models. We investigate the possibility that diffusion of small fission gas bubbles or extended Xe-­vacancy clusters may give rise to the observed radiation-­enhanced diffusion coefficient. These studies highlight the importance of U divacancies and an octahedron coordination of uranium vacancies encompassing a Xe fission gas atom. The latter cluster can migrate via a multistep mechanism with a rather low effective barrier, which together with irradiation-induced clusters of uranium vacancies, gives rise to the irradiation-enhanced diffusion coefficient observed in experiments.« less

  2. High energy neutrinos and gamma-ray emission from supernovae in compact star clusters

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Gladilin, P. E.; Osipov, S. M.

    2017-01-01

    Compact clusters of young massive stars are observed in the Milky Way and in starburst galaxies. The compact clusters with multiple powerful winds of young massive stars and supernova shocks are favorable sites for high-energy particle acceleration. We argue that expanding young supernova (SN) shells in compact stellar clusters can be very efficient PeV CR accelerators. At a stage when a supernova shock is colliding with collective fast winds from massive stars in a compact cluster the Fermi mechanism allows particle acceleration to energies well above the standard limits of diffusive shock acceleration in an isolated SNR. The energy spectrum of protons in such an accelerator is a hard power-law with a broad spectral upturn above TeV before a break at multi-PeV energies, providing a large energy flux in the high-energy end of the spectrum. The acceleration stage in the colliding shock flow lasts for a few hundred years after the supernova explosion producing high-energy CRs that escape the accelerator and diffuse through the ambient matter producing γ-rays and neutrinos in inelastic nuclear collisions. In starburst galaxies a sizeable fraction of core collapse supernovae is expected to occur in compact star clusters and therefore their high energy gamma-ray and neutrino spectra in the PeV energy regime may differ strongly from that of our Galaxy. To test the model with individual sources we briefly discuss the recent H.E.S.S. detections of gamma-rays from two potential candidate sources, Westerlund 1 and HESS J1806-204 in the Milky Way. We argue that this model of compact star clusters, with typical parameters, could produce a neutrino flux sufficient to explain a fraction of the recently detected IceCube South Pole Observatory neutrinos.

  3. Adsorption and Diffusion of Fructose in Zeolite HZSM-5: Selection of Models and Methods for Computational Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Curtiss, Larry A.; Assary, Rajeev S.

    The adsorption and protonation of fructose inHZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46T clustermore » model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.« less

  4. Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets

    NASA Astrophysics Data System (ADS)

    Crivoi, A.; Duan, Fei

    2013-04-01

    Experiments and simulations to promote or attenuate the “coffee-ring effect” for pinned sessile nanofluid droplets are presented. The addition of surfactant inside a water suspension of aluminum oxide nanoparticles results in coffee-ring formation after the pinned sessile droplets are fully dried on a substrate, while droplets of the same suspension without the surfactant produce a fine uniform coverage. A mathematical model based on diffusion-limited cluster-cluster aggregation has been developed to explain the observed difference in the experiments. The simulations show that the particle sticking probability is a crucial factor on the morphology of finally dried structures.

  5. GeV gamma-ray flux upper limits from clusters of galaxies

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2010-06-16

    The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium (ICM). Those electrons and positrons are either injected into and accelerated directly in the ICM, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with the decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here in this paper, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope on the Fermi Gamma-raymore » Space Telescope from 2008 August to 2010 February. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV toward a sample of observed clusters (typical values (1-5) ×10 –9 photon cm –2 s –1) considering both point-like and spatially resolved models for the high-energy emission and discuss how these results constrain the characteristics of energetic leptons and hadrons, and magnetic fields in the ICM. The volume-averaged relativistic-hadron-to-thermal energy density ratio is found to be <5%-10% in several clusters.« less

  6. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  7. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    NASA Astrophysics Data System (ADS)

    Lai, King C.; Evans, James W.; Liu, Da-Jiang

    2017-11-01

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, DN ˜ N-β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for "perfect" sizes Np = L2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for Np+3, Np+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes Np+1 and Np+2. DN versus N oscillates strongly between the slowest branch (for Np+3) and the fastest branch (for Np+1). All branches merge for N = O(102), but macroscale behavior is only achieved for much larger N = O(103). This analysis reveals the unprecedented diversity of behavior on the nanoscale.

  8. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE PAGES

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  9. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  10. Modeling the Movement of Homicide by Type to Inform Public Health Prevention Efforts

    PubMed Central

    Grady, Sue; Pizarro, Jesenia M.; Melde, Chris

    2015-01-01

    Objectives. We modeled the spatiotemporal movement of hotspot clusters of homicide by motive in Newark, New Jersey, to investigate whether different homicide types have different patterns of clustering and movement. Methods. We obtained homicide data from the Newark Police Department Homicide Unit’s investigative files from 1997 through 2007 (n = 560). We geocoded the address at which each homicide victim was found and recorded the date of and the motive for the homicide. We used cluster detection software to model the spatiotemporal movement of statistically significant homicide clusters by motive, using census tract and month of occurrence as the spatial and temporal units of analysis. Results. Gang-motivated homicides showed evidence of clustering and diffusion through Newark. Additionally, gang-motivated homicide clusters overlapped to a degree with revenge and drug-motivated homicide clusters. Escalating dispute and nonintimate familial homicides clustered; however, there was no evidence of diffusion. Intimate partner and robbery homicides did not cluster. Conclusions. By tracking how homicide types diffuse through communities and determining which places have ongoing or emerging homicide problems by type, we can better inform the deployment of prevention and intervention efforts. PMID:26270315

  11. NuSTAR observations of the bullet cluster: constraints on inverse Compton emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wik, Daniel R.; Hornstrup, A.; Molendi, S.

    2014-08-13

    Here, the search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Because all prior telescopes sensitive at E > 10 keV do not focus light and have degree-scale fields of view, their backgrounds are both high and difficult to characterize. The associated uncertainties result in lower sensitivity to IC emission and a greater chance of false detection. In this work, we present 266 ks NuSTAR observations of the Bullet cluster, which is detected in the energy range 3-30more » keV. NuSTAR's unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies, the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well—but not perfectly—described as an isothermal plasma with kT = 14.2 ± 0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT ~ 15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1 × 10 –12 erg s –1 cm –2 (50-100 keV), implying a lower limit on B ≳ 0.2 μG, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future.« less

  12. New mechanisms of cluster diffusion on metal fcc(100) surfaces

    NASA Astrophysics Data System (ADS)

    Trushin, Oleg; Salo, Petri; Alatalo, Matti; Ala-Nissila, Tapio

    2001-03-01

    We have studied atomic mechanisms of the diffusion of small clusters on the fcc(100) metal surfaces using semi-empirical and ab-initio molecular static calculations. Primary goal of these studies was to investigate possible many-body mechanisms of cluster motion which can contribute to low temperature crystal growth. We used embedded atom and Glue potentials in semi-empirical simulations of Cu and Al. Combination of the Nudged Elastic Band and Eigenvector Following methods allowed us to find all the possible transition paths for cluster movements on flat terrace. In case of Cu(001) we have found several new mechanisms for diffusion of clusters, including mechanisms called row-shearing and dimer-rotating in which a whole row inside an island moves according to a concerted jump and a dimer rotates at the periphery of an island, respectively. In some cases these mechanisms yield a lower energy barrier than the standard mechanisms.

  13. The peculiar cluster MACS J0417.5-1154 in the C and X-bands

    NASA Astrophysics Data System (ADS)

    Sandhu, Pritpal; Malu, Siddharth; Raja, Ramij; Datta, Abhirup

    2018-06-01

    We present 5.5 and 9.0 GHz Australia Telescope Compact Array (ATCA) observations of the cluster MACSJ0417.5-1154, one of the most massive galaxy clusters and one of the brightest in X-ray in the Massive Cluster Survey (MACS). We estimate diffuse emission at 5.5 and 9.0 GHz from our ATCA observations, and compare the results with the 235 MHz and 610 MHz GMRT observations and 1575 MHz VLA observations. We also estimate the diffuse emission at low frequencies from existing GLEAM survey data (using the MWA telescope (http://www.mwatelescope.org)), and find that the steepening reported in earlier studies may have been an artefact of underestimates of diffuse emission at low frequencies. High-frequency radio observations of galaxy cluster mergers therefore provide an important complement to low-frequency observations, not only for a probing the `on' and `off' state of radio halos in these mergers, but also to constrain energetics of cluster mergers. We comment on the future directions that further studies of this cluster can take.

  14. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  15. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  16. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  17. Effect of sharp maximum in ion diffusivity for liquid xenon

    NASA Astrophysics Data System (ADS)

    Lankin, A. V.; Orekhov, M. A.

    2016-11-01

    Ion diffusion in a liquid usually could be treated as a movement of an ion cluster in a viscous media. For small ions this leads to a special feature: diffusion coefficient is either independent of the ion size or increases with it. We find a different behavior for small ions in liquid xenon. Calculation of the dependence of an ion diffusion coefficient in liquid xenon on the ion size is carried out. Classical molecular dynamics method is applied. Calculated dependence of the ion diffusion coefficient on its radius has sharp maximums at the ion radiuses 1.75 and 2 Å. Every maximum is placed between two regions with different stable ion cluster configurations. This leads to the instability of these configurations in a small region between them. Consequently ion with radius near 1.75 or 2 Å could jump from one configuration to another. This increases the speed of the diffusion. A simple qualitative model for this effect is suggested. The decomposition of the ion movement into continuous and jump diffusion shows that continuous part of the diffusion is the same as for the ion cluster in the stable region.

  18. Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Vacca, Valentina; Murgia, M.; Loi, F. Govoni F.; Vazza, F.; Finoguenov, A.; Carretti, E.; Feretti, L.; Giovannini, G.; Concu, R.; Melis, A.; Gheller, C.; Paladino, R.; Poppi, S.; Valente, G.; Bernardi, G.; Boschin, W.; Brienza, M.; Clarke, T. E.; Colafrancesco, S.; Enßlin, T.; Ferrari, C.; de Gasperin, F.; Gastaldello, F.; Girardi, M.; Gregorini, L.; Johnston-Hollitt, M.; Junklewitz, H.; Orrù, E.; Parma, P.; Perley, R.; Taylor, G. B.

    2018-05-01

    We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8° × 8° area in the sky, likely associated with a z≈0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.

  19. A SUZAKU SEARCH FOR NONTHERMAL EMISSION AT HARD X-RAY ENERGIES IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wik, Daniel R.; Sarazin, Craig L.; Finoguenov, Alexis

    2009-05-10

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the intracluster medium (ICM) at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial. We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its nonthermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and nonthermal models to it and a spatially equivalent spectrum derived frommore » an XMM-Newton mosaic of the Coma field. We fail to find statistically significant evidence for nonthermal emission in the spectra which are better described by only a single- or multitemperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of nonthermal emission of 6.0 x 10{sup -12} erg s{sup -1} cm{sup -2} (20-80 keV, for {gamma} = 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 {mu}G. Our flux upper limit is 2.5 times lower than the detected nonthermal flux from RXTE and BeppoSAX. However, if the nonthermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that {approx}50%-67% of the emission might go undetected, which could make our limit consistent with that of Rephaeli and Gruber and Fusco-Femiano et al. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL and Swift data.« less

  20. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  1. Theory and modeling of particles with DNA-mediated interactions

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.

    In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. A quantitative comparison between the theory and experiments is made by calculating the experimentally observed melting profile. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. The model predicts a crossover from localized to diffusive behavior. The random walk statistics for the particles' in plane diffusion is discussed. The lateral motion is analogous to dispersive transport in disordered semiconductors, ranging from standard diffusion with a renormalized diffusion coefficient to anomalous, subdiffusive behavior. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. An optimal concentration ratio is determined for the experimental implementation of our self-assembly proposal. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. We determine the probability that the system self-assembles the desired cluster geometry, and discuss the connections to jamming in granular and colloidal systems. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. A key-lock model is proposed to describe the results of in-vitro experiments, and the situation in-vivo is discussed. The cooperative binding, and hence the specificity to cancerous cells, is kinetically limited. The implications for optimizing the design of nanoparticle based drug delivery platforms is discussed. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.

  2. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  3. Self-Learning Off-Lattice Kinetic Monte Carlo method as applied to growth on metal surfaces

    NASA Astrophysics Data System (ADS)

    Trushin, Oleg; Kara, Abdelkader; Rahman, Talat

    2007-03-01

    We propose a new development in the Self-Learning Kinetic Monte Carlo (SLKMC) method with the goal of improving the accuracy with which atomic mechanisms controlling diffusive processes on metal surfaces may be identified. This is important for diffusion of small clusters (2 - 20 atoms) in which atoms may occupy Off-Lattice positions. Such a procedure is also necessary for consideration of heteroepitaxial growth. The new technique combines an earlier version of SLKMC [1] with the inclusion of off-lattice occupancy. This allows us to include arbitrary positions of adatoms in the modeling and makes the simulations more realistic and reliable. We have tested this new approach for the case of the diffusion of small 2D Cu clusters diffusion on Cu(111) and found good performance and satisfactory agreement with results obtained from previous version of SLKMC. The new method also helped reveal a novel atomic mechanism contributing to cluster migration. We have also applied this method to study the diffusion of Cu clusters on Ag(111), and find that Cu atoms generally prefer to occupy off-lattice sites. [1] O. Trushin, A. Kara, A. Karim, T.S. Rahman Phys. Rev B 2005

  4. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE PAGES

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    2017-11-27

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  5. Structural disorder in the decagonal Al-Co-Ni. I. Patterson analysis of diffuse x-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobas, Miroslav; Weber, Thomas; Steurer, Walter

    The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations aremore » present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni.« less

  6. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  7. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  8. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  9. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    NASA Astrophysics Data System (ADS)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  10. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    NASA Astrophysics Data System (ADS)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-12-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N <9 ; (ii) slow nucleation-mediated diffusion with small β <1 for "perfect" sizes N = Np= L2 or L (L +1 ) , for L =3 ,4 , ... having unique ground-state shapes, for moderate sizes 9 ≤N ≤O (102) ; the same also applies for N =Np+3 , Np+ 4 , ... (iii) facile diffusion but with large β >2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β <3 /2 , reflecting the quasifacetted structure of clusters, for larger N =O (102) to N =O (103) ; (v) classic scaling with β =3 /2 for very large N =O (103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where we show that diffusivity cycles quasiperiodically from the slowest branch for Np+3 (not Np) to the fastest branch for Np+1 . Behavior is quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.

  11. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, King C.; Liu, Da -Jiang; Evans, James W.

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2); the samemore » also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2) to N = O(10 3); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.« less

  12. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    DOE PAGES

    Lai, King C.; Liu, Da -Jiang; Evans, James W.

    2017-12-05

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2); the samemore » also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2) to N = O(10 3); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.« less

  13. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.

  14. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  15. A first constraint on the average mass of ultra-diffuse galaxies from weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Herbonnet, Ricardo

    2018-01-01

    The recent discovery of thousands of ultra-diffuse galaxies (UDGs) in nearby galaxy clusters has opened a new window into the process of galaxy formation and evolution. Several scenarios have been proposed to explain the formation history of UDGs, and their ability to survive in the harsh cluster environments. A key requirement to distinguish between these scenarios is a measurement of their halo masses which, due to their low surface brightnesses, has proven difficult if one relies on stellar tracers of the potential. We exploit weak gravitational lensing, a technique that does not depend on these baryonic tracers, to measure the average subhalo mass of 784 UDGs selected in 18 clusters at z ≤ 0.09. Our sample of UDGs has a median stellar mass 〈m⋆〉 = 2 × 108 M⊙ and a median effective radius 〈reff〉 = 2.8 kpc. We constrain the average mass of subhaloes within 30 kpc to log mUDG(r < 30 kpc)/M⊙ ≤ 10.99 at 95 per cent credibility, implying an effective virial mass log m200/M⊙ ≤ 11.80, and a lower limit on the stellar mass fraction within 10 kpc of 1.0 per cent. Such mass is consistent with a simple extrapolation of the subhalo-to-stellar mass relation of typical satellite galaxies in massive clusters. However, our analysis is not sensitive to scatter about this mean mass; the possibility remains that extreme UDGs reside in haloes as massive as the Milky Way.

  16. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shang, Yan-Xia; Zhang, Zao-Di; Wang, Ze-Song; Zhang, Rui; Fu, De-Jun

    2015-01-01

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105100, 11205116, and 11375135) and the State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China (Grant No. AWJ-M13-03).

  17. Scaling in the aggregation dynamics of a magnetorheological fluid.

    PubMed

    Domínguez-García, P; Melle, Sonia; Pastor, J M; Rubio, M A

    2007-11-01

    We present experimental results on the aggregation dynamics of a magnetorheological fluid, namely, an aqueous suspension of micrometer-sized superparamagnetic particles, under the action of a constant uniaxial magnetic field using video microscopy and image analysis. We find a scaling behavior in several variables describing the aggregation kinetics. The data agree well with the Family-Vicsek scaling ansatz for diffusion-limited cluster-cluster aggregation. The kinetic exponents z and z' are obtained from the temporal evolution of the mean cluster size S(t) and the number of clusters N(t), respectively. The crossover exponent Delta is calculated in two ways: first, from the initial slope of the scaling function; second, from the evolution of the nonaggregated particles, n1(t). We report on results of Brownian two-dimensional dynamics simulations and compare the results with the experiments. Finally, we discuss the differences obtained between the kinetic exponents in terms of the variation in the crossover exponent and relate this behavior to the physical interpretation of the crossover exponent.

  18. Li3Ge3Se6: the first ternary lithium germanium selenide with interesting ∞[Ge6Se12]n chains constructed by ethane-like [Ge2Se6]6- clusters.

    PubMed

    Li, Guangmao; Zhen, Ni; Chu, Yu; Zhou, Zhongxiang

    2017-12-21

    Li 3 Ge 3 Se 6 , the first compound of the ternary Li/Ge/Se system, has been synthesized. Note that interesting 1D ∞ [Ge 6 Se 12 ] n chains constructed by ethane-like [Ge 2 Se 6 ] 6- clusters were discovered in its structure. Investigations on the structures of all the [Ge 2 Se 6 ] 6- cluster-containing compounds have shown that only in Li 3 Ge 3 Se 6 are there 1D chains composed of [Ge 2 Se 6 ] 6- clusters, which result from the space limitation within the tunnels surrounded by LiSe 6 octahedra. Raman spectrum was obtained to demonstrate the existence of Ge-Ge bonds. UV-visible-NIR diffuse reflection spectrum showed an optical bandgap of 2.08 eV. Theoretical calculations based on first principles have also been performed for its band structure and density of states to analyze its structure-property relationship.

  19. Diffusion of small Cu islands on the Ni(111) surface: A self-learning kinetic Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Acharya, Shree Ram; Shah, Syed Islamuddin; Rahman, Talat S.

    2017-08-01

    We elucidate the diffusion kinetics of a heteroepitaxial system consisting of two-dimensional small (1-8 atoms) Cu islands on the Ni(111) surface at (100-600) K using the Self-Learning Kinetic Monte Carlo (SLKMC-II) method. Study of the statics of the system shows that compact CuN (3≤N≤8) clusters made up of triangular units on fcc occupancy sites are the energetically most stable structures of those clusters. Interestingly, we find a correlation between the height of the activation energy barrier (Ea) and the location of the transition state (TS). The Ea of processes for Cu islands on the Ni(111) surface are in general smaller than those of their counterpart Ni islands on the same surface. We find this difference to correlate with the relative strength of the lateral interaction of the island atoms in the two systems. While our database consists of hundreds of possible processes, we identify and discuss the energetics of those that are the most dominant, or are rate-limiting, or most contributory to the diffusion of the islands. Since the Ea of single- and multi-atom processes that convert compact island shapes into non-compact ones are larger (with a significantly smaller Ea for their reverse processes) than that for the collective (concerted) motion of the island, the later dominate in the system kinetics - except for the cases of the dimer, pentamer and octamer. Short-jump involving one atom, long jump dimer-shearing, and long-jump corner shearing (via a single-atom) are, respectively, the dominating processes in the diffusion of the dimer, pentamer and octamer. Furthermore single-atom corner-rounding are the rate-limiting processes for the pentamer and octamer islands. Comparison of the energetics of selected processes and lateral interactions obtained from semi-empirical interatomic potentials with those from density functional theory show minor quantitative differences and overall qualitative agreement.

  20. CONSTRAINTS ON COSMIC RAYS, MAGNETIC FIELDS, AND DARK MATTER FROM GAMMA-RAY OBSERVATIONS OF THE COMA CLUSTER OF GALAXIES WITH VERITAS AND FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arlen, T.; Aune, T.; Bouvier, A.

    2012-10-01

    Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on themore » order of (2-5) Multiplication-Sign 10{sup -8} photons m {sup -2} s {sup -1} (VERITAS, >220 GeV) and {approx}2 Multiplication-Sign 10{sup -6} photons m {sup -2} s {sup -1} (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be <16% from VERITAS data and <1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of {approx}(2-5.5) {mu}G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, ({sigma}v).« less

  1. Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-ray Observations of the Coma Cluster of Galaxies with VERITAS and FERMI

    NASA Technical Reports Server (NTRS)

    Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; hide

    2012-01-01

    Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E greater than100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99 confidence level were measured to be on the order of (2-5) x 10(sup -8) photons m(sup -2) s(sup -1) (VERITAS,greater than 220 GeV) and approximately 2 x 10(sup -6) photons m(sup -2) s(sup -1) (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be less than 16% from VERITAS data and less than 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be 50. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of approximately (2-5.5)microG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, (sigma upsilon)

  2. A comparison between observed and analytical velocity dispersion profiles of 20 nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.

    2014-05-01

    We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.

  3. Occurrence of Radio Minihalos in a Mass-Limited Sample of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Markevitch, Maxim; Cassano, Rossella; Venturi, Tiziana; Clarke, Tracy E.; Brunetti, Gianfranco

    2017-01-01

    We investigate the occurrence of radio minihalos-diffuse radio sources of unknown origin observed in the cores of some galaxy clusters-in a statistical sample of 58 clusters drawn from the Planck Sunyaev-Zeldovich cluster catalog using a mass cut (M(sub 500) greater than 6 x 10(exp 14) solar mass). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores-at least 12 out of 15 (80%)-in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or "warm cores." These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.

  4. Crystallization process of a three-dimensional complex plasma

    NASA Astrophysics Data System (ADS)

    Steinmüller, Benjamin; Dietz, Christopher; Kretschmer, Michael; Thoma, Markus H.

    2018-05-01

    Characteristic timescales and length scales for phase transitions of real materials are in ranges where a direct visualization is unfeasible. Therefore, model systems can be useful. Here, the crystallization process of a three-dimensional complex plasma under gravity conditions is considered where the system ranges up to a large extent into the bulk plasma. Time-resolved measurements exhibit the process down to a single-particle level. Primary clusters, consisting of particles in the solid state, grow vertically and, secondarily, horizontally. The box-counting method shows a fractal dimension of df≈2.72 for the clusters. This value gives a hint that the formation process is a combination of local epitaxial and diffusion-limited growth. The particle density and the interparticle distance to the nearest neighbor remain constant within the clusters during crystallization. All results are in good agreement with former observations of a single-particle layer.

  5. The interplay between star formation and the nuclear environment of our Galaxy: deep X-ray observations of the Galactic centre Arches and Quintuplet clusters

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Dong, Hui; Lang, Cornelia

    2006-09-01

    The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.

  6. Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12

    PubMed Central

    Chen, Chi; Lu, Ziheng; Ciucci, Francesco

    2017-01-01

    Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations. PMID:28094317

  7. Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Chen, Chi; Lu, Ziheng; Ciucci, Francesco

    2017-01-01

    Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations.

  8. Clusters of Galaxies and the Cosmic Web with Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Kale, Ruta; Dwarakanath, K. S.; Vir Lal, Dharam; Bagchi, Joydeep; Paul, Surajit; Malu, Siddharth; Datta, Abhirup; Parekh, Viral; Sharma, Prateek; Pandey-Pommier, Mamta

    2016-12-01

    The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15-1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05-20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev-Zel'dovich effect to probe the ICM pressure in addition to tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the `off-state' or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.

  9. Radio observations of the double-relic galaxy cluster Abell 1240

    NASA Astrophysics Data System (ADS)

    Hoang, D. N.; Shimwell, T. W.; van Weeren, R. J.; Intema, H. T.; Röttgering, H. J. A.; Andrade-Santos, F.; Akamatsu, H.; Bonafede, A.; Brunetti, G.; Dawson, W. A.; Golovich, N.; Best, P. N.; Botteon, A.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoeft, M.; Stroe, A.; White, G. J.

    2018-05-01

    We present LOFAR 120 - 168 MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT 595 - 629 MHz and VLA 2 - 4 GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of M=2.4 and 2.3 for the northern and southern shocks, respectively. For M≲ 3 shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high (>10 per cent) particle acceleration efficiency required. However, for M≳ 4 shocks the required efficiency is ≳ 1% and ≳ 0.5%, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to ≥53 ± 3° and ≥39 ± 5° for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics (˜1.8 Mpc) our upper limit on the power is P1.4GHz = (1.4 ± 0.6) × 1023 W Hz-1 which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.

  10. Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach

    NASA Astrophysics Data System (ADS)

    Jiang, Hao

    Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.

  11. Lagrangian analysis by clustering. An example in the Nordic Seas.

    NASA Astrophysics Data System (ADS)

    Koszalka, Inga; Lacasce, Joseph H.

    2010-05-01

    We propose a new method for obtaining average velocities and eddy diffusivities from Lagrangian data. Rather than grouping the drifter-derived velocities in uniform geographical bins, as is commonly done, we group a specified number of nearest-neighbor velocities. This is done via a clustering algorithm operating on the instantaneous positions of the drifters. Thus it is the data distribution itself which determines the positions of the averages and the areal extent of the clusters. A major advantage is that because the number of members is essentially the same for all clusters, the statistical accuracy is more uniform than with geographical bins. We illustrate the technique using synthetic data from a stochastic model, employing a realistic mean flow. The latter is an accurate representation of the surface currents in the Nordic Seas and is strongly inhomogeneous in space. We use the clustering algorithm to extract the mean velocities and diffusivities (both of which are known from the stochastic model). We also compare the results to those obtained with fixed geographical bins. Clustering is more successful at capturing spatial variability of the mean flow and also improves convergence in the eddy diffusivity estimates. We discuss both the future prospects and shortcomings of the new method.

  12. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters

    NASA Astrophysics Data System (ADS)

    Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.

    2015-10-01

    Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

  13. Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures.

    PubMed

    Wu, Jincheng; Rostami, Mahboubeh Rahmati; Cadavid Olaya, Diana P; Tzanakakis, Emmanuel S

    2014-01-01

    Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics.

  14. Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.

    PubMed

    Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B

    2017-05-15

    Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Tumor proliferation and diffusion on percolation clusters.

    PubMed

    Jiang, Chongming; Cui, Chunyan; Zhong, Weirong; Li, Gang; Li, Li; Shao, Yuanzhi

    2016-10-01

    We study in silico the influence of host tissue inhomogeneity on tumor cell proliferation and diffusion by simulating the mobility of a tumor on percolation clusters with different homogeneities of surrounding tissues. The proliferation and diffusion of a tumor in an inhomogeneous tissue could be characterized in the framework of the percolation theory, which displays similar thresholds (0.54, 0.44, and 0.37, respectively) for tumor proliferation and diffusion in three kinds of lattices with 4, 6, and 8 connecting near neighbors. Our study reveals the existence of a critical transition concerning the survival and diffusion of tumor cells with leaping metastatic diffusion movement in the host tissues. Tumor cells usually flow in the direction of greater pressure variation during their diffusing and infiltrating to a further location in the host tissue. Some specific sites suitable for tumor invasion were observed on the percolation cluster and around these specific sites a tumor can develop into scattered tumors linked by some advantage tunnels that facilitate tumor invasion. We also investigate the manner that tissue inhomogeneity surrounding a tumor may influence the velocity of tumor diffusion and invasion. Our simulation suggested that invasion of a tumor is controlled by the homogeneity of the tumor microenvironment, which is basically consistent with the experimental report by Riching et al. as well as our clinical observation of medical imaging. Both simulation and clinical observation proved that tumor diffusion and invasion into the surrounding host tissue is positively correlated with the homogeneity of the tissue.

  16. Detection of a Double Relic in the Torpedo Cluster: SPT-CL J0245-5302

    NASA Astrophysics Data System (ADS)

    Zheng, Q.; Johnston-Hollitt, M.; Duchesne, S. W.; Li, W. T.

    2018-06-01

    The Torpedo cluster, SPT-CL J0245-5302 (S0295) is a massive, merging cluster at a redshift of z = 0.300, which exhibits a strikingly similar morphology to the Bullet cluster 1E 0657-55.8 (z = 0.296), including a classic bow shock in the cluster's intra-cluster medium revealed by Chandra X-ray observations. We present Australia Telescope Compact Array data centred at 2.1 GHz and Murchison Widefield Array data at frequencies between 72 MHz and 231 MHz which we use to study the properties of the cluster. We characterise a number of discrete and diffuse radio sources in the cluster, including the detection of two previously unknown radio relics on the cluster periphery. The average spectral index of the diffuse emission between 70 MHz and 3.1 GHz is α =-1.63_{-0.10}^{+0.10} and a radio-derived Mach number for the shock in the west of the cluster is calculated as M = 2.04. The Torpedo cluster is thus a double relic system at moderate redshift.

  17. MASS ACCRETION AND ITS EFFECTS ON THE SELF-SIMILARITY OF GAS PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille

    2015-06-10

    Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less

  18. Limits to the radiative decay of the axion

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted

    1991-01-01

    An axion with a mass greater than 1 eV should be detectable through its decay into two photons. The astrophysical and cosmological limits which define a small window of allowed axion mass above 3 eV are discussed. A firm upper bound to the axion's mass of M(sub a) less than or equal to 8 eV is derived by considering the effect of decaying axions upon the diffuse extragalactic background radiation and the brightness of the night sky due to axions in the halo of the Milky Way galaxy. The intergalactic light of clusters of galaxies is shown to be an ideal place to search for an emission line arising from the radiative decay of axions. An unsuccessful search for this emission line in three clusters of galaxies is then detailed. Limits to the presence of any intracluster line emission are derived with the result that axions with masses between 3 and 8 eV are excluded by the data, effectively closing this window of axion mass, unless a severe cancellation of axionic decay amplitudes occurs. The intracluster flux limits are then used to constrain the amplitude of any such model dependence.

  19. Kinetic Monte Carlo simulations of electrodeposition: Crossover from continuous to instantaneous homogeneous nucleation within Avrami’s law

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Rikvold, Per Arne

    2006-06-01

    The influence of lateral adsorbate diffusion on the dynamics of the first-order phase transition in a two-dimensional Ising lattice gas with attractive nearest-neighbor interactions is investigated by means of kinetic Monte Carlo simulations. For example, electrochemical underpotential deposition proceeds by this mechanism. One major difference from adsorption in vacuum surface science is that under control of the electrode potential and in the absence of mass-transport limitations, local adsorption equilibrium is approximately established. We analyze our results using the theory of Kolmogorov, Johnson and Mehl, and Avrami (KJMA), which we extend to an exponentially decaying nucleation rate. Such a decay may occur due to a suppression of nucleation around existing clusters in the presence of lateral adsorbate diffusion. Correlation functions prove the existence of such exclusion zones. By comparison with microscopic results for the nucleation rate I and the interface velocity of the growing clusters v, we can show that the KJMA theory yields the correct order of magnitude for Iv2. This is true even though the spatial correlations mediated by diffusion are neglected. The decaying nucleation rate causes a gradual crossover from continuous to instantaneous nucleation, which is complete when the decay of the nucleation rate is very fast on the time scale of the phase transformation. Hence, instantaneous nucleation can be homogeneous, producing negative minima in the two-point correlation functions. We also present in this paper an n-fold way Monte Carlo algorithm for a square lattice gas with adsorption/desorption and lateral diffusion.

  20. Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Takahashi, Minoru; Cavallotti, Carlo; Raos, Guido

    2018-04-01

    Corrosion of stainless steels by lead-bismuth eutectic (LBE) is an important problem which depends, amongst other things, on the diffusion of the steel components inside this liquid alloy. Here we present the results of classical molecular dynamics simulations of the diffusion of Fe and Ni within LBE. The simulations complement experimental studies of impurity diffusion by our group and provide an atomic-level understanding of the relevant diffusion phenomena. They are based on the embedded atom method (EAM) to represent many-body interactions among atoms. The EAM potentials employed in our simulations have been validated against ab initio density functional calculations. We show that the experimental and simulation results for the temperature-dependent viscosity of LBE and the impurity diffusion coefficients can be reconciled by assuming that the Ni and Fe diffuse mainly as nanoscopic clusters below 1300 K. The average Fe and Ni cluster sizes decrease with increasing the temperature and there is essentially single-atom diffusion at higher temperatures.

  1. Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate.

    PubMed

    Jambor, Ivan; Merisaari, Harri; Aronen, Hannu J; Järvinen, Jukka; Saunavaara, Jani; Kauko, Tommi; Borra, Ronald; Pesola, Marko

    2014-05-01

    To determine the optimal b-value distribution for biexponential diffusion-weighted imaging (DWI) of normal prostate using both a computer modeling approach and in vivo measurements. Optimal b-value distributions for the fit of three parameters (fast diffusion Df, slow diffusion Ds, and fraction of fast diffusion f) were determined using Monte-Carlo simulations. The optimal b-value distribution was calculated using four individual optimization methods. Eight healthy volunteers underwent four repeated 3 Tesla prostate DWI scans using both 16 equally distributed b-values and an optimized b-value distribution obtained from the simulations. The b-value distributions were compared in terms of measurement reliability and repeatability using Shrout-Fleiss analysis. Using low noise levels, the optimal b-value distribution formed three separate clusters at low (0-400 s/mm2), mid-range (650-1200 s/mm2), and high b-values (1700-2000 s/mm2). Higher noise levels resulted into less pronounced clustering of b-values. The clustered optimized b-value distribution demonstrated better measurement reliability and repeatability in Shrout-Fleiss analysis compared with 16 equally distributed b-values. The optimal b-value distribution was found to be a clustered distribution with b-values concentrated in the low, mid, and high ranges and was shown to improve the estimation quality of biexponential DWI parameters of in vivo experiments. Copyright © 2013 Wiley Periodicals, Inc.

  2. The Limitation of Species Range: A Consequence of Searching Along Resource Gradients

    PubMed Central

    Rowell, Jonathan T.

    2009-01-01

    Ecological modelers have long puzzled over the spatial distribution of species. The random walk or diffusive approach to dispersal has yielded important results for biology and mathematics, yet it has been inadequate in explaining all phenomenological features. Ranges can terminate non-smoothly absent a complementary shift in the characteristics of the environment. Also unexplained is the absence of a species from nearby areas of adequate, or even abundant, resources. In this paper, I show how local searching behavior - keyed to a density-dependent fitness - can limit the speed and extent of a species’ spread. In contrast to standard diffusive processes, pseudo-rational movement facilitates the clustering of populations. It also can be used to estimate the speed of an expanding population range, explain expansion stall, and provides a mechanism by which a population can colonize seemingly removed regions - biogeographic islands in a continental framework. Finally, I discuss the effect of resource degradation and different resource impact/utilization curves on the model. PMID:19303032

  3. Water diffusion-exchange effect on the paramagnetic relaxation enhancement in off-resonance rotating frame

    NASA Astrophysics Data System (ADS)

    Zhang, Huiming; Xie, Yang; Ji, Tongyu

    2007-06-01

    The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.

  4. Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms

    DOE PAGES

    LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; ...

    2015-12-14

    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less

  5. Simulations of Xe and U diffusion in UO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders D.; Vyas, Shyam; Tonks, Michael R.

    2012-09-10

    Diffusion of xenon (Xe) and uranium (U) in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. Based on the vacancy and cluster diffusion mechanisms established from density functional theory (DFT) calculations, we derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2}. In order to capture the effects of irradiation, vacancies (Va) are explicitly coupled to the Xe and U dynamics. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the bulk diffusion model with models of the interaction between Xe atoms andmore » vacancies with grain boundaries, which were derived from atomistic calculations. The diffusion and segregation models were implemented in the MOOSE-Bison-Marmot (MBM) finite element (FEM) framework and the Xe/U redistribution was simulated for a few simple microstructures.« less

  6. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    PubMed

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. ATCA 16 cm observation of CIZA J1358.9-4750: Implication of merger stage and constraint on non-thermal properties

    NASA Astrophysics Data System (ADS)

    Akahori, Takuya; Kato, Yuichi; Nakazawa, Kazuhiro; Ozawa, Takeaki; Gu, Liyi; Takizawa, Motokazu; Fujita, Yutaka; Nakanishi, Hiroyuki; Okabe, Nobuhiro; Makishima, Kazuo

    2018-06-01

    We report the Australia Telescope Compact Array 16 cm observation of CIZA J1358.9-4750. Recent X-ray studies imply that this galaxy cluster is composed of merging, binary clusters. Using the EW367 configuration, we found no significant diffuse radio emission in and around the cluster. An upper limit of the total radio power at 1.4 GHz is ˜1.1 × 1022 W Hz-1 in 30 square arcminutes, which is a typical size for radio relics. It is known that an empirical relation holds between the total radio power and X-ray luminosity of the host cluster. The upper limit is about one order of magnitude lower than the power expected from the relation. Very young (˜70 Myr) shocks with low Mach numbers (˜1.3), which are often seen at an early stage of merger simulations, are suggested by the previous X-ray observation. The shocks may generate cosmic-ray electrons with a steep energy spectrum, which is consistent with non-detection of bright (>1023 W Hz-1) relic in this 16 cm band observation. Based on the assumption of energy equipartition, the upper limit gives a magnetic field strength of below 0.68f(Dlos/1 Mpc)-1(γmin/200)-1 μG, where f is the cosmic-ray total energy density over the cosmic-ray electron energy density, Dlos is the depth of the shock wave along the sightline, and γmin is the lower cutoff Lorentz factor of the cosmic-ray electron energy spectrum.

  8. Occurrence of Radio Minihalos in a Mass-limited Sample of Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacintucci, Simona; Clarke, Tracy E.; Markevitch, Maxim

    2017-06-01

    We investigate the occurrence of radio minihalos—diffuse radio sources of unknown origin observed in the cores of some galaxy clusters—in a statistical sample of 58 clusters drawn from the Planck Sunyaev–Zel’dovich cluster catalog using a mass cut ( M {sub 500} > 6 × 10{sup 14} M {sub ⊙}). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present.more » Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores—at least 12 out of 15 (80%)—in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or “warm cores.” These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.« less

  9. MARMOT simulations of Xe segregation to grain boundaries in UO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders D.; Tonks, Michael; Casillas, Luis

    2012-06-20

    Diffusion of Xe and U in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2} based on the vacancy and cluster diffusion mechanisms established from recent density functional theory (DFT) calculations. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finitemore » element (FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this report we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the coupled diffusion of vacancies and Xe have also been implemented, but results are not included in this report.« less

  10. Kinetics of binary nucleation of vapors in size and composition space.

    PubMed

    Fisenko, Sergey P; Wilemski, Gerald

    2004-11-01

    We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distribution function of the clusters is determined in terms of the variables g and x. We obtain an approximate analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the relaxation or induction time for binary nucleation was calculated using Galerkin's method. This relaxation time is affected by processes in both size and composition space, but the contributions from each process can be separated only approximately.

  11. Origins of ultra-diffuse galaxies in the Coma cluster - I. Constraints from velocity phase-space

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola; Ferré-Mateu, Anna; Romanowsky, Aaron J.; Brodie, Jean; Forbes, Duncan A.; Wasserman, Asher; Bellstedt, Sabine; Martín-Navarro, Ignacio; Pandya, Viraj; Stone, Maria B.; Okabe, Nobuhiro

    2018-06-01

    We use Keck/DEIMOS spectroscopy to confirm the cluster membership of 16 ultra-diffuse galaxies (UDGs) in the Coma cluster, bringing the total number of spectroscopically confirmed UDGs from the Yagi et al. (Y16) catalog to 25. We also identify a new cluster background UDG, confirming that most (˜95 per cent) of the UDGs in the Y16 catalog belong to the Coma cluster. In this pilot study of Coma UDGs in velocity phase-space, we find evidence of a diverse origin for Coma cluster UDGs, similar to normal dwarf galaxies. Some UDGs in our sample are consistent with being late infalls into the cluster environment while some may have been in the cluster for ≥8 Gyr. The late infallen UDGs have higher absolute relative line-of-sight velocities, bluer optical colors, and within the projected cluster core, are smaller in size, compared to the early infalls. The early infall UDGs, which may also have formed in-situ, have been in the cluster environment for as long as the most luminous galaxies in the Coma cluster and they may be failed galaxies which experienced star formation quenching at earlier epochs.

  12. Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.

    PubMed

    Manaa, M Riad; Reed, Evan J; Fried, Laurence E; Goldman, Nir

    2009-04-22

    We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATB toward the final decomposition products of fluid N(2) and solid carbon is inhibited due to the formation of these heterocycles. Our results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB.

  13. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew, E-mail: amugler@purdue.edu

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations ofmore » the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.« less

  14. Coalescence of silver clusters by immersion in diluted HF solution

    NASA Astrophysics Data System (ADS)

    Milazzo, R. G.; Mio, A. M.; D'Arrigo, G.; Grimaldi, M. G.; Spinella, C.; Rimini, E.

    2015-07-01

    The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 1011-1012 cm-2. The amount of deposited Ag follows a t1/2 dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag+. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/rmean follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H2O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10-13 cm2/s. Attractive interaction (probably van der Waals) among particles promotes coarsening.

  15. Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles.

    PubMed

    Levitas, Valery I

    2013-11-28

    A recently suggested melt-dispersion mechanism (MDM) for fast reaction of aluminium (Al) nano- and a few micrometre-scale particles during fast heating is reviewed. Volume expansion of 6% during Al melting produces pressure of several GPa in a core and tensile hoop stresses of 10 GPa in an oxide shell. Such stresses cause dynamic fracture and spallation of the shell. After spallation, an unloading wave propagates to the centre of the particle and creates a tensile pressure of 3-8 GPa. Such a tensile pressure exceeds the cavitation strength of liquid Al and disperses the melt into small, bare clusters (fragments) that fly at a high velocity. Reaction of the clusters is not limited by diffusion through a pre-existing oxide shell. Some theoretical and experimental results related to the MDM are presented. Various theoretical predictions based on the MDM are in good qualitative and quantitative agreement with experiments, which resolves some basic puzzles in combustion of Al particles. Methods to control and improve reactivity of Al particles are formulated, which are exactly opposite to the current trends based on diffusion mechanism. Some of these suggestions have experimental confirmation.

  16. Theoretical insight into Cobalt subnano-clusters adsorption on α-Al{sub 2}O{sub 3} (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fen-e; Ren, Jun, E-mail: jun.ren@nuc.edu.cn; Wang, Qiang

    The investigation on the structural stability, nucleation, growth and interaction of cobalt cluster Con(n=2–7) on the α-Al{sub 2}O{sub 3}(0001) surface by using density functional theory methods has been reported. Energetically, the most favorable adsorption sites were identified and the strongest adsorption energy cluster is the tetrahedral Co{sub 4} cluster. On the other hand, the nucleation of Con(n=2–7) clusters on the surface is exothermic and thermodynamically favorable. Moreover, even-odd alternation was found with respect to clusters nucleation as a function of the number of cobalt atoms (for n=1–7). Meanwhile, the Co{sub n} clusters can be adsorbed on the surface stably owingmore » to the charge transfer from Co atoms to Al and O atoms of the Al{sub 2}O{sub 3} substrate. In addition, we establish the crucial importance of monomer, dimer and trimer diffusion on the surface. The diffusion of the monomer cobalt from Al{sup (3)} to O{sup (5)} or O{sup (5)} to Al{sup (4)} site is quite easy on the Al{sub 2}O{sub 3}(0001) surface, whereas the diffusion of the Co{sub 2} dimer is thermodynamically unfavorable by compared with that of the Co adatom and Co{sub 3} trimer. - Graphical abstract: Diffusion process of Co adatom on the α-Al{sub 2}O{sub 3} (0001) surface, Al{sup (3)} site→O{sup (5)} site→Al{sup (4)} site. Potential energy surface for diffusion of a single Co atom from Al{sup (3)} to O{sup (5)} site, and from O{sup (5)} to Al{sup (4)} site on the surface. The activation energy of the two migration processes from Al{sup (3)} to O{sup (5)} and O{sup (5)} to Al{sup (4)} are 0.06 and 0.09 eV, respectively. This implies the monomer is quite mobile on the surface under typical growth conditions.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehgal, Ray M.; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu; Ford, David M., E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ{sub 38}). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space,more » we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ{sub 38} cluster.« less

  18. Scattering properties of alumina particle clusters with different radius of monomers in aerocraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin; Gong, Yanjun

    2017-11-01

    In this paper, diffusion limited aggregation (DLA) algorithm is improved to generate the alumina particle cluster with different radius of monomers in the plume. Scattering properties of these alumina clusters are solved by the multiple sphere T matrix method (MSTM). The effect of the number and radius of monomers on the scattering properties of clusters of alumina particles is discussed. The scattering properties of two types of alumina particle clusters are compared, one has different radius of monomers that follows lognormal probability distribution, another has the same radius of monomers that equals the mean of lognormal probability distribution. The result show that the scattering phase functions and linear polarization degrees of these two types of alumina particle clusters are of great differences. For the alumina clusters with different radius of monomers, the forward scatterings are bigger and the linear polarization degree has multiple peaks. Moreover, the vary of their scattering properties do not have strong correlative with the change of number of monomers. For larger booster motors, 25-38% of the plume being condensed alumina. The alumina can scatter radiation from other sources present in the plume and effect on radiation transfer characteristics of plume. In addition, the shape, size distribution and refractive index of the particles in the plume are estimated by linear polarization degree. Therefore, accurate scattering properties calculation is very important to decrease the deviation in the related research.

  19. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  20. Cluster geometry and survival probability in systems driven by reaction diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Windus, Alastair; Jensen, Henrik J.

    2008-11-01

    We consider a reaction-diffusion model incorporating the reactions A→phi, A→2A and 2A→3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.

  1. Unveiling the Synchrotron Cosmic Web: Pilot Study

    NASA Astrophysics Data System (ADS)

    Brown, Shea; Rudnick, Lawrence; Pfrommer, Christoph; Jones, Thomas

    2011-10-01

    The overall goal of this project is to challenge our current theoretical understanding of the relativistic particle populations in the inter-galactic medium (IGM) through deep 1.4 GHz observations of 13 massive, high-redshift clusters of galaxies. Designed to compliment/extend the GMRT radio halo survey (Venturi et al. 2007), these observations will attempt to detect the peaks of the purported synchrotron cosmic-web, and place serious limits on models of CR acceleration and magnetic field amplification during large-scale structure formation. The primary goals of this survey are: 1) Confirm the bi-modal nature of the radio halo population, which favors turbulent re-acceleration of cosmic-ray electrons (CRe) during cluster mergers as the source of the diffuse radio emission; 2) Directly test hadronic secondary models which predict the presence of cosmic-ray protons (CRp) in the cores of massive X-ray clusters; 3) Search in polarization for shock structures, a potential source of CR acceleration in the IGM.

  2. Multiscale Computer Simulation of Failure in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2008-01-01

    Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.

  3. The split in the ancient cold front in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Walker, Stephen A.; ZuHone, John; Fabian, Andy; Sanders, Jeremy

    2018-04-01

    Sloshing cold fronts in clusters, produced as the dense cluster core moves around in the cluster potential in response to in-falling subgroups, provide a powerful probe of the physics of the intracluster medium and the magnetic fields permeating it1,2. These sharp discontinuities in density and temperature rise gradually outwards with age in a characteristic spiral pattern, embedding into the intracluster medium a record of the minor merging activity of clusters: the further from the cluster centre a cold front is, the older it is. Recently, it was discovered that these cold fronts can survive out to extremely large radii in the Perseus cluster3. Here, we report on high-spatial-resolution Chandra observations of the large-scale cold front in Perseus. We find that rather than broadening through diffusion, the cold front remains extremely sharp (consistent with abrupt jumps in density) and instead is split into two sharp edges. These results show that magnetic draping can suppress diffusion for vast periods of time—around 5 Gyr—even as the cold front expands out to nearly half the cluster virial radius.

  4. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    NASA Astrophysics Data System (ADS)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  5. White matter alterations in college football players: a longitudinal diffusion tensor imaging study.

    PubMed

    Mayinger, Michael Christian; Merchant-Borna, Kian; Hufschmidt, Jakob; Muehlmann, Marc; Weir, Isabelle Ruth; Rauchmann, Boris-Stephan; Shenton, Martha Elizabeth; Koerte, Inga Katharina; Bazarian, Jeffrey John

    2018-02-01

    The aim of this study was to evaluate longitudinal changes in the diffusion characteristics of brain white matter (WM) in collegiate athletes at three time points: prior to the start of the football season (T1), after one season of football (T2), followed by six months of no-contact rest (T3). Fifteen male collegiate football players and 5 male non-athlete student controls underwent diffusion MR imaging and computerized cognitive testing at all three timepoints. Whole-brain tract-based spatial statistics (TBSS) were used to compare fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and trace between all timepoints. Average diffusion values were obtained from statistically significant clusters for each individual. No athlete suffered a concussion during the study period. After one season of play (T1 to T2), we observed a significant increase in trace in a cluster located in the brainstem and left temporal lobe, and a significant increase in FA in the left parietal lobe. After six months of no-contact rest (T2 to T3), there was a significant decrease in trace and FA in clusters that were partially overlapping or in close proximity with the initial clusters (T1 to T2), with no significant changes from T1 to T3. Repetitive head impacts (RHI) sustained during a single football season may result in alterations of the brain's WM in collegiate football players. These changes appear to return to baseline after 6 months of no-contact rest, suggesting remission of WM alterations. Our preliminary results suggest that collegiate football players might benefit from periods without exposure to RHI.

  6. A novel method for computing effective diffusivity: Application to helium implanted α-Fe thin films

    NASA Astrophysics Data System (ADS)

    Dunn, Aaron; Agudo-Merida, Laura; Martin-Bragado, Ignacio; McPhie, Mathieu; Cherkaoui, Mohammed; Capolungo, Laurent

    2014-05-01

    The effective diffusivity of helium in thin iron films is quantified using spatially resolved stochastic cluster dynamics and object kinetic Monte Carlo simulations. The roles of total displacement dose (in DPA), damage rate, helium to DPA ratio, layer thickness, and damage type (cascade damage vs Frenkel pair implantation) on effective He diffusivity are investigated. Helium diffusivity is found to decrease with increasing total damage and decreasing damage rate. Arrhenius plots show strongly increased helium diffusivity at high temperatures, high total implantation, and low implantation rates due to decreased vacancy and vacancy cluster concentrations. At low temperatures, effective diffusivity is weakly dependent on foil thickness while at high temperatures, narrower foils prevent defect accumulation by releasing all defects at the free surfaces. Helium to DPA ratio is not shown to strongly change helium diffusivity in the range of irradiation conditions simulated. Frenkel pair implantation is shown to cause higher effective diffusivity and more complex diffusion mechanisms than cascade implantation. The results of these simulations indicate that the differences in damage rates between implantation experiments and fission or fusion environments may result in differences in the final microstructure.

  7. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    NASA Astrophysics Data System (ADS)

    Randall, S. W.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Dawson, W. A.; Mroczkowski, T.; Blanton, E. L.; Bulbul, E.; Giacintucci, S.

    2016-06-01

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.

  8. MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Weeren, R. J. van; Clarke, T. E.

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  9. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  10. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE PAGES

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van; ...

    2016-05-25

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  11. On the limits to Ti incorporation into Si using pulsed laser melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Jay, E-mail: jay.mathews@udayton.edu; Warrender, Jeffrey M.; Akey, Austin J.

    2014-03-17

    Fabrication of p-Si(111) layers with Ti levels well above the solid solubility limit was achieved via ion implantation of 15 keV {sup 48}Ti{sup +} at doses of 10{sup 12} to 10{sup 16} cm{sup −2} followed by pulsed laser melting using a Nd:YAG laser (FWHM = 6 ns) operating at 355 nm. All implanted layers were examined using cross-sectional transmission electron microscopy, and only the 10{sup 16} cm{sup −2} Ti implant dose showed evidence of Ti clustering in a microstructure with a pattern of Ti-rich zones. The liquid phase diffusivity and diffusive velocity of Ti in Si were estimated to be 9 × 10{sup −4} cm{sup 2}/s and (2 ± 0.5) × 10{sup 4} m/s,more » respectively. Using these results the morphological stability limit for planar resolidification of Si:Ti was evaluated, and the results indicate that attaining sufficient concentrations of Ti in Si to reach the nominal Mott transition in morphologically stable plane-front solidification should occur only for velocities so high as to exceed the speed limits for crystalline regrowth in Si(111)« less

  12. The Outer Limits of Galaxy Clusters: Observations to the Virial Radius with Suzaku, XMM,and Chandra

    NASA Technical Reports Server (NTRS)

    Miller, Eric D.; Bautz, Marshall; George, Jithin; Mushotzky, Richard; Davis, David; Henry, J. Patrick

    2012-01-01

    The outskirts of galaxy clusters, near the virial radius, remain relatively unexplored territory and yet are vital to our understanding of cluster growth, structure, and mass. In this presentation, we show the first results from a program to constrain the sate of the outer intra-cluster medium (ICM) in a large sample of galaxy clusters, exploiting the strengths of three complementary X-ray observatories: Suzaku (low, stable background), XMM-Newton (high sensitivity),and Chandra (good spatial resolution). By carefully combining observations from the cluster core to beyond r200, we are able to identify and reduce systematic uncertainties that would impede our spatial and spectral analysis using a single telescope. Our sample comprises nine clusters at z is approximately 0.1-0.2 fully covered in azimuth to beyond r200, and our analysis indicates that the ICM is not in hydrostatic equilibrium in the cluster outskirts, where we see clear azimuthal variations in temperature and surface brightness. In one of the clusters, we are able to measure the diffuse X-ray emission well beyond r200, and we find that the entropy profile and the gas fraction are consistent with expectations from theory and numerical simulations. These results stand in contrast to recent studies which point to gas clumping in the outskirts; the extent to which differences of cluster environment or instrumental effects factor in this difference remains unclear. From a broader perspective, this project will produce a sizeable fiducial data set for detailed comparison with high-resolution numerical simulations.

  13. Constraints on the Sunyaev-Zel'dovich signal from the warm-hot intergalactic medium from WMAP and SPT data

    NASA Astrophysics Data System (ADS)

    Génova-Santos, Ricardo; Suárez-Velásquez, I.; Atrio-Barandela, F.; Mücket, J. P.

    2013-07-01

    The fraction of ionized gas in the warm-hot intergalactic medium induces temperature anisotropies on the cosmic microwave background similar to those of clusters of galaxies. The Sunyaev-Zel'dovich (SZ) anisotropies due to these low-density, weakly non-linear, baryon filaments cannot be distinguished from that of clusters using frequency information, but they can be separated since their angular scales are very different. To determine the relative contribution of the WHIM SZ signal to the radiation power spectrum of temperature anisotropies, we explore the parameter space of the concordance Λ cold dark matter model using Monte Carlo Markov chains and the Wilkinson Microwave Anisotropy Probe 7 yr and South Pole Telescope data. We find marginal evidence of a contribution by diffuse gas, with amplitudes of AWHIM = 10-20 μK2, but the results are also compatible with a null contribution from the WHIM, allowing us to set an upper limit of AWHIM < 43 μK2 (95.4 per cent CL). The signal produced by galaxy clusters remains at ACL = 4.5 μK2, a value similar to what is obtained when no WHIM is included. From the measured WHIM amplitude, we constrain the temperature-density phase diagram of the diffuse gas, and find it to be compatible with numerical simulations. The corresponding baryon fraction in the WHIM varies from 0.43 to 0.47, depending on model parameters. The forthcoming Planck data could set tighter constraints on the temperature-density relation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Chang W.; Iddir, Hakim; Uzun, Alper

    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir 3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir 3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations providedmore » estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.« less

  15. The effects of charge, polymerization, and cluster size on the diffusivity of dissolved Si species in pore water

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tadashi; Sakuma, Hiroshi

    2018-03-01

    Silicon (Si) is the most abundant cation in crustal rocks. The charge and degree of polymerization of dissolved Si significantly change depending on solution pH and Si concentration. We used molecular dynamics (MD) simulations to predict the self-diffusion coefficients of dissolved Si, DSi, for 15 monomeric and polymeric species at ambient temperature. The results showed that DSi decreased with increasing negative charge and increasing degree of polymerization. The relationship between DSi and charge (Z) can be expressed by DSi/10-6 = 2.0 + 9.8e0.47Z, and that between DSi and number of polymerization (NSi) by DSi/10-6 = 9.7/NSi0.56. The results also revealed that multiple Si molecules assembled into a cluster and D decreased as the cluster size increased. Experiments to evaluate the diffusivity of Si in pore water revealed that the diffusion coefficient decreased with increasing Si concentration, a result consistent with the MD simulations. Simulation results can now be used to quantitatively assess water-rock interactions and water-concrete reactions over a wide range of environmentally relevant conditions.

  16. Two-stage color palettization for error diffusion

    NASA Astrophysics Data System (ADS)

    Mitra, Niloy J.; Gupta, Maya R.

    2002-06-01

    Image-adaptive color palettization chooses a decreased number of colors to represent an image. Palettization is one way to decrease storage and memory requirements for low-end displays. Palettization is generally approached as a clustering problem, where one attempts to find the k palette colors that minimize the average distortion for all the colors in an image. This would be the optimal approach if the image was to be displayed with each pixel quantized to the closest palette color. However, to improve the image quality the palettization may be followed by error diffusion. In this work, we propose a two-stage palettization where the first stage finds some m << k clusters, and the second stage chooses palette points that cover the spread of each of the M clusters. After error diffusion, this method leads to better image quality at less computational cost and with faster display speed than full k-means palettization.

  17. First Principles Studies for Lithium Intercalation and Diffusion Behaviors in MoS2 treated with the Compressive Sensing Cluster Expansion

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds

    2014-03-01

    Molybdenum disulfide (MoS2) is a good candidate electrode material for high capacity energy storage applications, such as lithium ion batteries and supercapacitors. In this work, we investigate lithium intercalation and diffusion kinetics in MoS2 by using first-principles density-functional theory (DFT) calculations. Two different lithium intercalation sites (1-H and 2-T) in MoS2 are found to be stable for lithium intercalation at different van der Waals' (vdW) gap distances. It is found that both thermodynamic and kinetic properties are highly related to the interlayer vdW gap distance, and that the optimal gap distance leads to effective solid-state diffusion in MoS2. Additionally, through the use of compressive sensing, we build accurate cluster expansion models to study the thermodynamic properties of MoS2 at high lithium content by truncating the higher order effective clusters with significant contributions. The results show that compressive sensing cluster expansion is a rigorous and powerful tool for model construction for advanced electrochemical applications in the future.

  18. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena.

    PubMed

    De Domenico, Manlio

    2017-04-21

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  19. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio

    2017-04-01

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  20. LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Shimwell, T. W.; Bonafede, A.; Dallacasa, D.; Brunetti, G.; Mandal, S.; van Weeren, R. J.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoang, D. N.; Hoeft, M.; Röttgering, H. J. A.; Savini, F.; White, G. J.; Wilber, A.; Venturi, T.

    2018-05-01

    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.

  1. X-ray analysis of temperature induced defect structures in boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  2. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. H{sub 2} MOLECULAR CLUSTERS WITH EMBEDDED MOLECULES AND ATOMS AS THE SOURCE OF THE DIFFUSE INTERSTELLAR BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less

  4. Growth of polymer-metal nanocomposites by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Röder, Johanna; Faupel, Jörg; Krebs, Hans-Ulrich

    2008-12-01

    Complex polymer-metal nanocomposites have a wide range of applications, e.g. as flexible displays and packaging materials. Pulsed laser deposition was applied to form nanostructured materials consisting of metal clusters (Ag, Au, Pd and Cu) embedded in a polymer (polycarbonate, PC) matrix. The size and amount of the metal clusters are controlled by the number of laser pulses hitting the respective targets. For Cu and Pd, smaller clusters and higher cluster densities are obtained as in the cases of Ag and Au due to a stronger reactivity with the polymers and thus a lower diffusivity. Implantation effects, differences in metal diffusivity and reactivity on the polymer surfaces, and the coalescence properties are discussed with respect to the observed microstructures on PC and compared to the metal growth on poly (methyl methacrylate), PMMA.

  5. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  6. Exit, cohesion, and consensus: social psychological moderators of consensus among adolescent peer groups

    PubMed Central

    Fisher, Jacob C.

    2017-01-01

    Virtually all social diffusion work relies on a common formal basis, which predicts that consensus will develop among a connected population as the result of diffusion. In spite of the popularity of social diffusion models that predict consensus, few empirical studies examine consensus, or a clustering of attitudes, directly. Those that do either focus on the coordinating role of strict hierarchies, or on the results of online experiments, and do not consider how consensus occurs among groups in situ. This study uses longitudinal data on adolescent social networks to show how meso-level social structures, such as informal peer groups, moderate the process of consensus formation. Using a novel method for controlling for selection into a group, I find that centralized peer groups, meaning groups with clear leaders, have very low levels of consensus, while cohesive peer groups, meaning groups where more ties hold the members of the group together, have very high levels of consensus. This finding is robust to two different measures of cohesion and consensus. This suggests that consensus occurs either through central leaders’ enforcement or through diffusion of attitudes, but that central leaders have limited ability to enforce when people can leave the group easily. PMID:29335675

  7. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  8. A Deep Chandra Observation of the Centaurus Cluster:Bubbles, Filaments and Edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabian, A.C.

    2005-03-14

    X-ray images and gas temperatures taken from a deep {approx}200 ks Chandra observation of the Centaurus cluster are presented. Multiple inner bubbles and outer semicircular edges are revealed, together with wispy filaments of soft X-ray emitting gas. The frothy central structure and eastern edge are likely due to the central radio source blowing bubbles in the intracluster gas. The semicircular edges to the surface brightness maps 32 kpc to the east and 17.5 kpc to the west are marked by sharp temperature increases and abundance drops. The edges could be due to sloshing motions of the central potential, or aremore » possibly enhanced by earlier radio activity. The high abundance of the innermost gas (about 2.5 times Solar) limits the amount of diffusion and mixing taking place.« less

  9. Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources.

    PubMed

    Carpenter, Corey M G; Helbling, Damian E

    2018-06-05

    The objective of this study was to identify sources of micropollutants in the Hudson River Estuary (HRE). We collected 127 grab samples at 17 sites along the HRE over 2 years and screened for up to 200 micropollutants. We quantified 168 of the micropollutants in at least one of the samples. Atrazine, gabapentin, metolachlor, and sucralose were measured in every sample. We used data-driven unsupervised methods to cluster the micropollutants on the basis of their spatiotemporal occurrence and normalized-concentration patterns. Three major clusters of micropollutants were identified: ubiquitous and mixed-use (core micropollutants), sourced from sewage treatment plant outfalls (STP micropollutants), and derived from diffuse upstream sources (diffuse micropollutants). Each of these clusters was further refined into subclusters that were linked to specific sources on the basis of relationships identified through geospatial analysis of watershed features. Evaluation of cumulative loadings of each subcluster revealed that the Mohawk River and Rondout Creek are major contributors of most core micropollutants and STP micropollutants and the upper HRE is a major contributor of diffuse micropollutants. These data provide the first comprehensive evaluation of micropollutants in the HRE and define distinct spatiotemporal micropollutant clusters that are linked to sources and conserved across surface water systems around the world.

  10. Whole brain white matter connectivity analysis using machine learning: An application to autism.

    PubMed

    Zhang, Fan; Savadjiev, Peter; Cai, Weidong; Song, Yang; Rathi, Yogesh; Tunç, Birkan; Parker, Drew; Kapur, Tina; Schultz, Robert T; Makris, Nikos; Verma, Ragini; O'Donnell, Lauren J

    2018-05-15

    In this paper, we propose an automated white matter connectivity analysis method for machine learning classification and characterization of white matter abnormality via identification of discriminative fiber tracts. The proposed method uses diffusion MRI tractography and a data-driven approach to find fiber clusters corresponding to subdivisions of the white matter anatomy. Features extracted from each fiber cluster describe its diffusion properties and are used for machine learning. The method is demonstrated by application to a pediatric neuroimaging dataset from 149 individuals, including 70 children with autism spectrum disorder (ASD) and 79 typically developing controls (TDC). A classification accuracy of 78.33% is achieved in this cross-validation study. We investigate the discriminative diffusion features based on a two-tensor fiber tracking model. We observe that the mean fractional anisotropy from the second tensor (associated with crossing fibers) is most affected in ASD. We also find that local along-tract (central cores and endpoint regions) differences between ASD and TDC are helpful in differentiating the two groups. These altered diffusion properties in ASD are associated with multiple robustly discriminative fiber clusters, which belong to several major white matter tracts including the corpus callosum, arcuate fasciculus, uncinate fasciculus and aslant tract; and the white matter structures related to the cerebellum, brain stem, and ventral diencephalon. These discriminative fiber clusters, a small part of the whole brain tractography, represent the white matter connections that could be most affected in ASD. Our results indicate the potential of a machine learning pipeline based on white matter fiber clustering. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modeling fractal cities using the correlated percolation model.

    NASA Astrophysics Data System (ADS)

    Makse, Hernán A.; Havlin, Shlomo; Stanley, H. Eugene

    1996-03-01

    Cities grow in a way that might be expected to resemble the growth of two-dimensional aggregates of particles, and this has led to recent attempts to model urban growth using ideas from the statistical physics of clusters. In particular, the model of diffusion limited aggregation (DLA) has been invoked to rationalize the apparently fractal nature of urban morphologies(M. Batty and P. Longley, Fractal Cities) (Academic, San Diego, 1994). The DLA model predicts that there should exist only one large fractal cluster, which is almost perfectly screened from incoming 'development units' (representing, for example, people, capital or resources), so that almost all of the cluster growth takes place at the tips of the cluster's branches. We show that an alternative model(H. A. Makse, S. Havlin, H. E. Stanley, Nature 377), 608 (1995), in which development units are correlated rather than being added to the cluster at random, is better able to reproduce the observed morphology of cities and the area distribution of sub-clusters ('towns') in an urban system, and can also describe urban growth dynamics. Our physical model, which corresponds to the correlated percolation model in the presence of a density gradient, is motivated by the fact that in urban areas development attracts further development. The model offers the possibility of predicting the global properties (such as scaling behavior) of urban morphologies.

  12. Reaction-diffusion basis of retroviral infectivity

    NASA Astrophysics Data System (ADS)

    Sadiq, S. Kashif

    2016-11-01

    Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  13. Water clustering in glassy polymers.

    PubMed

    Davis, Eric M; Elabd, Yossef A

    2013-09-12

    In this study, water solubility and water clustering in several glassy polymers, including poly(methyl methacrylate) (PMMA), poly(styrene) (PS), and poly(vinylpyrrolidone) (PVP), were measured using both quartz spring microbalance (QSM) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Specifically, QSM was used to determine water solubility, while FTIR-ATR spectroscopy provided a direct, molecular-level measurement of water clustering. The Flory-Huggins theory was employed to obtain a measure of water-polymer interaction and water solubility, through both prediction and regression, where the theory failed to predict water solubility in both PMMA and PVP. Furthermore, a comparison of water clustering between direct FTIR-ATR spectroscopy measurements and predictions from the Zimm-Lundberg clustering analysis produced contradictory results. The failure of the Flory-Huggins theory and Zimm-Lundberg clustering analysis to describe water solubility and water clustering, respectively, in these glassy polymers is in part due to the equilibrium constraints under which these models are derived in contrast to the nonequilibrium state of glassy polymers. Additionally, FTIR-ATR spectroscopy results were compared to temperature-dependent diffusivity data, where a correlation between the activation energy for diffusion and the measured water clustering was observed.

  14. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy

    NASA Astrophysics Data System (ADS)

    Fu, Cai-Tao; Yinling, Wang; Chu, Xiang-Wei; Jiang, Li; Zhang, Wen-Zhu; Bai, Qin; Xia, Shuang; Leng, Bin; Li, Zhi-Jun; Ye, Xiang-Xi; Liu, Fang

    2017-12-01

    The effect of grain boundary engineering (GBE) on the Te diffusion along the surface grain boundaries was investigated in GH3535 alloy. It can be found that GBE treatment increases obviously the fraction of low-Σ coincidence site lattice (CSL) boundaries, especially the Σ3 ones, and introduces the large-size grain clusters. When the as-received (AR) and GBE-treated (GBET) specimens were exposed to Te vapor, only Σ3 boundaries were found to be resistant to Te diffusion. From the cross section and the surface, the fewer Te-attacked grain boundaries and the thinner corrosion layer can be observed in the GBET sample. The improvement of resistance to Te diffusion in the GBET sample can be attributed to the large size grain-clusters associated with high proportion of the Σ3n boundaries.

  15. Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering

    PubMed Central

    Wright, Margaret J.; Thompson, Paul M.; Vidal, René

    2015-01-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748

  16. The Gaia-ESO Survey: evidence of atomic diffusion in M67?

    NASA Astrophysics Data System (ADS)

    Bertelli Motta, C.; Pasquali, A.; Richer, J.; Michaud, G.; Salaris, M.; Bragaglia, A.; Magrini, L.; Randich, S.; Grebel, E. K.; Adibekyan, V.; Blanco-Cuaresma, S.; Drazdauskas, A.; Fu, X.; Martell, S.; Tautvaišienė, G.; Gilmore, G.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Franciosini, E.; Heiter, U.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2018-07-01

    Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open cluster M67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO Survey. We find that the surface abundances of stars on the main sequence decrease with increasing mass reaching a minimum at the turn-off. After deepening of the convective envelope in subgiant branch stars, the initial surface abundances are restored. We found the measured abundances to be consistent with the predictions of stellar evolutionary models for a cluster with the age and metallicity of M67. Our findings indicate that atomic diffusion poses a non-negligible constraint on the achievable precision of chemical tagging methods.

  17. Application of diffusion maps to identify human factors of self-reported anomalies in aviation.

    PubMed

    Andrzejczak, Chris; Karwowski, Waldemar; Mikusinski, Piotr

    2012-01-01

    A study investigating what factors are present leading to pilots submitting voluntary anomaly reports regarding their flight performance was conducted. Diffusion Maps (DM) were selected as the method of choice for performing dimensionality reduction on text records for this study. Diffusion Maps have seen successful use in other domains such as image classification and pattern recognition. High-dimensionality data in the form of narrative text reports from the NASA Aviation Safety Reporting System (ASRS) were clustered and categorized by way of dimensionality reduction. Supervised analyses were performed to create a baseline document clustering system. Dimensionality reduction techniques identified concepts or keywords within records, and allowed the creation of a framework for an unsupervised document classification system. Results from the unsupervised clustering algorithm performed similarly to the supervised methods outlined in the study. The dimensionality reduction was performed on 100 of the most commonly occurring words within 126,000 text records describing commercial aviation incidents. This study demonstrates that unsupervised machine clustering and organization of incident reports is possible based on unbiased inputs. Findings from this study reinforced traditional views on what factors contribute to civil aviation anomalies, however, new associations between previously unrelated factors and conditions were also found.

  18. The Gaia-ESO Survey: Evidence of atomic diffusion in M67?

    NASA Astrophysics Data System (ADS)

    Motta, C. Bertelli; Pasquali, A.; Richer, J.; Michaud, G.; Salaris, M.; Bragaglia, A.; Magrini, L.; Randich, S.; Grebel, E. K.; Adibekyan, V.; Blanco-Cuaresma, S.; Drazdauskas, A.; Fu, X.; Martell, S.; TautvaišienÄ--, G.; Gilmore, G.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Franciosini, E.; Heiter, U.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2018-04-01

    Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open cluster M67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO Survey. We find that the surface abundances of stars on the main sequence decrease with increasing mass reaching a minimum at the turn-off. After deepening of the convective envelope in sub-giant branch stars, the initial surface abundances are restored. We found the measured abundances to be consistent with the predictions of stellar evolutionary models for a cluster with the age and metallicity of M67. Our findings indicate that atomic diffusion poses a non-negligible constraint on the achievable precision of chemical tagging methods.

  19. The Swift BAT Perspective on Non-Thermal Emission in HIFLUGCS Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Wik, Daniel R.

    2011-01-01

    The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. Until recently, comprehensive surveys of hard X-ray emission from clusters were not possible; instead, individually proposed-for. long observations would be collated from the archive. With the advent of the Swift BAT all sky survey, any c1u,;ter's emission above 14 keV can be probed with nearly uniform sensitivity. which is comparable to that of RXTE, Beppo-SAX, and Suzaku with the 58-month version of the survey. In this work. we search for non-thermal excess emission above the exponentially decreasing, high energy thermal emission in the flux-limited HIFLUGCS sample. The BAT emission from many of the detected clusters is marginally extended; we are able to extract the total flux for these clusters using fiducial models for their spatial extent. To account for thermal emission at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both the thermal and non-thermal spectral components can be determined simultaneou,;ly in joint fits. We find marginally significant IC components in 6 clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single temperature

  20. Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation

    NASA Astrophysics Data System (ADS)

    Sorokin, M. V.; Dubinko, V. I.; Borodin, V. A.

    2017-01-01

    The nucleation of islands in a supersaturated solution of surface adatoms is considered taking into account the possibility of diffusion profile formation in the island vicinity. It is shown that the treatment of diffusion-controlled cluster growth in terms of the Fokker-Planck equation is justified only provided certain restrictions are satisfied. First of all, the standard requirement that diffusion profiles of adatoms quickly adjust themselves to the actual island sizes (adiabatic principle) can be realized only for sufficiently high island concentration. The adiabatic principle is essential for the probabilities of adatom attachment to and detachment from island edges to be independent of the adatom diffusion profile establishment kinetics, justifying the island nucleation treatment as the Markovian stochastic process. Second, it is shown that the commonly used definition of the "diffusion" coefficient in the Fokker-Planck equation in terms of adatom attachment and detachment rates is justified only provided the attachment and detachment are statistically independent, which is generally not the case for the diffusion-limited growth of islands. We suggest a particular way to define the attachment and detachment rates that allows us to satisfy this requirement as well. When applied to the problem of surface island nucleation, our treatment predicts the steady-state nucleation barrier, which coincides with the conventional thermodynamic expression, even though no thermodynamic equilibrium is assumed and the adatom diffusion is treated explicitly. The effect of adatom diffusional profiles on the nucleation rate preexponential factor is also discussed. Monte Carlo simulation is employed to analyze the applicability domain of the Fokker-Planck equation and the diffusion effect beyond it. It is demonstrated that a diffusional cloud is slowing down the nucleation process for a given monomer interaction with the nucleus edge.

  1. Submonolayer Ag films on Fe(100): A first-principles analysis of energetics controlling adlayer thermodynamics and kinetics

    DOE PAGES

    Li, Wei; Huang, Li; Evans, James W.; ...

    2016-04-11

    Epitaxial growth of Ag on Fe(100) and postdeposition relaxation have been studied in several experiments. We provide a first-principles density functional theory analysis of key adatom interaction energies and diffusion barriers controlling growth and relaxation kinetics for the submonolayer regime, as these have not been assessed previously. A cluster expansion approach is used to obtain an extensive set of conventional lateral interactions between adatoms on fourfold hollow adsorption sites. We find robust oscillatory decay of pair interactions with increasing separation, and of trio interactions with increasing perimeter length. First- and second-nearest-neighbor pair interactions, as well as compact linear and bentmore » trio interactions, dominate. The adatom terrace diffusion barrier is estimated to be E d ≈ 0.39 eV. We also provide a limited analysis of unconventional interactions for which one adatom is at the bridge-site transition state for hopping and one or more others are at fourfold hollow sites. Furthermore, energy barriers for diffusion along island edges can be determined with the aid of both conventional and unconventional interactions.« less

  2. Non-invasive quantification of tumour heterogeneity in water diffusivity to differentiate malignant from benign tissues of urinary bladder: a phase I study.

    PubMed

    Nguyen, Huyen T; Shah, Zarine K; Mortazavi, Amir; Pohar, Kamal S; Wei, Lai; Jia, Guang; Zynger, Debra L; Knopp, Michael V

    2017-05-01

    To quantify the heterogeneity of the tumour apparent diffusion coefficient (ADC) using voxel-based analysis to differentiate malignancy from benign wall thickening of the urinary bladder. Nineteen patients with histopathological findings of their cystectomy specimen were included. A data set of voxel-based ADC values was acquired for each patient's lesion. Histogram analysis was performed on each data set to calculate uniformity (U) and entropy (E). The k-means clustering of the voxel-wised ADC data set was implemented to measure mean intra-cluster distance (MICD) and largest inter-cluster distance (LICD). Subsequently, U, E, MICD, and LICD for malignant tumours were compared with those for benign lesions using a two-sample t-test. Eleven patients had pathological confirmation of malignancy and eight with benign wall thickening. Histogram analysis showed that malignant tumours had a significantly higher degree of ADC heterogeneity with lower U (P = 0.016) and higher E (P = 0.005) than benign lesions. In agreement with these findings, k-means clustering of voxel-wise ADC indicated that bladder malignancy presented with significantly higher MICD (P < 0.001) and higher LICD (P = 0.002) than benign wall thickening. The quantitative assessment of tumour diffusion heterogeneity using voxel-based ADC analysis has the potential to become a non-invasive tool to distinguish malignant from benign tissues of urinary bladder cancer. • Heterogeneity is an intrinsic characteristic of tumoral tissue. • Non-invasive quantification of tumour heterogeneity can provide adjunctive information to improve cancer diagnosis accuracy. • Histogram analysis and k-means clustering can quantify tumour diffusion heterogeneity. • The quantification helps differentiate malignant from benign urinary bladder tissue.

  3. Infrared Coronet Cluster

    NASA Image and Video Library

    2007-09-13

    This image from NASA Spitzer Space Telescope shows young stars plus diffuse emission from dust. The Corona Australis region containing, at its heart, the Coronet cluster is one of the nearest and most active regions of ongoing star formation.

  4. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  5. The Stormy Life of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rudnick, Lawrence

    2018-01-01

    Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.

  6. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.

    2017-10-01

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  7. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  8. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  9. Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Ko, Hyunseok

    Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding. We used grand canonical monte carlo to optimize the interface, as a part of the stepping stone for further study using the interface.

  10. Annihilating vacancies via dynamic reflection and emission of interstitials in nano-crystal tungsten

    NASA Astrophysics Data System (ADS)

    Li, Xiangyan; Duan, Guohua; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.; Liang, Yunfeng; Chen, Jun-Ling; Luo, G.-N.

    2017-11-01

    Radiation damage not only seriously degrades the mechanical properties of tungsten (W) but also enhances hydrogen retention in the material. Introducing a large amount of defect sinks, e.g. grain boundaries (GBs) is an effective method for improving radiation-resistance of W. However, the mechanism by which the vacancies are dynamically annihilated at long timescale in nano-crystal W is still not clear. The dynamic picture for eliminating vacancies with single interstitials and small interstitial-clusters has been investigated by combining molecular dynamics, molecular statics and object Kinetic Monte Carlo methods. On one hand, the annihilation of bulk vacancies was enhanced due to the reflection of an interstitial-cluster of parallel ≤ft< 1 1 1 \\right> crowdions by the GB. The interstitial-cluster was observed to be reflected back into the grain interior when approaching a locally dense GB region. Near this region, the energy landscape for the interstitial was featured by a shoulder, different to the decreasing energy landscape of the interstitial near a locally loose region as indicative of the sink role of the GB. The bulk vacancy on the reflection path was annihilated. On the other hand, the dynamic interstitial emission efficiently anneals bulk vacancies. The single interstitial trapped at the GB firstly moved along the GB quickly and clustered to be the di-interstitial therein, reducing its mobility to a value comparable to that that for bulk vacancy diffusion. Then, the bulk vacancy was recombined via the coupled motion of the di-interstitial along the GB, the diffusion of the vacancy towards the GB and the accompanying interstitial emission. These results suggest that GBs play an efficient role in improving radiation-tolerance of nano-crystal W via reflecting highly-mobile interstitials and interstitial-clusters into the bulk and annihilating bulk vacancies, and via complex coupling of in-boundary interstitial diffusion, clustering of the interstitial and vacancy diffusion in the bulk.

  11. Diffusion and Mixing in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Meiron, Yohai; Kocsis, Bence

    2018-03-01

    Collisional relaxation describes the stochastic process with which a self-gravitating system near equilibrium evolves in phase-space due to the fluctuating gravitational field of the system. The characteristic timescale of this process is called the relaxation time. In this paper, we highlight the difference between two measures of the relaxation time in globular clusters: (1) the diffusion time with which the isolating integrals of motion (i.e., energy E and angular momentum magnitude L) of individual stars change stochastically and (2) the asymptotic timescale required for a family of orbits to mix in the cluster. More specifically, the former corresponds to the instantaneous rate of change of a star’s E or L, while the latter corresponds to the timescale for the stars to statistically forget their initial conditions. We show that the diffusion timescales of E and L vary systematically around the commonly used half-mass relaxation time in different regions of the cluster by a factor of ∼10 and ∼100, respectively, for more than 20% of the stars. We define the mixedness of an orbital family at any given time as the correlation coefficient between its E or L probability distribution functions and those of the whole cluster. Using Monte Carlo simulations, we find that mixedness converges asymptotically exponentially with a decay timescale that is ∼10 times the half-mass relaxation time.

  12. Theory of long-range diffusion of proteins on a spherical biological membrane: application to protein cluster formation and actin-comet tail growth.

    PubMed

    Amatore, Christian; Oleinick, Alexander I; Klymenko, Oleksiy V; Svir, Irina

    2009-07-13

    Breaking of symmetry is often required in biology in order to produce a specific function. In this work we address the problem of protein diffusion over a spherical vesicle surface towards one pole of the vesicle in order to produce ultimately an active protein cluster performing a specific biological function. Such a process is, for example, prerequisite for the assembling of proteins which then cooperatively catalyze the polymerization of actin monomers to sustain the growth of actin tails as occurs in natural vesicles such as those contained in Xenopus eggs. By this process such vesicles may propel themselves within the cell by the principle of action-reaction. In this work the physicochemical treatment of diffusion of large biomolecules within a cellular membrane is extended to encompass the case when proteins may be transiently poised by corral-like structures partitioning the membrane as has been recently documented in the literature. In such case the exchange of proteins between adjacent corrals occurs by energy-gated transitions instead of classical Brownian motion, yet the present analysis shows that long-range movements of the biomolecules may still be described by a classical diffusion law though the diffusion coefficient has then a different physical meaning. Such a model explains why otherwise classical diffusion of proteins may give rise to too small diffusion coefficients compared to predictions based on the protein dimension. This model is implemented to examine the rate of proteins clustering at one pole of a spherical vesicle and its outcome is discussed in relevance to the mechanism of actin comet tails growth.

  13. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  14. Observations of Electron Vorticity in the Inner Plasmasheet and Its Relationship to Reconnection

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris A.; Goldstein, Melvyn L.; Matthaeus, William H.; Vinas, Adolfo -F.

    2011-01-01

    Spatial derivatives of the electron moments can be estimated using data from the four Cluster spacecraft. Using spatial derivatives of the velocity we have computed the vorticity in the plasmasheet for several crossings. What we have found is that vorticity appears to be a common feature in the inner plasmasheet. We will show a number of examples. In at least some of the observations the vorticity is well correlated with the passage of Cluster through the ion diffusion region of known reconnection events. That most of the vorticity events observed are reconnection related cannot be dismissed and in fact observations of vorticity may provide a means to locate times when the Cluster spacecraft are magnetically connected to regions where reconnection is taking place. Understanding the role and source of the vorticity should advance our understanding of the dissipation of the turbulence associated with reconnection. In the course of the presentation we will also touch on the methods used to estimate the spatial derivatives as well as the limitations and assumptions involved.

  15. A new route to gold nanoflowers

    NASA Astrophysics Data System (ADS)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  16. A generalized electrochemical aggregative growth mechanism.

    PubMed

    Ustarroz, Jon; Hammons, Joshua A; Altantzis, Thomas; Hubin, Annick; Bals, Sara; Terryn, Herman

    2013-08-07

    The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the Volmer-Weber 3D island growth mechanism, which has always been accepted to explain the early stages of metal electrodeposition and thin-film growth on low-energy substrates. We have developed a Generalized Electrochemical Aggregative Growth Mechanism which mimics the atomistic processes during the early stages of thin-film growth, by incorporating nanoclusters as building blocks. We discuss the influence of new processes such as nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence on the growth mechanism and morphology of the resulting nanostructures. Self-limiting growth mechanisms hinder nanocluster growth and favor coalescence driven growth. The size of the primary nanoclusters is independent of the applied potential and deposition time. The balance between nucleation, nanocluster surface diffusion, and coalescence depends on the material and the overpotential, and influences strongly the morphology of the deposits. A small extent of coalescence leads to ultraporous dendritic structures, large surface coverage, and small particle size. Contrarily, full recrystallization leads to larger hemispherical monocrystalline islands and smaller particle density. The mechanism we propose represents a scientific breakthrough from the fundamental point of view and indicates that achieving the right balance between nucleation, self-limiting growth, cluster surface diffusion, and coalescence is essential and opens new, exciting possibilities to build up enhanced supported nanostructures using nanoclusters as building blocks.

  17. A new search for primordial black hole evaporations using the Whipple gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Linton, E. T.; Atkins, R. W.; Badran, H. M.; Blaylock, G.; Boyle, P. J.; Buckley, J. H.; Byrum, K. L.; Carter-Lewis, D. A.; Celik, O.; Chow, Y. C. K.; Cogan, P.; Daniel, M. K.; Dowdall, C.; Falcone, A. D.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortin, P.; Guiterrez, K. J.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Hughes, S. B.; Humensky, T. B.; Jung, I.; Kenny, G. E.; Kertzman, M.; Kieda, D. B.; Kildea, J.; Knapp, J.; Krawczynski, H.; Lang, M. J.; LeBohec, S.; Maier, G.; Moriarty, P.; Ong, R. A.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Rebillot, P. F.; Reynolds, P. T.; Sembroski, G. H.; Steele, D.; Swordy, S. P.; Valcarcel, L.; Wakely, S. P.; Weekes, T. C.; White, R. J.

    2006-01-01

    Stephen Hawking's prediction that black holes should radiate like black bodies has several important consequences, including the possibility of the detection of small (~1015 g) black holes created in the very early universe. The detection of such primordial black holes (PBHs) would be an important discovery, not only confirming Hawking's theory, but also providing valuable insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope is made for TeV gamma-ray bursts on 1, 3, and 5 s timescales. On the basis of a null result from this direct search for PBH evaporations, an upper limit of 1.08 × 106 pc-3 yr-1 (99% CL) is set on the PBH evaporation rate in the local region of the galaxy, assuming the Standard Model of particle physics. This is more than a factor of two better than the previous limit at this energy range and includes longer timescales than have previously been explored. Comparison of this result with previous limits on the fraction of the critical density comprised by PBHs, Ωpbh, depends strongly on assumptions made about PBH clustering; in models predicting strong PBH clustering, the limit in this work could be as many as ten orders of magnitude more stringently than those set by diffuse MeV gamma-ray observations.

  18. Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks

    PubMed Central

    Clune, Jeff

    2017-01-01

    A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules). While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1) induces task-specific learning in groups of nodes and connections (task-specific localized learning), which 2) produces functional modules for each subtask, and 3) yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting. PMID:29145413

  19. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    NASA Astrophysics Data System (ADS)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  20. Stochastic fire-diffuse-fire model with realistic cluster dynamics.

    PubMed

    Calabrese, Ana; Fraiman, Daniel; Zysman, Daniel; Ponce Dawson, Silvina

    2010-09-01

    Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R 's that replicates the experimental observations reported in [D. Fraiman, Biophys. J. 90, 3897 (2006)]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.

  1. High Resolution Diffusion Tensor Imaging of Cortical-Subcortical White Matter Tracts in TBI

    DTIC Science & Technology

    2010-10-01

    by the individual (e.g., car full of lettuce ) or words that share phonemic qualities (e.g., chair/cat; sofa/soup). The observed bidirectional...subjective clustering score minus the expected subjective clustering score. An example is if the word pair car/ lettuce (subjective observed score of 1) is...adjusted subjective clustering formula of observed subjective clustering (car/ lettuce , subjective observed score of 1) minus expected subjective

  2. Predicting vacancy-mediated diffusion of interstitial solutes in α -Fe

    NASA Astrophysics Data System (ADS)

    Barouh, Caroline; Schuler, Thomas; Fu, Chu-Chun; Jourdan, Thomas

    2015-09-01

    Based on a systematic first-principles study, the lowest-energy migration mechanisms and barriers for small vacancy-solute clusters (VnXm ) are determined in α -Fe for carbon, nitrogen, and oxygen, which are the most frequent interstitial solutes in several transition metals. We show that the dominant clusters present at thermal equilibrium (V X and V X2 ) have very reduced mobility compared to isolated solutes, while clusters composed of a solute bound to a small vacancy cluster may be significantly more mobile. In particular, V3X is found to be the fastest cluster for all three solutes. This result relies on the large diffusivity of the most compact trivacancy in a bcc lattice. Therefore, it may also be expected for interstitial solutes in other bcc metals. In the case of iron, we find that V3X may be as fast as or even more mobile than an interstitial solute. At variance with common assumptions, the trapping of interstitial solutes by vacancies does not necessarily decrease the mobility of the solute. Additionally, cluster dynamics simulations are performed considering a simple iron system with supersaturation of vacancies, in order to investigate the impacts of small mobile vacancy-solute clusters on properties such as the transport of solute and the cluster size distributions.

  3. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  4. Dynamics and cluster formation in charged and uncharged Ficoll70 solutions

    NASA Astrophysics Data System (ADS)

    Palit, Swomitra; Yethiraj, Anand

    2017-08-01

    We apply pulsed-field-gradient NMR (PFG NMR) technique to measure the translational diffusion for both uncharged and charged polysaccharide (Ficoll70) in water. Analysis of the data indicates that the NMR signal attenuation above a certain packing fraction can be adequately fitted with a bi-exponential function. The self-diffusion measurements also show that the Ficoll70, an often-used compact, spherical polysucrose molecule, is itself nonideal, exhibiting signs of both softness and attractive interactions in the form of a stable suspension consisting of monomers and clusters. Further, we can quantify the fraction of monomers and clusters. This work strengthens the picture of the existence of a bound water layer within and around a porous Ficoll70 particle.

  5. Ultra-diffuse cluster galaxies as key to the MOND cluster conundrum

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2015-12-01

    Modified Newtonian Dynamics (MOND) reduces greatly the mass discrepancy in clusters of galaxies,but does leave a global discrepancy of about a factor of 2 (epitomized by the structure of the Bullet Cluster). It has been proposed, within the minimalist and purist MOND, that clusters harbour some indigenous, yet undetected, cluster baryonic (dark) matter (CBDM), whose total amount is comparable with that of the observed hot gas. Koda et al. have recently identified more than a thousand ultra-diffuse, galaxy-like objects (UDGs) in the Coma cluster. These, they argue, require, within Newtonian dynamics, that they are much more massive than their observed stellar component. Here, I propound that some of the CBDM is internal to UDGs, which endows them with robustness. The rest of the CBDM objects formed in now-disrupted kin of the UDGs, and is dispersed in the intracluster medium. The discovery of cluster UDGs is not in itself a resolution of the MOND cluster conundrum, but it lends greater plausibility to CBDM as its resolution. Alternatively, if the UDGs are only now falling into Coma, their large size and very low surface brightness could result from the inflation due to the MOND, variable external-field effect (EFE). I also consider briefly solutions to the conundrum that invoke more elaborate extensions of purist MOND, e.g. that in clusters, the MOND constant takes up larger than canonical values of the MOND constant. Whatever solves the cluster conundrum within MOND might also naturally account for UDGs.

  6. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures

    NASA Astrophysics Data System (ADS)

    Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko

    2008-12-01

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.

  7. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: energetics, occupancy, and vibrationally averaged cluster structures.

    PubMed

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko

    2008-12-28

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H(2) (p-H(2)) and ortho-D(2) (o-D(2)) molecules inside the large hexakaidecahedral (5(12)6(4)) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H(2))(n) and (o-D(2))(n) clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H(2))(4). At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H(2) or D(2) molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D(2) molecules, their mean distance from the cage center, the D(2)-D(2) separation, and the specific orientation and localization of the tetrahedral (D(2))(4) cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D(2) occupancy.

  8. Atomistic Modeling of Cation Diffusion in Transition Metal Perovskites La1-xSrxMnO3+/-δfor Solid Oxide Fuel Cell Cathodes Applications

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry

    Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.

  9. Diffusion and mobility of atomic particles in a liquid

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.

    2017-11-01

    The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.

  10. From average to local structure: a Rietveld and an atomic pair distribution function (PDF) study of selenium clusters in zeolite-NdY.

    PubMed

    Abeykoon, A M Milinda; Donner, Wolfgang; Brunelli, Michela; Castro-Colin, Miguel; Jacobson, Allan J; Moss, Simon C

    2009-09-23

    The structure of Se particles in the approximately 13 A diameter alpha-cages of zeolite NdY has been determined by Rietveld refinement and pair distribution function (PDF) analysis of X-ray data. With the diffuse scattering subtracted an average structure comprised of an undistorted framework containing nanoclusters of 20 Se atoms is observed. The intracluster correlations and the cluster-framework correlations which give rise to diffuse scattering were modeled by using PDF analysis.

  11. On the coherent rotation of diffuse matter in numerical simulations of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Baldi, Anna Silvia; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Lamagna, Luca; Rasia, Elena

    2017-03-01

    We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the gas physics: (I) non-radiative, (II) radiative without active galactic nuclei (AGN) feedback and (III) radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.

  12. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    NASA Astrophysics Data System (ADS)

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; Dews, A.; Jarvis, J. A.; Ray, M.; Schneider, B.; Smith, P. J. S.; Williamson, P. T. F.; Violi, A.; Philbert, M. A.

    2016-02-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07003a

  13. Theory of Stochastic Laplacian Growth

    NASA Astrophysics Data System (ADS)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2017-07-01

    We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of "light" exponential operators in the Liouville conformal field theory on a pseudosphere.

  14. Ultra small angle x-ray scattering in complex mixtures of triacylglycerols

    NASA Astrophysics Data System (ADS)

    Peyronel, Fernanda; Quinn, Bonnie; Marangoni, Alejandro G.; Pink, David A.

    2014-11-01

    Ultra-small angle x-ray scattering (USAXS) has been used to elucidate, in situ, the aggregation structure of unsheared model edible oils. Each system comprised one or two solid lipids and a combination of liquid lipids. The 3D nano- to micro-structures of each system were characterized. The length scale investigated, using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, ANL, ranged from 300 Å-10 µm. Using the Unified Fit model, level-1 analysis showed that the scatterers were 2D objects with either a smooth, a rough, or a diffuse surface. These 2D objects had an average radius of gyration Rg1 between 200-1500 Å. Level-2 analysis displayed a slope between -1 and -2. Use of the Guinier-Porod model gave s ≈ 1 thus showing that it was cylinders (TAGwoods) aggregating with fractal dimension 1 ≤ D2 ≤ 2. D2 = 1 is consistent with 1D structures formed from TAGwoods, while D2 = 2 implies that the TAGwoods had formed structures characteristic of diffusion or reaction limited cluster-cluster aggregation (DLCA/RLCA). These aggregates exhibited radii of gyration, Rg2, between 2500 and 6500 Å. Level-3 analyses showed diffuse surfaces, for most of the systems. These interpretations are in accord with theoretical models which studied crystalline nano-platelets (CNPs) coated with nano-scale layers arising from phase separation at the CNP surfaces. These layers could be due to either liquid-liquid phase separation with the CNPs coated, uniformly or non-uniformly, by a diffuse layer of TAGs, or solid-liquid phase separation with the CNPs coated by a rough layer of crystallites. A fundamental understanding of the self-organizing structures arising in these systems helps advance the characterization of fat crystal networks from nanometres to micrometres. This research can be used to design novel fat structures that use healthier fats via nano- and meso-scale structural engineering.

  15. On the interplay of point defects and Cd in non-polar ZnCdO films

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Reurings, F.; Tuomisto, F.; Plazaola, F.; García, J. A.; Kuznetsov, A. Yu.; Egger, W.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2013-01-01

    Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 1017 cm-3 and 1018 cm-3, respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 μm inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional CdZn in the ZnO crystal.

  16. A prospective study of diffusion weighted magnetic resonance imaging abnormalities in patients with cluster of seizures and status epilepticus.

    PubMed

    Jabeen, S A; Cherukuri, Pavankumar; Mridula, Rukmini; Harshavardhana, K R; Gaddamanugu, Padmaja; Sarva, Sailaja; Meena, A K; Borgohain, Rupam; Jyotsna Rani, Y

    2017-04-01

    To study the frequency, imaging characteristics, and clinical predictors for development of periictal diffusion weighted MRI abnormalities. We prospectively analyzed electro clinical and imaging characteristic of adult patients with cluster of seizures or status epilepticus between November 2013 and November 2015, in whom the diffusion weighted imaging was done within 24h after the end of last seizure (clinical or electrographic). There were thirty patients who fulfilled the inclusion and exclusion criteria. Twenty patients (66%) had periictal MRI abnormalities. Nine patients (34%) did not have any MRI abnormality. All the patients with PMA had abnormalities on diffusion weighted imaging (DWI). Hippocampal abnormalities were seen in nine (53%), perisylvian in two (11.7%), thalamic in five (30%), splenium involvement in two (11.7%) and cortical involvement (temporo-occipital, parieto-occipital, temporo-parietal, fronto-parietal and fronto-temporal) in sixteen (94.1%) patients. Complete reversal of DWI changes was noted in sixteen (80%) patients and four (20%) patients showed partial resolution of MRI abnormalities. Mean duration of seizures was significantly higher among patients with PMA (59.11+20.97h) compared to those without MRI changes (27.33+9.33h) (p<0.001). Diffusion abnormalities on MRI are common in patients with cluster of seizures and status epilepticus and were highly concordant with clinical semiology and EEG activity. Patients with longer duration of seizures/status were more likely to have PMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    NASA Astrophysics Data System (ADS)

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  18. Genetic heterogeneity in families with non-epidermolytic palmar plantar keratosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurr, N.K.; Kelshell, D.P.; Stevens, H.

    1994-09-01

    Following reports of linkage close to the keratin gene cluster in families with tylosis and the detection of mutations in the keratin 9 gene cosegregating in families with epidermolytic palmar plantar keratoderma (EPPK, and EPPK associated with breast and ovarian cancer), we have identified families with three phenotypically distinct forms of non-epidermolytic keratosis with either punctate, diffuse or focal keratoderma, one with diffuse lesions and one with punctate and malignancies. Initially we typed these families with 17q markers close to the keratin gene cluster; this included a dinucleotide repeat marker within the keratin 9 gene. Two point linkage analysis ofmore » the focal keratoderma family showed a positive lod score of 3.2 at a theta of 0 from the marker D17S855. The lod score for the diffuse family was -6.0 at a theta of 0.05 from the marker D17S776. The second focal keratoderma family showed a haplotype consistent with linkage to 17q close to the keratin gene cluster. A second keratin gene cluster has been mapped in humans on 12q, and we decided to test the unlinked diffuse and punctate keratoderma families with markers in that region. We used the markers: D12S87-D12S85-D12S368-D12S96-D12S90. Linkage analysis of the diffuse family gave a lod score of 3.1 at a theta of 0 from the marker D12S368. Currently studies are underway to look for mutations in specific keratin genes in the clusters on 17q and 12q that segregate with the observed phenotypes. The punctate keratoderma family gave lod scores of -3.9 at a theta of 0.55 with D17S855 and -6.0 at a theta of 0.05 with D12S90/D12S83. This would lead us to the conclusion that a separate susceptibility locus must exist for the punctate family associated with malignancy. Investigations of candidate regions are in progress.« less

  19. Spatially-correlated Site Occupancy in the Nonstoichiometric Meta-stable ε -Al 60Sm 11 Phase during Devitrification of Al-10.2 at.% Sm Glasses

    DOE PAGES

    Yang, Lin; Zhang, Feng; Meng, Fan -Qiang; ...

    2018-05-12

    A metastable ε-Al 60Sm 11 phase appears during the initial devitrification of as-quenched Al-10.2 at.% Sm glasses. The ε phase is nonstoichiometric in nature since Al occupation is observed on the 16 f Sm lattice sites. Scanning transmission electron microscopic images reveal profound spatial correlation of Sm content on these sites, which cannot be explained by the “average crystal” description from Rietveld analysis of diffraction data. Thermodynamically favorable configurations, established by Monte Carlo (MC) simulations based on a cluster-expansion model, also give qualitatively different correlation functions from experimental observations. On the other hand, molecular dynamics simulations of the growth ofmore » ε-Al 60Sm 11 in undercooled liquid show that when the diffusion range of Sm is limited to ~4 Å, the correlation function of the as-grown crystal structure agrees well with that of the scanning transmission electronic microscopy (STEM) images. Furthermore, our results show that kinetic effects, especially the limited diffusivity of Sm atoms plays the fundamental role in determining the nonstoichiometric site occupancies of the ε-Al 60Sm 11 phase during the crystallization process.« less

  20. Spatially-correlated Site Occupancy in the Nonstoichiometric Meta-stable ε -Al 60Sm 11 Phase during Devitrification of Al-10.2 at.% Sm Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lin; Zhang, Feng; Meng, Fan -Qiang

    A metastable ε-Al 60Sm 11 phase appears during the initial devitrification of as-quenched Al-10.2 at.% Sm glasses. The ε phase is nonstoichiometric in nature since Al occupation is observed on the 16 f Sm lattice sites. Scanning transmission electron microscopic images reveal profound spatial correlation of Sm content on these sites, which cannot be explained by the “average crystal” description from Rietveld analysis of diffraction data. Thermodynamically favorable configurations, established by Monte Carlo (MC) simulations based on a cluster-expansion model, also give qualitatively different correlation functions from experimental observations. On the other hand, molecular dynamics simulations of the growth ofmore » ε-Al 60Sm 11 in undercooled liquid show that when the diffusion range of Sm is limited to ~4 Å, the correlation function of the as-grown crystal structure agrees well with that of the scanning transmission electronic microscopy (STEM) images. Furthermore, our results show that kinetic effects, especially the limited diffusivity of Sm atoms plays the fundamental role in determining the nonstoichiometric site occupancies of the ε-Al 60Sm 11 phase during the crystallization process.« less

  1. Application of neuroanatomical features to tractography clustering.

    PubMed

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2013-09-01

    Diffusion tensor imaging allows unprecedented insight into brain neural connectivity in vivo by allowing reconstruction of neuronal tracts via captured patterns of water diffusion in white matter microstructures. However, tractography algorithms often output hundreds of thousands of fibers, rendering subsequent data analysis intractable. As a remedy, fiber clustering techniques are able to group fibers into dozens of bundles and thus facilitate analyses. Most existing fiber clustering methods rely on geometrical information of fibers, by viewing them as curves in 3D Euclidean space. The important neuroanatomical aspect of fibers, however, is ignored. In this article, the neuroanatomical information of each fiber is encapsulated in the associativity vector, which functions as the unique "fingerprint" of the fiber. Specifically, each entry in the associativity vector describes the relationship between the fiber and a certain anatomical ROI in a fuzzy manner. The value of the entry approaches 1 if the fiber is spatially related to the ROI at high confidence; on the contrary, the value drops closer to 0. The confidence of the ROI is calculated by diffusing the ROI according to the underlying fibers from tractography. In particular, we have adopted the fast marching method for simulation of ROI diffusion. Using the associativity vectors of fibers, we further model fibers as observations sampled from multivariate Gaussian mixtures in the feature space. To group all fibers into relevant major bundles, an expectation-maximization clustering approach is employed. Experimental results indicate that our method results in anatomically meaningful bundles that are highly consistent across subjects. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  2. Binary Mixtures of Particles with Different Diffusivities Demix.

    PubMed

    Weber, Simon N; Weber, Christoph A; Frey, Erwin

    2016-02-05

    The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.

  3. Modeling of the Modulation by Buffers of Ca2+ Release through Clusters of IP3 Receptors

    PubMed Central

    Zeller, S.; Rüdiger, S.; Engel, H.; Sneyd, J.; Warnecke, G.; Parker, I.; Falcke, M.

    2009-01-01

    Abstract Intracellular Ca2+ release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca2+ and Ca2+ buffers, with spatially discrete clusters of stochastic IP3 receptor channels (IP3Rs) controlling the release of Ca2+ from the endoplasmic reticulum. IP3Rs are activated by a small rise of the cytosolic Ca2+ concentration and inhibited by large concentrations. Buffering of cytosolic Ca2+ shapes global Ca2+ transients. Here we use a model to investigate the effect of buffers with slow and fast reaction rates on single release spikes. We find that, depending on their diffusion coefficient, fast buffers can either decouple clusters or delay inhibition. Slow buffers have little effect on Ca2+ release, but affect the time course of the signals from the fluorescent Ca2+ indicator mainly by competing for Ca2+. At low [IP3], fast buffers suppress fluorescence signals, slow buffers increase the contrast between bulk signals and signals at open clusters, and large concentrations of buffers, either fast or slow, decouple clusters. PMID:19686646

  4. Investigating Phase-Change-Induced Flow in Gas Diffusion Layers in Fuel Cells with X-ray Computed Tomography

    DOE PAGES

    Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui; ...

    2017-10-07

    The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less

  5. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.

    2012-01-01

    Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z < 0.4. Aims: To help us extend our knowledge of ICL properties to higher redshifts and study the evolution of ICL with redshift, we search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4 < z < 0.8, that are also part of our DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to the faint dwarf galaxies of the Local Group. Conclusions: We show that the ICL is prevalent in clusters at least up to redshift z = 0.8. In the future, we propose to detect the ICL at even higher redshifts, to determine wether there is a particular stage of cluster evolution where it was stripped from galaxies and spread into the intracluster medium. Based on observations made at ESO Telescopes at the Paranal Observatory under programme ID 082.A-0374. Also based on the use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archives at the Space Telescope European Coordinating Facility and the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul, E-mail: goudfroo@stsci.edu

    We study mass functions of globular clusters derived from Hubble Space Telescope/Advanced Camera for Surveys images of the early-type merger remnant galaxy NGC 1316, which hosts a significant population of metal-rich globular clusters of intermediate age ({approx}3 Gyr). For the old, metal-poor ({sup b}lue{sup )} clusters, the peak mass of the mass function M{sub p} increases with internal half-mass density {rho}{sub h} as M{sub p}{proportional_to}{rho}{sub h}{sup 0.44}, whereas it stays approximately constant with galactocentric distance R{sub gal}. The mass functions of these clusters are consistent with a simple scenario in which they formed with a Schechter initial mass function andmore » evolved subsequently by internal two-body relaxation. For the intermediate-age population of metal-rich ({sup r}ed{sup )} clusters, the faint end of the previously reported power-law luminosity function of the clusters with R{sub gal} > 9 kpc is due to many of those clusters having radii larger than the theoretical maximum value imposed by the tidal field of NGC 1316 at their R{sub gal}. This renders disruption by two-body relaxation ineffective. Only a few such diffuse clusters are found in the inner regions of NGC 1316. Completeness tests indicate that this is a physical effect. Using comparisons with star clusters in other galaxies and cluster disruption calculations using published models, we hypothesize that most red clusters in the low-{rho}{sub h} tail of the initial distribution have already been destroyed in the inner regions of NGC 1316 by tidal shocking, and that several remaining low-{rho}{sub h} clusters will evolve dynamically to become similar to 'faint fuzzies' that exist in several lenticular galaxies. Finally, we discuss the nature of diffuse red clusters in early-type galaxies.« less

  7. In Situ Effective Diffusion Coefficient Profiles in Live Biofilms Using Pulsed-Field Gradient Nuclear Magnetic Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.

    2010-08-15

    Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less

  8. Factors affecting the diffusion of online end user literature searching.

    PubMed

    Ash, J S

    1999-01-01

    The aim of this study was to identify factors that affect diffusion of usage of online end user literature searching. Fifteen factors clustered into three attribute sets (innovation attributes, organizational attributes, and marketing attributes) were measured to study their effect on the diffusion of online searching within institutions. A random sample of sixty-seven academic health sciences centers was selected and then 1,335 library and informatics staff members at those institutions were surveyed by mail with electronic mail follow-up. Multiple regression analysis was performed. The survey yielded a 41% response rate with electronic mail follow-up being particularly effective. Two dependent variables, internal diffusion (spread of diffusion) and infusion (depth of diffusion), were measured. There was little correlation between them, indicating they measured different things. Fifteen independent variables clustered into three attribute sets were measured. The innovation attributes set was significant for both internal diffusion and infusion. Significant individual variables were visibility for internal diffusion and image enhancement effects (negative relation) as well as visibility for infusion (depth of diffusion). Organizational attributes were also significant predictors for both dependent variables. No individual variables were significant for internal diffusion. Communication, management support (negative relation), rewards, and existence of champions were significant for infusion. Marketing attributes were not significant predictors. Successful diffusion of online end user literature searching is dependent on the visibility of the systems, communication among, rewards to, and peers of possible users who promote use (champions). Personal image enhancement effects have a negative relation to infusion, possibly because the use of intermediaries is still seen as the more luxurious way to have searches done. Management support also has a negative relation to infusion, perhaps indicating that depth of diffusion can increase despite top-level management actions.

  9. Galaxy Clusters: A Novel Look at Diffuse Baryons Withstanding Dark Matter Gravity

    NASA Astrophysics Data System (ADS)

    Cavaliere, A.; Lapi, A.; Fusco-Femiano, R.

    2009-06-01

    In galaxy clusters, the equilibria of the intracluster plasma (ICP) and of the gravitationally dominant dark matter (DM) are governed by the hydrostatic equation and by the Jeans equation, respectively; in either case gravity is withstood by the corresponding, entropy-modulated pressure. Jeans, with the DM "entropy" set to K vprop r α and α ≈ 1.25-1.3 applying from groups to rich clusters, yields our radial α-profiles these, compared to the empirical Navarro-Frenk-White distribution, are flatter at the center and steeper in the outskirts as required by recent gravitational lensing data. In the ICP, on the other hand, the entropy run k(r) is mainly shaped by shocks, as steadily set by supersonic accretion of gas at the cluster boundary, and intermittently driven from the center by merging events or by active galactic nuclei (AGNs); the resulting equilibrium is described by the exact yet simple formalism constituting our ICP Supermodel. With two parameters, this accurately represents the runs of density n(r) and temperature T(r) as required by up-to-date X-ray data on surface brightness and spectroscopy for both cool core (CC) and non-cool core (NCC) clusters; the former are marked by a middle temperature peak, whose location is predicted from rich clusters to groups. The Supermodel inversely links the inner runs of n(r) and T(r), and highlights their central scaling with entropy nc vprop k -1 c and Tc vprop k 0.35 c , to yield radiative cooling times tc ≈ 0.3(kc /15 keV cm2)1.2 Gyr. We discuss the stability of the central values so focused: against radiative erosion of kc in the cool dense conditions of CC clusters, that triggers recurrent AGN activities resetting it back; or against energy inputs from AGNs and mergers whose effects are saturated by the hot central conditions of NCC clusters. From the Supermodel, we also derive as limiting cases the classic polytropic β-models, and the "mirror" model with T(r) vprop σ2(r) suitable for NCC and CC clusters, respectively; these limiting cases highlight how the ICP temperature T(r) strives to mirror the DM velocity dispersion σ2(r) away from energy and entropy injections. Finally, we discuss how the Supermodel connects information derived from X-ray and gravitational lensing observations.

  10. Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models

    NASA Astrophysics Data System (ADS)

    Giese, Wolfgang; Eigel, Martin; Westerheide, Sebastian; Engwer, Christian; Klipp, Edda

    2015-12-01

    In silico experiments bear the potential for further understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results. Cell polarization and spatial reorganization of membrane proteins are fundamental for cell division, chemotaxis and morphogenesis. We chose the yeast Saccharomyces cerevisiae as an exemplary model system which entails the shuttling of small Rho GTPases such as Cdc42 and Rho, between an active membrane-bound form and an inactive cytosolic form. We used partial differential equations to describe the membrane-cytosol shuttling of proteins. In this study, a consistent extension of a class of 1D reaction-diffusion systems into higher space dimensions is suggested. The membrane is modeled as a thin layer to allow for lateral diffusion and the cytosol is modeled as an enclosed volume. Two well-known polarization mechanisms were considered. One shows the classical Turing-instability patterns, the other exhibits wave-pinning dynamics. For both models, we investigated how cell shape and diffusion barriers like septin structures or bud scars influence the formation of signaling molecule clusters and subsequent polarization. An extensive set of in silico experiments with different modeling hypotheses illustrated the dependence of cell polarization models on local membrane curvature, cell size and inhomogeneities on the membrane and in the cytosol. In particular, the results of our computer simulations suggested that for both mechanisms, local diffusion barriers on the membrane facilitate Rho GTPase aggregation, while diffusion barriers in the cytosol and cell protrusions limit spontaneous molecule aggregations of active Rho GTPase locally.

  11. Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation

    DOE PAGES

    Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...

    2015-06-01

    Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less

  12. Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation

    DOE PAGES

    Barashev, A. V.; Golubov, S. I.; Stoller, R. E.

    2015-06-01

    We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.

  13. THE EFFECT OF DIFFUSION ON THE PARTICLE SPECTRA IN PULSAR WIND NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorster, M. J.; Moraal, H., E-mail: 12792322@nwu.ac.za

    2013-03-01

    A possible way to calculate particle spectra as a function of position in pulsar wind nebulae is to solve a Fokker-Planck transport equation. This paper presents numerical solutions to the transport equation with the processes of convection, diffusion, adiabatic losses, and synchrotron radiation included. In the first part of the paper, the steady-state version of the transport equation is solved as a function of position and energy. This is done to distinguish the various effects of the aforementioned processes on the solutions to the transport equation. The second part of the paper deals with a time-dependent solution to the transportmore » equation, specifically taking into account the effect of a moving outer boundary. The paper highlights the fact that diffusion can play a significant role in reducing the amount of synchrotron losses, leading to a modification in the expected particle spectra. These modified spectra can explain the change in the photon index of the synchrotron emission as a function of position. The solutions presented in this paper are not limited to pulsar wind nebulae, but can be applied to any similar central source system, e.g., globular clusters.« less

  14. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    PubMed

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  15. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-01

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed C u64.5Z r35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. By mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  16. Effect of surfactant concentration to aggregations of nanogold particles

    NASA Astrophysics Data System (ADS)

    Duangthanu, Methawee; Pattanaporkratana, Apichart

    2017-09-01

    This research presents a study of aggregation of colloidal gold nanoparticles using 400 nm diameter gold nanoparticles mixed with a surfactant (Plantacare 2000) at various concentrations. When observed under a microscope, we found that the nanoparticles aggregated to form nearly spherical clusters at the beginning of the formation, and then sedimented to the bottom of the container. These clusters moved with Brownian’s motion and collided with each other in the horizontal plane, forming branch-like clusters in 2D. The appearance and size of the clusters were different depending on the concentration of surfactant. The clusters’ size and appearance were rarely changed after mixing with surfactant for 90 minutes, and we found that the cluster’s shapes were nearly spherical at low surfactant concentration (c = 0.25%). At surfactant concentration between 0.50% - 5.00%, the aggregates formed branch-like clusters with skinnier branches and smaller sizes at higher surfactant concentration. Moreover, we also found that, at surfactant concentrations between 2.50% - 5.00%, nanoparticles and aggregates stuck to the bottom of the glass container quickly and rarely moved after 10 minutes. At c = 0.25%, the 2D fractal dimension of the aggregates was measured to be D = 1.88 ± 0.04, since the aggregates were nearly spherical. The fractal dimension decreased to the minimum of D = 1.50 ± 0.12 at c = 1.50%, similar to D ∼ 1.45 found in diffusion-limited cluster aggregation (DLCA). At surfactant concentration above 1.50%, the fractal dimension increased until it reached the value of D ∼ 1.66 at c = 5.00%.

  17. Molecular Dynamics Study of the Solution Structure, Clustering, and Diffusion of Four Aqueous Alkanolamines.

    PubMed

    Melnikov, Sergey M; Stein, Matthias

    2018-03-15

    CO 2 sequestration from anthropogenic resources is a challenge to the design of environmental processes at a large scale. Reversible chemical absorption by amine-based solvents is one of the most efficient methods of CO 2 removal. Molecular simulation techniques are very useful tools to investigate CO 2 binding by aqueous alkanolamine molecules for further technological application. In the present work, we have performed detailed atomistic molecular dynamics simulations of aqueous solutions of three prototype amines: monoethanolamine (MEA) as a standard, 3-aminopropanol (MPA), 2-methylaminoethanol (MMEA), and 4-diethylamino-2-butanol (DEAB) as potential novel CO 2 absorptive solvents. Solvent densities, radial distribution functions, cluster size distributions, hydrogen-bonding statistics, and diffusion coefficients for a full range of mixture compositions have been obtained. The solvent densities and diffusion coefficients from simulations are in good agreement with those in the experiment. In aqueous solution, MEA, MPA, and MMEA molecules prefer to be fully solvated by water molecules, whereas DEAB molecules tend to self-aggregate. In a range from 30/70-50/50 (w/w) alkanolamine/water mixtures, they form a bicontinuous phase (both alkanolamine and water are organized in two mutually percolating clusters). Among the studied aqueous alkanolamine solutions, the diffusion coefficients decrease in the following order MEA > MPA = MMEA > DEAB. With an increase of water content, the diffusion coefficients increase for all studied alkanolamines. The presented results are a first step for process-scale simulation and provide important qualitative and quantitative information for the design and engineering of efficient new CO 2 removal processes.

  18. The impact of network characteristics on the diffusion of innovations

    NASA Astrophysics Data System (ADS)

    Peres, Renana

    2014-05-01

    This paper studies the influence of network topology on the speed and reach of new product diffusion. While previous research has focused on comparing network types, this paper explores explicitly the relationship between topology and measurements of diffusion effectiveness. We study simultaneously the effect of three network metrics: the average degree, the relative degree of social hubs (i.e., the ratio of the average degree of highly-connected individuals to the average degree of the entire population), and the clustering coefficient. A novel network-generation procedure based on random graphs with a planted partition is used to generate 160 networks with a wide range of values for these topological metrics. Using an agent-based model, we simulate diffusion on these networks and check the dependence of the net present value (NPV) of the number of adopters over time on the network metrics. We find that the average degree and the relative degree of social hubs have a positive influence on diffusion. This result emphasizes the importance of high network connectivity and strong hubs. The clustering coefficient has a negative impact on diffusion, a finding that contributes to the ongoing controversy on the benefits and disadvantages of transitivity. These results hold for both monopolistic and duopolistic markets, and were also tested on a sample of 12 real networks.

  19. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  20. Mechanisms Underlying the Confined Diffusion of Cholera Toxin B-Subunit in Intact Cell Membranes

    PubMed Central

    Day, Charles A.; Kenworthy, Anne K.

    2012-01-01

    Multivalent glycolipid binding toxins such as cholera toxin have the capacity to cluster glycolipids, a process thought to be important for their functional uptake into cells. In contrast to the highly dynamic properties of lipid probes and many lipid-anchored proteins, the B-subunit of cholera toxin (CTxB) diffuses extremely slowly when bound to its glycolipid receptor GM1 in the plasma membrane of living cells. In the current study, we used confocal FRAP to examine the origins of this slow diffusion of the CTxB/GM1 complex at the cell surface, relative to the behavior of a representative GPI-anchored protein, transmembrane protein, and fluorescent lipid analog. We show that the diffusion of CTxB is impeded by actin- and ATP-dependent processes, but is unaffected by caveolae. At physiological temperature, the diffusion of several cell surface markers is unchanged in the presence of CTxB, suggesting that binding of CTxB to membranes does not alter the organization of the plasma membrane in a way that influences the diffusion of other molecules. Furthermore, diffusion of the B-subunit of another glycolipid-binding toxin, Shiga toxin, is significantly faster than that of CTxB, indicating that the confined diffusion of CTxB is not a simple function of its ability to cluster glycolipids. By identifying underlying mechanisms that control CTxB dynamics at the cell surface, these findings help to delineate the fundamental properties of toxin-receptor complexes in intact cell membranes. PMID:22511973

  1. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  2. Molecular dynamics investigations of liquid-vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores.

    PubMed

    Huang, Pei-Hsing; Hung, Shang-Chao; Huang, Ming-Yueh

    2014-08-07

    Formaldehyde exposure has been associated with several human cancers, including leukemia and nasopharyngeal carcinoma, motivating the present investigation on the microscopic adsorption behaviors of formaldehyde in multi-component-mixture-filled micropores. Molecular dynamics (MD) simulation was used to investigate the liquid-vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores. The effects of the slit width, system temperature, concentration, and the constituent ratio of the mixture on the diffusion and adsorption properties are studied. As a result of interactions between the components, the z-directional self-diffusivity (D(z)) in the mixture substantially decreased by about one order of magnitude as compared with that of pure (single-constituent) adsorbates. When the concentration exceeds a certain threshold, the D(z) values dramatically decrease due to over-saturation inducing barriers to diffusion. The binding energy between the adsorbate and graphite at the first adsorption monolayer is calculated to be 3.99, 2.01, 3.49, and 2.67 kcal mol(-1) for CO2, CO, CH2O, and H2O, respectively. These values agree well with those calculated using the density functional theory coupled cluster method and experimental results. A low solubility of CO2 in water and water preferring to react with CH2O, forming hydrated methanediol clusters, are observed. Because the cohesion in a hydrated methanediol cluster is much higher than the adhesion between clusters and the graphitic surface, the hydrated methanediol clusters were hydrophobic, exhibiting a large contact angle on graphite.

  3. The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*

    NASA Astrophysics Data System (ADS)

    Kuzma, P. B.; Da Costa, G. S.; Mackey, A. D.

    2018-01-01

    We present a second set of results from a wide-field photometric survey of the environs of Milky Way globular clusters. The clusters studied are NGC 1261, NGC 1851 and NGC 5824: all have data from the Dark Energy Camera on the Blanco 4 m telescope. NGC 5824 also has data from the Magellan Clay telescope with MegaCam. We confirm the existence of a large diffuse stellar envelope surrounding NGC 1851 of size at least 240 pc in radius. The radial density profile of the envelope follows a power-law decline with index γ = -1.5 ± 0.2 and the projected shape is slightly elliptical. For NGC 5824, there is no strong detection of a diffuse stellar envelope, but we find the cluster is remarkably extended and is similar in size (at least 230 pc in radius) to the envelope of NGC 1851. A stellar envelope is also revealed around NGC 1261. However, it is notably smaller in size with radius ∼105 pc. The radial density profile of the envelope is also much steeper with γ = -3.8 ± 0.2. We discuss the possible nature of the diffuse stellar envelopes, but are unable to draw definitive conclusions based on the current data. NGC 1851, and potentially NGC 5824, could be stripped dwarf galaxy nuclei, akin to the cases of ω Cen, M54 and M2. On the other hand, the different characteristics of the NGC 1261 envelope suggest that it may be the product of dynamical evolution of the cluster.

  4. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  5. White matter microstructure and cognitive decline in metabolic syndrome: a review of diffusion tensor imaging.

    PubMed

    Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera

    2018-01-01

    Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Kinetic mechanism of the thermal-induced self-organization of Au/Si nanodroplets on Si(100): Size and roughness evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffino, F.; Canino, A.; Grimaldi, M. G.

    Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less

  7. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P. M. G.

    2008-02-01

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  8. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles.

    PubMed

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P M G

    2008-02-21

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  9. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b

  10. Applying Petri nets to modeling the chemical stage of radiobiological mechanism

    NASA Astrophysics Data System (ADS)

    Barilla, J.; Lokajíček, M.; Pisaková, H.; Simr, P.

    2015-03-01

    The chemical stage represents important part of radiological mechanism as double strand breaks of DNA molecules represent main damages leading to final biological effect. These breaks are formed mainly by water radicals arising in clusters formed by densely ionizing ends of primary or secondary charged particles in neighborhood of a DNA molecule. The given effect may be significantly influenced by other species present in water, which may depend on the size and diffusion of corresponding clusters. We have already proposed a model describing the corresponding process (i.e., the combined effect of cluster diffusion and chemical reactions) running in individual radical clusters and influencing the formation probability of main damages (i.e., DSBs). Now a full number of corresponding species will be considered. With the help of Continuous Petri nets it will then be possible to follow the time evolution of corresponding species in individual clusters, which might be important especially in the case of studying the biological effect of very low-LET radiation. The results in deoxygenated water will be presented; the ratio of final and initial contents of corresponding species being in good agreement with values established experimentally.

  11. COOL CORE CLUSTERS FROM COSMOLOGICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasia, E.; Borgani, S.; Murante, G.

    2015-11-01

    We present results obtained from a set of cosmological hydrodynamic simulations of galaxy clusters, aimed at comparing predictions with observational data on the diversity between cool-core (CC) and non-cool-core (NCC) clusters. Our simulations include the effects of stellar and active galactic nucleus (AGN) feedback and are based on an improved version of the smoothed particle hydrodynamics code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical instabilities by including a suitable artificial thermal diffusion. In this Letter, we focus our analysis on the entropy profiles, the primary diagnostic we used to classify the degree of cool-coreness of clusters, and themore » iron profiles. In keeping with observations, our simulated clusters display a variety of behaviors in entropy profiles: they range from steadily decreasing profiles at small radii, characteristic of CC systems, to nearly flat core isentropic profiles, characteristic of NCC systems. Using observational criteria to distinguish between the two classes of objects, we find that they occur in similar proportions in both simulations and observations. Furthermore, we also find that simulated CC clusters have profiles of iron abundance that are steeper than those of NCC clusters, which is also in agreement with observational results. We show that the capability of our simulations to generate a realistic CC structure in the cluster population is due to AGN feedback and artificial thermal diffusion: their combined action allows us to naturally distribute the energy extracted from super-massive black holes and to compensate for the radiative losses of low-entropy gas with short cooling time residing in the cluster core.« less

  12. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes

    PubMed Central

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-01-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. PMID:26046580

  13. Cool Core Clusters from Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Rasia, E.; Borgani, S.; Murante, G.; Planelles, S.; Beck, A. M.; Biffi, V.; Ragone-Figueroa, C.; Granato, G. L.; Steinborn, L. K.; Dolag, K.

    2015-11-01

    We present results obtained from a set of cosmological hydrodynamic simulations of galaxy clusters, aimed at comparing predictions with observational data on the diversity between cool-core (CC) and non-cool-core (NCC) clusters. Our simulations include the effects of stellar and active galactic nucleus (AGN) feedback and are based on an improved version of the smoothed particle hydrodynamics code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical instabilities by including a suitable artificial thermal diffusion. In this Letter, we focus our analysis on the entropy profiles, the primary diagnostic we used to classify the degree of cool-coreness of clusters, and the iron profiles. In keeping with observations, our simulated clusters display a variety of behaviors in entropy profiles: they range from steadily decreasing profiles at small radii, characteristic of CC systems, to nearly flat core isentropic profiles, characteristic of NCC systems. Using observational criteria to distinguish between the two classes of objects, we find that they occur in similar proportions in both simulations and observations. Furthermore, we also find that simulated CC clusters have profiles of iron abundance that are steeper than those of NCC clusters, which is also in agreement with observational results. We show that the capability of our simulations to generate a realistic CC structure in the cluster population is due to AGN feedback and artificial thermal diffusion: their combined action allows us to naturally distribute the energy extracted from super-massive black holes and to compensate for the radiative losses of low-entropy gas with short cooling time residing in the cluster core.

  14. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    PubMed

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-06-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  15. Time-of-flight secondary ion mass spectrometry studies of cluster ion analysis for semiconductors and diffusion of manganese in gallium arsenide at low temperatures

    NASA Astrophysics Data System (ADS)

    Goacher, Robyn Elizabeth

    Secondary Ion Mass Spectrometry (SIMS) is an established method for the quantitative analysis of dopants in semiconductors. The quasi-parallel mass acquisition of Time-of-Flight SIMS, along with the development of polyatomic primary ions, have rapidly increased the use of SIMS for analysis of organic and biological specimens. However, the advantages and disadvantages of using cluster primary ions for quantitative analysis of inorganic materials are not clear. The research described in this dissertation investigates the consequences of using polyatomic primary ions for the analysis of inorganic compounds in ToF-SIMS. Furthermore, the diffusion of Mn in GaAs, which is important in Spintronic material applications such as spin injection, is also studied by quantitative ToF-SIMS depth profiling. In the first portion of this work, it was discovered that primary ion bombardment of pre-sputtered compound semiconductors GaAs and InP for the purpose of spectral analysis resulted in the formation of cluster secondary ions, as well as atomic secondary ions (Chapter 2). In particular, bombardment using a cluster primary ion such as Bi3q + or C60q+ resulted in higher yields of high-mass cluster secondary ions. These cluster secondary ions did not have bulk stoichiometry, "non-stoichiometric", in contrast to the paradigm of stoichiometric cluster ions generated from salts. This is attributed to the covalent bonding of the compound semiconductors, as well as to preferential sputtering. The utility of high-mass cluster secondary ions in depth profiling is also discussed. Relative sensitivity factors (RSFs) calculated for ion-implanted Fe and Mn samples in GaAs also exhibit differences based on whether monatomic or polyatomic primary ions are utilized (Chapter 3). These RSFs are important for the quantitative conversion of intensity to concentration. When Bi 32+ primary ions are used for analysis instead of Bi + primary ions, there is a significantly higher proportion of Mn and Fe ions present in the spectra, as referenced to the matrix species. The magnitude of this effect differs depending on the sputtering ion, Cs or C60. The use of C60cluster primary ions for depth profiling of GaAs is also investigated (Chapter 4). In particular, for quantitative depth profiling, parameters such as depth resolution, ion and sputter yields, and relative sensitivity factors are pertinent to profiling thin layered structures quantitatively and quickly. C60 sputtering is compared to Cs sputtering in all of these aspects. It is found that 10 keV C60+ is advantageous for the analysis of metals (such as Au contacts on Si) but that previously reported roughness problems prohibit successful analysis in Si. For Al delta layers and quantum wells in GaAs, C60 q+ sputtering induced very little roughness in the sample, and resulted in high ion yields and excellent signal-to-noise as compared to Cs+ sputtering. However, the depth resolution of C60 is at best equivalent to 1 keV Cs+ and does not extend into the sub 2-nm range. Furthermore, C60 sputtering results in significant carbon implantation. In the second portion of this work, quantitative ToF-SIMS depth profiling was used to evaluate the diffusion of Mn into GaAs. Samples were prepared by Molecular Beam Epitaxy in the department of Physics. Mn diffusion from MnAs was investigated first, and Mn diffusion from layered epitaxial structures of GaAs / Ga1-xMnxAs / GaAs was investigated second. Diffusion experiments were conducted by annealing portions of the samples in sealed glass ampoules at low temperatures (200-400°C). Different sputtering rates were measured for MnAs and GaAs and the measured depth profiles were corrected for these effects. RSFs measured for Mn ion-implanted standards were used to calibrate the intensity scale. For diffusion from MnAs, thin MnAs layers resulted in no measurable changes except in the surface transient. For thick MnAs layers, it was determined that substantial loss of As occurred at 400°C, resulting in severe sample roughening, which inhibited proper SIMS analysis. Results for the diffusion of Mn out of a thick buried layer of Ga1-xMnxAs show that annealing induces diffusion of Mn species from the Ga1-xMnxAs layer into the neighboring GaAs with an activation energy of 0.69+/-0.09 eV. This results in doping of the GaAs layer, which is detrimental to spin injection for Spintronics devices.

  16. Gas stripping in galaxy clusters: a new SPH simulation approach

    NASA Astrophysics Data System (ADS)

    Jáchym, P.; Palouš, J.; Köppen, J.; Combes, F.

    2007-09-01

    Aims:The influence of a time-varying ram pressure on spiral galaxies in clusters is explored with a new simulation method based on the N-body SPH/tree code GADGET. Methods: We have adapted the code to describe the interaction of two different gas phases, the diffuse hot intracluster medium (ICM) and the denser and colder interstellar medium (ISM). Both the ICM and ISM components are introduced as SPH particles. As a galaxy arrives on a highly radial orbit from outskirts to cluster center, it crosses the ICM density peak and experiences a time-varying wind. Results: Depending on the duration and intensity of the ISM-ICM interaction, early and late type galaxies in galaxy clusters with either a large or small ICM distribution are found to show different stripping efficiencies, amounts of reaccretion of the extra-planar ISM, and final masses. We compare the numerical results with analytical approximations of different complexity and indicate the limits of the Gunn & Gott simple stripping formula. Conclusions: Our investigations emphasize the role of the galactic orbital history to the stripping amount. We discuss the contribution of ram pressure stripping to the origin of the ICM and its metallicity. We propose gas accumulations like tails, filaments, or ripples to be responsible for stripping in regions with low overall ICM occurrence. Appendix A is only available in electronic form at http://www.aanda.org

  17. Numerical Simulations of Single and Multiple Scattering by Fractal Ice Clusters

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We consider the scattering model in the form of a vertically and horizontally homogeneous particulate slab of an arbitrary optical thickness composed of widely separated fractal aggregates built of small spherical ice monomers. The aggregates are generated by applying three different approaches, including simulated cluster-cluster aggregation (CCA) and diffusion-limited aggregation (DLA) procedures. Having in mind radar remote-sensing applications, we report and analyze the results of computations of the backscattering circular polarization ratio obtained using efficient superposition T-matrix and vector radiative-transfer codes. The computations have been performed at a wavelength of 12.6 cm for fractal aggregates with the following characteristics: monomer refractive index m=1.78+i0.003, monomer radius r=1 cm, monomer packing density p=0.2, overall aggregate radii R in the range 4<=R<=10 cm and fractal dimensions D(sub f) 2.5 and 3. We show that for aggregates generated with simulated CCA and DLA procedures, the respective values of the backscattering circular polarization ratio differ weakly for D(sub f) 2.5, but the differences can increase somewhat for D(sub f)3, especially in case of an optically semi-infinite medium. For aggregates with a spheroidal overall shape, the dependence of the circular polarization ratio on the cluster morphology can be quite significant and increases with increasing the aspect ratio of the circumscribing spheroid.

  18. Synchrotron Emission from Dark Matter Annihilation: Predictions for Constraints from Non-detections of Galaxy Clusters with New Radio Surveys

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Jeltema, Tesla E.; Splettstoesser, Megan; Profumo, Stefano

    2017-04-01

    The annihilation of dark matter particles is expected to yield a broad radiation spectrum via the production of Standard Model particles in astrophysical environments. In particular, electrons and positrons from dark matter annihilation produce synchrotron radiation in the presence of magnetic fields. Galaxy clusters are the most massive collapsed structures in the universe, and are known to host ˜μG-scale magnetic fields. They are therefore ideal targets to search for, or to constrain the synchrotron signal from dark matter annihilation. In this work, we use the expected sensitivities of several planned surveys from the next generation of radio telescopes to predict the constraints on dark matter annihilation models which will be achieved in the case of non-detections of diffuse radio emission from galaxy clusters. Specifically, we consider the Tier 1 survey planned for the Low Frequency Array (LOFAR) at 120 MHz, the Evolutionary Map of the Universe (EMU) survey planned for the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, and planned surveys for Aperture Tile in Focus (APERTIF) at 1.4 GHz. We find that, for massive clusters and dark matter masses ≲ 100 {GeV}, the predicted limits on the annihilation cross section would rule out vanilla thermal relic models for even the shallow LOFAR Tier 1, ASKAP, and APERTIF surveys.

  19. Utility of K-Means clustering algorithm in differentiating apparent diffusion coefficient values between benign and malignant neck pathologies

    PubMed Central

    Srinivasan, A.; Galbán, C.J.; Johnson, T.D.; Chenevert, T.L.; Ross, B.D.; Mukherji, S.K.

    2014-01-01

    Purpose The objective of our study was to analyze the differences between apparent diffusion coefficient (ADC) partitions (created using the K-Means algorithm) between benign and malignant neck lesions and evaluate its benefit in distinguishing these entities. Material and methods MRI studies of 10 benign and 10 malignant proven neck pathologies were post-processed on a PC using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). Lesions were manually contoured by two neuroradiologists with the ADC values within each lesion clustered into two (low ADC-ADCL, high ADC-ADCH) and three partitions (ADCL, intermediate ADC-ADCI, ADCH) using the K-Means clustering algorithm. An unpaired two-tailed Student’s t-test was performed for all metrics to determine statistical differences in the means between the benign and malignant pathologies. Results Statistically significant difference between the mean ADCL clusters in benign and malignant pathologies was seen in the 3 cluster models of both readers (p=0.03, 0.022 respectively) and the 2 cluster model of reader 2 (p=0.04) with the other metrics (ADCH, ADCI, whole lesion mean ADC) not revealing any significant differences. Receiver operating characteristics curves demonstrated the quantitative difference in mean ADCH and ADCL in both the 2 and 3 cluster models to be predictive of malignancy (2 clusters: p=0.008, area under curve=0.850, 3 clusters: p=0.01, area under curve=0.825). Conclusion The K-Means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared to whole lesion mean ADC alone. PMID:20007723

  20. The Harrison Diffusion Kinetics Regimes in Solute Grain Boundary Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belova, Irina; Fiedler, T; Kulkarni, Nagraj S

    2012-01-01

    Knowledge of the limits of the principal Harrison kinetics regimes (Type-A, B and C) for grain boundary diffusion is very important for the correct analysis of the depth profiles in a tracer diffusion experiment. These regimes for self-diffusion have been extensively studied in the past by making use of the phenomenological Lattice Monte Carlo (LMC) method with the result that the limits are now well established. The relationship of those self-diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregationmore » on the limits is investigated with the LMC method for the well-known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type-B kinetics regime may differ from the global segregation factor.« less

  1. Structural and magnetic evolution of bimetallic MnAu clusters driven by asymmetric atomic migration.

    PubMed

    Wei, Xiaohui; Zhou, Rulong; Lefebvre, Williams; He, Kai; Le Roy, Damien; Skomski, Ralph; Li, Xingzhong; Shield, Jeffrey E; Kramer, Matthew J; Chen, Shuang; Zeng, Xiao Cheng; Sellmyer, David J

    2014-03-12

    The nanoscale structural, compositional, and magnetic properties are examined for annealed MnAu nanoclusters. The MnAu clusters order into the L1(0) structure, and monotonic size-dependences develop for the composition and lattice parameters, which are well reproduced by our density functional theory calculations. Simultaneously, Mn diffusion forms 5 Å nanoshells on larger clusters inducing significant magnetization in an otherwise antiferromagnetic system. The differing atomic mobilities yield new cluster nanostructures that can be employed generally to create novel physical properties.

  2. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  3. ROSAT observations of Coma Cluster galaxies

    NASA Technical Reports Server (NTRS)

    Dow, K. L.; White, S. D. M.

    1995-01-01

    The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.

  4. Selective mode excitation in finite size plasma crystals by diffusely reflected laser light

    NASA Astrophysics Data System (ADS)

    Schablinski, Jan; Block, Dietmar

    2015-02-01

    The possibility to use diffuse reflections of a laser beam to exert a force on levitating dust particles is studied experimentally. Measurements and theoretical predictions are found to be in good agreement. Further, the method is applied to test the selective excitation of breathing-like modes in finite dust clusters.

  5. Standing waves, clustering, and phase waves in 1D simulations of kinetic relaxation oscillations in NO+NH 3 on Pt(1 0 0) coupled by diffusion

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2004-04-01

    The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.

  6. Multifractal Approach to Time Clustering of Earthquakes. Application to Mt. Vesuvio Seismicity

    NASA Astrophysics Data System (ADS)

    Codano, C.; Alonzo, M. L.; Vilardo, G.

    The clustering structure of the Vesuvian earthquakes occurring is investigated by means of statistical tools: the inter-event time distribution, the running mean and the multifractal analysis. The first cannot clearly distinguish between a Poissonian process and a clustered one due to the difficulties of clearly distinguishing between an exponential distribution and a power law one. The running mean test reveals the clustering of the earthquakes, but looses information about the structure of the distribution at global scales. The multifractal approach can enlighten the clustering at small scales, while the global behaviour remains Poissonian. Subsequently the clustering of the events is interpreted in terms of diffusive processes of the stress in the earth crust.

  7. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  8. A Catalog of Galaxy Clusters Observed by XMM-Newton

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Mushotzky, R. M.; Kuntz, K. D.; Davis, David S.

    2007-01-01

    Images and the radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton are presented along with a detailed discussion of the data reduction and analysis methods, including background modeling, which were used in the processing. Proper consideration of the various background components is vital to extend the reliable determination of cluster parameters to the largest possible cluster radii. The various components of the background including the quiescent particle background, cosmic diffuse emission, soft proton contamination, and solar wind charge exchange emission are discussed along with suggested means of their identification, filtering, and/or their modeling and subtraction. Every component is spectrally variable, sometimes significantly so, and all components except the cosmic background are temporally variable as well. The distributions of the events over the FOV vary between the components, and some distributions vary with energy. The scientific results from observations of low surface brightness objects and the diffuse background itself can be strongly affected by these background components and therefore great care should be taken in their consideration.

  9. Diffuse γ-ray emission in the vicinity of young star cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; de Oña Wilhelmi, Emma; Aharonian, Felix

    2018-04-01

    We report the results of our analysis of the publicly available data obtained by the Large Area Telescope (LAT) on board the Fermi satellite towards the direction of the young massive star cluster Westerlund 2. We found significant extended γ-ray emission in the vicinity of Westerlund 2 with a hard power-law energy spectrum extending from 1 to 250 GeV with a photon index of 2.0 ± 0.1. We argue that amongst several alternatives, the luminous stars in Westerlund 2 are likely sites of acceleration of particles responsible for the diffuse γ-ray emission of the surrounding interstellar medium. In particular, the young star cluster Westerlund 2 can provide sufficient non-thermal energy to account for the γ-ray emission. In this scenario, since the γ-ray production region is significantly larger than the area occupied by the star cluster, we conclude that the γ-ray production is caused by hadronic interactions of accelerated protons and nuclei with the ambient gas. In that case, the total energy budget in relativistic particles is estimated of the order of 1050 erg.

  10. A soft X-ray map of the Perseus cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Cash, W.; Malina, R. F.; Wolff, R. S.

    1976-01-01

    A 0.5-3-keV X-ray map of the Perseus cluster of galaxies is presented. The map shows a region of strong emission centered near NGC 1275 plus a highly elongated emission region which lies along the line of bright galaxies that dominates the core of the cluster. The data are compared with various models that include point and diffuse sources. One model which adequately represents the data is the superposition of a point source at NGC 1275 and an isothermal ellipsoid resulting from the bremsstrahlung emission of cluster gas. The ellipsoid has a major core radius of 20.5 arcmin and a minor core radius of 5.5 arcmin, consistent with the values obtained from galaxy counts. All acceptable models provide evidence for a compact source (less than 3 arcmin FWHM) at NGC 1275 containing about 25% of the total emission. Since the diffuse X-ray and radio components have radically different morphologies, it is unlikely that the emissions arise from a common source, as proposed in inverse-Compton models.

  11. VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics

    NASA Astrophysics Data System (ADS)

    Pearce, C. J. J.; van Weeren, R. J.; Andrade-Santos, F.; Jones, C.; Forman, W. R.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Kraft, R. P.; Medezinski, E.; Mroczkowski, T.; Nonino, M.; Nulsen, P. E. J.; Randall, S. W.; Umetsu, K.

    2017-08-01

    Cluster mergers leave distinct signatures in the intracluster medium (ICM) in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known ˜2.1 Mpc radio halo and ˜1.5 Mpc radio relic. We carry out a radio spectral analysis from which we determine the relic’s injection spectral index to be {α }{inj}=-1.12+/- 0.19. This corresponds to a shock Mach number of { M }={2.05}-0.19+0.31 under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halo’s spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure -1.81 ± 0.26 and -0.63 ± 0.21 for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of R={1.39}-0.22+0.34 co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of { M }={1.26}-0.15+0.25.

  12. Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study

    NASA Astrophysics Data System (ADS)

    Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.

    2017-12-01

    In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.

  13. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO{sub 2} segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO{sub 2} along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO{sub 2} molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO{sub 2} diffuses significantly onmore » an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO{sub 2} on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 10{sup 12} s{sup −1}. This energy should also apply to the diffusion of CO{sub 2} on the wall of pores. The binding energy of CO{sub 2} from CO{sub 2} clusters and CO{sub 2} from H{sub 2}O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO{sub 2}–CO{sub 2} interaction is stronger than CO{sub 2}–H{sub 2}O interaction, in agreement with the experimental finding that CO{sub 2} does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H{sub 2}O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO{sub 2} on the icy mantles of dust grains.« less

  14. Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma

    NASA Astrophysics Data System (ADS)

    Gong, Yihao; Jin, Shuoxue; Zhu, Te; Cheng, Long; Cao, Xingzhong; You, Li; Lu, Guanghong; Guo, Liping; Wang, Baoyi

    2018-04-01

    A large number of dislocation networks were introduced in to 316L stainless steel by cold rolling. Subsequently, low energy (40 eV) helium ions were implanted by exposing the steel to helium plasma. Thermal desorption and positron annihilation spectroscopy were used to study the behavior of helium in the presence of dislocations, with emphasis on helium self-trapping and migration behaviors. Helium desorption behaviour from different helium trapping states was measured by the thermal desorption spectroscopy. Most of the helium desorbed from the He m V n clusters, and the corresponding desorption peak is located at ~650 K. The desorption peak from helium-dislocation clusters (He m D) is at approximately 805 K. The effect of annealing on the defect evolution was investigated by positron annihilation spectroscopy. For the specimen exposed to helium plasma without displacement damage, the increment of S parameter meant the existence of helium self-trapping behavior (He m V n ). Helium atoms could diffuse two to three orders of magnitude deeper than the implantation depth calculated by SRIM. The diffusing helium atoms were gradually trapped by dislocation lines and formed He m D. Elevated temperatures enhance the self-trapping behavior and cause helium atoms to dissociate/desorb from the He m V n clusters, increasing the S parameters at 473-673 K. The gradual recovery of vacancies in the He m V n clusters decreased the S parameter above 673 K.

  15. Active Brownian agents with concentration-dependent chemotactic sensitivity.

    PubMed

    Meyer, Marcel; Schimansky-Geier, Lutz; Romanczuk, Pawel

    2014-02-01

    We study a biologically motivated model of overdamped, autochemotactic Brownian agents with concentration-dependent chemotactic sensitivity. The agents in our model move stochastically and produce a chemical ligand at their current position. The ligand concentration obeys a reaction-diffusion equation and acts as a chemoattractant for the agents, which bias their motion towards higher concentrations of the dynamically altered chemical field. We explore the impact of concentration-dependent response to chemoattractant gradients on large-scale pattern formation, by deriving a coarse-grained macroscopic description of the individual-based model, and compare the conditions for emergence of inhomogeneous solutions for different variants of the chemotactic sensitivity. We focus primarily on the so-called receptor-law sensitivity, which models a nonlinear decrease of chemotactic sensitivity with increasing ligand concentration. Our results reveal qualitative differences between the receptor law, the constant chemotactic response, and the so-called log law, with respect to stability of the homogeneous solution, as well as the emergence of different patterns (labyrinthine structures, clusters, and bubbles) via spinodal decomposition or nucleation. We discuss two limiting cases, where the model can be reduced to the dynamics of single species: (I) the agent density governed by a density-dependent effective diffusion coefficient and (II) the ligand field with an effective bistable, time-dependent reaction rate. In the end, we turn to single clusters of agents, studying domain growth and determining mean characteristics of the stationary inhomogeneous state. Analytical results are confirmed and extended by large-scale GPU simulations of the individual based model.

  16. Coresets vs clustering: comparison of methods for redundancy reduction in very large white matter fiber sets

    NASA Astrophysics Data System (ADS)

    Alexandroni, Guy; Zimmerman Moreno, Gali; Sochen, Nir; Greenspan, Hayit

    2016-03-01

    Recent advances in Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) of white matter in conjunction with improved tractography produce impressive reconstructions of White Matter (WM) pathways. These pathways (fiber sets) often contain hundreds of thousands of fibers, or more. In order to make fiber based analysis more practical, the fiber set needs to be preprocessed to eliminate redundancies and to keep only essential representative fibers. In this paper we demonstrate and compare two distinctive frameworks for selecting this reduced set of fibers. The first framework entails pre-clustering the fibers using k-means, followed by Hierarchical Clustering and replacing each cluster with one representative. For the second clustering stage seven distance metrics were evaluated. The second framework is based on an efficient geometric approximation paradigm named coresets. Coresets present a new approach to optimization and have huge success especially in tasks requiring large computation time and/or memory. We propose a modified version of the coresets algorithm, Density Coreset. It is used for extracting the main fibers from dense datasets, leaving a small set that represents the main structures and connectivity of the brain. A novel approach, based on a 3D indicator structure, is used for comparing the frameworks. This comparison was applied to High Angular Resolution Diffusion Imaging (HARDI) scans of 4 healthy individuals. We show that among the clustering based methods, that cosine distance gives the best performance. In comparing the clustering schemes with coresets, Density Coreset method achieves the best performance.

  17. Cross-correlating the γ-ray Sky with Catalogs of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Branchini, Enzo; Camera, Stefano; Cuoco, Alessandro; Fornengo, Nicolao; Regis, Marco; Viel, Matteo; Xia, Jun-Qing

    2017-01-01

    We report the detection of a cross-correlation signal between Fermi Large Area Telescope diffuse γ-ray maps and catalogs of clusters. In our analysis, we considered three different catalogs: WHL12, redMaPPer, and PlanckSZ. They all show a positive correlation with different amplitudes, related to the average mass of the objects in each catalog, which also sets the catalog bias. The signal detection is confirmed by the results of a stacking analysis. The cross-correlation signal extends to rather large angular scales, around 1°, that correspond, at the typical redshift of the clusters in these catalogs, to a few to tens of megaparsecs, I.e., the typical scale-length of the large-scale structures in the universe. Most likely this signal is contributed by the cumulative emission from active galactic nuclei (AGNs) associated with the filamentary structures that converge toward the high peaks of the matter density field in which galaxy clusters reside. In addition, our analysis reveals the presence of a second component, more compact in size and compatible with a point-like emission from within individual clusters. At present, we cannot distinguish between the two most likely interpretations for such a signal, I.e., whether it is produced by AGNs inside clusters or if it is a diffuse γ-ray emission from the intracluster medium. We argue that this latter, intriguing, hypothesis might be tested by applying this technique to a low-redshift large-mass cluster sample.

  18. Enhanced diffusion on oscillating surfaces through synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Cao, Wei; Ma, Ming; Zheng, Quanshui

    2018-02-01

    The diffusion of molecules and clusters under nanoscale confinement or absorbed on surfaces is the key controlling factor in dynamical processes such as transport, chemical reaction, or filtration. Enhancing diffusion could benefit these processes by increasing their transport efficiency. Using a nonlinear Langevin equation with an extensive number of simulations, we find a large enhancement in diffusion through surface oscillation. For helium confined in a narrow carbon nanotube, the diffusion enhancement is estimated to be over three orders of magnitude. A synchronization mechanism between the kinetics of the particles and the oscillating surface is revealed. Interestingly, a highly nonlinear negative correlation between diffusion coefficient and temperature is predicted based on this mechanism, and further validated by simulations. Our results provide a general and efficient method for enhancing diffusion, especially at low temperatures.

  19. Probing the nature of Dark Matter with the SKA

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Regis, M.; Marchegiani, P.; Beck, G.; Beck, R.; Zechlin, H.; Lobanov, A.; Horns, D.

    2015-04-01

    Dark Matter (DM) is a fundamental ingredient of our Universe and of structure formation, and yet its nature is elusive to astrophysical probes. Information on the nature and physical properties of the WIMP (neutralino) DM (the leading candidate for a cosmologically relevant DM) can be obtained by studying the astrophysical signals of their annihilation/decay. Among the various e.m. signals, secondary electrons produced by neutralino annihilation generate synchrotron emission in the magnetized atmosphere of galaxy clusters and galaxies which could be observed as a diffuse radio emission (halo or haze) centered on the DM halo. A deep search for DM radio emission with SKA in local dwarf galaxies, galaxy regions with low star formation and galaxy clusters (with offset DM-baryonic distribution, like e.g. the Bullet cluster) can be very effective in constraining the neutralino mass, composition and annihilation cross-section. For the case of a dwarf galaxy, like e.g. Draco, the constraints on the DM annihilation cross-section obtainable with SKA1-MID will be at least a factor $\\sim 10^3$ more stringent than the limits obtained by Fermi-LAT in the $\\gamma$-rays. These limits scale with the value of the B field, and the SKA will have the capability to determine simultaneously both the magnetic field in the DM-dominated structures and the DM particle properties. The optimal frequency band for detecting the DM-induced radio emission is around $\\sim 1$ GHz, with the SKA1-MID Band 1 and 4 important to probe the synchrotron spectral curvature at low-$\

  20. C 60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, K. A.; Elvati, P.; Parsonage, T. L.

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C 60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. Themore » evidence suggests marginal uptake of C 60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Compu-tational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal defor-mation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. Lastly, the surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.« less

  1. C 60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    DOE PAGES

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; ...

    2016-01-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C 60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. Themore » evidence suggests marginal uptake of C 60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Compu-tational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal defor-mation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. Lastly, the surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.« less

  2. Aggregation Number in Water/n-Hexanol Molecular Clusters Formed in Cyclohexane at Different Water/n-Hexanol/Cyclohexane Compositions Calculated by Titration 1H NMR.

    PubMed

    Flores, Mario E; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2017-11-09

    Upon titration of n-hexanol/cyclohexane mixtures of different molar compositions with water, water/n-hexanol clusters are formed in cyclohexane. Here, we develop a new method to estimate the water and n-hexanol aggregation numbers in the clusters that combines integration analysis in one-dimensional 1 H NMR spectra, diffusion coefficients calculated by diffusion-ordered NMR spectroscopy, and further application of the Stokes-Einstein equation to calculate the hydrodynamic volume of the clusters. Aggregation numbers of 5-15 molecules of n-hexanol per cluster in the absence of water were observed in the whole range of n-hexanol/cyclohexane molar fractions studied. After saturation with water, aggregation numbers of 6-13 n-hexanol and 0.5-5 water molecules per cluster were found. O-H and O-O atom distances related to hydrogen bonds between donor/acceptor molecules were theoretically calculated using density functional theory. The results show that at low n-hexanol molar fractions, where a robust hydrogen-bond network is held between n-hexanol molecules, addition of water makes the intermolecular O-O atom distance shorter, reinforcing molecular association in the clusters, whereas at high n-hexanol molar fractions, where dipole-dipole interactions dominate, addition of water makes the intermolecular O-O atom distance longer, weakening the cluster structure. This correlates with experimental NMR results, which show an increase in the size and aggregation number in the clusters upon addition of water at low n-hexanol molar fractions, and a decrease of these magnitudes at high n-hexanol molar fractions. In addition, water produces an increase in the proton exchange rate between donor/acceptor molecules at all n-hexanol molar fractions.

  3. Laser excited atomic fluorescence spectrometry as a powerful tool for analytical applications and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gornushkin, Igor B.

    1997-12-01

    Laser-excited atomic fluorescence spectrometry (LEAFS) with a novel diffusive tube electrothermal atomizer (ETA) has been used for the study of atomization and diffusion processes and for the direct trace analysis of complex matrices. A novel ETA was a graphite tube sealed by two graphite electrodes. A sample was introduced into the tube and the furnace assembly was heated. The vaporized sample diffused through the hot graphite and the atomic fraction of the vapor was excited by a tunable dye laser above the tube. Temporal behavior of atomic fluorescence of Cu, Ag, and Ni atoms, diffused through the furnace tube, was studied at different temperatures; the values for activation energies and diffusion coefficients were derived on the basis of the diffusion/vaporization kinetic model. The femtogram/nanogram concentrations of silver were determined in coastal Atlantic water and soil samples. Use of the new ETA resulted in significant reduction of matrix interferences, ultra-low limits of detection, good accuracy and precision. LEAFS coupled with laser ablation (LA) was studied in terms of its analytical and spectroscopic potential. Low concentrations of lead (0.15 ppm-750 ppm) in metallic matrices (copper, brass, steel, and zinc) were measured in a low pressure argon atmosphere. No matrix effect was observed, providing a universal calibration curve for all samples. A limit of detection of 22 ppb (0.5 fg) was achieved. Also, the lifetime of the metastable 6p21D level of lead was measured and found to be in good agreement with the literature data. A simple open-air LA-LEAFS system was used for the determination of cobalt in solid matrices (graphite, soil, and steel). The fluorescence of cobalt was excited from a level which was already populated in the ablation plasma and was monitored at the Stokes-shifted wavelength. Detection limits in the ppb to ppm range and linearity over four orders of magnitude were achieved. The resonance shadowgraph technique has been developed for time-resolved imaging of laser-produced plasmas. The shadowgraphs were obtained by igniting the plasma on the lead or tin surface and by illuminating the plasma by a laser tuned in resonance with a strong atomic transition. UV-photodecomposition of lead and tin clusters was visualized. The evolution of the plasmas was studied at different pressures of argon. A shock wave produced by the laser ablation was monitored and its speed was measured.

  4. Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow

    DOE PAGES

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; ...

    2016-07-08

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of a molecular dynamics simulation study of water intercalated between GO layers that have a C/O ratio of 4. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in spacing from about 0.7 nm to 0.8 nm and an increase in mass ofmore » about 14% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. As a result, slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.« less

  5. A diffusion tensor imaging study of suicide attempters

    PubMed Central

    Thapa-Chhetry, Binod; Sublette, M. Elizabeth; Sullivan, Gregory M.; Oquendo, Maria A.; Mann, J. John; Parsey, Ramin V.

    2014-01-01

    Background Few studies have examined white matter abnormalities in suicide attempters using diffusion tensor imaging (DTI). This study sought to identify white matter regions altered in individuals with a prior suicide attempt. Methods DTI scans were acquired in 13 suicide attempters with major depressive disorder (MDD), 39 non-attempters with MDD, and 46 healthy participants (HP). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) was determined in the brain using two methods: region of interest (ROI) and tract-based spatial statistics (TBSS). ROIs were limited a priori to white matter adjacent to the caudal anterior cingulate cortex, rostral anterior cingulate cortex, dorsomedial prefrontal cortex, and medial orbitofrontal cortex. Results Using the ROI approach, suicide attempters had lower FA than MDD non-attempters and HP in the dorsomedial prefrontal cortex. Uncorrected TBSS results confirmed a significant cluster within the right dorsomedial prefrontal cortex indicating lower FA in suicide attempters compared to non-attempters. There were no differences in ADC when comparing suicide attempters, non-attempters and HP groups using ROI or TBSS methods. Conclusions Low FA in the dorsomedial prefrontal cortex was associated with a suicide attempt history. Converging findings from other imaging modalities support this finding, making this region of potential interest in determining the diathesis for suicidal behavior. PMID:24462041

  6. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M., E-mail: abel@utk.edu

    2016-01-07

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations.more » Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.« less

  7. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    NASA Astrophysics Data System (ADS)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation in combination with two-step annealing is effective in fabricating ultra-shallow junctions.

  8. Fluctuation-controlled front propagation

    NASA Astrophysics Data System (ADS)

    Ridgway, Douglas Thacher

    1997-09-01

    A number of fundamental pattern-forming systems are controlled by fluctuations at the front. These problems involve the interaction of an infinite dimensional probability distribution with a strongly nonlinear, spatially extended pattern-forming system. We have examined fluctuation-controlled growth in the context of the specific problems of diffusion-limited growth and biological evolution. Mean field theory of diffusion-limited growth exhibits a finite time singularity. Near the leading edge of a diffusion-limited front, this leads to acceleration and blowup. This may be resolved, in an ad hoc manner, by introducing a cutoff below which growth is weakened or eliminated (8). This model, referred to as the BLT model, captures a number of qualitative features of global pattern formation in diffusion-limited aggregation: contours of the mean field match contours of averaged particle density in simulation, and the modified mean field theory can form dendritic features not possible in the naive mean field theory. The morphology transition between dendritic and non-dendritic global patterns requires that BLT fronts have a Mullins-Sekerka instability of the wavefront shape, in order to form concave patterns. We compute the stability of BLT fronts numerically, and compare the results to fronts without a cutoff. A significant morphological instability of the BLT fronts exists, with a dominant wavenumber on the scale of the front width. For standard mean field fronts, no instability is found. The naive and ad hoc mean field theories are continuum-deterministic models intended to capture the behavior of a discrete stochastic system. A transformation which maps discrete systems into a continuum model with a singular multiplicative noise is known, however numerical simulations of the continuum stochastic system often give mean field behavior instead of the critical behavior of the discrete system. We have found a new interpretation of the singular noise, based on maintaining the symmetry of the absorbing state, but which is unsuccessful at capturing the behavior of diffusion-limited growth. In an effort to find a simpler model system, we turned to modelling fitness increases in evolution. The work was motivated by an experiment on vesicular stomatitis virus, a short (˜9600bp) single-stranded RNA virus. A highly bottlenecked viral population increases in fitness rapidly until a certain point, after which the fitness increases at a slower rate. This is well modeled by a constant population reproducing and mutating on a smooth fitness landscape. Mean field theory of this system displays the same infinite propagation velocity blowup as mean field diffusion-limited aggregation. However, we have been able to make progress on a number of fronts. One is solving systems of moment equations, where a hierarchy of moments is truncated arbitrarily at some level. Good results for front propagation velocity are found with just two moments, corresponding to inclusion of the basic finite population clustering effect ignored by mean field theory. In addition, for small mutation rates, most of the population will be entirely on a single site or two adjacent sites, and the density of these cases can be described and solved. (Abstract shortened by UMI.)

  9. Baryons at the edge of the X-ray-brightest galaxy cluster.

    PubMed

    Simionescu, Aurora; Allen, Steven W; Mantz, Adam; Werner, Norbert; Takei, Yoh; Morris, R Glenn; Fabian, Andrew C; Sanders, Jeremy S; Nulsen, Paul E J; George, Matthew R; Taylor, Gregory B

    2011-03-25

    Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.

  10. Coagulation-fragmentation for a finite number of particles and application to telomere clustering in the yeast nucleus

    NASA Astrophysics Data System (ADS)

    Hozé, Nathanaël; Holcman, David

    2012-01-01

    We develop a coagulation-fragmentation model to study a system composed of a small number of stochastic objects moving in a confined domain, that can aggregate upon binding to form local clusters of arbitrary sizes. A cluster can also dissociate into two subclusters with a uniform probability. To study the statistics of clusters, we combine a Markov chain analysis with a partition number approach. Interestingly, we obtain explicit formulas for the size and the number of clusters in terms of hypergeometric functions. Finally, we apply our analysis to study the statistical physics of telomeres (ends of chromosomes) clustering in the yeast nucleus and show that the diffusion-coagulation-fragmentation process can predict the organization of telomeres.

  11. Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, M.; Shalchi, A., E-mail: m_hussein@physics.umanitoba.ca, E-mail: andreasm4@yahoo.com

    2014-04-10

    A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit ofmore » the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor δB/B {sub 0} where B {sub 0} is the mean field and δB the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.« less

  12. Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes.

    PubMed

    Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A

    2013-01-14

    Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ < 1.2 × 10(-12) s, κ(cl) increases with increasing ρ but is also finite at the critical point.

  13. Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Bernstein, R. A.

    2007-08-01

    We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.

  14. The Magellanic Bridge Cluster NGC 796: Deep Optical AO Imaging Reveals the Stellar Content and Initial Mass Function of a Massive Open Cluster

    NASA Astrophysics Data System (ADS)

    Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica

    2018-04-01

    NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.

  15. Fatigue and Impact Strength of Diffusion Bonded Titanium Alloy Joints

    DTIC Science & Technology

    1989-02-01

    likely to be due to the void level being such that the chance of a pore cluster being present at or near the test piece surface was less probable...in sub-surface crack initiation and reduced fatigue strength; it was concluded that small single voids were insignificant but clusters of voids...strength is reduced when clusters of pores are present, and is, in turn, a much more sensitive test than the tensile test. In the current work the

  16. INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis

    2013-02-15

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of themore » detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L{sub X} -T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L{sub X} -{sigma} relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L{sub X} increases with decreasing group H I to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on H I morphology whereby systems with intragroup H I indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L{sub X} of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.« less

  17. Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups

    NASA Technical Reports Server (NTRS)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.; hide

    2013-01-01

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  18. Physical model of protein cluster positioning in growing bacteria

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wang, Hui; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2017-10-01

    Chemotaxic receptors in bacteria form clusters at cell poles and also laterally, and this clustering plays an important role in signal transduction. These clusters were found to be periodically arranged on the surface of the bacterium Escherichia coli, independent of any known positioning mechanism. In this work we extend a model based on diffusion and aggregation to more realistic geometries and present a means based on ‘bursty’ protein production to distinguish spontaneous positioning from an independently existing positioning mechanism. We also consider the case of isotropic cellular growth and characterize the degree of order arising spontaneously. Our model could also be relevant for other examples of periodically positioned protein clusters in bacteria.

  19. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A., E-mail: nelambert@gru.edu

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domainsmore » in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.« less

  20. Decoupling of rotational and translational diffusion in supercooled colloidal fluids

    PubMed Central

    Edmond, Kazem V.; Elsesser, Mark T.; Hunter, Gary L.; Pine, David J.; Weeks, Eric R.

    2012-01-01

    We use confocal microscopy to directly observe 3D translational and rotational diffusion of tetrahedral clusters, which serve as tracers in colloidal supercooled fluids. We find that as the colloidal glass transition is approached, translational and rotational diffusion decouple from each other: Rotational diffusion remains inversely proportional to the growing viscosity whereas translational diffusion does not, decreasing by a much lesser extent. We quantify the rotational motion with two distinct methods, finding agreement between these methods, in contrast with recent simulation results. The decoupling coincides with the emergence of non-Gaussian displacement distributions for translation whereas rotational displacement distributions remain Gaussian. Ultimately, our work demonstrates that as the glass transition is approached, the sample can no longer be approximated as a continuum fluid when considering diffusion. PMID:23071311

  1. Nonequilibrium Statistical Mechanics in One Dimension

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    2005-08-01

    Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion-limited exciton kinetics in one-dimensional systems R. Kroon and R. Sprik; 21. Experimental investigations of molecular and excitonic elementary reaction kinetics in one-dimensional systems R. Kopelman and A. L. Lin; 22. Luminescence quenching as a probe of particle distribution S. H. Bossmann and L. S. Schulman; Index.

  2. Reaction and Aggregation Dynamics of Cell Surface Receptors

    NASA Astrophysics Data System (ADS)

    Wang, Michelle Dong

    This dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine -alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.

  3. Diffusion imaging quality control via entropy of principal direction distribution.

    PubMed

    Farzinfar, Mahshid; Oguz, Ipek; Smith, Rachel G; Verde, Audrey R; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C; Paterson, Sarah; Evans, Alan C; Styner, Martin A

    2013-11-15

    Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, "venetian blind" artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Diffusion imaging quality control via entropy of principal direction distribution

    PubMed Central

    Oguz, Ipek; Smith, Rachel G.; Verde, Audrey R.; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L.; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C.; Paterson, Sarah; Evans, Alan C.; Styner, Martin A.

    2013-01-01

    Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, “venetian blind” artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. PMID:23684874

  5. A Probabilistic Atlas of Diffuse WHO Grade II Glioma Locations in the Brain

    PubMed Central

    Baumann, Cédric; Zouaoui, Sonia; Yordanova, Yordanka; Blonski, Marie; Rigau, Valérie; Chemouny, Stéphane; Taillandier, Luc; Bauchet, Luc; Duffau, Hugues; Paragios, Nikos

    2016-01-01

    Diffuse WHO grade II gliomas are diffusively infiltrative brain tumors characterized by an unavoidable anaplastic transformation. Their management is strongly dependent on their location in the brain due to interactions with functional regions and potential differences in molecular biology. In this paper, we present the construction of a probabilistic atlas mapping the preferential locations of diffuse WHO grade II gliomas in the brain. This is carried out through a sparse graph whose nodes correspond to clusters of tumors clustered together based on their spatial proximity. The interest of such an atlas is illustrated via two applications. The first one correlates tumor location with the patient’s age via a statistical analysis, highlighting the interest of the atlas for studying the origins and behavior of the tumors. The second exploits the fact that the tumors have preferential locations for automatic segmentation. Through a coupled decomposed Markov Random Field model, the atlas guides the segmentation process, and characterizes which preferential location the tumor belongs to and consequently which behavior it could be associated to. Leave-one-out cross validation experiments on a large database highlight the robustness of the graph, and yield promising segmentation results. PMID:26751577

  6. Physical Processes at Turnoff

    NASA Astrophysics Data System (ADS)

    Michaud, Georges

    Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars.

  7. Physical Processes at Turnoff

    NASA Astrophysics Data System (ADS)

    Michaud, Georges

    Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars

  8. Processes at the turnoff

    NASA Astrophysics Data System (ADS)

    Michaud, Georges; Richard, Olivier; Richer, Jacques

    2005-01-01

    Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars.

  9. Simulating 3D Stellar Winds and Diffuse X-ray Emissions from Gases in Non-equilibrium Ionization State

    NASA Astrophysics Data System (ADS)

    Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li

    2017-08-01

    We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.

  10. Nanoscale diffusive memristor crossbars as physical unclonable functions.

    PubMed

    Zhang, R; Jiang, H; Wang, Z R; Lin, P; Zhuo, Y; Holcomb, D; Zhang, D H; Yang, J J; Xia, Q

    2018-02-08

    Physical unclonable functions have emerged as promising hardware security primitives for device authentication and key generation in the era of the Internet of Things. Herein, we report novel physical unclonable functions built upon the crossbars of nanoscale diffusive memristors that translate the stochastic distribution of Ag clusters in a SiO 2 matrix into a random binary bitmap that serves as a device fingerprint. The random dispersion of Ag led to an uneven number of clusters at each cross-point, which in turn resulted in a stochastic ability to switch in the Ag:SiO 2 diffusive memristors in an array. The randomness of the dispersion was a barrier to fingerprint cloning and the unique fingerprints of each device were persistent after fabrication. Using an optimized fabrication procedure, we maximized the randomness and achieved an inter-class Hamming distance of 50.68%. We also discovered that the bits were not flipping after over 10 4 s at 400 K, suggesting superior reliability of our physical unclonable functions. In addition, our diffusive memristor-based physical unclonable functions were easy to fabricate and did not require complicated post-processing for digitization and thus, provide new opportunities in hardware security applications.

  11. Extremely faint, diffuse satellite systems in the M31 halo: exceptional star clusters or tiny dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Recent years have seen the discovery of a variety of low surface brightness, diffuse stellar systems in the Local Group. Of particular prominence are the ultra-faint dwarf satellites of the Milky Way and the extended globular clusters seen in M31, M33, and NGC 6822. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered several very faint and diffuse stellar satellites in the M31 halo. In Cycle 19 we obtained ACS/WFC imaging for one of these, PAndAS-48, which has revealed it to be a puzzling and unusual object. On the size-luminosity plane it falls between the extended clusters and ultra-faint dwarfs; however, its characteristics do not allow us to unambiguously class it as either type of system. If PAndAS-48 is an extended cluster then it is the most elliptical, isolated, metal-poor, and lowest-luminosity example yet uncovered. Conversely, while its properties are generally consistent with those observed for the faint dwarf satellites of the Milky Way, it would be a factor 2-3 smaller in spatial extent than its Galactic counterparts at comparable luminosity. Here we propose deep resolved imaging of the remaining five similar objects in our sample, with the aim of probing this hitherto poorly-explored region of parameter space in greater detail. If we are able to confirm any of these objects as faint dwarfs, they will provide the first insight into the behaviour of this class of object in a galaxy other than the Milky Way.

  12. CROSS-CORRELATING THE γ-RAY SKY WITH CATALOGS OF GALAXY CLUSTERS

    DOE PAGES

    Branchini, Enzo; Camera, Stefano; Cuoco, Alessandro; ...

    2017-01-18

    In this article, we report the detection of a cross-correlation signal between Fermi Large Area Telescope diffuse γ-ray maps and catalogs of clusters. In our analysis, we considered three different catalogs: WHL12, redMaPPer, and PlanckSZ. They all show a positive correlation with different amplitudes, related to the average mass of the objects in each catalog, which also sets the catalog bias. The signal detection is confirmed by the results of a stacking analysis. The cross-correlation signal extends to rather large angular scales, around 1°, that correspond, at the typical redshift of the clusters in these catalogs, to a few tomore » tens of megaparsecs, i.e., the typical scale-length of the large-scale structures in the universe. Most likely this signal is contributed by the cumulative emission from active galactic nuclei (AGNs) associated with the filamentary structures that converge toward the high peaks of the matter density field in which galaxy clusters reside. In addition, our analysis reveals the presence of a second component, more compact in size and compatible with a point-like emission from within individual clusters. At present, we cannot distinguish between the two most likely interpretations for such a signal, i.e., whether it is produced by AGNs inside clusters or if it is a diffuse γ-ray emission from the intracluster medium. Lastly, we argue that this latter, intriguing, hypothesis might be tested by applying this technique to a low-redshift large-mass cluster sample.« less

  13. The globular cluster systems of 54 Coma ultra-diffuse galaxies: statistical constraints from HST data

    NASA Astrophysics Data System (ADS)

    Amorisco, N. C.; Monachesi, A.; Agnello, A.; White, S. D. M.

    2018-04-01

    We use data from the HST Coma Cluster Treasury program to assess the richness of the globular cluster systems (GCSs) of 54 Coma ultra-diffuse galaxies (UDGs), 18 of which have a half-light radius exceeding 1.5 kpc. We use a hierarchical Bayesian method tested on a large number of mock data sets to account consistently for the high and spatially varying background counts in Coma. These include both background galaxies and intra-cluster globular clusters (ICGCs), which are disentangled from the population of member globular clusters (GCs) in a probabilistic fashion. We find no candidate for a GCS as rich as that of the Milky Way, our sample has GCSs typical of dwarf galaxies. For the standard relation between GCS richness and halo mass, 33 galaxies have a virial mass Mvir ≤ 1011 M⊙ at 90 per cent probability. Only three have Mvir > 1011 M⊙ with the same confidence. The mean colour and spread in colour of the UDG GCs are indistinguishable from those of the abundant population of ICGCs. The majority of UDGs in our sample are consistent with the relation between stellar mass and GC richness of `normal' dwarf galaxies. Nine systems, however, display GCSs that are richer by a factor of 3 or more (at 90 per cent probability). Six of these have sizes ≲1.4 kpc. Our results imply that the physical mechanisms responsible for the extended size of the UDGs and for the enhanced GC richness of some cluster dwarfs are at most weakly correlated.

  14. Water oxidation by size selected Co 27 clusters supported on Fe 2O 3

    DOE PAGES

    Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...

    2016-09-22

    The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less

  15. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation

    PubMed Central

    Haining, Elizabeth J.; Matthews, Alexandra L.; Noy, Peter J.; Romanska, Hanna M.; Harris, Helen J.; Pike, Jeremy; Morowski, Martina; Gavin, Rebecca L.; Yang, Jing; Milhiet, Pierre-Emmanuel; Berditchevski, Fedor; Nieswandt, Bernhard; Poulter, Natalie S.; Watson, Steve P.; Tomlinson, Michael G.

    2017-01-01

    Abstract The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics. PMID:28032533

  16. Stellar models with microscopic diffusion and rotational mixing. 2: Application to open clusters

    NASA Technical Reports Server (NTRS)

    Chaboyer, B.; Demarque, P.; Pinsonneault, M. H.

    1995-01-01

    Stellar models with masses ranging from 05.5 to 1.3 solar mass were constructed for comparison with young cluster observations of Li and of rotation velocities. The amount of Li depletion in cool stars is sensitive to the amount of overshoot at the base of the surface convection zone, and the exact metallicity of the models. Even when this is taken into account, the Li observations are a severe constraint for the models and rule out standard models and pure diffusion models. Stellar models which include diffusion and rotational mixing in the radiative regions of stars are able to simultaneously match the Li abundances observed in the Pleiades, the UMa Group, The Hyades, Praesepe, NGC 752, and M67. They also match the observed rotation periods in the Hyades. However, these models are unable to simultaneously explain the presence of the rapidly rotating late G and K stars in the Pleiades and the absence of rapidly rotating late F and early G stars.

  17. Diffuse X-ray emission from Abell clusters 401 and 399 - A gravitationally bound system

    NASA Technical Reports Server (NTRS)

    Ulmer, M. P.; Kinzer, R.; Cruddace, R. G.; Wood, K.; Evans, W.; Byram, E. T.; Chubb, T. A.; Friedman, H.

    1979-01-01

    The X-ray emission from the Abell 401-399 region has been studied using data obtained by the A-1 proportional counter aboard HEAO 1 in two different ways. The first involved routine scanning of the region during the all-sky survey, and the second was an observation in which the instrument was pointed at A401 during a lunar occultation. The emission is shown to be unusually extended and to be centered on a point lying between A401 and A399. The best fit of a uniform disk model to the data yielded a radius of 25.5 + or -4.4 arcmin for the lunar occultation and 42 + or - 17 arcmin for the scans. A possible explanation of the results is that A401 and A399 are both diffuse cluster X-ray sources. Alternatively, the emission may come from a large gas cloud of at least 10 to the 15th solar masses enveloping both clusters.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui

    The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less

  19. Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View

    NASA Astrophysics Data System (ADS)

    Ferrari, C.

    2009-05-01

    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.

  20. Dynamic behaviour of nanometre-sized defect clusters emitted from an atomic displacement cascade in Au at 50 K

    NASA Astrophysics Data System (ADS)

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.

    2017-09-01

    We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.

  1. Mathematical modelling of complex contagion on clustered networks

    NASA Astrophysics Data System (ADS)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branchini, Enzo; Camera, Stefano; Cuoco, Alessandro

    In this article, we report the detection of a cross-correlation signal between Fermi Large Area Telescope diffuse γ-ray maps and catalogs of clusters. In our analysis, we considered three different catalogs: WHL12, redMaPPer, and PlanckSZ. They all show a positive correlation with different amplitudes, related to the average mass of the objects in each catalog, which also sets the catalog bias. The signal detection is confirmed by the results of a stacking analysis. The cross-correlation signal extends to rather large angular scales, around 1°, that correspond, at the typical redshift of the clusters in these catalogs, to a few tomore » tens of megaparsecs, i.e., the typical scale-length of the large-scale structures in the universe. Most likely this signal is contributed by the cumulative emission from active galactic nuclei (AGNs) associated with the filamentary structures that converge toward the high peaks of the matter density field in which galaxy clusters reside. In addition, our analysis reveals the presence of a second component, more compact in size and compatible with a point-like emission from within individual clusters. At present, we cannot distinguish between the two most likely interpretations for such a signal, i.e., whether it is produced by AGNs inside clusters or if it is a diffuse γ-ray emission from the intracluster medium. Lastly, we argue that this latter, intriguing, hypothesis might be tested by applying this technique to a low-redshift large-mass cluster sample.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branchini, Enzo; Camera, Stefano; Cuoco, Alessandro

    We report the detection of a cross-correlation signal between Fermi Large Area Telescope diffuse γ -ray maps and catalogs of clusters. In our analysis, we considered three different catalogs: WHL12, redMaPPer, and PlanckSZ. They all show a positive correlation with different amplitudes, related to the average mass of the objects in each catalog, which also sets the catalog bias. The signal detection is confirmed by the results of a stacking analysis. The cross-correlation signal extends to rather large angular scales, around 1°, that correspond, at the typical redshift of the clusters in these catalogs, to a few to tens ofmore » megaparsecs, i.e., the typical scale-length of the large-scale structures in the universe. Most likely this signal is contributed by the cumulative emission from active galactic nuclei (AGNs) associated with the filamentary structures that converge toward the high peaks of the matter density field in which galaxy clusters reside. In addition, our analysis reveals the presence of a second component, more compact in size and compatible with a point-like emission from within individual clusters. At present, we cannot distinguish between the two most likely interpretations for such a signal, i.e., whether it is produced by AGNs inside clusters or if it is a diffuse γ -ray emission from the intracluster medium. We argue that this latter, intriguing, hypothesis might be tested by applying this technique to a low-redshift large-mass cluster sample.« less

  4. Gravity influence on the clustering of charged particles in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  5. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2003-03-01

    A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.

  6. Diffuse Optical Light in Galaxy Clusters. I. Abell 3888

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Bernstein, R. A.; Pimbblet, K. A.

    2006-01-01

    We are undertaking a program to measure the characteristics of the intracluster light (ICL; total flux, profile, color, and substructure) in a sample of 10 galaxy clusters with a range of cluster mass, morphology, and redshift. We present here the methods and results for the first cluster in that sample, A3888. We have identified an ICL component in A3888 in V and r that contains 13%+/-5% of the total cluster light and extends to 700 h-170 kpc (~0.3r200) from the center of the cluster. The ICL color in our smallest radial bin is V-r=0.3+/-0.1, similar to the central cluster elliptical galaxies. The ICL is redder than the galaxies at 400 h-170 kpc1) with a high-metallicity (1.0 Zsolar

  7. The initial stage of uranium oxidation: mechanism of UO(2) scale formation in the presence of a native lateral stress field.

    PubMed

    Chernia, Z; Ben-Eliyahu, Y; Kimmel, G; Braun, G; Sariel, J

    2006-11-23

    In this work, an oxidation model for alpha-uranium is presented. It describes the internally lateral stress field built in the oxide scale during the reaction. The thickness of the elastic, stress-preserving oxide (UO(2+x)) scale is less than 0.5 microm. A lateral, 6.5 GPa stress field has been calculated from strains derived from line shifts (delta(2theta)) as measured by the X-ray diffraction of UO(2). It is shown that in the elastic growth domain, (110) is the main UO(2) growth plane for gas-solid oxidation. The diffusion-limited oxidation mechanism discussed here is based on the known "2:2:2" cluster theory which describes the mechanism of fluorite-based hyperstoichiometric oxides. In this study, it is adapted to describe oxygen-anion hopping. Anion hopping toward the oxide-metal interface proceeds at high rates in the [110] direction, hence making this pipeline route the principal growth direction in UO(2) formation. It is further argued that growth in the pure elastic domain of the oxide scale should be attributed entirely to anion hopping in 110. Anions, diffusing isotropically via grain boundaries and cracks, are shown to have a significant impact on the overall oxidation rate in relatively thick (>0.35 microm) oxide scales if followed by an avalanche break off in the postelastic regime. Stress affects oxidation in the elastic domain by controlling the hopping rate directly. In the postelastic regime, stress weakens hopping, indirectly, by enhancing isotropic diffusion. Surface roughness presents an additional hindering factor for the anion hopping. In comparison to anisotropic hopping, diffusion of isotropic hopping has a lower activation energy barrier. Therefore, a relatively stronger impact at lower temperatures due to isotropic diffusion is displayed.

  8. Patterns of victimization between and within peer clusters in a high school social network.

    PubMed

    Swartz, Kristin; Reyns, Bradford W; Wilcox, Pamela; Dunham, Jessica R

    2012-01-01

    This study presents a descriptive analysis of patterns of violent victimization between and within the various cohesive clusters of peers comprising a sample of more than 500 9th-12th grade students from one high school. Social network analysis techniques provide a visualization of the overall friendship network structure and allow for the examination of variation in victimization across the various peer clusters within the larger network. Social relationships among clusters with varying levels of victimization are also illustrated so as to provide a sense of possible spatial clustering or diffusion of victimization across proximal peer clusters. Additionally, to provide a sense of the sorts of peer clusters that support (or do not support) victimization, characteristics of clusters at both the high and low ends of the victimization scale are discussed. Finally, several of the peer clusters at both the high and low ends of the victimization continuum are "unpacked", allowing examination of within-network individual-level differences in victimization for these select clusters.

  9. Stochastic Physicochemical Dynamics

    NASA Astrophysics Data System (ADS)

    Tsekov, R.

    2001-02-01

    Thermodynamic Relaxation in Quantum Systems: A new approach to quantum Markov processes is developed and the corresponding Fokker-Planck equation is derived. The latter is examined to reproduce known results from classical and quantum physics. It was also applied to the phase-space description of a mechanical system thus leading to a new treatment of this problem different from the Wigner presentation. The equilibrium probability density obtained in the mixed coordinate-momentum space is a reasonable extension of the Gibbs canonical distribution. The validity of the Einstein fluctuation-dissipation relation is discussed in respect to the type of relaxation in an isothermal system. The first model, presuming isothermic fluctuations, leads to the Einstein formula. The second model supposes adiabatic fluctuations and yields another relation between the diffusion coefficient and mobility of a Brownian particle. A new approach to relaxations in quantum systems is also proposed that demonstrates applicability only of the adiabatic model for description of the quantum Brownian dynamics. Stochastic Dynamics of Gas Molecules: A stochastic Langevin equation is derived, describing the thermal motion of a molecule immersed in a rested fluid of identical molecules. The fluctuation-dissipation theorem is proved and a number of correlation characteristics of the molecular Brownian motion are obtained. A short review of the classical theory of Brownian motion is presented. A new method is proposed for derivation of the Fokker-Planck equations, describing the probability density evolution, from stochastic differential equations. It is also proven via the central limit theorem that the white noise is only Gaussian. The applicability of stochastic differential equations to thermodynamics is considered and a new form, different from the classical Ito and Stratonovich forms, is introduced. It is shown that the new presentation is more appropriate for the description of thermodynamic fluctuations. The range of validity of the Boltzmann-Einstein principle is also discussed and a generalized alternative is proposed. Both expressions coincide in the small fluctuation limit, providing a normal distribution density. Fluctuation Stability of Thin Liquid Films: Memory effect of Brownian motion in an incompressible fluid is studied. The reasoning is based on the Mori-Zwanzig formalism and a new formulation of the Langevin force as a result of collisions between an effective and the Brownian particles. Thus, the stochastic force autocorrelation function with finite dispersion and the corresponding Brownian particle velocity autocorrelation function are obtained. It is demonstrated that the dynamic structure is very important for the rate of drainage of a thin liquid film and it can be effectively taken into account by a dynamic fractal dimension. It is shown that the latter is a powerful tool for description of the film drainage and classifies all the known results from the literature. The obtained general expression for the thinning rate is a heuristic one and predicts variety of drainage models, which are even difficult to simulate in practice. It is a typical example of a scaling law, which explains the origin of the complicate dependence of the thinning rate on the film radius. On the basis of the theory of stochastic processes the evolution of the spatial correlation function of the surface waves on a thin liquid film as well as the corresponding root mean square amplitude A(t) and number of uncorrelated subdomains N(t) are obtained. A formulation of the life time of unstable nonthinning films is proposed, based on the evolution of A and N. It is shown that the presence of uncorrelated subdomains shortens the life time of the film. Some numerical results for A(t) and N(t) at different film thicknesses h and areas S, are demonstrated, taking into account only van der Waals and capillary forces. Resonant Diffusion in Molecular Solid Structures: A new approach to Brownian motion of atomic clusters on solid surfaces is developed. The main topic discussed is the dependence of the diffusion coefficient on the fit between the surface static potential and the internal cluster configuration. It is shown this dependence is non-monotonous, which is the essence of the so-called resonant diffusion. Assuming quicker inner motion of the cluster than its translation, adiabatic separation of these variables is possible and a relatively simple expression for the diffusion coefficient is obtained. In this way, the role of cluster vibrations is accounted for, thus leading to a more complex resonance in the cluster surface mobility. Diffusion of normal alkanes in one-dimensional zeolites is theoretically studied on the basis of the stochastic equation formalism. The calculated diffusion coefficient accounts for the vibrations of the diffusing molecule and zeolite framework, molecule-zeolite interaction, and specific structure of the zeolite. It is shown that when the interaction potential is predominantly determined by the zeolite pore structure, the diffusion coefficient varies periodically with the number of carbon atoms of the alkane molecule, a phenomenon called resonant diffusion. A criterion for observable resonance is obtained from the balance between the interaction potentials of the molecule due to the atomic and pore structures of the zeolite. It shows that the diffusion is not resonant in zeolites without pore structure, such as ZSM-12. Moreover, even in zeolites with developed pore structure no resonant dependence of the diffusion constant can be detected if the pore structure energy barriers are not at least three times higher than the atomic structure energy barriers. The role of the alkane molecule vibrations is examined as well and a surprising effect of suppression of the diffusion in comparison with the case of a rigid molecule is observed. This effect is explained with the balance between the static and dynamic interaction of the molecule and zeolite. Catalytic Kinetics of Chemical Dissociation: A unified description of the catalytic effect of Cu-exchanged zeolites is proposed for the decomposition of NO. A general expression for the rate constant of NO decomposition is obtained by assuming that the rate-determining step consists of the transferring of a single atom associated with breaking of the N-O bond. The analysis is performed on the base of the generalized Langevin equation and takes into account both the potential interactions in the system and the memory effects due to the zeolite vibrations. Two different mechanisms corresponding to monomolecular and bimolecular NO decomposition are discussed. The catalytic effect in the monomolecular mechanism is related to both the Cu+ ions and zeolite O-vacancies, while in the case of the bimolecular mechanism the zeolite contributes through dissipation only. The comparison of the theoretically calculated rate constants with experimental results reveals additional information about the geometric and energetic characteristics of the active centers and confirms the logic of the proposed models.

  10. Transient shear viscosity of weakly aggregating polystyrene latex dispersions

    NASA Astrophysics Data System (ADS)

    de Rooij, R.; Potanin, A. A.; van den Ende, D.; Mellema, J.

    1994-04-01

    The transient behavior of the viscosity (stress growth) of a weakly aggregating polystyrene latex dispersion after a step from a high shear rate to a lower shear rate has been measured and modeled. Single particles cluster together into spherical fractal aggregates. The steady state size of these aggregates is determined by the shear stresses exerted on the latter by the flow field. The restructuring process taking place when going from a starting situation with monodisperse spherical aggregates to larger monodisperse spherical aggregates is described by the capture of primary fractal aggregates by growing aggregates until a new steady state is reached. It is assumed that the aggregation mechanism is diffusion limited. The model is valid if the radii of primary aggregates Rprim are much smaller than the radii of the growing aggregates. Fitting the model to experimental data at two volume fractions and a number of step sizes in shear rate yielded physically reasonable values of Rprim at fractal dimensions 2.1≤df≤2.2. The latter range is in good agreement with the range 2.0≤df≤2.3 obtained from steady shear results. The experimental data have also been fitted to a numerical solution of the diffusion equation for primary aggregates for a cell model with moving boundary, also yielding 2.1≤df≤2.2. The range for df found from both approaches agrees well with the range df≊2.1-2.2 determined from computer simulations on diffusion-limited aggregation including restructuring or thermal breakup after formation of bonds. Thus a simple model has been put forward which may capture the basic features of the aggregating model dispersion on a microstructural level and leads to physically acceptable parameter values.

  11. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-05-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  12. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-07-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin haloes, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius, and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity, and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108 M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter haloes complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  13. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-04-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with a largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and GMRT observations at 325 MHz. The spectral index of the total source between 143 MHz and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  14. Origins of ultra-diffuse galaxies in the Coma cluster - II. Constraints from their stellar populations

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Alabi, Adebusola; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean; Pandya, Viraj; Martín-Navarro, Ignacio; Bellstedt, Sabine; Wasserman, Asher; Stone, Maria B.; Okabe, Nobuhiro

    2018-06-01

    In this second paper of the series we study, with new Keck/DEIMOS spectra, the stellar populations of seven spectroscopically confirmed ultra-diffuse galaxies (UDGs) in the Coma cluster. We find intermediate to old ages (˜ 7 Gyr), low metallicities ([Z/H]˜ - 0.7 dex) and mostly super-solar abundance patterns ([Mg/Fe] ˜ 0.13 dex). These properties are similar to those of low-luminosity (dwarf) galaxies inhabiting the same area in the cluster and are mostly consistent with being the continuity of the stellar mass scaling relations of more massive galaxies. These UDGs' star formation histories imply a relatively recent infall into the Coma cluster, consistent with the theoretical predictions for a dwarf-like origin. However, considering the scatter in the resulting properties and including other UDGs in Coma, together with the results from the velocity phase-space study of the Paper I in this series, a mixed-bag of origins is needed to explain the nature of all UDGs. Our results thus reinforce a scenario in which many UDGs are field dwarfs that become quenched through their later infall onto cluster environments, whereas some UDGs could be be genuine primordial galaxies that failed to develop due to an early quenching phase. The unknown proportion of dwarf-like to primordial-like UDGs leaves the enigma of the nature of UDGs still open.

  15. Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations

    NASA Astrophysics Data System (ADS)

    Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.

    2017-12-01

    Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum near the shock.

  16. Stability chart of small mixed 4He-3He clusters

    NASA Astrophysics Data System (ADS)

    Guardiola, R.; Navarro, J.

    2003-11-01

    A stability chart of mixed 4He and 3He clusters has been obtained by means of the diffusion Monte Carlo method, using both the Aziz HFD-B and the Tang-Toennies-Yiu atom-atom interaction. The investigated clusters contain up to eight 4He atoms and up to 20 3He atoms. One single 4He binds 20 3He atoms, and two 4He bind 1, 2, 8, and more than 14 3He atoms. All clusters with three or more 4He atoms are bound, although the combinations 4He33He9,10,11 and 4He34He9 are metastable. Clusters with 2, 8, and 20 3He atoms are particularly stable and define magic 3He numbers.

  17. A VLT/MUSE galaxy survey towards QSO Q1410: looking for a WHIM traced by BLAs in inter-cluster filaments

    NASA Astrophysics Data System (ADS)

    Pessa, Ismael; Tejos, Nicolas; Barrientos, L. Felipe; Werk, Jessica; Bielby, Richard; Padilla, Nelson; Morris, Simon L.; Prochaska, J. Xavier; Lopez, Sebastian; Hummels, Cameron

    2018-07-01

    Cosmological simulations predict that a significant fraction of the low-z baryon budget resides in large-scale filaments in the form of a diffuse plasma at temperatures T ˜ 105 - 107 K. However, direct observation of this so-called warm-hot intergalactic medium (WHIM) has been elusive. In the Λcold dark matter paradigm, galaxy clusters correspond to the nodes of the cosmic web at the intersection of several large-scale filamentary threads. In previous work, we used HST/COS data to conduct the first survey of broad H I Lyα absorbers (BLAs) potentially produced by WHIM in inter-cluster filaments. We targeted a single QSO, namely Q1410, whose sightline intersects seven independent inter-cluster axes at impact parameters <3 Mpc (comoving), and found a tentative excess of a factor of ˜4 with respect to the field. Here, we further investigate the origin of these BLAs by performing a blind galaxy survey within the Q1410 field using VLT/MUSE. We identified 77 sources and obtained the redshifts for 52 of them. Out of the total sample of seven BLAs in inter-cluster axes, we found three without any galaxy counterpart to stringent luminosity limits (˜4 × 108 L⊙ ˜0.01 L*), providing further evidence that these BLAs may represent genuine WHIM detections. We combined this sample with other suitable BLAs from the literature and inferred the corresponding baryon mean density for these filaments in the range Ω ^fil_bar= 0.02-0.04. Our rough estimates are consistent with the predictions from numerical simulations but still subject to large systematic uncertainties, mostly from the adopted geometry, ionization corrections, and density profile.

  18. Multiscale Computer Simulation of Tensile and Compressive Strain in Polymer- Coated Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2009-01-01

    While the low thermal conductivities of silica aerogels have made them of interest to the aerospace community as lightweight thermal insulation, the application of conformal polymer coatings to these gels increases their strength significantly, making them potentially useful as structural materials as well. In this work we perform multiscale computer simulations to investigate the tensile and compressive strain behavior of silica and polymer-coated silica aerogels. Aerogels are made up of clusters of interconnected particles of amorphous silica of less than bulk density. We simulate gel nanostructure using a Diffusion Limited Cluster Aggregation (DLCA) procedure, which produces aggregates that exhibit fractal dimensions similar to those observed in real aerogels. We have previously found that model gels obtained via DLCA exhibited stress-strain curves characteristic of the experimentally observed brittle failure. However, the strain energetics near the expected point of failure were not consistent with such failure. This shortcoming may be due to the fact that the DLCA process produces model gels that are lacking in closed-loop substructures, compared with real gels. Our model gels therefore contain an excess of dangling strands, which tend to unravel under tensile strain, producing non-brittle failure. To address this problem, we have incorporated a modification to the DLCA algorithm that specifically produces closed loops in the model gels. We obtain the strain energetics of interparticle connections via atomistic molecular statics, and abstract the collective energy of the atomic bonds into a Morse potential scaled to describe gel particle interactions. Polymer coatings are similarly described. We apply repeated small uniaxial strains to DLCA clusters, and allow relaxation of the center eighty percent of the cluster between strains. The simulations produce energetics and stress-strain curves for looped and nonlooped clusters, for a variety of densities and interaction parameters.

  19. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  20. Indirect Detection Analysis: Wino Dark Matter Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hryczuk, Andrzej; Cholis, Ilias; Iengo, Roberto

    2014-07-15

    We perform a multichannel analysis of the indirect signals for the Wino Dark Matter, including one-loop electroweak and Sommerfeld enhancement corrections. We derive limits from cosmic ray antiprotons and positrons, from continuum galactic and extragalactic diffuse γ-ray spectra, from the absence of γ-ray line features at the galactic center above 500 GeV in energy, from γ-rays toward nearby dwarf spheroidal galaxies and galaxy clusters, and from CMB power-spectra. Additionally, we show the future prospects for neutrino observations toward the inner Galaxy and from antideuteron searches. For each of these indirect detection probes we include and discuss the relevance of themore » most important astrophysical uncertainties that can impact the strength of the derived limits. We find that the Wino as a dark matter candidate is excluded in the mass range bellow simeq 800 GeV from antiprotons and between 1.8 and 3.5 TeV from the absence of a γ-ray line feature toward the galactic center. Limits from other indirect detection probes confirm the main bulk of the excluded mass ranges.« less

  1. The role of intra-NAPL diffusion on mass transfer from MGP residuals

    NASA Astrophysics Data System (ADS)

    Shafieiyoun, Saeid; Thomson, Neil R.

    2018-06-01

    An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.

  2. Wide field polarimetry around the Perseus cluster at 350 MHz

    NASA Astrophysics Data System (ADS)

    Brentjens, M. A.

    2011-02-01

    Aims: This paper investigates the fascinating diffuse polarization structures at 350 MHz that have previously been tentatively attributed to the Perseus cluster and, more specifically, tries to find out whether the structures are located at (or near) the Perseus cluster, or in the Milky Way. Methods: A wide field, eight point Westerbork Synthesis Radio Telescope mosaic of the area around the Perseus cluster was observed in full polarization. The frequency range was 324 to 378 MHz and the resolution of the polarization maps was 2' × 3'. The maps were processed using Faraday rotation measure synthesis to counter bandwidth depolarization. The RM-cube covers Faraday depths of -384 to +381 rad m-2 in steps of 3 rad m-2. Results: There is emission all over the field at Faraday depths between -50 and +100 rad m-2. All previously observed structures were detected. However, no compelling evidence was found supporting association of those structures with either the Perseus cluster or large scale structure formation gas flows in the Perseus-Pisces super cluster. On the contrary, one of the structures is clearly associated with a Galactic depolarization canal at 1.41 GHz. Another large structure in polarized intensity, as well as Faraday depth at a Faraday depth of +30 rad m-2, coincides with a dark object in WHAM Hα maps at a kinematic distance of 0.5 ± 0.5 kpc. All diffuse polarized emission at 350 MHz towards the Perseus cluster is most likely located within 1 kpc from the Sun. The layers that emit the polarized radiation are less than 40 pc/|B_∥| thick. Appendix is only available in electronic form at http://www.aanda.org

  3. A comparative analysis of clustering algorithms: O{sub 2} migration in truncated hemoglobin I from transition networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazade, Pierre-André; Berezovska, Ganna; Meuwly, Markus, E-mail: m.meuwly@unibas.ch

    2015-01-14

    The ligand migration network for O{sub 2}–diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k–means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of themore » major differences between k–means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.« less

  4. Study of point- and cluster-defects in radiation-damaged silicon

    NASA Astrophysics Data System (ADS)

    Donegani, Elena M.; Fretwurst, Eckhart; Garutti, Erika; Klanner, Robert; Lindstroem, Gunnar; Pintilie, Ioana; Radu, Roxana; Schwandt, Joern

    2018-08-01

    Non-ionising energy loss of radiation produces point defects and defect clusters in silicon, which result in a significant degradation of sensor performance. In this contribution results from TSC (Thermally Stimulated Current) defect spectroscopy for silicon pad diodes irradiated by electrons to fluences of a few 1014 cm-2 and energies between 3.5 and 27 MeV for isochronal annealing between 80 and 280∘C, are presented. A method based on SRH (Shockley-Read-Hall) statistics is introduced, which assumes that the ionisation energy of the defects in a cluster depends on the fraction of occupied traps. The difference of ionisation energy of an isolated point defect and a fully occupied cluster, ΔEa, is extracted from the TSC data. For the VOi (vacancy-oxygen interstitial) defect ΔEa = 0 is found, which confirms that it is a point defect, and validates the method for point defects. For clusters made of deep acceptors the ΔEa values for different defects are determined after annealing at 80∘C as a function of electron energy, and for the irradiation with 15 MeV electrons as a function of annealing temperature. For the irradiation with 3.5 MeV electrons the value ΔEa = 0 is found, whereas for the electron energies of 6-27 MeV ΔEa > 0. This agrees with the expected threshold of about 5 MeV for cluster formation by electrons. The ΔEa values determined as a function of annealing temperature show that the annealing rate is different for different defects. A naive diffusion model is used to estimate the temperature dependencies of the diffusion of the defects in the clusters.

  5. A comparative analysis of clustering algorithms: O2 migration in truncated hemoglobin I from transition networks.

    PubMed

    Cazade, Pierre-André; Zheng, Wenwei; Prada-Gracia, Diego; Berezovska, Ganna; Rao, Francesco; Clementi, Cecilia; Meuwly, Markus

    2015-01-14

    The ligand migration network for O2-diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k-means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of the major differences between k-means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.

  6. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  7. Discovery of an Ultra-diffuse Galaxy in the Pisces--Perseus Supercluster

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; Läsker, Ronald; Sharina, Margarita; Toloba, Elisa; Fliri, Jürgen; Beaton, Rachael; Valls-Gabaud, David; Karachentsev, Igor D.; Chonis, Taylor S.; Grebel, Eva K.; Forbes, Duncan A.; Romanowsky, Aaron J.; Gallego-Laborda, J.; Teuwen, Karel; Gómez-Flechoso, M. A.; Wang, Jie; Guhathakurta, Puragra; Kaisin, Serafim; Ho, Nhung

    2016-04-01

    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μV = 24.8 mag arcsec-2), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (Re(V) = 12″) and proximity (15‧) to the well-known dwarf spheroidal galaxy And II. Its red color (V - I = 1.0), shallow Sérsic index (nV = 0.68), and the absence of detectable Hα emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (Vh = 5450 ± 40 km s-1) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (˜78 Mpc), DGSAT I would have an Re ˜ 4.7 kpc and MV ˜ -16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.

  8. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain.

    PubMed

    Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T

    2014-03-01

    Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. DISCOVERY OF AN ULTRA-DIFFUSE GALAXY IN THE PISCES-PERSEUS SUPERCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Delgado, David; Grebel, Eva K.; Läsker, Ronald

    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μ{sub V} = 24.8 mag arcsec{sup −2}), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R{sub e}(V) = 12″) and proximity (15′) to the well-known dwarf spheroidal galaxy And II. Its red color (V − I = 1.0), shallow Sérsic index (n{sub V} = 0.68), and the absence of detectable Hα emission aremore » typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (V{sub h} = 5450 ± 40 km s{sup −1}) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (∼78 Mpc), DGSAT I would have an R{sub e} ∼ 4.7 kpc and M{sub V} ∼ −16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.« less

  10. Diffusion-weighted-preparation (D-prep) MRI as a future extension of SPECT/CT based surgical planning for sentinel node procedures in the head and neck area?

    PubMed

    Buckle, Tessa; KleinJan, Gijs H; Engelen, Thijs; van den Berg, Nynke S; DeRuiter, Marco C; van der Heide, Uulke; Valdes Olmos, Renato A; Webb, Andrew; van Buchem, Mark A; Balm, Alfons J; van Leeuwen, Fijs W B

    2016-09-01

    Even when guided by SPECT/CT planning of nodal resection in the head-and-neck area is challenging due to the many critical anatomical structures present within the surgical field. In this study the potential of a (SPECT/)MRI-based surgical planning method was explored. Hereby MRI increases the identification of SNs within clustered lymph nodes (LNs) and vital structures located adjacent to the SN (such as cranial nerve branches). SPECT/CT and pathology reports from 100 head-and-neck melanoma and 40 oral cavity cancer patients were retrospectively assessed for SN locations in levels I-V and degree of nodal clustering. A diffusion-weighted-preparation magnetic resonance neurography (MRN) sequence was used in eight healthy volunteers to detect LNs and peripheral nerves. In 15% of patients clustered nodes were retrospectively shown to be present at the location where the SN was identified on SPECT/CT (level IIA: 37.2%, level IIB: 21.6% and level III: 15.5%). With MRN, improved LN delineation enabled discrimination of individual LNs within a cluster. Uniquely, this MRI technology also provided insight in LN distribution (23.2±4 LNs per subject) and size (range 21-372mm(3)), and enabled non-invasive assessment of anatomical variances in the location of the LNs and facial nerves. Diffusion-weighted-preparation MRN enabled improved delineation of LNs and their surrounding delicate anatomical structures in the areas that most often harbor SNs in the head-and-neck. Based on our findings a combined SPECT/MRI approach is envisioned for future surgical planning of complex SN resections in this region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2005-01-01

    The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.

  12. Dark Matter in Ultra-diffuse Galaxies in the Virgo Cluster from Their Globular Cluster Populations

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Lim, Sungsoon; Peng, Eric; Sales, Laura V.; Guhathakurta, Puragra; Mihos, J. Christopher; Côté, Patrick; Boselli, Alessandro; Cuillandre, Jean-Charles; Ferrarese, Laura; Gwyn, Stephen; Lançon, Ariane; Muñoz, Roberto; Puzia, Thomas

    2018-04-01

    We present Keck/DEIMOS spectroscopy of globular clusters (GCs) around the ultra-diffuse galaxies (UDGs) VLSB‑B, VLSB‑D, and VCC615 located in the central regions of the Virgo cluster. We spectroscopically identify 4, 12, and 7 GC satellites of these UDGs, respectively. We find that the three UDGs have systemic velocities (V sys) consistent with being in the Virgo cluster, and that they span a wide range of velocity dispersions, from ∼16 to ∼47 km s‑1, and high dynamical mass-to-light ratios within the radius that contains half the number of GCs ({407}-407+916, {21}-11+15, {60}-38+65, respectively). VLSB‑D shows possible evidence for rotation along the stellar major axis and its V sys is consistent with that of the massive galaxy M84 and the center of the Virgo cluster itself. These findings, in addition to having a dynamically and spatially (∼1 kpc) off-centered nucleus and being extremely elongated, suggest that VLSB‑D could be tidally perturbed. On the contrary, VLSB‑B and VCC615 show no signs of tidal deformation. Whereas the dynamics of VLSB‑D suggest that it has a less massive dark matter halo than expected for its stellar mass, VLSB‑B and VCC615 are consistent with a ∼1012 M ⊙ dark matter halo. Although our samples of galaxies and GCs are small, these results suggest that UDGs may be a diverse population, with their low surface brightnesses being the result of very early formation, tidal disruption, or a combination of the two.

  13. Innovation-diffusion: a geographical study of the transition of family limitation practice in Taiwan.

    PubMed

    Ting, T Y

    1984-09-01

    This paper uses map analysis to study the transition of family limitation practice in Taiwan between 1961-80. The innovation-diffusion perspective emphasizes that birth control, particularly contraception, is a recent innovation and is essentially new in human culture. The innovation-diffusion theory assumes that the decline of fertility began in a setting where there was no, or at most very limited, previous practice of birth control. The theory emphasizes the importance of the spread of information. It also assumes that innovation starts in metropolitan centers, diffuses to other urban places with some delay, and penetrates to rural areas still later. Innovation behavior also diffuses from 1 area to another which is culturally and linguistically similar. Although there was some urban to rural diffusion from the Taiwan family planning program, the government supported program provided services more evenly between urban and rural areas, thus somewhat limiting the diffusion effect from the program. For the diffusion of family practice in Taiwan, it is expected that the availability of of information about and means of family limitation practice may effect the rate of the increase of small m values -- an index of family limitation -- in an area. The case study of Pingtung county shows that the demand-side diffusion from urban to rural areas was important in the earlier decade of the transition of family plimitation practice, but distance from urban center was less important as practice became more uniform through diffusion. Ethnicity, whether or not the township was dominated by Hakka or Fukienese, also seems to have played an important role in determining the pace at which the local residents adopted family practice limitation. Hakka townships seem to have adopted family limitation practice more slowly than Fukienese townships about the same distance from the urban center. The map analysis of Pingtung county provides descriptive evidence to support the diffusion of family limitation from urban centers to distant areas, while ethnic variables like Hakka population tend to delay the adoption of family limitation practice. In general, the urban center had higher m values than the surrounding rural areas in Pingtung county and for areas other than the urban center the the level of m values is a negative function of the distance to the urban center.

  14. Structure and Bonding in Noncrystalline Solids Abstracts

    DTIC Science & Technology

    1983-06-02

    displacement cascades are unlikely. Related damage studies as diffuse X- ray scattering, magnetic susceptibility and positron - annihilation lifetime...the positron annihilation lifetime data; diffuse X-ray scattering studies give evidence for "amorphized" clusters in neutron but not in elec-ron...feldspar glasses and glasses in the system CaO- MgO -SiO 2 . These results indicate that the nearest-neighbor and next- nearest-neighbor environments are very

  15. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; ...

    2014-06-12

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  16. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Dapeng

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layermore » up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island length while keeping the corresponding island width constant. Third, LEED indicates that, up to about 6 BL (12 ML), the Ag film adopts the (110) structure on lattice matched NiAl(110) surface, supporting the previous assignment based upon island heights measured in STM. Starting at 4.5 to 6 BL, (111) diffraction pattern is detected. This is also in agreement with previous STM study. Careful examinations of the LEED patterns reveal the slight difference in lattice constants between bulk Ag and bulk NiAl. At last, we performed STM studies of Ni deposition on NiAl(110) in the temperature range from 200 K to 400 K. Ni forms 'dense' Ni(100)-like islands on NiAl(110) with a zig-zag shaped stripe feature which is probably due to strain relief. DFT analysis provides insights into the island growth shapes, which are rationalized by the thermodynamics and kinetics of the film growth process. For thick Ni films (coverage exceeding 6 ML), a Ni(111)-like structure developed. Traditional MF theory is applied to analyze island density at 200 K. Deviation from homogeneous nucleation behavior for island size distribution and island density reveals the presence of heterogeneous nucleation mediated by the Ni antisite point defects on NiAl(110) surface.« less

  17. Thermodynamic aspects of cluster crystallization in cryoprotective solutions.

    PubMed

    Osetsky, A I

    2011-01-01

    Crystallization of the solutions with quite a high intermolecular interaction of the components is analyzed. For the first time there has been considered the phenomenon of cluster crystallization of these solutions, enabling the reduction of total energy of intermolecular bonds, broken down during crystallization of the components has been discussed. A special priority is given to the cluster crystallization of aqueous solutions of cryoprotective substances close to vitrification temperature. Within this temperature range the mechanism of cluster crystallization is especially effective due to a sharp reduction of sizes of critical ice nucleation centers and diffusion mobility of molecules. This should be taken into account when designing the cryopreservation protocols for biological systems.

  18. A filament of dark matter between two clusters of galaxies.

    PubMed

    Dietrich, Jörg P; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2012-07-12

    It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 10(5) kelvin to 10(7) kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

  19. Invisibility cloaking in the diffusive-light limit (presentation video)

    NASA Astrophysics Data System (ADS)

    Schittny, Robert; Kadic, Muamer; Wegener, Martin

    2014-09-01

    Albert Einstein's theory of relativity imposes stringent limitations to making macroscopic objects invisible with respect to electromagnetic light waves propagating in vacuum. These limitations are not relevant though for propagation of light in diffusive media like fog or milk because the effective energy speed is significantly lower than in vacuum due to multiple scattering events. Here, by exploiting the close mathematical analogy between the electrostatic or near-field limit of optics on the one hand and light diffusion on the other hand, we design, fabricate, and characterize simple core-shell cloaking structures for diffusive light propagation in cylindrical and spherical geometry.

  20. Diffusion of a Concentrated Lattice Gas in a Regular Comb Structure

    NASA Astrophysics Data System (ADS)

    Garcia, Paul; Wentworth, Christopher

    2008-10-01

    Understanding diffusion in constrained geometries is of interest in a variety of contexts as varied as mass transport in disordered solids, such as a percolation cluster, or intercellular transport of water molecules in biological tissue. In this investigation we explore diffusion in a very simple constrained geometry: a comb-like structure involving a one-dimensional backbone of lattice sites with regularly spaced teeth of fixed length. The model considered assumes a fixed concentration of diffusing particles can hop to nearest-neighbor sites only, and they do not interact with each other except that double occupancy is not allowed. The system is simulated using a Monte Carlo simulation procedure. The mean-square displacement of a tagged particle is calculated from the simulation as a function of time. The simulation shows normal diffusive behavior after a period of anomalous diffusion that increases as the tooth size increases.

  1. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks

    NASA Astrophysics Data System (ADS)

    Levis, Demian; Berthier, Ludovic

    2014-06-01

    We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.

  2. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    PubMed Central

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability. PMID:26947754

  3. Brownian aggregation rate of colloid particles with several active sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V., E-mail: chern@ns.kinetics.nsc.ru

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shownmore » to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.« less

  4. Diffusion coalescence in НоBa2Cu3O7-x single crystals under the application of hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Boiko, Y. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhaj, G. Ya; Kamchatnaya, S. N.; Goulatis, I. L.; Chroneos, A.

    2017-09-01

    Experimental results on the effect of external hydrostatic pressure up to 5 kbar on the ρ(T) dependence in the ab plane of HoBa2Cu3O7-x single crystals (x  ≈  0.35) in the temperature range from 300 K to the superconducting transition temperature T c are presented and discussed. It was established that the application of external hydrostatic pressure P  =  5 kbar significantly intensified the process of diffusion coalescence of oxygen clusters, causing the growth of their average size. This leads to an increase in the number of negative U-centers, the presence of which results to the appearance of a phase capable of generating paired carriers of electric charge and, correspondingly, characterized by a higher transition temperature T c. Employing this hypothesis that concerns the mechanism of the diffusion coalescence of oxygen clusters, the change in the form of the temperature and time dependences of the electrical resistivity under the application of external hydrostatic pressure is discussed.

  5. Diffusion dynamics of the Li+ ion on a model surface of amorphous carbon: a direct molecular orbital dynamics study.

    PubMed

    Tachikawa, Hiroto; Shimizu, Akira

    2005-07-14

    Diffusion processes of the Li+ ion on a model surface of amorphous carbon (Li+C96H24 system) have been investigated by means of the direct molecular orbital (MO) dynamics method at the semiempirical AM1 level. The total energy and energy gradient on the full-dimensional AM1 potential energy surface were calculated at each time step in the dynamics calculation. The optimized structure, where Li+ is located in the center of the cluster, was used as the initial structure at time zero. The dynamics calculation was carried out in the temperature range 100-1000 K. The calculations showed that the Li+ ion vibrates around the equilibrium point below 200 K, while the Li+ ion moves on the surface above 250 K. At intermediate temperatures (300 K < T < 400 K), the ion moves on the surface and falls in the edge regions of the cluster. At higher temperatures (600 K < T), the Li+ ion transfers freely on the surface and edge regions. The diffusion pathway of the Li+ ion was discussed on the basis of theoretical results.

  6. Smart darting diffusion Monte Carlo: Applications to lithium ion-Stockmayer clusters

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Jake, L. C.; Curotto, E.

    2016-05-01

    In a recent investigation [K. Roberts et al., J. Chem. Phys. 136, 074104 (2012)], we have shown that, for a sufficiently complex potential, the Diffusion Monte Carlo (DMC) random walk can become quasiergodic, and we have introduced smart darting-like moves to improve the sampling. In this article, we systematically characterize the bias that smart darting moves introduce in the estimate of the ground state energy of a bosonic system. We then test a simple approach to eliminate completely such bias from the results. The approach is applied for the determination of the ground state of lithium ion-n-dipoles clusters in the n = 8-20 range. For these, the smart darting diffusion Monte Carlo simulations find the same ground state energy and mixed-distribution as the traditional approach for n < 14. In larger systems we find that while the ground state energies agree quantitatively with or without smart darting moves, the mixed-distributions can be significantly different. Some evidence is offered to conclude that introducing smart darting-like moves in traditional DMC simulations may produce a more reliable ground state mixed-distribution.

  7. Stars Too Old to be Trusted?

    NASA Astrophysics Data System (ADS)

    2006-08-01

    Analysing a set of stars in a globular cluster with ESO's Very Large Telescope, astronomers may have found the solution to a critical cosmological and stellar riddle. Until now, an embarrassing question was why the abundance of lithium produced in the Big Bang is a factor 2 to 3 times higher than the value measured in the atmospheres of old stars. The answer, the researchers say, lies in the fact that the abundances of elements measured in a star's atmosphere decrease with time. ESO PR Photo 30/06 ESO PR Photo 30/06 Globular cluster NGC 6397, with some of the FLAMES-UVES target stars highlighted "Such trends are predicted by models that take into account the diffusion of elements in a star", said Andreas Korn, lead-author of the paper reporting the results in this week's issue of the journal Nature [1,2]. "But an observational confirmation was lacking. That is, until now." Lithium is one of the very few elements to have been produced in the Big Bang. Once astronomers know the amount of ordinary matter present in the Universe [3], it is rather straightforward to derive how much lithium was created in the early Universe. Lithium can also be measured in the oldest, metal-poor stars, which formed from matter similar to the primordial material. But the cosmologically predicted value is too high to reconcile with the measurements made in the stars. Something is wrong, but what? Diffusive processes altering the relative abundances of elements in stars are well known to play a role in certain classes of stars. Under the force of gravity, heavy elements will tend to sink out of visibility into the star over the course of billions of years. "The effects of diffusion are expected to be more pronounced in old, very metal-poor stars", said Korn. "Given their greater age, diffusion has had more time to produce sizeable effects than in younger stars like the Sun." The astronomers thus set up an observational campaign to test these model predictions, studying a variety of stars in different stages of evolution in the metal-poor globular cluster NGC 6397. Globular clusters [4] are useful laboratories in this respect, as all the stars they contain have identical age and initial chemical composition. The diffusion effects are predicted to vary with evolutionary stage. Therefore, measured atmospheric abundance trends with evolutionary stage are a signature of diffusion. Eighteen stars were observed for between 2 and 12 hours with the multi-object spectrograph FLAMES-UVES on ESO's Very Large Telescope. The FLAMES spectrograph is ideally suited as it allows astronomers to obtain spectra of many stars at a time. Even in a nearby globular cluster like NGC 6397, the unevolved stars are very faint and require rather long exposure times. The observations clearly show systematic abundance trends along the evolutionary sequence of NGC 6397, as predicted by diffusion models with extra mixing. Thus, the abundances measured in the atmospheres of old stars are not, strictly speaking, representative of the gas the stars originally formed from. "Once this effect is corrected for, the abundance of lithium measured in old, unevolved stars agrees with the cosmologically predicted value", said Korn. "The cosmological lithium discrepancy is thus largely removed." "The ball is now in the camp of the theoreticians," he added. "They have to identify the physical mechanism that is at the origin of the extra mixing."

  8. Detergent-Fearing Milk.

    ERIC Educational Resources Information Center

    Hill, Diane

    1997-01-01

    Describes an activity that demonstrates among the following: diffusion; cohesion and adhesion; properties of surface tension which include wicking, hydrophilic, and hydrophobic molecular behaviors; and break up of fat clusters by liquid dishwashing detergent. (DDR)

  9. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V., E-mail: aneimark@rutgers.edu

    2016-01-07

    Using dissipative particle dynamics (DPD), we simulate nanoscale segregation, water diffusion, and proton conductivity in hydrated sulfonated polystyrene (sPS). We employ a novel model [Lee et al. J. Chem. Theory Comput. 11(9), 4395-4403 (2015)] that incorporates protonation/deprotonation equilibria into DPD simulations. The polymer and water are modeled by coarse-grained beads interacting via short-range soft repulsion and smeared charge electrostatic potentials. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with the base beads representing water and sulfonate anions. Morse bond formation and breakup artificially mimics the Grotthuss mechanism of proton hopping between the bases. Themore » DPD model is parameterized by matching the proton mobility in bulk water, dissociation constant of benzenesulfonic acid, and liquid-liquid equilibrium of water-ethylbenzene solutions. The DPD simulations semi-quantitatively predict nanoscale segregation in the hydrated sPS into hydrophobic and hydrophilic subphases, water self-diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from isolated water clusters to a 3D network. The analysis of hydrophilic subphase connectivity and water diffusion demonstrates the importance of the dynamic percolation effect of formation and breakup of temporary junctions between water clusters. The proposed DPD model qualitatively predicts the ratio of proton to water self-diffusion and its dependence on the hydration level that is in reasonable agreement with experiments.« less

  10. Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms

    NASA Astrophysics Data System (ADS)

    Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.

    2017-04-01

    Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration layer (Si, Al), it is assumed that the glass dissolution rate continuously decreases due to the growth of the transport limiting alteration layer, in good agreement with residual rates reported in the literature for this glass. According to our results it can be expected that new kinetic models should emerge from an accurate time dependent budget of water within the nanoporous alteration layer.

  11. Tracing Gas Motions in the Centaurus Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, James; Fabian, A.C.; Sanders, J.S.

    2006-03-01

    We apply the stochastic model of iron transport developed by Rebusco et al. (2005) to the Centaurus cluster. Using this model, we find that an effective diffusion coefficient D in the range 2 x 10{sup 28} - 4 x 10{sup 28} cm{sup 2}s{sup -1} can approximately reproduce the observed abundance distribution. Reproducing the flat central profile and sharp drop around 30-70 kpc, however, requires a diffusion coefficient that drops rapidly with radius so that D > 4 x 10{sup 28} cm{sup 2}s{sup -1} only inside about 25 kpc. Assuming that all transport is due to fully-developed turbulence, which is alsomore » responsible for offsetting cooling in the cluster core, we calculate the length and velocity scales of energy injection. These length scales are found to be up to a factor of {approx} 10 larger than expected if the turbulence is due to the inflation and rising of a bubble. We also calculate the turbulent thermal conductivity and find it is unlikely to be significant in preventing cooling.« less

  12. [Results of Simulation Studies

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lattice Monte Carlo and off-lattice molecular dynamics simulations of h(sub 1)t(sub 4) and h(sub 4)t(sub l) (head/tail) amphiphile solutions have been performed as a function of surfactant concentration and temperature. The lattice and off-lattice systems exhibit quite different self-assembly behavior at equivalent thermodynamic conditions. We found that in the weakly aggregating regime (no preferred-size micelles), all models yield similar micelle size distributions at the same average aggregation number, albeit at different thermodynamic conditions (temperatures). In the strongly aggregating regime, this mapping between models (through temperature adjustment) fails, and the models exhibit qualitatively different micellization behavior. Incipient micellization in a model self-associating telechelic polymer solution results in a network with a transient elastic response that decays by a two-step relaxation: the first is due to a heterogeneous jump-diffusion process involving entrapment of end-groups within well-defined clusters and this is followed by rapid diffusion to neighboring clusters and a decay (terminal relaxation) due to cluster disintegration. The viscoelastic response of the solution manifests characteristics of a glass transition and entangled polymer network.

  13. The HectoMAP Cluster Survey. II. X-Ray Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, Jubee; Chon, Gayoung; Bohringer, Hans

    Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less

  14. The HectoMAP Cluster Survey. II. X-Ray Clusters

    DOE PAGES

    Sohn, Jubee; Chon, Gayoung; Bohringer, Hans; ...

    2018-03-10

    Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less

  15. Mechanisms of boron diffusion in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Mirabella, S.; De Salvador, D.; Napolitani, E.; Bruno, E.; Priolo, F.

    2013-01-01

    B migration in Si and Ge matrices raised a vast attention because of its influence on the production of confined, highly p-doped regions, as required by the miniaturization trend. In this scenario, the diffusion of B atoms can take place under severe conditions, often concomitant, such as very large concentration gradients, non-equilibrium point defect density, amorphous-crystalline transition, extrinsic doping level, co-doping, B clusters formation and dissolution, ultra-short high-temperature annealing. In this paper, we review a large amount of experimental work and present our current understanding of the B diffusion mechanism, disentangling concomitant effects and describing the underlying physics. Whatever the matrix, B migration in amorphous (α-) or crystalline (c-) Si, or c-Ge is revealed to be an indirect process, activated by point defects of the hosting medium. In α-Si in the 450-650 °C range, B diffusivity is 5 orders of magnitude higher than in c-Si, with a transient longer than the typical amorphous relaxation time. A quick B precipitation is also evidenced for concentrations larger than 2 × 1020 B/cm3. B migration in α-Si occurs with the creation of a metastable mobile B, jumping between adjacent sites, stimulated by dangling bonds of α-Si whose density is enhanced by B itself (larger B density causes higher B diffusivity). Similar activation energies for migration of B atoms (3.0 eV) and of dangling bonds (2.6 eV) have been extracted. In c-Si, B diffusion is largely affected by the Fermi level position, occurring through the interaction between the negatively charged substitutional B and a self-interstitial (I) in the neutral or doubly positively charged state, if under intrinsic or extrinsic (p-type doping) conditions, respectively. After charge exchanges, the migrating, uncharged BI pair is formed. Under high n-type doping conditions, B diffusion occurs also through the negatively charged BI pair, even if the migration is depressed by Coulomb pairing with n-type dopants. The interplay between B clustering and migration is also modeled, since B diffusion is greatly affected by precipitation. Small (below 1 nm) and relatively large (5-10 nm in size) BI clusters have been identified with different energy barriers for thermal dissolution (3.6 or 4.8 eV, respectively). In c-Ge, B motion is by far less evident than in c-Si, even if the migration mechanism is revealed to be similarly assisted by Is. If Is density is increased well above the equilibrium (as during ion irradiation), B diffusion occurs up to quite large extents and also at relatively low temperatures, disclosing the underlying mechanism. The lower B diffusivity and the larger activation barrier (4.65 eV, rather than 3.45 eV in c-Si) can be explained by the intrinsic shortage of Is in Ge and by their large formation energy. B diffusion can be strongly enhanced with a proper point defect engineering, as achieved with embedded GeO2 nanoclusters, causing at 650 °C a large Is supersaturation. These aspects of B diffusion are presented and discussed, modeling the key role of point defects in the two different matrices.

  16. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-07-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep-spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with the largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and Giant Metre Radio Telescope observations at 325 MHz. The spectral index of the total source between 143 and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014 M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonamigo, M.; Grillo, C.; Ettori, S.

    We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1–2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of themore » X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1–2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.« less

  18. A powerful double radio relic system discovered in PSZ1 G108.18-11.53: evidence for a shock with non-uniform Mach number?

    DOE PAGES

    de Gasperin, F.; Intema, H. T.; van Weeren, R. J.; ...

    2015-09-09

    Diffuse radio emission in the form of radio haloes and relics has been found in a number of merging galaxy clusters. These structures indicate that shock and turbulence associated with the merger accelerate electrons to relativistic energies. We report the discovery of a radio relic + radio halo system in PSZ1 G108.18-11.53 (z = 0.335). This cluster hosts the second most powerful double radio relic system ever discovered. We observed PSZ1 G108.18-11.53 with the Giant Meterwave Radio Telescope and the Westerbork Synthesis Radio Telescope. We obtained radio maps at 147, 323, 607 and 1380 MHz. We also observed the cluster with the Keck telescope, obtaining the spectroscopic redshift for 42 cluster members. From the injection index, we obtained the Mach number of the shocks generating the two radio relics. For the southern shock, we foundmore » $M$ = 2.33 $$+0.19\\atop{-0.26}$$ while the northern shock Mach number goes from $M$2.20 $$+0.07\\atop{-0.14}$$ in the north part down to $M$ = 200 $$+0.03\\atop{-0.08}$$ in the southern region. Finally, if the relation between the injection index and the Mach number predicted by diffusive shock acceleration theory holds, this is the first observational evidence for a gradient in the Mach number along a galaxy cluster merger shock.« less

  19. Joining X-Ray to Lensing: An Accurate Combined Analysis of MACS J0416.1-2403

    NASA Astrophysics Data System (ADS)

    Bonamigo, M.; Grillo, C.; Ettori, S.; Caminha, G. B.; Rosati, P.; Mercurio, A.; Annunziatella, M.; Balestra, I.; Lombardi, M.

    2017-06-01

    We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1-2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of the X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1-2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.

  20. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong

    2017-04-01

    We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.

  1. Another Shock for the Bullet Cluster, and the Source of Seed Electrons for Radio Relics

    NASA Technical Reports Server (NTRS)

    Shimwell, Timothy W,; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav

    2015-01-01

    With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2:30:11025 WHz(exp -1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94% of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re- )acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.

  2. Delay-induced cluster patterns in coupled Cayley tree networks

    NASA Astrophysics Data System (ADS)

    Singh, A.; Jalan, S.

    2013-07-01

    We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

  3. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    NASA Astrophysics Data System (ADS)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  4. Reproductive pair correlations and the clustering of organisms.

    PubMed

    Young, W R; Roberts, A J; Stuhne, G

    2001-07-19

    Clustering of organisms can be a consequence of social behaviour, or of the response of individuals to chemical and physical cues. Environmental variability can also cause clustering: for example, marine turbulence transports plankton and produces chlorophyll concentration patterns in the upper ocean. Even in a homogeneous environment, nonlinear interactions between species can result in spontaneous pattern formation. Here we show that a population of independent, random-walking organisms ('brownian bugs'), reproducing by binary division and dying at constant rates, spontaneously aggregates. Using an individual-based model, we show that clusters form out of spatially homogeneous initial conditions without environmental variability, predator-prey interactions, kinesis or taxis. The clustering mechanism is reproductively driven-birth must always be adjacent to a living organism. This clustering can overwhelm diffusion and create non-poissonian correlations between pairs (parent and offspring) or organisms, leading to the emergence of patterns.

  5. Editors pp iii Effects of long-range magnetic interactions on DLA aggregation [rapid communication

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Jun; Cai, Ping-Gen; Ye, Quan-Lin; Xia, A.-Gen; Ye, Gao-Xiang

    2005-04-01

    An extra degree of freedom is introduced in the well-known diffusion-limited aggregation model, i.e., the growth entities are “spin” taking. The model with long-range magnetic interactions that decay as βC/rα on two-dimensional square lattices is studied for different values of α. This model leads to a wide variety of kinetic processes and morphology distribution with both the coupling energy βC and the range of the interactions, i.e., the exponent α. The simulated result of the model shows that the “quenching” of the degree of freedom on the cluster by the long-range magnetic interactions leads to branching or compactness, but, moreover, to combined geometric and physical “transitions” of the aggregations with the growth parameters.

  6. Speciation of copper diffused in a bi-porous molecular sieve

    NASA Astrophysics Data System (ADS)

    Huang, C.-H.; Paul Wang, H.; Wei, Y.-L.; Chang, J.-E.

    2010-07-01

    To better understand diffusion of copper in the micro- and mesopores, speciation of copper in a bi-porous molecular sieve (BPMS) possessing inter-connecting 3-D micropores (0.50-0.55 nm) and 2-D mesopores (4.1 nm) has been studied by X-ray absorption near edge structure (XANES) spectroscopy. It is found that about 77% (16% of CuO nanoparticles and 61% of CuO clusters) and 23% (CuO ads) of copper can be diffused into the meso- and micropores, respectively, in the BPMS. At least two diffusion steps in the BPMS may be involved: (i) free diffusion of copper in the mesopores and (ii) diffusion-controlled copper migrating into the micropores of the BPMS. The XANES data also indicate that diffusion rate of copper in the BPMS (4.68×10 -5 g/s) is greater than that in the ZSM-5 (1.11×10 -6 g/s) or MCM-41 (1.17×10 -5 g/s).

  7. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.

    PubMed

    Martin, Melanie

    2013-01-01

    This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  8. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  9. Acquisition of a High Performance Computer Cluster for Materials Research and Education

    DTIC Science & Technology

    2015-04-17

    separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...diffusion and interfacial charge separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project is the development...simulations to predict charge carrier mobilities, exciton diffusion and interfacial charge separation in all- organic and hybrid organic- inorganic solar

  10. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  11. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  12. Towards Understanding The Origin And Evolution Of Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Sifón, Cristóbal; Muzzin, Adam; Hoekstra, Henk; KiDS Collaboration; GAMA Collaboration

    2017-06-01

    Recent observations have shown that Ultra-Diffuse Galaxies (UDGs, which have the luminosities of dwarfs but sizes of giant galaxies) are surprisingly abundant in clusters of galaxies. The origin of these galaxies remains unclear, since one would naively expect them to be easily disrupted by tidal interactions in the cluster environment. Several formation scenarios have been proposed for UDGs, but these make a wide range of different testable observational predictions. I'll summarise recent results on two key observables that have the potential to differentiate between the proposed models, namely 1) a measurement of their (sub)halo masses using weak gravitational lensing, and 2) their abundance in lower-mass haloes using data from the GAMA and KiDS surveys. I'll discuss implications and future prospects to learn more about the properties and formation histories of these elusive galaxies.

  13. Unique white matter microstructural patterns in ADHD presentations-a diffusion tensor imaging study.

    PubMed

    Svatkova, Alena; Nestrasil, Igor; Rudser, Kyle; Goldenring Fine, Jodene; Bledsoe, Jesse; Semrud-Clikeman, Margaret

    2016-09-01

    Attention-deficit/hyperactivity disorder predominantly inattentive (ADHD-PI) and combined (ADHD-C) presentations are likely distinct disorders that differ neuroanatomically, neurochemically, and neuropsychologically. However, to date, little is known about specific white matter (WM) regions differentiating ADHD presentations. This study examined differences in WM microstructure using diffusion tensor imaging (DTI) data from 20 ADHD-PI, 18 ADHD-C, and 27 typically developed children. Voxel-wise analysis of DTI measurements in major fiber bundles was carried out using tract-based spatial statistics (TBSS). Clusters showing diffusivity abnormalities were used as regions of interest for regression analysis between fractional anisotropy (FA) and neuropsychological outcomes. Compared to neurotypicals, ADHD-PI children showed higher FA in the anterior thalamic radiations (ATR), bilateral inferior longitudinal fasciculus (ILF), and in the left corticospinal tract (CST). In contrast, the ADHD-C group exhibited higher FA in the bilateral cingulum bundle (CB). In the ADHD-PI group, differences in FA in the left ILF and ATR were accompanied by axial diffusivity (AD) abnormalities. In addition, the ADHD-PI group exhibited atypical mean diffusivity in the forceps minor (FMi) and left ATR and AD differences in right CB compared to healthy subjects. Direct comparison between ADHD presentations demonstrated radial diffusivity differences in FMi. WM clusters with FA irregularities in ADHD were associated with neurobehavioral performance across groups. In conclusion, differences in WM microstructure in ADHD presentations strengthen the theory that ADHD-PI and ADHD-C are two distinct disorders. Regions with WM irregularity seen in both ADHD presentations might serve as predictors of executive and behavioral functioning across groups. Hum Brain Mapp 37:3323-3336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Neutral evolution in a biological population as diffusion in phenotype space: reproduction with local mutation but without selection.

    PubMed

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-02

    The process of "evolutionary diffusion," i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  15. Iontophoretic transport of associates based on porous Keplerate-type cluster polyoxometalate Mo72Fe30 and containing biologically active substances

    NASA Astrophysics Data System (ADS)

    Ostroushko, A. A.; Gagarin, I. D.; Tonkushina, M. O.; Grzhegorzhevskii, K. V.; Danilova, I. G.; Gette, I. F.; Kim, G. A.

    2017-09-01

    The possibility of iontophoretic transport through the native membranes of biologically active substances (vitamin B1 and insulin) associated with porous clusters Mo72Fe30 polyoxometalate of the Keplerate type is demonstrated for the first time in an experimental setup. The diffusion coefficient is estimated. The possibility of transferring Keplerate ions with a protective coating of biocompatible polymer polyvinylpyrrolidone is also shown.

  16. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  17. Reexamining cluster radioactivity in trans-lead nuclei with consideration of specific density distributions in daughter nuclei and clusters

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2016-08-01

    We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.

  18. Shape and dynamics of thermoregulating honey bee clusters.

    PubMed

    Sumpter, D J; Broomhead, D S

    2000-05-07

    A model of simple algorithmic "agents" acting in a discrete temperature field is used to investigate the movement of individuals in thermoregulating honey bee (Apis mellifera) clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual bees attempting to regulate their own body temperatures. At ambient temperatures above 0( degrees )C, a clustering bee will move relative to its neighbours so as to put its local temperature within some ideal range. The proposed model incorporates this behaviour into an algorithm for bee agents moving on a two-dimensional lattice. Heat transport on the lattice is modelled by a discrete diffusion process. Computer simulation of this model demonstrates qualitative behaviour which agrees with that of real honey bee clusters. In particular, we observe the formation of both disc- and ring-like cluster shapes. The simulation also suggests that at lower ambient temperatures, clusters do not always have a stable shape but can oscillate between insulating rings of different sizes and densities. Copyright 2000 Academic Press.

  19. Ceria nanoclusters on graphene/Ru(0001): A new model catalyst system

    DOE PAGES

    Novotny, Z.; Netzer, F. P.; Dohnalek, Z.

    2016-03-22

    In this study, the growth of ceria nanoclusters on single-layer graphene on Ru(0001) has been examined, with a view towards fabricating a stable system for model catalysis studies. The surface morphology and cluster distribution as a function of oxide coverage and substrate temperature has been monitored by scanning tunneling microscopy (STM), whereas the chemical composition of the cluster deposits has been determined by Auger electron spectroscopy (AES). The ceria nanoparticles are of the CeO 2(111)-type and are anchored at the intrinsic defects of the graphene surface, resulting in a variation of the cluster densities across the macroscopic sample surface. Themore » ceria clusters on graphene display a remarkable stability against reduction in ultrahigh vacuum up to 900 K, but some sintering of clusters is observed for temperatures > 450 K. The evolution of the cluster size distribution suggests that the sintering proceeds via a Smoluchowski ripening mechanism, i.e. diffusion and aggregation of entire clusters.« less

  20. Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.

    PubMed

    Kotzakoulakis, Konstantinos; George, Simon C

    2018-01-01

    The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characterization of thin film CO2 ice through the infrared ν1 + ν3 combination mode

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2018-01-01

    Carbon dioxide is abundant in ice mantles of dust grains; some is found in the pure crystalline form as inferred from the double peak splitting of the bending profile at about 650 cm-1. To study how CO2 segregates into the pure form from water-rich mixtures of ice mantles and how it then crystallizes, we used Reflection Absorption InfraRed Spectroscopy to study the structural change of pure CO2 ice as a function of both ice thickness and temperature. We found that the ν1 + ν3 combination mode absorption profile at 3708 cm-1 provides an excellent probe to quantify the degree of crystallinity in CO2 ice. We also found that between 20 and 30 K, there is an ordering transition that we attribute to reorientation of CO2 molecules, while the diffusion of CO2 becomes significant at much higher temperatures. In the formation of pure crystalline CO2 in interstellar medium ices, the rate limiting process is the diffusion/segregation of CO2 molecules in the ice instead of the phase transition from amorphous to crystalline after clusters/islands of CO2 are formed.

  2. Cosmic Ray Streaming in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Gould Zweibel, Ellen; Oh, Siang P.

    2017-08-01

    The origin of diffuse radio emission in galaxy clusters remains an open question in astrophysics. This emission indicates the presence of cluster-wide magnetic fields and high energy cosmic ray (CR) electrons. I will discuss how the properties of the observed radio emission in clusters are shaped by different CR transport processes, namely CR streaming. Recent work has shown that fast streaming may turn off radio emission on relatively short time scales - a full treatment of magnetohydrodynamic (MHD) wave damping shows that streaming may be even faster than previously thought in high β environments. I will briefly introduce the physics behind CR transport, and present simple numerical simulations of the Coma cluster that predict radio emission, as well as other observable signatures such as gamma radiation that can differentiate between models for the source of the CR electrons.

  3. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei

    2015-12-01

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  4. Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Abercrombie, R. E.; Smith, K. D.; Zaliapin, I.

    2016-11-01

    After approximately 2 months of swarm-like earthquakes in the Mogul neighborhood of west Reno, NV, seismicity rates and event magnitudes increased over several days culminating in an Mw 4.9 dextral strike-slip earthquake on 26 April 2008. Although very shallow, the Mw 4.9 main shock had a different sense of slip than locally mapped dip-slip surface faults. We relocate 7549 earthquakes, calculate 1082 focal mechanisms, and statistically cluster the relocated earthquake catalog to understand the character and interaction of active structures throughout the Mogul, NV earthquake sequence. Rapid temporary instrument deployment provides high-resolution coverage of microseismicity, enabling a detailed analysis of swarm behavior and faulting geometry. Relocations reveal an internally clustered sequence in which foreshocks evolved on multiple structures surrounding the eventual main shock rupture. The relocated seismicity defines a fault-fracture mesh and detailed fault structure from approximately 2-6 km depth on the previously unknown Mogul fault that may be an evolving incipient strike-slip fault zone. The seismicity volume expands before the main shock, consistent with pore pressure diffusion, and the aftershock volume is much larger than is typical for an Mw 4.9 earthquake. We group events into clusters using space-time-magnitude nearest-neighbor distances between events and develop a cluster criterion through randomization of the relocated catalog. Identified clusters are largely main shock-aftershock sequences, without evidence for migration, occurring within the diffuse background seismicity. The migration rate of the largest foreshock cluster and simultaneous background events is consistent with it having triggered, or having been triggered by, an aseismic slip event.

  5. A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Odette, G. R.; Wirth, B. D.

    1997-11-01

    Nanostructural features that form in reactor pressure vessel steels under neutron irradiation at around 300°C lead to significant hardening and embrittlement. Continuum thermodynamic-kinetic based rate theories have been very successful in modeling the general characteristics of the copper and manganese nickel rich precipitate evolution, often the dominant source of embrittlement. However, a more detailed atomic scale understanding of these features is needed to interpret experimental measurements and better underpin predictive embrittlement models. Further, other embrittling features, believed to be subnanometer defect (vacancy)-solute complexes and small regions of modest enrichment of solutes are not well understood. A general approach to modeling embrittlement nanostructures, based on the concept of a computational microscope, is described. The objective of the computational microscope is to self-consistently integrate atomic scale simulations with other sources of information, including a wide range of experiments. In this work, lattice Monte Carlo (LMC) simulations are used to resolve the chemically and structurally complex nature of CuMnNiSi precipitates. The LMC simulations unify various nanoscale analytical characterization methods and basic thermodynamics. The LMC simulations also reveal that significant coupled vacancy and solute clustering takes place during cascade aging. The cascade clustering produces the metastable vacancy-cluster solute complexes that mediate flux effects. Cascade solute clustering may also play a role in the formation of dilute atmospheres of solute enrichment and enhance the nucleation of manganese-nickel rich precipitates at low Cu levels. Further, the simulations suggest that complex, highly correlated processes (e.g. cluster diffusion, formation of favored vacancy diffusion paths and solute scavenging vacancy cluster complexes) may lead to anomalous fast thermal aging kinetics at temperatures below about 450°C. The potential technical significance of these phenomena is described.

  6. Linking Dynamical and Stellar Evolution in the Metal-Poor Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2017-08-01

    We propose a 5 orbit HST program to acquire UV imaging at the center of the ancient, metal-poor globular cluster NGC 6341 (M92). Our program is designed to achieve two science goals with a single data set, 1.) to directly measure the diffusion of stars through the massive cluster's core, 2.) to pinpoint the phase of post main-sequence evolution at which [Fe/H] = -2.3 stars lose their mass. Our novel technique will achieve these goals by using the full power of WFC3's exquisite UV sensitivity at <0.3 microns combined with its high spatial resolution. We will uncover 1000 newly-formed white dwarfs in the center of M92 and track how their spatial distribution changes as they get older on the cooling sequence. Having just experienced significant mass loss, the youngest remnants with ages <10s of Myr will still be moving slowly like their 0.8 Msun progenitors, whereas the older remnants with t_cool > 100s Myr will be fully relaxed. Using the methodology we developed and successfully applied to 47 Tuc (Heyl et al. 2015a; 2015b), we will watch this dynamical evolution to measure the diffusion coefficient due to gravitational relaxation in the cluster's core and the past timing of stellar mass loss that was responsible for the current cluster mass segregation profile. M92 is the ideal target for this study as it complements our existing study of the relatively metal-rich cluster 47 Tuc; it has an extremely low metallicity of [Fe/H] = -2.3, very low foreground reddening (E(B-V) = 0.02), moderate concentration index, and a theoretically-expected relaxation timescale in its core of 90 Myr, which nicely splits the young and old white dwarfs that can be observed with Hubble.

  7. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.

    PubMed

    Bodrova, Anna S; Chechkin, Aleksei V; Cherstvy, Andrey G; Safdari, Hadiseh; Sokolov, Igor M; Metzler, Ralf

    2016-07-27

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

  8. Atomic diffusion and mixing in old stars. V. A deeper look into the globular cluster NGC 6752

    NASA Astrophysics Data System (ADS)

    Gruyters, Pieter; Nordlander, Thomas; Korn, Andreas J.

    2014-07-01

    Context. Abundance trends in heavier elements with evolutionary phase have been shown to exist in the globular cluster NGC 6752 ([Fe / H] = -1.6). These trends are a result of atomic diffusion and additional (non-convective) mixing. Studying such trends can provide us with important constraints on the extent to which diffusion modifies the internal structure and surface abundances of solar-type, metal-poor stars. Aims: Taking advantage of a larger data sample, we investigate the reality and the size of these abundance trends and address questions and potential biases associated with the various stellar populations that make up NGC 6752. Methods: We perform an abundance analysis by combining photometric and spectroscopic data of 194 stars located between the turnoff point and the base of the red giant branch. Stellar parameters are derived from uvby Strömgren photometry. Using the quantitative-spectroscopy package SME, stellar surface abundances for light elements such as Li, Na, Mg, Al, and Si as well as heavier elements such as Ca, Ti, and Fe are derived in an automated way by fitting synthetic spectra to individual lines in the stellar spectra, obtained with the VLT/FLAMES-GIRAFFE spectrograph. Results: Based on uvby Strömgren photometry, we are able to separate three stellar populations in NGC 6752 along the evolutionary sequence from the base of the red giant branch down to the turnoff point. We find weak systematic abundance trends with evolutionary phase for Ca, Ti, and Fe which are best explained by stellar-structure models including atomic diffusion with efficient additional mixing. We derive a new value for the initial lithium abundance of NGC 6752 after correcting for the effect of atomic diffusion and additional mixing which falls slightly below the predicted standard BBN value. Conclusions: We find three stellar populations by combining photometric and spectroscopic data of 194 stars in the globular cluster NGC 6752. Abundance trends for groups of elements, differently affected by atomic diffusion and additional mixing, are identified. Although the statistical significance of the individual trends is weak, they all support the notion that atomic diffusion is operational along the evolutionary sequence of NGC 6752. Based on data collected at the ESO telescopes under programs 079.D-0645(A) and 081.D-0253(A).Full Tables 2 and 8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A72

  9. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (I.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo cluster, the extended stellar halo around NGC 1399 is characterized by a more diffuse and well-mixed component, including the intracluster light.

  10. Computational Studies on the Anharmonic Dynamics of Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Mancini, John S.

    Molecular nanoclusters present ideal systems to probe the physical forces and dynamics that drive the behavior of larger bulk systems. At the nanocluster limit the first instances of several phenomena can be observed including the breaking of hydrogen and molecular bonds. Advancements in experimental and theoretical techniques have made it possible to explore these phenomena in great detail. The most fruitful of these studies have involved the use of both experimental and theoretical techniques to leverage to strengths of the two approaches. This dissertation seeks to explore several important phenomena of molecular clusters using new and existing theoretical methodologies. Three specific systems are considered, hydrogen chloride clusters, mixed water and hydrogen chloride clusters and the first cluster where hydrogen chloride autoionization occurs. The focus of these studies remain as close as possible to experimentally observable phenomena with the intention of validating, simulating and expanding on experimental work. Specifically, the properties of interested are those related to the vibrational ground and excited state dynamics of these systems. Studies are performed using full and reduced dimensional potential energy surface alongside advanced quantum mechanical methods including diffusion Monte Carlo, vibrational configuration interaction theory and quasi-classical molecular dynamics. The insight gained from these studies are great and varied. A new on-they-fly ab initio method for studying molecular clusters is validated for (HCl)1--6. A landmark study of the dissociation energy and predissociation mechanism of (HCl)3 is reported. The ground states of mixed (HCl)n(H2O)m are found to be highly delocalized across multiple stationary point configurations. Furthermore, it is identified that the consideration of this delocalization is required in vibrational excited state calculations to achieve agreement with experimental measurements. Finally, the theoretical infrared spectra for the first case of HCl ionization in (H 2O)m is reported, H+(H2O) 3Cl--. The calculation indicates that the ionized cluster's spectra is much more complex than any pervious harmonic predictions, with a large number of the system's infrared active peaks resulting from overtones of lower frequency molecular motions.

  11. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGES

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → B c or B t with concentration-dependent selectivity of the products, B c or B t, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  12. Analysis of the geometrical-probabilistic models of electrocrystallization

    NASA Astrophysics Data System (ADS)

    Isaev, V. A.; Grishenkova, O. V.; Zaykov, Yu. P.

    2016-08-01

    The formation of a three-dimensional electrode deposit under potentiostatic conditions, including the stages of nucleation, growth, and overlap of growing new-phase clusters and their diffusion zones, is considered. The models of electrochemical phase formation for kinetics- and diffusion-controlled growth are analyzed, and the correctness of the approximations used in these models is estimated. The possibility of application of these models to an analysis of the electrodeposition of silicon from molten salts is discussed.

  13. Gene selection and cancer type classification of diffuse large-B-cell lymphoma using a bivariate mixture model for two-species data.

    PubMed

    Su, Yuhua; Nielsen, Dahlia; Zhu, Lei; Richards, Kristy; Suter, Steven; Breen, Matthew; Motsinger-Reif, Alison; Osborne, Jason

    2013-01-05

    : A bivariate mixture model utilizing information across two species was proposed to solve the fundamental problem of identifying differentially expressed genes in microarray experiments. The model utility was illustrated using a dog and human lymphoma data set prepared by a group of scientists in the College of Veterinary Medicine at North Carolina State University. A small number of genes were identified as being differentially expressed in both species and the human genes in this cluster serve as a good predictor for classifying diffuse large-B-cell lymphoma (DLBCL) patients into two subgroups, the germinal center B-cell-like diffuse large B-cell lymphoma and the activated B-cell-like diffuse large B-cell lymphoma. The number of human genes that were observed to be significantly differentially expressed (21) from the two-species analysis was very small compared to the number of human genes (190) identified with only one-species analysis (human data). The genes may be clinically relevant/important, as this small set achieved low misclassification rates of DLBCL subtypes. Additionally, the two subgroups defined by this cluster of human genes had significantly different survival functions, indicating that the stratification based on gene-expression profiling using the proposed mixture model provided improved insight into the clinical differences between the two cancer subtypes.

  14. A multi-frequency analysis of possible dark matter contributions to M31 gamma-ray emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, G.; Colafrancesco, S., E-mail: geoffrey.beck@wits.ac.za, E-mail: sergio.colafrancesco@wits.ac.za

    We examine the possibility of a dark matter (DM) contribution to the recently observed gamma-ray spectrum seen in the M31 galaxy. In particular, we apply limits on Weakly Interacting Massive Particle DM annihilation cross-sections derived from the Coma galaxy cluster and the Reticulum II dwarf galaxy to determine the maximal flux contribution by DM annihilation to both the M31 gamma-ray spectrum and that of the Milky-Way Galactic Centre. We limit the energy range between 1 and 12 GeV in M31 and Galactic Centre spectra due to the limited range of former's data, as well as to encompass the high-energy gamma-raymore » excess observed in the latter target. In so doing, we will make use of Fermi-LAT data for all mentioned targets, as well as diffuse radio data for the Coma cluster. The multi-target strategy using both Coma and Reticulum II to derive cross-section limits, as well as multi-frequency data, ensures that our results are robust against the various uncertainties inherent in modelling of indirect DM emissions. Our results indicate that, when a Navarro-Frenk-White (or shallower) radial density profile is assumed, severe constraints can be imposed upon the fraction of the M31 and Galactic Centre spectra that can be accounted for by DM, with the best limits arising from cross-section constraints from Coma radio data and Reticulum II gamma-ray limits. These particular limits force all the studied annihilation channels to contribute 1% or less to the total integrated gamma-ray flux within both M31 and Galactic Centre targets. In contrast, considerably more, 10−100%, of the flux can be attributed to DM when a contracted Navarro-Frenk-White profile is assumed. This demonstrates how sensitive DM contributions to gamma-ray emissions are to the possibility of cored profiles in galaxies. The only channel consistently excluded for all targets and profiles (except for ∼ 10 GeV WIMPs) is the direct annihilation into photons. Finally, we discuss the ramifications of evidence in favour of cored halo density profiles for DM explanations of galactic gamma-ray emission.« less

  15. Heat transport in electrically aligned multiwalled carbon nanotubes dispersed in water

    NASA Astrophysics Data System (ADS)

    Cervantes-Alvarez, F.; Macias, J. D.; Alvarado-Gil, J. J.

    2018-02-01

    A modified Ångström method was used to determine the thermal diffusivity and thermal conductivity of aqueous dispersions of multiwalled carbon nanotubes as a function of their weight fraction concentration and in the presence of an externally applied electric field. Measurements were performed in planar samples, with a fixed thickness of 3.18 mm applying an AC voltage in the range from 0 to 70~V_RMS and for concentrations of carbon nanotubes from 0 to 2 wf%. It is shown that this field induces the formation of clusters followed by their alignment along the electric field, which can favor heat transfer in that direction. Heat transfer measurements show two regimes, in the first one under 0.5 wf%, voltages lower than 30~V_RMS are not strong enough to induce the adequate order of the carbon nanostructures, and as a consequence, thermal diffusivity of the dispersion remains close to the thermal diffusivity of water. In contrast for higher concentrations (above 1.5 wf%), 10~V_RMS are enough to get a good alignment. Above such thresholds of concentrations and voltages, thermal diffusivity and conductivity increase, when the electric field is increased, in such a way that for an applied voltage of 20~V_RMS and for a concentration of 1.5 wf%, an increase of 49% of the thermal conductivity was obtained. It is also shown that this approach exhibits limits, due to the fact that the electric-field induced structure, can act as a heating element at high electric field intensities and carbon nanotubes concentrations, which can induce convection and evaporation of the liquid matrix.

  16. Neutral Evolution in a Biological Population as Diffusion in Phenotype Space: Reproduction with Local Mutation but without Selection

    NASA Astrophysics Data System (ADS)

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-01

    The process of “evolutionary diffusion,” i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  17. Complexity and anomalous diffusion of the Florina (Greece) microseismic activity associated with CO2 emissions

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos

    2017-04-01

    It has long been recognized that the diffusion of pressurized fluids in the Earth's crust can induce earthquakes. Characteristic cases can be drawn from earthquake swarm sequences associated with volcanic activity, oil and gas injections and extractions and CO2 emissions in the crust. Such sequences are typically characterized by strong variations and clustering effects in time and space and can neither be described by a dominant earthquake nor by any simple scaling relation, as the Omori scaling known for aftershock sequences. In 2013-2014 such a sequence occurred in northern Greece, in the area of Florina and has been associated with CO2 gases emissions through the fault and fracture network below the Florina basin (Mesimeri et al., 2017). A detailed microseismic analysis reveals the structure of the seismic cloud that is distributed in two clusters, the first of a N-S direction dipping to the north and the second of an E-W direction and almost vertical, gently dipping to the south. Furthermore, the two clusters present distinct periods of activation, which may be associated with different phases of CO2 emissions. The spatiotemporal properties of the earthquake activity inside the two clusters indicate correlated sequences in time and space, with asymptotic power-law distributions of the time and distance intervals between their successive events (e.g., Vallianatos et al., 2016). Moreover, the mean squared displacement of the earthquake activity with time for the two clusters indicate the slow migration of microseismicity. The latter process corresponds to slow sub-diffusion inside the fault segments, which may act as pathways for the migration of CO2 gases towards the surface. References Mesimeri, M., Karakostas, V., Papadimitriou, E., Tsaklidis, G., Tsapanos, T., 2017. Detailed microseismicity study in the area of Florina (Greece): Evidence for fluid driven seismicity. Tectonophysics, 694, 424-435. Vallianatos F., Papadakis G., Michas G., 2016. Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A, 472, 20160497. Acknowledgements G. Michas acknowledges financial support from an AXA Research Fund postdoctoral grant.

  18. The stability of vacancy clusters and their effect on helium behaviors in 3C-SiC

    NASA Astrophysics Data System (ADS)

    Sun, Jingjing; Li, B. S.; You, Yu-Wei; Hou, Jie; Xu, Yichun; Liu, C. S.; Fang, Q. F.; Wang, Z. G.

    2018-05-01

    We have carried out systematical ab initio calculations to study the stability of vacancy clusters and their effect on helium behaviors in 3C-SiC. It is found that the formation energies of vacancy clusters containing only carbon vacancies are the lowest although the vacancies are not closest to each other, while the binding energies of vacancy clusters composed of both silicon and carbon vacancies in the closest neighbors to each other are the highest. Vacancy clusters can provide with free space for helium atoms to aggregate, while interstitial sites are not favorable for helium atoms to accumulate. The binding energies of vacancy clusters with helium atoms increase almost linearly with the ratio of helium to vacancy, n/m. The binding strength of vacancy cluster having the participation of the silicon vacancy with helium is relatively stronger than that without silicon vacancy. The vacancy clusters with more vacancies can trap helium atoms more tightly. With the presence of vacancy clusters in the material, the diffusivity of helium will be significantly reduced. Moreover, the three-dimension electron density is calculated to analyze the interplay of vacancy clusters with helium.

  19. The case for electron re-acceleration at galaxy cluster shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  20. A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). I. Introduction to the survey

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Fossati, M.; Ferrarese, L.; Boissier, S.; Consolandi, G.; Longobardi, A.; Amram, P.; Balogh, M.; Barmby, P.; Boquien, M.; Boulanger, F.; Braine, J.; Buat, V.; Burgarella, D.; Combes, F.; Contini, T.; Cortese, L.; Côté, P.; Côté, S.; Cuillandre, J. C.; Drissen, L.; Epinat, B.; Fumagalli, M.; Gallagher, S.; Gavazzi, G.; Gomez-Lopez, J.; Gwyn, S.; Harris, W.; Hensler, G.; Koribalski, B.; Marcelin, M.; McConnachie, A.; Miville-Deschenes, M. A.; Navarro, J.; Patton, D.; Peng, E. W.; Plana, H.; Prantzos, N.; Robert, C.; Roediger, J.; Roehlly, Y.; Russeil, D.; Salome, P.; Sanchez-Janssen, R.; Serra, P.; Spekkens, K.; Sun, M.; Taylor, J.; Tonnesen, S.; Vollmer, B.; Willis, J.; Wozniak, H.; Burdullis, T.; Devost, D.; Mahoney, B.; Manset, N.; Petric, A.; Prunet, S.; Withington, K.

    2018-06-01

    The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band (NB) Hα+[NII] imaging survey carried out with MegaCam at the Canada-France-Hawaii Telescope. The survey covers the whole Virgo cluster region from its core to one virial radius (104 deg2). The sensitivity of the survey is of f(Hα) 4 × 10-17 erg s-1 cm-2 (5σ detection limit) for point sources and Σ(Hα) 2 × 10-18 erg s-1 cm-2 arcsec-2 (1σ detection limit at 3 arcsec resolution) for extended sources, making VESTIGE the deepest and largest blind NB survey of a nearby cluster. This paper presents the survey in all its technical aspects, including the survey design, the observing strategy, the achieved sensitivity in both the NB Hα+[NII] and in the broad-band r filter used for the stellar continuum subtraction, the data reduction, calibration, and products, as well as its status after the first observing semester. We briefly describe the Hα properties of galaxies located in a 4 × 1 deg2 strip in the core of the cluster north of M87, where several extended tails of ionised gas are detected. This paper also lists the main scientific motivations for VESTIGE, which include the study of the effects of the environment on galaxy evolution, the fate of the stripped gas in cluster objects, the star formation process in nearby galaxies of different type and stellar mass, the determination of the Hα luminosity function and of the Hα scaling relations down to 106 M⊙ stellar mass objects, and the reconstruction of the dynamical structure of the Virgo cluster. This unique set of data will also be used to study the HII luminosity function in hundreds of galaxies, the diffuse Hα+[NII] emission of the Milky Way at high Galactic latitude, and the properties of emission line galaxies at high redshift. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France and the University of Hawaii.

  1. Scalar Resonant Relaxation of Stars around a Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Fouvry, Jean-Baptiste

    2018-06-01

    In nuclear star clusters, the potential is governed by the central massive black hole (MBH), so that stars move on nearly Keplerian orbits and the total potential is almost stationary in time. Yet, the deviations of the potential from the Keplerian one, due to the enclosed stellar mass and general relativity, will cause the stellar orbits to precess. Moreover, as a result of the finite number of stars, small deviations of the potential from spherical symmetry induce residual torques that can change the stars’ angular momentum faster than the standard two-body relaxation. The combination of these two effects drives a stochastic evolution of orbital angular momentum, a process named “resonant relaxation” (RR). Owing to recent developments in the description of the relaxation of self-gravitating systems, we can now fully describe scalar resonant relaxation (relaxation of the magnitude of the angular momentum) as a diffusion process. In this framework, the potential fluctuations due to the complex orbital motion of the stars are described by a random correlated noise with statistical properties that are fully characterized by the stars’ mean field motion. On long timescales, the cluster can be regarded as a diffusive system with diffusion coefficients that depend explicitly on the mean field stellar distribution through the properties of the noise. We show here, for the first time, how the diffusion coefficients of scalar RR, for a spherically symmetric system, can be fully calculated from first principles, without any free parameters. We also provide an open source code that evaluates these diffusion coefficients numerically.

  2. Dynamics behavior of lithium in graphite lattice: MD calculation approach

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Tachikawa, H.

    2000-12-01

    In order to investigate the diffusion process of Li atom in graphite, molecular dynamics simulation was achieved on the basis of molecular mechanics 2 (MM2) method using four layers cluster model one of which is composed of C150H30 with terminating hydrogen atoms. According to the simulations at 500 K, Li atom stabilizes initially around the center of mass, gets out of the graphite layers after 3.0 ps through diffusion, which is different from the movement of Li+ ion captured by the dangling bonds of the edge carbon atoms. The diffusion process of Li atom is found to be composed of following four steps in series: (1) vibration around the stabilization point; (2) bulk diffusion; (3) vibration under influence of the dangling bonds of edge carbon atoms; and (4) escape from the graphite layers. The diffusivity for step (3) is smaller than that for step (2).

  3. Suitability of the first-order mass transfer concept for describing cyclic diffusive mass transfer in stagnant zones

    NASA Astrophysics Data System (ADS)

    Griffioen, Jasper

    1998-10-01

    The concept of first-order mass transfer between mobile and immobile regions, which mathematically simplifies the concept of Fickian diffusion in stagnant areas, has often been used to describe physical nonequilibrium transport of solutes into natural porous media. This study compares the two concepts, using analytical expressions describing cyclic mass transfer into and out of stagnant layers. The results show that the first-order mass transfer concept cannot describe continuous diffusion into the immobile zone during period of net outward diffusion if the immobile zone has not filled completely during the period of net inward diffusion. This sets phenomenological limitations to the first-order mass transfer concept when short periods of relative time are involved; these limitations have to be compared with the practical limitations to the Fickian diffusion concept.

  4. XMM-Newton Observations of the Southeastern Radio Relic in Abell 3667

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Vink, Jacco; Zandanel, Fabio; Akamatsu, Hiroki

    2018-06-01

    Radio relics, elongated, non-thermal, structures located at the edges of galaxy clusters, are the result of synchrotron radiation from cosmic-ray electrons accelerated by merger-driven shocks at the cluster outskirts. However, X-ray observations of such shocks in some clusters suggest that they are too weak to efficiently accelerate electrons via diffusive shock acceleration to energies required to produce the observed radio power. We examine this issue in the merging galaxy cluster Abell 3667 (A3667), which hosts a pair of radio relics. While the Northwest relic in A3667 has been well studied in the radio and X-ray by multiple instruments, the Southeast relic region has only been observed so far by Suzaku, which detected a temperature jump across the relic, suggesting the presence of a weak shock. We present observations of the Southeastern region of A3667 with XMM-Newton centered on the radio relic. We confirm the existence of an X-ray shock with Mach number of about 1.8 from a clear detection of temperature jump and a tentative detection of a density jump, consistent with previous measurements by Suzaku. We discuss the implications of this measurement for diffusive shock acceleration as the main mechanism for explaining the origin of radio relics. We then speculate on the plausibility of alternative scenarios, including re-acceleration and variations in the Mach number along shock fronts.

  5. SOTXTSTREAM: Density-based self-organizing clustering of text streams.

    PubMed

    Bryant, Avory C; Cios, Krzysztof J

    2017-01-01

    A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets.

  6. Coupled Protein Diffusion and Folding in the Cell

    PubMed Central

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. PMID:25436502

  7. Coupled protein diffusion and folding in the cell.

    PubMed

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.

  8. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  9. Metal-atom Interactions and Clustering in Organic Semiconductor Systems

    NASA Astrophysics Data System (ADS)

    Tomita, Yoko; Park, Tea-uk; Nakayama, Takashi

    2017-07-01

    The interatomic interactions and clustering of metal atoms have been studied by first-principles calculations in graphene, pentacene, and polyacetylene as representative organic systems. It is shown that long-range repulsive Coulomb interaction appears between metal atoms with small electronegativity such as Al due to their ionization on host organic molecules, inducing their scattered distribution in organic systems. On the other hand, metal atoms with large electronegativity such as Au are weakly bonded to organic molecules, easily diffuse in molecular solids, and prefer to combine with each other owing to their short-range strong metallic-bonding interaction, promoting metal cluster generation in organic systems.

  10. Glasslike Membrane Protein Diffusion in a Crowded Membrane.

    PubMed

    Munguira, Ignacio; Casuso, Ignacio; Takahashi, Hirohide; Rico, Felix; Miyagi, Atsushi; Chami, Mohamed; Scheuring, Simon

    2016-02-23

    Many functions of the plasma membrane depend critically on its structure and dynamics. Observation of anomalous diffusion in vivo and in vitro using fluorescence microscopy and single particle tracking has advanced our concept of the membrane from a homogeneous fluid bilayer with freely diffusing proteins to a highly organized crowded and clustered mosaic of lipids and proteins. Unfortunately, anomalous diffusion could not be related to local molecular details given the lack of direct and unlabeled molecular observation capabilities. Here, we use high-speed atomic force microscopy and a novel analysis methodology to analyze the pore forming protein lysenin in a highly crowded environment and document coexistence of several diffusion regimes within one membrane. We show the formation of local glassy phases, where proteins are trapped in neighbor-formed cages for time scales up to 10 s, which had not been previously experimentally reported for biological membranes. Furthermore, around solid-like patches and immobile molecules a slower glass phase is detected leading to protein trapping and creating a perimeter of decreased membrane diffusion.

  11. Edible oil structures at low and intermediate concentrations. I. Modeling, computer simulation, and predictions for X ray scattering

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Quinn, Bonnie; Peyronel, Fernanda; Marangoni, Alejandro G.

    2013-12-01

    Triacylglycerols (TAGs) are biologically important molecules which form the recently discovered highly anisotropic crystalline nanoplatelets (CNPs) and, ultimately, the large-scale fat crystal networks in edible oils. Identifying the hierarchies of these networks and how they spontaneously self-assemble is important to understanding their functionality and oil binding capacity. We have modelled CNPs and studied how they aggregate under the assumption that all CNPs are present before aggregation begins and that their solubility in the liquid oil is very low. We represented CNPs as rigid planar arrays of spheres with diameter ≈50 nm and defined the interaction between spheres in terms of a Hamaker coefficient, A, and a binding energy, VB. We studied three cases: weak binding, |VB|/kBT ≪ 1, physically realistic binding, VB = Vd(R, Δ), so that |VB|/kBT ≈ 1, and Strong binding with |VB|/kBT ≫ 1. We divided the concentration of CNPs, ϕ, with 0≤ϕ= 10-2 (solid fat content) ≤1, into two regions: Low and intermediate concentrations with 0<ϕ<0.25 and high concentrations with 0.25 < ϕ and considered only the first case. We employed Monte Carlo computer simulation to model CNP aggregation and analyzed them using static structure functions, S(q). We found that strong binding cases formed aggregates with fractal dimension, D, 1.7≤D ≤1.8, in accord with diffusion limited cluster-cluster aggregation (DLCA) and weak binding formed aggregates with D =3, indicating a random distribution of CNPs. We found that models with physically realistic intermediate binding energies formed linear multilayer stacks of CNPs (TAGwoods) with fractal dimension D =1 for ϕ =0.06,0.13, and 0.22. TAGwood lengths were greater at lower ϕ than at higher ϕ, where some of the aggregates appeared as thick CNPs. We increased the spatial scale and modelled the TAGwoods as rigid linear arrays of spheres of diameter ≈500 nm, interacting via the attractive van der Waals interaction. We found that TAGwoods aggregated via DLCA into clusters with fractal dimension D =1.7-1.8. As the simulations were run further, TAGwoods relaxed their positions in order to maximize the attractive interaction making the process look like reaction limited cluster-cluster aggregation with the fractal dimension increasing to D =2.0-2.1. For higher concentrations of CNPs, many TAGwood clusters were formed and, because of their weak interactions, were distributed randomly with D =3.0. We summarize the hierarchy of structures and make predictions for X-ray scattering.

  12. Another shock for the Bullet cluster, and the source of seed electrons for radio relics

    NASA Astrophysics Data System (ADS)

    Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav

    2015-05-01

    With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.

  13. Evidence of Absence of Tidal Features in the Outskirts of Ultra Diffuse Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Mowla, Lamiya; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Yagi, Masafumi; Koda, Jin

    2017-12-01

    We study the presence of tidal features associated with ultra diffuse galaxies (UDGs) in galaxy clusters. Specifically, we stack deep Subaru images of UDGs in the Coma cluster to determine whether they show position angle twists at large radii. Selecting galaxies with central surface brightness μ (g,0)> 24 magarcsec-2 and projected half-light radius {r}e> 1.5 {kpc}, we identify 287 UDGs in the Yagi et al. catalog of low surface brightness Coma objects. The UDGs have apparent spheroidal shapes with median Sérsic index < n> =0.8 and median axis ratio < b/a> =0.7. The images are processed by masking all background objects and rotating to align the major axis before stacking them in bins of properties such as axis ratio, angle of major axis with respect to the cluster center, and separation from cluster center. Our image stacks reach further than 7 kpc (≳4r e). Analysis of the isophotes of the stacks reveals that the ellipticity remains constant up to the last measured point, which means that the individual galaxies have a non-varying position angle and axis ratio and show no evidence for tidal disruption out to ˜ 4{r}e. We demonstrate this explicitly by comparing our stacks with stacks of model UDGs with and without tidal features in their outskirts. We infer that the average tidal radius of the Coma UDGs is >7 kpc and estimate that the average dark matter fraction within the tidal radius of the UDGs inhabiting the innermost 0.5 Mpc of Coma is >99%.

  14. The nucleation and growth of uranium on the basal plane of graphite studied by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tench, R. J.

    1992-11-01

    For the first time, nanometer scale uranium clusters were created on the basal plane of highly oriented pyrolytic graphite by laser ablation under ultra-high vacuum conditions. The physical and chemical properties of these clusters were investigated by scanning tunneling microscopy (STM) as well as standard surface science techniques. Auger electron and X-ray photoelectron spectroscopies found the uranium deposit to be free of contamination and showed that no carbide had formed with the underlying graphite. Clusters with sizes ranging from 42 to 630 sq A were observed upon initial room temperature deposition. Surface diffusion of uranium was observed after annealing the substrate above 800 K, as evidenced by the decreased number density and the increased size of the clusters. Preferential depletion of clusters on terraces near step edges as a result of annealing was observed. The activation energy for diffusion deduced from these measurements was found to be 15 Kcal/mole. Novel formation of ordered uranium thin films was observed for coverages greater than two monolayers after annealing above 900 K. These ordered films displayed islands with hexagonally faceted edges rising in uniform step heights characteristic of the unit cell of the P-phase of uranium. In addition, atomic resolution STM images of these ordered films indicated the formation of the (beta)-phase of uranium. The chemical properties of these surfaces were investigated and it was shown that these uranium films had a reduced oxidation rate in air as compared to bulk metal and that STM imaging in air induced a polarity-dependent enhancement of the oxidation rate.

  15. Ion mobility and clustering of sodium hydroxybenzoates in aqueous solutions: a molecular dynamics simulation study.

    PubMed

    Gujt, Jure; Podlipnik, Črtomir; Bešter-Rogač, Marija; Spohr, Eckhard

    2014-09-28

    The relative position of the hydroxylic and the carboxylic group in the isomeric hydroxybenzoate (HB) anions is known to have a large impact on transport properties of this species. It also influences crucially the self-organisation of cationic surfactants. In this article a systematic investigation of aqueous solutions of the ortho, meta, and para isomers of the HB anion is presented. Molecular dynamics simulations of all three HB isomers were conducted for two different concentrations at 298.15 K and using two separate water models. From the resulting trajectories we calculated the self-diffusion coefficient of each isomer. According to the calculated self-diffusion coefficients, isomers were ranked in the order o-HB > m-HB > p-HB at both concentrations for both the used SPC and SPC/E water models, which agrees very well with the experiment. The structural analysis revealed that at lower concentration, where the tendency for dimerisation or cluster formation is low, hydrogen bonding with water determines the mobility of the HB anion. o-HB forms the least hydrogen bonds and is therefore the most mobile, and p-HB, which forms the most hydrogen bonds with water, is the least mobile isomer. At higher concentration the formation of clusters also needs to be considered. The ortho isomer predominantly forms dimers with 2 hydrogen bonds per dimer between one OH and one carboxylate group of each anion. m-HB mostly forms clusters of sizes around 5 and p-HB forms clusters of sizes even larger than 10, which can be either rings or chains.

  16. Developing Generic Image Search Strategies for Large Astronomical Data Sets and Archives using Convolutional Neural Networks and Transfer Learning

    NASA Astrophysics Data System (ADS)

    Peek, Joshua E. G.; Hargis, Jonathan R.; Jones, Craig K.

    2018-01-01

    Astronomical instruments produce petabytes of images every year, vastly more than can be inspected by a member of the astronomical community in search of a specific population of structures. Fortunately, the sky is mostly black and source extraction algorithms have been developed to provide searchable catalogs of unconfused sources like stars and galaxies. These tools often fail for studies of more diffuse structures like the interstellar medium and unresolved stellar structures in nearby galaxies, leaving astronomers interested in observations of photodissociation regions, stellar clusters, diffuse interstellar clouds without the crucial ability to search. In this work we present a new path forward for finding structures in large data sets similar to an input structure using convolutional neural networks, transfer learning, and machine learning clustering techniques. We show applications to archival data in the Mikulski Archive for Space Telescopes (MAST).

  17. Training a Network of Electronic Neurons for Control of a Mobile Robot

    NASA Astrophysics Data System (ADS)

    Vromen, T. G. M.; Steur, E.; Nijmeijer, H.

    An adaptive training procedure is developed for a network of electronic neurons, which controls a mobile robot driving around in an unknown environment while avoiding obstacles. The neuronal network controls the angular velocity of the wheels of the robot based on the sensor readings. The nodes in the neuronal network controller are clusters of neurons rather than single neurons. The adaptive training procedure ensures that the input-output behavior of the clusters is identical, even though the constituting neurons are nonidentical and have, in isolation, nonidentical responses to the same input. In particular, we let the neurons interact via a diffusive coupling, and the proposed training procedure modifies the diffusion interaction weights such that the neurons behave synchronously with a predefined response. The working principle of the training procedure is experimentally validated and results of an experiment with a mobile robot that is completely autonomously driving in an unknown environment with obstacles are presented.

  18. Redistribution of oxygen ions in single crystal YBa2Cu3O7-x owing to external hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Boiko, Yu. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhai, G. Ya.; Savich, S. V.

    2018-01-01

    The effect of high hydrostatic pressure on the temperature dependences of the electrical resistance in the basal plane of single crystal YBa2Cu3O7-x with an oxygen deficit is studied. It is found that an external hydrostatic pressure P ≈ 7 kbar substantially intensifies the diffusive coalescence of oxygen clusters, i.e., causes an increase in their average size. This, in turn, produces an increased number of negative U-centers whose presence leads to the appearance of a phase capable of generating paired carriers of electrical charge and is, therefore, characterized by a higher transition temperature Tc. Changes in the form of the temperature and time dependences of the electrical resistivity under external hydrostatic pressure are discussed in terms of this same hypothesis regarding the mechanism of diffusive coalescence of oxygen clusters.

  19. LOFAR, VLA, and Chandra observations of the Toothbrush Galaxy Cluster

    DOE PAGES

    van Weeren, R. J.; Brunetti, G.; Bruggen, M.; ...

    2016-02-22

    We present deep LOFAR observations between 120 {181 MHz of the `Toothbrush' (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of α = -0:8±0:1 at the northern edge of the main radio relic,more » steepening towards the south to α ≈ -2. The spectral index of the radio halo is remarkably uniform (α = -1:16, with an intrinsic scatter of ≤ 0:04). The observed radio relic spectral index gives a Mach number of M = 2:8 +0:5 -0:3, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock (M≈1:2, with an upper limit ofM≈1:5). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.« less

  20. An HST Survey of Intermediate Luminosity X-ray Objects

    NASA Astrophysics Data System (ADS)

    Roye, E. W.; Colbert, E. J. M.; Heckman, T.; Ptak, R. F.; van der Marel, R. P.

    2003-03-01

    We searched for optical counterparts to 54 Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs) using HST WFPC2 archive data, and have uncovered a high yield of intriguing possible correlations. A total of 124 IXOs were identified from searching all of the Chandra ACIS archival galaxy data as of July 17, 2002. Archival WFPC2 data were available for 54 of these IXOs. The optical data utilized in this study consisted of 121 HST WFPC2 associations (stacked images). We will discuss the various methods used to register the HST WFPC2 images with the Chandra X-ray images. Our preliminary analysis indicates that 37 ( ˜70%) of the 54 IXOs have at least one 4 sigma counterpart within 1" of the IXO position, and ˜25% have unique counterparts (mostly in elliptical galaxies). The detection limit of the counterparts was typically 24-25 magnitudes in B, V, and R. The absolute magnitudes of many of the found counterparts appeared to correspond roughly to either the expected magnitudes for globular clusters, or the expected magnitudes for the brightest stars. Initial results illustrate that of the 37 IXOs with counterparts, 25 ( ˜70%) were in spiral, irregular, and merger galaxies, where the counterparts were often diffuse or clump-like sources. The counterparts found in elliptical galaxies were primarily single luminous point-sources, most likely globular clusters. We will discuss the results of color analysis for fields where counterparts in multiple bands exist, particularly for cases where a single counterpart is found. A preliminary finding in elliptical galaxies is that globular clusters associated with IXOs tend to be red, suggesting that IXOs are not found in metal-poor globular clusters.

  1. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  2. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhifan; Hu, Shu; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less

  3. Smart darting diffusion Monte Carlo: Applications to lithium ion-Stockmayer clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, H. M.; Jake, L. C.; Curotto, E., E-mail: curotto@arcadia.edu

    2016-05-07

    In a recent investigation [K. Roberts et al., J. Chem. Phys. 136, 074104 (2012)], we have shown that, for a sufficiently complex potential, the Diffusion Monte Carlo (DMC) random walk can become quasiergodic, and we have introduced smart darting-like moves to improve the sampling. In this article, we systematically characterize the bias that smart darting moves introduce in the estimate of the ground state energy of a bosonic system. We then test a simple approach to eliminate completely such bias from the results. The approach is applied for the determination of the ground state of lithium ion-n–dipoles clusters in themore » n = 8–20 range. For these, the smart darting diffusion Monte Carlo simulations find the same ground state energy and mixed-distribution as the traditional approach for n < 14. In larger systems we find that while the ground state energies agree quantitatively with or without smart darting moves, the mixed-distributions can be significantly different. Some evidence is offered to conclude that introducing smart darting-like moves in traditional DMC simulations may produce a more reliable ground state mixed-distribution.« less

  4. Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.

    PubMed

    Strohm, S; Tyson, R C; Powell, J A

    2013-10-01

    Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.

  5. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.

    PubMed

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo

    2014-07-11

    Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

  6. Observations of rich clusters of galaxies at metre wavelengths

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.; Hanisch, R. J.; Turner, P. J.

    1981-01-01

    Observations have been made at 10 frequencies between 50 and 120 MHz of 17 rich, X-ray emitting clusters of galaxies with the 78 x 156 m dipole array al Llanherne. The observed flux densities were compared to the flux densities expected on the basis of the known discrete sources in the fields. In no case was a significant flux excess found that might have indicated the presence of a diffuse halo component of radio emission in the cluster. For those clusters in which spectral indices could be determined, the spectra all tend to be much steeper than is normal for extragalactic radio sources, although a strict correlation between the X-ray luminosity and the low-frequency radio luminosity or spectral index is not found. The occurrence of large halo sources such as that which is present in the Coma cluster seems to be quite unusual.

  7. Relations Between Residential Proximity to EPA-Designated Toxic Release Sites and Diffuse Large B-Cell Lymphoma Incidence.

    PubMed

    Bulka, Catherine; Nastoupil, Loretta J; Koff, Jean L; Bernal-Mizrachi, Leon; Ward, Kevin C; Williams, Jessica N; Bayakly, A Rana; Switchenko, Jeffrey M; Waller, Lance A; Flowers, Christopher R

    2016-10-01

    Examining the spatial patterns of diffuse large B-cell lymphoma (DLBCL) incidence and residential proximity to toxic release locations may provide insight regarding environmental and sociodemographic risk factors. We linked and geocoded cancer incidence data for the period 1999-2008 from the Georgia Comprehensive Cancer Registry with population data from the US Census and the Environmental Protection Agency's Toxics Release Inventory. We conducted cluster analyses and constructed Poisson regression models to assess DLBCL incidence as a function of mean distance to the toxic release sites. In total, 3851 incident DLBCL cases occurred among adults residing in Georgia between 1999 and 2008. Significant focal clustering was observed around 57% of ethylene oxide sites, 5% of benzene sites, 9% of tetrachloroethylene sites, 7% of styrene sites, 10% of formaldehyde sites, 5% of trichloroethylene sites, and 10% of all release sites. Mean distance to sites was significantly associated with DLBCL risk for all chemicals. Proximity to Toxics Release Inventory sites can be linked to increased DLBCL risk as assessed through focal clustering and Poisson regression, and confirmatory studies using geospatial mapping can aid in further specifying risk factors for DLBCL.

  8. The Relationship of Dynamical Heterogeneity to the Adam-Gibbs and Random First-Order Transition Theories of Glass Formation

    NASA Astrophysics Data System (ADS)

    Starr, Francis; Douglas, Jack; Sastry, Srikanth

    2013-03-01

    We examine measures of dynamical heterogeneity for a bead-spring polymer melt and test how these scales compare with the scales hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times naturally explains the decoupling of diffusion and structural relaxation time scales. We examine the appropriateness of identifying the size scales of mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the``mosaic'' length of the RFOT model relaxes the conventional assumption that the``entropic droplet'' are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.

  9. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  10. The breakup mechanism of biomolecular and colloidal aggregates in a shear flow

    NASA Astrophysics Data System (ADS)

    Ó Conchúir, Breanndán; Zaccone, Alessio

    2014-03-01

    The theory of self-assembly of colloidal particles in shear flow is incomplete. Previous analytical approaches have failed to capture the microscopic interplay between diffusion, shear and intermolecular interactions which controls the aggregates fate in shear. In this work we analytically solved the drift-diffusion equation for the breakup rate of a dimer in flow. Then applying rigidity percolation theory, we found that the lifetime of a generic cluster formed under shear is controlled by the typical lifetime of a single bond in its interior, which in turn depends on the efficiency of the stress transmitted from other bonds in the cluster. We showed that aggregate breakup is a thermally-activated process where the activation energy is controlled by the interplay between intermolecular forces and the shear drift, and where structural parameters determine whether cluster fragmentation or surface erosion prevails. In our latest work, we analyzed floppy modes and nonaffine deformations to derive a lower bound on the fractal dimension df below which aggregates are mechanically unstable, ie. for large aggregates df ~= 2.4. This theoretical framework is in quantitative agreement with experiments and can be used for population balance modeling of colloidal and protein aggregation.

  11. Shape analysis of H II regions - I. Statistical clustering

    NASA Astrophysics Data System (ADS)

    Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

    2018-07-01

    We present here our shape analysis method for a sample of 76 Galactic H II regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation are linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorize H II regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionized by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilizing synthetic observations from numerical simulations of H II regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

  12. Shape Analysis of HII Regions - I. Statistical Clustering

    NASA Astrophysics Data System (ADS)

    Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

    2018-04-01

    We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

  13. The operational stability of a centrifugal compressor and its dependence on the characteristics of the subcomponents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunziker, R.; Gyarmathy, G.

    1994-04-01

    A centrifugal compressor was tested with three different diffusers with circular-arc vanes. The vane inlet angle was varied from 15 to 30 deg. Detailed static wall pressure measurements show that the pressure field in the diffuser inlet is very sensitive to flow rate. The stability limit regularly occurred at the flow rate giving the maximum pressure rise for the overall stage. Mild surge arises as a dynamic instability of the compression system. The analysis of the pressure rise characteristic of each individual subcomponent (impeller, diffuser inlet, diffuser channel,...) reveals their contribution to the overall pressure rise. The diffuser channels playmore » an inherently destabilizing role while the impeller and the diffuser inlet are typically stabilizing. The stability limit was mainly determined by a change in the characteristic of the diffuser inlet. Further, the stability limit was found to be independent of the development of inducer-tip recirculation.« less

  14. Post-processing interstitialcy diffusion from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-01

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.

  15. Post-processing interstitialcy diffusion from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, U., E-mail: haptork@gmail.com; Bukkuru, S.; Warrier, M.

    2016-01-15

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures ismore » studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.« less

  16. Absence of a charge diffusion pole at finite energies in an exactly solvable interacting flat-band model in d dimensions

    NASA Astrophysics Data System (ADS)

    Phillips, Philip W.; Setty, Chandan; Zhang, Shuyi

    2018-05-01

    Motivated by recent bounds for charge diffusion in critical matter, we investigate the following question: What sets the scale for the velocity for diffusing degrees of freedom in a scale-invariant system? To make our statements precise, we analyze the diffusion pole in an exactly solvable model for a Mott transition in the presence of a long-range interaction term. To achieve scale invariance, we limit our discussion to the flat-band regime. We find in this limit that the diffusion pole, which would normally obtain at finite energy, is pushed to zero energy, resulting in a vanishing of the diffusion constant. This occurs even in the presence of interactions in certain limits, indicating the robustness of this result to the inclusion of a scale in the problem. Consequently, scale invariance precludes any reasonable definition of the diffusion constant. Nonetheless, we do find that a scale can be defined, albeit irrelevant to diffusion, which is the product of the squared band velocity and the density of states.

  17. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress directionmore » and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.« less

  18. Onset of runaway nucleation in aerosol reactors

    NASA Technical Reports Server (NTRS)

    Wu, Jin Jwang; Flagan, Richard C.

    1987-01-01

    The onset of homogeneous nucleation of new particles from the products of gas phase chemical reactions was explored using an aerosol reactor in which seed particles of silicon were grown by silane pyrolysis. The transition from seed growth by cluster deposition to catastrophic nucleation was extremely abrupt, with as little as a 17 percent change in the reactant concentration leading to an increase in the concentration of measurable particles of four orders of magnitude. From the structure of the particles grown near this transition, it is apparent that much of the growth occurs by the accumulation of clusters on the growing seed particles. The time scale for cluster diffusion indicates, however, that the clusters responsible for growth must be much smaller than the apparent fine structure of the product particles.

  19. Brief Communication: Buoyancy-Induced Differences in Soot Morphology

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Griffin, Devon W.; Greenberg, Paul S.; Roma, John

    1995-01-01

    Reduction or elimination of buoyancy in flames affects the dominant mechanisms driving heat transfer, burning rates and flame shape. The absence of buoyancy produces longer residence times for soot formation, clustering and oxidation. In addition, soot pathlines are strongly affected in microgravity. We recently conducted the first experiments comparing soot morphology in normal and reduced-gravity laminar gas jet diffusion flames. Thermophoretic sampling is a relatively new but well-established technique for studying the morphology of soot primaries and aggregates. Although there have been some questions about biasing that may be induced due to sampling, recent analysis by Rosner et al. showed that the sample is not biased when the system under study is operating in the continuum limit. Furthermore, even if the sampling is preferentially biased to larger aggregates, the size-invariant premise of fractal analysis should produce a correct fractal dimension.

  20. Galileo's First Images of Jupiter and the Galilean Satellites

    PubMed

    Belton, M J S; Head, J W; Ingersoll, A P; Greeley, R; McEwen, A S; Klaasen, K P; Senske, D; Pappalardo, R; Collins, G; Vasavada, A R; Sullivan, R; Simonelli, D; Geissler, P; Carr, M H; Davies, M E; Veverka, J; Gierasch, P J; Banfield, D; Bell, M; Chapman, C R; Anger, C; Greenberg, R; Neukum, G; Pilcher, C B; Beebe, R F; Burns, J A; Fanale, F; Ip, W; Johnson, T V; Morrison, D; Moore, J; Orton, G S; Thomas, P; West, R A

    1996-10-18

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  1. Galileo's first images of Jupiter and the Galilean satellites

    USGS Publications Warehouse

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  2. An x-ray study of massive star forming regions with CHANDRA

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2007-08-01

    Massive stars are characterized by powerful stellar winds, strong ultraviolet (UV) radiation, and consequently devastating supernovae explosions, which have a profound influence on their natal clouds and galaxy evolution. However, the formation and evolution of massive stars themselves and how their low-mass siblings are affected in the wind-swept and UV-radiation-dominated environment are not well understood. Much of the stellar populations inside of the massive star forming regions (MSFRs) are poorly studied in the optical and IR wavelengths because of observational challenges caused by large distance, high extinction, and heavy contamination from unrelated sources. Although it has long been recognized that X-rays open a new window to sample the young stellar populations residing in the MSFRs, the low angular resolution of previous generation X-ray telescopes has limited the outcome from such studies. The sensitive high spatial resolution X-ray observations enabled by the Chandra X- ray Observatory and the Advanced CCD Imaging Spectrometer (ACIS) have significantly improved our ability to study the X-ray-emitting populations in the MSFRs in the last few years. In this thesis, I analyzed seven high spatial resolution Chandra /ACIS images of two massive star forming complexes, namely the NGC 6357 region hosting the 1 Myr old Pismis 24 cluster (Chapter 3) and the Rosette Complex including the 2 Myr old NGC 2244 cluster immersed in the Rosette Nebula (Chapter 4), embedded clusters in the Rosette Molecular Cloud (RMC; Chapter 5), and a triggered cluster NGC 2237 (Chapter 6). The X-ray sampled stars were studied in great details. The unique power of X-ray selection of young stellar cluster members yielded new knowledge in the stellar populations, the cluster structures, and the star formation histories. The census of cluster members is greatly improved in each region. A large fraction of the X-ray detections have optical or near-infrared (NIR) stellar counterparts (from 2MASS, SIRIUS and FLAMINGOS JHK images), most of which are previously uncatalogued young cluster members. This provides a reliable probe of the rich intermediate-mass and low-mass young stellar populations accompanying the massive OB stars in each region. For example, In the poorly- studied NGC 6357 region, our study increased the number of known members from optical study by a factor of ~40. As a result, normal initial mass functions (IMFs) for NGC 6357 and NGC 2244 were found, inconsistent with the top-heavy IMFs suspected in previous optical studies. The observed X-ray luminosity functions (XLFs) in NGC 6357 and NGC 2244 are compared to the Orion Nebula Cluster XLF, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. For NGC 2244, a total population of ~2000 X-ray-emitting stars is derived, consistent with previous estimate from IR studies. The morphologies and spatial structures of the clusters are investigated with absorption-stratified stellar surface density maps. Small-scale substructures superposed on the spherical clusters are found in NGC 6357 and NGC 2244. Both of their radial stellar density profiles show a power-law cusp around the density peak surrounded by an isothermal sphere. In NGC 2244, the spatial distribution of X-ray stars is strongly concentrated around the central O5 star, HD 46150. The other O4 star HD 46223 has few companions. The X-ray sources in the RMC show three distinctive structures and substructures within them, which include previously known embedded IR clusters and a new unobscured cluster (RMC A). We do not find clear evidence of sequentially triggered formation. The concentration of X-ray identified young stars implies that [Special characters omitted.] 35% of stars could be in a distributed population throughout the RMC region and clustered star formation is the dominant mode in this cloud. The NGC 2237 cluster, similar to RMC A, may have formed from collapse of pre-existing massive molecular clumps accompanying the formation of the NGC 2244 cluster. The spatial distribution of the NIR counterparts to X-ray stars in the optical dark region northwest of NGC 2237 show little evidence of triggered star formation in the pillar objects. The observed inner disk fraction in the MSFRs as indicated by K-band excess appears lower than the IR-excess disk fractions found in the nearby low-mass star formation regions of similar age. An overall K -excess disk frequency of ~6% for X-ray selected stars in the intermediate- to high-mass range in the NGC 6357 region (Chapter 3), and ~10% for stars with mass M [Special characters omitted.] in NGC 2244 (Chapter 4) are derived, which indicates that the inner disks around higher-mass stars evolve more rapidly. The X-ray stars in these regions provide an important new sample for studies of intermediate-mass PMS stars that are not accreting, in addition to the accreting HAeBe stars. The low K -excess disk frequency for X-ray selected stars in the solar mass range in NGC 2244 is intriguing, which may be attributed to different sensitivities to disk materials, selection effects between X-ray samples and IR samples and/or faster disk dissipation due to photoevaporation in the MSFRs. X-ray properties of stars across the mass spectrum are presented. Diversities in the X-ray spectra of O stars are seen, both soft X-ray emission consistent with the microshocks in stellar winds and hard X-ray components signifying magnetically confined winds or close binarity. X-ray luminosities for a sample of stars earlier than B4 in NGC 6357, NGC 2244, and M 17 confirm the long- standing log( L x /L bol ) ~ -7 relation, although larger scatter is seen among the L x /L bol ratios of B-type stars. Low-mass PMS stars frequently show X-ray flaring, including intense flares with luminosities above L x >= 10 32 ergs s - 1 . Diffuse X-ray emission is present in the NGC 6357 region and in the NGC 2244 cluster. The derived luminosity of diffuse emission in NGC 6357 is consistent with the integrated emission from the unresolved PMS stars. The NGC 2244 diffuse emission is likely originated from the wind termination shocks, and hence is truly diffuse in nature. In summary, Chandra X-ray observations offer multifaceted approaches to study the young stellar clusters in MSFRs in depth. Future perspectives with the Spitzer Space Telescope mid-IR observations for a systematic measurement of disk frequencies in X-ray sampled massive clusters and X-ray observations of the earliest phases of massive star formation are discussed.

  3. Differential susceptibility of white matter tracts to inflammatory mediators in schizophrenia: an integrated DTI study.

    PubMed

    Prasad, Konasale M; Upton, Catherine H; Nimgaonkar, Vishwajit L; Keshavan, Matcheri S

    2015-01-01

    The pathophysiological underpinnings of impaired anatomical and functional connectivity are not precisely known. Emerging data suggest that immune mediators may underlie such dysconnectivity. We examined anatomical brain connections using diffusion tensor imaging (DTI) data in relation to interleukin-6 (IL-6) and C-reactive protein (CRP) levels among early-course clinically stable schizophrenia subjects compared to healthy controls (HC). DTI data were acquired in 30 directions with 2 averages. Fractional anisotropy (FA) and radial diffusivity (RD) maps were separately processed using FSL4.1.9 and Tract-Based Spatial Statistics (TBSS). Threshold free cluster enhancements (TFCE) were examined employing familywise error (FWE) corrections for multiple testing within linear regression models including age, sex and socioeconomic status as covariates. IL-6 and CRP were assayed using highly sensitive and specific sandwich immunosorbent assays. The groups did not differ in age and sex as well as in the IL-6 and CRP levels. IL-6 levels were negatively correlated with the FA and positively correlated with RD among schizophrenia subjects but not HC. The voxel clusters that showed significant correlations were localized to the forceps major, the inferior longitudinal fasciculus and the inferior fronto-occipital fasciculus. CRP levels showed similar pattern except for lack of correlation with RD on any cluster that corresponded to the forceps major. Our results suggest that the IL-6 and CRP contribute to impaired anisotropy of water diffusion in selected pathways that have been previously associated with schizophrenia suggesting differential susceptibility of selected neural pathways to immune mediators. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cluster growth mechanisms in Lennard-Jones fluids: A comparison between molecular dynamics and Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jiyun; Lee, Jumin; Kim, Jun Soo

    2015-03-01

    We present a simulation study on the mechanisms of a phase separation in dilute fluids of Lennard-Jones (LJ) particles as a model of self-interacting molecules. Molecular dynamics (MD) and Brownian dynamics (BD) simulations of the LJ fluids are employed to model the condensation of a liquid droplet in the vapor phase and the mesoscopic aggregation in the solution phase, respectively. With emphasis on the cluster growth at late times well beyond the nucleation stage, we find that the growth mechanisms can be qualitatively different: cluster diffusion and coalescence in the MD simulations and Ostwald ripening in the BD simulations. We also show that the rates of the cluster growth have distinct scaling behaviors during cluster growth. This work suggests that in the solution phase the random Brownian nature of the solute dynamics may lead to the Ostwald ripening that is qualitatively different from the cluster coalescence in the vapor phase.

  5. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE PAGES

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu; ...

    2017-07-14

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  6. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  7. High β effects on cosmic ray streaming in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng

    2018-01-01

    Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.

  8. The case for electron re-acceleration at galaxy cluster shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  9. The case for electron re-acceleration at galaxy cluster shocks

    DOE PAGES

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...

    2017-01-04

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  10. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

    PubMed Central

    Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Safdari, Hadiseh; Sokolov, Igor M.; Metzler, Ralf

    2016-01-01

    It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. PMID:27462008

  11. Subhalo Tracing in Simulations and Subhalo Observation in Gamma-rays

    NASA Astrophysics Data System (ADS)

    Han, J. X.

    2014-05-01

    Current major observations of the Universe favor the concordant ΛCDM cosmology, in which the matter content is dominated by cold dark matter (CDM). In this CDM universe, small perturbations from the initial condition grow into clumps of virilized structure called dark matter haloes. Small haloes form early and later merge to form bigger haloes. As a result, dark matter haloes host plenty of substructures called subhaloes which are the self-bound remnants of their progenitor haloes. These subhaloes could be studied in detail with the help of numerical simulations, which then could provide input into theories of galaxy formation, and also influence the way dark matter could be detected. To find and trace dark matter subhaloes in simulations, we develop a new code, the Hierarchical Bound-Tracing (HBT for short) code, based on the merger hierarchy of dark matter haloes. Application of this code to a recent benchmark test of finding subhaloes demonstrates that HBT stands as one of the best codes to trace the evolutionary history of subhaloes. The success of this code lies in its careful treatment of the complex physical processes associated with the evolution of subhaloes, and in its robust unbinding algorithm with an adaptive source subhalo management. We keep a full record of the merger hierarchy of haloes and subhaloes, and allow growth of satellite subhaloes through accretion from its ``satellite-of-satellites'', hence allowing mergers among satellites. Local accretion of background mass is omitted, while rebinding of stripped mass is allowed. The justification of these treatments is provided by case studies of the lives of individual subhaloes, and by the success in finding the complete subhalo catalogue. We compare our result to other popular subhalo finders. It is shown that HBT is able to well resolve subhaloes in high density environment, and keep strict physical track of subhaloes' merger history. This code is fully parallelized, and freely available upon request to the authors. If the cold dark matter consists of weakly interacting massive particles, their annihilation within subhaloes could lead to diffuse GeV emission that would dominate over the annihilation signal of the host halo. We have carried out a search for this kind of GeV emission from three nearby galaxy clusters: Coma, Virgo, and Fornax. We first remove known extragalactic and galactic diffuse gamma-ray backgrounds and point sources from the Fermi 2-year catalogue, and find a significant residual diffuse emission in all three clusters. We then investigate whether this emission is due to (i) unresolved point sources; (ii) dark matter annihilation; or (iii) cosmic rays (CRs). Using 45 months of Fermi-LAT data, we detect several new point sources (not present in the Fermi 2-year point source catalogue) which contaminate the signal previously analyzed by Han et al. Including these and accounting for the effects of undetected point sources, we find no significant detection of extended emission from the three clusters studied. Instead, we determine upper limits on emission due to dark matter annihilation and cosmic rays. For Fornax and Virgo the limits on CR emission are consistent with theoretical models, but for Coma the upper limit is a factor of 2 below the theoretical expectation. Allowing for systematic uncertainties associated with the treatment of CR, the upper limits on the cross section for dark matter annihilation from our clusters are more stringent than those from the analyses of dwarf galaxies in the Milky Way. Adopting a boost factor of ˜10^3 from subhalos on cluster luminosity as suggested by recent theoretical models, we rule out the thermal cross section for supersymmetric dark matter particles for masses as large as 100 GeV (depending on the annihilation channel). There are recent claims of the detection of a 130 GeV line signal from regions around the galactic center, which can be explained as annihilation of dark matter into monotonic photon pairs. However, in the subhalo-dominated halo annihilation profile, significant contributions should come from the outer regions of the galactic halo. We scan the 4-year public Fermi data at high galactic latitudes (|b|>30°) for a line signal by using the 100-200 GeV events. No evidence for a line signal has been identified within the energy range from 109 to 149 GeV. We adopt the standard P7V6 energy dispersion function, and take into account the inclination, conversion type, as well as the energy dependence of the dispersion. We also try an alternative dispersion function used by Ackermann et al. (2012), and find little difference in the results. Without considering boosts from subhaloes, our cross-section upper-limits are slightly higher than those from Ackermann et al. (2012) and Huang et al. (2012) who used a larger dataset (with |b|>10° data-cut), and permit a line signal as found in Weniger (2012). However, when annihilation signals from subhalos are also modelled, the 130 GeV signal can be ruled out at >95% confidence.

  12. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  13. A new class of accelerated kinetic Monte Carlo algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulatov, V V; Oppelstrup, T; Athenes, M

    2011-11-30

    Kinetic (aka dynamic) Monte Carlo (KMC) is a powerful method for numerical simulations of time dependent evolution applied in a wide range of contexts including biology, chemistry, physics, nuclear sciences, financial engineering, etc. Generally, in a KMC the time evolution takes place one event at a time, where the sequence of events and the time intervals between them are selected (or sampled) using random numbers. While details of the method implementation vary depending on the model and context, there exist certain common issues that limit KMC applicability in almost all applications. Among such is the notorious 'flicker problem' where themore » same states of the systems are repeatedly visited but otherwise no essential evolution is observed. In its simplest form the flicker problem arises when two states are connected to each other by transitions whose rates far exceed the rates of all other transitions out of the same two states. In such cases, the model will endlessly hop between the two states otherwise producing no meaningful evolution. In most situation of practical interest, the trapping cluster includes more than two states making the flicker somewhat more difficult to detect and to deal with. Several methods have been proposed to overcome or mitigate the flicker problem, exactly [1-3] or approximately [4,5]. Of the exact methods, the one proposed by Novotny [1] is perhaps most relevant to our research. Novotny formulates the problem of escaping from a trapping cluster as a Markov system with absorbing states. Given an initial state inside the cluster, it is in principle possible to solve the Master Equation for the time dependent probabilities to find the walker in a given state (transient or absorbing) of the cluster at any time in the future. Novotny then proceeds to demonstrate implementation of his general method to trapping clusters containing the initial state plus one or two transient states and all of their absorbing states. Similar methods have been subsequently proposed in [refs] but applied in a different context. The most serious deficiency of the earlier methods is that size of the trapping cluster size is fixed and often too small to bring substantial simulation speedup. Furthermore, the overhead associated with solving for the probability distribution on the trapping cluster sometimes makes such simulations less efficient than the standard KMC. Here we report on a general and exact accelerated kinetic Monte Carlo algorithm generally applicable to arbitrary Markov models1. Two different implementations are attempted both based on incremental expansion of trapping sub-set of Markov states: (1) numerical solution of the Master Equation with absorbing states and (2) incremental graph reduction followed by randomization. Of the two implementations, the 2nd one performs better allowing, for the first time, to overcome trapping basins spanning several million Markov states. The new method is used for simulations of anomalous diffusion on a 2D substrate and of the kinetics of diffusive 1st order phase transformations in binary alloys. Depending on temperature and (alloy) super-saturation conditions, speedups of 3 to 7 orders of magnitude are demonstrated, with no compromise of simulation accuracy.« less

  14. Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth1[W][OA

    PubMed Central

    Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.

    2011-01-01

    Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618

  15. Enrichment and heating of the intracluster medium by ejection from galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Chris; Evrard, August

    1993-01-01

    Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.

  16. Template growth of Au, Ni and Ni–Au nanoclusters on hexagonal boron nitride/Rh(111): a combined STM, TPD and AES study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fanglue; Huang, Dali; Yue, Yuan

    In this study, the template growth of Au, Ni, and Ni–Au bimetallic nanoclusters on hexagonal boron nitride/Rh(111), i.e. h-BN/Rh(111), was investigated via scanning tunneling microscopy (STM), temperature programmed-desorption (TPD), and Auger electron spectroscopy (AES). STM study shows that template growth of Au clusters on h-BN/Rh(111) forms mainly well-dispersed monolayer clusters. In contrast, Ni forms large multilayer clusters showing a relatively high diffusivity on h-BN/Rh(111) substrate. Ni–Au bimetallic clusters are effectively formed first by Au deposition followed by Ni deposition, with the Au clusters functioning as nucleation sites for the subsequently deposited Ni. Further structural analysis was carried out via TPDmore » and AES. The resulting TPD and AES data show the surface composition and charge transfer between Au and Ni of the bimetallic clusters. These results suggest that the h-BN/Rh(111) substrate represents a unique candidate for supporting Ni–Au bimetallic clusters in further catalytic reactions.« less

  17. Template growth of Au, Ni and Ni–Au nanoclusters on hexagonal boron nitride/Rh(111): a combined STM, TPD and AES study

    DOE PAGES

    Wu, Fanglue; Huang, Dali; Yue, Yuan; ...

    2017-09-12

    In this study, the template growth of Au, Ni, and Ni–Au bimetallic nanoclusters on hexagonal boron nitride/Rh(111), i.e. h-BN/Rh(111), was investigated via scanning tunneling microscopy (STM), temperature programmed-desorption (TPD), and Auger electron spectroscopy (AES). STM study shows that template growth of Au clusters on h-BN/Rh(111) forms mainly well-dispersed monolayer clusters. In contrast, Ni forms large multilayer clusters showing a relatively high diffusivity on h-BN/Rh(111) substrate. Ni–Au bimetallic clusters are effectively formed first by Au deposition followed by Ni deposition, with the Au clusters functioning as nucleation sites for the subsequently deposited Ni. Further structural analysis was carried out via TPDmore » and AES. The resulting TPD and AES data show the surface composition and charge transfer between Au and Ni of the bimetallic clusters. These results suggest that the h-BN/Rh(111) substrate represents a unique candidate for supporting Ni–Au bimetallic clusters in further catalytic reactions.« less

  18. Modeling the migration of platinum nanoparticles on surfaces using a kinetic Monte Carlo approach

    DOE PAGES

    Li, Lin; Plessow, Philipp N.; Rieger, Michael; ...

    2017-02-15

    We propose a kinetic Monte Carlo (kMC) model for simulating the movement of platinum particles on supports, based on atom-by-atom diffusion on the surface of the particle. The proposed model was able to reproduce equilibrium cluster shapes predicted using Wulff-construction. The diffusivity of platinum particles was simulated both purely based on random motion and assisted using an external field that causes a drift velocity. The overall particle diffusivity increases with temperature; however, the extracted activation barrier appears to be temperature independent. Additionally, this barrier was found to increase with particle size, as well as, with the adhesion between the particlemore » and the support.« less

  19. cluML: A markup language for clustering and cluster validity assessment of microarray data.

    PubMed

    Bolshakova, Nadia; Cunningham, Pádraig

    2005-01-01

    cluML is a new markup language for microarray data clustering and cluster validity assessment. The XML-based format has been designed to address some of the limitations observed in traditional formats, such as inability to store multiple clustering (including biclustering) and validation results within a dataset. cluML is an effective tool to support biomedical knowledge representation in gene expression data analysis. Although cluML was developed for DNA microarray analysis applications, it can be effectively used for the representation of clustering and for the validation of other biomedical and physical data that has no limitations.

  20. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.

    PubMed

    Starr, Francis W; Douglas, Jack F; Sastry, Srikanth

    2013-03-28

    We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times for the high- and low-mobility particles naturally explains the well-known decoupling of diffusion and structural relaxation time scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we find a high degree of similarity in the geometrical structure of these particle clusters. In particular, we show that the fractal dimensions of these clusters are consistent with those of swollen branched polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses over from that of self-avoiding walks for small strings, to simple random walks for longer, more strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume interactions. We examine the appropriateness of identifying the size scales of either mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the "mosaic" length of the RFOT model relaxes the conventional assumption that the "entropic droplets" are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.

Top