Sample records for diffusion nuclear magnetic

  1. Application of pulsed-gradient Fourier transform nuclear magnetic resonance to the study of self-diffusion of phospholipid vesicles.

    PubMed

    McDonald, G G; Vanderkooi, J M

    1975-05-20

    A pulsed-gradient Fourier transform nuclear magnetic resonance (NMR) technique was appplied to the study of diffusion of phospholipid vesicles. The diffusion coefficient of dimyristoyllecithin vesicles (DML) in a D2O-phospahte buffer at 37 degrees is D = 1.9 TIMES 10(-6) cm2/sec. In a solution made viscous by DNA addition, the diffusion coefficient of DML vesicles was 3.5 times 10(-7) cm2/sec. These values compare favorably with the diffusion rate for liposomes as determined by ultracentrifugation and by Stokes law calculation. The data suggest that DML diffusion is controlled primarily by whole liposome migration as opposed to movement of individual molecules within the liposome, liposome rotation, or fast exchange between lecithin molecules in solution and in vesicles.

  2. Surface diffusion of CO on silica-supported Ru particles: 13C nuclear magnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Thayer, A. M.; Root, T. W.

    1990-02-01

    Portions of CO adsorbed on Ru particles, selected by the orientation of the C-O bond relative to an external magnetic field, are labeled by inversion of the 13C nuclear magnetic dipole. Changes in the orientation of the CO bond of these labeled molecules are then observed with 13C NMR spectroscopy. The temperature dependence and rate of reorientation are consistent with surface diffusion on Ru particles with small numbers of flat faces. The insensitivity to CO pressure in the range 0.5-100 Torr discounts stimulated desorption by gas-phase CO.

  3. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm

    2017-02-01

    Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.

  4. Neuroperformance Imaging

    DTIC Science & Technology

    2012-10-01

    EMBC10.1722. 10. Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsed- field - gradient diffusion measurements . Journal of Magnetic ...December 2011 ABSTRACT: The addition of a pair of magnetic field gradient pulses had initially enabled the measurement of spin motion to nuclear mag- netic...introduced a pair of (homogenous) magnetic field gradients into the spin echo experi- ment with the purpose of accurately measuring the scalar diffusion

  5. Self-diffusion of electrolyte species in model battery electrodes using Magic Angle Spinning and Pulsed Field Gradient Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard

    2017-09-01

    Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.

  6. Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2011-12-01

    We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.

  7. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less

  8. Study of Magnetic Reconnection

    DTIC Science & Technology

    1988-11-01

    and disruptions in the Tosca tokamak, Nuclear Fusion 19, 115-119, 1979. 9. Stenzel, R. L., W. Gekelman and N. Wild, Magnetic field line reconnection...Acknowledgments. The authors gratefully acknowledge the techni- plasma diffusion due to polycliromatic fluctuations, Nucl. Fussion , cal support and...sans collisions, in: Proceedings of the Conference on Plasma Physics and Controlled Nuclear Fusion, International Atomic Energy Agency, Vienna

  9. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  10. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    USDA-ARS?s Scientific Manuscript database

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  11. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance.

    PubMed

    Callaghan, P T; Jolley, K W; Lelievre, J

    1979-10-01

    Pulsed field gradient nuclear magnetic resonance has been used to measure water self-diffusion coefficients in the endosperm tissue of wheat grains as a function of the tissue water content. A model that confines the water molecules to a randomly oriented array of capillaries with both transverse dimension less than 100 nm has been used to fit the data and give a unique diffusion coefficient at each water content. The diffusion rates vary from 1.8 x 10(-10) m2s-1 at the lowest to 1.2 x 10(-9) m2s-1 at the highest moisture content. This variation can be explained in terms of an increase in water film thickness from approximately 0.5 to approximately 2.5 nm over the moisture range investigated (200-360 mg g-1).

  12. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion.

    PubMed

    Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E

    2017-09-13

    Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.

  13. Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.

    PubMed

    Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A

    2006-07-01

    Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.

  14. Molecular dynamic heterogeneity of confined lipid films by 1H magnetization-exchange nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.

    2005-01-01

    The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.

  15. Structure-specific magnetic field inhomogeneities and its effect on the correlation time.

    PubMed

    Ziener, Christian H; Bauer, Wolfgang R; Melkus, Gerd; Weber, Thomas; Herold, Volker; Jakob, Peter M

    2006-12-01

    We describe the relationship between the correlation time and microscopic spatial inhomogeneities in the static magnetic field. The theory takes into account diffusion of nuclear spins in the inhomogeneous field created by magnetized objects. A simple general expression for the correlation time is obtained. It is shown that the correlation time is dependent on a characteristic length, the diffusion coefficient of surrounding medium, the permeability of the surface and the volume fraction of the magnetized objects. For specific geometries (spheres and cylinders), exact analytical expressions for the correlation time are given. The theory can be applied to contrast agents (magnetically labeled cells), capillary network, BOLD effect and so forth.

  16. INTRAMOLECULAR MOTION AND REORIENTATIONAL BARRIERS IN 9-FLUORENONE, 4-METHYL-9-FLUORENONE AND 4,5-DIMETHYL-9-FLUORENONE

    EPA Science Inventory

    Carbon-13 nuclear magnetic resonance spin-lattice relaxation times and nuclear Overhauser enhancements were measured as functions of temperature for the hydrogen-bearing carbons in 9-fluorenone, 4-methyl-9-fluorenone, and 4,5-dimethyl-9-fluorenone. Reorientational diffusion const...

  17. NMR (Nuclear Magnetic Resonance) and macromolecular migration in a melt or in concentrated solutions

    NASA Technical Reports Server (NTRS)

    Addad, J. P. C.

    1983-01-01

    The purpose of this paper is to analyze the migration process of long polymer molecules in a melt or in concentrated solutions as it may be observed from the dynamics of the transverse magnetization of nuclear spins linked to these chains. The low frequency viscoelastic relaxation of polymer systems is known to be mainly controlled by the mechanism of dissociation of topological constraints excited on chains and which are called entanglements. This mechanism exhibits a strong dependence upon the chain molecular weight. These topological constraints also govern the diffusion process of polymer chains. So, the accurate description of the diffusion motion of a chain may be a convenient way to characterize disentanglement processes necessarily involved in any model proposed to explain viscoelastic effects.

  18. Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio

    2013-02-01

    We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.

  19. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    PubMed

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  1. In Situ Effective Diffusion Coefficient Profiles in Live Biofilms Using Pulsed-Field Gradient Nuclear Magnetic Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.

    2010-08-15

    Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less

  2. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, J., E-mail: JMitchell16@slb.com; Chandrasekera, T. C.

    2014-12-14

    The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{supmore » k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.« less

  3. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  4. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  5. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance.

    PubMed

    Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L

    2014-09-01

    Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  6. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We correlated the results with various soil properties like texture, water retention parameters, and hydraulic conductivity. This way we show that we can predict soil properties by NMR measurements and that we are able use results of NMR measurements as a proxy without the need of direct measurements. [1] Song, Y.-Q., Vadose Zone Journal, 9 (2010) [2] Stingaciu, L. R., et al., Water Resources Research, 46 (2010) [3] Vogt, C., et al., Journal of Applied Geophysics, 50 (2002) [4] Barrie, P. J., Annual Reports on NMR Spectroscopy, 41 (2000) [5] Stallmach, F., Galvosas, P., Annual Reports on NMR Spectroscopy, 61 (2007)

  7. In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, R. S.; Marshall, M. J.; Tucker, A. E.

    Nuclear magnetic resonance (NMR) microimaging and spectroscopy was used to interrogate fluids of biological importance (e.g., water, buffer, medium solution) and live biofilms in a microchannel compatible for analyses at ambient pressure and under vacuum. Studies using buffer, growth medium, and actively growing Shewanella oneidensis biofilms were used to demonstrate in situ NMR microimaging measurement capabilities including velocity mapping, diffusion coefficient mapping, relaxometry, localized spectroscopy, and 2D and 3D imaging within a microchannel suitable for different analytical platforms. This technique is promising for diverse applications of correlative imaging using a portable microfluidic platform.

  8. Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  9. Definition and quantification of acute inflammatory white matter injury in the immature brain by MRI/MRS at high magnetic field.

    PubMed

    Lodygensky, Gregory A; Kunz, Nicolas; Perroud, Elodie; Somm, Emmanuel; Mlynarik, Vladimir; Hüppi, Petra S; Gruetter, Rolf; Sizonenko, Stéphane V

    2014-03-01

    Lipopolysaccharide (LPS) injection in the corpus callosum (CC) of rat pups results in diffuse white matter injury similar to the main neuropathology of preterm infants. The aim of this study was to characterize the structural and metabolic markers of acute inflammatory injury by high-field magnetic resonance imaging (MRI) magnetic resonance spectroscopy (MRS) in vivo. Twenty-four hours after a 1-mg/kg injection of LPS in postnatal day 3 rat pups, diffusion tensor imaging and proton nuclear magnetic spectroscopy ((1)H NMR) were analyzed in conjunction to determine markers of cell death and inflammation using immunohistochemistry and gene expression. MRI and MRS in the CC revealed an increase in lactate and free lipids and a decrease of the apparent diffusion coefficient. Detailed evaluation of the CC showed a marked apoptotic response assessed by fractin expression. Interestingly, the degree of reduction in the apparent diffusion coefficient correlated strongly with the natural logarithm of fractin expression, in the same region of interest. LPS injection further resulted in increased activated microglia clustered in the cingulum, widespread astrogliosis, and increased expression of genes for interleukin (IL)-1, IL-6, and tumor necrosis factor. This model was able to reproduce the typical MRI hallmarks of acute diffuse white matter injury seen in preterm infants and allowed the evaluation of in vivo biomarkers of acute neuropathology after inflammatory challenge.

  10. A magnetic gradient induced force in NMR restricted diffusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magneticmore » properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.« less

  11. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    NASA Technical Reports Server (NTRS)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  12. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

  13. On the vanishing of the t-term in the short-time expansion of the diffusion coefficient for oscillating gradients in diffusion NMR

    NASA Astrophysics Data System (ADS)

    Laun, Frederik B.; Demberg, Kerstin; Nagel, Armin M.; Uder, Micheal; Kuder, Tristan A.

    2017-11-01

    Nuclear magnetic resonance (NMR) diffusion measurements can be used to probe porous structures or biological tissues by means of the random motion of water molecules. The short-time expansion of the diffusion coefficient in powers of sqrt(t), where t is the diffusion time related to the duration of the diffusion-weighting magnetic field gradient profile, is universally connected to structural parameters of the boundaries restricting the diffusive motion. The sqrt(t)-term is proportional to the surface to volume ratio. The t-term is related to permeability and curvature. The short time expansion can be measured with two approaches in NMR-based diffusion experiments: First, by the use of diffusion encodings of short total duration and, second, by application of oscillating gradients of long total duration. For oscillating gradients, the inverse of the oscillation frequency becomes the relevant time scale. The purpose of this manuscript is to show that the oscillating gradient approach is blind to the t-term. On the one hand, this prevents fitting of permeability and curvature measures from this term. On the other hand, the t-term does not bias the determination of the sqrt(t)-term in experiments.

  14. Imaging of high-amylose starch tablets. 3. Initial diffusion and temperature effects.

    PubMed

    Thérien-Aubin, Héloïse; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H

    2005-01-01

    The penetration of water into cross-linked high amylose starch tablets was studied at different temperatures by nuclear magnetic resonance (NMR) imaging, which follows the changes occurring at the surface and inside the starch tablets during swelling. It was found that the swelling was anisotropic, whereas water diffusion was almost isotropic. The water proton image profiles at the initial stage of water penetration were used to calculate the initial diffusion coefficient. The swelling and water concentration gradients in this controlled release system show significant temperature dependence. Diffusion behavior changed from Fickian to Case II diffusion with increasing temperature. The observed phenomena are attributed to the gelatinization of starch and the pseudo-cross-linking effect of double helix formation.

  15. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.

  16. Dynamical onset of superconductivity and retention of magnetic fields in cooling neutron stars

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.; Andersson, Nils; Graber, Vanessa

    2017-12-01

    A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106-107yr . We estimate the size of flux free regions at 107yr to be ≲100 m for a magnetic field of 1011G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 105yr . This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.

  17. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    NASA Astrophysics Data System (ADS)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  18. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  19. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  20. Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells.

    PubMed Central

    Regan, David G; Kuchel, Philip W

    2002-01-01

    The pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiment, conducted on a suspension of red blood cells (RBC) in a strong magnetic field yields a q-space plot consisting of a series of maxima and minima. This is mathematically analogous to a classical optical diffraction pattern. The method provides a noninvasive and novel means of characterizing cell suspensions that is sensitive to changes in cell shape and packing density. The positions of the features in a q-space plot characterize the rate of exchange across the membrane, cell dimensions, and packing density. A diffusion tensor, containing information regarding the diffusion anisotropy of the system, can also be derived from the PGSE NMR data. In this study, we carried out Monte Carlo simulations of diffusion in suspensions of "virtual" cells that had either biconcave disc (as in RBC) or oblate spheroid geometry. The simulations were performed in a PGSE NMR context thus enabling predictions of q-space and diffusion tensor data. The simulated data were compared with those from real PGSE NMR diffusion experiments on RBC suspensions that had a range of hematocrit values. Methods that facilitate the processing of q-space data were also developed. PMID:12080109

  1. Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells.

    PubMed

    Regan, David G; Kuchel, Philip W

    2002-07-01

    The pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiment, conducted on a suspension of red blood cells (RBC) in a strong magnetic field yields a q-space plot consisting of a series of maxima and minima. This is mathematically analogous to a classical optical diffraction pattern. The method provides a noninvasive and novel means of characterizing cell suspensions that is sensitive to changes in cell shape and packing density. The positions of the features in a q-space plot characterize the rate of exchange across the membrane, cell dimensions, and packing density. A diffusion tensor, containing information regarding the diffusion anisotropy of the system, can also be derived from the PGSE NMR data. In this study, we carried out Monte Carlo simulations of diffusion in suspensions of "virtual" cells that had either biconcave disc (as in RBC) or oblate spheroid geometry. The simulations were performed in a PGSE NMR context thus enabling predictions of q-space and diffusion tensor data. The simulated data were compared with those from real PGSE NMR diffusion experiments on RBC suspensions that had a range of hematocrit values. Methods that facilitate the processing of q-space data were also developed.

  2. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology.

    PubMed

    Lin, Yu-Chun; Lin, Gigin; Hong, Ji-Hong; Lin, Yi-Ping; Chen, Fang-Hsin; Ng, Shu-Hang; Wang, Chun-Chieh

    2017-08-01

    To investigate the biological meaning of apparent diffusion coefficient (ADC) values in tumors following radiotherapy. Five mice bearing TRAMP-C1 tumor were half-irradiated with a dose of 15 Gy. Diffusion-weighted images, using multiple b-values from 0 to 3000 s/mm 2 , were acquired at 7T on day 6. ADC values calculated by a two-point estimate and monoexponential fitting of signal decay were compared between the irradiated and nonirradiated regions of the tumor. Pixelwise ADC maps were correlated with histological metrics including nuclear counts, nuclear sizes, nuclear spaces, cytoplasmic spaces, and extracellular spaces. As compared with the nonirradiated region, the irradiated region exhibited significant increases in ADC, extracellular space, and nuclear size, and a significant decrease in nuclear counts (P < 0.001 for all). Optimal ADC to differentiate the irradiated from nonirradiated regions was achieved at a b-value of 800 s/mm 2 by the two-point method and monoexponential curve fitting. ADC positively correlated with extracellular spaces (r = 0.74) and nuclear sizes (r = 0.72), and negatively correlated with nuclear counts (r = -0.82, P < 0.001 for all). As a radiomic biomarker, ADC maps correlating with histological metrics pixelwise could be a means of evaluating tumor heterogeneity and responses to radiotherapy. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:483-489. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Diffusion in biofilms respiring on electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensionalmore » De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.« less

  4. Atypical β-Catenin Activated Child Hepatocellular Tumor

    PubMed Central

    Unlu, Havva Akmaz; Karakus, Esra; Yazal Erdem, Arzu; Yakut, Zeynep Ilerisoy

    2015-01-01

    Hepatocellular adenomas are a benign, focal, hepatic neoplasm that have been divided into four subtypes according to the genetic and pathological features. The β-catenin activated subtype accounts for 10-15% of all hepatocellular adenomas and specific magnetic resonance imaging features have been defined for different hepatocellular adenomas subtypes. The current study aimed to report the magnetic resonance imaging features of a well differentiated hepatocellular carcinoma that developed on the basis of β-catenin activated hepatocellular adenomas in a child. In this case, atypical diffuse steatosis was determined in the lesion. In the literature, diffuse steatosis, which is defined as a feature of the hepatocyte nuclear factor-1α-inactivated hepatocellular adenomas subtype, has not been previously reported in any β-catenin activated hepatocellular adenomas case. Interlacing magnetic resonance imaging findings between subtypes show that there are still many mysteries about this topic and larger studies are warranted. PMID:26157702

  5. NMR-based diffusion pore imaging by double wave vector measurements.

    PubMed

    Kuder, Tristan Anselm; Laun, Frederik Bernd

    2013-09-01

    One main interest of nuclear magnetic resonance (NMR) diffusion experiments is the investigation of boundaries such as cell membranes hindering the diffusion process. NMR diffusion measurements allow collecting the signal from the whole sample. This mainly eliminates the problem of vanishing signal at increasing resolution. It has been a longstanding question if, in principle, the exact shape of closed pores can be determined by NMR diffusion measurements. In this work, we present a method using short diffusion gradient pulses only, which is able to reveal the shape of arbitrary closed pores without relying on a priori knowledge. In comparison to former approaches, the method has reduced demands on relaxation times due to faster convergence to the diffusion long-time limit and allows for a more flexible NMR sequence design, because, e.g., stimulated echoes can be used. Copyright © 2012 Wiley Periodicals, Inc.

  6. Theoretical and Experimental Investigation of the Translational Diffusion of Proteins in the Vicinity of Temperature-Induced Unfolding Transition.

    PubMed

    Molchanov, Stanislav; Faizullin, Dzhigangir A; Nesmelova, Irina V

    2016-10-06

    Translational diffusion is the most fundamental form of transport in chemical and biological systems. The diffusion coefficient is highly sensitive to changes in the size of the diffusing species; hence, it provides important information on the variety of macromolecular processes, such as self-assembly or folding-unfolding. Here, we investigate the behavior of the diffusion coefficient of a macromolecule in the vicinity of heat-induced transition from folded to unfolded state. We derive the equation that describes the diffusion coefficient of the macromolecule in the vicinity of the transition and use it to fit the experimental data from pulsed-field-gradient nuclear magnetic resonance (PFG NMR) experiments acquired for two globular proteins, lysozyme and RNase A, undergoing temperature-induced unfolding. A very good qualitative agreement between the theoretically derived diffusion coefficient and experimental data is observed.

  7. Solute-solvent contact by intermolecular cross relaxation. I. The nature of the water-hydrophobic interface.

    PubMed

    Nordstierna, Lars; Yushmanov, Pavel V; Furó, István

    2006-08-21

    Intermolecular cross-relaxation rates between solute and solvent were measured by {1H} 19F nuclear magnetic resonance experiments in aqueous molecular solutions of ammonium perfluoro-octanoate and sodium trifluoroacetate. The experiments performed at three different magnetic fields provide frequency-dependent cross-relaxation rates which demonstrate clearly the lack of extreme narrowing for nuclear spin relaxation by diffusionally modulated intermolecular interactions. Supplemented by suitable intramolecular cross-relaxation, longitudinal relaxation, and self-diffusion data, the obtained cross-relaxation rates are evaluated within the framework of recent relaxation models and provide information about the hydrophobic hydration. In particular, water dynamics around the trifluoromethyl group in ammonium perfluoro-octanoate are more retarded than that in the smaller trifluoroacetate.

  8. Quantum memory enhanced nuclear magnetic resonance of nanometer-scale samples with a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Zaiser, Sebastian; Favaro de Oliveira, Felipe; Momenzadeh, S. Ali; Denisenko, Andrej; Isoya, Junichi; Neumann, Philipp; Wrachtrup, Joerg

    Recently nuclear magnetic resonance (NMR) of nanoscale samples at ambient conditions has been achieved with nitrogen-vacancy (NV) centers in diamond. So far the spectral resolution in the NV NMR experiments was limited by the sensor's coherence time, which in turn prohibited revealing the chemical composition and dynamics of the system under investigation. By entangling the NV electron spin sensor with a long-lived memory spin qubit we increase the spectral resolution of NMR measurement sequences for the detection of external nuclear spins. Applying the latter sensor-memory-couple it is particularly easy to track diffusion processes, to identify the molecules under study and to deduce the actual NV center depth inside the diamond. We performed nanoscale NMR on several liquid and solid samples exhibiting unique NMR response. Our method paves the way for nanoscale identification of molecule and protein structures and dynamics of conformational changes.

  9. Magnetic Flux Compression Reactor Concepts for Spacecraft Propulsion and Power (MSFC Center Director's Discretionary Fund; Project No. 99-24). Part 1

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)

    2001-01-01

    This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.

  10. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  11. Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products

    NASA Astrophysics Data System (ADS)

    Brown, Jennifer R.; Brox, Timothy I.; Vogt, Sarah J.; Seymour, Joseph D.; Skidmore, Mark L.; Codd, Sarah L.

    2012-12-01

    Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and molecular diffusion, useful for probing pore structure and transport dynamics in porous systems, were used to physically characterize the unfrozen vein network structure in ice and its response to the presence of metabolic products produced by V3519-10, a cold tolerant microorganism isolated from the Vostok ice core. Recent research has found microorganisms that can remain viable and even metabolically active within icy environments at sub-zero temperatures. One potential mechanism of survival for V3519-10 is secretion of an extracellular ice binding protein that binds to the prism face of ice crystals and inhibits ice recrystallization, a coarsening process resulting in crystal growth with ice aging. Understanding the impact of ice binding activity on the bulk vein network structure in ice is important to modeling of frozen geophysical systems and in development of ice interacting proteins for biotechnology applications, such as cryopreservation of cell lines, and manufacturing processes in food sciences. Here, we present the first observations of recrystallization inhibition in low porosity ice containing V3519-10 extracellular protein extract as measured with Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

  12. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. Aftermore » a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.« less

  13. Anisotropic Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  14. Anisotropic rotational diffusion studied by passage saturation transfer electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce H.; Dalton, Larry R.

    1980-01-01

    The stochastic Liouville equation for the spin density matrix is modified to consider the effects of Brownian anisotropic rotational diffusion upon electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spectra. Spectral shapes and the ST-EPR parameters L″/L, C'/C, and H″/H defined by Thomas, Dalton, and Hyde at X-band microwave frequencies [J. Chem. Phys. 65, 3006 (1976)] are examined and discussed in terms of the rotational times τ∥ and τ⊥ and in terms of other defined correlation times for systems characterized by magnetic tensors of axial symmetry and for systems characterized by nonaxially symmetric magnetic tensors. For nearly axially symmetric magnetic tensors, such as nitroxide spin labels studied employing 1-3 GHz microwaves, ST-EPR spectra for systems undergoing anisotropic rotational diffusion are virtually indistinguishable from spectra for systems characterized by isotropic diffusion. For nonaxially symmetric magnetic tensors, such as nitroxide spin labels studied employing 8-35 GHz microwaves, the high field region of the ST-EPR spectra, and hence the H″/H parameter, will be virtually indistinguishable from spectra, and parameter values, obtained for isotropic diffusion. On the other hand, the central spectral region at x-band microwave frequencies, and hence the C'/C parameter, is sensitive to the anisotropic diffusion model provided that a unique and static relationship exists between the magnetic and diffusion tensors. Random labeling or motion of the spin label relative to the biomolecule whose hydrodynamic properties are to be investigated will destroy spectral sensitivity to anisotropic motion. The sensitivity to anisotropic motion is enhanced in proceeding to 35 GHz with the increased sensitivity evident in the low field half of the EPR and ST-EPR spectra. The L″/L parameter is thus a meaningful indicator of anisotropic motion when compared with H″/H parameter analysis. However, consideration of spectral shapes suggests that the C'/C parameter definition is not meaningfully extended from 9.5 to 35 GHz. Alternative definitions of the L″/L and C'/C parameters are proposed for those microwave frequencies for which the electron Zeeman anisotropy is comparable to or greater than the electron-nitrogen nuclear hyperfine anisotropy.

  15. Measurement of diffusion in fluid systems: Applications to the supercritical fluid region

    NASA Astrophysics Data System (ADS)

    Bruno, Thomas J.

    1994-04-01

    The experimental procedures that are applicable to the measurement of diffusion in supercritical fluid solutions are reviewed. This topic is of great importance to the proper design of advanced aircraft and turbine fuels, since the fuels on these aircraft may sometimes operate under supercritical fluid conditions. More specifically, we will consider measurements of the binary interaction diffusion coefficient D exp 12 of a solute (species 1) and the solvent (species 2). In this discussion, the supercritical fluid is species 2, and the solute, species 1, will be at a relatively low concentration, sometimes approaching infinite dilution. After a brief introduction to the concept of diffusion, we will discuss in detail the use of chromatographic methods, and then briefly treat light scattering, nuclear magnetic resonance spectra, and physical methods.

  16. Centerband-only-detection-of-exchange (31)P nuclear magnetic resonance and phospholipid lateral diffusion: theory, simulation and experiment.

    PubMed

    Lai, Angel; Saleem, Qasim; Macdonald, Peter M

    2015-10-14

    Centerband-only-detection-of-exchange (CODEX) (31)P NMR lateral diffusion measurements were performed on dimyristoylphosphatidylcholine (DMPC) assembled into large unilamellar spherical vesicles. Optimization of sample and NMR acquisition conditions provided significant sensitivity enhancements relative to an earlier first report (Q. Saleem, A. Lai, H. Morales, and P. M. Macdonald, Chem. Phys. Lipids, 2012, 165, 721). An analytical description was developed that permitted the extraction of lateral diffusion coefficients from CODEX data, based on a Gaussian-diffusion-on-a-sphere model (A. Ghosh, J. Samuel, and S. Sinha, Europhys. Lett., 2012, 98, 30003-p1) as relevant to CODEX (31)P NMR measurements on a population of spherical unilamellar phospholipid bilayer vesicles displaying a distribution of vesicle radii.

  17. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  18. Determination of mean droplet sizes of water-in-oil emulsions using an Earth's field NMR instrument.

    PubMed

    Fridjonsson, Einar O; Flux, Louise S; Johns, Michael L

    2012-08-01

    The use of the Earth's magnetic field (EF) to conduct nuclear magnetic resonance (NMR) experiments has a long history with a growing list of applications (e.g. ground water detection, diffusion measurements of Antarctic sea ice). In this paper we explore whether EFNMR can be used to accurately and practically measure the mean droplet size () of water-in-oil emulsions (paraffin and crude oil). We use both pulsed field gradient (PFG) measurements of restricted self-diffusion and T₂ relaxometry, as appropriate. T₂ relaxometry allows the extension of droplet sizing ability below the limits set by the available magnetic field gradient strength of the EFNMR apparatus. A commercially available bench-top NMR spectrometer is used to verify the results obtained using the EFNMR instrument, with good agreement within experimental error, seen between the two instruments. These results open the potential for further investigation of the application of EFNMR for emulsion droplet sizing. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure fusion micro-bursts with reasonable levels of input energy is an equally challenging scientific problem. It remains to be seen, however, whether an effective ignition driver can be developed which meets the requirements for practical spaceflight application (namely high power density, compactness, low weight, and low cost). In this paper, system level performance and design issues are examined including generator performance, magnetic flux compression processes, magnetic diffusion processes, high temperature superconductor (HTSC) material properties, plasmadynamic processes, detonation plasma expansion processes, magnetohydrodynamic instabilities, magnetic nozzle performance, and thrust production performance. Representative generator performance calculations based on a simplified skin layer formulation are presented as well as the results of exploratory small-scale laboratory experiments on magnetic flux diffusion in HTSC materials. In addition, planned follow-on scientific feasibility experiments are described which utilize high explosive detonations and high energy gas discharges to simulate the plasma conditions associated with thermonuclear micro-detonations.

  20. NMR-based diffusion pore imaging.

    PubMed

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Wetscherek, Andreas; Stieltjes, Bram; Semmler, Wolfhard

    2012-08-01

    Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.

  1. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  2. Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy

    PubMed Central

    Xu, Junzhong; Does, Mark D.; Gore, John C.

    2009-01-01

    The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979

  3. Precise measurement of the self-diffusion coefficient for poly(ethylene glycol) in aqueous solution using uniform oligomers

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi

    2005-06-01

    Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.

  4. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: Direct link between conductivity and diffusivity

    DOE PAGES

    Gainaru, Catalin P.; Technische Univ. Dortmund, Dortmund; Stacy, Eric W.; ...

    2016-09-28

    Combining broadband impedance spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance we analyzed charge and mass transport in two polymerized ionic liquids and one of their monomeric precursors. In order to establish a general procedure for extracting single-particle diffusivity from their conductivity spectra, we critically assessed several approaches previously employed to describe the onset of diffusive charge dynamics and of the electrode polarization in ion conducting materials. Based on the analysis of the permittivity spectra, we demonstrate that the conductivity relaxation process provides information on ion diffusion and the magnitude of cross-correlation effects between ionic motions. A new approach ismore » introduced which is able to estimate ionic diffusivities from the characteristic times of conductivity relaxation and ion concentration without any adjustable parameters. Furthermore, this opens the venue for a deeper understanding of charge transport in concentrated and diluted electrolyte solutions.« less

  5. Analyzing signal attenuation in PFG anomalous diffusion via a non-Gaussian phase distribution approximation approach by fractional derivatives.

    PubMed

    Lin, Guoxing

    2016-11-21

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression E α (-D f b α,β * ) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an n β dependence upon the order of coherence which is different from the familiar n 2 dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.

  6. NMR investigation of water diffusion in different biofilm structures.

    PubMed

    Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald

    2017-12-01

    Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.

  7. Nuclear magnetic resonance signal dynamics of liquids in the presence of distant dipolar fields, revisited

    PubMed Central

    Barros, Wilson; Gochberg, Daniel F.; Gore, John C.

    2009-01-01

    The description of the nuclear magnetic resonance magnetization dynamics in the presence of long-range dipolar interactions, which is based upon approximate solutions of Bloch–Torrey equations including the effect of a distant dipolar field, has been revisited. New experiments show that approximate analytic solutions have a broader regime of validity as well as dependencies on pulse-sequence parameters that seem to have been overlooked. In order to explain these experimental results, we developed a new method consisting of calculating the magnetization via an iterative formalism where both diffusion and distant dipolar field contributions are treated as integral operators incorporated into the Bloch–Torrey equations. The solution can be organized as a perturbative series, whereby access to higher order terms allows one to set better boundaries on validity regimes for analytic first-order approximations. Finally, the method legitimizes the use of simple analytic first-order approximations under less demanding experimental conditions, it predicts new pulse-sequence parameter dependencies for the range of validity, and clarifies weak points in previous calculations. PMID:19425789

  8. Combining Two-Dimensional Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy, Imaging Desorption Electrospray Ionization Mass Spectrometry, and Direct Analysis in Real-Time Mass Spectrometry for the Integral Investigation of Counterfeit Pharmaceuticals

    PubMed Central

    Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique

    2016-01-01

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162

  9. Combining two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real-time mass spectrometry for the integral investigation of counterfeit pharmaceuticals.

    PubMed

    Nyadong, Leonard; Harris, Glenn A; Balayssac, Stéphane; Galhena, Asiri S; Malet-Martino, Myriam; Martino, Robert; Parry, R Mitchell; Wang, May Dongmei; Fernández, Facundo M; Gilard, Véronique

    2009-06-15

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered (1)H nuclear magnetic resonance spectroscopy (2D DOSY (1)H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY (1)H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug "chemotyping". In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY (1)H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials.

  10. A 1H NMR method for the analysis of antigen-antibody interactions: binding of a peptide fragment of lysozyme to anti-lysozyme monoclonal antibody.

    PubMed

    Ito, W; Nishimura, M; Sakato, N; Fujio, H; Arata, Y

    1987-09-01

    A proton nuclear magnetic resonance (NMR) study is reported of the molecular structural basis of antigen-antibody interactions. An immunologically reactive proteolytic fragment corresponding to one of the antigenic regions on hen egg-white lysozyme (HEL) was used in combination with a monoclonal antibody that recognizes this site. Using spin diffusion, we prepared an antibody in which the magnetization of the antigen binding site was saturated by non-specific nuclear Overhauser effect. Under these conditions the effect of the saturation of the antibody was observed to spread over the peptide fragment through the antigen binding site. On the basis of the results obtained for the intermolecular nuclear Overhauser effect, we discuss how the peptide fragment interacts with the antibody. The side chains of aromatic residues, Trp, Tyr, and His, and of ionic residues, especially Arg, Lys, and Glu, are suggested to be important in the antigen-antibody interaction.

  11. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  12. NMR-based diffusion lattice imaging

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.

  13. General pulsed-field gradient signal attenuation expression based on a fractional integral modified-Bloch equation

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-10-01

    Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).

  14. Development and application of an exchange model for anisotropic water diffusion in the microporous MOF aluminum fumarate

    NASA Astrophysics Data System (ADS)

    Splith, Tobias; Fröhlich, Dominik; Henninger, Stefan K.; Stallmach, Frank

    2018-06-01

    Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.

  15. CONTROLLED NUCLEAR FUSION REACTOR

    DOEpatents

    Tuck, J.L.; Kruskal, M.; Colgate, S.A.; Rosenbluth, M.N.

    1962-01-01

    A plasma generating and heating device is described which comprises a ceramic torus with exterior layers of a thick metal membrane and a metallic coil. In operation, the coil generates a B/sub z/ field prior to the formation of an enclosing plasma sheath. Diffusion of the trapped magnetic field outward through the plasma sheath causes enhanced heating, particularly after the sheath has been pinched. (D.L.C.)

  16. Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.

    PubMed

    Budhiraja, Vikas; Hellums, J David; Post, Jan F M

    2002-11-01

    Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.

  17. Nuclear spin warm up in bulk n -GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  18. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    PubMed

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effects of pressure on the magnetic properties of FeO: A diffusion Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Townsend, Joshua; Shulenburger, Luke; Mattsson, Thomas; Esler, Ken; Cohen, Ronald

    While simple in terms of structure and composition, both experimental and computational investigations have demonstrated that FeO has a rich phase diagram of structural phase transformations, electronic spin transitions, insulator-metal transitions, and magnetic ordering transitions, due to the open-shell occupation of the Fe 3d electrons. We investigated the magnetic and electronic structures of FeO under ambient and high pressure conditions using diffusion Quantum Monte Carlo (QMC) within the fixed-node approximation. QMC techniques are especially well suited to the study of strongly correlated systems because they explicitly include correlation into the ground-state wave function. Here we report on the effects of the choice of trial wave function on the ambient pressure lattice distortion due to AFM ordering, as well as the equation of state, spin collapse, and metal-insulator transitions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE.

  20. Water diffusion to assess meat microstructure.

    PubMed

    Laghi, Luca; Venturi, Luca; Dellarosa, Nicolò; Petracci, Massimiliano

    2017-12-01

    In the quest for setting up rapid methods to evaluate water retention ability of meat microstructures, time domain nuclear magnetic resonance (TD-NMR) has gained a prominent role, due to the possibility to observe water located outside the myofibrils, easily lost upon storage or cooking. Diffusion weighted signals could be used to monitor the shape and dimension of the pores in which water is confined, thus boosting the information offered by TD-NMR. The work outlines a parsimonious model to describe relative abundance and diffusion coefficient of intra and extra myofibrillar water populations, exchange rate between them, diameter of the myofibrillar cells. To test our model, we registered diffusion and T 2 weighted NMR signals at 20MHz on fresh meat from pectoralis major muscle of 100days old female turkey. We then purposely altered water distribution and myofibrils shape by means of freezing. The model predicted nicely the consequences of the imposed modifications. Copyright © 2016. Published by Elsevier Ltd.

  1. Mapping the parameter space of a T2-dependent model of water diffusion MR in brain tissue.

    PubMed

    Hansen, Brian; Vestergaard-Poulsen, Peter

    2006-10-01

    We present a new model for describing the diffusion-weighted (DW) proton nuclear magnetic resonance signal obtained from normal grey matter. Our model is analytical and, in some respects, is an extension of earlier model schemes. We model tissue as composed of three separate compartments with individual properties of diffusion and transverse relaxation. Our study assumes slow exchange between compartments. We attempt to take cell morphology into account, along with its effect on water diffusion in tissues. Using this model, we simulate diffusion-sensitive MR signals and compare model output to experimental data from human grey matter. In doing this comparison, we perform a global search for good fits in the parameter space of the model. The characteristic nonmonoexponential behavior of the signal as a function of experimental b value is reproduced quite well, along with established values for tissue-specific parameters such as volume fraction, tortuosity and apparent diffusion coefficient. We believe that the presented approach to modeling diffusion in grey matter adds new aspects to the treatment of a longstanding problem.

  2. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  3. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  4. Apparatus and method for polarizing polarizable nuclear species

    DOEpatents

    Hersman, F. William; Leuschner, Mark; Carberry, Jeannette

    2005-09-27

    The present invention is a polarizing process involving a number of steps. The first step requires moving a flowing mixture of gas, the gas at least containing a polarizable nuclear species and vapor of at least one alkali metal, with a transport velocity that is not negligible when compared with the natural velocity of diffusive transport. The second step is propagating laser light in a direction, preferably at least partially through a polarizing cell. The next step is directing the flowing gas along a direction generally opposite to the direction of laser light propagating. The next step is containing the flowing gas mixture in the polarizing cell. The final step is immersing the polarizing cell in a magnetic field. These steps can be initiated in any order, although the flowing gas, the propagating laser and the magnetic field immersion must be concurrently active for polarization to occur.

  5. Simulation of concomitant magnetic fields on fast switched gradient coils used in advanced application of MRI

    NASA Astrophysics Data System (ADS)

    Salinas-Muciño, G.; Torres-García, E.; Hidalgo-Tobon, S.

    2012-10-01

    The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved using gradient coils. MRI requires the use of gradient coils that generate magnetic fields, which vary linearly with position over the imaging volume. Safety issues have been a motivation to study deeply the relation between the interaction of gradient magnetic field and the peripheral nerve stimulation. In this work is presented a numerical modeling between the concomitant magnetic fields produced by the gradient coils and the electric field induced in a cube with σ conductivity by the gradient field switching in pulse sequences as Eco planar Imaging (EPI), due to this kind of sequence is the most used in advance applications of magnetic resonance imaging as functional MRI, cardiac imaging or diffusion.

  6. Computational approach to integrate 3D X-ray microtomography and NMR data

    NASA Astrophysics Data System (ADS)

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.

    2018-07-01

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.

  7. On turbulent diffusion of magnetic fields and the loss of magnetic flux from stars

    NASA Technical Reports Server (NTRS)

    Vainshtein, Samuel I.; Rosner, Robert

    1991-01-01

    The turbulent diffusion of magnetic fields in astrophysical objects, and the processes leading to magnetic field flux loss from such objects are discussed with attention to the suppression of turbulent diffusion by back-reaction of magnetic fields on small spatial scales, and on the constraint imposed on magnetic flux loss by flux-freezing within stars. Turbulent magnetic diffusion can be suppressed even for very weak large-scale magnetic fields, so that 'standard' turbulent diffusion is incapable of significant magnetic flux destruction within a star. Finally, magnetic flux loss via winds is shown to be generally ineffective, no matter what the value of the effective magnetic Reynolds number is.

  8. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    NASA Astrophysics Data System (ADS)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  9. Functional renal imaging: new trends in radiology and nuclear medicine.

    PubMed

    Durand, Emmanuel; Chaumet-Riffaud, Philippe; Grenier, Nicolas

    2011-01-01

    The objective of this work is to compare the characteristics of various techniques for functional renal imaging, with a focus on nuclear medicine and magnetic resonance imaging. Even with low spatial resolution and rather poor signal-to-noise ratio, classical nuclear medicine has the advantage of linearity and good sensitivity. It remains the gold standard technique for renal relative functional assessment. Technetium-99m ((99m)Tc)-labeled diethylenetriamine penta-acetate remains the reference glomerular tracer. Tubular tracers have been improved: (123)I- or (131)I-hippuran, (99m)Tc-MAG3 and, recently, (99m)Tc-nitrilotriacetic acid. However, advancement in molecular imaging has not produced a groundbreaking tracer. Renal magnetic resonance imaging with classical gadolinated tracers probably has potential in this domain but has a lack of linearity and, therefore, its value still needs evaluation. Moreover, the advent of nephrogenic systemic fibrosis has delayed its expansion. Other developments, such as diffusion or blood oxygen level-dependent imaging, may have a role in the future. The other modalities have a limited role in clinical practice for functional renal imaging. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Christensen, Ulrich R.

    2008-12-01

    We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.

  11. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.

    2015-08-01

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.

  12. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Lukzen, Nikita N.; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090

    2015-08-28

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression formore » the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.« less

  13. Interdiffusion in a ? superlattice: an exploratory nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ross, J. W.; McCausland, M. A. H.; Bunbury, D. St. P.; Ward, R. C. C.; Wells, M. R.

    1997-07-01

    We have carried out an exploratory NMR study of interdiffusion at interfaces between epitaxially grown laminae of rare-earth metals. The system investigated was a terbium - yttrium superlattice grown by molecular-beam epitaxy at 0953-8984/9/29/015/img10. The NMR spectrum of 0953-8984/9/29/015/img11 shows satellites associated with Tb ions with different numbers of Y neighbours and therefore provides information about the yttrium concentration profile resulting from interdiffusion. Our data are interpreted in terms of a model based on thermally activated diffusion and which allows for the progressive decrease in 0953-8984/9/29/015/img12, the RMS diffusion length, from the lowest to the highest interface. The diffusion coefficient, provisionally assumed to be independent of composition, is found to be 0953-8984/9/29/015/img13 at the growth temperature.

  14. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  15. Molecular diffusion in disordered interfacial media as probed by pulsed field gradients and nuclear magnetic relaxation dispersion

    NASA Astrophysics Data System (ADS)

    Levitz, P.; Korb, J.-P.; Bryant, R. G.

    1999-10-01

    We address the question of probing the fluid dynamics in disordered interfacial media by Pulsed field gradient (PFG) and Magnetic relaxation dispersion (MRD) techniques. We show that the PFG method is useful to separate the effects of morphology from the connectivity in disordered macroporous media. We propose simulations of molecular dynamics and spectral density functions, J(ω), in a reconstructed mesoporous medium for different limiting conditions at the pore surface. An algebraic form is found for J(ω) in presence of a surface diffusion and a local exploration of the pore network. A logarithmic form of J(ω) is found in presence of a pure surface diffusion. We present magnetic relaxation dispersion experiments (MRD) for water and acetone in calibrated mesoporous media to support the main results of our simulations and theories. Nous présentons les avantages respectifs des méthodes de gradients de champs pulsés (PFG) et de relaxation magnétique nucléaire en champs cyclés (MRD) pour sonder la dynamique moléculaire dans les milieux interfaciaux désordonnés. La méthode PFG est utile pour séparer la morphologie et la connectivité dans des milieux macroporeux. Des simulations de diffusion moléculaire et de densité spectrale J(ω) en milieux mésoporeux sont présentées dans différentes conditions limites aux interfaces des pores. Nous trouvons une forme de dispersion algébrique de J(ω) pour une diffusion de surface assistée d'une exploration locale du réseau de pores et une forme logarithmique dans le cas d'une simple diffusion de surface. Les résultats expérimentaux de la méthode MRD pour de l'eau et de l'acétone dans des milieux mésoporeux calibrés supportent les résultats principaux de nos simulations et théories.

  16. Reconnection Diffusion in Turbulent Fluids and Its Implications for Star Formation

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    2014-05-01

    Astrophysical fluids are turbulent a fact which changes the dynamics of many key processes, including magnetic reconnection. Fast reconnection of magnetic field in turbulent fluids allows the field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. Plasma associated with a given magnetic field line at one instant is distributed along a different set of magnetic field lines at the next instant. This diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed "reconnection diffusion". The astrophysical implications of this concept include heat transfer in plasmas, advection of heavy elements in interstellar medium, magnetic field generation etc. However, the most dramatic implications of the concept are related to the star formation process. The reason is that magnetic fields are dynamically important for most of the stages of star formation. The existing theory of star formation has been developed ignoring the possibility of reconnection diffusion. Instead, it appeals to the decoupling of mass and magnetic field arising from neutrals drifting in respect to ions entrained on magnetic field lines, i.e. through the process that is termed "ambipolar diffusion". The predictions of ambipolar diffusion and reconnection diffusion are very different. For instance, if the ionization of media is high, ambipolar diffusion predicts that the coupling of mass and magnetic field is nearly perfect. At the same time, reconnection diffusion is independent of the ionization but depends on the scale of the turbulent eddies and on the turbulent velocities. In the paper we explain the physics of reconnection diffusion both from macroscopic and microscopic points of view, i.e. appealing to the reconnection of flux tubes and to the diffusion of magnetic field lines. We make use of the Lazarian and Vishniac (Astrophys. J. 517:700, 1999) theory of magnetic reconnection and show that this theory is applicable to the partially ionized gas. We quantify the reconnection diffusion rate both for weak and strong MHD turbulence and address the problem of reconnection diffusion acting together with ambipolar diffusion. In addition, we provide a criterion for correctly representing the magnetic diffusivity in simulations of star formation. We discuss the intimate relation between the processes of reconnection diffusion, field wandering and turbulent mixing of a magnetized media and show that the role of the plasma effects is limited to "breaking up lines" on small scales and does not affect the rate of reconnection diffusion. We address the existing observational results and demonstrate how reconnection diffusion can explain the puzzles presented by observations, in particular, the observed higher magnetization of cloud cores in comparison with the magnetization of envelopes. We also outline a possible set of observational tests of the reconnection diffusion concept and discuss how the application of the new concept changes our understanding of star formation and its numerical modeling. Finally, we outline the differences of the process of reconnection diffusion and the process of accumulation of matter along magnetic field lines that is frequently invoked to explain the results of numerical simulations.

  17. Spectrum of the Nuclear Environment for GaAs Spin Qubits.

    PubMed

    Malinowski, Filip K; Martins, Frederico; Cywiński, Łukasz; Rudner, Mark S; Nissen, Peter D; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2017-04-28

    Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over 6 orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f^{2} for frequency f≳1  Hz. Increasing the applied magnetic field from 0.1 to 0.75 T suppresses electron-mediated spin diffusion, which decreases the spectral content in the 1/f^{2} region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime (≲16π pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime (≳32 π pulses), where longitudinal Overhauser fluctuations with a 1/f spectrum dominate.

  18. Conceptual design of a Bitter-magnet toroidal-field system for the ZEPHYR Ignition Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.E.C.; Becker, H.D.; Bobrov, E.S.

    1981-05-01

    The following problems are described and discussed: (1) parametric studies - these studies examine among other things the interdependence of throat stresses, plasma parameters (margins of ignition) and stored energy. The latter is a measure of cost and is minimized in the present design; (2) magnet configuration - the shape of the plates are considered in detail including standard turns, turns located at beam ports, diagnostic and closure flanges; (3) ripple computation - this section describes the codes by which ripple is computed; (4) field diffusion and nuclear heating - the effect of magnetic field diffusion on heating is consideredmore » along with neutron heating. Current, field and temperature profiles are computed; (5) finite element analysis - the two and three dimensional finite element codes are described and the results discussed in detail; (6) structures engineering - this considers the calculation of critical stresses due to toroidal and overturning forces and discusses the method of constraint of these forces. The Materials Testing Program is also discussed; (7) fabrication - the methods available for the manufacture of the constituent parts of the Bitter plates, the method of assembly and remote maintenance are summarized.« less

  19. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells

    NASA Astrophysics Data System (ADS)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael

    2018-04-01

    In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered and decreases with increasing L-shell. In this work we construct a numerical model for this coupled (radial and pitch angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.

  20. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials

    NASA Astrophysics Data System (ADS)

    Faux, D. A.; Cachia, S.-H. P.; McDonald, P. J.; Bhatt, J. S.; Howlett, N. C.; Churakov, S. V.

    2015-03-01

    Nuclear magnetic resonance (NMR) relaxation experimentation is an effective technique for probing the dynamics of proton spins in porous media, but interpretation requires the application of appropriate spin-diffusion models. Molecular dynamics (MD) simulations of porous silicate-based systems containing a quasi-two-dimensional water-filled pore are presented. The MD simulations suggest that the residency time of the water on the pore surface is in the range 0.03-12 ns, typically 2-5 orders of magnitude less than values determined from fits to experimental NMR measurements using the established surface-layer (SL) diffusion models of Korb and co-workers [Phys. Rev. E 56, 1934 (1997), 10.1103/PhysRevE.56.1934]. Instead, MD identifies four distinct water layers in a tobermorite-based pore containing surface Ca2 + ions. Three highly structured water layers exist within 1 nm of the surface and the central region of the pore contains a homogeneous region of bulklike water. These regions are referred to as layer 1 and 2 (L1, L2), transition layer (TL), and bulk (B), respectively. Guided by the MD simulations, a two-layer (2L) spin-diffusion NMR relaxation model is proposed comprising two two-dimensional layers of slow- and fast-moving water associated with L2 and layers TL+B, respectively. The 2L model provides an improved fit to NMR relaxation times obtained from cementitious material compared to the SL model, yields diffusion correlation times in the range 18-75 ns and 28-40 ps in good agreement with MD, and resolves the surface residency time discrepancy. The 2L model, coupled with NMR relaxation experimentation, provides a simple yet powerful method of characterizing the dynamical properties of proton-bearing porous silicate-based systems such as porous glasses, cementitious materials, and oil-bearing rocks.

  1. Diffusion pore imaging with generalized temporal gradient profiles.

    PubMed

    Laun, Frederik B; Kuder, Tristan A

    2013-09-01

    In porous material research, one main interest of nuclear magnetic resonance diffusion (NMR) experiments is the determination of the shape of pores. While it has been a longstanding question if this is in principle achievable, it has been shown recently that it is indeed possible to perform NMR-based diffusion pore imaging. In this work we present a generalization of these previous results. We show that the specific temporal gradient profiles that were used so far are not unique as more general temporal diffusion gradient profiles may be used. These temporal gradient profiles may consist of any number of "short" gradient pulses, which fulfil the short-gradient approximation. Additionally, "long" gradient pulses of small amplitude may be present, which can be used to fulfil the rephasing condition for the complete profile. Some exceptions exist. For example, classical q-space gradients consisting of two short gradient pulses of opposite sign cannot be used as the phase information is lost due to the temporal antisymmetry of this profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Novel NMR tools to study structure and dynamics of biomembranes.

    PubMed

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  3. Magnetic Turbulence, Fast Magnetic Field line Diffusion and Small Magnetic Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Zimbardo, G.; Pommois, P.; Veltri, P.

    2003-09-01

    The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.

  4. Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins.

    PubMed

    Palmgren, Madelene; Hernebring, Malin; Eriksson, Stefanie; Elbing, Karin; Geijer, Cecilia; Lasič, Samo; Dahl, Peter; Hansen, Jesper S; Topgaard, Daniel; Lindkvist-Petersson, Karin

    2017-12-01

    Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.

  5. Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite

    DOE PAGES

    Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.; ...

    2018-05-05

    Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less

  6. Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.

    Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less

  7. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William

    2015-02-01

    Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  8. Sharp-front wave of strong magnetic field diffusion in solid metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian

    When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.

  9. NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake.

    PubMed

    Baille, Wilms E; Malveau, Cédric; Zhu, Xiao Xia; Marchessault, Robert H

    2002-01-01

    Pharmaceutical tablets made of modified high-amylose starch have a hydrophilic polymer matrix into which water can penetrate with time to form a hydrogel. Nuclear magnetic resonance imaging was used to study the water penetration and the swelling of the matrix of these tablets. The tablets immersed in water were imaged at different time intervals on a 300 MHz NMR spectrometer. Radial images show clearly the swelling of the tablets and the water concentration profile. The rate constants for water diffusion and the tablet swelling were extracted from the experimental data. The water diffusion process was found to follow case II kinetics at 25 degrees C. NMR imaging also provided spin density profiles of the water penetrating inside the tablets.

  10. NMR Observation of Mobile Protons in Proton-Implanted ZnO Nanorods

    PubMed Central

    Park, Jun Kue; Kwon, Hyeok-Jung; Lee, Cheol Eui

    2016-01-01

    The diffusion properties of H+ in ZnO nanorods are investigated before and after 20 MeV proton beam irradiation by using 1H nuclear magnetic resonance (NMR) spectroscopy. Herein, we unambiguously observe that the implanted protons occupy thermally unstable site of ZnO, giving rise to a narrow NMR line at 4.1 ppm. The activation barrier of the implanted protons was found to be 0.46 eV by means of the rotating-frame spin-lattice relaxation measurements, apparently being interstitial hydrogens. High-energy beam irradiation also leads to correlated jump diffusion of the surface hydroxyl group of multiple lines at ~1 ppm, implying the presence of structural disorder at the ZnO surface. PMID:26988733

  11. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    PubMed

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it possible to distinguish cancerous cells from normal cells. A typical example of liver distinguished from gray matter, white matter and kidney is demonstrated. Bessel functions and properties are specifically needed to show the direct effect of the instantaneous velocity on the NMR signal originating from normal and abnormal tissues.

  12. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide) based polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments. Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T g) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components and relative mobilities of the polymer backbone of a suite of. lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content. Each of the main backbone components (PEO spacer and isophthalate groups) exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content on PEO mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, determined from the rate of magnetization transfer from 1H to 13C nuclei, in all ionic samples becomes similar for T [special characters omitted] 1.1 Tg, indicating that the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results compliment previous findings and present an improved picture of the dependence of backbone dynamics on cation type and density in these amorphous PEO-based ionomer systems. 7Li PFG NMR experiments provided measurements of the self-diffusion coefficients for Li+ cations in the PEO600-y Li ionomer series over a range of temperatures. When the Tg values are taken into account, the self-diffusion coefficients of Li+ in each sample follow a similar trendline, indicating that lithium diffusion is independent of ion concentration at any given reduced inverse temperature, Tg/T. Ion aggregation increases Tg and slows both lithium cation diffusion and displacement, but there is no further slowing beyond the Tg effect in the PEO600-y Li ionomers samples. The differences in activation energies obtained from diffusion measurements and relaxation times suggest that at least one additional barrier must be overcome for cations emerge from local hopping motion to macroscopic cation transpfort. Using the Nernst- Einstein equation lithium diffusion coefficients were also calculated from conductivity measurements. The differences between the diffusion measured by the two separate techniques indicate the presence of ion pairs. The activation energy of lithium diffusion was found to be nearly identical between the PFG NMR and conductivity, suggesting that the conductivity and ionic diffusion are related to the same ionic dynamics. As the ion content within the PEO600-y Li samples increases the relative concentration of nonconducting ion pairs decrease. Also an increase in temperature causes a fraction of ion pairs to thermally dissociate into positive triple ions.

  13. Computational approach to integrate 3D X-ray microtomography and NMR data.

    PubMed

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G; Trevizan, Willian A; Fortulan, Carlos A; Bonagamba, Tito J

    2018-05-04

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T 1 and T 2 , respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Uptake of divalent ions (Mn+2 and Ca+2) by heat-set whey protein gels.

    PubMed

    Oztop, Mecit H; McCarthy, Kathryn L; McCarthy, Michael J; Rosenberg, Moshe

    2012-02-01

    Divalent salts are used commonly for gelation of polymer molecules. Calcium, Ca(+2), is one of the most common divalent ions that is used in whey protein gels. Manganese, Mn(+2), is also divalent, but paramagnetic, enhancing relaxation decay rates in magnetic resonance imaging (MRI) and can be used as a probe to understand the behavior of Ca(+2) in whey protein gels. The objective of this study was to investigate the diffusion of Ca(+2) and Mn(+2) ions in heat-set whey protein gels by using MRI and nuclear magnetic resonance (NMR) relaxometry. Whey protein gels were immersed in solutions containing MnCl(2) and CaCl(2) at neutral pH. Images obtained with gels immersed in MnCl(2) solution revealed a relaxation sink region in the gel's surface and the thickness of the region increased with time. These "no signal" regions in the MR images were attributed to uptake of Mn(+2) by the gel. Results obtained with CaCl(2) solution indicated that since Ca(+2) did not have the paramagnetic effect, the regions where Ca(+2) diffused into the gel exhibited a slight decrease in signal intensity. The relaxation spectrums exhibited 3 populations of protons, for gels immersed in MnCl(2) solution, and 2 populations for gels in CaCl(2) solution. No significant change in T(2) distributions was observed for the gels immersed in CaCl(2) solution. The results demonstrated that MRI and NMR relaxometry can be used to understand the diffusion of ions into the whey protein gel, which is useful for designing gels of different physical properties for controlled release applications. Design of food systems for delivery of bioactive compounds requires knowledge of diffusion rates and structure. Utilizing magnetic resonance imaging the diffusion rates of ions can be measured. Relaxation spectra could yield information concerning molecular interactions. © 2012 Institute of Food Technologists®

  15. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  17. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    PubMed

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  19. Grain boundary diffusion behaviors in hot-deformed Nd2Fe14B magnets by PrNd-Cu low eutectic alloys

    NASA Astrophysics Data System (ADS)

    Tang, Xu; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Yin, Wenzong; Lee, Don; Yan, Aru

    2018-01-01

    High coercivity of hot-deformed Nd2Fe14B magnets was obtained by grain boundary diffusion. Comparable squareness and similar magnetic properties for samples diffusing from side and pole surfaces show little discrepancies if quantities of the infiltrated PrNd-Cu low eutectic alloys is enough to obtain sufficient diffusion. However, the microstructures and higher characteristic peak ratios show preferable orientation of grains near surfaces of the sample diffused from side surfaces than that from pole surfaces. Amorphous Nd-rich phases and crystal Fe-rich phases were both observed in the diffused magnets. The enhancement of coercivity is considered to be resulted from grain boundary optimization and magnetic isolation which is caused by the thickened nonmagnetic intergranular phases.

  20. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    PubMed

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

    PubMed Central

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L.; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A.

    2015-01-01

    Summary The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. PMID:26456112

  2. Metabolic fingerprinting of fresh lymphoma samples used to discriminate between follicular and diffuse large B-cell lymphomas.

    PubMed

    Barba, Ignasi; Sanz, Carolina; Barbera, Angels; Tapia, Gustavo; Mate, José-Luis; Garcia-Dorado, David; Ribera, Josep-Maria; Oriol, Albert

    2009-11-01

    To investigate if proton nuclear magnetic resonance ((1)H NMR) spectroscopy-based metabolic profiling was able to differentiate follicular lymphoma (FL) from diffuse large B-cell lymphoma (DLBCL) and to study which metabolites were responsible for the differences. High-resolution (1)H NMR spectra was obtained from fresh samples of lymph node biopsies obtained consecutively at one center (14 FL and 17 DLBCL). Spectra were processed using pattern-recognition methods. Discriminant models were able to differentiate between the two tumor types with a 86% sensitivity and a 76% specificity; the metabolites that most contributed to the discrimination were a relative increase of alanine in the case of DLBCL and a relative increase of taurine in FL. Metabolic models had a significant but weak correlation with Ki67 expression (r(2)=0.42; p=0.002) We have proved that it is possible to differentiate between FL and DLBCL based on their NMR metabolic profiles. This approach may potentially be applicable as a noninvasive tool for diagnostic and treatment follow-up in the clinical setting using conventional magnetic resonance systems.

  3. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  4. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  5. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.

    PubMed

    Martin, Melanie

    2013-01-01

    This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  6. Diffusion weighted magnetic resonance imaging and its recent trend—a survey

    PubMed Central

    Chilla, Geetha Soujanya; Tan, Cher Heng

    2015-01-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements. PMID:26029644

  7. A diffusive atmospheric pressure glow discharge in a coaxial pin-to-ring gap with a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, YongSheng; Ding, WeiDong; Yan, JiaQi; Wang, YaNan

    2017-09-01

    Atmospheric pressure glow discharge (APGD) has been widely used in the industrial field. The industrial applications are based on achieving stable and diffusive APGD in a relatively large space. The existing sources only achieved stable and diffusive APGD between a short inter-electrode distance within 5 millimeters. In this paper, the effect of a transverse stationary magnetic field on the diffusion of filamentary APGD was studied in a pin-to-ring coaxial gap. The APGD was driven by a high-voltage resonant power supply, and the stationary magnetic field was supplied by a permanent magnet. The stable and diffusive APGD was achieved in the circular area, which diameter was 20 millimeters. The experimental results revealed that more collision ionization occurred and the plasma was distributed diffusively in the discharge gap by applying the external transverse magnetic field. Besides, it is likely to obtain more stable and diffusive APGD in the coaxial pin-to-ring discharge gap when adjusting the input voltage, transverse magnetic flux density and resonant frequency of the power supply.

  8. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    DOE PAGES

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando; ...

    2015-10-28

    Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less

  9. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando

    Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less

  10. Global diffusion of cosmic rays in random magnetic fields

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.

    2016-04-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.

  11. Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko

    2000-08-01

    The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.

  12. Synthesis and anti-microbial activity of hydroxylammonium ionic liquids.

    PubMed

    Ismail Hossain, M; El-Harbawi, Mohanad; Noaman, Yousr Abdulhadi; Bustam, Mohd Azmi B; Alitheen, Noorjahan Banu Mohamed; Affandi, Nor Azrin; Hefter, Glenn; Yin, Chun-Yang

    2011-06-01

    Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  14. A nuclear magnetic resonance study of the dynamics of organofluorine interactions with a dissolved humic acid.

    PubMed

    Longstaffe, James G; Courtier-Murias, Denis; Simpson, Andre J

    2016-02-01

    A quantitative understanding of the dynamics of the interactions between organofluorine compounds and humic acids will contribute to an improved understanding of the role that Natural Organic Matter plays as a mediator in the fate, transport and distribution of these contaminants in the environment. Here, Nuclear Magnetic Resonance (NMR) spectroscopy-based diffusion measurements are used to estimate the association dynamics between dissolved humic acid and selected organofluorine compounds: pentafluoroaniline, pentafluorophenol, potassium perfluorooctane sulfonate, and perfluorooctanoic acid. Under the conditions used here, the strength of the association with humic acid increases linearly as temperature decreases for all compounds except for perfluorooctanoic acid, which exhibits divergent behavior with a non-linear decrease in the extent of interaction as temperature decreases. A general interaction mechanism controlled largely by desolvation effects is suggested for all compounds examined here except for perfluorooctanoic acid, which exhibits a specific mode of interaction consistent with a proteinaceous binding site. Reverse Heteronuclear Saturation Transfer Difference NMR is used to confirm the identity and nature of the humic acid binding sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.

    2016-09-01

    Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.

  16. Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.

    2010-07-01

    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.

  17. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Hu, Sheng-qing; Peng, Kun; Chen, Hong

    2017-03-01

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10-8 cm2 s-1 and 2.4×10-7 cm2 s-1, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions.

  18. Theory of Neutron Chain Reactions: Extracts from Volume I, Diffusion and Slowing Down of Neutrons: Chapter I. Elementary Theory of Neutron Diffusion. Chapter II. Second Order Diffusion Theory. Chapter III. Slowing Down of Neutrons

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.; Noderer, L. C.

    1951-05-15

    The large scale release of nuclear energy in a uranium fission chain reaction involves two essentially distinct physical phenomena. On the one hand there are the individual nuclear processes such as fission, neutron capture, and neutron scattering. These are essentially quantum mechanical in character, and their theory is non-classical. On the other hand, there is the process of diffusion -- in particular, diffusion of neutrons, which is of fundamental importance in a nuclear chain reaction. This process is classical; insofar as the theory of the nuclear chain reaction depends on the theory of neutron diffusion, the mathematical study of chain reactions is an application of classical, not quantum mechanical, techniques.

  19. Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR

    NASA Astrophysics Data System (ADS)

    Majer, Günter; Southan, Alexander

    2017-06-01

    The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.

  20. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage.

    PubMed

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T(2) maps from the diffusion-weighted CPMG decays of apparent relaxation rates. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.

    PubMed

    Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo

    2013-12-05

    Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.

  2. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar.

  3. Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Li, W.; Zhou, Q.; Zhao, L. Z.; Wang, Q. X.; Zhong, X. C.; Liu, Z. W.

    2018-04-01

    A systematic investigation on the anisotropic grain boundary diffusion in sintered Nd-Fe-B magnets is carried out by micromagnetic simulation. The results indicate that the critical reason for the anisotropic diffusion effect is not the difference in the amount of Dy diffused along different directions but the macroscopic demagnetizing field. The diffusion parallel to the easy axis from both pole surfaces of the magnet can increase the nucleation fields in the two major regions with large macroscopic demagnetizing fields, where the reverse domains can nucleate easily. As a consequence, the grain boundary diffusion along the directions parallel to the easy axis from two pole surfaces is more effective to improve the coercivity of the magnets than that along other directions. It is also found that, to enhance the coercivity, only a limited diffusion depth is required. The present result is in good agreement with the recent experimental findings.

  4. Magnetization of Cloud Cores and Envelopes and Other Observational Consequences of Reconnection Diffusion

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Esquivel, A.; Crutcher, R.

    2012-10-01

    Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling Bvpropρ2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed "reconnection diffusion," we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field strength with density. In addition, we demonstrate that the reconnection diffusion process can account for the empirical Larson relations and list a few other implications of the reconnection diffusion concept. We argue that magnetic reconnection provides a solution to the magnetic flux problem of star formation that agrees better with observations than the long-standing ambipolar diffusion paradigm. Due to the illustrative nature of our simplified model we do not seek quantitative agreement, but discuss the complementary nature of our approach to the three-dimensional MHD numerical simulations.

  5. Propagation of Galactic cosmic rays: the influence of anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    AL-Zetoun, A.; Achterberg, A.

    2018-06-01

    We consider the anisotropic diffusion of cosmic rays in the large-scale Galactic magnetic field, where diffusion along the field and diffusion across the field proceeds at different rates. To calculate this diffusion, we use stochastic differential equations to describe the cosmic ray propagation, solving these numerically. The Galactic magnetic field is described using the Jansson-Farrar model for the Galactic magnetic field. In this paper, we study the influence of perpendicular diffusion on the residence time of cosmic rays in the Galaxy. This provides an estimate for the influence of anisotropic diffusion on the residence time and the amount of matter (grammage) that a typical cosmic ray traverses during its residence in the Galaxy.

  6. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes.

    PubMed

    Siminovitch, D J; Ruocco, M J; Olejniczak, E T; Das Gupta, S K; Griffin, R G

    1988-09-01

    The axially symmetric powder pattern 2H-nuclear magnetic resonance (NMR) lineshapes observed in the liquid crystalline phase of pure lipid or lipid/cholesterol bilayers are essentially invariant to temperature, or, equivalently, to variations in the correlation times characterizing C-2H bond reorientations. In either of these melted phases, where correlation times for C-2H bond motions are shorter than 10(-7) s, information on the molecular dynamics of the saturated hydrocarbon chain would be difficult to obtain using lineshape analyses alone, and one must resort to other methods, such as the measurement of 2H spin-lattice relaxation rates, in order to obtain dynamic information. In pure lipid bilayers, the full power of the spin-lattice relaxation technique has yet to be realized, since an important piece of information, namely the orientation dependence of the 2H spin-lattice relaxation rates is usually lost due to orientational averaging of T1 by rapid lateral diffusion. Under more favorable circumstances, such as those encountered in the lipid/cholesterol mixtures of this study, the effects of orientational averaging by lateral diffusion are nullified, due to either a marked reduction (by at least an order of magnitude) in the diffusion rate, or a marked increase in the radii of curvature of the liposomes. In either case, the angular dependence of 2H spin-lattice relaxation is accessible to experimental study, and can be used to test models of molecular dynamics in these systems. Simulations of the partially recovered lineshapes indicate that the observed T1 anisotropies are consistent with large amplitude molecular reorientation of the C-2H bond among a finite number of sites. Furthermore, from the observed orientation dependence of the 2H spin-lattice relaxation rates, we conclude that order director fluctuations cannot provide the dominant relaxation pathway for acyl chain deuterons.

  7. Dynamics of a magnetic active Brownian particle under a uniform magnetic field.

    PubMed

    Vidal-Urquiza, Glenn C; Córdova-Figueroa, Ubaldo M

    2017-11-01

    The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α. In this work, the time-dependent active diffusivity and the crossover time (τ^{cross})-from ballistic to diffusive regimes-are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α, the particle undergoes a directional (or ballistic) propulsive motion at very short times (t≪τ^{cross}). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t≫τ^{cross}), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α=0), the crossover time is equal to the characteristic time scale for rotational diffusion, τ_{rot}. In the presence of a magnetic field (α>0), the correlation function, the active diffusivity, and the crossover time decrease with increasing α. The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τ^{cross}≪τ_{rot}. In the limit of weak fields (α≪1), the crossover time decreases quadratically with α, while in the limit of strong fields (α≫1) it decays asymptotically as α^{-1}. The results are in excellent agreement with those obtained by Brownian dynamics simulations.

  8. Dynamics of a magnetic active Brownian particle under a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Vidal-Urquiza, Glenn C.; Córdova-Figueroa, Ubaldo M.

    2017-11-01

    The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α . In this work, the time-dependent active diffusivity and the crossover time (τcross)—from ballistic to diffusive regimes—are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α , the particle undergoes a directional (or ballistic) propulsive motion at very short times (t ≪τcross ). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t ≫τcross ), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α =0 ), the crossover time is equal to the characteristic time scale for rotational diffusion, τrot. In the presence of a magnetic field (α >0 ), the correlation function, the active diffusivity, and the crossover time decrease with increasing α . The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τcross≪τrot . In the limit of weak fields (α ≪1 ), the crossover time decreases quadratically with α , while in the limit of strong fields (α ≫1 ) it decays asymptotically as α-1. The results are in excellent agreement with those obtained by Brownian dynamics simulations.

  9. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  10. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  11. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichimura, Chiaki; Yokoyama, Takaaki

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentzmore » force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.« less

  12. Structure of thin diamond films: A 1H and 13C nuclear-magnetic-resonance study

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Lang, D. P.; Hwang, Son-Jong; Jia, H.; Shinar, J.

    1994-04-01

    The 1H and 13C nuclear magnetic resonance (NMR) of thin diamond films deposited from naturally abundant (1.1 at. %) as well as 50% and 100% 13enriched CH4 heavily diluted in H2 is described and discussed. Less than 0.6 at. % of hydrogen is found in the films which contain crystallites up to ~15 μm across. The 1H NMR consists of a broad 50-65-kHz-wide Gaussian line attributed to H atoms bonded to carbon and covering the crystallite surfaces. A narrow Lorentzian line was only occasionally observed and is found not to be intrinsic to the diamond structure. The 13C NMR demonstrates that >99.5% of the C atoms reside in a quaternary diamondlike configuration. 1-13C cross-polarization measurement indicates that, at the very least, the majority of 13C nuclei cross polarized by 1H, i.e., within three bond distances from a 1H at a crystallite surface, reside in sp3 diamondlike coordinated sites. The 13C relaxation rates of the films are four orders of magnitude faster than that of natural diamond and believed to be due to 13C spin diffusion to paramagnetic centers, presumably carbon dangling bonds. Analysis of the measured relaxation rates indicates that within the 13C spin-diffusion length of √DTc1 ~0.05 μm, these centers are uniformly distributed in the diamond crystallites. The possibility that the dangling bonds are located at internal nanovoid surfaces is discussed.

  13. Hydrate kinetics study in the presence of nonaqueous liquid by nuclear magnetic resonance spectroscopy and imaging.

    PubMed

    Susilo, Robin; Moudrakovski, Igor L; Ripmeester, John A; Englezos, Peter

    2006-12-28

    The dynamics of methane hydrate growth and decomposition were studied by nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). Three well-known large molecule guest substances (LMGS) were used as structure H hydrate formers: 2,2-dimethylbutane (NH), methylcyclohexane (MCH), tert-butyl methyl ether (TBME). In addition, the impact of a non-hydrate former (n-heptane/nC7) was studied. The methane diffusion and hydrate growth were monitored by recording the 2H NMR spectra at 253 K and approximately 4.5 MPa for 20 h. The results revealed that methane diffuses faster in TBME and NH, slower in nC7, and slowest in MCH. The TBME system gives the fastest hydrate formation kinetics followed by NH, MCH, and nC7. The conversion of water into hydrate was also observed. The imaging study showed that TBME has a strong affinity toward ice, which is not the case for the NH and MCH systems. The degree of ice packing was also found to affect the LMGS distribution between ice particles. Highly packed ice increases the mass transfer resistance and hence limits the contact between LMGS and ice. It was also found that "temperature ramping" above the ice point improves the conversion significantly. Finally, hydrates were found to dissociate quickly within the first hour at atmospheric pressure and subsequently at a much slower rate. Methane dissolved in LMGS was also seen. The residual methane in hydrate phase and dissolved in LMGS phase explain the faster kinetics during hydrate re-formation.

  14. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGES

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  15. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  16. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  17. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. Copyright © 2016, American Association for the Advancement of Science.

  18. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.

  19. Correction of spin diffusion during iterative automated NOE assignment

    NASA Astrophysics Data System (ADS)

    Linge, Jens P.; Habeck, Michael; Rieping, Wolfgang; Nilges, Michael

    2004-04-01

    Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However, this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure calculation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus β-spectrin. By comparing structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE assignment scheme.

  20. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  1. Implementation of the full viscoresistive magnetohydrodynamic equations in a nonlinear finite element code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haverkort, J.W.; Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven; Blank, H.J. de

    Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. Amore » rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.« less

  2. Magnetic performance change of multi-main-phase Nd-Ce-Fe-B magnets by diffusing (Nd, Pr)H x

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Zhang, Wenying; Peng, Baixing; Liu, Yongsheng; Chen, Yongjie; Wang, Xinhua; Yan, Mi

    2018-02-01

    The grain boundary diffusion process (GBDP) is effective to enhance coercivity of the single-main-phase (SMP) RE2Fe14B (rare earth (RE)) magnets through forming magnetic hardening shells surrounding the hard grain cores. Here, the GBDP was applied to the multi-main-phase (MMP) (Nd, Pr)22.3Ce8.24FebalM1.0B1.0 (wt.%) magnets prepared by sintering the mixture of Ce-free and Ce-containing 2:14:1 powders, which have shown superior magnetic properties, especially coercivity, to the SMP ones at the same average composition. The remanence of the (Nd, Pr)H x diffused magnets increases gradually with the increase of diffusion temperature from 480 to 880 °C, the coercivity, however, slightly decreases. The highest (BH)max of 350.1 kJ m-3 is achieved when diffusing at 680 °C, which is 9.2% higher than 320.7 kJ m-3 for the as-prepared magnet. The remanence increment is due to the diffusion of Nd/Pr into the 2:14:1 phase grains, enlarging the intrinsic saturation magnetic polarization. The slight coercivity reduction is due to the gradual homogenization of RE distribution within the 2:14:1 grains of the undiffused parts, i.e. approaching the ‘close to equilibrium (or SMP)’ state, which offsets the positive contributions from the enrichment of Nd/Pr in the Ce-rich 2:14:1 phase and the formation of continuous RE-rich intergranular phase. These findings suggest that the GBDP effect on coercivity of the MMP Nd-Ce-Fe-B magnets is distinctly different from the SMP ones, and that the chemical heterogeneity should be carefully controlled to improve the magnetic properties of such high cost-performance permanent magnets.

  3. The behaviour of tributyl phosphate in an organic diluent

    NASA Astrophysics Data System (ADS)

    Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.

    2014-09-01

    Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.

  4. Quasi-equilibria in reduced Liouville spaces.

    PubMed

    Halse, Meghan E; Dumez, Jean-Nicolas; Emsley, Lyndon

    2012-06-14

    The quasi-equilibrium behaviour of isolated nuclear spin systems in full and reduced Liouville spaces is discussed. We focus in particular on the reduced Liouville spaces used in the low-order correlations in Liouville space (LCL) simulation method, a restricted-spin-space approach to efficiently modelling the dynamics of large networks of strongly coupled spins. General numerical methods for the calculation of quasi-equilibrium expectation values of observables in Liouville space are presented. In particular, we treat the cases of a time-independent Hamiltonian, a time-periodic Hamiltonian (with and without stroboscopic sampling) and powder averaging. These quasi-equilibrium calculation methods are applied to the example case of spin diffusion in solid-state nuclear magnetic resonance. We show that there are marked differences between the quasi-equilibrium behaviour of spin systems in the full and reduced spaces. These differences are particularly interesting in the time-periodic-Hamiltonian case, where simulations carried out in the reduced space demonstrate ergodic behaviour even for small spins systems (as few as five homonuclei). The implications of this ergodic property on the success of the LCL method in modelling the dynamics of spin diffusion in magic-angle spinning experiments of powders is discussed.

  5. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    NASA Astrophysics Data System (ADS)

    Khaibrakhmanov, S. A.; Dudorov, A. E.; Parfenov, S. Yu.; Sobolev, A. M.

    2017-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations on dust grains and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the regions close to the borders of the `dead' zones because electrons are magnetized there. The magnetic field in these regions is quasi-radial. We calculate the magnetic field strength and geometry for the discs with accretion rates (10^{-8}-10^{-6}) {M}_{⊙} {yr}^{-1}. The fossil magnetic field geometry does not change significantly during the disc evolution while the accretion rate decreases. We construct the synthetic maps of dust emission polarized due to the dust grain alignment by the magnetic field. In the polarization maps, the `dead' zones appear as the regions with the reduced values of polarization degree in comparison to those in the adjacent regions.

  6. NMR signals within the generalized Langevin model for fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Lisý, Vladimír; Tóthová, Jana

    2018-03-01

    The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.

  7. Cosmic Rays in Intermittent Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less

  8. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE PAGES

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  9. A Rayleighian approach for modeling kinetics of ionic transport in polymeric media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev

    2017-02-14

    Here, we report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes frommore » the broadband dielectric spectroscopy (BDS) measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreements between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.« less

  10. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  11. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  12. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  13. Non-opioid analgesic drug flupirtine: Spectral analysis, DFT computations, in vitro bioactivity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Leenaraj, D. R.; Hubert Joe, I.

    2017-06-01

    Spectral features of non-opioid analgesic drug flupirtine have been explored by the Fourier transform infrared, Raman and Nuclear magnetic resonance spectroscopic techniques combined with density functional theory computations. The bioactive conformer of flupirtine is stabilized by an intramolecular Csbnd H⋯N hydrogen bonding resulting by the steric strain of hydrogen atoms. Natural bond orbital and natural population analysis support this result. The charge redistribution also has been analyzed. Antimicrobial activities of flupirtine have been screened by agar well disc diffusion and molecular docking methods, which exposes the importance of triaminopyridine in flupirtine.

  14. Some thermodynamical aspects of protein hydration water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  15. Anion Transport in a Chemically Stable, Sterically Bulky alpha-C Modified Imidazolium Functionalized Anion Exchange Membrane

    DTIC Science & Technology

    2014-06-24

    AEM is often inconvenient, as ambient carbon dioxide (at publication time, 400 ppm) will react with the OH− to form a mixture of CO3 2− and HCO3 − in... crystal . Spectra were obtained in the range 500−4000 cm−1, with 256 scans and a resolution of 8 cm−1. Figure 1. Structure of 1,4,5-trimethyl-2-(2,4,6...pulsed-field gradient nuclear magnetic resonance (PFG NMR) on an AVANCEIII NMR spectrometer with a 5 mm Bruker single -axis DIFF60L Z-diffusion probe. The

  16. Grain boundary diffusion of Dy films prepared by magnetron sputtering for sintered Nd–Fe–B magnets

    NASA Astrophysics Data System (ADS)

    Chen, W.; Luo, J. M.; Guan, Y. W.; Huang, Y. L.; Chen, M.; Hou, Y. H.

    2018-05-01

    Dy films, deposited on the surface of sintered Nd–Fe–B magnets by magnetron sputtering, were employed for grain boundary diffusion source. High coercivity sintered Nd–Fe–B magnets were successfully prepared. Effects of sputtering power and grain boundary diffusion processes (GBDP) on the microstructure and magnetic properties were investigated in detail. The dense and uniform Dy films were beneficial to prepare high coercivity magnets by GBDP. The maximum coercivity value of 1189 kA m‑1 could be shown, which was an amplification of 22.3%, compared with that of as-prepared Nd–Fe–B magnet. Furthermore, the improved remanence and maximum energy product were also achieved through tuning grain boundary diffusion processes. Our results demonstrated that the formation of (Nd, Dy)2Fe14B shell surrounding Nd2Fe14B grains and fine, uniform and continuous intergranular RE-rich phases jointly contribute to the improved coercivity.

  17. Role of Magnetic Diffusion Induced by Turbulent Magnetic Reconnection for Star Formation

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex; Santos de Lima, R.; de Gouveia Dal Pino, E.

    2010-01-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology or reconnect in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in the computer simulations and turbulent astrophysical environments is similar, as far as the magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our study of magnetic field diffusion reveals important propertie s of the process. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a decorrelation of the magnetic field and density, which corresponds well to the observations of the interstellar media. In the presence of gravity, our 3D simulations show the decrease of the flux to mass ratio with density concentration when turbulence is present. We observe this effect both in the situations when we start with the equilibrium distributions of gas and magnetic field and when we start with collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasistatic subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and flux in the saturated final state of simulations, supporting the notion that turbulent diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. At the same time, turbulence of high level may get the system unbound making the flux to mass ratio more uniform through the simulation box.

  18. Diffusion studies with synchrotron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.

    2011-12-01

    Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.

  19. Holographic estimate of heavy quark diffusion in a magnetic field

    NASA Astrophysics Data System (ADS)

    Dudal, David; Mertens, Thomas G.

    2018-03-01

    We study the influence of a background magnetic field on the J /ψ vector meson in a Dirac-Born-Infeld-extension of the soft wall model, building upon our earlier work [D. Dudal and T. G. Mertens Phys. Rev. D 91, 086002 (2015), 10.1103/PhysRevD.91.086002]. In this specific holographic QCD model, we discuss the heavy quark number susceptibility and diffusion constants of charm quarks and their dependence on the magnetic field by either a hydrodynamic expansion or by numerically solving the differential equation. This allows us to determine the response of these transport coefficients to the magnetic field. The effects of the latter are considered both from a direct as indirect (medium) viewpoint. As expected, we find a magnetic field induced anisotropic diffusion, with a stronger diffusion in the longitudinal direction compared to the transversal one. We backup, at least qualitatively, our findings with a hanging string analysis of heavy quark diffusion in a magnetic field. From the quark number susceptibility we can extract an estimate for the effective deconfinement temperature in the heavy quark sector, reporting consistency with the phenomenon of inverse magnetic catalysis.

  20. Nonlinear restrictions on dynamo action. [in magnetic fields of astrophysical objects

    NASA Technical Reports Server (NTRS)

    Vainshtein, Samuel I.; Cattaneo, Fausto

    1992-01-01

    Astrophysical dynamos operate in the limit of small magnetic diffusivity. In order for magnetic reconnection to occur, very small magnetic structures must form so that diffusion becomes effective. The formation of small-scale fields is accompanied by the stretching of the field lines and therefore by an amplification of the magnetic field strength. The back reaction of the magnetic field on the motions leads to the eventual saturation of the dynamo process, thus posing a constraint on the amount of magnetic flux that can be generated by dynamo action, It is argued that in the limit of small diffusivity only a small amount of flux, many orders of magnitude less than the observed fluxes, can be created by dynamo processes.

  1. Strongly anomalous diffusion in sheared magnetic configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Eijnden, E.; Balescu, R.

    1996-03-01

    The statistical behavior of magnetic lines in a sheared magnetic configuration with reference surface {ital x}=0 is investigated within the framework of the kinetic theory. A Liouville equation is associated with the equations of motion of the stochastic magnetic lines. After averaging over an ensemble of realizations, it yields a convection-diffusion equation within the quasilinear approximation. The diffusion coefficients are space dependent and peaked around the reference surface {ital x}=0. Due to the shear, the diffusion of lines away from the reference surface is slowed down. The behavior of the lines is asymptotically strongly non-Gaussian. The reference surface acts likemore » an attractor around which the magnetic lines spread with an effective subdiffusive behavior. Comparison is also made with more usual treatments based on the study of the first two moments equations. For sheared systems, it is explicitly shown that the Corrsin approximation assumed in the latter approach is no longer valid. It is also concluded that the diffusion coefficients cannot be derived from the mean square displacement of the magnetic lines in an inhomogeneous medium. {copyright} {ital 1996 American Institute of Physics.}« less

  2. Fractal Model of Fission Product Release in Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas

    2012-09-01

    A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.

  3. Magnetic diffusion and flare energy buildup

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Yin, C. L.; Yang, W.-H.

    1992-01-01

    Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear 2D force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field and photospheric velocity field are used, it is found that 3-4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.

  4. NMR 1D-imaging of water infiltration into mesoporous matrices.

    PubMed

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  6. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping.

    PubMed

    Ianuş, Andrada; Shemesh, Noam

    2018-04-01

    Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  7. Coupling between overall rotational diffusion and domain motions in proteins and its effect on dielectric spectra.

    PubMed

    Ryabov, Yaroslav

    2015-09-01

    In this work, we formulate a closed-form solution of the model of a semirigid molecule for the case of fluctuating and reorienting molecular electric dipole moment. We illustrate with numeric calculations the impact of protein domain motions on dielectric spectra using the example of the 128 kDa protein dimer of Enzyme I. We demonstrate that the most drastic effect occurs for situations when the characteristic time of protein domain dynamics is comparable to the time of overall molecular rotational diffusion. We suggest that protein domain motions could be a possible explanation for the high-frequency contribution that accompanies the major relaxation dispersion peak in the dielectric spectra of protein aqueous solutions. We propose that the presented computational methodology could be used for the simultaneous analysis of dielectric spectroscopy and nuclear magnetic resonance data. Proteins 2015; 83:1571-1581. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Global Regularity and Time Decay for the 2D Magnetohydrodynamic Equations with Fractional Dissipation and Partial Magnetic Diffusion

    NASA Astrophysics Data System (ADS)

    Dong, Bo-Qing; Jia, Yan; Li, Jingna; Wu, Jiahong

    2018-05-01

    This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation given by the fractional operator (-Δ )^α and the magnetic diffusion by partial Laplacian. We are able to show that this system with any α >0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.

  9. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D S

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  10. Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.

    PubMed

    Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T

    2013-08-06

    The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.

  11. The rotation of discs around neutron stars: dependence on the Hall diffusion

    NASA Astrophysics Data System (ADS)

    Faghei, Kazem; Salehi, Fatemeh

    2018-01-01

    In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.

  12. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    USGS Publications Warehouse

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.

  13. Effect of the magnetism of impurities on their diffusion in metals: Bulk diffusion of iron, cobalt, and rhodium in iridium single crystals

    NASA Astrophysics Data System (ADS)

    Klotsman, S. M.; Tatarinova, G. N.

    2008-12-01

    The coefficients and parameters of the temperature dependences of the coefficients of bulk diffusion of Fe, Co, Rh, and Au atomic probes (APs) in iridium single crystals (mono-Ir) have been determined from the diffusion profiles obtained using secondary-ion mass spectrometry of the diffusion zones. The enthalpies of activation of diffusion of Fe, Co, and Rh APs are considerably lower than the enthalpy of activation of selfdiffusion in mono-Ir. This is caused by the negative contributions of the intraatomic exchange energy and energy of relaxation of the environment of the d transition APs to the enthalpy of interaction of magnetically active APs with the vacancies in the iridium lattice. The interaction energy of partners in such complexes and the relationships between the magnetic moments of d transition APs in complexes with vacancies have been estimated. The Rh APs in complexes with vacancies in iridium possess stable magnetic moments.

  14. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  15. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) themore » stochastic diffusion does not have a considerable influence on the confinement of energetic ions.« less

  16. Electron heat transport measured in a stochastic magnetic field.

    PubMed

    Biewer, T M; Forest, C B; Anderson, J K; Fiksel, G; Hudson, B; Prager, S C; Sarff, J S; Wright, J C; Brower, D L; Ding, W X; Terry, S D

    2003-07-25

    New profile measurements have allowed the electron thermal diffusivity profile to be estimated from power balance in the Madison Symmetric Torus where magnetic islands overlap and field lines are stochastic. The measurements show that (1) the electron energy transport is conductive not convective, (2) the measured thermal diffusivities are in good agreement with numerical simulations of stochastic transport, and (3) transport is greatly reduced near the reversal surface where magnetic diffusion is small.

  17. Stochastic field-line wandering in magnetic turbulence with shear. II. Decorrelation trajectory method

    NASA Astrophysics Data System (ADS)

    Negrea, M.; Petrisor, I.; Shalchi, A.

    2017-11-01

    We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .

  18. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  19. The Role of Diffusivity Quenching in Flux-transport Dynamo Models

    NASA Astrophysics Data System (ADS)

    Guerrero, Gustavo; Dikpati, Mausumi; de Gouveia Dal Pino, Elisabete M.

    2009-08-01

    In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the α-quenching effect) and the turbulent magnetic diffusivity (the η-quenching effect). While the former has been widely explored, the effects of η-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear α-quenching term. Our results indicate that, although for α-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to η-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to ~2.5 times larger at the tachocline and up to ~2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the η-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in η produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in η remains in the diffusion-dominated regime.

  20. Correlation Between the Field Line and Particle Diffusion Coefficients in the Stochastic Fields of a Tokamak

    NASA Astrophysics Data System (ADS)

    Calvin, Mark; Punjabi, Alkesh

    1996-11-01

    We use the method of quasi-magnetic surfaces to calculate the correlation between the field line and particle diffusion coefficients. The magnetic topology of a tokamak is perturbed by a spectrum of neighboring resonant resistive modes. The Hamiltonian equations of motion for the field line are integrated numerically. Poincare plots of the quasi-magnetic surfaces are generated initially and after the field line has traversed a considerable distance. From the areas of the quasi-magnetic surfaces and the field line distance, we estimate the field line diffusion coefficient. We start plasma particles on the initial quasi-surface, and calculate the particle diffusion coefficient from our Monte Carlo method (Punjabi A., Boozer A., Lam M., Kim H. and Burke K., J. Plasma Phys.), 44, 405 (1990). We then estimate the correlation between the particle and field diffusion as the strength of the resistive modes is varied.

  1. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.

  2. Microscopic Interpretation and Generalization of the Bloch-Torrey Equation for Diffusion Magnetic Resonance

    PubMed Central

    Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir

    2017-01-01

    In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566

  3. The generation and dissipation of solar and galactic magnetic fields.

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1973-01-01

    Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.

  4. WMD Forecasting in Historical and Contemporary Perspective

    DTIC Science & Technology

    2010-03-01

    a nuclear weapon; Use of a nuclear weapon; Withdrawal from the NPT; Emergence of a nuclear-exports grey market; Widespread dissemination of...Many studies saw technology diffusion and the globalization of commerce as ineluctable forces that contribute to the spread of nuclear (and other...engineering diffuses , the spread of biological weapon capabilities among state actors can be expected to expand in advanced and developing states. This

  5. EM Diffusion for a Time-Domain Airborne EM System

    NASA Astrophysics Data System (ADS)

    Yin, C.; Qiu, C.; Liu, Y.; Cai, J.

    2014-12-01

    Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux for a vertical magnetic dipole, injecting into the earth; 4) there exists no vertical current in an isotropic homogeneous half-space. The currents for both HCP and VCX transmitting dipole flow horizontally.

  6. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  7. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  8. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  9. Holographic Interferometry and Laminar Jet Diffusion Flames in the Presence of Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Calvert, M. E.; Saito, K.; VanderWal, R.

    2001-01-01

    Magnetic fields impact combustion processes in a manner analogous to that of buoyancy, i.e., as a body force. It is well known that in a terrestrial environment buoyancy is one of the principal transport mechanisms associated with diffusion flame behavior. Unfortunately, in a terrestrial environment it is difficult if not impossible to isolate flame behavior due magnetic fields from the behavior associated with buoyancy. A micro-, or reduced, gravity environment is ideally suited for studying the impact of magnetic fields on diffusion flames due to the decreased impact of buoyancy on flame behavior.

  10. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish

    2018-01-01

    Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.

  11. Novel optical-based methods and analyses for elucidating cellular mechanics and dynamics

    NASA Astrophysics Data System (ADS)

    Koo, Peter K.

    Resolving distinct biochemical interaction states by analyzing the diffusive behaviors of individual protein trajectories is challenging due to the limited statistics provided by short trajectories and experimental noise sources, which are intimately coupled into each proteins localization. In the first part of this thesis, we introduce a novel, a machine-learning based classification methodology, called perturbation expectation-maximization (pEM), which simultaneously analyzes a population of protein trajectories to uncover the system of short-time diffusive behaviors which collectively result from distinct biochemical interactions. We then discuss an experimental application of pEM to Rho GTPase, an integral regulator of cytoskeletal dynamics and cellular homeostasis, inside live cells. We also derive the maximum likelihood estimator (MLE) for driven diffusion, confined diffusion, and fractional Brownian motion. We demonstrate that MLE yields improved estimates in comparison with traditional diffusion analysis, namely mean squared displacement analysis. In addition, we also introduce mleBayes, which is an empirical Bayesian model selection scheme to classify an individual protein trajectory to a given diffusion mode. By employing mleBayes on simulated data, we demonstrate that accurate determination of the underlying diffusive properties, beyond normal diffusion, remains challenging when analyzing particle trajectories on an individual basis. To improve upon the statistical limitations of classification from analyzing trajectories on an individual basis, we extend pEM with a new version (pEMv2) to simultaneously analyzing a collection of particle trajectories to uncover the system of interactions which give rise to unique normal or non-normal diffusive states. We test the performance of pEMv2 on various sets of simulated particle trajectories which transition between various modes of normal and non-normal diffusive states to highlight considerations when employing pEMv2 analysis. We envision the presented methodologies will be applicable to a wide range of single protein tracking data where different interactions result in distinct diffusive behaviors. More generally, this study brings us an important step closer to the possibility of monitoring the endogenous biochemistry of diffusing proteins within live cells with single molecule resolution. In the second part of this thesis, the role of chromatin association to the nuclear envelope in nuclear mechanics is explored. Changes in the mechanical properties of the nucleus are increasingly found to be critical for development and disease. However, relatively little is known about the variables that cells modulate to define nuclear mechanics. The best understood player is lamin A, a protein linked to a diverse set of genetic diseases termed laminopathies. The properties of lamin A that are compromised in these diseases (and therefore underlie their pathology) remains poorly understood. One model focuses on a mechanical role for a polymeric network of lamins associated with the nuclear envelope (NE), which supports nuclear integrity. However, because heterochromatin is strongly associated with lamina, it remains unclear whether it is the lamin polymer, the associated chromatin, or both that allow the lamina to mechanically stabilize nuclei. Decoupling the impact of the lamin polymer itself from that of the associated chromatin has proven very challenging. Here, we take advantage of the model organism, S pombe, which does not express lamies, as an experimental framework in which to address the impact of chromatin and its association with the nuclear periphery on nuclear mechanics. Using a combination of new image analysis tools for in vivo imaging of nuclear dynamics and a novel optical tweezers assay capable of directly probing nuclear mechanics, we find that the association of chromatin with the NE through integral membrane proteins plays a critical role in supporting nuclear integrity. When chromatin is decoupled from the NE, nuclei are softer, undergo much larger nuclear fluctuations in vivo in response to microtubule forces, and are defective at resolving nuclear deformations. Our data further suggest that association of chromatin with the NE attenuates the flow of chromatin into nuclear fluctuations thereby preventing permanent changes in nuclear shape.

  12. Echo-Planar Imaging: Magnetic Resonance Imaging in a Fraction of a Second

    NASA Astrophysics Data System (ADS)

    Stehling, Michael K.; Turner, Robert; Mansfield, Peter

    1991-10-01

    Progress has recently been made in implementing magnetic resonance imaging (MRI) techniques that can be used to obtain images in a fraction of a second rather than in minutes. Echo-planar imaging (EPI) uses only one nuclear spin excitation per image and lends itself to a variety of critical medical and scientific applications. Among these are evaluation of cardiac function in real time, mapping of water diffusion and temperature in tissue, mapping of organ blood pool and perfusion, functional imaging of the central nervous system, depiction of blood and cerebrospinal fluid flow dynamics, and movie imaging of the mobile fetus in utero. Through shortened patient examination times, higher patient throughput, and lower cost per MRI examination, EPI may become a powerful tool for early diagnosis of some common and potentially treatable diseases such as ischemic heart disease, stroke, and cancer.

  13. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  14. Extended phase graphs with anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.

  15. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    PubMed

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  16. Inside the Black Box: Magnetic Reconnection and the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.

    2016-03-01

    The motivation for the recently launched Magnetospheric Multiscale mission is learning about the process of magnetic reconnection, especially the physics of what is called the diffusion region. The diffusion region is often treated as a black box but is the home of very important physics, which is of great significance to understanding space weather. This article is a brief review of what is known—and not known—about the diffusion region in magnetic reconnection, written for the broad space weather community and its stakeholders (with an appendix for readers interested in more technical matters). The focus is on the physics of magnetic reconnection and the diffusion region, why it has been challenging to study, how MMS will contribute, and how the community will benefit from its measurements.

  17. Search for d0-Magnetism in Amorphous MB6 (M = Ca, Sr, Ba) Thin Films

    NASA Astrophysics Data System (ADS)

    Suter, Andreas; Ackland, Karl; Stilp, Evelyn; Prokscha, Thomas; Salman, Zaher; Coey, Michael

    In the past decade there have been various reports on insulating or semi-conducting compounds showing weak ferromagnetic-like properties, even though none of their constituent have partially occupied d or f shells. Among them are HfO2 [1], highly oriented pyrolytic graphite [2], CaB2C2 [3], CaB6 [4,5], and ZnO2 [6]. From the very beginning it has been speculated that lattice defects might play a significant role. These effects can potentially be amplified when these materials are grown in thin film form, due to strain and interface effects. With low-energy μSR (LE-μSR) we studied various amorphous thin films of alkaline earth hexaborides MB6 (M = Ca, Sr, Ba) grown on Al2O3. Furthermore, we studied the starting materials which were used for the pulsed laser deposition (PLD) targets for the films with bulk μSR to ensure the quality of these powders. Similar to the results in Ref. [5] we find an increased second moment of the static width (ZF/LF dynamic Kubo-Toyabe function) compared to the nuclear width which suggest a very weak magnetic contribution which must originate from the electronic system (defect polarization, grain boundary effects, etc.). Two complications arise from the fact that a strong quadrupolar level crossing resonance is found in the hexaborides at rather low field values, and muon diffusion sets in at rather low temperature. The thin film results demonstrate a strong suppression of the muon diffusion which makes it more suitable to search for weak magnetic signatures. Indeed we find essentially a temperature independent second moment equal to the low temperature value found in the starting powders. This indicates that the weak magnetic state is stabilized up to much higher temperatures.

  18. Early Detection of Ventilation-Induced Brain Injury Using Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging: An In Vivo Study in Preterm Lambs

    PubMed Central

    Skiöld, Béatrice; Wu, Qizhu; Hooper, Stuart B.; Davis, Peter G.; McIntyre, Richard; Tolcos, Mary; Pearson, James; Vreys, Ruth; Egan, Gary F.; Barton, Samantha K.; Cheong, Jeanie L. Y.; Polglase, Graeme R.

    2014-01-01

    Background and Aim High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. Methods Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP) 5 cmH2O) or an initial 15 minutes of “injurious ventilation” (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf) followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla). For measures of mean/axial/radial diffusivity (MD, AD, RD) and fractional anisotropy (FA), 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms) encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac) relative to N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. Results No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. Conclusion Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is able to detect the initiation of ventilation-induced brain injury. PMID:24759765

  19. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors

    NASA Astrophysics Data System (ADS)

    Marple, M. A. T.; Avila-Paredes, H.; Kim, S.; Sen, S.

    2018-05-01

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  20. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors.

    PubMed

    Marple, M A T; Avila-Paredes, H; Kim, S; Sen, S

    2018-05-28

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  1. Polyradiculopathies from schwannomatosis.

    PubMed

    Jia, Yuxia; Kraus, James A; Reddy, Hasini; Groff, Michael; Wong, Eric T

    2011-01-01

    We describe a case of schwannomatosis presenting as radicular pain and numbness in multiple radicular nerve distributions. There were multiple peripheral nerve tumors detected by magnetic resonance imaging (MRI) at the left vestibular nerve, cauda equina, right radial nerve, thoracic paraspinal nerve, and brachial plexi. Several resected tumors have features of schwannomas, including hypercellular Antoni A areas, hypocellular Antoni B areas, Verocay bodies, and hyalinized blood vessels. The specimens are also positive for immunohistochemical staining for INI1 with diffuse nuclear staining. The findings are consistent with sporadic form of schwannomatosis. This case highlights the importance of using MRI and INI1 immunohistochemistry to differentiate familial schwannomatosis, neurofibromatosis 2 (NF2)-associated schwannomatosis, and sporadic schwannomatosis.

  2. Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Büchner, Bernd; Grafe, Hans-Joachim

    2014-05-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature (T) and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  3. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    NASA Astrophysics Data System (ADS)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  4. The Role of Nongyrotropy in Balancing the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Liu, Y. H.; Chen, L. J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Genestreti, K.; Phan, T.; Tenfjord, P.

    2017-12-01

    The structure of the reconnection diffusion region is, to a large degree, determined by the requirement to balance both the current flow and its dissipation processes, and the forces exerted onto the current layer by the inflow magnetic pressure. These balances are critical: without resupply processes, the transport of accelerated and current-carrying particles away from the diffusion region would generate a current density depletion, which, in principle, could lead to a mismatch with the curl of the magnetic field. Similarly, without heating processes, the convection of hot plasma away from the diffusion region would generate a force imbalance with the ambient magnetic field. The fact that neither of these imbalances occur is a consequence of the reconnection electric field, which is therefore not only required to facilitate magnetic flux transport, but also to provide the energization required to maintain balance in the diffusion region. In this presentation, we will use particle-in-cell simulations to analyze these balance conditions. We will furthermore show that nongyrotropic particle dynamics plays a key role both as current dissipation mechanism, and as overall heating mechanism in the diffusion region current layer.

  5. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  6. Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging

    PubMed Central

    Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun

    2017-01-01

    Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging. PMID:27004542

  7. Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging.

    PubMed

    Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun

    2017-01-01

    Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging.

  8. Confinement of the solar tachocline by a cyclic dynamo magnetic field

    NASA Astrophysics Data System (ADS)

    Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul

    2017-05-01

    Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.

  9. Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Kitchatinov, L. L.; Brandenburg, A.

    2011-03-01

    In a density-stratified turbulent medium, the cross helicity < u'ṡ B'> is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s-1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.

  10. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  11. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    PubMed

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.

  12. Extended phase graphs with anisotropic diffusion.

    PubMed

    Weigel, M; Schwenk, S; Kiselev, V G; Scheffler, K; Hennig, J

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Metabolite diffusion up to very high b in the mouse brain in vivo: Revisiting the potential correlation between relaxation and diffusion properties.

    PubMed

    Ligneul, Clémence; Palombo, Marco; Valette, Julien

    2017-04-01

    To assess the potential correlation between metabolites diffusion and relaxation in the mouse brain, which is of importance for interpreting and modeling metabolite diffusion based on pure geometry, irrespective of relaxation properties (multicompartmental relaxation or surface relaxivity). A new diffusion-weighted magnetic resonance spectroscopy sequence is introduced, dubbed "STE-LASER," which presents several nice properties, in particular the absence of cross-terms with selection gradients and a very clean localization. Metabolite diffusion is then measured in a large voxel in the mouse brain at 11.7 Tesla using a cryoprobe, resulting in excellent signal-to-noise ratio, up to very high b-values under different echo time, mixing time, and diffusion time combinations. Our results suggest that the correlation between relaxation and diffusion properties is extremely small or even nonexistent for metabolites in the mouse brain. The present work strongly supports the interpretation and modeling of metabolite diffusion primarily based on geometry, irrespective of relaxation properties, at least under current experimental conditions. Magn Reson Med 77:1390-1398, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  14. Stochastic particle acceleration at shocks in the presence of braided magnetic fields.

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1996-10-01

    The theory of diffusive acceleration of energetic particles at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion on short time scales. We derive the propagator for such motion, which differs from the Gaussian form relevant for diffusion, and apply it to a configuration with a plane shock front whose normal is perpendicular to the average field direction. Expressions are given for the acceleration time as a function of the diffusion coefficient of the wandering magnetic field lines and the spatial diffusion coefficient of the charged particles parallel to the local field. In addition we calculate the spatial dependence of the particle density in both the upstream and downstream plasmas. In contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream. This is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f{prop.to}p^-s^, we find s=s_diff_[1+1/(2ρ_c_)], where ρ_c_ is the compression ratio of the shock front and s_diff_ is the standard result of diffusive acceleration: s_diff_=3ρ_c_/(ρ_c_-1). A strong shock in a monatomic ideal gas yields a spectrum of s=4.5. In the case of electrons, this corresponds to a radio synchrotron spectral index of α=0.75.

  15. The Long and Viscous Road: Uncovering Nuclear Diffusion Barriers in Closed Mitosis

    PubMed Central

    Zavala, Eder; Marquez-Lago, Tatiana T.

    2014-01-01

    Diffusion barriers are effective means for constraining protein lateral exchange in cellular membranes. In Saccharomyces cerevisiae, they have been shown to sustain parental identity through asymmetric segregation of ageing factors during closed mitosis. Even though barriers have been extensively studied in the plasma membrane, their identity and organization within the nucleus remains poorly understood. Based on different lines of experimental evidence, we present a model of the composition and structural organization of a nuclear diffusion barrier during anaphase. By means of spatial stochastic simulations, we propose how specialised lipid domains, protein rings, and morphological changes of the nucleus may coordinate to restrict protein exchange between mother and daughter nuclear lobes. We explore distinct, plausible configurations of these diffusion barriers and offer testable predictions regarding their protein exclusion properties and the diffusion regimes they generate. Our model predicts that, while a specialised lipid domain and an immobile protein ring at the bud neck can compartmentalize the nucleus during early anaphase; a specialised lipid domain spanning the elongated bridge between lobes would be entirely sufficient during late anaphase. Our work shows how complex nuclear diffusion barriers in closed mitosis may arise from simple nanoscale biophysical interactions. PMID:25032937

  16. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A.; Negrea, M.; Petrisor, I.

    2016-07-15

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less

  17. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiya, T., E-mail: akiya.takahiro@nims.go.jp; Sepehri-Amin, H.; Ohkubo, T.

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened inmore » the c-axis direction.« less

  18. I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic the atomic clock, the laser and the diagnostic scanning of the human body by nuclear magnetic

  19. Measurement of cross relaxation between two selected nuclei by synchronous nutation of magnetization in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Burghardt, Irene; Konrat, Robert; Boulat, Benoit; Vincent, Sébastien J. F.; Bodenhausen, Geoffrey

    1993-01-01

    A novel technique is described that allows one to measure cross-relaxation rates (Overhauser effects) between two selected nuclei in high-resolution NMR. The two chosen sites are irradiated simultaneously with the sidebands of an amplitude-modulated radio-frequency field, so that their magnetization vectors are forced to undergo a simultaneous motion, which is referred to as ``synchronous nutation.'' From the time-dependence observed for different initial conditions, one may derive cross-relaxation rates, and hence determine internuclear distances. The scalar interactions between the selected spins and other spins belonging to the same coupling network are effectively decoupled. Furthermore, cross relaxation to other spins in the environment does not affect the transient response of the selected spins, which are therefore in effect isolated from their environment in terms of dipolar interactions. The method is particularly suitable to study cases where normal Overhauser effects are perturbed by spin-diffusion effects due to the presence of further spins. The technique is applied to the protein bovine pancreatic trypsin inhibitor.

  20. Currents and Associated Electron Scattering and Bouncing Near the Diffusion Region at Earth's Magnetopause

    NASA Technical Reports Server (NTRS)

    Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.; hide

    2016-01-01

    Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).

  1. Self-diffusion imaging by spin echo in Earth's magnetic field.

    PubMed

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  2. Intrinsic trapping of stochastic sheared magnetic field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negrea, M.; Petrisor, I.; Balescu, R.

    2004-10-01

    The decorrelation trajectory method is applied to the diffusion of magnetic field lines in a perturbed sheared slab magnetic configuration. Some interesting decorrelation trajectories for several values of the magnetic Kubo number and of the shear parameter are exhibited. The asymmetry of the decorrelation trajectories appears in comparison with those obtained in the purely electrostatic case studied in earlier work. The running and asymptotic diffusion tensor components are calculated and displayed.

  3. Single-sided mobile NMR apparatus using the transverse flux of a single permanent magnet.

    PubMed

    Chang, Wei-Hao; Chen, Jyh-Horng; Hwang, Lian-Pin

    2010-01-01

    This study presents a simple design for a mobile, single-sided nuclear magnetic resonance (NMR) apparatus which uses the magnetic flux parallel to the magnetization direction of a single, disc-shaped permanent magnet polarized in radial direction. The stray magnetic field above the magnet is approximately parallel to the magnetization direction of the magnet and is utilized as the B(0) magnetic field of the apparatus. The apparatus weighs 1.8 kg, has a compact structure and can be held in one's palm. The apparatus generates a B(0) field strength of about 0.279 T at the center of apparatus surface and can acquire a clear Hahn echo signal of a pencil eraser block lying on the RF coil in one shot. Moreover, a strong static magnetic field gradient exists in the direction perpendicular to the apparatus surface. The strength of the static magnetic field gradient near the center of the apparatus surface is about 10.2 T/m; one-dimensional imaging of thin objects and liquid self-diffusion coefficient measurements can be performed therein. The available spatial resolution of the one-dimensional imaging experiments using a 5 x 5 mm horizontal sample area is about 200 mum. Several nondestructive inspection applications of the apparatus, including distinguishing between polyethylene grains of different densities, characterizing epoxy putties of distinct set times and evaluating the fat content percentages of milk powders, are also demonstrated. Compared with many previously published designs, the proposed design bears a simple structure and generates a B(0) magnetic field parallel to the apparatus surface, simplifying apparatus construction and simultaneously rendering the selection of the radiofrequency coil relatively flexible.

  4. Does non-echo-planar diffusion-weighted magnetic resonance imaging have a role in assisting the clinical diagnosis of cholesteatoma in selected cases?

    PubMed

    Nash, R; Lingam, R K; Chandrasekharan, D; Singh, A

    2018-03-01

    To determine the diagnostic performance of diffusion-weighted magnetic resonance imaging in the assessment of patients with suspected, but not clinically evident, cholesteatoma. A retrospective analysis of a prospectively collected database of non-echo-planar diffusion-weighted magnetic resonance imaging studies (using a half-Fourier single-shot turbo-spin echo sequence) was conducted. Clinical records were retrospectively reviewed to determine indications for imaging and operative findings. Seventy-eight investigations in 74 patients with suspected cholesteatoma aged 5.7-79.2 years (mean, 41.7 years) were identified. Operative confirmation was available in 44 ears. Diagnostic accuracy of the imaging technique was calculated using operative findings as a 'gold standard'. Sensitivity of the investigation was examined via comparison with clinically evident cholesteatoma. The accuracy of diffusion-weighted magnetic resonance imaging in assessment of suspected cholesteatoma was 63.6 per cent. The imaging technique was significantly less accurate in assessment of suspected cholesteatoma than clinically evident disease (p < 0.001). Computed tomography and diffusion-weighted magnetic resonance imaging may be complementary in assessment of suspected cholesteatoma, but should be used with caution, and clinical judgement is paramount.

  5. Coronal "wave": Magnetic Footprint Of A Cme?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.

    2007-05-01

    We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicablemore » to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.« less

  7. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  8. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    PubMed Central

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-01-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained. PMID:27922060

  9. Bioactive films of zein/magnetite magnetically stimuli-responsive for controlled drug release

    NASA Astrophysics Data System (ADS)

    Marín, Tíffany; Montoya, Paula; Arnache, Oscar; Pinal, Rodolfo; Calderón, Jorge

    2018-07-01

    The Zein films in two configurations with magnetite nanoparticles (zein/NPs) and magnetite-acetaminophen (zein/NPs/Drug) were used as magnetically stimuli-responsive systems to propose a model of controlled release by dissolution and diffusion mechanism. Composite material films of zein/NPs and zein/NPs/Drug were made by dispersion of magnetite nanoparticles into zein solution then solvent casting of the solution on a flat Teflon substrate. The properties of composite films were analyzed by magnetization curves of (MvsH) and measurements of magnetic force microscopy (MFM). Drug release from the zein/NPs/Drug composite films was determined using a type II dissolution apparatus for a period of 2 h under applied magnetic field conditions. In addition, the diffusion mechanism was tested with zein/NPs films into diffusion cell containing acetaminophen solution for 24 h and using a permanent magnet as a remote trigger device. The results showed that the magnetite nanoparticles contained in the zein/NPs and zein/NPs/Drug composite films are stable, i.e., they do not undergo sufficiently high levels of oxidation as to alter their magnetic properties. Furthermore, the dissolution and diffusion results lead us to conclude that zein composite films effectively behave as stimuli-responsive systems triggered by an external magnetic field applied. The result is a model controlled release system whereby drug release can be controlled by adjusting the magnitude of the applied magnetic field.

  10. Giant transversal particle diffusion in a longitudinal magnetic ratchet.

    PubMed

    Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc

    2010-12-03

    We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4)  μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.

  11. Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR

    NASA Astrophysics Data System (ADS)

    Rose, B. C.; Weis, C. D.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.

    2017-02-01

    Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV$^-$) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV$^-$ centers in synthetic type IIb diamonds (nitrogen impurity concentration $<1$~ppm) are prepared with bulk concentrations of $2\\cdot 10^{13}$ cm$^{-3}$ to $4\\cdot 10^{14}$ cm$^{-3}$ by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000$^\\circ$C for 60 mins) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV$^-$s. After the annealing, spin coherence times of T$_2 = 0.74$~ms at 5~K are achieved, being only limited by $^{13}$C nuclear spectral diffusion in natural abundance diamonds. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central $^{14}$N nucleus. The ESEEM spectral analysis allows for accurate determination of the $^{14}$N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal $^{13}$C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective $^{13}$C hyperfine coupling constants are extracted.

  12. Transport of Charged Particles in Turbulent Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.

    2017-12-01

    Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are discussed.

  13. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.

  14. Energy transport velocity in bidispersed magnetic colloids.

    PubMed

    Bhatt, Hem; Patel, Rajesh; Mehta, R V

    2012-07-01

    Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.

  15. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less

  16. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  17. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    NASA Astrophysics Data System (ADS)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  18. White matter changes after stroke in type 2 diabetic rats measured by diffusion magnetic resonance imaging.

    PubMed

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Davarani, Siamak Pn; Jiang, Quan

    2017-01-01

    Diffusion-related magnetic resonance imaging parametric maps may be employed to characterize white matter of brain. We hypothesize that entropy of diffusion anisotropy may be most effective for detecting therapeutic effects of bone marrow stromal cell treatment of ischemia in type 2 diabetes mellitus rats. Type 2 diabetes mellitus was induced in adult male Wistar rats. These rats were then subjected to 2 h of middle cerebral artery occlusion, and received bone marrow stromal cell (5 × 10 6 , n = 8) or an equal volume of saline (n = 8) via tail vein injection at three days after middle cerebral artery occlusion. Magnetic resonance imaging was performed on day one and then weekly for five weeks post middle cerebral artery occlusion. The diffusion metrics complementarily permitted characterization of axons and axonal myelination. All six magnetic resonance imaging diffusion metrics, confirmed by histological measures, demonstrated that bone marrow stromal cell treatment significantly (p < 0.05) improved magnetic resonance imaging diffusion indices of white matter in type 2 diabetes mellitus rats after middle cerebral artery occlusion compared with the saline-treated rats. Superior to the fractional anisotropy metric that provided measures related to organization of neuronal fiber bundles, the entropy metric can also identify microstructures and low-density axonal fibers of cerebral tissue after stroke in type 2 diabetes mellitus rats. © The Author(s) 2015.

  19. White matter changes after stroke in type 2 diabetic rats measured by diffusion magnetic resonance imaging

    PubMed Central

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Davarani, Siamak PN

    2015-01-01

    Diffusion-related magnetic resonance imaging parametric maps may be employed to characterize white matter of brain. We hypothesize that entropy of diffusion anisotropy may be most effective for detecting therapeutic effects of bone marrow stromal cell treatment of ischemia in type 2 diabetes mellitus rats. Type 2 diabetes mellitus was induced in adult male Wistar rats. These rats were then subjected to 2 h of middle cerebral artery occlusion, and received bone marrow stromal cell (5 × 106, n = 8) or an equal volume of saline (n = 8) via tail vein injection at three days after middle cerebral artery occlusion. Magnetic resonance imaging was performed on day one and then weekly for five weeks post middle cerebral artery occlusion. The diffusion metrics complementarily permitted characterization of axons and axonal myelination. All six magnetic resonance imaging diffusion metrics, confirmed by histological measures, demonstrated that bone marrow stromal cell treatment significantly (p < 0.05) improved magnetic resonance imaging diffusion indices of white matter in type 2 diabetes mellitus rats after middle cerebral artery occlusion compared with the saline-treated rats. Superior to the fractional anisotropy metric that provided measures related to organization of neuronal fiber bundles, the entropy metric can also identify microstructures and low-density axonal fibers of cerebral tissue after stroke in type 2 diabetes mellitus rats. PMID:26685128

  20. Effects of plasma flows on particle diffusion in stochastic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlad, M.; Spineanu, F.; Misguich, J.H.

    1996-07-01

    The study of collisional test particle diffusion in stochastic magnetic fields is extended to include the effects of the macroscopic flows of the plasma (drifts). We show that a substantial amplification of the diffusion coefficient can be obtained. This effect is produced by the combined action of the parallel collisional velocity and of the average drifts. The perpendicular collisional velocity influences the effective diffusion only in the limit of small average drifts. {copyright} {ital 1996 The American Physical Society.}

  1. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Min; Khatun, Sufia; Castner, Edward W., E-mail: ecastner@rci.rutgers.edu

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C{sub 6}D{sub 14} with this ionic liquid. High-energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C{sub 6}D{sub 14}. Nuclear magnetic resonance self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C{sub 6}D{sub 14}more » is on average a factor of 21 times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  2. ZIF-8 Cooperating in TiN/Ti/Si Nanorods as Efficient Anodes in Micro-Lithium-Ion-Batteries.

    PubMed

    Yu, Yingjian; Yue, Chuang; Lin, Xionggui; Sun, Shibo; Gu, Jinping; He, Xu; Zhang, Chuanhui; Lin, Wei; Lin, Donghai; Liao, Xinli; Xu, Binbin; Wu, Suntao; Zheng, Mingsen; Li, Jing; Kang, Junyong; Lin, Liwei

    2016-02-17

    Zeolite imidazolate framework-8 (ZIF-8) nanoparticles embedded in TiN/Ti/Si nanorod (NR) arrays without pyrolysis have shown increased energy storage capacity as anodes for lithium ion batteries (LIBs). A high capacity of 1650 μAh cm(-2) has been achieved in this ZIF-8 composited multilayered electrode, which is ∼100 times higher than the plain electrodes made of only silicon NR. According to the electrochemical impedance spectroscopy (EIS) and (1)H nuclear magnetic resonance (NMR) characterizations, the improved diffusion of lithium ions in ZIF-8 and boosted electron/Li(+) transfer by the ZIF-8/TiN/Ti multilayer coating are proposed to be responsible for the enhanced energy storage ability. The first-principles calculations further indicate the favorable accessibility of lithium with appropriate size to diffuse in the open pores of ZIF-8. This work broadens the application of ZIF-8 to silicon-based LIBs electrodes without the pyrolysis and provides design guidelines for other metal-organic frameworks/Si composite electrodes.

  3. Ab initio modeling of CW-ESR spectra of the double spin labeled peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe in acetonitrile.

    PubMed

    Zerbetto, Mirco; Carlotto, Silvia; Polimeno, Antonino; Corvaja, Carlo; Franco, Lorenzo; Toniolo, Claudio; Formaggio, Fernando; Barone, Vincenzo; Cimino, Paola

    2007-03-15

    In this work we address the interpretation, via an ab initio integrated computational approach, of the CW-ESR spectra of the double spin labeled, 310-helical, peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe dissolved in acetonitrile. Our approach is based on the determination of geometric and local magnetic parameters of the heptapeptide by quantum mechanical density functional calculations taking into account solvent and, when needed, vibrational averaging contributions. The system is then described by a stochastic Liouville equation for the two electron spins interacting with each other and with two 14N nuclear spins, in the presence of diffusive rotational dynamics. Parametrization of the diffusion rotational tensor is provided by a hydrodynamic model. CW-ESR spectra are simulated with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing 3D structural and dynamic information on molecular systems.

  4. Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.

    NASA Astrophysics Data System (ADS)

    de Waal, H.; Pretorius, R.

    1999-10-01

    In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.

  5. Renormalization of the diffusion tensor for high-frequency, electromagnetic modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Sudan, R.N.

    The resonance broadening theory is used to derive the diffusion tensor for resonant particles in a spectrum of electromagnetic modes propagating parallel to the magnetic field. The magnetic trapping limit for saturation of wave amplitudes is discussed.

  6. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L., E-mail: sasha.velikovich@nrl.navy.mil; Giuliani, J. L., E-mail: sasha.velikovich@nrl.navy.mil; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, andmore » the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.« less

  7. Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Catto, P. J.; Lee, J.; Ram, A. K.

    2017-10-01

    The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.

  8. Revisiting the diffusion mechanism of helium in UO2: A DFT+U study

    NASA Astrophysics Data System (ADS)

    Liu, X.-Y.; Andersson, D. A.

    2018-01-01

    The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO2 is revisited by using the DFT+U simulation methodology employing the "U-ramping" method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the "asymmetric hop" mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. The new mechanism is shown to be the dominant one over a wide temperature range.

  9. Transport properties of interacting magnetic islands in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficientmore » which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.« less

  10. Evaluation of non-Gaussian diffusion in cardiac MRI.

    PubMed

    McClymont, Darryl; Teh, Irvin; Carruth, Eric; Omens, Jeffrey; McCulloch, Andrew; Whittington, Hannah J; Kohl, Peter; Grau, Vicente; Schneider, Jürgen E

    2017-09-01

    The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm 2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. The diffusion tensor was ranked best at b-values up to 2000 s/mm 2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. A mathematical model for the release of noble gas and Cs from porous nuclear fuel based on VEGA 1&2 experiments

    NASA Astrophysics Data System (ADS)

    Simones, M. P.; Reinig, M. L.; Loyalka, S. K.

    2014-05-01

    Release of fission products from nuclear fuel in accidents is an issue of major concern in nuclear reactor safety, and there is considerable room for development of improved models, supported by experiments, as one needs to understand and elucidate role of various phenomena and parameters. The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program on several irradiated nuclear fuels investigated the release rates of radionuclides and results demonstrated that the release rates of radionuclides from all nuclear fuels tested decreased with increasing external gas pressure surrounding the fuel. Hidaka et al. (2004-2011) accounted for this pressure effect by developing a 2-stage diffusion model describing the transport of radionuclides in porous nuclear fuel. We have extended this 2-stage diffusion model to account for mutual binary gas diffusion in the open pores as well as to introduce the appropriate parameters to cover the slip flow regime (0.01 ⩽ Kn ⩽ 0.1). While we have directed our numerical efforts toward the simulation of the VEGA experiments and assessments of differences from the results of Hidaka et al., the model and the techniques reported here are of larger interest as these would aid in modeling of diffusion in general (e.g. in graphite and other nuclear materials of interest).

  12. On the cosmic ray diffusion in a violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Bykov, A. M.; Toptygin, I. N.

    1985-01-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  13. A Literature Review on the Study of Moisture in Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trautschold, Olivia Carol

    2016-05-25

    This literature review covers the main chemical and physical interactions between moisture and the polymer matrix. Fickian versus Non-Fickian diffusion behaviors are discussed in approximating the characteristics of moisture sorption. Also, bound water and free water sorbed in polymers are distinguished. Methods to distinguish between bound and free water include differential scanning calorimetry, infrared spectroscopy, and time-domain nuclear magnetic resonance spectroscopy. The difference between moisture sorption and water sorption is considered, as well as the difficulties associated with preventing moisture sorption. Furthermore, specific examples of how moisture sorption influences polymers include natural fiber-polymer composites, starch-based biodegradable thermoplastics, and thermoset polyurethanemore » and epoxies.« less

  14. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  15. Polyradiculopathies from Schwannomatosis

    PubMed Central

    Jia, Yuxia; Kraus, James A.; Reddy, Hasini; Groff, Michael; Wong, Eric T

    2011-01-01

    We describe a case of schwannomatosis presenting as radicular pain and numbness in multiple radicular nerve distributions. There were multiple peripheral nerve tumors detected by magnetic resonance imaging (MRI) at the left vestibular nerve, cauda equina, right radial nerve, thoracic paraspinal nerve, and brachial plexi. Several resected tumors have features of schwannomas, including hypercellular Antoni A areas, hypocellular Antoni B areas, Verocay bodies, and hyalinized blood vessels. The specimens are also positive for immunohistochemical staining for INI1 with diffuse nuclear staining. The findings are consistent with sporadic form of schwannomatosis. This case highlights the importance of using MRI and INI1 immunohistochemistry to differentiate familial schwannomatosis, neurofibromatosis 2 (NF2)-associated schwannomatosis, and sporadic schwannomatosis. PMID:21643503

  16. Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang

    2014-12-01

    In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.

  17. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstratesmore » that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.« less

  18. EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less

  19. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.

    PubMed

    Ren, Shuangpo; Parsekian, Andrew D; Zhang, Ye; Carr, Bradley J

    2018-05-15

    In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., K NMR ) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated K NMR are within one order of magnitude of K FLUTe . The empirical parameters obtained from calibrating the NMR data suggest that "intermediate diffusion" and/or "slow diffusion" during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, "intermediate diffusion" dominates the relaxation time, therefore assuming "fast diffusion" in the interpretation of NMR data from fractured rock may lead to inaccurate K NMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable K NMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements. © 2018, National Ground Water Association.

  20. Influence of hydrocarbon fuel structural constitution and flame temperature on soot formation in laminar diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulder, O.L.

    1989-11-01

    A systematic study of soot formation along the centerlines of axisymmetric laminar diffusion flames of a large number of liquid hydrocarbons, hydrocarbon blends, and transportation fuels were made. Measurements of the attenuation of a laser beam across the flame diameter were used to obtain the soot volume fraction, assuming Rayleigh extinction. Two sets of hydrocarbon blends were designed such that the molecular fuel composition varied considerably but the temperature fields in the flames were kept practically constant. Thus it was possible to separate the effects of molecular structure and the flame temperature on soot formation. It was quantitatively shown thatmore » the smoke height is a lumped measure of fuel molecular constitution and hydrogen-to-carbon ratio. Hydrocarbon fuel molecular composition was characterized by six carbon atom types that can be obtained, for complex hydrocarbon mixtures like transportation fuels, from proton nuclear magnetic resonance (/sup 1/H NMR) measurements. Strong attenuation of the laser beam was observed at heights very close to the burner rim. Visible flame profiles along the flame length were shown to have good self-similarity. Kent's model for diffusion flames was modified to include the effects of differences in flame temperatures and molecular diffusivities between fuels. An analysis based on the present data provides an assessment of the degree of contribution of different carbon atom types to the maximum soot volume fractions.« less

  1. Earlier Detection of Tumor Treatment Response Using Magnetic Resonance Diffusion Imaging with Oscillating Gradients

    PubMed Central

    Colvin, Daniel C.; Loveless, Mary E.; Does, Mark D.; Yue, Zou; Yankeelov, Thomas E.; Gore, John C.

    2011-01-01

    An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Non-invasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to micro-structural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 hours following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods. PMID:21190804

  2. Spacecraft Observations of Oblique Electron Beams Breaking the Frozen-In Law During Asymmetric Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egedal, J.; Le, Ari; Daughton, William

    Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ~ 6d e electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. These numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth’s dayside magnetopause.

  3. Spacecraft Observations of Oblique Electron Beams Breaking the Frozen-In Law During Asymmetric Reconnection

    DOE PAGES

    Egedal, J.; Le, Ari; Daughton, William; ...

    2018-01-29

    Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ~ 6d e electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. These numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth’s dayside magnetopause.

  4. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  5. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2011-10-01

    promising technology on the horizon is the Diffusion Tensor Imaging ( DTI ). Diffusion tensor imaging ( DTI ) is a magnetic resonance imaging (MRI)-based...in the brain. The potential for DTI to improve our understanding of TBI has not been fully explored and challenges associated with non-existent...processing tools, quality control standards, and a shared image repository. The recommendations will be disseminated and pilot tested. A DTI of TBI

  6. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A., E-mail: andreasm4@yahoo.com

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less

  7. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    NASA Astrophysics Data System (ADS)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-12-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  8. Facial dysmorphism in Leigh syndrome with SURF-1 mutation and COX deficiency.

    PubMed

    Yüksel, Adnan; Seven, Mehmet; Cetincelik, Umran; Yeşil, Gözde; Köksal, Vedat

    2006-06-01

    Leigh syndrome is an inherited, progressive neurodegenerative disorder of infancy and childhood. Mutations in the nuclear SURF-1 gene are specifically associated with cytochrome C oxidase-deficient Leigh syndrome. This report describes two patients with similar facial features. One of them was a 2(1/2)-year-old male, and the other was a 3-year-old male with a mutation in SURF-1 gene and facial dysmorphism including frontal bossing, brachycephaly, hypertrichosis, lateral displacement of inner canthi, esotropia, maxillary hypoplasia, hypertrophic gums, irregularly placed teeth, upturned nostril, low-set big ears, and retrognathi. The first patient's magnetic resonance imaging at 15 months of age indicated mild symmetric T2 prolongation involving the subthalamic nuclei. His second magnetic resonance imaging at 2 years old revealed a symmetric T2 prolongation involving the subthalamic nuclei, substantia nigra, and medulla lesions. In the second child, at the age of 2 the first magnetic resonance imaging documented heavy brainstem and subthalamic nuclei involvement. A second magnetic resonance imaging, performed when he was 3 years old, revealed diffuse involvement of the substantia nigra and hyperintense lesions of the central tegmental tract in addition to previous lesions. Facial dysmorphism and magnetic resonance imaging findings, observed in these cases, can be specific findings in Leigh syndrome patients with cytochrome C oxidase deficiency. SURF-1 gene mutations must be particularly reviewed in such patients.

  9. The Effect of Weak Resistivity and Weak Thermal Diffusion on Short-wavelength Magnetic Buoyancy Instability

    NASA Astrophysics Data System (ADS)

    Gradzki, Marek J.; Mizerski, Krzysztof A.

    2018-03-01

    Magnetic buoyancy instability in weakly resistive and thermally conductive plasma is an important mechanism of magnetic field expulsion in astrophysical systems. It is often invoked, e.g., in the context of the solar interior. Here, we revisit a problem introduc`ed by Gilman: the short-wavelength linear stability of a plane layer of compressible isothermal and weakly diffusive fluid permeated by a horizontal magnetic field of strength decreasing with height. In this physical setting, we investigate the effect of weak resistivity and weak thermal conductivity on the short-wavelength perturbations, localized in the vertical direction, and show that the presence of diffusion allows to establish the wavelength of the most unstable mode, undetermined in an ideal fluid. When diffusive effects are neglected, the perturbations are amplified at a rate that monotonically increases as the wavelength tends to zero. We demonstrate that, when the resistivity and thermal conduction are introduced, the wavelength of the most unstable perturbation is established and its scaling law with the diffusion parameters depends on gradients of the mean magnetic field, temperature, and density. Three main dynamical regimes are identified, with the wavelength of the most unstable mode scaling as either λ /d∼ {{ \\mathcal U }}κ 3/5 or λ /d∼ {{ \\mathcal U }}κ 3/4 or λ /d∼ {{ \\mathcal U }}κ 1/3, where d is the layer thickness and {{ \\mathcal U }}κ is the ratio of the characteristic thermal diffusion velocity scale to the free-fall velocity. Our analytic results are backed up by a series of numerical solutions. The two-dimensional interchange modes are shown to dominate over three-dimensional ones when the magnetic field and/or temperature gradients are strong enough.

  10. Magnetically Driven Flows of Suspensions of Rods to Deliver Clot-Busting Drugs to Dead-End Arteries

    NASA Astrophysics Data System (ADS)

    Bonnecaze, Roger; Clements, Michael

    2014-11-01

    Suspensions of iron particles in the presence of a magnetic field create flows that could significantly increase the delivery of drugs to dissolve clots in stroke victims. An explanation of this flow rests on the foundation of the seminal works by Prof. Acrivos and his students on effective magnetic permittivity of suspensions of rods, hydrodynamic diffusion of particles, and the flow of suspensions. Intravenous administration of the clot dissolving tissue plasminogen activator (tPA) is the most used therapy for stroke. This therapy is often unsuccessful because the tPA delivery is diffusion-limited and too slow to be effective. Observations show that added iron particles in a rotating magnetic field form rotating rods along the wall of the occluded vessel, creating a convective flow that can carry tPA much faster than diffusion. We present a proposed mechanism for this magnetically driven flow in the form of coupled particle-scale and vessel-scale flow models. At the particle-scale, particles chain up to form rods that rotate, diffuse and translate in the presence of the flow and magnetic fields. Localized vorticity created by the rotating particles drives a macroscopic convective flow in the vessel. Suspension transport equations describe the flow at the vessel-scale. The flow affects the convection and diffusion of the suspension of particles, linking the two scales. The model equations are solved asymptotically and numerically to understand how to create convective flows in dead-end or blocked vessels.

  11. Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.

    2009-12-01

    Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer arrays. The radial diffusion coefficient can be given from the magnetic field power spectral density as a function of L, frequency (f) and m-number (m) in the Pc 5 frequency range during the REE related magnetic storms [see Brautigam et al., 2005]. We can fit Pc 5 power spectral density (L, f, m) using the ULTIMA data. The m-number of global Pc 5 pulsation on the ground is found to be almost less than 5. This is consistent with m-number required in the radial diffusion theory by Elkington et al. [1999, 2003]. We will compare the observationally estimated diffusion coefficient with theoretical diffusion coefficient [e.g. Elkington et al., 2006], and discuss adequacy of our diffusion coefficient.

  12. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  13. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  14. Particle Diffusion in Chaotic Magnetic Fields Generated by Asymmetric Current Configurations

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Dasgupta, B.

    2008-12-01

    The observed cross-field diffusion of charged particles in cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. In these studies the irregular component of the magnetic field is prescribed in an ad hoc fashion. In contrast, we consider asymmetric, nonlinear, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. These magnetic fields are completely deterministic and, for certain range of parameters, chaotic. We will present analytical and numerical studies on the spatial characteristics of these fields. The motion of charged particles in the nonlinear and chaotic magnetic fields is determined using the Lorentz equation. A particle moving in a deterministic chaotic magnetic field superposed on a uniform background magnetic field is found to undergo spatial transport. This shows that chaotic magnetic fields generated by simple current configurations can produce cross-field diffusion. A detailed analysis of particle motion and diffusion along with application to space plasmas will be presented. [1] E.N. Parker, Planet. Space Sci. 13, 9 (1965). [2] J.R. Jokipii, Astrophys. J. 146, 480 (1966), and J.R. Jokipii, Astrophys. J. 149, 405 (1967). [3] A.K. Ram and B. Dasgupta, Eos Trans. AGU 87 (52), Fall Meet. Suppl. Abstract NG31B-1593 (2006); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).

  15. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  16. In vivo magnetization transfer and diffusion-weighted magnetic resonance imaging detects thrombus composition in a mouse model of deep vein thrombosis.

    PubMed

    Phinikaridou, Alkystis; Andia, Marcelo E; Saha, Prakash; Modarai, Bijan; Smith, Alberto; Botnar, René M

    2013-05-01

    Deep vein thrombosis remains a major health problem necessitating accurate diagnosis. Thrombolysis is associated with significant morbidity and is effective only for the treatment of unorganized thrombus. We tested the feasibility of in vivo magnetization transfer (MT) and diffusion-weighted magnetic resonance imaging to detect thrombus organization in a murine model of deep vein thrombosis. Deep vein thrombosis was induced in the inferior vena cava of male BALB/C mice. Magnetic resonance imaging was performed at days 1, 7, 14, 21, and 28 after thrombus induction using MT, diffusion-weighted, inversion-recovery, and T1-mapping protocols. Delayed enhancement and T1 mapping were repeated 2 hours after injection of a fibrin contrast agent. Finally, excised thrombi were used for histology. We found that MT and diffusion-weighted imaging can detect histological changes associated with thrombus aging. MT rate (MTR) maps and percentage of MT rate (%MTR) allowed visualization and quantification of the thrombus protein content, respectively. The %MTR increased with thrombus organization and was significantly higher at days 14, 21, and 28 after thrombus induction (days 1, 7, 14, 21, 28: %MTR=2483±451, 2079±1210, 7029±2490, 10 295±4356, 32 994±25 449; PANOVA<0.05). There was a significant positive correlation between the %MTR and the histological protein content of the thrombus (r=0.70; P<0.05). The apparent diffusion coefficient was lower in erythrocyte-rich and collagen-rich thrombus (0.72±0.10 and 0.69±0.05 [×10(-3) mm(2)/s]). Thrombus at days 7 and 14 had the highest apparent diffusion coefficient values (0.95±0.09 and 1.10±0.18 [×10(-3) mm(2)/s]). MT and diffusion-weighted magnetic resonance imaging sequences are promising for the staging of thrombus composition and could be useful in guiding medical intervention.

  17. In Vivo Magnetization Transfer and Diffusion-Weighted Magnetic Resonance Imaging Detects Thrombus Composition in a Mouse Model of Deep Vein Thrombosis

    PubMed Central

    Saha, Prakash; Modarai, Bijan; Smith, Alberto; Botnar, René M.

    2014-01-01

    Background Deep vein thrombosis remains a major health problem necessitating accurate diagnosis. Thrombolysis is associated with significant morbidity and is effective only for the treatment of unorganized thrombus. We tested the feasibility of in vivo magnetization transfer (MT) and diffusion-weighted magnetic resonance imaging to detect thrombus organization in a murine model of deep vein thrombosis. Methods and Results Deep vein thrombosis was induced in the inferior vena cava of male BALB/C mice. Magnetic resonance imaging was performed at days 1, 7, 14, 21, and 28 after thrombus induction using MT, diffusion-weighted, inversion-recovery, and T1-mapping protocols. Delayed enhancement and T1 mapping were repeated 2 hours after injection of a fibrin contrast agent. Finally, excised thrombi were used for histology. We found that MT and diffusion-weighted imaging can detect histological changes associated with thrombus aging. MT rate (MTR) maps and percentage of MT rate (%MTR) allowed visualization and quantification of the thrombus protein content, respectively. The %MTR increased with thrombus organization and was significantly higher at days 14, 21, and 28 after thrombus induction (days 1, 7, 14, 21, 28: %MTR=2483±451, 2079±1210, 7029±2490, 10 295±4356, 32 994±25 449; Panova<0.05). There was a significant positive correlation between the %MTR and the histological protein content of the thrombus (r=0.70; P<0.05). The apparent diffusion coefficient was lower in erythrocyte-rich and collagen-rich thrombus (0.72±0.10 and 0.69±0.05 [×10−3 mm2/s]). Thrombus at days 7 and 14 had the highest apparent diffusion coefficient values (0.95±0.09 and 1.10±0.18 [×10−3 mm2/s]). Conclusions MT and diffusion-weighted magnetic resonance imaging sequences are promising for the staging of thrombus composition and could be useful in guiding medical intervention. PMID:23564561

  18. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  19. Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. -Y.; Andersson, D. A.

    The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less

  20. Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study

    DOE PAGES

    Liu, X. -Y.; Andersson, D. A.

    2017-11-03

    The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less

  1. A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis

    NASA Astrophysics Data System (ADS)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2018-06-01

    A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.

  2. Improved thermal stability of TbF3-coated sintered Nd-Fe-B magnets by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Cao, X. J.; Chen, L.; Guo, S.; Di, J. H.; Ding, G. F.; Chen, R. J.; Yan, A. R.; Chen, K. Z.

    2018-05-01

    Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd-Fe-B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.

  3. Evidence for fast dynamo action in a chaotic web

    NASA Technical Reports Server (NTRS)

    Gilbert, A. D.; Childress, S.

    1990-01-01

    The evolution of a magnetic field in a chaotic web is studied. The model flow possessing the web is closely related to the nearly integrable ABC flow with A = B and C much less than 1. The magnetic diffusivity is taken to be zero and the field is followed using the Cauchy solution. It is found that the flow folds the magnetic field constructively, in the sense that the average magnetic field in a chaotic region grows exponentially in time. This is suggestive of fast dynamo action, although the effect of diffusion of the strong streamwise magnetic field remains to be assessed.

  4. Nuclear magnetic resonance studies of the interaction of general anesthetics with 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine bilayer.

    PubMed Central

    Shieh, D D; Ueda, I; Lin, H; Eyring, H

    1976-01-01

    Sonicated 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine forms liposomes. Studies by Fourier transform proton magnetic resonance of the interaction of these bilayers with some general anesthetics, i.e., chloroform, halothane, methoxyflurane, and enflurane, show that the addition of a general anesthetic to the liposomes and raising the temperature have a similar effect in cuasing the fluidization of the bilayer. General anesthetics act on the hydrophilic site (choline group) in clinical concentrations and then diffuse into the hydrophobic region with the addition of larger amount of anesthetics. There is evidence that the lecithin choline groups are involved in the interaction with protein and that the general anesthetics change the conformation of some polypeptides and proteins. We conclude that the general anesthetics, by increasing the motion of positively charged choline groups and negatively charged groups in protein, weaken the Coulomb-type interaction and cause the liprotein conformational changes. PMID:1069285

  5. Fractional Langevin Equation Model for Characterization of Anomalous Brownian Motion from NMR Signals

    NASA Astrophysics Data System (ADS)

    Lisý, Vladimír; Tóthová, Jana

    2018-02-01

    Nuclear magnetic resonance is often used to study random motion of spins in different systems. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard Langevin theory of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spins in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in a simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues.

  6. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water.

    PubMed

    Glöggler, Stefan; Grunfeld, Alexander M; Ertas, Yavuz N; McCormick, Jeffrey; Wagner, Shawn; Schleker, P Philipp M; Bouchard, Louis-S

    2015-02-16

    Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less

  8. Current density tensors

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  9. Magnetic properties of Co/Ni grain boundaries after annealing

    NASA Astrophysics Data System (ADS)

    Coutts, Chris; Arora, Monika; Hübner, René; Heinrich, Bret; Girt, Erol

    2018-05-01

    Magnetic and microstructural properties of <111> textured Cu/N×[Co/Ni] films are studied as a function of the number of bilayer repeats N and annealing temperature. M(H) loop measurements show that coercivity, Hc, increases with annealing temperature and that the slope of the saturation curve at Hc has a larger reduction for smaller N. An increase of the magnetic anisotropy (Ku) to saturation magnetization (Ms) ratio after annealing N×[Co/Ni] with N < 15 only partially describes the increase to Hc. Energy-dispersive X-ray spectroscopy analyses performed in scanning transmission electron microscopy mode across cross-sections of as-deposited and annealed Cu/16×[Co/Ni] films show that Cu diffuses from the seed layer into grain boundaries of Co/Ni. Diffusion of Cu reduces exchange coupling (Hex) between the magnetic grains and explains the increase in Hc. Additionally, the difference in the slope of the M(H) curves at Hc between the thick (N = 16) and thin (N = 4) magnetic multilayers is due to Cu diffusion more effectively decoupling magnetic grains in the thinner multilayer.

  10. Effect of oxygen content of Nd-Fe-B sintered magnet on grain boundary diffusion process of DyH2 dip-coating

    NASA Astrophysics Data System (ADS)

    Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk

    2015-11-01

    We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.

  11. Dispersion of the solar magnetic flux in the undisturbed photosphere as derived from SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Abramenko, Valentina I.

    2017-11-01

    To explore the magnetic flux dispersion in the undisturbed solar photosphere, magnetograms acquired by Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) were utilized. Two areas, a coronal hole (CH) area and an area of super-granulation (SG) pattern, were analysed. We explored the displacement and separation spectra and the behaviour of the turbulent diffusion coefficient, K. The displacement and separation spectra are very similar to each other. Small magnetic elements (of size 3-100 squared pixels and the detection threshold of 20 Mx sm-2) in both CH and SG areas disperse in the same way and they are more mobile than the large elements (of size 20-400 squared pixels and the detection threshold of 130 Mx sm-2). The regime of super-diffusivity is found for small elements (γ ≈ 1.3 and K growing from ˜100 to ˜ 300 km2 s-1). Large elements in the CH area are scanty and show super-diffusion with γ ≈ 1.2 and K = (62-96) km2 s-1 on a rather narrow range of 500-2200 km. Large elements in the SG area demonstrate two ranges of linearity and two diffusivity regimes: sub-diffusivity on scales 900-2500 km with γ = 0.88 and K decreasing from ˜130 to ˜100 km2 s-1, and super-diffusivity on scales 2500-4800 km with γ ≈ 1.3 and K growing from ˜140 to ˜200 km2 s-1. A comparison of our results with the previously published shows that there is a tendency of saturation of the diffusion coefficient on large scales, I.e. the turbulent regime of super-diffusivity is gradually replaced by normal diffusion.

  12. Diffusion of strongly magnetized cosmic ray particles in a turbulent medium

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.

    1985-01-01

    Cosmic ray (CR) propagation in a turbulent medium is usually considered in the diffusion approximation. Here, the diffusion equation is obtained for strongly magnetized particles in the general form. The influence of a large-scale random magnetic field on CR propagation in interstellar medium is discussed. Cosmic rays are assumed to propagate in a medium with a regular field H and an ensemble of random MHD waves. The energy density of waves on scales smaller than the free path 1 of CR particles is small. The collision integral of the general form which describes interaction between relativistic particles and waves in the quasilinear approximation is used.

  13. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    NASA Astrophysics Data System (ADS)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that control the enhanced trapping of water molecules and solutes within sugar-enriched clay nanopores.

  14. The importance of correcting for signal drift in diffusion MRI.

    PubMed

    Vos, Sjoerd B; Tax, Chantal M W; Luijten, Peter R; Ourselin, Sebastien; Leemans, Alexander; Froeling, Martijn

    2017-01-01

    To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. We investigated the signal magnitude of non-diffusion-weighted EPI volumes in a series of diffusion-weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15-min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. By interspersing the non-diffusion-weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285-299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  15. Apparent isotropic electrical property for electrical brain stimulation (EBS) using magnetic resonance diffusion weighted imaging (MR-DWI)

    NASA Astrophysics Data System (ADS)

    Lee, Mun Bae; Kwon, Oh-In

    2018-04-01

    Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.

  16. Particle acceleration at shocks in the presence of a braided magnetic field

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.; Duffy, P.; Gallant, Y. A.

    1997-05-01

    The theory of first order Fermi acceleration at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion ( ~ t^1/2) on short time scales. We investigate this process analytically, using a propagator approach, and numerically, with a Monte-Carlo simulation. It is found that, in contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream which is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f ~ p^-s, we find s =s_diff [1 + 1/(2rho_c)], where rho_c is the compression ratio of the shock front and s_diff is the standard result of diffusive acceleration:s_diff = 3rho_c/(rho_c - 1).

  17. Choice of reference measurements affects quantification of long diffusion time behaviour using stimulated echoes.

    PubMed

    Kleinnijenhuis, Michiel; Mollink, Jeroen; Lam, Wilfred W; Kinchesh, Paul; Khrapitchev, Alexandre A; Smart, Sean C; Jbabdi, Saad; Miller, Karla L

    2018-02-01

    To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. For DW-STEAM, reference measurements at long diffusion times have significant b 0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b 0 ) and constant gradient area (fixed-q 0 ). Fixed-b 0 and fixed-q 0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q 0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q 0 versus fixed-b 0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  18. Quenching and anisotropy of hydromagnetic turbulent transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay; Brandenburg, Axel; Rheinhardt, Matthias

    2014-11-01

    Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for themore » quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Ω×J effect nearly the same quenching exponent is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.« less

  19. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  20. Mathematical Model of the Processes of Heat and Mass Transfer and Diffusion of the Magnetic Field in an Induction Furnace

    NASA Astrophysics Data System (ADS)

    Perminov, A. V.; Nikulin, I. L.

    2016-03-01

    We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.

  1. Transmission and Emission of Solar Energetic Particles in Semi-transparent Shocks

    NASA Astrophysics Data System (ADS)

    Kocharov, Leon; Laitinen, Timo; Usoskin, Ilya; Vainio, Rami

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  2. Effect of low frequency, low amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase: I. Evidence for charged lipid involvement.

    PubMed

    Ramundo-Orlando, A; Morbiducci, U; Mossa, G; D'Inzeo, G

    2000-10-01

    The influence of low frequency (4-16 Hz), low amplitude (25-75 mu T) magnetic fields on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. Cationic liposomes containing dipalmitoylphosphatidylcholine, cholesterol, and charged lipid stearylamine (SA) at different molar ratios (6:3:1 or 5:3:2) were used. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (p-NPA) across intact liposome bilayer. After 60 min of exposure to 7 Hz sinusoidal (50 mu T peak) and parallel static (50 mu T) magnetic fields the enzyme activity, as a function of increased diffusion rate of p-NPA, rose from 17 +/- 3% to 80 +/- 9% (P < .0005, n = 15) in the 5:3:2 liposomes. This effect was dependent on the SA concentration in the liposomes. Only the presence of combined sinusoidal (AC) and static (DC) magnetic fields affected the p-NPA diffusion rates. No enzyme leakage was observed. Such studies suggest a plausible link between the action of extremely low frequency magnetic field on charged lipids and a change of membrane permeability. Copyright 2000 Wiley-Liss, Inc.

  3. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarizedmore » electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of {sup 75}As, {sup 69}Ga and {sup 71}Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.« less

  4. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    PubMed

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  6. Effects of Orientation and Anisometry of Magnetic Resonance Imaging Acquisitions on Diffusion Tensor Imaging and Structural Connectomes.

    PubMed

    Tudela, Raúl; Muñoz-Moreno, Emma; López-Gil, Xavier; Soria, Guadalupe

    2017-01-01

    Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.

  7. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  8. Rotation and magnetism in intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  9. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.

  10. Towards Overhauser DNP in supercritical CO(2).

    PubMed

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Violation of Field Line Conservation and Associated Spatial Scales in Particle-in-Cell Simulations and MMS Data

    NASA Astrophysics Data System (ADS)

    Wendel, D. E.; Liu, Y. H.; Giles, B. L.; Torbert, R. B.

    2017-12-01

    For the first time, space flight technology exists to detect, in situ, violation of magnetic field line conservation. The violation of magnetic line conservation on scales smaller than the system size is a necessary and sufficient condition for magnetic reconnection. We demonstrate that violation of line conservation produces a detectable, structured signature in both particle-in-cell simulations of reconnection and in data from the Magnetospheric Multi-Scale mission. In particle-in-cell simulations of asymmetric reconnection, the quantity-which we call M-that identifies this violation achieves a significant value in electron skin depth-scale layers that extend from the electron diffusion region along the separatrices, with higher values emerging on the low density, high magnetic field side of the current sheet. In two MMS burst data intervals associated with detection of the electron diffusion region—one interval with antiparallel reconnecting fields and the other with a guide field-we determine the location and scale of M and of the diffusion region relative to electron outflows and the magnetic separatrices. We find that M exceeds measurement uncertainties both at the diffusion region and near the separatrices, where it attains its highest values in layered structures. The observed magnitude scales as the simulated magnitude after adjusting for the artificial parameters of the simulation. Bipolar forms of the quantity also appear further from the diffusion region, possibly associated with electron holes. The measure serves not only as a powerful diagnostic for magnetic reconnection, but reveals that electrons transport this signature of reconnection away from the x-line.

  12. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    PubMed Central

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-01-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10−12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets. PMID:27910860

  13. Electron magnetic resonance investigation of gadolinium diffusion in zircon powders

    NASA Astrophysics Data System (ADS)

    de Biasi, R. S.; Grillo, M. L. N.

    2011-11-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of gadolinium in zircon (ZrSiO4) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation energy for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be EA=506±5 kJ mol-1. This value is close to the ones for the diffusion of Gd in UO2 and CeO2, but much larger than for the diffusion of gadolinium in a compound with the same crystal structure as zircon, YVO4. This is attributed to a difference in the relative sizes of the ions involved in the diffusion process.

  14. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    DOE PAGES

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less

  15. Evolution of the Magnetic Field during Chondrule Formation in Planetary Bow Shocks

    NASA Astrophysics Data System (ADS)

    Mai, Chuhong; Desch, Steven; Boley, Aaron C.

    2016-10-01

    Recent laboratory efforts (Fu et al., 2014, 2015) have constrained the remanent magnetizations of chondrules and the magnetic field strengths they were exposed to as they cooled below their Curie points. An outstanding question is whether these fields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values in a planetary bow shock, which is one proposed mechanism for chondrule formation. We use a hydrodynamic code to model the temperature and pressure around a 3000 km-radius planetary embryo as it moves supersonically through the nebula gas. We calculate the ionization of hot, shocked gas considering thermionic emission of electrons and ions from grains and thermal ionization of potassium. We calculate the magnetic diffusion rate, including Ohmic dissipation and ambipolar diffusion (assuming a magnetic field strength comparable to 0.5 G). We compute the steady-state magnetic field around in the bow shock and find that behind the planet the field is amplified, but everywhere else it quickly diffuses out of the shocked region and recovers the background value. We consider the trajectories taken by chondrules behind the shock and present likely values of the magnetic field amplification experienced by chondrules as they cool after melting in the shock.

  16. Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd /Co /AlOx Layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro

    2017-01-01

    Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.

  17. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  18. Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure

    PubMed Central

    Stikov, Nikola; Perry, Lee M.; Mezer, Aviv; Rykhlevskaia, Elena; Wandell, Brian A.; Pauly, John M.; Dougherty, Robert F.

    2010-01-01

    Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model. PMID:20828622

  19. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  20. Effect of washing process on the magnetic properties of Nd-Fe-B nanoparticles prepared by reduction-diffusion method

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ahn, J.; Kim, D.; Ren, W. J.; Liu, W.; Zhang, Z. D.; Choi, C. J.

    2017-10-01

    Nd-Fe-B nanoparticles with a particle size below 50 nm and excellent magnetic properties were obtained via a novel route which makes use of both spray drying and reduction-diffusion processes. Uniform Nd-Fe-B particles were formed by the optimization of Ca amount as a reducing agent and additional washing by milling in ethanol media. Especially, we implemented a two-step washing process which contributed to the excellent magnetic properties with high remanence and coercivity. After the removal of CaO by novel washing process, the maximum energy product (BH)max of the particles showed 22.1 MGOe. This value is superior to those reported in reduction-diffusion process. We used Henkel plot to assume the mechanism of magnetic interactions of the Nd-Fe-B nanoparticles.

  1. The change in the diffusion of water in normal and degenerative lumbar intervertebral discs following joint mobilization compared to prone lying.

    PubMed

    Beattie, Paul F; Donley, Jonathan W; Arnot, Cathy F; Miller, Ronald

    2009-01-01

    Prospective, repeated measures obtained under treatment and control conditions. The purposes of this study were to provide preliminary evidence regarding the immediate change in the diffusion of water in the nuclear region of normal and degenerative lumbar intervertebral discs (IVDs) following a single session of lumbar joint mobilization, and to compare these findings to the immediate change in the diffusion of water following a 10-minute session of prone lying. There is conflicting evidence regarding the effectiveness and efficacy of lumbar joint mobilization. Increased knowledge of the physiologic effects of lumbar joint mobilization can lead to refinement of its clinical application. A total of 24 people (15 males and 9 females), ranging in age from 22 to 58 years, participated in this study. All subjects had a history of activity-limiting low back pain. Diffusion-weighted magnetic resonance images (DW-MRIs) were obtained immediately before and after a 10-minute session of lumbar joint mobilization. At least 1 month later, a second session was performed in which DW-MRIs were obtained immediately before and after a 10-minute session of prone lying. Following lumbar joint mobilization, a significant increase (P = .002) in the mean values for diffusion of water was observed within degenerative IVDs at L5-S1 (22.2% increase; effect size, 0.97). Degenerative IVDs at L1-2 to L4-5 and normal IVDs at L1-2 to L5-S1 did not demonstrate a change in diffusion following joint mobilization. Prone lying was not associated with a change in diffusion for normal or degenerative IVDs. The stimulus provided by lumbar joint mobilization may influence the diffusion of water in degenerative IVDs at L5-S1; however, these are preliminary findings and the relationship of these findings to pain and function needs further investigation.

  2. High-performance liquid chromatography with nuclear magnetic resonance detection applied to organosilicon polymers. Part 2. Comparison with other methods.

    PubMed

    Blechta, Vratislav; Kurfürst, Milan; Sýkora, Jan; Schraml, Jan

    2007-03-23

    LC-NMR utilizing (1)H and (29)Si NMR spectroscopy is ideally suited for the analysis of silicones. It is shown that reversed phase gradient LC-NMR surpasses standard gel permeation chromatography (GPC) and diffusion ordered spectroscopy (DOSY) in the analysis of model hydride terminated polydimethylsiloxane. (1)H and (29)Si NMR in the stopped-flow arrangement leads to full identification of the components. Concentration gradient introduces a dependence of the (29)Si shifts on solvent composition, this dependence can be substantially reduced by a proposed method of referencing. It is shown that the ADEQUATE version of powerful but insensitive 2D INADEQUATE experiment can be used for complete line assignment.

  3. Time‐efficient and flexible design of optimized multishell HARDI diffusion

    PubMed Central

    Tournier, J. Donald; Price, Anthony N.; Cordero‐Grande, Lucilio; Hughes, Emer J.; Malik, Shaihan; Steinweg, Johannes; Bastiani, Matteo; Sotiropoulos, Stamatios N.; Jbabdi, Saad; Andersson, Jesper; Edwards, A. David; Hajnal, Joseph V.

    2017-01-01

    Purpose Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time‐efficient and flexible diffusion acquisition capability with built‐in robustness to partially acquired or interrupted scans. Our framework has been developed for the developing Human Connectome Project, but different application domains are equally possible. Methods Complete flexibility in the sampling of diffusion space combined with free choice of phase‐encode‐direction and the temporal ordering of the sampling scheme was developed taking into account motion robustness, internal consistency, and hardware limits. A split‐diffusion‐gradient preparation, multiband acceleration, and a restart capacity were added. Results The framework was used to explore different parameters choices for the desired high angular resolution diffusion imaging diffusion sampling. For the developing Human Connectome Project, a high‐angular resolution, maximally time‐efficient (20 min) multishell protocol with 300 diffusion‐weighted volumes was acquired in >400 neonates. An optimal design of a high‐resolution (1.2 × 1.2 mm2) two‐shell acquisition with 54 diffusion weighted volumes was obtained using a split‐gradient design. Conclusion The presented framework provides flexibility to generate time‐efficient and motion‐robust diffusion magnetic resonance imaging acquisitions taking into account hardware constraints that might otherwise result in sub‐optimal choices. Magn Reson Med 79:1276–1292, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28557055

  4. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  5. Nuclear spin circular dichroism.

    PubMed

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  6. Ellipsoidal Brownian self-driven particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Wai-Tong Louis; Pak, On Shun; Sandoval, Mario

    2017-03-01

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at a low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement, showing the effect of a particles's shape, activity, and magnetic field on the microswimmer's diffusion, is analytically obtained. Comparison between analytical and computational results shows good agreement. In addition, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is investigated.

  7. Computed tomography and magnetic resonance imaging findings of intraorbital granular cell tumor (Abrikossoff's tumor): a case report.

    PubMed

    Yuan, Wei-Hsin; Lin, Tai-Chi; Lirng, Jiing-Feng; Guo, Wan-You; Chang, Fu-Pang; Ho, Donald Ming-Tak

    2016-05-13

    Granular cell tumors are rare neoplasms which can occur in any part of the body. Granular cell tumors of the orbit account for only 3 % of all granular cell tumor cases. Computed tomography and magnetic resonance imaging of the orbit have proven useful for diagnosing orbital tumors. However, the rarity of intraorbital granular cell tumors poses a significant diagnostic challenge for both clinicians and radiologists. We report a case of a 37-year-old Chinese woman with a rare intraocular granular cell tumor of her right eye presenting with diplopia, proptosis, and restriction of ocular movement. Preoperative orbital computed tomography and magnetic resonance imaging with contrast enhancement revealed an enhancing solid, ovoid, well-demarcated, retrobulbar nodule. In addition, magnetic resonance imaging features included an intraorbital tumor which was isointense relative to gray matter on T1-weighted imaging and hypointense on T2-weighted imaging. No diffusion restriction of water was noted on either axial diffusion-weighted images or apparent diffusion coefficient maps. Both computed tomography and magnetic resonance imaging features suggested an intraorbital hemangioma. However, postoperative pathology (together with immunohistochemistry) identified an intraorbital granular cell tumor. When intraorbital T2 hypointensity and free diffusion of water are observed on magnetic resonance imaging, a granular cell tumor should be included in the differential diagnosis of an intraocular tumor.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  9. ALEGRA-MHD Simulations for Magnetization of an Ellipsoidal Inclusion

    DTIC Science & Technology

    2017-08-01

    diffusion has saturated. The simplicity of the interior solution lends itself well to verification of computational electromagnetic simulations...magnetic diffusion, permeability, computational electromagnetism , verification, magnetohydrodynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... electromagnetic phenomena including magnetohydrodynamics (MHD). This multiphysics capability is a key feature of ALEGRA and the result of many years of

  10. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  11. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less

  12. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  13. Measuring diffusion-relaxation correlation maps using non-uniform field gradients of single-sided NMR devices.

    PubMed

    Nogueira d'Eurydice, Marcel; Galvosas, Petrik

    2014-11-01

    Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Transport of Internetwork Magnetic Flux Elements in the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Agrawal, Piyush; Rast, Mark P.; Gošić, Milan; Bellot Rubio, Luis R.; Rempel, Matthias

    2018-02-01

    The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics.

  15. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.

    Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less

  16. Magnetically advected winds

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Kazanas, D.; Fukumura, K.

    2017-11-01

    Observations of X-ray absorption lines in magnetically driven disc winds around black hole binaries and active galactic nuclei yield a universal radial density profile ρ ∝ r-1.2 in the wind. This is in disagreement with the standard Blandford and Payne profile ρBP ∝ r-1.5 expected when the magnetic field is neither advected nor diffusing through the accretion disc. In order to account for this discrepancy, we establish a new paradigm for magnetically driven astrophysical winds according to which the large-scale ordered magnetic field that threads the disc is continuously generated by the Cosmic Battery around the inner edge of the disc and continuously diffuses outward. We obtain self-similar solutions of such magnetically advected winds (MAW) and discuss their observational ramifications.

  17. Magnetization transfer studies of the fast and slow tissue water diffusion components in the human brain.

    PubMed

    Mulkern, Robert V; Vajapeyam, Sridhar; Haker, Steven J; Maier, Stephan E

    2005-05-01

    Magnetization transfer (MT) properties of the fast and slow diffusion components recently observed in the human brain were assessed experimentally. One set of experiments, performed at 1.5 T in healthy volunteers, was designed to determine whether the amplitudes of fast and slow diffusion components, differentiated on the basis of biexponential fits to signal decays over a wide range of b-factors, demonstrated a different or similar magnetization transfer ratio (MTR). Another set of experiments, performed at 3 T in healthy volunteers, was designed to determine whether MTRs differed when measured from high signal-to-noise images acquired with b-factor weightings of 350 vs 3500 s/mm2. The 3 T studies included measurements of MTR as a function of off-resonance frequency for the MT pulse at both low and high b-factors. The primary conclusion drawn from all the studies is that there appears to be no significant difference between the magnetization transfer properties of the fast and slow tissue water diffusion components. The conclusions do not lend support to a direct interpretation of the 'components' of the biexponential diffusion decay in terms of the 'compartments' associated with intra- and extracellular water. Copyright 2004 John Wiley & Sons, Ltd.

  18. Brain lesions in septic shock: a magnetic resonance imaging study.

    PubMed

    Sharshar, Tarek; Carlier, Robert; Bernard, Francis; Guidoux, Céline; Brouland, Jean-Philippe; Nardi, Olivier; de la Grandmaison, Geoffroy Lorin; Aboab, Jérôme; Gray, Françoise; Menon, David; Annane, Djillali

    2007-05-01

    Understanding of sepsis-induced brain dysfunction remains poor, and relies mainly on data from animals or post-mortem studies in patients. The current study provided findings from magnetic resonance imaging of the brain in septic shock. Nine patients with septic shock and brain dysfunction [7 women, median age 63 years (interquartile range 61-79 years), SAPS II: 48 (44-56), SOFA: 8 (6-10)] underwent brain magnetic resonance imaging including gradient echo T1-weighted, fluid-attenuated inversion recovery (FLAIR), T2-weighted and diffusion isotropic images, and mapping of apparent diffusion coefficient. Brain imaging was normal in two patients, showed multiple ischaemic strokes in two patients, and in the remaining patients showed white matter lesions at the level of the centrum semiovale, predominating around Virchow-Robin spaces, ranging from small multiple areas to diffuse lesions, and characterised by hyperintensity on FLAIR images. The main lesions were also characterised by reduced signal on diffusion isotropic images and increased apparent diffusion coefficient. The lesions of the white matter worsened with increasing duration of shock and were correlated with Glasgow Outcome Score. This preliminary study showed that sepsis-induced brain lesions can be documented by magnetic resonance imaging. These lesions predominated in the white matter, suggesting increased blood-brain barrier permeability, and were associated with poor outcome.

  19. Enhancement of tunneling magnetoresistance by inserting a diffusion barrier in L10-FePd perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, De-Lin; Schliep, Karl B.; Wu, Ryan J.; Quarterman, P.; Reifsnyder Hickey, Danielle; Lv, Yang; Chao, Xiaohui; Li, Hongshi; Chen, Jun-Yang; Zhao, Zhengyang; Jamali, Mahdi; Mkhoyan, K. Andre; Wang, Jian-Ping

    2018-04-01

    We studied the tunnel magnetoresistance (TMR) of L10-FePd perpendicular magnetic tunnel junctions (p-MTJs) with an FePd free layer and an inserted diffusion barrier. The diffusion barriers studied here (Ta and W) were shown to enhance the TMR ratio of the p-MTJs formed using high-temperature annealing, which are necessary for the formation of high quality L10-FePd films and MgO barriers. The L10-FePd p-MTJ stack was developed with an FePd free layer with a stack of FePd/X/Co20Fe60B20, where X is the diffusion barrier, and patterned into micron-sized MTJ pillars. The addition of the diffusion barrier was found to greatly enhance the magneto-transport behavior of the L10-FePd p-MTJ pillars such that those without a diffusion barrier exhibited negligible TMR ratios (<1.0%), whereas those with a Ta (W) diffusion barrier exhibited TMR ratios of 8.0% (7.0%) at room temperature and 35.0% (46.0%) at 10 K after post-annealing at 350 °C. These results indicate that diffusion barriers could play a crucial role in realizing high TMR ratios in bulk p-MTJs such as those based on FePd and Mn-based perpendicular magnetic anisotropy materials for spintronic applications.

  20. The Hall effect in star formation

    NASA Astrophysics Data System (ADS)

    Braiding, C. R.; Wardle, M.

    2012-05-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.

  1. Experimental determination of pore shapes using phase retrieval from q -space NMR diffraction

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q -space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  2. Scaling exponent and dispersity of polymers in solution by diffusion NMR.

    PubMed

    Williamson, Nathan H; Röding, Magnus; Miklavcic, Stanley J; Nydén, Magnus

    2017-05-01

    Molecular mass distribution measurements by pulsed gradient spin echo nuclear magnetic resonance (PGSE NMR) spectroscopy currently require prior knowledge of scaling parameters to convert from polymer self-diffusion coefficient to molecular mass. Reversing the problem, we utilize the scaling relation as prior knowledge to uncover the scaling exponent from within the PGSE data. Thus, the scaling exponent-a measure of polymer conformation and solvent quality-and the dispersity (M w /M n ) are obtainable from one simple PGSE experiment. The method utilizes constraints and parametric distribution models in a two-step fitting routine involving first the mass-weighted signal and second the number-weighted signal. The method is developed using lognormal and gamma distribution models and tested on experimental PGSE attenuation of the terminal methylene signal and on the sum of all methylene signals of polyethylene glycol in D 2 O. Scaling exponent and dispersity estimates agree with known values in the majority of instances, leading to the potential application of the method to polymers for which characterization is not possible with alternative techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction.

    PubMed

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q-space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  4. Kinetics of intercalation of fluorescent probes in magnesium–aluminium layered double hydroxide within a multiscale reaction–diffusion framework

    PubMed Central

    Saliba, Daniel

    2016-01-01

    We report the synthesis of magnesium–aluminium layered double hydroxide (LDH) using a reaction–diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium–aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698034

  5. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    NASA Astrophysics Data System (ADS)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  6. Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo

    PubMed Central

    Marchadour, Charlotte; Brouillet, Emmanuel; Hantraye, Philippe; Lebon, Vincent; Valette, Julien

    2012-01-01

    Translational displacement of molecules within cells is a key process in cellular biology. Molecular motion potentially depends on many factors, including active transport, cytosol viscosity and molecular crowding, tortuosity resulting from cytoskeleton and organelles, and restriction barriers. However, the relative contribution of these factors to molecular motion in the cytoplasm remains poorly understood. In this work, we designed an original diffusion-weighted magnetic resonance spectroscopy strategy to probe molecular motion at subcellular scales in vivo. This led to the first observation of anomalous diffusion, that is, dependence of the apparent diffusion coefficient (ADC) on the diffusion time, for endogenous intracellular metabolites in the brain. The observed increase of the ADC at short diffusion time yields evidence that metabolite motion is characteristic of hindered random diffusion rather than active transport, for time scales up to the dozen milliseconds. Armed with this knowledge, data modeling based on geometrically constrained diffusion was performed. Results suggest that metabolite diffusion occurs in a low-viscosity cytosol hindered by ∼2-μm structures, which is consistent with known intracellular organization. PMID:22929443

  7. Assessing the multiscale architecture of muscular tissue with Q-space magnetic resonance imaging: Review.

    PubMed

    Hoffman, Matthew P; Taylor, Erik N; Aninwene, George E; Sadayappan, Sakthivel; Gilbert, Richard J

    2018-02-01

    Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue. © 2016 Wiley Periodicals, Inc.

  8. Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy

    PubMed Central

    Boujraf, Saïd

    2018-01-01

    Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631

  9. Parallel heat transport in integrable and chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve themore » local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.« less

  10. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  11. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  12. New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions.

    PubMed

    Romanenko, Konstantin; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria

    2015-07-15

    Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

  13. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy.

    PubMed

    Panigrahy, Ashok; Blüml, Stefan

    2007-02-01

    Magnetic resonance (MR) imaging has become an essential tool in the evaluation of neonatal encephalopathy. Magnetic resonance-compatible neonatal incubators allow sick neonates to be transported to the MR scanner, and neonatal head coils can improve signal-to-noise ratio, critical for advanced MR imaging techniques. Refinement of conventional imaging techniques include the use of PROPELLER techniques for motion correction. Magnetic resonance spectroscopic imaging and diffusion tensor imaging provide quantitative assessment of both brain development and brain injury in the newborn with respect to metabolite abnormalities and hypoxic-ischemic injury. Knowledge of normal developmental changes in MR spectroscopy metabolite concentration and diffusion tensor metrics is essential to interpret pathological cases. Perfusion MR and functional MR can provide additional physiological information. Both MR spectroscopy and diffusion tensor imaging can provide additional information in the differential of neonatal encephalopathy, including perinatal white matter injury, hypoxic-ischemic brain injury, metabolic disease, infection, and birth injury.

  14. Ellipsoidal Brownian self-driven particles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Wai-Tong, Fan; Shun Pak, On

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement showing the effect of particles's shape, activity, and magnetic field on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain good agreement. Additionally, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is also elucidated. CONACYT GRANT: CB 2014/237848.

  15. Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging.

    PubMed

    Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor

    2017-02-01

    Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Computational prediction of strain-dependent diffusion of transcription factors through the cell nucleus.

    PubMed

    Nava, Michele M; Fedele, Roberto; Raimondi, Manuela T

    2016-08-01

    Nuclear spreading plays a crucial role in stem cell fate determination. In previous works, we reported evidence of multipotency maintenance for mesenchymal stromal cells cultured on three-dimensional engineered niche substrates, fabricated via two-photon laser polymerization. We correlated maintenance of multipotency to a more roundish morphology of these cells with respect to those cultured on conventional flat substrates. To interpret these findings, here we present a multiphysics model coupling nuclear strains induced by cell adhesion to passive diffusion across the cell nucleus. Fully three-dimensional reconstructions of cultured cells were developed on the basis of confocal images: in particular, the level of nuclear spreading resulted significantly dependent on the cell localization within the niche architecture. We assumed that the cell diffusivity varies as a function of the local volumetric strain. The model predictions indicate that the higher the level of spreading of the cell, the higher the flux across the nucleus of small solutes such as transcription factors. Our results point toward nuclear spreading as a primary mechanism by which the stem cell translates its shape into a fate decision, i.e., by amplifying the diffusive flow of transcriptional activators into the nucleus.

  17. Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer

    NASA Technical Reports Server (NTRS)

    Romalis, Michael; Komack, Tom; Ghost, Rajat

    2008-01-01

    An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.

  18. Spectrum of spin waves in cold polarized gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  19. Anomalous current in diffusive ferromagnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Silaev, M. A.; Tokatly, I. V.; Bergeret, F. S.

    2017-05-01

    We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental conditions in order to maximize the anomalous current.

  20. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  1. Some concepts of the advanced mass spectrometry at the COMBAS magnetic separator of nuclear reaction products

    NASA Astrophysics Data System (ADS)

    Artukh, A. G.; Tarantin, N. I.

    Proposed is an in-flight measurement method of recoil nuclei masses with the help of a Penning trap located behind the COMBAS magnetic separator for nuclear reaction products. The method is based on the following operations: (i) Accepting the recoil nuclear reaction products by the magnetic separator and decreasing their kinetic energy by degraders. (ii) In-flight transportation of the retarded nuclei into the magnetic field of the Penning trap's solenoid and transforming their remaining longitudinal momentum into orbital rotation by the fringing magnetic field of the solenoid. (iii) Cooling the orbital rotation of the ions by the high-frequency azimuthal electric field of the Penning trap's electric hyperboloid.

  2. [Application of anoptomagnetic probe Gd-DO3A-EA-FITC in imaging and analyzing the brain interstitial space].

    PubMed

    Li, Y Q; Sheng, Y; Liang, L; Zhao, Y; Li, H Y; Bai, N; Wang, T; Yuan, L; Han, H B

    2018-04-18

    To investigate the application of the optical magnetic bimodal molecular probe Gd-DO3A-ethylthiouret-fluorescein isothiocyanate (Gd -DO3A-EA-FITC) in brain tissue imaging and brain interstitial space (ISS). In the study, 24 male SD rats were randomly divided into 3 groups, including magnetic probe group (n=6), optical probe group (n=6) and optical magnetic bimodal probe group (n=12), then the optical magnetic bimodal probe group was divided equally into magnetic probe subgroup (n=6) and optical probe subgroup (n=6). Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, the probes including gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), fluorescein isothiocyanate (FITC) and Gd-DO3A-EA-FITC of 2 μL (10 mmol/L) were injected into the caudate nucleus respectively, magnetic resonance imaging (MRI) was performed in the magnetic probe group and magnetic probe subgroup to image the dynamic diffusion and distribution of the probes in the brain ISS, a self-developed brain ISS image processing system was used to measure the diffusion coefficient, clearance, volume fraction and half-time in these two groups. Laser scanning confocal microscope (LSCM) was performed in vitro in the optical probe group and optical probe subgroup for fluorescence imaging at the time points 2 hours after the injection of the probe, and the distribution in the oblique sagittal slice was compared with the result of the first two groups. For the magnetic probe group and magnetic probe subgroup, there were the same imaging results between the probes of Gd-DTPA and Gd-DO3A-EA-FITC. The diffusion parameters of Gd-DTPA and Gd-DO3A-EA-FITC were as follows: the average diffusion coefficients [(3.31±0.11)×10 -4 mm 2 /s vs. (3.37±0.15)×10 -4 mm 2 /s, t=0.942, P=0.360], the clearance [(3.04±0.37) mmol/L vs. (2.90±0.51) mmol/L, t=0.640, P=0.531], the volume fractions (17.18%±0.14% vs. 17.31%±0.15%, t=1.961, P=0.068), the half-time [(86.58±3.31) min vs. (84.61±2.38) min, t=1.412, P=0.177], the diffusion areas [(23.25±0.68) mm 2 vs. (22.71±1.00) mm 2 , t=1.100, P=0.297]. The statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant. Moreover, for the optical probe group and optical probe subgroup, the diffusion area of Gd-DO3A-EA-FITC [(22.61±1.16) mm 2 ] was slightly larger than that of FITC [(22.10±1.29) mm 2 ], the statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant (t=0.713, P=0.492). Gd-DO3A-EA-FITC shows the same imaging results as the traditional GD-DTPA, and it can be used in measuring brain ISS.

  3. Electron diamagnetic effect in a magnetic nozzle on a helicon plasma thruster performance

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod

    2012-10-01

    The axial force, which is called thrust sometimes, imparted from a magnetically expanding helicon plasma thruster is directly measured and the results are compared with a two-dimensional fluid theory. The force component solely transmitted to the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the applied magnetic field. In this type of configuration, plasma diffusion in magnetic field affects a spatial profile of the plasma density and the resultant axial force onto the magnetic field. It is observed that the force component onto the magnetic field increases with an increase in the magnetic field strength, simultaneously with an increase in the plasma density downstream of the source exit, which could be due to suppression of the cross field diffusion in the magnetic nozzle.

  4. Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Varagani, R.; Saito, K.

    2003-01-01

    Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that space-related technologies based on the knowledge gained during this investigation would more likely involve permanent magnets as opposed to electromagnets. While no analysis has been done here to quantify the impact that an electric field, associated with an electromagnetic, would have relative to the paramagnetic and diamagnetic interactions, by using permanent magnets this potential effect was completely eliminated and thus paramagnetic and diamagnetic effects were isolated.

  5. A method to investigate the diffusion properties of nuclear calcium.

    PubMed

    Queisser, Gillian; Wittum, Gabriel

    2011-10-01

    Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.

  6. Quantitative Characterization of the Microstructure and Transport Properties of Biopolymer Networks

    PubMed Central

    Jiao, Yang; Torquato, Salvatore

    2012-01-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient De and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient De for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation, and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient De and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient De as well as the mean survival time τ, which is related to nuclear magnetic resonance (NMR) relaxation times. Our numerical results for De are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of De for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Yeong and Torquato [J. Chem. Phys. 106, 8814 (1997)]. We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property relations to link other physical properties to the transport properties of collagen networks is also discussed. PMID:22683739

  7. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  8. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative measure of clay distribution in extended samples during different physical processes such as swelling, dissolution, and sedimentation on the time scale from minutes to years [1-3]. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. Both natural clays and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. These results have a significant impact for engineering barriers for storage of spent nuclear fuel where clay erosion by low salinity water must be addressed. Presented methods were developed under the motivation of using bentonite clays as a buffer medium to build in-ground barriers for the encapsulation of radioactive waste. Nevertheless, the same approaches can be found suitable in other applications in soil and environmental science to study other types of materials as they swell, dissolve, erode, or sediment. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. [1] N. Nestle, T. Baumann, R. Niessner, Magnetic resonance imaging in environmental science. Environ. Sci. Techn. 36 154A (2002). [2] S. V. Dvinskikh, K. Szutkowski, I. Furó. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198 146 (2009). [3] S. V. Dvinskikh, I. Furó. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems. Technical Report, TR-09-27, SKB (2009), www.skb.se.

  9. Diffusion in realistic biophysical systems can lead to aliasing effects in diffusion spectrum imaging.

    PubMed

    Lacerda, Luis M; Sperl, Jonathan I; Menzel, Marion I; Sprenger, Tim; Barker, Gareth J; Dell'Acqua, Flavio

    2016-12-01

    Diffusion spectrum imaging (DSI) is an imaging technique that has been successfully applied to resolve white matter crossings in the human brain. However, its accuracy in complex microstructure environments has not been well characterized. Here we have simulated different tissue configurations, sampling schemes, and processing steps to evaluate DSI performances' under realistic biophysical conditions. A novel approach to compute the orientation distribution function (ODF) has also been developed to include biophysical constraints, namely integration ranges compatible with axial fiber diffusivities. Performed simulations identified several DSI configurations that consistently show aliasing artifacts caused by fast diffusion components for both isotropic diffusion and fiber configurations. The proposed method for ODF computation showed some improvement in reducing such artifacts and improving the ability to resolve crossings, while keeping the quantitative nature of the ODF. In this study, we identified an important limitation of current DSI implementations, specifically the presence of aliasing due to fast diffusion components like those from pathological tissues, which are not well characterized, and can lead to artifactual fiber reconstructions. To minimize this issue, a new way of computing the ODF was introduced, which removes most of these artifacts and offers improved angular resolution. Magn Reson Med 76:1837-1847, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Edward Purcell and Nuclear Magnetic Resonance (NMR)

    Science.gov Websites

    "development of new methods for nuclear magnetic precision measurements and discoveries in educated and inspired a generation of physicists, who refer to it often, and depend on it utterly.1 Purcell : A Precise Determination of the Proton Magnetic Moment in Bohr Magnetons; Physical Review, Vol. 76

  11. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    NASA Astrophysics Data System (ADS)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  12. Motion of charged particles normal to an irregular magnetic field. [astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1975-01-01

    The motion is analyzed of charged particles in a fluctuating magnetic field which varies only in directions normal to its mean direction, such as that which would be generated by an ensemble of magnetosonic waves propagating normal to an ambient magnetic field. The appropriate generalization of gradient-drift motion is derived in terms of the power spectrum of the magnetic fluctuations, and an effective spatial diffusion coefficient is obtained. Several special cases are considered, including a Gaussian power spectrum, a power-law spectrum with a cutoff, and a general power-law spectrum. A possible magnitude is calculated for the spatial diffusion coefficient of the solar wind.

  13. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  14. Influence of magnetic fields on charge sharing caused by diffusion in medipix detectors with a Si sensor

    NASA Astrophysics Data System (ADS)

    Jamil, Ako; Filipenko, Mykhaylo; Gleixner, Thomas; Anton, Gisela; Michel, Thilo

    2016-02-01

    The spatial and energy resolution of hybrid photon counting pixel detectors like the Timepix detector can suffer from charge sharing. Due to diffusion an initially point-like charge carrier distribution generated by ionizing radiation becomes a typically Gaussian-like distribution when arriving at the pixel electrodes. This leads to loss of charge information in edge pixels if the amount of charge in the pixel fall below the discriminator threshold. In this work we investigated the reduction of charge sharing by applying a magnetic field parallel to the electric drift field inside the sensor layer. The reduction of diffusion by a magnetic field is well known for gases. With realistic assumptions for the mean free path of charge carriers in semiconductors, a similar effect should be observable in solid state materials. We placed a Medipix-2 detector in the magnetic field of a medical MR device with a maximum magnetic field of 3 T and illuminated it with photons and α-particles from 241Am. We observe that with a magnetic field of 3000 mT the mean cluster size is reduced by 0.75 %.

  15. Investigations of Turbulent Transport Channels in Gyrokinetic Simulations

    NASA Astrophysics Data System (ADS)

    Dimits, A. M.; Candy, J.; Guttenfelder, W.; Holland, C.; Howard, N.; Nevins, W. M.; Wang, E.

    2014-10-01

    Magnetic-field stochasticity arises due to microtearing perturbations, which can be driven linearly or nonlinearly (in cases where they are linearly stable), even at very modest values of the plasma beta. The resulting magnetic-flutter contribution may or may not be a significant component of the overall electron (particle and thermal) transport. Investigations of the effect of ExB flow shear on electron-drift magnetic-flutter diffusion coefficient Dedr (r ,v||) using perturbed magnetic fields from simulations, using the GYRO code, of ITG turbulence show a significant effect for electrons with parallel velocities v|| surprisingly far from the resonant velocity. We further examine changes in the radial dependence of this diffusion coefficient vs. v|| and which resonant magnetic-field perturbations are important to the values and radial structure of Dedr. The resulting electron transport fluxes are compared with the simulation results. Improvements over in treating the ambipolar field in the relationship between the magnetic (or drift) diffusion coefficients and the transport have been made in these comparisons. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344, by GA under Contract DE-FG03-95ER54309, and by PPPL under Contract DE-AC02-09CH11466.

  16. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.

  17. Bifurcation physics of magnetic islands and stochasticity explored by heat pulse propagation studies in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.

    Bifurcation physics of the magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in LHD and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between magnetic island with larger thermal diffusivity and that with smaller thermalmore » diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. Lastly, this observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.« less

  18. Bifurcation physics of magnetic islands and stochasticity explored by heat pulse propagation studies in toroidal plasmas

    DOE PAGES

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; ...

    2016-07-29

    Bifurcation physics of the magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in LHD and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between magnetic island with larger thermal diffusivity and that with smaller thermalmore » diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. Lastly, this observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.« less

  19. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  20. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface.

    PubMed

    Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C

    2017-11-08

    Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

  1. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  2. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.

    PubMed

    Ingo, Carson; Magin, Richard L; Parrish, Todd B

    2014-11-01

    Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.

  3. b matrix errors in echo planar diffusion tensor imaging

    PubMed Central

    Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel

    2001-01-01

    Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cable, J.W.

    The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recentmore » neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs.« less

  5. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Tracing compartment exchange by NMR diffusometry: Water in lithium-exchanged low-silica X zeolites

    NASA Astrophysics Data System (ADS)

    Lauerer, A.; Kurzhals, R.; Toufar, H.; Freude, D.; Kärger, J.

    2018-04-01

    The two-region model for analyzing signal attenuation in pulsed field gradient (PFG) NMR diffusion studies with molecules in compartmented media implies that, on their trajectory, molecules get from one region (one type of compartment) into the other one with a constant (i.e. a time-invariant) probability. This pattern has proved to serve as a good approach for considering guest diffusion in beds of nanoporous host materials, with the two regions ("compartments") identified as the intra- and intercrystalline pore spaces. It is obvious, however, that the requirements of the application of the two-region model are not strictly fulfilled given the correlation between the covered diffusion path lengths in the intracrystalline pore space and the probability of molecular "escape" from the individual crystallites. On considering water diffusion in lithium-exchanged low-silica X zeolite, we are now assuming a different position since this type of material is known to offer "traps" in the trajectories of the water molecules. Now, on attributing the water molecules in the traps and outside of the traps to these two types of regions, we perfectly comply with the requirements of the two-region model. We do, moreover, benefit from the option of high-resolution measurements owing to the combination of magic angle spinning (MAS) with PFG NMR. Data analysis via the two-region model under inclusion of the influence of nuclear magnetic relaxation yields satisfactory agreement between experimental evidence and theoretical estimates. Limitations in accuracy are shown to result from the fact that mass transfer outside of the traps is too complicated for being adequately reflected by simple Fick's laws with but one diffusivity.

  7. Fluorescent recovery after photobleaching (FRAP) analysis of nuclear export rates identifies intrinsic features of nucleocytoplasmic transport.

    PubMed

    Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri

    2012-02-17

    A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level.

  8. Mapping Ion and Electron Remagnetization Distance in the Reconnection Outflow Exhaust Region with MMS

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Eriksson, S.; Gershman, D. J.; Plaschke, F.; Burch, J.

    2017-12-01

    Magnetopause current sheets have been fertile ground for understanding kinetic-scale physics of magnetic reconnection, but can also be used to study more macroscopic scale phenomena statistically. Post-reconnection, magnetic flux and plasma are accelerated away from the x-line into exhaust regions. As the exhausting plasma exits the electron diffusion region, electrons become remagnetized and are accelerated by the magnetic field into an E x B jet while the ions remain unmagnetized. Further along the exhaust, at the edge of the ion diffusion region, the ions become frozen into the magnetic field, and are accelerated to join the electrons in the exhaust jet. By assuming a constant reconnection rate of 0.1, we can infer the distance to the x-line from the normal width of the exhaust. We present a statistical study using the Magnetospheric Multiscale Mission (MMS) to map out the electron and ion remagnetization distances that define the edge of the electron and ion diffusion regions for magnetopause reconnection, and explore the effects of a guide magnetic field.

  9. Progress in Spin Dynamics Solid-State Nuclear Magnetic Resonance with the Application of Floquet-Magnus Expansion to Chemical Shift Anisotropy

    PubMed Central

    Mananga, Eugene Stephane

    2013-01-01

    The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence. PMID:23711337

  10. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  11. Interferometric study on the mass transfer in cryogenic distillation under magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.

    2017-12-01

    Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.

  12. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  13. Radial Diffusion Coefficients Using E and B Field Data from the Van Allen Probes: Comparison with the CRRES Study

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.; Malaspina, D.

    2014-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orange, N. Brice; Chesny, David L.; Gendre, Bruce

    Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less

  15. 10 CFR 76.66 - Expiration and termination of certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 76.66 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS... diffusion plants and other activities authorized under the certificate. (c) If the Corporation does not... specified in the existing certificate, terminate operation of the gaseous diffusion plants. [59 FR 48960...

  16. 10 CFR 76.66 - Expiration and termination of certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 76.66 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS... diffusion plants and other activities authorized under the certificate. (c) If the Corporation does not... specified in the existing certificate, terminate operation of the gaseous diffusion plants. [59 FR 48960...

  17. 10 CFR 76.66 - Expiration and termination of certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 76.66 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS... diffusion plants and other activities authorized under the certificate. (c) If the Corporation does not... specified in the existing certificate, terminate operation of the gaseous diffusion plants. [59 FR 48960...

  18. 10 CFR 76.66 - Expiration and termination of certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 76.66 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS... diffusion plants and other activities authorized under the certificate. (c) If the Corporation does not... specified in the existing certificate, terminate operation of the gaseous diffusion plants. [59 FR 48960...

  19. 10 CFR 76.66 - Expiration and termination of certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 76.66 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS... diffusion plants and other activities authorized under the certificate. (c) If the Corporation does not... specified in the existing certificate, terminate operation of the gaseous diffusion plants. [59 FR 48960...

  20. Investigation of the validity of quasilinear theory for electron Landau damping in a tokamak using a broad-band wave effect

    DOE PAGES

    Lee, Jungpyo; Bonoli, Paul; Wright, John

    2011-01-01

    The quasilinear diffusion coefficient assuming a constant magnetic field along the electron orbit is widely used to describe electron Landau damping of waves in a tokamak where the magnitude of the magnetic field varies on a flux surface. To understand the impact of violating the constant magnetic field assumption, we introduce the effect of a broad-bandwidth wave spectrum which has been used in the past to validate quasilinear theory for the fast decorrelation process between resonances. By the reevaluation of the diffusion coefficient through the level of the phase integral for the tokamak geometry with the broad-band wave effect included,more » we identify the three acceptable errors for the use of the quasilinear diffusion coefficient.« less

  1. A Combined NMR-Computational Study of the Interaction between Influenza Virus Hemagglutinin and Sialic Derivatives from Human and Avian Receptors on the Surface of Transfected Cells.

    PubMed

    Vasile, Francesca; Panigada, Maddalena; Siccardi, Antonio; Potenza, Donatella; Tiana, Guido

    2018-04-24

    The development of small-molecule inhibitors of influenza virus Hemagglutinin could be relevant to the opposition of the diffusion of new pandemic viruses. In this work, we made use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the interaction between two derivatives of sialic acid, Neu5Ac-α-(2,6)-Gal-β-(1⁻4)-GlcNAc and Neu5Ac-α-(2,3)-Gal-β-(1⁻4)-GlcNAc, and hemagglutinin directly expressed on the surface of recombinant human cells. We analyzed the interaction of these trisaccharides with 293T cells transfected with the H5 and H1 variants of hemagglutinin, which thus retain their native trimeric conformation in such a realistic environment. By exploiting the magnetization transfer between the protein and the ligand, we obtained evidence of the binding event, and identified the epitope. We analyzed the conformational features of the glycans with an approach combining NMR spectroscopy and data-driven molecular dynamics simulations, thus obtaining useful information for an efficient drug design.

  2. Steady motion of skyrmions and domains walls under diffusive spin torques

    NASA Astrophysics Data System (ADS)

    Elías, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurélien

    2017-03-01

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β'. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0) 2(1 +2 α β') .

  3. Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.

    2018-05-01

    In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.

  4. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    NASA Astrophysics Data System (ADS)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  5. Repeated-cascade theory of strong turbulence in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1976-01-01

    A two-dimensional Navier-Stokes equation of vorticity in fluid turbulence is used to model drift turbulence in a plasma with a strong constant magnetic field and a constant mean density gradient. The nonlinear eddy diffusivity is described by a time-integrated Lagrangian correlation of velocities, and the repeated-cascade method is employed to choose the rank accounting for nearest-neighbor interactions, to calculate the Lagrangian correlation, and to close the correlation hierarchy. As a result, the diffusivity becomes dependent on the plasma's induced diffusion and is represented by a memory chain that is cut off by similarity and inertial randomization. Spectral laws relating the kinetic-energy spectrum to the -5, -5/2, -3, and -11 powers of wavenumber are derived for the velocity subranges of production, approach to inertia, inertia, and dissipation, respectively. It is found that the diffusivity is proportional to some inverse power of the magnetic field, that power being 1, 2/3, 5/6, and 2, respectively, for the four velocity subranges.

  6. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  7. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  8. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  9. Chlorxanthomycin, a Fluorescent, Chlorinated, Pentacyclic Pyrene from a Bacillus sp.†

    PubMed Central

    Magyarosy, Andrew; Ho, Jonathan Z.; Rapoport, Henry; Dawson, Scott; Hancock, Joe; Keasling, Jay D.

    2002-01-01

    A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity. PMID:12147512

  10. A signature of anisotropic cosmic-ray transport in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Cerri, Silvio Sergio; Gaggero, Daniele; Vittino, Andrea; Evoli, Carmelo; Grasso, Dario

    2017-10-01

    A crucial process in Galactic cosmic-ray (CR) transport is the spatial diffusion due to the interaction with the interstellar turbulent magnetic field. Usually, CR diffusion is assumed to be uniform and isotropic all across the Galaxy. However, this picture is clearly inaccurate: several data-driven and theoretical arguments, as well as dedicated numerical simulations, show that diffusion exhibits highly anisotropic properties with respect to the direction of a background (ordered) magnetic field (i.e., parallel or perpendicular to it). In this paper we focus on a recently discovered anomaly in the hadronic CR spectrum inferred by the Fermi-LAT gamma-ray data at different positions in the Galaxy, i.e. the progressive hardening of the proton slope at low Galactocentric radii. We propose the idea that this feature can be interpreted as a signature of anisotropic diffusion in the complex Galactic magnetic field: in particular, the harder slope in the inner Galaxy is due, in our scenario, to the parallel diffusive escape along the poloidal component of the large-scale, regular, magnetic field. We implement this idea in a numerical framework, based on the DRAGON code, and perform detailed numerical tests on the accuracy of our setup. We discuss how the effect proposed depends on the relevant free parameters involved. Based on low-energy extrapolation of the few focused numerical simulations aimed at determining the scalings of the anisotropic diffusion coefficients, we finally present a set of plausible models that reproduce the behavior of the CR proton slopes inferred by gamma-ray data.

  11. [Assessment of motor and sensory pathways of the brain using diffusion-tensor tractography in children with cerebral palsy].

    PubMed

    Memedyarov, A M; Namazova-Baranova, L S; Ermolina, Y V; Anikin, A V; Maslova, O I; Karkashadze, M Z; Klochkova, O A

    2014-01-01

    Diffusion tensor tractography--a new method of magnetic resonance imaging, that allows to visualize the pathways of the brain and to study their structural-functional state. The authors investigated the changes in motor and sensory pathways of brain in children with cerebral palsy using routine magnetic resonance imaging and diffusion-tensor tractography. The main group consisted of 26 patients with various forms of cerebral palsy and the comparison group was 25 people with normal psychomotor development (aged 2 to 6 years) and MR-picture of the brain. Magnetic resonance imaging was performed on the scanner with the induction of a magnetic field of 1,5 Tesla. Coefficients of fractional anisotropy and average diffusion coefficient estimated in regions of the brain containing the motor and sensory pathways: precentral gyrus, posterior limb of the internal capsule, thalamus, posterior thalamic radiation and corpus callosum. Statistically significant differences (p < 0.05) values of fractional anisotropy and average diffusion coefficient in patients with cerebral palsy in relation to the comparison group. All investigated regions, the coefficients of fractional anisotropy in children with cerebral palsy were significantly lower, and the average diffusion coefficient, respectively, higher. These changes indicate a lower degree of ordering of the white matter tracts associated with damage and subsequent development of gliosis of varying severity in children with cerebral palsy. It is shown that microstructural damage localized in both motor and sensory tracts that plays a leading role in the development of the clinical picture of cerebral palsy.

  12. A signature of anisotropic cosmic-ray transport in the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerri, Silvio Sergio; Grasso, Dario; Gaggero, Daniele

    A crucial process in Galactic cosmic-ray (CR) transport is the spatial diffusion due to the interaction with the interstellar turbulent magnetic field. Usually, CR diffusion is assumed to be uniform and isotropic all across the Galaxy. However, this picture is clearly inaccurate: several data-driven and theoretical arguments, as well as dedicated numerical simulations, show that diffusion exhibits highly anisotropic properties with respect to the direction of a background (ordered) magnetic field (i.e., parallel or perpendicular to it). In this paper we focus on a recently discovered anomaly in the hadronic CR spectrum inferred by the Fermi-LAT gamma-ray data at differentmore » positions in the Galaxy, i.e. the progressive hardening of the proton slope at low Galactocentric radii. We propose the idea that this feature can be interpreted as a signature of anisotropic diffusion in the complex Galactic magnetic field: in particular, the harder slope in the inner Galaxy is due, in our scenario, to the parallel diffusive escape along the poloidal component of the large-scale, regular, magnetic field. We implement this idea in a numerical framework, based on the DRAGON code, and perform detailed numerical tests on the accuracy of our setup. We discuss how the effect proposed depends on the relevant free parameters involved. Based on low-energy extrapolation of the few focused numerical simulations aimed at determining the scalings of the anisotropic diffusion coefficients, we finally present a set of plausible models that reproduce the behavior of the CR proton slopes inferred by gamma-ray data.« less

  13. Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.

    2018-05-01

    A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.

  14. Gravitational instability of filamentary molecular clouds, including ambipolar diffusion; non-isothermal filament

    NASA Astrophysics Data System (ADS)

    Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood; Naficy, Kazem

    2018-04-01

    Recent observations of the filamentary molecular clouds show that their properties deviate from the isothermal equation of state. Theoretical investigations proposed that the logatropic and the polytropic equations of state with negative indexes can provide a better description for these filamentary structures. Here, we aim to compare the effects of these softer non-isothermal equations of state with their isothermal counterpart on the global gravitational instability of a filamentary molecular cloud. By incorporating the ambipolar diffusion, we use the non-ideal magnetohydrodynamics framework for a filament that is threaded by a uniform axial magnetic field. We perturb the fluid and obtain the dispersion relation both for the logatropic and polytropic equations of state by taking the effects of magnetic field and ambipolar diffusion into account. Our results suggest that, in absence of the magnetic field, a softer equation of state makes the system more prone to gravitational instability. We also observed that a moderate magnetic field is able to enhance the stability of the filament in a way that is sensitive to the equation of state in general. However, when the magnetic field is strong, this effect is suppressed and all the equations of state have almost the same stability properties. Moreover, we find that for all the considered equations of state, the ambipolar diffusion has destabilizing effects on the filament.

  15. A comparative quantitative analysis of magnetic susceptibility artifacts in echo planar and PROPELLER diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan

    2013-01-01

    In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.

  16. Spin-mapping of Coal Structures with ESE and ENDOR

    DOE R&D Accomplishments Database

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  17. Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta.

    PubMed

    Kang, Jin; Liu, Huijuan; Zheng, Yu-Ming; Qu, Jiuhui; Chen, J Paul

    2011-02-01

    Extensive usage of tetracycline has resulted in its contamination in surface water and groundwater. The adsorption of tetracycline on zeolite beta was systematically investigated for the decontamination of the antibiotic polluted water in this study. Ninety percent of uptake by the zeolite beta occured in 0.25h, and the adsorption equilibrium was obtained within 3h, which was well described by an intraparticle diffusion model. The adsorption generally increased when pH was increased from 4.0 to 5.0, and then decreased significantly as the pH was further increased, which was caused by the pH-dependent speciation of tetracycline and surface charge of zeolite beta. Both Freundlich and Langmuir equations well described the adsorption isotherm. A thermodynamic analysis showed that the sorption process was spontaneous and endothermic. Aluminum atoms in the zeolite played a crucial role in the uptake; the adsorption increased with the increasing aluminum content in zeolite. The UV-Visible spectroscopy study showed that the spectra of tetracycline changed upon the interaction with zeolite beta, which could be ascribed to the formation of complexes of tetracycline and aluminum atoms in the zeolite surface. Nuclear magnetic resonance spectroscopy study further confirmed the participation of Al in the tetracycline adsorption. Fourier transform infrared spectroscopy studies showed that the amino functional groups in tetracycline were involved in the complexation with the zeolite surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Nuclear magnetic resonance proton imaging of bone pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atlan, H.; Sigal, R.; Hadar, H.

    Thirty-two patients with diversified pathology were examined with a supraconductive NMR imager using spin echo with different TR and TE to obtain T1 and T2 weighted images. They included 20 tumors (12 primary, eight metastasis), six osteomyelitis, three fractures, two osteonecrosis, and one diffuse metabolic (Gaucher) disease. In all cases except for the stress fractures, the bone pathology was clearly visualized in spite of the normal lack of signal from the compact cortical bone. Nuclear magnetic resonance (NMR) imaging proved to be at least as sensitive as radionuclide scintigraphy but much more accurate than all other imaging procedures including computedmore » tomography (CT) and angiography to assess the extension of the lesions, especially in tumors extended to soft tissue. This is due both to easy acquisition of sagittal and coronal sections and to different patterns of pathologic modifications of T1 and T2 which are beginning to be defined. It is hoped that more experience in clinical use of these patterns will help to discriminate between tumor extension and soft-tissue edema. We conclude that while radionuclide scintigraphy will probably remain the most sensitive and easy to perform screening test for bone pathology, NMR imaging, among noninvasive diagnostic procedures, appears to be at least as specific as CT. In addition, where the extension of the lesions is concerned, NMR imaging is much more informative than CT. In pathology of the spine, the easy visualization of the spinal cord should decrease the need for myelography.« less

  19. Magnetic Damping of g-Jitter Induced Double-Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Shu, Y.; Li, B. Q.; deGroh, H. C.

    2001-01-01

    This paper describes a numerical study of the g-jitter driven double diffusive convective flows, thermal and concentration distributions in binary alloy melt systems subject to an external magnetic field. The study is based on the finite element solution of transient magnetohydrodynamic equations governing the momentum, thermal and solutal transport in the melt pool. Numerical simulations are conducted using the synthesized single- and multi- frequency g-jitter as well as the real g-jitter data taken during space flights with or without an applied magnetic field. It is found that for the conditions studied, the main melt flow follows approximately a lineal- superposition of velocity components induced by individual g-jitter components, regardless of whether a magnetic field exists or not. The flow field is characterized by a recirculating double diffusive convection loop oscillating in time with a defined frequency equal to that of the driving g-jitter force. An applied magnetic field has little effect on the oscillating recirculating pattern, except around the moment in time when the flow reverses its direction. The field has no effect on the oscillation period, but it changes the phase angle. It is very effective in suppressing the flow intensity and produces a notable reduction of the solutal striation and time fluctuations in the melt. For a given magnetic field strength, the magnetic damping effect is more pronounced on the velocity associated with the largest g-jitter component present and/or the g-jitter spiking peaks. A stronger magnetic field is more effective in suppressing the melt convection and also is more helpful in bringing the convection in phase with the g-jitter driving force. The applied field is particularly useful in suppressing the effect of real g-jitter spikes on both flow and solutal distributions. With appropriately selected magnetic fields, the convective flows caused by g-jitter can be reduced sufficiently and diffusion dominant. solutal transport in the melt is possible.

  20. Interpreting high time resolution galactic cosmic ray observations in a diffusive context

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Spence, H. E.; Blake, J. B.; Shaul, D. A.

    2009-12-01

    We interpret galactic cosmic ray (GCR) variations near Earth within a diffusive context. The variations occur on time-/size-scales ranging from Forbush decreases (Fds), to substructure embedded within Fds, to smaller amplitude and shorter duration variations during relatively benign interplanetary conditions. We use high time resolution GCR observations from the High Sensitivity Telescope (HIST) on Polar and from the Spectrometer for INTEGRAL (SPI) and also use solar wind plasma and magnetic field observations from ACE and/or Wind. To calculate the coefficient of diffusion, we combine these datasets with a simple convection-diffusion model for relativistic charged particles in a magnetic field. We find reasonable agreement between our and previous estimates of the coefficient. We also show whether changes in the coefficient of diffusion are sufficient to explain the above GCR variations.

  1. Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Ammari, Habib; Qiu, Lingyun; Santosa, Fadil; Zhang, Wenlong

    2017-12-01

    In this paper we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor by integrating magneto-acoutic tomography with data acquired from diffusion tensor imaging. Magneto-acoustic tomography with magnetic induction (MAT-MI) is a hybrid, non-invasive medical imaging technique to produce conductivity images with improved spatial resolution and accuracy. Diffusion tensor imaging (DTI) is also a non-invasive technique for characterizing the diffusion properties of water molecules in tissues. We propose a model for anisotropic conductivity in which the conductivity is proportional to the diffusion tensor. Under this assumption, we propose an optimal control approach for reconstructing the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy and feasibility.

  2. Fractional motion model for characterization of anomalous diffusion from NMR signals.

    PubMed

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  3. Fractional motion model for characterization of anomalous diffusion from NMR signals

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  4. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less

  5. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.

  6. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  7. Sensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.

    PubMed

    Lupulescu, Adonis; Frydman, Lucio

    2011-10-07

    Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics

  8. Insights into Mechanistic Models for Evaporation of Organic Liquids in the Environment Obtained by Position-Specific Carbon Isotope Analysis.

    PubMed

    Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick

    2015-11-03

    Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

  9. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2016-06-30

    A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.

  10. Investigation of heavy-ion fusion with deformed surface diffuseness: Actinide and lanthanide targets

    NASA Astrophysics Data System (ADS)

    Alavi, S. A.; Dehghani, V.

    2017-05-01

    By using a deformed Broglia-Winther nuclear interaction potential in the framework of the WKB method, the near- and above-barrier heavy-ion-fusion cross sections of 16O with some lanthanides and actinides have been calculated. The effect of deformed surface diffuseness on the nuclear interaction potential, the effective interaction potential at distinct angle, barrier position, barrier height, cross section at each angles, and fusion cross sections of 16O+147Sm,150Nd,154Sm , and 166Er and 16O+232Th,238U,237Np , and 248Cm have been studied. The differences between the results obtained by using deformed surface diffuseness and those obtained by using constant surface diffuseness were noticeable. Good agreement between experimental data and theoretical calculation with deformed surface diffuseness were observed for 16O+147Sm,154Sm,166Er,238U,237Np , and 248Cm reactions. It has been observed that deformed surface diffuseness plays a significant role in heavy-ion-fusion studies.

  11. Picosecond Dynamics of Excitonic Magnetic Polarons in Colloidal Diffusion-Doped Cd(1-x)Mn(x)Se Quantum Dots.

    PubMed

    Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R

    2015-11-24

    Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.

  12. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shuai, E-mail: gshuai@nimte.ac.cn; Zhang, Xiaofeng; Ding, Guangfei

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and themore » coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.« less

  13. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2012-10-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT . Traumatic Brain Injury ( TBI ) is a public health problem of immense magnitude and...immediate importance that has become endemic among military personnel and veterans. Imaging biomarkers of TBI are needed to support diagnosis and therapy...and to predict TBI consequences while avoiding further injury. Diffusion magnetic resonance imaging has potential to become the non-invasive tool

  14. Diffusion in thorium carbide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2015-12-01

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature.

  15. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  16. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  17. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  18. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  19. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  20. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  1. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  2. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  3. 10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...

  4. 10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...

  5. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  6. A monte carlo study of restricted diffusion: Implications for diffusion MRI of prostate cancer.

    PubMed

    Gilani, Nima; Malcolm, Paul; Johnson, Glyn

    2017-04-01

    Diffusion MRI is used frequently to assess prostate cancer. The prostate consists of cellular tissue surrounding fluid filled ducts. Here, the diffusion properties of the ductal fluid alone were studied. Monte Carlo simulations were used to investigate ductal residence times to determine whether ducts can be regarded as forming a separate compartment and whether ductal radius could determine the Apparent Diffusion Coefficient (ADC) of the ductal fluid. Random walks were simulated in cavities. Average residence times were estimated for permeable cavities. Signal reductions resulting from application of a Stejskal-Tanner pulse sequence were calculated in impermeable cavities. Simulations were repeated for cavities of different radii and different diffusion times. Residence times are at least comparable with diffusion times even in relatively high grade tumors. ADCs asymptotically approach theoretical limiting values. At large radii and short diffusion times, ADCs are similar to free diffusion. At small radii and long diffusion times, ADCs are reduced toward zero, and kurtosis approaches a value of -1.2. Restricted diffusion in cavities of similar sizes to prostate ducts may reduce ductal ADCs. This may contribute to reductions in total ADC seen in prostate cancer. Magn Reson Med 77:1671-1677, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis

    2014-04-01

    The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch-Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge-Kutta-Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.

  8. Numerical Solution of the Electron Heat Transport Equation and Physics-Constrained Modeling of the Thermal Conductivity via Sequential Quadratic Programming Optimization in Nuclear Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Paloma, Cynthia S.

    The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.

  9. Exploring the role of turbulent acceleration and heating in fractal current sheet of solar flares­ from hybrid particle in cell and lattice Boltzmann virtual test

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.

    2016-12-01

    The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the diffusion regions. At stage IV, the magnetic reconnection type nanoplasmid (200km) stop expanding and carrying enough energy to eject particles as constant velocity. Last, the role of magnetic field turbulence and electric field turbulence in electron and ion acceleration at the diffusion regions in solar flare fractural current sheet is given.

  10. Plasma Diffusion in Self-Consistent Fluctuations

    NASA Technical Reports Server (NTRS)

    Smets, R.; Belmont, G.; Aunai, N.

    2012-01-01

    The problem of particle diffusion in position space, as a consequence ofeleclromagnetic fluctuations is addressed. Numerical results obtained with a self-consistent hybrid code are presented, and a method to calculate diffusion coefficient in the direction perpendicular to the mean magnetic field is proposed. The diffusion is estimated for two different types of fluctuations. The first type (resuiting from an agyrotropic in itiai setting)is stationary, wide band white noise, and associated to Gaussian probability distribution function for the magnetic fluctuations. The second type (result ing from a Kelvin-Helmholtz instability) is non-stationary, with a power-law spectrum, and a non-Gaussian probabi lity distribution function. The results of the study allow revisiting the question of loading particles of solar wind origin in the Earth magnetosphere.

  11. Presence of time-dependent diffusion in the brachial plexus.

    PubMed

    Mahbub, Zaid B; Peters, Andrew M; Gowland, Penny A

    2018-02-01

    This work describes the development of a method to measure the variation of apparent diffusion coefficient (ADC) with diffusion time (Δ) in the brachial plexus, as a potential method of probing microstructure. Diffusion-weighted MRI with body signal suppression was used to highlight the nerves from surrounding tissues, and sequence parameters were optimized for sensitivity to change with diffusion time. A porous media-restricted diffusion model based on the Latour-Mitra equation was fitted to the diffusion time-dependent ADC data from the brachial plexus nerves and cord. The ADC was observed to reduce at long diffusion times, confirming that diffusion was restricted in the nerves and cord in healthy subjects. T2 of the nerves was measured to be 80 ± 5 ms, the diffusion coefficient was found to vary from (1.5 ± 0.1) × 10 -3 mm 2 /s at a diffusion time of 18.3 ms to (1.0 ± 0.2) × 10 -3 mm 2 /s at a diffusion time of 81.3 ms. A novel method of probing restricted diffusion in the brachial plexus was developed. Resulting parameters were comparable with values obtained previously on biological systems. Magn Reson Med 79:789-795, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Mapping immune cell infiltration using restricted diffusion MRI.

    PubMed

    Yeh, Fang-Cheng; Liu, Li; Hitchens, T Kevin; Wu, Yijen L

    2017-02-01

    Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Basic physics of nuclear magnetic resonance.

    PubMed

    Patz, S

    1986-01-01

    This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.

  14. Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohandas, Gopakumar; Pessah, Martin E., E-mail: gopakumar@nbi.ku.dk, E-mail: mpessah@nbi.ku.dk

    The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of themore » Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.« less

  15. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less

  16. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  17. Fluorescent Recovery after Photobleaching (FRAP) Analysis of Nuclear Export Rates Identifies Intrinsic Features of Nucleocytoplasmic Transport*

    PubMed Central

    Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri

    2012-01-01

    A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level. PMID:22190681

  18. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  19. Metabolite diffusion up to very high b in the mouse brain in vivo: Revisiting the potential correlation between relaxation and diffusion properties

    PubMed Central

    Ligneul, Clémence; Palombo, Marco

    2016-01-01

    Purpose To assess the potential correlation between metabolites diffusion and relaxation in the mouse brain, which is of importance for interpreting and modeling metabolite diffusion based on pure geometry, irrespective of relaxation properties (multicompartmental relaxation or surface relaxivity). Methods A new diffusion‐weighted magnetic resonance spectroscopy sequence is introduced, dubbed “STE‐LASER,” which presents several nice properties, in particular the absence of cross‐terms with selection gradients and a very clean localization. Metabolite diffusion is then measured in a large voxel in the mouse brain at 11.7 Tesla using a cryoprobe, resulting in excellent signal‐to‐noise ratio, up to very high b‐values under different echo time, mixing time, and diffusion time combinations. Results Our results suggest that the correlation between relaxation and diffusion properties is extremely small or even nonexistent for metabolites in the mouse brain. Conclusion The present work strongly supports the interpretation and modeling of metabolite diffusion primarily based on geometry, irrespective of relaxation properties, at least under current experimental conditions. Magn Reson Med 77:1390–1398, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:27018415

  20. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  1. ICP-MS analysis of fission product diffusion in graphite for High-Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Carter, Lukas M.

    Release of radioactive fission products from nuclear fuel during normal reactor operation or in accident scenarios is a fundamental safety concern. Of paramount importance are the understanding and elucidation of mechanisms of chemical interaction, nuclear interaction, and transport phenomena involving fission products. Worldwide efforts to reduce fossil fuel dependence coupled with an increasing overall energy demand have generated renewed enthusiasm toward nuclear power technologies, and as such, these mechanisms continue to be the subjects of vigorous research. High-Temperature Gas-Cooled Reactors (HTGRs or VHTRs) remain one of the most promising candidates for the next generation of nuclear power reactors. An extant knowledge gap specific to HTGR technology derives from an incomplete understanding of fission product transport in major core materials under HTGR operational conditions. Our specific interest in the current work is diffusion in reactor graphite. Development of methods for analysis of diffusion of multiple fission products is key to providing accurate models for fission product release from HTGR core components and the reactor as a whole. In the present work, a specialized diffusion cell has been developed and constructed to facilitate real-time diffusion measurements via ICP-MS. The cell utilizes a helium gas-jet system which transports diffusing fission products to the mass spectrometer using carbon nanoparticles. The setup was designed to replicate conditions present in a functioning HTGR, and can be configured for real-time release or permeation measurements of single or multiple fission products from graphite or other core materials. In the present work, we have analyzed release rates of cesium in graphite grades IG-110, NBG-18, and a commercial grade of graphite, as well as release of iodine in IG-110. Additionally we have investigated infusion of graphite samples with Cs, I, Sr, Ag, and other surrogate fission products for use in release or profile measurements of diffusion coefficients.

  2. Feedback control for manipulating magnetization in spin-exchange optical pumping system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua

    2018-08-01

    Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.

  3. Unmagnetized diffusion for azimuthally symmetric wave and particle distributions

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Lyons, L. R.

    1988-01-01

    The quasi-linear diffusion of particles from resonant interactions with a spectrum of electrostatic waves is investigated theoretically, extending results obtained for no magnetic field and for strong magnetic fields to cases where the ambient magnetic field which organizes azimuthally symmetric wave and particle distributions does not have to be taken into consideration in evaluating the local interaction. The derivation of the governing equations is explained, and numerical results are presented in extensive graphs and characterized in detail. Slow-mode ion-acoustic waves are shown to be unstable under the plasma conditions studied, and the dependence of resonant-ion diffusion rates with pitch angle, speed, and the distribution of wave energy in wavenumber space is explored. The implications of the present findings for theoretical models of the earth bow shock and plasma-sheet boundary layer are indicated.

  4. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  5. Mixing of a passive scalar by the instability of a differentially rotating axial pinch

    NASA Astrophysics Data System (ADS)

    Paredes, A.; Gellert, M.; Rüdiger, G.

    2016-04-01

    The mean-field diffusion of passive scalars such as lithium, beryllium or temperature dispersals due to the magnetic Tayler instability of a rotating axial pinch is considered. Our study is carried out within a Taylor-Couette setup for two rotation laws: solid-body quasi-Kepler rotation. The minimum magnetic Prandtl number used is 0.05, and the molecular Schmidt number Sc of the fluid varies between 0.1 and 2. An effective diffusivity coefficient for the mixing is numerically measured by the decay of a prescribed concentration peak located between both cylinder walls. We find that only models with Sc exceeding 0.1 basically provide finite instability-induced diffusivity values. We also find that for quasi-Kepler rotation at a magnetic Mach number Mm ≃ 2, the flow transits from the slow-rotation regime to the fast-rotation regime that is dominated by the Taylor-Proudman theorem. For fixed Reynolds number, the relation between the normalized turbulent diffusivity and the Schmidt number of the fluid is always linear so that also a linear relation between the instability-induced diffusivity and the molecular viscosity results, just in the sense proposed by Schatzman (1977, A&A, 573, 80). The numerical value of the coefficient in this relation reaches a maximum at Mm ≃ 2 and decreases for larger Mm, implying that only toroidal magnetic fields on the order of 1 kG can exist in the solar tachocline.

  6. An evaluation of subacute sclerosing panencephalitis patients with diffusion-weighted magnetic resonance imaging.

    PubMed

    Abuhandan, M; Cece, H; Calik, M; Karakas, E; Dogan, F; Karakas, O

    2013-03-01

    This study aimed to evaluate the contribution of diffusion weighted magnetic resonance imaging to the diagnosis and staging of subacute sclerosing panencephalitis. The study comprised 26 patients diagnosed with subacute sclerosing panencephalitis at our clinic who were undergoing regular follow-up, and a control group of 18 subjects. Clinical staging was determined by Risk and Haddad classification; 12 at Stage II and 14 at Stage III. Diffusion weighted magnetic resonance images were taken of six areas (frontal, parieto-occipital, cerebellar, deep white matter, thalamus and basal ganglia) and by calculating the apparent diffusion coefficient (ADC) values, and a comparison was made between the stages and with the control group. The ADC values of all the areas of the subacute sclerosing panencephalitis patients were found to be significantly higher compared to the control group (p < 0.05). While the mean ADC values of the deep white matter, basal ganglia, frontal and parieto-occipital areas of the Stage II patients were found to be significant compared to the control group (p < 0.05), there was no significance in the other areas (p > 0.05). The ADC values of all the areas of the Stage III patients were found to be significantly high compared to the Stage II values (p < 0.05). Diffusion weighted magnetic resonance imaging can be used with other diagnostic criteria to confirm diagnosis of subacute sclerosing panencephalitis and to reveal differences between the stages.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less

  8. An investigation of the sensitivity of low-field nuclear magnetic resonance to microbial growth and activity

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Keating, K.

    2014-12-01

    Microbes and microbial processes play a significant role in shaping subsurface environments and are involved in applications ranging from microbially enhanced oil recovery to soil and groundwater contaminant remediation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface; however, due to the complexity of subsurface systems,it is difficult to monitor the growth of microbes and microbial activity in porous media. The focus of this research is to determine if low-field nuclear magnetic resonance (NMR), a method used in well logging to characterize fluids in hydrocarbon reservoirs or water in aquifers, can be used to directly detect the presence and the growth of microbes in geologic media. In this laboratory study, low-field NMR (2 MHz) relaxation measurements were collected on microbial suspensions with measured densities (i.e. biomasses), microbial pellets (live and dead), and inoculated silica. We focus on the direct contribution of microbes to the NMR signals in the absence of biomineralization. Shewanella oneidensis (MR-1), a facultative metal reducer known to play an important role in subsurface environments, were used as a model organism and were inoculated under aerobic condition. Data were collected using a CPMG pulse sequence, which was to determine the T2-distribution, and using a gradient spin-echo (PGSE) plus CPMG pulse sequence, which was used to encode diffusion properties and determine the effective diffusion-spin-spin relaxation correlation (D-T2) plot. Our data show no obvious change in the T2-distribution as S. oneidensis density varied in suspension, but show a clear distinction in the T2-distribution and D-T2 plots between live and dead cell pellets. A decrease in the T2-distribution is observed in the inoculated sand column. These results will provide a basis for understanding the effect of microbes within geologic media on low-field NMR measurements. This research is necessary to determine if NMR measurements can ultimately to be used to monitor microbial growth and activity in oil reservoirs or contaminated aquifers.

  9. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    DOT National Transportation Integrated Search

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  10. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. THE IMPLICIT CONTRIBUTION OF SLAB MODES TO THE PERPENDICULAR DIFFUSION COEFFICIENT OF PARTICLES INTERACTING WITH TWO-COMPONENT TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A., E-mail: andreasm4@yahoo.com

    2016-10-20

    We explore the transport of energetic particles in two-component turbulence in which the stochastic magnetic field is assumed to be a superposition of slab and two-dimensional modes. It is known that in magnetostatic slab turbulence, the motion of particles across the mean magnetic field is subdiffusive. If a two-dimensional component is added, diffusion is recovered. It was also shown before that in two-component turbulence, the slab modes do not explicitly contribute to the perpendicular diffusion coefficient. In the current paper, the implicit contribution of slab modes is explored and it is shown that this contribution leads to a reduction ofmore » the perpendicular diffusion coefficient. This effect improves the agreement between simulations and analytical theory. Furthermore, the obtained results are relevant for investigations of diffusive shock acceleration.« less

  12. Causal Diffusion and the Survival of Charge Fluctuations

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Mohamed; Gavin, Sean

    2004-10-01

    Diffusion may obliterate fluctuation signals of the QCD phase transition in nuclear collisions at SPS and RHIC energies. We propose a hyperbolic diffusion equation to study the dissipation of net charge fluctuations [1]. This equation is needed in a relativistic context, because the classic parabolic diffusion equation violates causality. We find that causality substantially limits the extent to which diffusion can dissipate these fluctuations. [1] M. Abdel-Aziz and S. Gavin, nucl-th/0404058

  13. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    ERIC Educational Resources Information Center

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  14. 78 FR 30342 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Corporation, Paducah Gaseous Diffusion Plant AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Compliance (CoC) for the Paducah Gaseous Diffusion Plant (PGDP). The existing CoC (No. GDP-1) authorizes... compliance for PGDP on November 26, 1996, and assumed regulatory oversight for the plant on March 3, 1997...

  15. Physiological Background of Differences in Quantitative Diffusion-Weighted Magnetic Resonance Imaging Between Acute Malignant and Benign Vertebral Body Fractures: Correlation of Apparent Diffusion Coefficient With Quantitative Perfusion Magnetic Resonance Imaging Using the 2-Compartment Exchange Model.

    PubMed

    Geith, Tobias; Biffar, Andreas; Schmidt, Gerwin; Sourbron, Steven; Dietrich, Olaf; Reiser, Maximilian; Baur-Melnyk, Andrea

    2015-01-01

    To test the hypothesis that apparent diffusion coefficient (ADC) in vertebral bone marrow of benign and malignant fractures is related to the volume of the interstitial space, determined with dynamic contrast-enhanced (DCE) magnetic resonance imaging. Patients with acute benign (n = 24) and malignant (n = 19) vertebral body fractures were examined at 1.5 T. A diffusion-weighted single-shot turbo-spin-echo sequence (b = 100 to 600 s/mm) and DCE turbo-FLASH sequence were evaluated. Regions of interest were manually selected for each fracture. Apparent diffusion coefficient was determined with a monoexponential decay model. The DCE magnetic resonance imaging concentration-time curves were analyzed using a 2-compartment tracer-kinetic model. Apparent diffusion coefficient showed a significant positive correlation with interstitial volume in the whole study population (Pearson r = 0.66, P < 0.001), as well as in the malignant (Pearson r = 0.64, P = 0.004) and benign (Pearson r = 0.52, P = 0.01) subgroup. A significant correlation between ADC and the permeability-surface area product could be observed when analyzing the whole study population (Spearman rs = 0.40, P = 0.008), but not when separately examining the subgroups. Plasma flow showed a significant correlation with ADC in benign fractures (Pearson r = 0.23, P = 0.03). Plasma volume did not show significant correlations with ADC. The results support the hypothesis that the ADC of a lesion is inversely correlated to its cellularity. This explains previous observations that ADC is reduced in more malignant lesions.

  16. Experimental considerations for fast kurtosis imaging.

    PubMed

    Hansen, Brian; Lund, Torben E; Sangill, Ryan; Stubbe, Ebbe; Finsterbusch, Jürgen; Jespersen, Sune Nørhøj

    2016-11-01

    The clinical use of kurtosis imaging is impeded by long acquisitions and postprocessing. Recently, estimation of mean kurtosis tensor W¯ and mean diffusivity ( D¯) was made possible from 13 distinct diffusion weighted MRI acquisitions (the 1-3-9 protocol) with simple postprocessing. Here, we analyze the effects of noise and nonideal diffusion encoding, and propose a new correction strategy. We also present a 1-9-9 protocol with increased robustness to experimental imperfections and minimal additional scan time. This refinement does not affect computation time and also provides a fast estimate of fractional anisotropy (FA). 1-3-9/1-9-9 data are acquired in rat and human brains, and estimates of D¯, FA, W¯ from human brains are compared with traditional estimates from an extensive diffusion kurtosis imaging data set. Simulations are used to evaluate the influence of noise and diffusion encodings deviating from the scheme, and the performance of the correction strategy. Optimal b-values are determined from simulations and data. Accuracy and precision in D¯ and W¯ are comparable to nonlinear least squares estimation, and is improved with the 1-9-9 protocol. The compensation strategy vastly improves parameter estimation in nonideal data. The framework offers a robust and compact method for estimating several diffusion metrics. The protocol is easily implemented. Magn Reson Med 76:1455-1468, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  17. Melt Stabilization of PbSnTe in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, William J.; Rosch, William; Chait, Arnon; Yao, Minwu; Szofran, Frank R.

    1999-01-01

    Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic field of only a few kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and control solute segregation. Therefore, this work confirms the idea that the combination of microgravity environment and the magnetic damping will indeed be sufficient to produce the desired diffusion-controlled growth state for PbSnTe.

  18. Brownian motion of electrons in time-dependent magnetic fields.

    NASA Technical Reports Server (NTRS)

    Iverson, G. J.; Williams, R. M.

    1973-01-01

    The behavior of a weakly ionized plasma in slowly varying time-dependent magnetic fields is studied through an extension of Williamson's stochastic theory. In particular, attention is focused on the properties of electron diffusion in the plane perpendicular to the direction of the magnetic field, when the field strength is large. It is shown that, in the strong field limit, the classical 1/B-squared dependence of the perpendicular diffusion coefficient is obtained for two models in which the field B(t) is monotonic in t and for two models in which B(t) possesses at least one turning point.

  19. 10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...

  20. 10 CFR 76.113 - Formula quantities of strategic special nuclear material-Category I.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Formula quantities of strategic special nuclear material-Category I. 76.113 Section 76.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.113 Formula quantities of strategic special nuclear material...

Top