NASA Astrophysics Data System (ADS)
Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.
2010-07-01
'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.
Zhao, Hong-Bao
2014-01-01
Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters. PMID:25531000
Lindahl, Lina; Genheden, Samuel; Faria-Oliveira, Fábio; Allard, Stefan; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio
2017-12-01
Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes.
Lindahl, Lina; Genheden, Samuel; Faria-Oliveira, Fábio; Allard, Stefan; Eriksson, Leif A.; Olsson, Lisbeth; Bettiga, Maurizio
2017-01-01
Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes. PMID:29354649
Garcia, Jose; Markovski, Jasmina; McKay Gifford, J; Apul, Onur; Hristovski, Kiril D
2017-05-15
The overarching goal of this study was to ascertain the changes in intraparticle mass transport rates for organic contaminants resulting from nano-enabled hybridization of commercially available granular activated carbon (GAC). Three different nano-enabled hybrid media were fabricated by in-situ synthesizing titanium dioxide nanoparticles inside the pores of GAC sorbent, characterized, and evaluated for removal of two model organic contaminants under realistic conditions to obtain the intraparticle mass transport (pore and surface diffusion) coefficients. The results validated the two hypotheses that: (H1) the pore diffusion rates of organic contaminants linearly decrease with decrease in cumulative pore volume caused by increase in metal (hydr)oxide nanoparticle content inside the pores of the hybrid GAC sorbent; and (H2) introduction of metal (hydr)oxide nanoparticles initially increases surface diffusivity, but additional loading causes its decrease as the increase in metal (hydr)oxide nanoparticles content continues to reduce the porosity of the GAC sorbent. Nano-enabled hybridization of commercially available GAC with metal (hydr)oxides has the potential to significantly increase the intraparticle mass transport limitations for organic contaminants. Introduction of metal (hydr)oxide nanoparticles inside the pores of a pristine sorbent causes the pore diffusion rates of organic contaminants to decrease as the cumulative pore volume is reduced. In contrast, the introduction of limited amounts of metal (hydr)oxide nanoparticles appears to facilitate the surface diffusion rates of these contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel method for computing effective diffusivity: Application to helium implanted α-Fe thin films
NASA Astrophysics Data System (ADS)
Dunn, Aaron; Agudo-Merida, Laura; Martin-Bragado, Ignacio; McPhie, Mathieu; Cherkaoui, Mohammed; Capolungo, Laurent
2014-05-01
The effective diffusivity of helium in thin iron films is quantified using spatially resolved stochastic cluster dynamics and object kinetic Monte Carlo simulations. The roles of total displacement dose (in DPA), damage rate, helium to DPA ratio, layer thickness, and damage type (cascade damage vs Frenkel pair implantation) on effective He diffusivity are investigated. Helium diffusivity is found to decrease with increasing total damage and decreasing damage rate. Arrhenius plots show strongly increased helium diffusivity at high temperatures, high total implantation, and low implantation rates due to decreased vacancy and vacancy cluster concentrations. At low temperatures, effective diffusivity is weakly dependent on foil thickness while at high temperatures, narrower foils prevent defect accumulation by releasing all defects at the free surfaces. Helium to DPA ratio is not shown to strongly change helium diffusivity in the range of irradiation conditions simulated. Frenkel pair implantation is shown to cause higher effective diffusivity and more complex diffusion mechanisms than cascade implantation. The results of these simulations indicate that the differences in damage rates between implantation experiments and fission or fusion environments may result in differences in the final microstructure.
Gas diffusion liquid storage bag and method of use for storing blood
NASA Technical Reports Server (NTRS)
Bank, H.; Cleland, E. L. (Inventor)
1979-01-01
The shelf life of stored whole blood may be doubled by adding a buffer which maintains a desired pH level. However, this buffer causes the generation of CO2 which, if not removed at a controlled rate, causes the pH value of the blood to decrease, which shortens the useful life of the blood. A blood storage bag is described which permits the CO2 to be diffused out at a controlled rate into the atmosphere, thereby maintaining the desired pH value and providing a bag strong enough to permit handling.
Chichom-Mefire, Alain; Fon, Tabe Alain; Ngowe-Ngowe, Marcelin
2016-01-01
Acute diffuse peritonitis is a common surgical emergency worldwide and a major contributor to non-trauma related death toll. Its causes vary widely and are correlated with mortality. Community acquired peritonitis seems to play a major role and is frequently related to hollow viscus perforation. Data on the outcome of peritonitis in the tropics are scarce. The aim of this study is to analyze the impact of tropic latitude causes of diffuse peritonitis on morbidity and mortality. We retrospectively reviewed the records of 305 patients operated on for a diffuse peritonitis in two regional hospitals in the South-West Region of Cameroon over a 7 years period. The contributions of various causes of peritonitis to morbidity and mortality were analyzed. The diagnosis of diffuse peritonitis was suggested on clinical ground only in more than 93 % of cases. The most common causes of diffuse peritonitis included peptic ulcer perforation (n = 69), complications of acute appendicitis (n = 53) and spontaneous perforations of the terminal ileum (n = 43). A total of 142 complications were recorded in 96 patients (31.5 % complication rate). The most common complications included wound dehiscence, sepsis, prolonged paralytic ileus and multi-organ failure. Patients with typhoid perforation of the terminal ileum carried a significantly higher risk of developing a complication (p = 0.002). The overall mortality rate was 15.1 %. The most common cause of death was septic shock. Differential analysis of mortality of various causes of peritonitis indicated that the highest contributors to death toll were typhoid perforation of terminal ileum (34.7 % of deaths), post-operative peritonitis (19.5 %) and peptic ulcer perforation (15.2 %). The diagnosis of diffuse peritonitis can still rely on clinical assessment alone in the absence of sophisticated imaging tools. Peptic ulcer and typhoid perforations are still major contributors to death toll. Patients presenting with these conditions require specific attention and prevention policies must be reinforced.
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
Downer, N W; Cone, R A
1985-01-01
If a photoexcited rhodopsin molecule initiates the formation of rhodopsin oligomers during the process of visual excitation, the rate of rotational diffusion of the rhodopsin molecules involved should change markedly. Using microsecond-flash photometry, we have observed the rotational diffusion of rhodopsin throughout the time period of visual excitation and found that no detectable change occurs in its rotational diffusion rate. Partial chemical cross-linking of the retina yields oligomers of rhodopsin and causes a significant decrease in the rotational diffusion rate of rhodopsin even when as little as 20% of rhodopsin is dimeric. Moreover, the pattern of oligomers formed by cross-linking, taken together with the magnitude of decreases in rotational diffusion rate accompanying the cross-linking reaction, suggests that rhodopsin is a monomer in the dark-adapted state. The experiments reported here show that photoexcited rhodopsin molecules do not irreversibly associate with unbleached neighbors during the time course of the receptor response. Hence, it is not likely that stable oligomers of rhodopsin trigger the excitation of the photoreceptor cell. Images FIGURE 1 PMID:3919778
Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.
Gantzer, Paul A; Bryant, Lee D; Little, John C
2009-04-01
Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.
Crystallization kinetics of the borax decahydrate
NASA Astrophysics Data System (ADS)
Ceyhan, A. A.; Sahin, Ö.; Bulutcu, A. N.
2007-03-01
The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters ( Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol -1, respectively.
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. H.; Li, G.; Guo, E. J.
Y 3Fe 5O 12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previousmore » reported ~10 μm up to ~156 μm (for the sample prepared by liquid phase epitaxy) and ~180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ~30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the Fe 3+ ion in YIG. Long-wavelength laser is more effective since it causes a transition of the Fe 3+ ions in FeO 6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. Furthermore, the present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.« less
Wang, S. H.; Li, G.; Guo, E. J.; ...
2018-05-09
Y 3Fe 5O 12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previousmore » reported ~10 μm up to ~156 μm (for the sample prepared by liquid phase epitaxy) and ~180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ~30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the Fe 3+ ion in YIG. Long-wavelength laser is more effective since it causes a transition of the Fe 3+ ions in FeO 6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. Furthermore, the present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.« less
Strongly extended diffusion length for the nonequilibrium magnons in Y3F e5O12 by photoexcitation
NASA Astrophysics Data System (ADS)
Wang, S. H.; Li, G.; Guo, E. J.; Zhao, Y.; Wang, J. Y.; Zou, L. K.; Yan, H.; Cai, J. W.; Zhang, Z. T.; Wang, M.; Tian, Y. Y.; Zheng, X. L.; Sun, J. R.; Jin, K. X.
2018-05-01
Y3F e5O12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previous reported ˜10 μm up to ˜156 μm (for the sample prepared by liquid phase epitaxy) and ˜180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ˜30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the F e3 + ion in YIG. Long-wavelength laser is more effective since it causes a transition of the F e3 + ions in Fe O6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. The present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.
NASA Astrophysics Data System (ADS)
Gillham, R. W.; Sudicky, E. A.; Cherry, J. A.; Frind, E. O.
1984-03-01
In layered permeable deposits with flow predominately parallel to the bedding, advection causes rapid solute transport in the more permeable layers. As the solute advances more rapidly in these layers, solute mass is continually transferred to the less permeable layers as a result of molecular diffusion due to the concentration gradient between the layers. The interlayer solute transfer causes the concentration to decline along the permeable layers at the expense of increasing the concentration in the less permeable layers, which produces strongly dispersed concentration profiles in the direction of flow. The key parameters affecting the dispersive capability of the layered system are the diffusion coefficients for the less permeable layers, the thicknesses of the layers, and the hydraulic conductivity contrasts between the layers. Because interlayer solute transfer by transverse molecular diffusion is a time-dependent process, the advection-diffusion concept predicts a rate of longitudinal spreading during the development of the dispersion process that is inconsistent with the classical Fickian dispersion model. A second consequence of the solute-storage effect offered by transverse diffusion into low-permeability layers is a rate of migration of the frontal portion of a contaminant in the permeable layers that is less than the groundwater velocity. Although various lines of evidence are presented in support of the advection-diffusion concept, more work is required to determine the range of geological materials for which it is applicable and to develop mathematical expressions that will make it useful as a predictive tool for application to field cases of contaminant migration.
Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients.
Fei, Hongzhan; Wiedenbeck, Michael; Yamazaki, Daisuke; Katsura, Tomoo
2013-06-13
Water has been thought to affect the dynamical processes in the Earth's interior to a great extent. In particular, experimental deformation results suggest that even only a few tens of parts per million of water by weight enhances the creep rates in olivine by orders of magnitude. However, those deformation studies have limitations, such as considering only a limited range of water concentrations and very high stresses, which might affect the results. Rock deformation can also be understood as an effect of silicon self-diffusion, because the creep rates of minerals at temperatures as high as those in the Earth's interior are limited by self-diffusion of the slowest species. Here we experimentally determine the silicon self-diffusion coefficient DSi in forsterite at 8 GPa and 1,600 K to 1,800 K as a function of water content CH2O from less than 1 to about 800 parts per million of water by weight, yielding the relationship, DSi ≈ (CH2O)(1/3). This exponent is strikingly lower than that obtained by deformation experiments (1.2; ref. 7). The high nominal creep rates in the deformation studies under wet conditions may be caused by excess grain boundary water. We conclude that the effect of water on upper-mantle rheology is very small. Hence, the smooth motion of the Earth's tectonic plates cannot be caused by mineral hydration in the asthenosphere. Also, water cannot cause the viscosity minimum zone in the upper mantle. And finally, the dominant mechanism responsible for hotspot immobility cannot be water content differences between their source and surrounding regions.
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Hernández-Pérez, Francisco E.; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P. H.
2017-09-01
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled diffusion flames provides potential for significant computational simplifications for modeling purposes in many instances, allowing for effects of finite-rate chemistry while avoiding time-consuming computations of Arrhenius expressions.
Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source
NASA Technical Reports Server (NTRS)
Zoutendyk, J.; Akutagawa, W.
1982-01-01
Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.
Xu, Fuqing; Wang, Zhi-Wu; Tang, Li; Li, Yebo
2014-09-01
In solid-state anaerobic digestion (SS-AD) of cellulosic biomass, the volumetric methane production rate has often been found to increase with the increase in total solids (TS) content until a threshold is reached, and then to decrease. This phenomenon cannot be explained by conventional understanding derived from liquid anaerobic digestion. This study proposed that the high TS content-caused mass diffusion limitation may be responsible for the observed methane production deterioration. Based on this hypothesis, a new SS-AD model was developed by taking into account the mass diffusion limitation and hydrolysis inhibition. The good agreement between model simulation and the experimental as well as literature data verified that the observed reduction in volumetric methane production rate could be ascribed to hydrolysis inhibition as a result of the mass diffusion limitation in SS-AD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Numerical Study of Pressure Influence on Methane-Oxygen Laminar Counterflow Diffusion Flames
NASA Astrophysics Data System (ADS)
Iino, Kimio; Akamatsu, Fumiteru; Katsuki, Masashi
We carried out numerical studies on methane/oxygen diffusion flames of counter-flow configuration to elucidate the influence of pressure on flame structure, heat release rate and reaction mechanisms. The chemistry in gas-phase was based on GRI-Mech 3.0 database. The thickness of diffusion flame became thinner with increasing strain rate a , with its characteristic flame thickness varying inversely with √a, especially its relation became significant with increasing pressure. Flame temperature increased with increasing pressure. Enhanced H2O production reactions, especially chain terminal reactions for H2O production, were found to be important in determining the flame temperature at high pressures. The small reduction in the flame temperature with increasing strain rate at high pressures, compared to the atmospheric pressure, is caused by the capacitor effect of product dissociation. From QRPDs, the third body dependent reactions were enhanced in high pressure conditions, hence C2 pathway was enhanced.
Cortexin diffusion in human eye sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Bashkatov, A N; Tuchin, Valerii V
2011-05-31
Investigation of the diffusion of cytamines, a typical representative of which is cortexin, is important for evaluating the drug dose, necessary to provide sufficient concentration of the preparation in the inner tissues of the eye. In the present paper, the cortexin diffusion rate in the eye sclera is measured using the methods of optical coherence tomography (OCT) and reflectance spectroscopy. The technique for determining the diffusion coefficient is based on the registration of temporal dependence of the eye sclera scattering parameters caused by partial replacement of interstitial fluid with the aqueous cortexin solution, which reduces the level of the OCTmore » signal and decreases the reflectance of the sclera. The values of the cortexin diffusion coefficient obtained using two independent optical methods are in good agreement. (optical technologies in biophysics and medicine)« less
Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.
Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering,more » but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.« less
A consistent transported PDF model for treating differential molecular diffusion
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Zhang, Pei
2016-11-01
Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.
Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.
Kotzakoulakis, Konstantinos; George, Simon C
2018-01-01
The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurgin, Jacob B., E-mail: jakek@jhu.edu; Bajaj, Sanyam; Rajan, Siddharth
Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, themore » saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.« less
Effect of surface curvature on diffusion-limited reactions on a curved surface
NASA Astrophysics Data System (ADS)
Eun, Changsun
2017-11-01
To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.
2016-11-01
A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fissionmore » rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.« less
Slow-Down in Diffusion in Crowded Protein Solutions Correlates with Transient Cluster Formation.
Nawrocki, Grzegorz; Wang, Po-Hung; Yu, Isseki; Sugita, Yuji; Feig, Michael
2017-12-14
For a long time, the effect of a crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse more slowly in a living cell than in a diluted solution, and further studies suggest that the diffusion depends on the local surroundings. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin headpiece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. Although internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.
Roniotis, Alexandros; Manikis, Georgios C; Sakkalis, Vangelis; Zervakis, Michalis E; Karatzanis, Ioannis; Marias, Kostas
2012-03-01
Glioma, especially glioblastoma, is a leading cause of brain cancer fatality involving highly invasive and neoplastic growth. Diffusive models of glioma growth use variations of the diffusion-reaction equation in order to simulate the invasive patterns of glioma cells by approximating the spatiotemporal change of glioma cell concentration. The most advanced diffusive models take into consideration the heterogeneous velocity of glioma in gray and white matter, by using two different discrete diffusion coefficients in these areas. Moreover, by using diffusion tensor imaging (DTI), they simulate the anisotropic migration of glioma cells, which is facilitated along white fibers, assuming diffusion tensors with different diffusion coefficients along each candidate direction of growth. Our study extends this concept by fully exploiting the proportions of white and gray matter extracted by normal brain atlases, rather than discretizing diffusion coefficients. Moreover, the proportions of white and gray matter, as well as the diffusion tensors, are extracted by the respective atlases; thus, no DTI processing is needed. Finally, we applied this novel glioma growth model on real data and the results indicate that prognostication rates can be improved. © 2012 IEEE
Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.
Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H
2015-05-01
The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it may enhance the nutrient uptake and waste product clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Diffusive transport of several hundred keV electrons in the Earth's slot region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.
2017-12-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
NASA Astrophysics Data System (ADS)
Martellotta, Francesco; Álvarez-Morales, Lidia; Girón, Sara; Zamarreño, Teófilo
2018-05-01
Multi-rate sound decays are often found and studied in complex systems of coupled volumes where diffuse field conditions generally apply, although the openings connecting different sub-spaces are by themselves potential causes of non-diffuse behaviour. However, in presence of spaces in which curved surfaces clearly prevent diffuse field behaviour from being established, things become more complex and require more sophisticated tools (or, better, combinations of them) to be fully understood. As an example of such complexity, the crypt of the Cathedral of Cadiz is a relatively small space characterised by a central vaulted rotunda, with five radial galleries with flat and low ceiling. In addition, the crypt is connected to the main cathedral volume by means of several small openings. Acoustic measurements carried out in the crypt pointed out the existence of at least two decay processes combined, in some points, with flutter echoes. Application of conventional methods of analysis pointed out the existence of significant differences between early decay time and reverberation time, but was inconclusive in explaining the origin of the observed phenomena. The use of more robust Bayesian analysis permitted the conclusion that the late decay appearing in the crypt had a different rate than that observed in the cathedral, thus excluding the explanation based on acoustic coupling of different volumes. Finally, processing impulse responses collected by means of a B-format microphone to obtain directional intensity maps demonstrated that the late decay was originated from the rotunda where a repetitive reflection pattern appeared between the floor and the dome causing both flutter echoes and a longer reverberation time.
Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics
NASA Astrophysics Data System (ADS)
Naruemon, Rueangkham; Charin, Modchang
2016-04-01
Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations. Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.
Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping
2017-07-01
To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William
1999-01-01
Experimental data on Al-0.8Au horizontal solidification of a 1 mm thick specimen in a BN crucible shows the effect of growth rate on the solidification interface shape. For translation rates below 0.5 micron/s the interface maintains a plain and flat shape. When the translation rate is 3 to 5 micron/s or more, the interface appearance changes to two planar zones, with the zone closer to the bottom having higher inclination. The interface shapes were measured by first quenching in place during growth. X-ray microscopy shows the interface shape within the quenched sample by viewing through the side of the specimen. In order to provide theoretical explanation of the phenomena, numerical modeling was undertaken using finite element code FIDAP. Double diffusion convection in Al-0.8Au melt and crystal-melt interface curvature during directional solidification was analyzed numerically. Actual thermophysical properties of Al-0.8Au including the binary Al-Au phase diagram were used. Although convection in the sample is weak, for the slower translation rate convection and diffusion is sufficient for the redistribution of initial compositional stratification caused by gravity. When translation rate is raised, neither convection nor diffusion can provide proper mixing so that solidification temperatures differ significantly near the bottom within the bulk of the sample. As a result, the solid-liquid interface appears to have two planar zones with different inclination.
Temperature gradient effects on vapor diffusion in partially-saturated porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, S.W.
1999-07-01
Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less
NASA Technical Reports Server (NTRS)
Tsujimoto, Yoshinobu; Acosta, Allan J.; Yoshida, Yoshiki
1989-01-01
The fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser are analyzed on the assumption that the number of impeller and diffuser vanes is so large that the flows are perfectly guided by the vanes. The flow is taken to be two dimensional, inviscid, and incompressible, but the effects of impeller and diffuser losses are taken into account. It is shown that the interaction with the vaned diffuser may cause destabilizing fluid forces. From these discussions, it is found that the whirling forces are closely related to the steady head-capacity characteristics of the impeller. This physical understanding of the whirling forces can be applied also to the cases with volute casings. At partial capacities, it is shown that the impeller forces change greatly when the flow rate and whirl velocity are near to the impeller or vaned diffuser attributed rotating stall onset capacity, and the stall propagation velocity, respectively. In such cases the impeller forces may become destabilizing for impeller whirl.
Anaerobic soil volume as a major controlling factor for soil denitrification and respiration
NASA Astrophysics Data System (ADS)
Reent Köster, Jan; Tong, Bingxin; Grosz, Balázs; Burkart, Stefan; Ruoss, Nicolas; Well, Reinhard
2017-04-01
Gas diffusion in soil is a key variable to control denitrification and its N2O to N2 product ratio since it affects two major proximal denitrification factors, i.e. the concentrations of O2 and of N2O. Gas diffusivity is governed by the structure and the state of water saturation of the pore system. At a given O2 consumption rate decreasing diffusivity causes an enhanced anaerobic soil volume where denitrification can occur. Gas diffusivity is generally quantified as bulk diffusion coefficients that represent the lineal diffusive gas flux through the soil matrix. However, the spatial distribution of respiratory O2 consumption and denitrification - and hence the local concentration of O2 and N2O - is highly non-homogeneous. Knowledge of the anaerobic soil volume fraction (ansvf) has been proposed as a key control on denitrification, and has subsequently been used in many denitrification models. The ansvf has previously been quantified by direct measurement of O2 distribution in individual soil aggregates using microsensors. The measured ansvf corresponded to modelled values based on measured aggregate diffusivity and respiration, but was not yet correlated with measured denitrification rates. In the present ongoing study, we are incubating soil cores amended with nitrate and organic litter in an automated mesocosm system under aerobic as well as anaerobic conditions. An N2 depleted incubation atmosphere and the 15N labeled soil nitrate pool facilitate quantification of the N2 production in the soil by IRMS, and fluxes of N2O and CO2 are monitored via gas chromatography. The ansvf and the measured denitrification and respiration rates will then be used for model validation. During the session we will present first results of this study.
Skolnick, Jeffrey
2016-01-01
An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes. PMID:27634243
Mass transfer resistance in ASFF reactors for waste water treatment.
Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M
1996-01-01
Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.
NASA Astrophysics Data System (ADS)
Zhou, Peng
2013-06-01
As temperature increases, it is suggested that atoms on lattice sites serve as dynamic defects and cause a much more homogeneous distribution of the Maxwell stress throughout the crystal lattice compared with that caused by static defects. Though this stressing effect mostly leads to Joule heating, it also results in distortion of the crystal lattice, which leads to a decrease in the activation energy for atomic diffusion and causes enhancements in the phase growth rates at both interfaces of diffusion couples. Due to this stressing effect, the decrease in the activation energy is proportional to a square term of the current density J. A mean-time-to-failure analysis is performed for failure caused by excessive growth of intermediate phases, and a mean-time-to-failure (MTTF) equation is found. This equation appears similar to Black's equation but with an extra exponential term arising from the stressing effect of the crystal lattice.
NASA Astrophysics Data System (ADS)
Renny; Supriyanto
2018-04-01
Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.
Heat and water rate transfer processes in the human respiratory tract at various altitudes.
Kandjov, I M
2001-02-01
The process of the respiratory air conditioning as a process of heat and mass exchange at the interface inspired air-airways surface was studied. Using a model of airways (Olson et al., 1970) where the segments of the respiratory tract are like cylinders with a fixed length and diameter, the corresponding heat transfer equations, in the paper are founded basic rate exchange parameters-convective heat transfer coefficient h(c)(W m(-2) degrees C(-1)) and evaporative heat transfer coefficient h(e)(W m(-2)hPa(-1)). The rate transfer parameters assumed as sources with known heat power are connected to airflow rate in different airways segments. Relationships expressing warming rate of inspired air due to convection, warming rate of inspired air due to evaporation, water diffused in the inspired air from the airways wall, i.e. a system of air conditioning parameters, was composed. The altitude dynamics of the relations is studied. Every rate conditioning parameter is an increasing function of altitude. The process of diffusion in the peripheral bronchial generations as a basic transfer process is analysed. The following phenomenon is in effect: the diffusion coefficient increases with altitude and causes a compensation of simultaneous decreasing of O(2)and CO(2)densities in atmospheric air. Due to this compensation, the diffusion in the peripheral generations with altitude is approximately constant. The elements of the human anatomy optimality as well as the established dynamics are discussed and assumed. The square form of the airways after the trachea expressed in terms of transfer supposes (in view of maximum contact surface), that a maximum heat and water exchange is achieved, i.e. high degree of air condition at fixed environmental parameters and respiration regime. Copyright 2001 Academic Press.
Slow acidification of the winter mixed layer in the subarctic western North Pacific
NASA Astrophysics Data System (ADS)
Wakita, Masahide; Nagano, Akira; Fujiki, Tetsuichi; Watanabe, Shuichi
2017-08-01
We used carbon dioxide (CO2) system data collected during 1999-2015 to investigate ocean acidification at time series sites in the western subarctic region of the North Pacific Ocean. The annual mean pH at station K2 decreased at a rate of 0.0025 ± 0.0010 year-1 mostly in response to oceanic uptake of anthropogenic CO2. The Revelle factor increased rapidly (0.046 ± 0.022 year-1), an indication that the buffering capacity of this region of the ocean has declined faster than at other time series sites. In the western subarctic region, the pH during the winter decline at a slower rate of 0.0008 ± 0.0004 year-1. This was attributed to a reduced rate of increase of dissolved inorganic carbon (DIC) and an increase of total alkalinity (TA). The reduction of DIC increase was caused by the decline of surface water density associated with the pycnocline depression and the reduction of vertical diffusion flux from the upper pycnocline. These physical changes were probably caused by northward shrinkage of the western subarctic gyre and global warming. Meanwhile, the contribution of the density decline to the TA increase is canceled out by that of the reduced vertical diffusive flux. We speculated that the winter TA increase is caused mainly by the accumulation of TA due to the weakened calcification by organisms during the winter.
How do bubbles grow in a weakly supersaturated solution?
NASA Astrophysics Data System (ADS)
Enriquez, Oscar; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea; van der Meer, Devaraj
2013-11-01
Beer, champagne and soft-drinks are water-based solutions which owe their ``bubbliness'' to a moderate degree of carbon dioxide supersaturation. Bubbles grow sequentially from nucleation sites due to solute concentration gradients and detach due to buoyancy. The leading mass transfer mechanism is diffusion, but the advection caused by the moving surface also plays an important role. Now, what happens at the limit of very weak supersaturation? We take an experimental look at CO2 bubbles growing in water under such a condition. Nucleation sites are provided by hydrophobic micro-cavities on a silicon chip, therefore controlling the number and position of bubbles. Although advection is negligible, measured growth rates for an isolated bubble differ noticeably from a purely diffusive theoretical solution. We can explain the differences as effects of the concentration boundary layer around the bubble. Initially, its interaction with the surface on which the bubble grows slows the process down. Later on, the growth rate is enhanced by buoyancy effects caused by the depletion of the solute in the surroundings of the bubble. When neighboring bubbles are brought into play they interact through their boundary layers, further slowing down their growth rates.
Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.
Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel
2016-06-01
3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Uberuaga, Blas P.
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
NASA Technical Reports Server (NTRS)
Spjeldvik, W. N.
1981-01-01
Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.
THE BREAKDOWN OF THE PROTECTIVE OXIDE FILM ON TRANSITION METAL ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smeltzer, W.W.
1960-04-01
Initial breaks in oxidation curves of iron-chromium alloys were found to be associated with the ferriteaustenitic phase transformation. This transformation was caused by preferential oxidation of chromium at a rate much larger than its replenishment by diffusion the metal-oxide interface. The stress resulting from this transformation caused breakdown of the protective oxide film. Results indicated that continuous oxidation curves for iron-chromium alloys could be obtained under conditions where preferential oxidation of in alloy constituent did not cause the ferritic-austentic phase transformation. (M.C.G.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu
Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less
Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae
2008-07-01
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.
A Study of Aerosol Direct Radiative Effect and Its Impacts on Global Terrestrial Ecosystem Cycles
NASA Astrophysics Data System (ADS)
Zhang, J.; Shao, S.; Zhou, L.
2017-12-01
Aerosols can absorb and scatter solar radiation, thus cause the total solar radiation reaching the surface to drop and the fraction of diffuse radiation to increase, which influence the surface radiation budget. The global surface radiation with and without consideration of aerosols are calculated by the Fu-Liou atmospheric radiative transfer model based on the MODIS aerosol products, CERES cloud products and other remote sensing data. The aerosol direct radiative effect is calculated based on the two scenarios of aerosols. Our calculation showed that in 2007, aerosols decreased the global total radiation by 9.16 W m-2 on average. Large decrease generally occurred in places with high AOD. As for the diffuse radiation, aerosol-induced changes were either positive or negative. Large increase generally occurred in places with high surface albedo, while large decrease generally occurred in places with high cloud fraction. The global aerosol-induced diffuse radiation change averaged 8.17 W m-2 in 2007. The aerosol direct radiative effect causes the photosynthetic active radiation to increase, and its influences on the global carbon cycle of terrestrial ecosystem are studied by using the Community Land Model (CLM). Calculations show that the aerosol direct radiative effects caused the global averages of terrestrial gross primary productivity (GPP), net primary productivity (NPP), heterotrophic respiration (RH), autotrophic respiration (RA), and net ecosystem productivity (Reco) to increase in 2007, with significant spatial variations however. The global average changes of GPP, NPP, NEP, RA, RH and Reco in 2007 were +6.47 gC m-2, +2.23 gC m-2, +0.34 gC m-2, +4.24 gC m-2, +1.89 gC m-2, +6.13 gC m-2, respectively. Examinations of the carbon fluxes show that the aerosol direct radiative effects influence the terrestrial ecosystem carbon cycles via the following two approaches: First, the diffuse fertilization effect, i.e. more diffuse radiation absorbed by vegetation shade leaves (photosynthetic active radiation, PAR) results in higher photosynthetic rates; Second, the radiation changes lead to changes in temperature and humidity, thereby changing the rates of the plant biophysical and chemical processes.
NASA Astrophysics Data System (ADS)
Ji, Y.; Shen, C.
2014-03-01
With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil.
Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny
2014-02-01
Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10(-8) and 3 × 10(-7) m s(-1) , thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
IUTAM symposium on hydrodynamic diffusion of suspended particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.H.
Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation,more » centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Novak, E; Jalarvo, N; Gupta, S; Hong, K; Förster, S; Egami, T; Ohl, M
2018-06-01
Plastic crystals are a promising candidate for solid state ionic conductors. In this work, quasielastic neutron scattering is employed to investigate the center of mass diffusive motions in two types of plastic crystalline cyclic alcohols: cyclohexanol and cyclooctanol. Two separate motions are observed which are attributed to long-range translational diffusion (α-process) and cage rattling (fast β-process). Residence times and diffusion coefficients are calculated for both processes, along with the confinement distances for the cage rattling. In addition, a binary mixture of these two materials is measured to understand how the dynamics change when a second type of molecule is added to the matrix. It is observed that, upon the addition of the larger cyclooctanol molecules into the cyclohexanol solution, the cage size decreases, which causes a decrease in the observed diffusion rates for both the α- and fast β-processes.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Innovative model-based flow rate optimization for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2016-11-01
In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.
Evaluation of positron-emission-tomography for visualisation of migration processes in geomaterials
NASA Astrophysics Data System (ADS)
Kulenkampff, J.; Gründig, M.; Richter, M.; Enzmann, F.
Positron-emission-tomography (PET) was applied for direct visualisation of solute transport in order to overcome the limitations of conventional methods for measuring advection and diffusion properties. At intervals from minutes to days the 3D-spatial distribution of the PET-tracer is determined. This spatiotemporal evolution of the tracer concentration can be used as experimental basis for clarification of the relevant transport processes, derivation of transport parameters, and model calibration. Here, 18F and 124I in 0.01 M carrier solution of KF and KI, respectively, have been chosen out of the limited number of available PET-tracers, primarily on account of their decay time and the time span of the experiments. The sample is a granite core from the Äspö Hard Rock Laboratory which carries an axial fracture with an aperture of ∼0.5 mm. Therefore, its permeability is high: high injection rates of 0.1 ml/min caused a pressure drop below 100 kPa. The experiments showed that the transport path through the fracture is modulated by the flow rate. The comparison of the experiments with different flow rates indicates diffusion into the matrix material at localized sites. However, the derived diffusion length falls below the resolution limits of the medical PET-scanner. With recently available dedicated high-resolution PET-scanners, which are usually applied in biomedical research, diffusion effects will be clearly resolvable.
Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; McCarthy, Graham W; Gocke, Thomas E; Olson, Betty H; Park, Hee-Deung; Al-Omari, Ahmed; Murthy, Sudhir; Bott, Charles B; Wett, Bernhard; Smeraldi, Joshua D; Shaw, Andrew R; Rosso, Diego
2016-03-01
Aeration is commonly identified as the largest contributor to process energy needs in the treatment of wastewater and therefore garners significant focus in reducing energy use. Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. These diffusers are subject to fouling and scaling, resulting in loss in transfer efficiency as biofilms form and change material properties producing larger bubbles, hindering mass transfer and contributing to increased plant energy costs. This research establishes a direct correlation and apparent mechanistic link between biofilm DNA concentration and reduced aeration efficiency caused by biofilm fouling. Although the connection between biofilm growth and fouling has been implicit in discussions of diffuser fouling for many years, this research provides measured quantitative connection between the extent of biofouling and reduced diffuser efficiency. This was clearly established by studying systematically the deterioration of aeration diffusers efficiency during a 1.5 year period, concurrently with the microbiological study of the biofilm fouling in order to understand the major factors contributing to diffuser fouling. The six different diffuser technologies analyzed in this paper included four different materials which were ethylene-propylene-diene monomer (EPDM), polyurethane, silicone and ceramic. While all diffusers foul eventually, some novel materials exhibited fouling resistance. The material type played a major role in determining the biofilm characteristics (i.e., growth rate, composition, and microbial density) which directly affected the rate and intensity at what the diffusers were fouled, whereas diffuser geometry exerted little influence. Overall, a high correlation between the increase in biofilm DNA and the decrease in αF was evident (CV < 14.0 ± 2.0%). By linking bacterial growth with aeration efficiency, the research was able to show quantitatively the causal connection between bacterial fouling and energy wastage during aeration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Second-Order Fermi Acceleration and Emission in Blazar Jets
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
Mondragão, Miguel A; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W; Rose, Christine R
2016-10-01
Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity. Recovery from global sodium loads critically relies on Na(+) /K(+) -ATPase and an intact energy metabolism in both somata and dendrites. For recovery from local sodium loads in dendrites, Na(+) /K(+) -ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10-fold higher than for global sodium signals. Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non-stimulated regions strongly reduces local energy requirements. Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage- and ligand-activated channels. Recovery from resulting sodium transients has mainly been attributed to Na(+) /K(+) -ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole-cell patch-clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min(-1) (∼0.03 mm min(-1 ) μm(-2) ). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10-fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion-based fast dissemination to non-stimulated regions might reduce local energy requirements. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2002-01-01
Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the design speed, and similar results were obtained. In most cases, the greatest improvement in surge margin occurred at fairly low levels of injected flow rate. Externally supplied injection air was used in these experiments. However, the injected flow rates that provided the greatest benefit could be produced using injection air that is recirculating between the diffuser discharge and nozzles located in the diffuser vaneless region. Future experiments will evaluate the effectiveness of recirculating air injection.
NASA Astrophysics Data System (ADS)
Hou, Shuhn-Shyurng; Huang, Wei-Cheng
2015-02-01
This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).
Eusebi, Anna Laura; Bellezze, Tiziano; Chiappini, Gianluca; Sasso, Marco; Battistoni, Paolo
2017-06-15
The paper deals with the evaluation of the effect of on/off switching of diffuser membranes, in the intermittent aeration process of the urban wastewater treatments. Accelerated tests were done using two types of commercial EPDM diffusers, which were submitted to several consecutive cycles up to the simulation of more than 8 years of real working conditions. The effect of this switching on the mechanical characteristics of the membranes was evaluated in terms of pressure increment of the air operating at different flow rates (2, 3.5 and 6 m 3 /h/diff): during accelerated tests, such increment ranged from 2% to 18%. The intermittent phases emphasized the loss both of the original mechanical proprieties of the diffusers and of the initial pore shapes. The main cause of pressure increment was attributed to the fouling of the internal channels of the pores. Further analyses performed by scanning electron microscopy and by mechanical tests on EPDM membrane, using a traditional tensile test and a non destructive optical method, from which the Young's Modulus was obtained, supported previous conclusions. Any changes in terms of oxygen transfer parameters (KLa and SOTE%) were specifically founded by causing to the repeated on/off switching. Copyright © 2017. Published by Elsevier Ltd.
Brain microvascular function during cardiopulmonary bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorensen, H.R.; Husum, B.; Waaben, J.
1987-11-01
Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2018-02-01
Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.
NASA Astrophysics Data System (ADS)
Frank, Stefan; Rikvold, Per Arne
2006-06-01
The influence of lateral adsorbate diffusion on the dynamics of the first-order phase transition in a two-dimensional Ising lattice gas with attractive nearest-neighbor interactions is investigated by means of kinetic Monte Carlo simulations. For example, electrochemical underpotential deposition proceeds by this mechanism. One major difference from adsorption in vacuum surface science is that under control of the electrode potential and in the absence of mass-transport limitations, local adsorption equilibrium is approximately established. We analyze our results using the theory of Kolmogorov, Johnson and Mehl, and Avrami (KJMA), which we extend to an exponentially decaying nucleation rate. Such a decay may occur due to a suppression of nucleation around existing clusters in the presence of lateral adsorbate diffusion. Correlation functions prove the existence of such exclusion zones. By comparison with microscopic results for the nucleation rate I and the interface velocity of the growing clusters v, we can show that the KJMA theory yields the correct order of magnitude for Iv2. This is true even though the spatial correlations mediated by diffusion are neglected. The decaying nucleation rate causes a gradual crossover from continuous to instantaneous nucleation, which is complete when the decay of the nucleation rate is very fast on the time scale of the phase transformation. Hence, instantaneous nucleation can be homogeneous, producing negative minima in the two-point correlation functions. We also present in this paper an n-fold way Monte Carlo algorithm for a square lattice gas with adsorption/desorption and lateral diffusion.
Sending the Right Signals | Center for Cancer Research
Diffuse large B-cell lymphomas (DLBCL), the most common type of non-Hodgkin’s lymphoma, causes about 10,000 deaths every year in the United States, even though about half of all patients are cured with current regimens. There are different subtypes of DLBCL that vary biologically and have significantly different rates of patient survival following chemotherapy, with the
Diffusion Rates of Organic Molecules in Secondary Organic Aerosol Particle
NASA Astrophysics Data System (ADS)
Bertram, A. K.; Chenyakin, Y.; Song, M.; Grayson, J. W.; Ullmann, D.; Evoy, E.; Renbaum-Wolff, L.; Liu, P.; Zhang, Y.; Kamal, S.; Martin, S. T.
2016-12-01
Information on the diffusion rates of organic molecules in secondary organic aerosol (SOA) particles are needed when predicting their size distribution, growth rates, photochemistry and heterogeneous chemistry. We have used two approaches to determine diffusion rates of organic molecules in SOA particles and proxies of SOA. In the first approach, we measured viscosities and then predicted diffusion rates using the Stokes-Einstein relation. In the second approach, we measured diffusion rates directly using a technique referred to as fluorescence recovery after photobleaching. Results from these measurements, including diffusion coefficients as a function of water activity, will be presented and the implications discussed.
Simulating contaminant attenuation, double-porosity exchange, and water age in aquifers using MOC3D
Goode, Daniel J.
1999-01-01
MOC3D is a general-purpose computer model developed by the U.S. Geological Survey (USGS) for simulation of three-dimensional solute transport in ground water (Konikow and others, 1996). The model is an update to the widely used USGS two-dimensional solute-transport model (MOC) and is implemented as an optional “package” for the ground-water flow model MODFLOW (Harbaugh and McDonald, 1996). Directly coupling the time-tested MOC transport algorithms with the widely used MODFLOW program makes MOC3D a powerful tool for simulation of solute transport in ground water in many hydrogeologic settings. The model simulates transport processes that include:Advection - Transport of dissolved solutes at the same rate as the average ground-water flow velocity.Diffusion - Spreading of solute from areas of high concentration to areas of low concentration, caused by “random” molecular motionDispersion - Diffusion-like spreading of solute that is caused primarily by spatial variability in aquifer properties, which results in spatial variability in transport velocity.Retardation - Reduction in the apparent solute velocity, compared to the ground-water velocity, caused by linear equilibrium sorption on aquifer materials.Decay - Disappearance of solute caused by reactions such as radioactive decay or biodegradation that are proportional to concentration.Growth - Creation (or disappearance) of solute mass caused by reactions that proceed independent of the solute concentration, such as some cases of biodegradationDouble-porosity exchange - rate-limited exchange of solute mass between mobile and immobile zones; for example, between fractures and the rock matrix.
Theoretical modeling of PEB procedure on EUV resist using FDM formulation
NASA Astrophysics Data System (ADS)
Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo
2018-03-01
Semiconductor manufacturing industry has reduced the size of wafer for enhanced productivity and performance, and Extreme Ultraviolet (EUV) light source is considered as a promising solution for downsizing. A series of EUV lithography procedures contain complex photo-chemical reaction on photoresist, and it causes technical difficulties on constructing theoretical framework which facilitates rigorous investigation of underlying mechanism. Thus, we formulated finite difference method (FDM) model of post exposure bake (PEB) process on positive chemically amplified resist (CAR), and it involved acid diffusion coupled-deprotection reaction. The model is based on Fick's second law and first-order chemical reaction rate law for diffusion and deprotection, respectively. Two kinetic parameters, diffusion coefficient of acid and rate constant of deprotection, which were obtained by experiment and atomic scale simulation were applied to the model. As a result, we obtained time evolutional protecting ratio of each functional group in resist monomer which can be used to predict resulting polymer morphology after overall chemical reactions. This achievement will be the cornerstone of multiscale modeling which provides fundamental understanding on important factors for EUV performance and rational design of the next-generation photoresist.
CO2 diffusion into pore spaces limits weathering rate of an experimental basalt landscape
van Haren, Joost; Dontsova, Katerina; Barron-Gafford, Greg A.; Troch, Peter A.; Chorover, Jon; DeLong, Stephen B.; Breshears, David D.; Huxman, Travis E.; Pelletier, Jon D.; Saleska, Scott; Zeng, Xubin; Ruiz, Joaquin
2017-01-01
Basalt weathering is a key control over the global carbon cycle, though in situ measurements of carbon cycling are lacking. In an experimental, vegetation-free hillslope containing 330 m3 of ground basalt scoria, we measured real-time inorganic carbon dynamics within the porous media and seepage flow. The hillslope carbon flux (0.6–5.1 mg C m–2 h–1) matched weathering rates of natural basalt landscapes (0.4–8.8 mg C m–2 h–1) despite lacking the expected field-based impediments to weathering. After rainfall, a decrease in CO2 concentration ([CO2]) in pore spaces into solution suggested rapid carbon sequestration but slow reactant supply. Persistent low soil [CO2] implied that diffusion limited CO2 supply, while when sufficiently dry, reaction product concentrations limited further weathering. Strong influence of diffusion could cause spatial heterogeneity of weathering even in natural settings, implying that modeling studies need to include variable soil [CO2] to improve carbon cycling estimates associated with potential carbon sequestration methods.
Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons
Mondragão, Miguel A.; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W.
2016-01-01
Key points Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity.Recovery from global sodium loads critically relies on Na+/K+‐ATPase and an intact energy metabolism in both somata and dendrites.For recovery from local sodium loads in dendrites, Na+/K+‐ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10‐fold higher than for global sodium signals.Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non‐stimulated regions strongly reduces local energy requirements. Abstract Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage‐ and ligand‐activated channels. Recovery from resulting sodium transients has mainly been attributed to Na+/K+‐ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole‐cell patch‐clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min−1 (∼0.03 mm min−1 μm−2). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10‐fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion‐based fast dissemination to non‐stimulated regions might reduce local energy requirements. PMID:27080107
Friedly, J.C.; Davis, J.A.; Kent, D.B.
1995-01-01
A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be located in the reducing stratum. Within this context and as long as there is adequate reductive capacity present, the transport simulation results are insensitive to the parameters important for the batch simulations. The results illustrate how a combination of field measurements and batch laboratory studies can be used to improve predictive modeling of contaminant transport.
Inorganic Halogen Oxidizer Research.
1978-01-25
depend on the rate of exchange. Finally, in our experiments we were dealing RI/RD78-125 B-4 -5- with polymeric solid AsF 5 or BF3 phases which on...well be a heterogeneous diffusion controlled reaction and step (5) might be the rate determining step in the above mechanism. It was shown that at...temperatures above -196*C, where a given NF+ salt is still stable in the absence of light, uv irradiation causes a rapid decay RI/RD78-125 B-5 -6- decay of
Tomishige, Michio; Sako, Yasushi; Kusumi, Akihiro
1998-01-01
Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton. PMID:9722611
Modeling information diffusion in time-varying community networks
NASA Astrophysics Data System (ADS)
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion
NASA Astrophysics Data System (ADS)
Hölttä, P.; Poteri, A.; Siitari-Kauppi, M.; Huittinen, N.
Transport of iodide and sodium has been studied by means of block fracture and core column experiments to evaluate the simplified radionuclide transport concept. The objectives were to examine the processes causing retention in solute transport, especially matrix diffusion, and to estimate their importance during transport in different scales and flow conditions. Block experiments were performed using a Kuru Grey granite block having a horizontally planar natural fracture. Core columns were constructed from cores drilled orthogonal to the fracture of the granite block. Several tracer tests were performed using uranine, 131I and 22Na as tracers at water flow rates 0.7-50 μL min -1. Transport of tracers was modelled by applying the advection-dispersion model based on the generalized Taylor dispersion added with matrix diffusion. Scoping calculations were combined with experiments to test the model concepts. Two different experimental configurations could be modelled applying consistent transport processes and parameters. The processes, advection-dispersion and matrix diffusion, were conceptualized with sufficient accuracy to replicate the experimental results. The effects of matrix diffusion were demonstrated on the slightly sorbing sodium and mobile iodine breakthrough curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J.; Jiang, C.; Zhang, Y.
This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less
Salt-Finger Convection in a Stratified Fluid Layer Induced by Thermal and Solutal Capillary Motion
NASA Technical Reports Server (NTRS)
Chen, Chuan F.; Chan, Cho Lik
1996-01-01
Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to different diffusion rates. Normally, when the gravitational field is reduced, salt-finger convection together with other convective motions driven by buoyancy forces will be rapidly suppressed. However, because the destabilizing effect of the concentration gradient is amplified by the Lewis number, with values varying from 10(exp 2) for aqueous salt solutions to 10 (exp 4) for liquid metals, salt-finger convection may be generated at much reduced gravity levels. In the microgravity environment, the surface tension gradient assumes a dominant role in causing fluid motion. In this paper, we report on some experimental results showing the generation of salt-finger convection due to capillary motio on the surface of a stratified fluid layer. A numerical simulation is presented to show the cause of salt-finger convection.
High range free space optic transmission using new dual diffuser modulation technique
NASA Astrophysics Data System (ADS)
Rahman, A. K.; Julai, N.; Jusoh, M.; Rashidi, C. B. M.; Aljunid, S. A.; Anuar, M. S.; Talib, M. F.; Zamhari, Nurdiani; Sahari, S. k.; Tamrin, K. F.; Jong, Rudiyanto P.; Zaidel, D. N. A.; Mohtadzar, N. A. A.; Sharip, M. R. M.; Samat, Y. S.
2017-11-01
Free space optical communication fsoc is vulnerable with fluctuating atmospheric. This paper focus analyzes the finding of new technique dual diffuser modulation (ddm) to mitigate the atmospheric turbulence effect. The performance of fsoc under the presence of atmospheric turbulence will cause the laser beam keens to (a) beam wander, (b) beam spreading and (c) scintillation. The most deteriorate the fsoc is scintillation where it affected the wavefront cause to fluctuating signal and ultimately receiver can turn into saturate or loss signal. Ddm approach enhances the detecting bit `1' and bit `0' and improves the power received to combat with turbulence effect. The performance focus on signal-to-noise (snr) and bit error rate (ber) where the numerical result shows that the ddm technique able to improves the range where estimated approximately 40% improvement under weak turbulence and 80% under strong turbulence.
Perriot, Romain; Uberuaga, Blas P.
2015-04-21
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
NASA Technical Reports Server (NTRS)
Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.
1985-01-01
A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.
Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit
NASA Technical Reports Server (NTRS)
Jokipii, J. R.
1992-01-01
This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.
Correcting power and p-value calculations for bias in diffusion tensor imaging.
Lauzon, Carolyn B; Landman, Bennett A
2013-07-01
Diffusion tensor imaging (DTI) provides quantitative parametric maps sensitive to tissue microarchitecture (e.g., fractional anisotropy, FA). These maps are estimated through computational processes and subject to random distortions including variance and bias. Traditional statistical procedures commonly used for study planning (including power analyses and p-value/alpha-rate thresholds) specifically model variability, but neglect potential impacts of bias. Herein, we quantitatively investigate the impacts of bias in DTI on hypothesis test properties (power and alpha-rate) using a two-sided hypothesis testing framework. We present theoretical evaluation of bias on hypothesis test properties, evaluate the bias estimation technique SIMEX for DTI hypothesis testing using simulated data, and evaluate the impacts of bias on spatially varying power and alpha rates in an empirical study of 21 subjects. Bias is shown to inflame alpha rates, distort the power curve, and cause significant power loss even in empirical settings where the expected difference in bias between groups is zero. These adverse effects can be attenuated by properly accounting for bias in the calculation of power and p-values. Copyright © 2013 Elsevier Inc. All rights reserved.
Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials
NASA Astrophysics Data System (ADS)
Chiu Huang, Cheng-Kai
Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current rate (C-rate) during charging/discharging affects diffusion induced stresses inside electrode materials. For the experimental part we first conduct charging/discharging under different C-rates to observe the voltage responses for commercial LiFePO4 batteries. Then Time-of-Flight Secondary Ion Mass Spectrometry technique is applied to measure the lithium ion intensities in different C-rate charged/discharged samples. These experimental results could be used to support that a more significant voltage fluctuation under high C-rates is due to different lithium insertion mechanisms, rather than the amount of lithium ions intercalated into electrode materials. Thus the investigation of C-rate-dependent stress evolution is required for the development of a more durable lithium ion battery. In this dissertation, we extend the single particle finite element model to investigate the C-rate-dependent diffusion induced stresses in a multi-particle system. Concentration dependent anisotropic material properties, C-rate-dependent volume misfits and concentration dependent Li-ion diffusivity are incorporated in the model. The concentration gradients, diffusion induced stresses, and strain energies under different C-rates are discussed in this study. Particle fractures have been observed in many experimental results, in this study we further discuss the effect of the crack surface orientation on the lithium concentration profile and stress level in cathode materials. The results of this dissertation provide a better understanding of diffusion induced stresses in electrode materials and contribute to our fundamental knowledge of interplay between lithium intercalations, stress evolutions, particle fractures and the capacity fade in lithium-ion batteries.
Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.
NASA Astrophysics Data System (ADS)
Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.
2012-12-01
Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009) and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the potential diffusion rate under saturated and unsaturated conditions and potential oxidation rates. For a submerged organic rich soil, the data indicate a CH4 oxidation efficiency of 50% at the anaerobic-aerobic interface in the upper horizon. The improved in situ quantification of CH4 oxidation in wetlands enables a better assessment of current and potential CH4 sources and sinks in permafrost affected ecosystems and their potential strengths in response to global warming.
Kurnaz, Erdal; Savaş-Erdeve, Şenay; Keskin, Melikşah; Doğan, Vehbi; Çetinkaya, Semra; Aycan, Zehra
2016-01-01
The most common reason of acquired hypothyroidism is autoimmune (Hashimoto) thyroiditis. Autoimmune thyroiditis can be atrophic or goitrogenic. Atrophic autoimmune thyroiditis (ATT) related acquired hypothyroidism causes interruption of growth, obesity, and bone age retardation in early ages while goitrogenic thyroiditis has a higher incidence rate and mostly presents with diffuse goiter. We discuss the effects of hypothyroidism on various systems through a case found to have pericardial effusion during the echocardiography performed after cardiac murmur was detected and later diagnosed with ATT related hypothyroidism.
Using light transmission to watch hydrogen diffuse
Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin
2012-01-01
Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction. PMID:22692535
Using light transmission to watch hydrogen diffuse
NASA Astrophysics Data System (ADS)
Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin
2012-06-01
Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.
Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C
NASA Technical Reports Server (NTRS)
Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2000-01-01
The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.
Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H
NASA Technical Reports Server (NTRS)
Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.
Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J
NASA Technical Reports Server (NTRS)
Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.
Effect of low-temperature annealing on the creep of 1570 aluminum alloy
NASA Astrophysics Data System (ADS)
Perevezentsev, V. N.; Shcherban', M. Yu.; Gracheva, T. A.; Kuz'micheva, T. A.
2015-08-01
The effect of preliminary low-temperature annealing on the creep of a submicrocrystalline 1570 aluminum alloy fabricated by severe plastic deformation is studied. The creep rate is found to increase with the annealing time, but long-term annealing for 4 h decreases the creep rate to the value characteristic of the alloy not subjected to preliminary annealing. The increase in the creep rate of the alloy subjected to preliminary annealing is likely to be caused by an increase in the nonequilibrium excess volume in grain boundaries as a result of the dissolution of grain-boundary nanopores upon annealing and, hence, by an increase in the grain-boundary diffusion rate and the grain-boundary sliding rate.
NASA Technical Reports Server (NTRS)
Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.
1999-01-01
An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.
Wang, Hongfang; Mason, J.A.; Balsam, W.L.
2006-01-01
The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.
Transmitting and reflecting diffuser. [for ultraviolet light
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)
1973-01-01
A near-Lambertian diffuser is described which transmits and reflects ultraviolet light. An ultraviolet grade fused silica substrate is coated with vaporized fuse silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.
Causes and implications of suppressed vesiculation and crystallization in phenocryst embayments
NASA Astrophysics Data System (ADS)
Cashman, K. V.; Rust, A.
2016-12-01
Recent studies of crystal-hosted melt embayments have modeled water diffusion to estimate rates of magma ascent. Uncertainties in these calculations have been linked primarily to the assumed initial pressure. None of these studies, however, have addressed the conditions under which crystal-hosted clear glass channels form in samples dominated by crystal- and bubble-rich groundmass. Embayments are common in phenocrysts from the 1974 basaltic eruption of Fuego volcano. They are hosted by both plagioclase and olivine phenocrysts where rapid and spatially heterogeneous growth creates a local melt channel. Embayment shapes differ in the two phases, however, depending on the characteristic rapid growth morphologies. Embayment channels are typically 20-50 µm wide and may reach 100-200 µm in length. Interestingly, these length scales are similar to those of melt embayments in plagioclase within the dacitic Mount St. Helens. We suggest that these characteristic length scales are key to embayment preservation as clear glass. We explore two hypotheses: (1) that the space constraints of the embayment inhibit bubble nucleation and growth, or (2) that rapid decompression-driven crystal growth on all sides of the melt channel temporarily increases the melt temperature and water content (and therefore element diffusivity) above ambient. Support for the second hypothesis - that diffusion out of the melt channels is energetically more favorable than nucleation of new bubble and crystal phases - is suggested by observed diffusion profiles of melt components within the embayments. Understanding the origin of melt channels has important implications for diffusion-based studies of magma decompression. First, if the embayments are formed by rapid, syn-eruptive crystal growth, then the effective diffusion length scale must increase with time. Second, if local and temporary heating increase elemental diffusion rates, then characteristic diffusion time scales will be overestimated. By extension, we also note that similar conditions may characterize rapid growth of skeletal and hopper crystals.
Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties
NASA Astrophysics Data System (ADS)
Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
2014-11-01
We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
How does natural groundwater flow affect CO2 dissolution in saline aquifers?
NASA Astrophysics Data System (ADS)
Rosenzweig, R.; Michel-Meyer, I.; Tsinober, A.; Shavit, U.
2017-12-01
The dissolution of supercritical CO2 in aquifer brine is one of the most important trapping mechanisms in CO2 geological storage. Diffusion-limited dissolution is a very slow process. However, since the CO2-rich water is slightly denser than the CO2-free water, when CO2-free water is overlaid by heavier CO2-rich water, convective instability results in fingers of dense CO2-rich water that propagate downwards, causing CO2-unsaturated water to move upwards. This convection process significantly accelerates the dissolution rate of CO2 into the aquifer water.Most previous works have neglected the effect of natural groundwater flow and assumed it has no effect on the dissolution dynamics. However, it was found that in some of the saline aquifers groundwater flow rate, although small, is not zero. In this research, we study the effect of groundwater flow on dissolution by performing laboratory experiments in a bead pack cell using a mixture of methanol and ethylene-glycol as a CO2 analog while varying the water horizontal flow rate. We find that water horizontal flow decreases the number of fingers, their wavelength and their propagation velocity. When testing high water flow rates, no fingers were developed and the dissolution process was entirely diffusive. The effect of water flow on the dissolution rate did not show a clear picture. When increasing the horizontal flow rate the convective dissolution flux slightly decreased and then increased again. It seems that the combination of density-driven flow, water horizontal flow, mechanical dispersion and molecular diffusion affect the dissolution rate in a complex and non-monotonic manner. These intriguing dynamics should be further studied to understand their effect on dissolution trapping.
Water in Volcanic Glass: From Volcanic Degassing to Secondary Hydration
NASA Astrophysics Data System (ADS)
Seligman, A. N.; Bindeman, I. N.; Palandri, J. L.; Watkins, J. M.; Ross, A. M.
2015-12-01
Volcanic glass contains both primary magmatic and secondary meteoric dissolved water, which can have distinguishable hydrogen isotopic ratios. We analyzed compositionally and globally diverse volcanic glass from recent to 640 ka for their δD (‰, VSMOW) and H2Ot (wt.%) on the TC/EA MAT 253 continuous flow system. We find that rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), which is opposite the trend for magmatic degassing, while a few equatorial glasses have little change in δD (‰). To better understand these results, we imaged 6 tephra clasts ranging in age and chemical composition using BSE (by FEI SEM) down to a resolution of ~1 mm. Mafic tephra have lower vesicle number densities (N/mm2 = 25-77) than silicic tephra (736) and thicker average bubble walls (0.07 mm) than silicic tephra (0.02 mm). Lengths of water diffusion were modeled by finite difference using H2Ot concentration-dependent diffusion coefficients for diffusion of water into basalt and rhyolite glass using Zhang et al. (2007) and Ni and Zhang (2008) diffusion parameterizations extrapolated to surface temperatures. Due to the 106 times slower diffusion, water only diffused ~10-5 mm into basaltic glass and ~10 mm into rhyolitic glass after 1000 years. These hydration rates match our H2Ot wt.% values for basaltic tephra, and would cause a rhyolite glass, with an average bubble wall thickness of 0.02 mm as described above, to already be fully hydrated with ~3.0-3.5 wt.% H2Ot after ~1000 years, which is similar to what we observe. Results here are our initial steps in understanding water diffusion rates at ambient temperature in basalt and rhyolite tephra, and the isotopic changes that occur during hydration, which have implications for research in physical volcanology (quantities of residual magmatic water) and paleoenvironments (low temperature hydration rates and isotopic changes of glass).
Photoletter to the editor: Diffuse cocaine-related purpura.
Sarkar, Debjeet; Kammona, Hussein A; Lamsen, Leonard N; McAbee, Bradley A; Clark, Christopher T; Lee, Solomon S; Kelley, Shane E
2013-01-01
Diffuse purpura is an uncommon skin manifestation found in platelet and coagulation disorders, meningococcemia, vasculitides and cocaine use. Reports of cocaine-related purpura predominantly involve adulteration with the anti-helminthic, levamisole. Levamisole enhances the effects of cocaine and is known to cause vasculitis. Recently, the CDC also released an advisory of oxymorphone being used intravenously causing thrombogenic thrombocytopenic purpura (TTP). We report the case of a patient with diffuse purpura ultimately diagnosed with cocaine-related thrombogenic vasculopathy. In the current environment of adulterated cocaine usage and increased prescription narcotic abuse, it is crucial to investigate substance abuse as a cause of diffuse purpura.
Modeling of turbulent supersonic H2-air combustion with a multivariate beta PDF
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Hassan, H. A.
1993-01-01
Recent calculations of turbulent supersonic reacting shear flows using an assumed multivariate beta PDF (probability density function) resulted in reduced production rates and a delay in the onset of combustion. This result is not consistent with available measurements. The present research explores two possible reasons for this behavior: use of PDF's that do not yield Favre averaged quantities, and the gradient diffusion assumption. A new multivariate beta PDF involving species densities is introduced which makes it possible to compute Favre averaged mass fractions. However, using this PDF did not improve comparisons with experiment. A countergradient diffusion model is then introduced. Preliminary calculations suggest this to be the cause of the discrepancy.
W. J. Massman; R. A. Sommerfeld; A. R. Mosier; K. F. Zeller; T.J . Hehn; S. G. Rochelle
1997-01-01
Pressure pumping at the Earth's surface is caused by short-period atmospheric turbulence, longer-period barometric changes, and quasi-static pressure fields induced by wind blowing across irregular topography. These naturally occurring atmospheric pressure variations induce periodic fluctuations in airflow through snowpacks, soils, and any other porous media at...
The experimental study of matching between centrifugal compressor impeller and diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamaki, H.; Nakao, H.; Saito, M.
1999-01-01
the centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio. The flow rate, Q{sub P}, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by themore » critical flow rate. In order to operate the compressor at a rate lower than Q{sub P}, the diffusing system, whose pressure recovery factor was steep negative slope near Q{sub P}, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40% of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.« less
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.
2017-10-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Martins, Samuel C. V.; Galmés, Jeroni; Cavatte, Paulo C.; Pereira, Lucas F.; Ventrella, Marília C.; DaMatta, Fábio M.
2014-01-01
It has long been held that the low photosynthetic rates (A) of coffee leaves are largely associated with diffusive constraints to photosynthesis. However, the relative limitations of the stomata and mesophyll to the overall diffusional constraints to photosynthesis, as well as the coordination of leaf hydraulics with photosynthetic limitations, remain to be fully elucidated in coffee. Whether the low actual A under ambient CO2 concentrations is associated with the kinetic properties of Rubisco and high (photo)respiration rates also remains elusive. Here, we provide a holistic analysis to understand the causes associated with low A by measuring a variety of key anatomical/hydraulic and photosynthetic traits in sun- and shade-grown coffee plants. We demonstrate that leaf hydraulic architecture imposes a major constraint on the maximisation of the photosynthetic gas exchange of coffee leaves. Regardless of the light treatments, A was mainly limited by stomatal factors followed by similar limitations associated with the mesophyll and biochemical constraints. No evidence of an inefficient Rubisco was found; rather, we propose that coffee Rubisco is well tuned for operating at low chloroplastic CO2 concentrations. Finally, we contend that large diffusive resistance should lead to large CO2 drawdown from the intercellular airspaces to the sites of carboxylation, thus favouring the occurrence of relatively high photorespiration rates, which ultimately leads to further limitations to A. PMID:24743509
Diffusion and saponification inside porous cellulose triacetate fibers.
Braun, Jennifer L; Kadla, John F
2005-01-01
Cellulose triacetate (CTA) fibers were partially hydrolyzed in 0.054 N solutions of NaOH/H(2)O and NaOMe/MeOH. The surface concentration of acetyl groups was determined using ATR-FTIR. Total acetyl content was determined by the alkaline hydrolysis method. Fiber cross-sections were stained with Congo red in order to examine the interface between reacted and unreacted material; these data were used to estimate the rate constant k and effective diffusivity D(B) for each reagent during the early stages of reaction by means of a volume-based unreacted core model. For NaOH/H(2)O, k = 0.37 L mol(-1) min(-1) and D(B) = 6.2 x 10(-7) cm(2)/sec; for NaOMe/MeOH, k = 4.0 L mol(-1) min(-1) and D(B) = 5.7 x 10(-6) cm(2)/sec. The NaOMe/MeOH reaction has a larger rate constant due to solvent effects and the greater nucleophilicity of MeO(-) as compared to OH(-); the reaction has a larger effective diffusivity because CTA swells more in MeOH than it does in water. Similarities between calculated concentration profiles for each case indicate that the relatively diffuse interface seen in fibers from the NaOMe/MeOH reaction results from factors not considered in the model; shrinkage of stained fiber cross-sections suggests that increased disruption of intermolecular forces may be the cause.
Numerical study of air ingress transition to natural circulation in a high temperature helium loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franken, Daniel; Gould, Daniel; Jain, Prashant K.
Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less
Numerical study of air ingress transition to natural circulation in a high temperature helium loop
Franken, Daniel; Gould, Daniel; Jain, Prashant K.; ...
2017-09-21
Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less
NASA Astrophysics Data System (ADS)
Plass, Richard; Marks, Laurence D.
1996-06-01
Room temperature gold depositions onto Si(111)-( 3 × 3) R30° Au surfaces with diffuse and sharp diffraction spots [Surf. Sci. 242 (1991) 73] (diffuse and sharp 3 × 3 Au hereafter) under UHV conditions has been monitored using transmission electron diffraction (TED). Both systems display an increase in surface structure diffraction spot intensities up to the completion of 1.0 monolayer (ML) after which the surface beams display an exponential decrease in intensity with coverage. The exponential decay rate decreases after roughly 1.33 ML. These results can be attributed to gold initially diffusing to and filling 3 × 3 Au gold trimer sites in vacancy type surface domain walls [Surf. Sci. 342 (1995) 233], then filling one of three possible sites on the 3 × 3 Au structure with essentially no surface diffusion, disrupting nearby gold trimers. Gold deposition onto the diffuse type structure caused the formation and expansion of satellite arcs around the strongest 3 × 3 beams similar to those seen by others [Surf. Sci. 242 (1991) 73; Jpn. J. Appl. Phys. 16 (1977) 891; J. Vac. Sci. Technol. A 10 (1992) 3486] at elevated temperatures while the sharp structure displayed only a modest shoulder formation near the strongest 3 × 3 beams.
Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J
2016-03-15
This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling of Diffusion Based Correlations Between Heart Rate Modulations and Respiration Pattern
2001-10-25
1 of 4 MODELING OF DIFFUSION BASED CORRELATIONS BETWEEN HEART RATE MODULATIONS AND RESPIRATION PATTERN R.Langer,(1) Y.Smorzik,(2) S.Akselrod,(1...generations of the bronchial tree. The second stage describes the oxygen diffusion process from the pulmonary gas in the alveoli into the pulmonary...patterns (FRC, TV, rate). Keywords – Modeling, Diffusion , Heart Rate fluctuations I. INTRODUCTION Under a whole-body management perception, the
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-01-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289
Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication
NASA Astrophysics Data System (ADS)
Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru
2015-12-01
An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.
The generation and dissipation of solar and galactic magnetic fields.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1973-01-01
Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.
Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.
Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M
2011-01-15
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.
Haghighat, F; Lee, C S; Ghaly, W S
2002-06-01
The measurement and prediction of building material emission rates have been the subject of intensive research over the past decade, resulting in the development of advanced sensory and chemical analysis measurement techniques as well as the development of analytical and numerical models. One of the important input parameters for these models is the diffusion coefficient. Several experimental techniques have been applied to estimate the diffusion coefficient. An extensive literature review of the techniques used to measure this coefficient was carried out, for building materials exposed to volatile organic compounds (VOC). This paper reviews these techniques; it also analyses the results and discusses the possible causes of difference in the reported data. It was noted that the discrepancy between the different results was mainly because of the assumptions made in and the techniques used to analyze the data. For a given technique, the results show that there can be a difference of up to 700% in the reported data. Moreover, the paper proposes what is referred to as the mass exchanger method, to calculate diffusion coefficients considering both diffusion and convection. The results obtained by this mass exchanger method were compared with those obtained by the existing method considering only diffusion. It was demonstrated that, for porous materials, the convection resistance could not be ignored when compared with the diffusion resistance.
Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.
Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja
2016-08-23
Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.
Rosenfeld, Daniel E.; Nishida, Jun; Yan, Chang; Gengeliczki, Zsolt; Smith, Brian J.; Fayer, Michael D.
2012-01-01
The structural dynamics of thin films consisting of tricarbonyl (1,10-phenanthroline)rhenium chloride (RePhen(CO)3Cl) linked to an alkyl silane monolayer through a triazole linker synthesized on silica-on-calcium-fluoride substrates are investigated using ultrafast infrared (IR) techniques. Ultrafast 2D IR vibrational echo experiments and polarization selective heterodyne detected transient grating (HDTG) measurements, as well as polarization dependent FT-IR and AFM experiments are employed to study the samples. The vibrational echo experiments measure spectral diffusion, while the HDTG experiments measure the vibrational excited state population relaxation and investigate the vibrational transition dipole orientational anisotropy decay. To investigate the anticipated impact of vibrational excitation transfer, which can be caused by the high concentration of RePhen(CO)3Cl in the monolayer, a concentration dependence of the spectral diffusion is measured. To generate a range of concentrations, mixed monolayers consisting of both hydrogen terminated and triazole/RePhen(CO)3Cl terminated alkyl silanes are synthesized. It is found that the measured rate of spectral diffusion is independent of concentration, with all samples showing spectral diffusion of 37 ± 6 ps. To definitively test for vibrational excitation transfer, polarization selective HDTG experiments are conducted. Excitation transfer will cause anisotropy decay. Polarization resolved heterodyne detected transient grating spectroscopy is sensitive to anisotropy decay (depolarization) caused by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay on the appropriate time scale, demonstrating the absence of excitation transfer the RePhen(CO)3Cl. Therefore the influence of excitation transfer on spectral diffusion is inconsequential in these samples, and the vibrational echo measurements of spectral diffusion report solely on structural dynamics. A small amount of very fast (~2 ps time scale) anisotropy decay is observed. The decay is concentration independent, and is assigned to wobbling-in-a-cone orientational motions of the RePhen(CO)3Cl. Theoretical calculations reported previously for experiments on a single concentration of the same type of sample suggested the presence of some vibrational excitation transfer and excitation transfer induced spectral diffusion. Possible reasons for the experimentally observed lack of excitation transfer in these high concentration samples are discussed. PMID:23259027
Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange
Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.
1994-01-01
Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.
Improve oxidation resistance at high temperature by nanocrystalline surface layer
NASA Astrophysics Data System (ADS)
Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.
2015-08-01
An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.
Random-walk diffusion and drying of porous materials
NASA Astrophysics Data System (ADS)
Mehrafarin, M.; Faghihi, M.
2001-12-01
Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.
Multiscale Modeling of Diffusion in a Crowded Environment.
Meinecke, Lina
2017-11-01
We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.
NASA Astrophysics Data System (ADS)
Fouad, Mohamed Ahmed; Zewail, Taghreed Mohamed; Amine, Nieven Kamal Abbes
2017-06-01
Rate of diffusion controlled corrosion in 90° Copper Elbow acidified dichromate has been investigated in relation to the following parameters: effect of solution velocity in the absence and presence of drag- reducing polymer on the rate of diffusion controlled corrosion, and effect of the presence of suspended solids on the rate of diffusion controlled corrosion. It was found that the presence of drag reducing polymer inhibited the rate of mass transfer, while the presence of suspended solid increased significantly the rate of mass transfer.
Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle
Kinsey, Stephen T.; Locke, Bruce R.; Dillaman, Richard M.
2011-01-01
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. PMID:21177946
Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm
Daniels, Brian R.; Rikhy, Richa; Renz, Malte; Dobrowsky, Terrence M.; Lippincott-Schwartz, Jennifer
2012-01-01
Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional “compartmentalization” has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients. PMID:22592793
FRACTIONAL PEARSON DIFFUSIONS.
Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla
2013-07-15
Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.L.; Adams, M.E.; Marshall, T.L.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less
NASA Astrophysics Data System (ADS)
Kenmochi, Naoki; Nishiura, Masaki; Yoshida, Zensho; Sugata, Tetsuya; Nakamura, Kaori; Katsura, Shotaro
2017-10-01
The Ring Trap 1 (RT-1) device creates a laboratory magnetosphere that is realized by a levitated superconducting ring magnet in vacuum. The RT-1 experiment has demonstrated the self-organization of a plasma clump with a steep density gradient; a peaked density distribution is spontaneously created through `inward diffusion'. In order to evaluate particle transport characteristics in the RT-1 magnetospheric plasmas which cause these inward diffusion, density modulation experiments were performed in the RT-1. Density modulation is a powerful method for estimating a diffusion coefficient D and a convection velocity V by puffing a periodic neutral gas. The gas puff modulation causes the change in the electron density measured by two chords of microwave interferometer (the radial positions r = 60 and 70 cm, vertical chord). In the case of 2 Hz gas puff modulation, the phase delay and the modulation-amplitude decay at the chord r = 60 cm are obtained with 15 degree and 0.8, respectively, with respect to the phase and the amplitude at r = 70 cm. The particle balance equations are solved on the assumption of profile shapes for D to evaluate D, V and particle source rate. The result suggests the inward convection in high beta magnetospheric plasmas.
A sensitivity study of diffusional mass transfer of gases in tropical storm hydrometeors
NASA Astrophysics Data System (ADS)
Ghosh, Satyajit; Gumber, Siddharth; Varotsos, C.
2017-11-01
This paper quantifies mass transfer and diffusional uptake rates of gases in liquid and solid hydrometeors within a cyclonic system. The non-availability of transfer rates for trace gases diffusing into storm hydrometeors, particularly over polluted urban conurbations, often constrain modellers the world over; however, this is an essential requirement to quantify the scavenging rates over the region concerned. The present paper seeks to provide modellers with such rates. Further, all of the earlier studies apply only to temperate regimes, and surprisingly identical formulations are assumed even for tropical conditions. The present analysis fills this research gap and couples cloud morphology with the associated thermodynamics through Weather Research and Forecasting (WRF) runs for cyclone Chapala (27 October 2015-04 November 2015) which battered the coasts of Yemen (Skamarock et al. 2008). It was a good example for undertaking this sensitivity study because the vertical extent spanned from around 0.75 to 16 km—enabling uptake rate calculations over both droplet and ice phases. Many of the diffusing gases were polar; the dipole moment of sulphur dioxide (SO2) and water vapour (H2O) was also included using a full Lennard-Jones model to compute the binary diffusivities of these gases as they diffused into the droplets mixed with water vapour. The first-order uptake rate constants ranged from 2.08 × 10-07 to 3.44 × 10-06 (s-1) and 1.97 × 10-07 to 7.81 × 10-07 (s-1) for H2O and SO2 respectively. The rates are of the order of 10-09 (s-1) for diffusion of water vapour into ice crystals further aloft. Closely linked with the gas uptake rates is another crucial parameter—the mass accommodation coefficient, α. The most widely used values are 1 and 0.036 (Pruppacher and Klett 1998)—the chosen values are restrictive and warrants a closer look. In storm systems, the vertical extents are in the kilometre range. Chapala with a large vertical extent warrants a full profile calculation. This study shows that for H2O vapour, α values range from a low of 0.004 reaching up to 0.046, and for SO2 impacting the liquid droplets, they are 0.004 to 0.077. Using these values in cloud droplet growth equations showed large changes in the positioning of the cloud base height up to about a maximum of 30%—a classic example illustrating the coupling of microphysics with dynamics suggesting that even large-scale models should cautiously use standard un-corrected accommodation and diffusion coefficients. Over polluted environments, aerosol number concentrations are very high—several hundreds of particles in a cubic centimetre—the cumulative effect involving such large-scale scavenging ends up in causing substantive changes in the actual scavenging rates. This is likely to affect overall radiative transfer calculations and must be corrected.
Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames
NASA Technical Reports Server (NTRS)
Ravikrishna, Rayavarapu V.
2000-01-01
The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the region where prompt-NO dominates. Finally, LIF measurements of NO were obtained in counterflow diffusion flames at 2 to 5 atm. Comparisons between [NO] measurements and predictions show that the GRI mechanism underpredicts prompt-NO by a factor of two to three at all pressures. In general, the results indicate a need for refinement of the CH chemistry, especially the pressure-dependent CH formation and destruction reactions.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
Ma, Q.; Li, W.; Thorne, R. M.; ...
2017-09-29
Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less
Influence of diameter on particle transport in a fractured shale saprolite
Cumbie, D.H.; McKay, L.D.
1999-01-01
Experiments in an undisturbed, saturated column of weathered and fractured shale saprolite using fluorescent carboxylate-coated latex microspheres as tracers indicate that particle diameter plays a major role in controlling transport. In this study the optimum microsphere diameter for transport was approximately 0.5 ??m. Microspheres larger than the optimum size were present in the effluent at lower relative concentrations, apparently because of greater retention due to gravitational settling and/or physical straining. The smaller than optimum microspheres also experienced greater retention, apparently related to their higher rates of diffusion. Faster diffusion can lead to more frequent collisions with, and attachment to, fracture walls and may also lead to movement of particles into zones of relatively immobile pore water in the fractures or in the fine pore structure of the clay-rich matrix between fractures. Dismantling of the soil column and mapping of the distribution of retained microspheres indicated that there was substantial size-segregation of the microspheres between different fractures or in 'channels' within a fracture. Examination of small core samples showed that the smallest microspheres (0.05-0.1 ??m) were present in the fine pores of the matrix at distances of up to 3-4 mm from the nearest fracture, which supports the hypothesis that small particles can be retained by diffusion into the matrix. Calculations of settling velocity and diffusion rate using simple 1D approaches suggest that these processes could both cause significant retention of the larger and smaller particles, respectively, even for the fast advective transport rates (up to 32 m/day) observed during the experiments. Copyright (C) 1999 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan
1994-01-01
This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.
Anti-glare LED lamps with adjustable illumination light field.
Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen
2014-03-10
We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.
The role of intra-NAPL diffusion on mass transfer from MGP residuals
NASA Astrophysics Data System (ADS)
Shafieiyoun, Saeid; Thomson, Neil R.
2018-06-01
An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.
NASA Astrophysics Data System (ADS)
Rao, K. P.; Suresh, K.; Prasad, Y. V. R. K.; Hort, N.
2018-01-01
The hot workability of extruded Mg-3Sn-1Ca alloy has been evaluated by developing processing maps with flow stress data from compression and tensile tests with a view to find the effect of the applied state-of-stress. The processing maps developed at a strain of 0.2 are essentially similar irrespective of the mode of deformation - compression or tension, and exhibit three domains in the temperature ranges: (1) 350 - 425 °C, and (2) 450 - 550 °C and (3) 400 - 500 °C, the first two occurring at lower strain rates and the third occurring at higher strain rates. In all the three domains, dynamic recrystallization occurs and is caused by non-basal slip and controlled by lattice self-diffusion in the first and second domains and grain boundary self-diffusion in the third domain. The state-of-stress imposed on the specimen (compression or tension) does not have any significant effect on the processing maps.
Brotto, Laura; Battistutta, Franco; Tat, Lara; Comuzzo, Piergiorgio; Zironi, Roberto
2010-03-24
Some modifications to a previous nondestructive colorimetric method that permits evaluation of the oxygen diffusion rate through wine closures were proposed. The method is based on the reaction of indigo carmine solution with oxygen and the tristimulus measurement of the consequent color change. Simplified preparation and measurement procedures were set up, allowing the analysis of a large number of samples simultaneously. The method was applied to the evaluation of the variability within the lot of 20 different types of stoppers (synthetic, produced by molding, and natural cork). The closures were tested at a storage temperature of 26 degrees C. With regard to oxygen permeability, the natural cork stopper showed a low homogeneity within the lot, especially during the first month after bottling, whereas the synthetic closure showed a greater steadiness in the performance. The limits of the colorimetric method were also analyzed, and three possible causes of degradation of the indigo carmine solution were identified: oxygen, light, and heat.
Mechanisms of lithium transport in amorphous polyethylene oxide.
Duan, Yuhua; Halley, J W; Curtiss, Larry; Redfern, Paul
2005-02-01
We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase.
Elemental Mercury Diffusion Processes and Concentration at the Lunar Poles
NASA Technical Reports Server (NTRS)
Moxley, Frederick; Killen, Rosemary M.; Hurley, Dana M.
2011-01-01
In 2009, the Lyman Alpha Mapping Project (LAMP) spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft made the first detection of element mercury (Hg) vapor in the lunar exosphere after the Lunar Crater Observing and Sensing Satellite (LCROSS) Centaur rocket impacted into the Cabeus crater in the southern polar region of the Moon. The lunar regolith core samples from the Apollo missions determined that Hg had a devolatilized pattern with a concentration gradient increasing with depth, in addition to a layered pattern suggesting multiple episodes of burial and volatile loss. Hg migration on the lunar surface resulted in cold trapping at the poles. We have modeled the rate at which indigenous Hg is lost from the regolith through diffusion out of lunar grains. We secondly modeled the migration of Hg vapor in the exosphere and estimated the rate of cold-trapping at the poles using a Monte Carlo technique. The Hg vapor may be lost from the exosphere via ionization, Jeans escape, or re-impact into the surface causing reabsorption.
Neeper, D A
2001-04-01
A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.
Mass Transfer and Rheology of Fiber Suspensions
NASA Astrophysics Data System (ADS)
Wang, Jianghui
Rheological and mass transfer properties of non-Brownian fiber suspensions are affected by fiber characteristics, fiber interactions, and processing conditions. In this thesis we develop several simulation methods to study the dynamics of single fibers in simple shear flow, as well as the rheology and mass transfer of fiber suspensions. Isolated, rigid, neutrally-buoyant, non-Brownian, slightly curved, nonchiral fibers in simple shear flow of an incompressible Newtonian fluid at low Reynolds number can drift steadily in the gradient direction without external forces or torques. The average drift velocity and direction depend on the fiber aspect ratio, curvature and initial orientation. The drift results from the coupling of rotational and translational dynamics, and the combined effects of flipping, scooping, and spinning motions of the fiber. Irreversible fiber collisions in the suspensions cause shear-induced diffusion. The shear-induced self-diffusivity of dilute suspensions of fibers increases with increasing concentration and increasing static friction between contacts. The diffusivities in both the gradient and vorticity directions are larger for suspensions of curved fibers than for suspensions of straight fibers. For suspensions of curved fibers, significant enhancements in the diffusivity in the gradient direction are attributed to fiber drift in the gradient direction. The shear-induced self-diffusivity of concentrated suspensions of fibers increases with increasing concentration before fiber networks or flocs are formed, after which the diffusivity decreases with increasing concentration. The diffusivity increases with increasing fiber equilibrium bending angle, effective stiffness, coefficient of static friction, and rate of collisions. The specific viscosity of fiber suspensions increases with increasing fiber curvature, friction coefficient between mechanical contacts, and solids concentration. The specific viscosity increases linearly with concentration in the dilute regime, and increases with the cube of the concentration in the semi-dilute regime. Concentrated fiber suspensions are highly viscous, shear thinning, and exhibit significant yield stresses and normal stress differences. Yield stresses scale with volume concentration and fiber aspect ratio in the same way as that observed in experiments. The first normal stress difference increases linearly with shear rate. The shear-induced diffusivity increases linearly with the derivative of the particle contribution to stress for dilute suspensions with respective to concentration. This correlation between rheology and shear-induced diffusion makes it possible to predict diffusivity from easily measured rheological properties.
Brain-water diffusion coefficients reflect the severity of inherited prion disease
Hyare, H.; Wroe, S.; Siddique, D.; Webb, T.; Fox, N. C.; Stevens, J.; Collinge, J.; Yousry, T.; Thornton, J. S.
2010-01-01
Objective: Inherited prion diseases are progressive neurodegenerative conditions, characterized by cerebral spongiosis, gliosis, and neuronal loss, caused by mutations within the prion protein (PRNP) gene. We wished to assess the potential of diffusion-weighted MRI as a biomarker of disease severity in inherited prion diseases. Methods: Twenty-five subjects (mean age 45.2 years) with a known PRNP mutation including 19 symptomatic patients, 6 gene-positive asymptomatic subjects, and 7 controls (mean age 54.1 years) underwent conventional and diffusion-weighted MRI. An index of normalized brain volume (NBV) and region of interest (ROI) mean apparent diffusion coefficient (ADC) for the head of caudate, putamen, and pulvinar nuclei were recorded. ADC histograms were computed for whole brain (WB) and gray matter (GM) tissue fractions. Clinical assessment utilized standardized clinical scores. Mann-Whitney U test and regression analyses were performed. Results: Symptomatic patients exhibited an increased WB mean ADC (p = 0.006) and GM mean ADC (p = 0.024) compared to controls. Decreased NBV and increased mean ADC measures significantly correlated with clinical measures of disease severity. Using a stepwise multivariate regression procedure, GM mean ADC was an independent predictor of Clinician's Dementia Rating score (p = 0.001), Barthel Index of activities of daily living (p = 0.001), and Rankin disability score (p = 0.019). Conclusions: Brain volume loss in inherited prion diseases is accompanied by increased cerebral apparent diffusion coefficient (ADC), correlating with increased disease severity. The association between gray matter ADC and clinical neurologic status suggests this measure may prove a useful biomarker of disease activity in inherited prion diseases. GLOSSARY ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive subscale; ADC = apparent diffusion coefficient; ADL = Barthel Activities of Daily Living scale; BET = brain extraction tool; BPRS = Brief Psychiatric Rating Scale; BSE = bovine spongiform encephalopathy; CDR = Clinician's Dementia Rating Scale; CGIS = Clinician's Global Impression of Disease; CI = confidence interval; DWI = diffusion-weighted imaging; FLAIR = fluid-attenuated inversion recovery; FOV = field of view; GM = gray matter; LC = left head of caudate; LP = left putamen; LPu = left pulvinar; MMSE = Mini-Mental State Examination; NBV = normalized brain volume; PH = peak height; PL = peak location; RC = right head of caudate; RP = right putamen; RPu = right pulvinar; ROI = region of interest; sCJD = sporadic Creutzfeldt-Jakob disease; TE = echo time; TI = inversion time; TR = repetition time; vCJD = variant Creutzfeldt-Jakob disease; WB = whole brain; WM = white matter. PMID:20177119
Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E
2016-11-30
Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H 2 and D 2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H 2 and D 2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H 2 and D 2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.
Sodeifian, Gholamhossein; Razmimanesh, Fariba
2018-05-10
In this research, for the first time, molecular dynamics (MD) method was used to simulate aspirin and ibuprofen at various concentrations and in neutral and charged states. Effects of the concentration (dosage), charge state, and existence of an integral protein in the membrane on the diffusion rate of drug molecules into lipid bilayer membrane were investigated on 11 systems, for which the parameters indicating diffusion rate and those affecting the rate were evaluated. Considering the diffusion rate, a suitable score was assigned to each system, based on which, analysis of variance (ANOVA) was performed. By calculating the effect size of the indicative parameters and total scores, an optimum system with the highest diffusion rate was determined. Consequently, diffusion rate controlling parameters were obtained: the drug-water hydrogen bond in protein-free systems and protein-drug hydrogen bond in the systems containing protein.
Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying
NASA Astrophysics Data System (ADS)
Kameya, Yuki
2017-06-01
A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.
Transdermal diffusion of xenon in vitro using diffusion cells
NASA Astrophysics Data System (ADS)
Verkhovsky, A.; Petrov, E.
2015-11-01
The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.
The diffusion of ions in unconsolidated sediments
Manheim, F.T.
1970-01-01
Diffusion in unconsolidated sediments generally proceeds at rates ranging from half to one twentieth of those applying to diffusion of ions and molecules in free solution. Diffusion rates are predictable with respect to porosity and path tortuosity in host sediments, and can be conveniently measured by determinations of electrical resistivity on bulk sediment samples. Net ion flux is further influenced by reactions of diffusing species with enclosing sediments, but such influences should not be confused with or lumped with diffusion processes. ?? 1970.
Bouwer, S T; Hoofd, L; Kreuzer, F
2001-02-16
The purpose of this study was to verify the concept of non-equilibrium facilitated oxygen diffusion. This work succeeds our previous study, where facilitated oxygen diffusion by hemoglobin was measured at conditions of chemical equilibrium, and which yielded diffusion coefficients of hemoglobin and of oxygen. In the present work chemical non-equilibrium was induced using very thin diffusion layers. As a result, facilitation was decreased as predicted by theory. Thus, this work presents the first experimental demonstration of non-equilibrium facilitated oxygen diffusion. In addition, association and dissociation rate parameters of the reaction between oxygen and bovine and human hemoglobin were calculated and the effect of the homotropic and heterotropic interactions on each rate parameter was demonstrated. The results indicate that the homotropic interaction--which leads to increasing oxygen affinity with increasing oxygenation--is predominantly due to an increase in the association rate. The heterotropic interaction--which leads to decreasing oxygen affinity by anionic ligands--appears to be effected in two ways. Cl- increases the dissociation rate. In contrast, 2,3-diphosphoglycerate decreases the association rate.
NASA Astrophysics Data System (ADS)
Hazelton, Garrett Blaine
Furnace and laser spot methods of obtaining 40Ar/ 39Ar ages from fine-grained cataclasite and pseudotachylyte are compared and evaluated in terms of protolith, faulting, and cooling age components. These methods are applied to fault rocks from outcrop-scale, small-displacement, brittle detachment faults (minidetachments or MDF's) that cut mid-crustal rocks from the footwalls of brittle, large-displacement (>20 km), top-to-the-NE, low-angle normal (i.e., detachment) faults in the Whipple (WM) and Chemehuevi Mountains (CM), SE California. Mid-Tertiary extension affected both areas from ˜26 Ma to ˜11--8 Ma. Rapid footwall cooling began at ˜22 Ma. WM-CM furnace ages range from 22.0 +/- 1.3 to 14.6 +/- 0.6 Ma, CM laser ages from 29.9 +/- 3.7 to 15.7 +/- 1.2 Ma. These ages are younger than host protolith formation and record detachment faulting or footwall cooling. At least 50 MDF's were mapped; they typically cut all basement fabrics. Brittle MDFand detacriment-generated fault rocks are texturally similar, but some in the WM are plastically deformed. Fault rock matrix was mechanically extracted, optically studied, probed to characterize bulk mineralogy. K-feldspar grains are the primary source of fault rock-derived Ar. The laser provides high spatial resolution and the furnace method yields the Ar diffusion properties of fault rock matrix. Both methods yield reproducible results, but ages are difficult to interpret without an established geothermochronologic context. Fault rock 40Ar/39Ar measurements reveal: (1) closure temperatures of 140--280°C (at 100°C/Myr); (2) activation energies ranging from 33--50 kcal/mol; (3) individual K-feldspar grain ages of 55--5 Ma; (4) unanticipated and poorly understood low-temperature diffusion behavior; (5) little difference between pseudotachylyte and cataclasite matrix diffusion and age results; (6) that pre-analysis sample characterization is requisite. The diffusion properties of prepared glasses (47--84% SiO2) were also measured. Those with fault rock-like compositions yield activation energies of 25--39 kca/mol and average diffusivity of 4.63 · 10-3 cm2/sec. Network-forming Ca, Fe, and Mg partly cause certain low-temperature diffusion behaviors that, if unaccounted for, could allow an underestimation of Ar diffusion rates in some glass-bearing materials. Numerical models show that ambient temperature, grain size, and cooling rate strongly influence the Ar retention rate and interpretability of fault rock 40Ar/39Ar ages.
Solmaz, Ilker; Kural, Cahit; Temiz, Cağlar; Seçer, Halil Ibrahim; Düz, Bülent; Gönül, Engin; Izci, Yusuf
2009-07-01
Traumatic brain injury (TBI) caused by a gunshot wound is a complex injury with a broad spectrum of symptoms and high rates of mortality and morbidity. This study presents an evaluation of TBI caused by gunshot wounds presenting at a single institution and discusses possible predictive factors for the outcome of surgical intervention. The study sample consisted of 442 patients who underwent surgery for TBI over a 16-year period. All injuries were caused by gunshot wounds, such as bullets and shrapnel. All patients underwent surgical intervention. Almost all patients (99.3%) were male, and the mean patient age was 22.3 years. Wounds were caused by shrapnel in 68 percent of patients. The Glasgow Coma Scale (GCS) score at admission was below 8 in 116 patients (26.2%) and above 8 in 326 patients (73.8%). In total, 47 patients (10.6%) died despite surgical management, with diffuse brain injury the most common cause of death. Low GCS scores, ventricular injuries and bihemispheric injuries are correlated with poor prognosis. Early and less invasive surgery in conjunction with short transportation time to the hospital could decrease mortality rates.
Radiant extinction of gaseous diffusion flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.
1995-01-01
The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.
Diffuse pollution of soil and water: Long term trends at large scales?
NASA Astrophysics Data System (ADS)
Grathwohl, P.
2012-04-01
Industrialization and urbanization, which consequently increased pressure on the environment to cause degradation of soil and water quality over more than a century, is still ongoing. The number of potential environmental contaminants detected in surface and groundwater is continuously increasing; from classical industrial and agricultural chemicals, to flame retardants, pharmaceuticals, and personal care products. While point sources of pollution can be managed in principle, diffuse pollution is only reversible at very long time scales if at all. Compounds which were phased out many decades ago such as PCBs or DDT are still abundant in soils, sediments and biota. How diffuse pollution is processed at large scales in space (e.g. catchments) and time (centuries) is unknown. The relevance to the field of processes well investigated at the laboratory scale (e.g. sorption/desorption and (bio)degradation kinetics) is not clear. Transport of compounds is often coupled to the water cycle and in order to assess trends in diffuse pollution, detailed knowledge about the hydrology and the solute fluxes at the catchment scale is required (e.g. input/output fluxes, transformation rates at the field scale). This is also a prerequisite in assessing management options for reversal of adverse trends.
Effects of a temperature-dependent rheology on large scale continental extension
NASA Technical Reports Server (NTRS)
Sonder, Leslie J.; England, Philip C.
1988-01-01
The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.
NASA Astrophysics Data System (ADS)
Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.
1987-04-01
Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.
NASA Astrophysics Data System (ADS)
Karimi, Milad; Moradlou, Fridoun; Hajipour, Mojtaba
2018-10-01
This paper is concerned with a backward heat conduction problem with time-dependent thermal diffusivity factor in an infinite "strip". This problem is drastically ill-posed which is caused by the amplified infinitely growth in the frequency components. A new regularization method based on the Meyer wavelet technique is developed to solve the considered problem. Using the Meyer wavelet technique, some new stable estimates are proposed in the Hölder and Logarithmic types which are optimal in the sense of given by Tautenhahn. The stability and convergence rate of the proposed regularization technique are proved. The good performance and the high-accuracy of this technique is demonstrated through various one and two dimensional examples. Numerical simulations and some comparative results are presented.
Branched-chain amino acid transport in Streptococcus mutans Ingbritt.
Dashper, S G; Reynolds, E C
1993-06-01
Leucine transport in glucose-energized cells of Streptococcus mutans exhibited Michaelis-Menten-type kinetics at low extracellular concentrations, with a K1 of 15.3 microM and a Vmax of 6.1 nmol/mg dry weight/min. At high extracellular leucine concentrations, the transmembrane diffusion of leucine was not saturable, indicating that passive diffusion becomes a significant mechanism of leucine transmembrane movement under these conditions. The proton motive force (PMF) was measured in glucose-energized cells of S. mutans and was found to have a maximum value of 126 mV at an extracellular pH (pH0) of 5.0; this decreased to 45 mV at pH0 8.0. The intracellular accumulation of leucine was significantly correlated with the magnitude of the PMF. The addition of excess isoleucine or valine caused a marked decrease in the leucine transport rate. Maximal rates of leucine transport occurred at pH0 6.0, and the rate of leucine transport was independent of the growth medium. The results suggest that there is a PMF-driven, branched-chain amino acid carrier in S. mutans with a proton: substrate stoichiometry of 1.
Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Summers, D.; Siscoe, G. L.
1985-01-01
The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.
Hydraulic properties of rice and the response of gas exchange to water stress.
Stiller, Volker; Lafitte, H Renee; Sperry, John S
2003-07-01
We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure in the response of rice (Oryza sativa) gas exchange to water stress. In the field (Philippines), the percentage loss of xylem conductivity (PLC) from cavitation exceeded 60% in leaves even in watered controls. The PLC versus leaf water potential relationship indicated diurnal refilling of cavitated xylem. The leaf water potential causing 50 PLC (P(50)) was -1.6 MPa and did not differ between upland versus lowland rice varieties. Greenhouse-grown varieties (Utah) were more resistant to cavitation with a 50 PLC of -1.9 MPa but also showed no difference between varieties. Six-day droughts caused concomitant reductions in leaf-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated with cavitation-inducing water potentials and the disappearance of nightly root pressure. The return of root pressure after drought was associated with the complete recovery of leaf diffusive conductance, leaf-specific photosynthetic rate, and soil-leaf hydraulic conductance. Root pressure after the 6-d drought (61.2 +/- 8.8 kPa) was stimulated 7-fold compared with well-watered plants before drought (8.5 +/- 3.8 kPa). The results indicate: (a) that xylem cavitation plays a major role in the reduction of plant hydraulic conductance during drought, and (b) that rice can readily reverse cavitation, possibly aided by nocturnal root pressure.
Diffusion equations and the time evolution of foreign exchange rates
NASA Astrophysics Data System (ADS)
Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Yoshitake; Dapkus, P. Daniel
Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I{sub 1} type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaNmore » QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.« less
NASA Astrophysics Data System (ADS)
Nakajima, Yoshitake; Dapkus, P. Daniel
2016-08-01
Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I1 type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaN QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.
Systematic variations of argon diffusion in feldspars and implications for thermochronometry
Cassata, William S.; Renne, Paul R.
2013-03-07
Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. Furthermore, the resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yujie; Gong, Sha; Wang, Zhen
The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less
Reduction of Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times.
Baron, Corey Allan; Kate, Mahesh; Gioia, Laura; Butcher, Kenneth; Emery, Derek; Budde, Matthew; Beaulieu, Christian
2015-08-01
Diffusion-weighted imaging (DWI) of tissue water is a sensitive and specific indicator of acute brain ischemia, where reductions of the diffusion of tissue water are observed acutely in the stroke lesion core. Although these diffusion changes have been long attributed to cell swelling, the precise nature of the biophysical mechanisms remains uncertain. The potential cause of diffusion reductions after stroke was investigated using an advanced DWI technique, oscillating gradient spin-echo DWI, that enables much shorter diffusion times and can improve specificity for alterations of structure at the micron level. Diffusion measurements in the white matter lesions of patients with acute ischemic stroke were reduced by only 8% using oscillating gradient spin-echo DWI, in contrast to a 37% decrease using standard DWI. Neurite beading has recently been proposed as a mechanism for the diffusion changes after ischemic stroke with some ex vivo evidence. To explore whether beading could cause such differential results, simulations of beaded cylinders and axonal swelling were performed, yielding good agreement with experiment. Short diffusion times result in dramatically reduced diffusion contrast of human stroke. Simulations implicate a combination of neuronal beading and axonal swelling as the key structural changes leading to the reduced apparent diffusion coefficient after stroke. © 2015 American Heart Association, Inc.
Product interactions and feedback in diffusion-controlled reactions
NASA Astrophysics Data System (ADS)
Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim
2018-02-01
Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.
Induced polarization: Simulation and inversion of nonlinear mineral electrodics
NASA Astrophysics Data System (ADS)
Agunloye, Olu
1983-02-01
Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.
NASA Astrophysics Data System (ADS)
Murugesan, Nithya; Singha, Siddhartha; Panda, Tapobrata; Das, Sarit K.
2016-03-01
Studies on chemotaxis in microfluidics device have become a major area of research to generate physiologically similar environment in vitro. In this work, a novel micro-fluidic device has been developed to study chemo-taxis of cells in near physiological condition which can create controllable, steady and long-range chemical gradients using various chemo-effectors in a micro-channel. Hydrogels like agarose, collagen, etc, can be used in the device to maintain exclusive diffusive flux of various chemical species into the micro-channel under study. Variations of concentrations and flow rates of Texas Red dextran in the device revealed that an increase in the concentration of the dye in the feed from 6 to 18 μg ml-1, causes a steeper chemical gradient in the device, whereas the flow rate of the dye has practically no effect on the chemical gradient in the device. This observation confirms that a diffusion controlled chemical gradient is generated in the micro-channel. Chemo-taxis of E. coli cells were studied under the steady gradient of a chemo-attractant and a chemo-repellent separately in the same chemical gradient generator. For sorbitol and NiSO4·6H2O, the bacterial cells exhibit a steady distribution in the micro channel after 1 h and 30 min, respectively. From the distribution of bacterial population chemo-tactic strength of the chemo-effectors was estimated for E. coli. In a long microfluidic channel, migration behavior of bacterial cells under diffusion controlled chemical gradient showed chemotaxis, random movement, aggregation, and concentration dependent reverse chemotaxis.
Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation
Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.
1993-01-01
The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at the highest As(V) adsorption density. The results suggest that the solid solution model proposed by Fox (1989, 1992) for control of arsenate and phosphate concentrations in natural waters may be invalid. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong
2015-08-01
A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less
Neoclassical diffusion at low L-shel
NASA Astrophysics Data System (ADS)
Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.
2017-12-01
At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L as a function of pitch-angle, energy and L-shell, and find that we quantitatively reproduce the results in Newkirk and Walt and Imhof et al, conclusively demonstrating that neoclassical diffusion is an important effect for energetic electrons in the deep inner belt.
Steric effects on diffusion into bituminous coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
John W. Larsen; Doyoung Lee
2006-02-01
The reactions of maleic anhydride, cis-maleate esters, and acetylenedicarboxylate esters with Pittsburgh No. 8 or Illinois No. 6 coal using o-xylene or o-dichlorobenzene solvent are diffusion controlled. Diffusion is Fickian in all cases. The measured activation energies are between 5.4 and 7.6 kcal/mol. Diffusion rates decrease slowly with increasing alkyl chain length and sharply with branching. Diffusion rates are slightly faster with o-xylene than when o-dichlorobenzene is used. 40 refs., 5 figs., 4 tabs.
Anesthetic diffusion through lipid membranes depends on the protonation rate.
Pérez-Isidoro, Rosendo; Sierra-Valdez, F J; Ruiz-Suárez, J C
2014-12-18
Hundreds of substances possess anesthetic action. However, despite decades of research and tests, a golden rule is required to reconcile the diverse hypothesis behind anesthesia. What makes an anesthetic to be local or general in the first place? The specific targets on proteins, the solubility in lipids, the diffusivity, potency, action time? Here we show that there could be a new player equally or even more important to disentangle the riddle: the protonation rate. Indeed, such rate modulates the diffusion speed of anesthetics into lipid membranes; low protonation rates enhance the diffusion for local anesthetics while high ones reduce it. We show also that there is a pH and membrane phase dependence on the local anesthetic diffusion across multiple lipid bilayers. Based on our findings we incorporate a new clue that may advance our understanding of the anesthetic phenomenon.
Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia
2016-02-01
The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates. Copyright © 2015 Elsevier Inc. All rights reserved.
Report on simulation of fission gas and fission product diffusion in UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni
2016-07-22
In UO 2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO 2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functionalmore » theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe U3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe U3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe U3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the Xe U3O cluster for intrinsic conditions than under irradiation. We speculate that differences in the irradiation conditions and their impact on the Xe U3O cluster can explain the wide range of diffusivities reported in experimental studies. However, all vacancy-mediated mechanisms underestimate the Xe diffusivity compared to the empirical radiation-enhanced rate used in most fission gas release models. We investigate the possibility that diffusion of small fission gas bubbles or extended Xe-vacancy clusters may give rise to the observed radiation-enhanced diffusion coefficient. These studies highlight the importance of U divacancies and an octahedron coordination of uranium vacancies encompassing a Xe fission gas atom. The latter cluster can migrate via a multistep mechanism with a rather low effective barrier, which together with irradiation-induced clusters of uranium vacancies, gives rise to the irradiation-enhanced diffusion coefficient observed in experiments.« less
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2016-12-01
Fluorescence correlation spectroscopy relies on temporal autocorrelation analysis of fluorescence intensity fluctuations that spontaneously arise in systems at equilibrium due to molecular motion and changes of state that cause changes in fluorescence, such as triplet state transition, photoisomerization and other photophysical transformations, to determine the rates of these processes. The stability of a fluorescent molecule against dark state conversion is of particular concern for chromophores intended to be used as reference tags for comparing diffusion processes on multiple time scales. In this work, we analyzed properties of two fluorescent proteins, the photoswitchable Dreiklang and its parental eGFP, in solvents of different viscosity to vary the diffusion time through the observation volume element by several orders of magnitude. In contrast to eGFP, Dreiklang undergoes a dark-state conversion on the time scale of tens to hundreds of microseconds under conditions of intense fluorescence excitation, which results in artificially shortened diffusion times if the diffusional motion through the observation volume is sufficiently slowed down. Such photophysical quenching processes have also been observed in FCS studies on other photoswitchable fluorescent proteins including Citrine, from which Dreiklang was derived by genetic engineering. This property readily explains the discrepancies observed previously between the diffusion times of eGFP- and Dreiklang-labeled plasma membrane protein complexes.
New Gas Polarographic Hydrogen Sensor
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Barile, Ron
2004-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
NASA Technical Reports Server (NTRS)
Dominquez, Jesus; Barile, Ron
2006-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H ions or protons; H ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic O2 sensors are commercially available; a gas polarographic O2 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Modeling the rate-controlled sorption of hexavalent chromium
Grove, D.B.; Stollenwerk, K.G.
1985-01-01
Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.
Do Melt Inclusions Answer Big Questions?
NASA Astrophysics Data System (ADS)
Hofmann, A. W.; Sobolev, A. V.
2009-12-01
In a pioneering paper, Sobolev and Shimizu (1993) demonstrated the existence of ultra-depleted melt inclusions in olivine phenocrysts in MORB. They interpreted these as evidence for the preservation of parental melts formed by progressive near-fractional melting. Subsequently many cases have been described where melt inclusions from single basalt samples display enormous chemical and isotopic heterogeneity. The interpretation of these observations hinges critically on whether such melt inclusions can faithfully preserve primary or parental melt composition. If they do, melt inclusion data can truly answer big questions from small-scale observations. If they do not, they answer rather small questions. Favoring the second possibility, Danyushevsky et al. (2004) have suggested that much of the observed variability of highly incompatible trace elements in melt inclusions “may not represent geologically significant melts, but instead reflect localized, grain-scale reaction processes within the magmatic plumbing system.” We disagree and show that this mechanism cannot, for example, explain isotopic heterogeneity measured in several suites of melt inclusions, nor does it not account for the presence of ultra-depleted melts and "ghost" plagioclase signatures in other inclusions. More recently, Spandler et al. (2007) have suggested on the basis of experimental evidence that diffusion rates for REE in olivine are so rapid that parental melt compositions in melt inclusions are rapidly falsified by diffusional exchange with (evolved) host lava. We show that the very fact that extreme chemical and isotopic heterogeneities are routinely preserved in melt inclusions demonstrates that this conclusion is unwarranted, either because residence times of the olivine phenocrysts are much shorter than assumed by Spandler et al. or because the high experimental diffusion rates are caused by an unknown experimental artifact. Although there is no obvious flaw in design and execution of their experiments, geologically relevant diffusion rates are notoriously difficult to determine and may depend on factors not incorporated in the laboratory experiments. More recent diffusion experiments by Remmert et al. (2008) and by Cherniak (2009) have yielded diffusion coefficients three order of magnitude lower than those measured by Spandler. The heavy REE represent a possible exception to the above conclusions. We present data from olivine melt inclusions from Iceland basalts, which show unusual HREE patterns possibly caused by diffusional exchange with the host lava. Sobolev, A.V. & Shimizu, N. (1993) Nature 363, 151-154. Danyushevskii, L.V. et al. (2004) J. Petrol. 45, 2531-2553. Spandler, G., O’Neill, H.St.C., Kamenetsky, V.S. (2007) Nature, 447, 303-306. Remmert, P. Dohmen, R., Chakraborty, S. (2008) EOS Trans. AGU abs. MR331-1844. Cherniak, D.J. (2009) Am. Mineral. Ms. subm.
Optical signature of an ionospheric hole
NASA Technical Reports Server (NTRS)
Mendillo, M.; Baumgardner, J.
1982-01-01
Simultaneous radio and optical diagnostics of a large, artificially-induced ionospheric modification were conducted during the June 1981 launch of a weather satellite. Intensified imaging and photometer observations at 6300 A, along the same ray path as VHF polarimeter measurements of the ionosphere's total electron content (TEC), were made while the rocket plume caused disturbances. A rapid TEC chemical depletion, on the order of -16.8 x 10 to the 12th el/sq cm, caused a burst of 6300 A radiation which expanded over 60 deg of the sky, with a peak intensity of almost 9 k R. Atmospheric diffusion and O(1D) quenching rate theoretical estimates were then tested, using the event as an active space plasma experiment.
Hemolytic Uremic Syndrome-associated Encephalopathy Successfully Treated with Corticosteroids.
Hosaka, Takashi; Nakamagoe, Kiyotaka; Tamaoka, Akira
2017-11-01
The encephalopathy that occurs in association with hemolytic uremic syndrome (HUS), which is caused by enterohemorrhagic Escherichia coli (E. coli), has a high mortality rate and patients sometimes present sequelae. We herein describe the case of a 20-year-old woman who developed encephalopathy during the convalescent stage of HUS caused by E.coli O26. Hyperintense lesions were detected in the pons, basal ganglia, and cortex on diffusion-weighted brain MRI. From the onset of HUS encephalopathy, we treated the patient with methylprednisolone (mPSL) pulse therapy alone. Her condition improved, and she did not present sequelae. Our study shows that corticosteroids appear to be effective for the treatment of some patients with HUS encephalopathy.
Double-spin-echo diffusion weighting with a modified eddy current adjustment.
Finsterbusch, Jürgen
2010-04-01
Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.
Relativistic electrons and whistlers in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Coroniti, F. V.
1976-01-01
The paper examines some of the consequences of relativistic electrons in stably trapped equilibrium with parallel propagating whistlers in the inner magnetosphere of Jupiter. Approximate scaling laws for the stably trapped electron flux and equilibrium wave intensity are derived, and the equatorial growth rate for whistlers is determined. It is shown that fluxes are near the stably trapped limit, which suggests that whistler intensities may be high enough to cause significant diffusion of electrons, accounting for the observed reduction of phase space densities.
Effects of radial diffuser hydraulic design on a double-suction centrifugal pump
NASA Astrophysics Data System (ADS)
Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.
2016-05-01
In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion device and is good to transform the dynamic energy to pressure energy. Then through the hydraulic loss analysis of each pump component for all diffusers, it shows that the impeller takes up the biggest part of the whole loss about 8.19% averagely, the radial diffuser about 3.70% and the volute about 1.65%. The hydraulic loss of impeller is dominant at the large flow rate while the radial diffuser is at the small flow rate. Among all diffusers, the ES profile diffuser generates the least loss and combined to the distribution of velocity vector and turbulent kinetic energy for two kinds of diffusers it also shows that ES profile is fit to apply in radial diffuser. This research can offer a significant reference for the radial diffuser hydraulic design of such centrifugal pumps.
Phase transition in conservative diffusive contact processes
NASA Astrophysics Data System (ADS)
Fiore, Carlos E.; de Oliveira, Mário J.
2004-10-01
We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.
Blinov, D S; Chemova, N N; Balykova, O P; Liapina, S A; Chugunova, L A
2015-01-01
In the article there are presented the results of research on naturally conditioned insufficiency of trace elements, particularly iodine, in the Republic of Mordovia. Iodine deficiency disorders are referred to the most common non-infectious human pathology. According to WHO data, about two billion people on Earth live in conditions of in iodine deficiency. In the Russian Federation there are no areas in which the population would not be at risk for the development of iodine deficiency disorders. To these regions and the Republic of Mordovia is referred. The prevalence of diseases caused by iodine deficiency among the urban population accounted for 100-150, among rural--130-350. In some regions of endemic goiter rate reaches 800. Analysis of the morbidity rate of the population in the Republic of Mordovia, associated with the iodine deficiency, shows that in the structure of diseases related to micronutrient deficiency, by 2013 diffuse goiter plays a leading role, beingfollowed by a multi-node (endemic) goiter onward thyroiditis, subclinical hypothyroidism and hyperthyroidism. Thus, the analysis of indices of new cases of diseases associated with the iodine deficiency, allows to make the conclusion that diffuse goiter is the most significant pathology. In the structure of diseases related to the micronutrient deficiency, out of the most frequently detected iodine deficiency disorders, the greatest fraction are diffuse and multinodular goiter. The study was conducted with the support of the project, performed in the framework of the basic part of the State assignment (project 2859) and a RHSF grant.
The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter.
Schyboll, Felix; Jaekel, Uwe; Weber, Bernd; Neeb, Heiko
2018-02-20
Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R 2 *(= 1/T 2 *) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R 2 *, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R 1 (= 1/T 1 ), as well as the apparent water content. For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R 1 and apparent water content. The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field. These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R 1 and apparent water content in white matter.
Hagstrand Aldman, Malin; Skovby, Annette; I Påhlman, Lisa
2017-06-01
Staphylococcus aureus (SA) is an important human pathogen that causes both superficial and invasive infections. Penicillin is now rarely used in the treatment of SA infections due to widespread resistance and a concern about the accuracy of existing methods for penicillin susceptibility testing. The aims of the present study were to determine the frequency of penicillin-susceptible SA isolates from blood and wound cultures in Lund, Sweden, and to evaluate methods for penicillin testing in SA. We also wanted to investigate if penicillin-susceptible isolates are associated with higher mortality. Hundred blood culture isolates collected 2008/2009, 140 blood culture isolates from 2014/2015, and 141 superficial wound culture strains from 2015 were examined. Penicillin susceptibility was tested with disk diffusion according to EUCAST guidelines, and results were confirmed with a cloverleaf assay and PCR amplification of the BlaZ gene. Patient data for all bacteraemia cases were extracted from medical records. The disk diffusion method with assessment of both zone size and zone edge appearance had high accuracy in our study. About 57% of bacteraemia isolates from 2008/2009 were sensitive to penicillin compared to 29% in 2014/2015 (p < .0001). In superficial wound cultures, 21% were penicillin susceptible. There was no difference in co-morbidity or mortality rates between patients with penicillin resistant and penicillin sensitive SA bacteraemia. Disk-diffusion is a simple and reliable method to detect penicillin resistance in SA, and susceptibility rates are significant. Penicillin has many theoretical advantages and should be considered in the treatment of SA bacteraemia when susceptible.
Vázquez, J. L.
2010-01-01
The goal of this paper is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy–Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities, and rates for nonlinear diffusion equations. PMID:20823259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundqvist, A.; Lindbergh, G.
1998-11-01
A potential-step method for determining the diffusion coefficient and phase-transfer parameter in metal hydrides by using microelectrodes was investigated. It was shown that a large potential step is not enough to ensure a completely diffusion-limited mass transfer if a surface-phase transfer reaction takes place at a finite rate. It was shown, using a kinetic expression for the surface phase-transfer reaction, that the slope of the logarithm of the current vs. time curve will be constant both in the case of the mass-transfer limited by diffusion or by diffusion and a surface-phase transfer. The diffusion coefficient and phase-transfer rate parameter weremore » accurately determined for MmNi{sub 3.6}Co{sub 0.8}Mn{sub 0.4}Al{sub 0.3} using a fit to the whole transient. The diffusion coefficient was found to be (1.3 {+-} 0.3) {times} 10{sup {minus}13} m{sup 2}/s. The fit was good and showed that a pure diffusion model was not enough to explain the observed transient. The diffusion coefficient and phase-transfer rate parameter were also estimated for pure LaNi{sub 5}. A fit of the whole curve showed that neither a pure diffusion model nor a model including phase transfer could explain the whole transient.« less
Aponte, John; Baur, Peter
2014-01-01
Aerial plant surfaces are covered by a lipophilic cuticular membrane (CM) that restricts the transport of water and small solutes. Non-aerial tissues do not exhibit such a barrier. Recent data have shown that large relative to CM hydrophilic agrochemicals were able to pass at high rates through the non-aerial coleoptile. A moderately large hydrophilic solute like PEG 1000 with a mean molar volume of 782 cm(3) mol(-1) was rejected by the non-aerial hypocotyl. Uptake of smaller solutes like urea (46.5 cm(3) mol(-1) ) was fast and with 99% after 1 day. Cut-off size estimations suggest a pore size diameter below 1.5 nm. Aerial and non-aerial CM differ largely in their absolute barrier properties. This difference is related to the absence of embedded cuticular waxes in the non-aerial hypocotyl membrane, which make the CM physically dense and cause low solubility of hydrophilic solutes. The free volume for diffusion at the interface of the non-aerial hypocotyl cuticle to the environment is much larger resulting in higher penetration rates. It is suggested that diffusion through the non-aerial hypocotyl does not proceed in a real channel system with continuous aqueous phase but is more like transport through a filter with restricted diffusion in the pore openings. © 2013 Society of Chemical Industry.
Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun
2014-01-01
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
Scheven, U M
2013-12-01
This paper describes a new variant of established stimulated echo pulse sequences, and an analytical method for determining diffusion or dispersion coefficients for Gaussian or non-Gaussian displacement distributions. The unipolar displacement encoding PFGSTE sequence uses trapezoidal gradient pulses of equal amplitude g and equal ramp rates throughout while sampling positive and negative halves of q-space. Usefully, the equal gradient amplitudes and gradient ramp rates help to reduce the impact of experimental artefacts caused by residual amplifier transients, eddy currents, or ferromagnetic hysteresis in components of the NMR magnet. The pulse sequence was validated with measurements of diffusion in water and of dispersion in flow through a packing of spheres. The analytical method introduced here permits the robust determination of the variance of non-Gaussian, dispersive displacement distributions. The noise sensitivity of the analytical method is shown to be negligible, using a demonstration experiment with a non-Gaussian longitudinal displacement distribution, measured on flow through a packing of mono-sized spheres. Copyright © 2013 Elsevier Inc. All rights reserved.
Suazo, L.; Putman, J.O.; Vilchez, C.; Stoeter, P.
2013-01-01
Summary We investigated the number and possible causes of clinically silent lesions seen in diffusion-weighted magnetic resonance imaging after embolization of arteriovenous malformations (AVMs) and fistulas using acrylate only or in combination with coils. Included were 19 patients with 18 AVMs and one case of a vein of Galen aneurysm in which 25 interventions were carried out. Results of diffusion-weighted imaging, the appearance of perinidal and distant lesions, were correlated to Spetzler grade, nidus size, flow, number of feeders occluded, rate of nidus occlusion and duration of the intervention. We found seven distant lesions corresponding to non-symptomatic infarcts in the given clinical setting. The only significant correlation between lesion size and parameters analyzed was the degree of nidus occlusion achieved during the intervention. Because most of the lesions presented in cases with a high occlusion rate, they appear to be related to the intention to reach a complete occlusion of the nidus. These results emphasize that the risk involved in eliminating the nidus completely must be reconsidered with special care, particularly in a situation where most high-flow feeders have been occluded. PMID:23693045
Uphill diffusion in multicomponent mixtures.
Krishna, Rajamani
2015-05-21
Molecular diffusion is an omnipresent phenomena that is important in a wide variety of contexts in chemical, physical, and biological processes. In the majority of cases, the diffusion process can be adequately described by Fick's law that postulates a linear relationship between the flux of any species and its own concentration gradient. Most commonly, a component diffuses down the concentration gradient. The major objective of this review is to highlight a very wide variety of situations that cause the uphill transport of one constituent in the mixture. Uphill diffusion may occur in multicomponent mixtures in which the diffusion flux of any species is strongly coupled to that of its partner species. Such coupling effects often arise from strong thermodynamic non-idealities. For a quantitative description we need to use chemical potential gradients as driving forces. The transport of ionic species in aqueous solutions is coupled with its partner ions because of the electro-neutrality constraints; such constraints may accelerate or decelerate a specific ion. When uphill diffusion occurs, we observe transient overshoots during equilibration; the equilibration process follows serpentine trajectories in composition space. For mixtures of liquids, alloys, ceramics and glasses the serpentine trajectories could cause entry into meta-stable composition zones; such entry could result in phenomena such as spinodal decomposition, spontaneous emulsification, and the Ouzo effect. For distillation of multicomponent mixtures that form azeotropes, uphill diffusion may allow crossing of distillation boundaries that are normally forbidden. For mixture separations with microporous adsorbents, uphill diffusion can cause supra-equilibrium loadings to be achieved during transient uptake within crystals; this allows the possibility of over-riding adsorption equilibrium for achieving difficult separations.
Clouston, Sean A P; Rubin, Marcie S; Phelan, Jo C; Link, Bruce G
2016-10-01
Fundamental cause theory posits that social inequalities in health arise because of unequal access to flexible resources, including knowledge, money, power, prestige, and beneficial social connections, which allow people to avoid risk factors and adopt protective factors relevant in a particular place. In this study, we posit that diseases should also be put into temporal context. We characterize diseases as transitioning through four stages at a given time: (1) natural mortality, characterized by no knowledge about risk factors, preventions, or treatments for a disease in a population; (2) producing inequalities, characterized by unequal diffusion of innovations; (3) reducing inequalities, characterized by increased access to health knowledge; and (4) reduced mortality/disease elimination, characterized by widely available prevention and effective treatment. For illustration, we pair an ideal-types analysis with mortality data to explore hypothesized incidence rates of diseases. Although social inequalities exist in incidence rates of many diseases, the cause, extent, and direction of inequalities change systematically in relation to human intervention. This article highlights opportunities for further development, specifically highlighting the role of stage duration in maintaining social inequalities in cause-specific mortality.
Evaluation of the effectiveness of peracetic acid in the sterilization of dental equipment.
Ceretta, R; Paula, M M S; Angioletto, Ev; Méier, M M; Mitellstädt, F G; Pich, C T; Junior, S A; Angioletto, E
2008-01-01
To evaluate the effectiveness of peracetic acid in the microbiological sterilisation of dental materials. Peracetic acid solution was evaluated at concentrations of 800, 1500 and 2500 ppm. At these concentrations, it was determined whether peracetic acid caused corrosion to dental instruments and induced cellular mutagenicity and cytotoxicity. In addition, the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC), agar diffusion and diffusion by well method, were also verified. The corrosion rate, calculated from potentiodynamic assays was 10(-6) cm/year, indicating that the product does not damage equipment. The sterilisation capacity of peracetic acid at 2500 ppm was the best. The comet assay indicated genotoxic activity at 2500 ppm. This study demonstrated the effectiveness of peracetic acid for sterilizing dental equipment, providing another alternative for the prevention of infections in clinics.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
Sabio, E; Zamora, F; González-García, C M; Ledesma, B; Álvarez-Murillo, A; Román, S
2016-12-01
In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.
NASA Astrophysics Data System (ADS)
Kou, Jim Hwai-Cher
In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling release systems, can also be predicted by this model. PPA release from initially dry poly(HEMA -co- MA) gels has also been studied. The data show that the release rate is mainly controlled by the PPA loading level and quite insensitive to the methacrylic acid composition of the gels. These phenomena can be adequately explained by analyzing the transport resistances in the gels. The overall time scale of release from these gels were shown to be in the range which was suitable for oral controlled release applications. (Abstract shortened with permission of author.).
Diffusion-limited mixing by incompressible flows
NASA Astrophysics Data System (ADS)
Miles, Christopher J.; Doering, Charles R.
2018-05-01
Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).
Pulmonary function levels as predictors of mortality in a national sample of US adults.
Neas, L M; Schwartz, J
1998-06-01
Single breath pulmonary diffusing capacity for carbon monoxide (DL(CO)) was examined as a predictor of all-cause mortality among 4,333 subjects who were aged 25-74 years at baseline in the First National Health and Nutrition Examination Survey (NHANES I) conducted from 1971 to 1975. The relation of the percentage of predicted DL(CO) to all-cause mortality was examined in a Cox proportional hazard model that included age, sex, race, current smoking status, systolic blood pressure, serum cholesterol, alcohol consumption, body mass index, percentage of predicted forced vital capacity (FVC), and the ratio of forced expiratory volume at 1 second (FEV1) to FVC. Mortality had a linear association with the percentage of predicted FVC (rate ratio (RR) = 1.12, 95% confidence interval (CI) 1.08-1.17, for a 10% decrement) and a significantly nonlinear association with the percentage of predicted DL(CO) with an adverse effect that was clearly evident for levels below 85% of those predicted (RR = 1.24, 95% CI 1.12-1.37 for a 10% decrement). The relative hazard for the percentage of predicted DL(CO) below 85% was not modified by sex, smoking status, or exclusion of subjects with clinical respiratory disease on the initial examination. This association with the percentage of predicted DL(CO) was present among 3,005 subjects with FEV1 levels above 90% of those predicted. Thus, pulmonary diffusing capacity below 85% of predicted levels is a significant predictor of the all-cause mortality rate within the general US population independent of standard spirometry measures and even in the absence of apparent clinical respiratory disease.
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms
Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.
2016-01-01
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S
2016-05-10
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.
NASA Astrophysics Data System (ADS)
Yan, Fuhan; Li, Zhaofeng; Jiang, Yichuan
2016-05-01
The issues of modeling and analyzing diffusion in social networks have been extensively studied in the last few decades. Recently, many studies focus on uncertain diffusion process. The uncertainty of diffusion process means that the diffusion probability is unpredicted because of some complex factors. For instance, the variety of individuals' opinions is an important factor that can cause uncertainty of diffusion probability. In detail, the difference between opinions can influence the diffusion probability, and then the evolution of opinions will cause the uncertainty of diffusion probability. It is known that controlling the diffusion process is important in the context of viral marketing and political propaganda. However, previous methods are hardly feasible to control the uncertain diffusion process of individual opinion. In this paper, we present suitable strategy to control this diffusion process based on the approximate estimation of the uncertain factors. We formulate a model in which the diffusion probability is influenced by the distance between opinions, and briefly discuss the properties of the diffusion model. Then, we present an optimization problem at the background of voting to show how to control this uncertain diffusion process. In detail, it is assumed that each individual can choose one of the two candidates or abstention based on his/her opinion. Then, we present strategy to set suitable initiators and their opinions so that the advantage of one candidate will be maximized at the end of diffusion. The results show that traditional influence maximization algorithms are not applicable to this problem, and our algorithm can achieve expected performance.
Anesthetic Diffusion Through Lipid Membranes Depends on the Protonation Rate
Pérez-Isidoro, Rosendo; Sierra-Valdez, F. J.; Ruiz-Suárez, J. C.
2014-01-01
Hundreds of substances possess anesthetic action. However, despite decades of research and tests, a golden rule is required to reconcile the diverse hypothesis behind anesthesia. What makes an anesthetic to be local or general in the first place? The specific targets on proteins, the solubility in lipids, the diffusivity, potency, action time? Here we show that there could be a new player equally or even more important to disentangle the riddle: the protonation rate. Indeed, such rate modulates the diffusion speed of anesthetics into lipid membranes; low protonation rates enhance the diffusion for local anesthetics while high ones reduce it. We show also that there is a pH and membrane phase dependence on the local anesthetic diffusion across multiple lipid bilayers. Based on our findings we incorporate a new clue that may advance our understanding of the anesthetic phenomenon. PMID:25520016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordman, Olli; Nordman, Nina; Pashkevich, Valfrid
2001-08-01
The refractive-index change caused by electrons was measured in amorphous AsS and AsSe thin films. Films were coated with different metals. Diffraction gratings were written by electron-beam lithography. The interactions of electrons in films with and without the photodiffusion of overcoated metal were compared. Incoming electrons caused metal atom and ion diffusion in both investigated cases. The metal diffusion was dependent on the metal and it was found to influence the refractive index. In some cases lateral diffusion of the metal was noticed. The conditions for applications were verified. {copyright} 2001 Optical Society of America
Computing Rates of Small Molecule Diffusion Through Protein Channels Using Markovian Milestoning
NASA Astrophysics Data System (ADS)
Abrams, Cameron
2014-03-01
Measuring diffusion rates of ligands plays a key role in understanding the kinetic processes inside proteins. For example, although many molecular simulation studies have reported free energy barriers to infer rates for CO diffusion in myoglobin (Mb), they typically do not include direct calculation of diffusion rates because of the long simulation times needed to infer these rates with statistical accuracy. We show in this talk how to apply Markovian milestoning along minimum free-energy pathways to calculate diffusion rates of CO inside Mb. In Markovian milestoning, one partitions a suitable reaction coordinate space into regions and performs restrained molecular dynamics in each region to accumulate kinetic statistics that, when assembled across regions, provides an estimate of the mean first-passage time between states. The mean escape time for CO directly from the so-called distal pocket (DP) through the histidine gate (HG) is estimated at about 24 ns, confirming the importance of this portal for CO. But Mb is known to contain several internal cavities, and cavity-to-cavity diffusion rates are also computed and used to build a complete kinetic network as a Markov state model. Within this framework, the effective mean time of escape to the solvent through HG increases to 30 ns. Our results suggest that carrier protein structure may have evolved under pressure to modulate dissolved gas release rates using a network of ligand-accessible cavities. Support: NIH R01GM100472.
Schneiders, Roberto Eduardo; Ronsoni, Ricardo de March; Sarti, Flávia Mori; Nita, Marcelo Eidi; Bastos, Ediane de Assis; Zimmermann, Ivan Ricardo; Ferreira, Fernando Fagundes
2016-10-10
Budget Impact Analyses require a set of essential information on health technology innovation, including expected rates of adoption. There is an absence of studies investigating trends, magnitude of budgetary effects and determinants of diffusion rates for health technology innovations worldwide during the last decades. The present study proposes a pilot assessment on main determinants influencing diffusion rates of pharmaceutical innovations within the Brazilian Unified National Health System (SUS). Data from the Brazilian Health Informatics Department (DATASUS) was gathered to establish the main determinants of diffusion rates of health technology innovations in Brazil, specifically referring to pharmaceutical innovations incorporated in the Brazilian Program for Specialized Pharmaceutical Services (CEAF) at SUS. Information was retrieved on DATASUS relating to patients who had used one of the medicines incorporated into CEAF at least three years prior to the beginning of the study (2015) for treatment of each health condition available. Thus, data from patients adopting 10 different medicines were analyzed in the study. Results from the zero-one inflated beta model showed a higher influence on diffusion rates of pharmaceutical innovations due to: number of pharmaceutical competitors for treatment of the same disease available at CEAF (negative); medicine used in combination with other medication (positive); and innovative medicine within the SUS (positive). Further research on diffusion rates of health technology innovations is required, including wider scope of diseases and medications, potential confusion factors and other variables that may influence rates of adoption in different health systems.
Venus' superrotation, mixing length theory and eddy diffusion - A parametric study
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.
1988-01-01
The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the eddy diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the eddy diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large eddy diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.
Unexpected consequences of bedload diffusion
NASA Astrophysics Data System (ADS)
Devauchelle, O.; Abramian, A.; Lajeunesse, E.
2017-12-01
Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2001-01-01
Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.
Bennett, Kevin M; Schmainda, Kathleen M; Bennett, Raoqiong Tong; Rowe, Daniel B; Lu, Hanbing; Hyde, James S
2003-10-01
Experience with diffusion-weighted imaging (DWI) shows that signal attenuation is consistent with a multicompartmental theory of water diffusion in the brain. The source of this so-called nonexponential behavior is a topic of debate, because the cerebral cortex contains considerable microscopic heterogeneity and is therefore difficult to model. To account for this heterogeneity and understand its implications for current models of diffusion, a stretched-exponential function was developed to describe diffusion-related signal decay as a continuous distribution of sources decaying at different rates, with no assumptions made about the number of participating sources. DWI experiments were performed using a spin-echo diffusion-weighted pulse sequence with b-values of 500-6500 s/mm(2) in six rats. Signal attenuation curves were fit to a stretched-exponential function, and 20% of the voxels were better fit to the stretched-exponential model than to a biexponential model, even though the latter model had one more adjustable parameter. Based on the calculated intravoxel heterogeneity measure, the cerebral cortex contains considerable heterogeneity in diffusion. The use of a distributed diffusion coefficient (DDC) is suggested to measure mean intravoxel diffusion rates in the presence of such heterogeneity. Copyright 2003 Wiley-Liss, Inc.
Sampaio-Barros, Percival D; Bortoluzzo, Adriana B; Marangoni, Roberta G; Rocha, Luiza F; Del Rio, Ana Paula T; Samara, Adil M; Yoshinari, Natalino H; Marques-Neto, João Francisco
2012-10-01
To analyze survival, prognostic factors, and causes of death in a large cohort of patients with systemic sclerosis (SSc). From 1991 to 2010, 947 patients with SSc were treated at 2 referral university centers in Brazil. Causes of death were considered SSc-related and non-SSc-related. Multiple logistic regression analysis was used to identify prognostic factors. Survival at 5 and 10 years was estimated using the Kaplan-Meier method. One hundred sixty-eight patients died during the followup. Among the 110 deaths considered related to SSc, there was predominance of lung (48.1%) and heart (24.5%) involvement. Most of the 58 deaths not related to SSc were caused by infection, cardiovascular or cerebrovascular disease, and cancer. Male sex, modified Rodnan skin score (mRSS) > 20, osteoarticular involvement, lung involvement, and renal crisis were the main prognostic factors associated to death. Overall survival rate was 90% for 5 years and 84% for 10 years. Patients presented worse prognosis if they had diffuse SSc (85% vs 92% at 5 yrs, respectively, and 77% vs 87% at 10 yrs, compared to limited SSc), male sex (77% vs 90% at 5 yrs and 64% vs 86% at 10 yrs, compared to female sex), and mRSS > 20 (83% vs 90% at 5 yrs and 66% vs 86% at 10 yrs, compared to mRSS < 20). Survival was worse in male patients with diffuse SSc, and lung and heart involvement represented the main causes of death in this South American series of patients with SSc.
Phakopsora euvitis Causes Unusual Damage to Leaves and Modifies Carbohydrate Metabolism in Grapevine
Nogueira Júnior, Antonio F.; Ribeiro, Rafael V.; Appezzato-da-Glória, Beatriz; Soares, Marli K. M.; Rasera, Júlia B.; Amorim, Lilian
2017-01-01
Asian grapevine rust (Phakopsora euvitis) is a serious disease, which causes severe leaf necrosis and early plant defoliation. These symptoms are unusual for a strict biotrophic pathogen. This work was performed to quantify the effects of P. euvitis on photosynthesis, carbohydrates, and biomass accumulation of grapevine. The reduction in photosynthetic efficiency of the green leaf tissue surrounding the lesions was quantified using the virtual lesion concept (β parameter). Gas exchange and responses of CO2 assimilation to increasing intercellular CO2 concentration were analyzed. Histopathological analyses and quantification of starch were also performed on diseased leaves. Biomass and carbohydrate accumulation were quantified in different organs of diseased and healthy plants. Rust reduced the photosynthetic rate, and β was estimated at 5.78, indicating a large virtual lesion. Mesophyll conductance, maximum rubisco carboxylation rate, and regeneration of ribulose-1,5-bisphosphate dependent on electron transport rate were reduced, causing diffusive and biochemical limitations to photosynthesis. Hypertrophy, chloroplast degeneration of mesophyll cells, and starch accumulation in cells close to lesions were observed. Root carbohydrate concentration was reduced, even at low rust severity. Asian grapevine rust dramatically reduced photosynthesis and altered the dynamics of production and accumulation of carbohydrates, unlike strict biotrophic pathogens. The reduction in carbohydrate reserves in roots would support polyetic damage on grapevine, caused by a polycyclic disease. PMID:29018470
Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G
NASA Technical Reports Server (NTRS)
Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2001-01-01
Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.
Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.
Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar
2007-11-01
In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.
Experiments on tandem diffusers with boundary-layer suction applied in between
NASA Technical Reports Server (NTRS)
Barna, P. S.
1979-01-01
Experiments were performed on conical diffusers of various configurations with the same, but rather unusually large, 16:1 area ratio. Because available performance data on diffusers fall short of very large area ratio configurations, an unconventional design, consisting of two diffusers following each other in tandem, was proposed. Both diffusers had the same area ratio of 4:1, but had different taper angles. While for the first diffuser (called leading) the angle remained constant, for the second (called follower), the taper angle was stepped up to higher values. Boundary layer control, by way of suction, was applied between the diffusers, and a single slot suction ring was inserted between them. The leading diffuser had an enclosed nominal divergence angle 2 theta = 5 degrees, while the follower diffusers had either 10, 20, 30, or 40 degrees, respectively, giving 4 combinations. The experiments were performed at four different Reynolds numbers with various suction rates. The rates indicate a general improvement in the performance of all diffusers with boundary layer suction. It appears that the improvement of the pressure recovery depends on both the Reynolds number and the suction rate, and the largest increase, 0.075, was found at the lowest R sub e when the follower divergence was 2 theta = 40 degrees.
Metamorphism, metasomatism, retrogression: the common control on isotope transport
NASA Astrophysics Data System (ADS)
Villa, I. M.; Williams, M. L.
2011-12-01
Compositional or isotopic modification of a mineral can be viewed as a single process with many names. Depending on the large-scale context, different names are used: aqueous alteration, retrogression, metasomatism, metamorphism, but it should be clear that the underlying atomic-scale mechanism is the same. Changes in stoichiometry and in crystallographic structure require recrystallization. Following [1], all recrystallization processes can be viewed as nano-scale dissolution/reprecipitation, mediated by an aqueous fluid. In fact, aqueous fluids are the main control on the formation of all metamorphic parageneses [2], and also isotope exchange in minerals [3]. The reason is that the rate constants for fluid-mediated isotope transport are orders of magnitude larger, and activation energies much smaller, than those for diffusion. Recrystallisation is energetically less costly at almost any temperature than diffusive reequilibration [3]. However, recrystallization is not the only cause of isotope loss/exchange. Temperature can also play a role in reducing the retentivity of a geochronometer by increasing diffusivity. In cases where diffusion was the factor limiting isotopic closure (or chemical closure), a bell-shaped isotope (or element) concentration profile is observed. The criterion to decide whether in a particular sample diffusion or recrystallization was the principal control on chemical/isotope transport lies in the spatial variation of elemental or isotopic composition. Patchy spatial patterns are certain evidence of fluid-mediated local recrystallization. Bell-shaped gradients are compatible with (but not unambiguous proof of) volume diffusion. In-situ dating over three decades has never described bell-shaped isotope gradients in patchily zoned minerals. On the contrary, age mapping usually coincides with microchemical mapping [4]. This is best explained by a common cause for the recrystallization and the isotope transport. The cause, fluid-mediated dissolution/reprecipitation, depends mainly on water activity and only very loosely on temperature, i.e. provides a geohygrometric but not a geothermometric datum. We conclude that only in rare cases diffusion is the sole promoter of isotope resetting. The observations require a major shift in perspective on the significance of mineral ages. Just as the "diffusionist" view that zircon discordance is due to thermal disturbances (e.g. [5]) was superseded by the petrological understanding that it is due to recrystallization (e.g. [6]), a blanket interpretation of intra-mineral age variations in terms of a purely thermal history neglecting the petrogenetic context is no longer tenable. [1] Putnis A (2009) Rev Mineral Geochem 70, 87-124 [2] Lasaga A (1986) Mineral Mag 50, 359-373 [3] Cole DR et al (1983) Geochim Cosmochim Acta 47, 1681-1693 [4] Williams ML et al (2007) Ann Rev Earth Planet Sci 35, 137-175 [5] Steiger RH, Wasserburg GJ (1969) Geochim Cosmochim Acta 33, 1213-1232 [6] Mezger K, Krogstadt EJ (1997) J Metam Geol 15, 127-140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canyigit, Murat; Arat, Anil; Cil, Barbaros E.
2007-04-15
Purpose. We retrospectively evaluated our experience with stenting of the vertebral artery in an effort to determine the risk of distal embolization associated with the procedure. Methods. Between June 2000 and May 2005, 35 patients with 38 stenting procedures for atherosclerotic disease of the vertebral origin in our institution were identified. The average age of the patients was 60.3 years (range 32-76 years). Sixteen of these patients (with 18 stents) had MR imaging of the brain with diffusion-weighted imaging and an apparent diffusion coefficient map within 2 days before and after procedure. Results. On seven of the 16 postprocedural diffusion-weightedmore » MR images, a total of 57 new hyperintensities were visible. All these lesions were focal in nature. One patient demonstrated a new diffusion-weighted imaging abnormality in the anterior circulation without MR evidence of posterior circulation ischemia. Six of 16 patients had a total of 25 new lesions in the vertebrobasilar circulation in postprocedural diffusion-weighted MR images. One patient in this group was excluded from the final analysis because the procedure was complicated by basilar rupture during tandem stent deployment in the basilar artery. Hence, new diffusion-weighted imaging abnormalities were noted in the vertebrobasilar territory in 5 of 15 patients after 17 stenting procedures, giving a 29% rate of diffusion-weighted imaging abnormalities per procedure. No patient with bilateral stenting had new diffusion-weighted imaging abnormalities. Conclusion. Stenting of stenoses of the vertebral artery origin may be associated with a significant risk of asymptomatic distal embolization. Angiography, placement of the guiding catheter, inflation of the stent balloon, and crossing the lesion with guidewires or balloon catheters may potentially cause distal embolization. Further studies to evaluate measures to increase the safety of vertebral artery stenting, such as the use of distal protection devices or short-term postprocedural anticoagulation, should be considered for patients with clear indications for this procedure.« less
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Li, Chun; Huang, Liang; Snigdha, Gayatri Pongur; Yu, Yifei; Cao, Linyou
2012-10-23
We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.
The entrance of water into beef and dog red cells.
VILLEGAS, R; BARTON, T C; SOLOMON, A K
1958-11-20
The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.
3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.
Zhu, Q; Kato, S; Murakami, S; Ito, K
2007-06-01
This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity distributed over the surface of test material and the emission properties of different type materials in FLEC, the paper pointed out that there is a bias in the airflow inside the FLEC cavity but do not influence the result of test emission rate, and the FLEC method is unsuitable for evaporation type materials in which the mass transfer of the surface controls the emission rate.
A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.
Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K
1994-02-01
This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.
[Effect of vibration caused by time-varying magnetic fields on diffusion-weighted MRI].
Ogura, Akio; Maeda, Fumie; Miyai, Akira; Hayashi, Kohji; Hongoh, Takaharu
2006-04-20
Diffusion-weighted images (DWIs) with high b-factor in the body are often used to detect and diagnose cancer at MRI. The echo planar imaging (EPI) sequence and high motion probing gradient pulse are used at diffusion weighted imaging, causing high table vibration. The purpose of this study was to assess whether the diffusion signal and apparent diffusion coefficient (ADC) values are influenced by this vibration because of time-varying magnetic fields. Two DWIs were compared. In one, phantoms were fixed on the MRI unit's table transmitting the vibration. In the other, phantoms were supported in air, in the absence of vibration. The phantoms called "solution phantoms" were made from agarose of a particular density. The phantoms called "jelly phantoms" were made from agarose that was heated. The diffusion signal and ADC value of each image were compared. The results showed that the signal of DWI units using the solution phantom was not affected by vibration. However, the signal of DWI and ADC were increased in the low-density jelly phantom as a result of vibration, causing the jelly phantom to vibrate. The DWIs of vibrating regions such as the breast maybe be subject to error. A countermeasure seems to be to support the region adequately.
EEG dynamical correlates of focal and diffuse causes of coma.
Kafashan, MohammadMehdi; Ryu, Shoko; Hargis, Mitchell J; Laurido-Soto, Osvaldo; Roberts, Debra E; Thontakudi, Akshay; Eisenman, Lawrence; Kummer, Terrance T; Ching, ShiNung
2017-11-15
Rapidly determining the causes of a depressed level of consciousness (DLOC) including coma is a common clinical challenge. Quantitative analysis of the electroencephalogram (EEG) has the potential to improve DLOC assessment by providing readily deployable, temporally detailed characterization of brain activity in such patients. While used commonly for seizure detection, EEG-based assessment of DLOC etiology is less well-established. As a first step towards etiological diagnosis, we sought to distinguish focal and diffuse causes of DLOC through assessment of temporal dynamics within EEG signals. We retrospectively analyzed EEG recordings from 40 patients with DLOC with consensus focal or diffuse culprit pathology. For each recording, we performed a suite of time-series analyses, then used a statistical framework to identify which analyses (features) could be used to distinguish between focal and diffuse cases. Using cross-validation approaches, we identified several spectral and non-spectral EEG features that were significantly different between DLOC patients with focal vs. diffuse etiologies, enabling EEG-based classification with an accuracy of 76%. Our findings suggest that DLOC due to focal vs. diffuse injuries differ along several electrophysiological parameters. These results may form the basis of future classification strategies for DLOC and coma that are more etiologically-specific and therefore therapeutically-relevant.
Foy, R H; Lennox, S D; Gibson, C E
2003-07-01
The scale and chronology of the phosphorus (P) enrichment of Lough Neagh, a large hypertrophic lake, was assessed using, as enrichment proxies, published palaeocological studies on diatoms and chironomid head capsules preserved in the lake sediments and, from 1974, monitoring data from the lake and its inflowing rivers. Enrichment commenced in 1880, and the scale and chronology of the diatom and chironomid records were similar up to 1960, but in the 1960s, chironomid accumulation rates increased dramatically, whereas diatom rates remained unchanged. From subsequent lake monitoring, the absence of a diatom response after 1960 was attributed to silica limitation so that P could be considered as the driver of increased diatom production only up to 1960. Using a coefficient for the demand for P by diatoms of 4 microg P mg SiO(2)(-1), it was calculated that the increased diatom production between 1881 and 1961 required an increase in lake P of 26 microg P l(-1). This value is close to the predicted increase of 22.5 microg P l(-1) in the lake caused by inputs of P from sewage treatment works and septic tanks. There was no evidence that diffuse source P contributed to enrichment over this period. Enrichment up to 1960 appears modest in comparison to subsequent years. From 1961 to 1974, lake P was estimated to have increased by 62 microg P l(-1), but only 25 microg P l(-1) of this increase was attributable to greater loadings of P from urban and septic tank sources. The enrichment response of chironomids at this time was also much greater than expected from a regression-derived relationship between urban P inputs and chironomid accumulation rates suggesting additional sources of P. The larger than expected increase in lake P was attributed to the onset of a significant internal loading of P and the commencement of an increase in diffuse source loadings of P. River monitoring has shown that diffuse P has increased steadily since 1974, more than counterbalancing a 40% reduction in urban P loadings that has taken place since 1980. By the end of the 20th century urban sources contributed only 19.7% of inflow P to Lough Neagh but lake P was 145 microg P l(-1) compared to an estimated concentration of 20 microg P l(-1) in 1881. Failure to control diffuse P sources has therefore been instrumental in the continued increase of lake P in Lough Neagh.
Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon
2016-10-01
Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.
Development of a primary diffusion source of organic vapors for gas analyzer calibration
NASA Astrophysics Data System (ADS)
Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.
2018-03-01
The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.
NASA Astrophysics Data System (ADS)
Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten
2015-05-01
Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting molecules within a crowded microenvironment. The excluded volume effect (arising from crowding) increases the effective concentration of actin, which increases the reaction rate, while the microviscosity does not increase sufficiently to lower the reaction rate. This study reveals finer details about the mechanism of MMC.
Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten
2015-04-30
Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting molecules within a crowded microenvironment. The excluded volume effect (arising from crowding) increases the effective concentration of actin, which increases the reaction rate, while the microviscosity does not increase sufficiently to lower the reaction rate. This study reveals finer details about the mechanism of MMC.
Gan, Qintao; Lv, Tianshi; Fu, Zhenhua
2016-04-01
In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.
NASA Astrophysics Data System (ADS)
Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.
2014-05-01
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded cellular environments.
Chlorine dioxide is a size-selective antimicrobial agent.
Noszticzius, Zoltán; Wittmann, Maria; Kály-Kullai, Kristóf; Beregvári, Zoltán; Kiss, István; Rosivall, László; Szegedi, János
2013-01-01
ClO2, the so-called "ideal biocide", could also be applied as an antiseptic if it was understood why the solution killing microbes rapidly does not cause any harm to humans or to animals. Our aim was to find the source of that selectivity by studying its reaction-diffusion mechanism both theoretically and experimentally. ClO2 permeation measurements through protein membranes were performed and the time delay of ClO2 transport due to reaction and diffusion was determined. To calculate ClO2 penetration depths and estimate bacterial killing times, approximate solutions of the reaction-diffusion equation were derived. In these calculations evaporation rates of ClO2 were also measured and taken into account. The rate law of the reaction-diffusion model predicts that the killing time is proportional to the square of the characteristic size (e.g. diameter) of a body, thus, small ones will be killed extremely fast. For example, the killing time for a bacterium is on the order of milliseconds in a 300 ppm ClO2 solution. Thus, a few minutes of contact time (limited by the volatility of ClO2) is quite enough to kill all bacteria, but short enough to keep ClO2 penetration into the living tissues of a greater organism safely below 0.1 mm, minimizing cytotoxic effects when applying it as an antiseptic. Additional properties of ClO2, advantageous for an antiseptic, are also discussed. Most importantly, that bacteria are not able to develop resistance against ClO2 as it reacts with biological thiols which play a vital role in all living organisms. Selectivity of ClO2 between humans and bacteria is based not on their different biochemistry, but on their different size. We hope initiating clinical applications of this promising local antiseptic.
Determination of oxygen diffusion kinetics during thin film ruthenium oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.
2015-08-07
In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.
Diffusive shock acceleration at non-relativistic highly oblique shocks
NASA Astrophysics Data System (ADS)
Meli, Athina; Biermann, P. L.
2004-10-01
Our aim here is to evaluate the rate of the maximum energy and the acceleration rate that Cosmic Rays (CRs) acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field at the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the aceleration rate. We find (and justify previous analytical work -Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the CRs to be obtained. An explanation of the Cosmic Ray Spectrum in High Energies, between 1015 and 1018eV is claimed, as we estimate the upper limit of energy that CRs could gain in plausible astrophysical regimes; interpreted by the scenario of CRs which are injected by three different kind of sources, (i) supernovae (SN) which explode into the interstellar medium (ISM), (ii) Red Supergiants (RSG), and (iii) Wolf-Rayet stars (WR), where the two latter explode into their pre-SN winds Biermann (2001); Sina (2001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindblad, M.S.; Keyes, B.; Gedvilas, L.
Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be relatedmore » to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl.« less
Water vapor diffusion membranes, 2
NASA Technical Reports Server (NTRS)
Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.
1976-01-01
Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.
NASA Astrophysics Data System (ADS)
Sigaut, Lorena; Villarruel, Cecilia; Ponce, María Laura; Ponce Dawson, Silvina
2017-06-01
Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular components. Quantifying their net transport rate under different conditions then requires having separate estimates of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca2 +) and single-wavelength dyes that increase their fluorescence upon Ca2 + binding. We validate the approach with experiments performed in aqueous solutions containing Ca2 + and Fluo4 dextran (both in its high and low affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.
General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.
Wang, J; Flanagan, D R
1999-07-01
Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.
Pandey, Sachin; Rajaram, Harihar
2016-12-05
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Sachin; Rajaram, Harihar
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
Modeling and simulation of Cu diffusion and drift in porous CMOS backend dielectrics
NASA Astrophysics Data System (ADS)
Ali, R.; Fan, Y.; King, S.; Orlowski, M.
2018-06-01
With the advent of porous dielectrics, Cu drift-diffusion reliability issues in CMOS backend have only been exacerbated. In this regard, a modeling and simulation study of Cu atom/ion drift-diffusion in porous dielectrics is presented to assess the backend reliability and to explore conditions for a reliable Resistive Random Access Memory (RRAM) operation. The numerical computation, using elementary jump frequencies for a random walk in 2D and 3D, is based on an extended adjacency tensor concept. It is shown that Cu diffusion and drift transport are affected as much by the level of porosity as by the pore morphology. Allowance is made for different rates of Cu dissolution into the dielectric and for Cu absorption and transport at and on the inner walls of the pores. Most of the complex phenomena of the drift-diffusion transport in porous media can be understood in terms of local lateral and vertical gradients and the degree of their perturbation caused by the presence of pores in the transport domain. The impact of pore morphology, related to the concept of tortuosity, is discussed in terms of "channeling" and "trapping" effects. The simulations are calibrated to experimental results of porous SiCOH layers of 25 nm thickness, sandwiched between Cu and Pt(W) electrodes with experimental porosity levels of 0%, 8%, 12%, and 25%. We find that porous SICOH is more immune to Cu+ drift at 300 K than non-porous SICOH.
Inward diffusion and loss of radiation belt protons
NASA Astrophysics Data System (ADS)
Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.
2016-03-01
Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.
Electromigration in Cu(Al) and Cu(Mn) damascene lines
NASA Astrophysics Data System (ADS)
Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.
2012-05-01
The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."
Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano
NASA Astrophysics Data System (ADS)
Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar
2016-04-01
Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been carried out since 2006, showing an average emission rate of 8.0 kg/d. This value showed an anomalous increase up to 29 kg/d in the summer of 2010. The number of seismic events registered in and around Tenerife Island by the National Geographic Institute (IGN) reached also the highest value (1,176) in 2010. This excellent agreement between both times series suggest that the anomalous seismicity registered in 2010 was likely due to strain/stress changes caused by input of magmatic fluids beneath the central volcanic system of the island. These results suggest that monitoring of He degassing rates in oceanic volcanic islands is an excellent early warning geochemical precursory signal for volcanic unrest. References Padrón et al., 2013. Geology, DOI: 10.1130/G34027.1. Pérez et al., 2013. J. Geol. Soc., DOI: 10.1144/jgs2012-125.
Study of drug diffusion rate by laser beam deflection technique
NASA Astrophysics Data System (ADS)
Swapna, Mohanachandran Nair. S.; Anitha, Madhu J.; Sankararaman, Sankaranarayana Iyer
2017-06-01
Drug administration is an unavoidable part of treatment. When a drug is administered orally or intravenously, it gets absorbed into the blood stream. The rate and efficiency of absorption depend on the route of administration. When a drug is administered through the oral route, it penetrates the epithelial cells of the intestinal mucosa. The diffusion of the drug into the blood stream depends on various parameters, such as concentration, temperature, and the nature of the mucous membrane. The passive diffusion of drugs is found to obey Fick's law. Water soluble drugs penetrate the cell membrane through aqueous channel or pores. Hence, the study of diffusion of drugs into the water and finally into the blood stream is important. An attempt has been made to study the diffusion of the drug in water as 60% to 80% of human body is water. For the study of drug diffusion in water, a commonly used cough syrup of specific gravity 1.263 is used. It is found that the diffusion rate increases with the concentration of the drug.
A simple reaction-rate model for turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Bangert, L. H.
1975-01-01
A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.
Garrido-Baserba, Manel; Sobhani, Reza; Asvapathanagul, Pitiporn; McCarthy, Graham W; Olson, Betty H; Odize, Victory; Al-Omari, Ahmed; Murthy, Sudhir; Nifong, Andrea; Godwin, Johnnie; Bott, Charles B; Stenstrom, Michael K; Shaw, Andrew R; Rosso, Diego
2017-03-15
This research systematically studied the behavior of aeration diffuser efficiency over time, and its relation to the energy usage per diffuser. Twelve diffusers were selected for a one year fouling study. Comprehensive aeration efficiency projections were carried out in two WRRFs with different influent rates, and the influence of operating conditions on aeration diffusers' performance was demonstrated. This study showed that the initial energy use, during the first year of operation, of those aeration diffusers located in high rate systems (with solids retention time - SRT-less than 2 days) increased more than 20% in comparison to the conventional systems (2 > SRT). Diffusers operating for three years in conventional systems presented the same fouling characteristics as those deployed in high rate processes for less than 15 months. A new procedure was developed to accurately project energy consumption on aeration diffusers; including the impacts of operation conditions, such SRT and organic loading rate, on specific aeration diffusers materials (i.e. silicone, polyurethane, EPDM, ceramic). Furthermore, it considers the microbial colonization dynamics, which successfully correlated with the increase of energy consumption (r 2 :0.82 ± 7). The presented energy model projected the energy costs and the potential savings for the diffusers after three years in operation in different operating conditions. Whereas the most efficient diffusers provided potential costs spanning from 4900 USD/Month for a small plant (20 MGD, or 74,500 m 3 /d) up to 24,500 USD/Month for a large plant (100 MGD, or 375,000 m 3 /d), other diffusers presenting less efficiency provided spans from 18,000USD/Month for a small plant to 90,000 USD/Month for large plants. The aim of this methodology is to help utilities gain more insight into process mechanisms and design better energy efficiency strategies at existing facilities to reduce energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław
2009-03-01
Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.
The non-random walk of stock prices: the long-term correlation between signs and sizes
NASA Astrophysics Data System (ADS)
La Spada, G.; Farmer, J. D.; Lillo, F.
2008-08-01
We investigate the random walk of prices by developing a simple model relating the properties of the signs and absolute values of individual price changes to the diffusion rate (volatility) of prices at longer time scales. We show that this benchmark model is unable to reproduce the diffusion properties of real prices. Specifically, we find that for one hour intervals this model consistently over-predicts the volatility of real price series by about 70%, and that this effect becomes stronger as the length of the intervals increases. By selectively shuffling some components of the data while preserving others we are able to show that this discrepancy is caused by a subtle but long-range non-contemporaneous correlation between the signs and sizes of individual returns. We conjecture that this is related to the long-memory of transaction signs and the need to enforce market efficiency.
1981-08-01
provide the lowest rate of momentum outflow and thus yield maximum diffuser efficiency. In their study, Wolf and Johnston (Ref. 1.12) used screens made...other words, the uniform velocity at the diffuser exit implies the lowest exit velocity attainable for a given flow rate and lowest rate of momentum ... momentum , and energy and the equation of state. The procedures of manipulating these partial differential iations into an analytical model for analyzing
NASA Astrophysics Data System (ADS)
Jaatinen, Ahti; Grönman, Aki; Turunen-Saaresti, Teemu; Backman, Jari
2011-06-01
Three vaned diffusers, designed to have high negative incidence (-8°) at the design operating point, are studied experimentally. The overall performance (efficiency and pressure ratio) are measured at three rotational speeds, and flow angles before and after the diffuser are measured at the design rotational speed and with three mass flow rates. The results are compared to corresponding results of the original vaneless diffuser design. Attention is paid to the performance at lower mass flows than the design mass flow. The results show that it is possible to improve the performance at mass flows lower than the design mass flow with a vaned diffuser designed with high negative incidence. However, with the vaned diffusers, the compressor still stalls at higher mass flow rates than with the vaneless one. The flow angle distributions after the diffuser are more uniform with the vaned diffusers.
NASA Astrophysics Data System (ADS)
Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin
2009-12-01
A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.
Solid-state diffusion-controlled growth of the phases in the Au-Sn system
NASA Astrophysics Data System (ADS)
Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke
2018-01-01
The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.
NASA Astrophysics Data System (ADS)
Jatimurti, Wikan; Sutarsis, Cunika, Aprida Ulya
2017-01-01
In a dead mild steel with maximum carbon content of 0.15%, carbon does not contribute much to its strength. By adding copper as an alloying element, a balance between strength and ductility could be obtained through grain refining, solid solution, or Cu precipitation. This research aimed to analyse the changes in microstructures and copper behaviour on AISI 1006, including the phases formed, composition, and Cu dispersion. The addition of cooper was done by immersing steel into molten copper or so we called, copperizing using the principles of diffusion. Specimens were cut with 6 × 3 × 0.3 cm measurement then preheated to 900°C and melting the copper at 1100°C. Subsequently, the immersion of the specimens into molten copper varied to 5 and 7 minutes, and also varying the cooling rate to annealing, normalizing, and quenching. A series of test being conduct were optical microscope test, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), optical emission spectroscopy (OES), and X-ray diffraction (XRD). The results showed that the longer the immersion time and slower cooling rate, the more Cu diffused causing smaller grain size with the highest Cu diffused recorded was 0.277% in the copperized AISI 1006 steel with 7 minutes of immersion and was annealed. The grain size reduced to 23041.5404 µm2. The annealed specimens show ferrite phase, the normalized ones show polygonal ferrite phase, while the quenched ones show granular bainite phase. The phase formed is single phase Cu. In addition, the normalized and quenched specimens show that Cu dissolved in Fe crystal forming solid solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthias C. M. Troffaes; Gero Walter; Dana Kelly
In a standard Bayesian approach to the alpha-factor model for common-cause failure, a precise Dirichlet prior distribution models epistemic uncertainty in the alpha-factors. This Dirichlet prior is then updated with observed data to obtain a posterior distribution, which forms the basis for further inferences. In this paper, we adapt the imprecise Dirichlet model of Walley to represent epistemic uncertainty in the alpha-factors. In this approach, epistemic uncertainty is expressed more cautiously via lower and upper expectations for each alpha-factor, along with a learning parameter which determines how quickly the model learns from observed data. For this application, we focus onmore » elicitation of the learning parameter, and find that values in the range of 1 to 10 seem reasonable. The approach is compared with Kelly and Atwood's minimally informative Dirichlet prior for the alpha-factor model, which incorporated precise mean values for the alpha-factors, but which was otherwise quite diffuse. Next, we explore the use of a set of Gamma priors to model epistemic uncertainty in the marginal failure rate, expressed via a lower and upper expectation for this rate, again along with a learning parameter. As zero counts are generally less of an issue here, we find that the choice of this learning parameter is less crucial. Finally, we demonstrate how both epistemic uncertainty models can be combined to arrive at lower and upper expectations for all common-cause failure rates. Thereby, we effectively provide a full sensitivity analysis of common-cause failure rates, properly reflecting epistemic uncertainty of the analyst on all levels of the common-cause failure model.« less
Spatial dilemmas of diffusible public goods
Allen, Benjamin; Gore, Jeff; Nowak, Martin A
2013-01-01
The emergence of cooperation is a central question in evolutionary biology. Microorganisms often cooperate by producing a chemical resource (a public good) that benefits other cells. The sharing of public goods depends on their diffusion through space. Previous theory suggests that spatial structure can promote evolution of cooperation, but the diffusion of public goods introduces new phenomena that must be modeled explicitly. We develop an approach where colony geometry and public good diffusion are described by graphs. We find that the success of cooperation depends on a simple relation between the benefits and costs of the public good, the amount retained by a producer, and the average amount retained by each of the producer’s neighbors. These quantities are derived as analytic functions of the graph topology and diffusion rate. In general, cooperation is favored for small diffusion rates, low colony dimensionality, and small rates of decay of the public good. DOI: http://dx.doi.org/10.7554/eLife.01169.001 PMID:24347543
NASA Astrophysics Data System (ADS)
Schwarz, Karsten; Rieger, Heiko
2013-03-01
We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry
Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.
Shinn, Laura
2014-01-01
Using data on all bariatric surgeries performed in the state of Pennsylvania from 1995 through 2007, this article uses logistic and OLS regressions to measure the effect of star physicians and star hospitals on the diffusion of an innovation in bariatric surgery called laparoscopic gastric bypass surgery (LGBS). This article tests for effects at both the hospital and physician level. Compared to hospitals with no star physicians (11 percent adoption rate), those with star physicians on staff show a much higher adoption rate (89 percent). Compared to hospitals that are not classified as star hospitals (13 percent diffusion rate), hospitals with star status show a much higher diffusion rate (87 percent from first quarter 2000 to fourth quarter 2001); being a star hospital raises the likelihood of that hospital diffusing LCBS from 13 percent to 87 percent. At the physician level, the empirical results indicate that star physicians exert positive asymmetric influence on the adoption and utilization rates of nonstars at the same hospital. Stars are those who: (1) graduated from a Top 30 medical school, (2) completed residency at a Top 30 hospital, or (3) are included in a Castle Connolly Top Doctors publication. The results of this article support earlier work on the role of key individuals in technology diffusion. It extends research on medical technology diffusion by testing a new data set for a chronic disease treatment. JEL classifications: D2, I10, I11, L2, O33. D2 production and organizations; L2 firm objectives, organization and behavior; I10 health general; I11 Analysis of health care markets; O33 technological change: choices and consequences; diffusion processes.
Numerical examination of the factors controlling DNAPL migration through a single fracture.
Reynolds, D A; Kueper, B H
2002-01-01
The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.
Ignition Delay Associated with a Strained Strip
NASA Technical Reports Server (NTRS)
Gerk, T. J.; Karagozian, A. R.
1996-01-01
Ignition processes associated with two adjacent fuel-oxidizer interferences bounding a strained fuel strip are explored here using single-step activation energy asymptotics. Calculations are made for constant as well as temporally decaying strain fields. There possible models of ignition are determined: one in which the two interfaces ignite independently as diffusion flames; one in which the two interfaces ignite dependently and in which ignition occurs to form a single , premixed flame at very high strain rates before ignition is completely prevented. In contrast to a single, isolated interface in which ignition can be prevented by overmatching heat production with heat convection due to strain, ignition of a strained fuel strip can also be prevented if the finite extend of fuel is diluted by oxidizer more quickly than heat production can cause a positive feedback thermal runaway. These behaviors are dependent on the relative sizes of timescales associated with species and heat diffusion, with convection due to strain, and with the chemical reaction. The result here indicate that adjacent, strained species interfaces may ignite quite differently in nature from ignition of a single, strained intrface and that their interdependence should be considered as the interfaces are brought closer together in complex strain fields. Critical strain rates leading to complete ignition delay are found to be considerably smaller for the fuel strip than those for single interfaces as the fuel strip is made thin in comparison to diffusion and chemical length scales.
Kinetics of Ta ions penetration into porous low-k dielectrics under bias-temperature stress
NASA Astrophysics Data System (ADS)
He, Ming; Ou, Ya; Wang, Pei-I.; Lu, Toh-Ming
2010-05-01
It is known that Ta, a popular diffusion barrier material, can itself penetrate into low-k dielectrics under bias-temperature stress. In this work, we derived a model which directly correlates the diffusivity of Ta ions to the rate of flatband voltage shift (FBS) of the Ta/methyl silsesquixane (MSQ)/Si capacitors. From our experimentally measured constant FBS rate, the Ta diffusivity and activation energy were determined. It appears that an increase in the porosity of MSQ film enhances the Ta diffusivity but does not affect the associated activation energy. This suggests the Ta ion diffusion is mainly through interconnected pore surfaces.
Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Sang Hee; Sun, Wenting; Ju, Yiguang
The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool andmore » chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destruction rate, leading to under-prediction of extinction limits and OH concentrations, especially caused by the uncertainty of the H abstraction reaction from toluene, which rate coefficient has a difference by a factor of 5 in the tested toluene models. In addition, sensitivity analysis of diffusive transport showed that in addition to n-decane and toluene, the transport of OH and H also considerably affects the extinction limit. A reduced linear correlation between the extinction limits of n-decane/toluene blended fuels and the H/C ratio as well as the mean fuel molecular weight was obtained. The results suggest that an explicit prediction of the extinction limits of aromatic and alkane blended fuels can be established by using H/C ratio (or radical index) and the mean fuel molecular weight which represent the rates of radical production and the fuel transport, respectively. (author)« less
Bringing diffuse X-ray scattering into focus
Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.
2018-02-16
X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.
Bringing diffuse X-ray scattering into focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.
X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.
NASA Astrophysics Data System (ADS)
Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.
2013-04-01
Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the arctic will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in water-saturated tundra soils, thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4 signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (such as landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism and diffusive stable isotope fractionation should be considered alongside oxidative fractionation. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.017 ± 0.009) and needs to be determined on a case by case basis. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the potential diffusion rate under saturated and unsaturated conditions and potential oxidation rates. For a submerged, organic-rich soil, the data indicate a CH4 oxidation efficiency of 50% at the anaerobic-aerobic interface in the upper horizon. The improved in situ quantification of CH4 oxidation in wetlands enables a better assessment of current and potential CH4 sources and sinks in permafrost-affected ecosystems and their potential strengths in response to global warming.
The Effect of Pickling on Blue Borscht Gelatin and Other Interesting Diffusive Phenomena.
ERIC Educational Resources Information Center
Davis, Lawrence C.; Chou, Nancy C.
1998-01-01
Presents some simple demonstrations that students can construct for themselves in class to learn the difference between diffusion and convection rates. Uses cabbage leaves and gelatin and focuses on diffusion in ungelified media, a quantitative diffusion estimate with hydroxyl ions, and a quantitative diffusion estimate with photons. (DDR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorptionmore » rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.« less
An Alternative Estimate of the Motion of the Capricorn Plate
NASA Astrophysics Data System (ADS)
Burris, S. G.; Gordon, R. G.
2013-12-01
Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2] Gordon, R. G., Royer, J.-Y., and D. F. Argus, 2008. Space geodetic test of kinematic models for the Indo-Australian composite plate, Geology, 36, 827-830, doi: 10.1130/G25089A.1. [3] DeMets, C., Gordon, R. G., & Argus, D. F., 2010. Geologically current plate motions, Geophys. J. Int., 181, 1-80, doi: 10.1111/j.1365-246X.2009.04491.x.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrof, Julian; Müller, Ralph; Reedy, Robert C.
2015-07-28
Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detailmore » by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3 diffusion« less
Can molecular diffusion explain Space Shuttle plume spreading?
NASA Astrophysics Data System (ADS)
Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.
2010-04-01
The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.
A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction
NASA Astrophysics Data System (ADS)
Rajaram, Harihar; Arshadi, Masoud
2015-04-01
Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.
Knowledge diffusion in complex networks by considering time-varying information channels
NASA Astrophysics Data System (ADS)
Zhu, He; Ma, Jing
2018-03-01
In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.
Moens, Pierre D.J.; Digman, Michelle A.; Gratton, Enrico
2015-01-01
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. PMID:25809257
Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico
2015-03-24
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka
2016-02-01
The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.
Radiation Re-solution Calculation in Uranium-Silicide Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Christopher; Andersson, Anders David Ragnar; Unal, Cetin
The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can causemore » collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.« less
Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis
2017-10-01
In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.
Time-dependent models for blazar emission with the second-order Fermi acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Katsuaki; Takahara, Fumio; Toma, Kenji
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101–232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range ofmore » Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 10{sup 38} erg s{sup –1}, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.« less
Local magnetohydrodynamic instabilities and the wave-driven dynamo in accretion disks
NASA Technical Reports Server (NTRS)
Vishniac, Ethan T.; Diamond, Patrick
1992-01-01
We consider the consequences of magnetic buoyancy and the magnetic shearing instability (MSI) on the strength and organization of the magnetic field in a thin accretion disk. We discuss a model in which the wave-driven dynamo growth rate is balanced by the dissipative effects of the MSI. As in earlier work, the net helicity is due to small advective motions driven by nonlinear interactions between internal waves. Assuming a simple model of the internal wave spectrum generated from the primary m = 1 internal waves, we find that the magnetic energy density saturates at about (H/r) exp 4/3 times the local pressure (where H is the disk thickness and r is its radius). On very small scales the shearing instability will produce an isotropic fluctuating field. For a stationary disk this is equivalent to a dimensionless 'viscosity' of about (H/r) exp 4/3. The vertical and radial diffusion coefficients will be comparable to each other. Magnetic buoyancy will be largely suppressed by the turbulence due to the MSI. We present a rough estimate of its effects and find that it removes magnetic flux from the disk at a rate comparable to that caused by turbulent diffusion.
Brain white matter microstructure is associated with susceptibility to motion-induced nausea.
Napadow, V; Sheehan, J; Kim, J; Dassatti, A; Thurler, A H; Surjanhata, B; Vangel, M; Makris, N; Schaechter, J D; Kuo, B
2013-05-01
Nausea is associated with significant morbidity, and there is a wide range in the propensity of individuals to experience nausea. The neural basis of the heterogeneity in nausea susceptibility is poorly understood. Our previous functional magnetic resonance imaging (fMRI) study in healthy adults showed that a visual motion stimulus caused activation in the right MT+/V5 area, and that increased sensation of nausea due to this stimulus was associated with increased activation in the right anterior insula. For the current study, we hypothesized that individual differences in visual motion-induced nausea are due to microstructural differences in the inferior fronto-occipital fasciculus (IFOF), the white matter tract connecting the right visual motion processing area (MT+/V5) and right anterior insula. To test this hypothesis, we acquired diffusion tensor imaging data from 30 healthy adults who were subsequently dichotomized into high and low nausea susceptibility groups based on the Motion Sickness Susceptibility Scale. We quantified diffusion along the IFOF for each subject based on axial diffusivity (AD); radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), and evaluated between-group differences in these diffusion metrics. Subjects with high susceptibility to nausea rated significantly (P < 0.001) higher nausea intensity to visual motion stimuli and had significantly (P < 0.05) lower AD and MD along the right IFOF compared to subjects with low susceptibility to nausea. This result suggests that differences in white matter microstructure within tracts connecting visual motion and nausea-processing brain areas may contribute to nausea susceptibility or may have resulted from an increased history of nausea episodes. © 2013 Blackwell Publishing Ltd.
Dukhin, Stanislav S.; Labib, Mohamed E.
2016-01-01
Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection. Surprisingly, it was overlooked that there is a more favorable drug release mode which can be achieved when a special DDD is implanted near lymphatics. This opportunity can be realized when the interstitial fluid flow penetrates a drug delivery device of proper design and allows such fluid to flow out of it. This design is based on hollow fibers loaded with drug and whose hydrodynamic permeability is much higher than that of the surrounding tissue. The latter is referred to as hollow fiber of high hydrodynamic permeability (HFHP). The interstitial flow easily penetrates the hollow fiber membrane as well as its lumen with a higher velocity than that in the adjacent tissue. The interstitial liquid stream entering the lumen becomes almost saturated with drug as it flows out of the HFHP. This is due to the drug powder dissolution in the lumens of HFHP which forms a strip of drug solution that crosses the interstitium and finally enters the lymphatics. This hydrodynamically-driven release (HDR) may exceed the concomitant diffusion-driven release (DDR) by one or even two orders of magnitude. The hydrodynamics of the two-compartment media is sufficient for developing the HDR theory which is detailed in this paper. Convective diffusion theory for two compartments (membrane of hollow fiber and adjacent tissue) is required for exact quantification when a small contribution of DDR to predominating HDR is present. Hence, modeling is important for HDR which would lead to establishing a new branch in physico-chemical hydrodynamics. The release rate achieved with the use of HFHP increases proportional to the number of hollow fibers in the fabric employed in drug delivery. Based on this contribution, it is now possible to simultaneously provide high release rates and long release durations, thus overcoming a fundamental limitation in drug delivery. Perhaps this breakthrough in long-term drug delivery has potential applications in targeting lymphatics and in treating cancer and cancer metastasis without causing the serious side effects of systemic drugs. PMID:28579697
Levitt, Michael D.; Levitt, David G.
1973-01-01
Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667
Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment
NASA Astrophysics Data System (ADS)
Kramer, Andrew R.
This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.
METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, David; Martel, Hugo; Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca
2016-05-10
We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distributionmore » function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.« less
Cooper, Justin; Harris, Joel M
2014-12-02
Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.
The development and preliminary application of an invariant coupled diffusion and chemistry model
NASA Technical Reports Server (NTRS)
Hilst, G. R.; Donaldson, C. DUP.; Teske, M.; Contiliano, R.; Freiberg, J.
1973-01-01
In many real-world pollution chemical reaction problems, the rate of reaction problems, the rate of reaction may be greatly affected by unmixedness. An approximate closure scheme for a chemical kinetic submodel which conforms to the principles of invariant modeling and which accounts for the effects of inhomogeneous mixing over a wide range of conditions has been developed. This submodel has been coupled successfully with invariant turbulence and diffusion models, permitting calculation of two-dimensional diffusion of two reacting (isothermally) chemical species. The initial calculations indicate the ozone reactions in the wake of stratospheric aircraft will be substantially affected by the rate of diffusion of ozone into the wake, and in the early wake, by unmixedness.
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
NASA Astrophysics Data System (ADS)
Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre
2018-02-01
We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.
Diffuse abdominal gallium-67 citrate uptake in salmonella infections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garty, I.; Koren, A.
1987-11-01
Two pediatric patients with salmonella infections (one with typhoid fever and the second with salmonella C2 gastroenteritis), had a diffuse abdominal uptake of Ga-67 citrate. The possible explanation for this finding is discussed. Salmonella infection should be included as a cause in the differential diagnosis of diffuse accumulation of Ga-67 citrate.
NASA Astrophysics Data System (ADS)
Han, Renji; Dai, Binxiang
2017-06-01
The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.
The Effect of Composition on Diffusion of Au in Fe and Fe-Ni Alloys
NASA Astrophysics Data System (ADS)
Johanesen, K. E.; Watson, H. C.; Fei, Y.
2005-12-01
Understanding siderophile element diffusion in Fe-Ni alloys will lead to tighter constraints on processes such as meteoritic body cooling rates, and inner core-outer core communication. Recent studies have determined the effect of temperature and pressure on diffusion in this system, but the effect of composition has not yet been explored adequately. The effect of Ni content on Au diffusion in an Fe-Ni system was explored for Fe-Ni alloys with concentrations of 0, 20, and 30 wt. % Ni. Diffusion couple experiments were conducted using a piston cylinder press at 1 GPa and temperatures ranging from 1150°C to 1400°C. Concentration profiles were measured by electron microprobe and were fitted to the linear diffusion solution for an semi-infinite diffusion couple to extract diffusion coefficients (D) using a non-linear least squares fit routine. As predicted, D increases with Ni content and also with temperature. The diffusivities ranged from 2.06×10-9 at 1150°C to 5.76×10-8 at 1350°C for 0 wt. % Ni; 5.17×10-9 at 1150° C to 1.93×10-7 at 1400°C for 20 wt. % Ni; and 2.41×10-8 at 1150°C to 2.13×10-7 at 1400°C for 30 wt. % Ni. As temperature increases, the effect of Ni on diffusion rates increases, implying a possible change in diffusion mechanism between 1250°C and 1300°C. Ni appears to have a negligible effect at lower temperatures, which would indicate that Ni may not need to be considered when modeling siderophile trace element diffusion rates in iron meteorites.
Kinetics of Brominated Flame Retardant (BFR) Releases from Granules of Waste Plastics.
Sun, Bingbing; Hu, Yuanan; Cheng, Hefa; Tao, Shu
2016-12-20
Plastic components of e-waste contain high levels of brominated flame retardants (BFRs), whose releases cause environmental and human health concerns. This study characterized the release kinetics of polybrominated diphenyl ethers (PBDEs) from millimeter-sized granules processed from the plastic exteriors of two scrap computer displays at environmentally relevant temperatures. The release rate of a substitute of PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), from the waste plastics, was reported for the first time. Deca-BDE was the most abundant PBDE congeners in both materials (87-89%), while BTBPE was also present at relatively high contents. The release kinetics of BFRs could be modeled as one-dimensional diffusion, while the temperature dependence of diffusion coefficients was well described by the Arrhenius equation. The diffusion coefficients of BFRs (at 30 °C) in the plastic matrices were estimated to be in the range of 10 -27.16 to 10 -19.96 m 2 ·s -1 , with apparent activation energies between 88.4 and 154.2 kJ·mol -1 . The half-lives of BFR releases (i.e., 50% depletion) from the plastic granules ranged from thousands to tens of billions of years at ambient temperatures. These findings suggest that BFRs are released very slowly from the matrices of waste plastics through molecular diffusion, while their emissions can be significantly enhanced with wear-and-tear and pulverization.
A Nonequilibrium Rate Formula for Collective Motions of Complex Molecular Systems
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.
2010-09-01
We propose a compact reaction rate formula that accounts for a non-equilibrium distribution of residence times of complex molecules, based on a detailed study of the coarse-grained phase space of a reaction coordinate. We take the structural transition dynamics of a six-atom Morse cluster between two isomers as a prototype of multi-dimensional molecular reactions. Residence time distribution of one of the isomers shows an exponential decay, while that of the other isomer deviates largely from the exponential form and has multiple peaks. Our rate formula explains such equilibrium and non-equilibrium distributions of residence times in terms of the rates of diffusions of energy and the phase of the oscillations of the reaction coordinate. Rapid diffusions of energy and the phase generally give rise to the exponential decay of residence time distribution, while slow diffusions give rise to a non-exponential decay with multiple peaks. We finally make a conjecture about a general relationship between the rates of the diffusions and the symmetry of molecular mass distributions.
Reaction Rate of Small Diffusing Molecules on a Cylindrical Membrane
NASA Astrophysics Data System (ADS)
Straube, Ronny; Ward, Michael J.; Falcke, Martin
2007-10-01
Biomembranes consist of a lipid bi-layer into which proteins are embedded to fulfill numerous tasks in localized regions of the membrane. Often, the proteins have to reach these regions by simple diffusion. Motivated by the observation that IP3 receptor channels (IP3R) form clusters on the surface of the endoplasmic reticulum (ER) during ATP-induced calcium release, the reaction rate of small diffusing molecules on a cylindrical membrane is calculated based on the Smoluchowski approach. In this way, the cylindrical topology of the tubular ER is explicitly taken into account. The problem can be reduced to the solution of the diffusion equation on a finite cylindrical surface containing a small absorbing hole. The solution is constructed by matching appropriate `inner' and `outer' asymptotic expansions. The asymptotic results are compared with those from numerical simulations and excellent agreement is obtained. For realistic parameter sets, we find reaction rates in the range of experimentally measured clustering rates of IP3R. This supports the idea that clusters are formed by a purely diffusion limited process.
Worldwide Spread of Dengue Virus Type 1
Villabona-Arenas, Christian Julián; Zanotto, Paolo Marinho de Andrade
2013-01-01
Background DENV-1 is one of the four viral serotypes that causes Dengue, the most common mosquito-borne viral disease of humans. The prevalence of these viruses has grown in recent decades and is now present in more than 100 countries. Limited studies document the spread of DENV-1 over the world despite its importance for human health. Methodology/Principal Findings We used representative DENV-1 envelope gene sequences to unravel the dynamics of viral diffusion under a Bayesian phylogeographic approach. Data included strains from 45 distinct geographic locations isolated from 1944 to 2009. The estimated mean rate of nucleotide substitution was 6.56×10−4 substitutions/site/year. The larger genotypes (I, IV and V) had a distinctive phylogenetic structure and since 1990 they experienced effective population size oscillations. Thailand and Indonesia represented the main sources of strains for neighboring countries. Besides, Asia broadcast lineages into the Americas and the Pacific region that diverged in isolation. Also, a transmission network analysis revealed the pivotal role of Indochina in the global diffusion of DENV-1 and of the Caribbean in the diffusion over the Americas. Conclusions/Significance The study summarizes the spatiotemporal DENV-1 worldwide spread that may help disease control. PMID:23675416
Mourad, D; van der Perk, M
2004-01-01
First results are presented of a large-scale GIS-based nutrient transport modelling for the 1985-1999 period in the Estonian part of the transboundary drainage basin of Lake Peipsi (Estonian)/Chudskoe (Russian), one of the largest lakes in Europe, shared by Russia and Estonia. Although the lake is relatively undisturbed by human pollution, it is vulnerable for eutrophication by increased river loads, as shown in the past, when the north-eastern part of the former Soviet Union suffered from intensive agriculture. The collapse of the Soviet Union caused a dramatic decline in fertilizer application rates and widespread abandonment of agricultural land. Although concentration measurements and modelling results indicate a general decrease in nutrient loads, modelling is complicated by the transfer of nutrients from diffuse emissions, which is strongly governed by retention and assumed periodic release from storages within the river basin, like the root zone, tile drains, ditches, channels, bed sediments, floodplains and lakes. Modelling diffuse emission contribution to river loads can be improved by better knowledge about the spatial and temporal distribution of this retention and release within the drainage basin.
Feynman-Kac equations for reaction and diffusion processes
NASA Astrophysics Data System (ADS)
Hou, Ru; Deng, Weihua
2018-04-01
This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.
Jump rates for surface diffusion of large molecules from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen
2015-04-21
We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). Wemore » find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.« less
Acoustic instability driven by cosmic-ray streaming
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.; Zweibel, Ellen G.
1994-01-01
We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are separated by either laminar or turbulent jumps in which the thermal gas is subject to intense heating.
Partial melting kinetics of plagioclase-diopside pairs
NASA Astrophysics Data System (ADS)
Tsuchiyama, Akira
1985-09-01
Partial melting experiments on plagioclase (An60) and diopside have been carried out using pairs of large crystals to investigate textures and kinetics of melting. The experiments were done at one atmosphere pressure as a function of temperature (1,190 1,307° C) and time (1.5 192 h). Melting took place mainly at the plagioclase-diopside contact planes. Reaction zones composed of fine mixtures of calcic plagioclase and melt were developed from the surface of the plagioclase crystal inward. There exists a critical temperature, below which only a few % melting can occur over the duration of the experiments. This sluggish melting is caused by slow NaSi-CaAl diffusion in plagioclase, because the plagioclase crystal must change its composition to produce albite-rich cotectic melts. Diffusion in the solid also affects the chemical composition of the melts. During initial melting, potassium is preferentially extracted from plagioclase because K-Na diffusion in plagioclase is faster than that of NaSi-CaAl. This also causes a shift in the cotectic compositions. Above the “critical temperature”, on the other hand, melting is promoted by a metastable reaction in which the plagioclase composition does not change, and which produces melts with compositional gradients along the original An60-diopside tie line. The critical temperature is determined by the intersection of the cotectic and the An60-diopside tie line. Interdiffusion coefficients of plagioclase-diopside components in the melt are estimated from melting rates above the critical temperature by using a simplified steady-state diffusion model (e.g., 10-8 cm2/sec at 1,300° C). Many examples of reaction zones due to partial melting have been described as spongy or fingerprint-like textures in xenoliths. Metastable melting above the critical temperature is considered to take place in natural melting where there is a high degree of melting. However, we cannot exclude the possibility of disequilibrium created by sluggish melting controlled by diffusion in the minerals. If melting occurs close to the solidus, this process can be important even for partial melting in the upper mantle.
A Poor Relationship Between Sea Level and Deep-Water Sand Delivery
NASA Astrophysics Data System (ADS)
Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier
2018-08-01
The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Gupta, Rahul
2018-02-01
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn.
Modelling the growth Rate of Algal in sediment-laden flow
NASA Astrophysics Data System (ADS)
Li, H.
2017-12-01
Phytoplankton plays an important role as a primary producer in aquatic ecosystems. Fluid dynamics can affect the growth of algae in a number of ways and can be divided into two categories. On the one hand the advection and diffusion processes may disrupt the vertical migration of phytoplankton. On the other hand hydrodynamic effects of sediment suspension which can affect algal growth, by releasing nutrients and reducing light intensity. Natural water generally contains sediment. Therefore, when the flow enters the lake, it will cause a change in the phytoplankton community at the junction. Few people have studied the effects of sediment-laden flows to algal growth rates. In this project, Baiyangdian was chosen as the key research area to study the effect of sediment-laden flow on the growth rate of algae. And we conducted a microcosmic experiment in the laboratory to simulate the effect of sediment-laden flow on the growth rate of algae, and constructed a numerical model for the growth rate of algae in sediment-laden flow.
NASA Astrophysics Data System (ADS)
Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad
2018-02-01
Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.
NASA Astrophysics Data System (ADS)
Lu, Shih-Yuan; Yen, Yi-Ming
2002-02-01
A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.
Single-particle trajectories reveal two-state diffusion-kinetics of hOGG1 proteins on DNA.
Vestergaard, Christian L; Blainey, Paul C; Flyvbjerg, Henrik
2018-03-16
We reanalyze trajectories of hOGG1 repair proteins diffusing on DNA. A previous analysis of these trajectories with the popular mean-squared-displacement approach revealed only simple diffusion. Here, a new optimal estimator of diffusion coefficients reveals two-state kinetics of the protein. A simple, solvable model, in which the protein randomly switches between a loosely bound, highly mobile state and a tightly bound, less mobile state is the simplest possible dynamic model consistent with the data. It yields accurate estimates of hOGG1's (i) diffusivity in each state, uncorrupted by experimental errors arising from shot noise, motion blur and thermal fluctuations of the DNA; (ii) rates of switching between states and (iii) rate of detachment from the DNA. The protein spends roughly equal time in each state. It detaches only from the loosely bound state, with a rate that depends on pH and the salt concentration in solution, while its rates for switching between states are insensitive to both. The diffusivity in the loosely bound state depends primarily on pH and is three to ten times higher than in the tightly bound state. We propose and discuss some new experiments that take full advantage of the new tools of analysis presented here.
Zhi, Z. L.; Craster, R. V.
2018-01-01
Graphene oxide (GO) is increasingly used for controlling mass diffusion in hydrogel-based drug delivery applications. On the macro-scale, the density of GO in the hydrogel is a critical parameter for modulating drug release. Here, we investigate the diffusion of a peptide drug through a network of GO membranes and GO-embedded hydrogels, modelled as porous matrices resembling both laminated and ‘house of cards’ structures. Our experiments use a therapeutic peptide and show a tunable nonlinear dependence of the peptide concentration upon time. We establish models using numerical simulations with a diffusion equation accounting for the photo-thermal degradation of fluorophores and an effective percolation model to simulate the experimental data. The modelling yields an interpretation of the control of drug diffusion through GO membranes, which is extended to the diffusion of the peptide in GO-embedded agarose hydrogels. Varying the density of micron-sized GO flakes allows for fine control of the drug diffusion. We further show that both GO density and size influence the drug release rate. The ability to tune the density of hydrogel-like GO membranes to control drug release rates has exciting implications to offer guidelines for tailoring drug release rates in hydrogel-based therapeutic delivery applications. PMID:29445040
Dynamical spike solutions in a nonlocal model of pattern formation
NASA Astrophysics Data System (ADS)
Marciniak-Czochra, Anna; Härting, Steffen; Karch, Grzegorz; Suzuki, Kanako
2018-05-01
Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a reaction-diffusion-ODE model, we show that in such cases the instability driven by nonlocal terms (a counterpart of DDI) may lead to formation of unbounded spike patterns.
Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface
2016-12-22
reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the
Torres-Tirado, David; Ramiro-Diaz, Juan; Knabb, Maureen T; Rubio, Rafael
2013-01-01
We have shown that angiotensin II (Ang II) does not diffuse across the vessel wall, remaining intravascularly confined and acting solely on the coronary endothelial luminal membrane (CELM) receptors. A sustained intracoronary infusion of Ang II causes transient coronary vasoconstriction (desensitization) due to membrane internalization of CELM Ang II type 1 receptors (CELM-AT1R). In contrast, sustained intracoronary infusion of a non-diffusible polymer of Ang II (Ang II-Pol, 15,000 kDa) causes a sustained vasoconstriction by preventing CELM-AT1R internalization. In addition, a sustained intracoronary infusion of Ang II leads to a depressed response following a secondary Ang II administration (tachyphylaxis) that is reversed by Ang II-Pol. These findings led us to hypothesize that the rate of desensitization, tachyphylaxis, and AT1R internalization were dependent on Ang II-Pol molecular weight. To test this hypothesis, we synthesized Ang II-Pols of the following molecular weights (in kDa): 1.3, 2.7, 11, 47, 527, 3270 and 15,000. Vasoconstriction was measured following intracoronary infusion of Ang II-Pols in Langendorff-perfused guinea pig hearts at constant flow. The CELM protein fraction was extracted using the silica pellicle technique at different time points in order to determine the rate of AT1R internalization following each Ang II-Pol infusion. CELM-AT1R density was quantified by Western blot. We found that the rate of desensitization and the tachyphylaxis effect varied inversely with the molecular weight of the Ang II-Pols. Inversely proportional to the molecular weight of Ang II-Pol the CELM-AT1R density decreases over time. These results indicate that the mechanism responsible for the decreased rate of desensitization and tachyphylaxis by higher molecular weight Ang II polymers is due to reduction in the rate of CELM-AT1R internalization. These Ang II polymers would be valuable tools for studying the relationship between AT1R internalization and physiological effects. Copyright © 2013 Elsevier Inc. All rights reserved.
[Perforated appendicitis with purulent peritonitis in the third semester of pregnancy].
Sparić, Radmila; Stefanović, Aleksandar; Kadija, Sasa; Zizić, Vojislav
2005-01-01
Acute appendicitis is the most common non-obstetric reason of abdominal pain in the pregnancy, causing significant increase of maternal and fetal morbidity and mortality. This is a case report of a patient in the third trimester of pregnancy in whom perforated appendicitis caused purulent peritonitis. She was operated as an emergency case and cesarean section was performed. After the surgery and antibiotic administration according to drug susceptibility test, her postoperative course was uneventful. Delayed diagnosis of the acute appendicitis leads to increased rate of appendicular perforation, with numerous maternal and fetal complications. In cases of suspected appendicitis during pregnancy, surgical exploration is indicated, either by laparoscopy or laparotomy. Laparotomy is the method of choice in cases after 20 weeks of pregnancy and whenever signs of diffuse peritonitis are present.
Disentangling the stochastic behavior of complex time series
NASA Astrophysics Data System (ADS)
Anvari, Mehrnaz; Tabar, M. Reza Rahimi; Peinke, Joachim; Lehnertz, Klaus
2016-10-01
Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary dynamics, which can result in either continuous or discontinuous sample paths of the corresponding time series. The latter sample paths may be caused by discontinuous events - or jumps - with some distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex systems. Here we introduce a non-parametric method to address this general problem. By means of a stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- cability of our method to empirical observations by a data-driven inference of the deterministic drift term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly these different stochastic behaviors provide extra information that can be regarded valuable for diagnostic purposes.
NASA Astrophysics Data System (ADS)
Kan, Jia-Qian; Zhang, Hai-Feng
2017-03-01
In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.
An Investigation of Diffusion Rates in Wadsleyite at 21 GPa and 1500-1900 ° C
NASA Astrophysics Data System (ADS)
Murray, J.; Van Orman, J. A.; Fei, Y.
2002-05-01
Diffusion experiments on high-pressure solid phases provide important constraints on the viscosity of the mantle. We measured diffusion rates in wadsleyite, thought to be one of the most common minerals in the mantle transition zone, using a rim growth method. In each experiment a periclase (MgO) single crystal was surrounded by MgSiO3 glass and compressed in a multianvil device. The MgSiO3 glass rapidly transformed to ilmenite or majorite during heating, as confirmed by a "zero-time" experiment in which the sample was heated to the final run temperature at 100 K/min and then immediately quenched. Each sample was annealed at constant temperature for up to 47 hours to produce a reaction rim of polycrystalline wadsleyite (Mg2SiO4) with ~1 μ m grain size. Growth of the reaction rim was enabled by diffusion of chemical species across the wadsleyite layer, and the bulk diffusion coefficient of the rate-limiting species was calculated from the final rim width using the method described by Fisler and Mackwell (1994 Phys. Chem. Minerals 21:156-165). This method depends on knowledge of the change in chemical potential from the periclase/wadsleyite interface to the wadsleyite/ilmenite(majorite) interface, which we calculated using the internally consistent thermodynamic dataset of Fei et al. (1990 J. Geophys. Res. 95:6915-6928). In some of the experiments we coated the periclase crystal with a thin layer ( ~100 nm) of gold to mark the initial interface and indicate the relative fluxes of chemical species across the growing wadsleyite rim. In every case the gold remained adjacent to the periclase/wadsleyite interface, indicating that the flux of Mg and O across the reaction rim was much greater than the counterflux of Si, and that Mg and O were the more mobile species. For simplicity we assumed that Si was immobile and calculated Mg and O diffusivities assuming that each in turn was the rate-limiting species. The calculated Mg diffusivity is much slower than determined by Chakraborty et al. (1999 Science 283:362-364) and by Farber et al. (2000 J. Geophys. Res. 105:513-529). We therefore conclude that oxygen is the rate limiting species and that diffusion rates increase in the order DSi
Fluid-driven normal faulting earthquake sequences in the Taiwan orogen
NASA Astrophysics Data System (ADS)
Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui
2017-04-01
Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5.87 earthquake and the rise of the high pressure fluid.
A new diffusion matrix for whistler mode chorus waves
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard-Piet, Angelica; Thorne, Richard M.; Li, Wen
2013-10-01
Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3536 power spectra for upper and lower band chorus for 1.5≤L∗≤10 MLT, magnetic latitude 0°≤|λm|≤60° and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 12:00 MLT. Energy diffusion extends to a few megaelectron volts at large pitch angles >60° and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (<12°). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗=8 even for low levels of geomagnetic activity, while upper band chorus is restricted to mainly L∗<6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few kiloelectron volts near the loss cone up to several megaelectron volts at large pitch angles indicating loss at low energies and net acceleration at high energies.
Kramers turnover: From energy diffusion to spatial diffusion using metadynamics
Tiwary, Pratyush; Berne, B. J.
2016-01-01
We consider the rate of transition for a particle between two metastable states coupled to a thermal environment for various magnitudes of the coupling strength using the recently proposed infrequent metadynamics approach [P. Tiwary and M. Parrinello, Phys. Rev. Lett. 111, 230602 (2013)]. We are interested in understanding how this approach for obtaining rate constants performs as the dynamics regime changes from energy diffusion to spatial diffusion. Reassuringly, we find that the approach works remarkably well for various coupling strengths in the strong coupling regime, and to some extent even in the weak coupling regime. PMID:27059558
Cultural Diffusion Was the Main Driving Mechanism of the Neolithic Transition in Southern Africa
Jerardino, Antonieta; Fort, Joaquim; Isern, Neus; Rondelli, Bernardo
2014-01-01
It is well known that the Neolithic transition spread across Europe at a speed of about 1 km/yr. This result has been previously interpreted as a range expansion of the Neolithic driven mainly by demic diffusion (whereas cultural diffusion played a secondary role). However, a long-standing problem is whether this value (1 km/yr) and its interpretation (mainly demic diffusion) are characteristic only of Europe or universal (i.e. intrinsic features of Neolithic transitions all over the world). So far Neolithic spread rates outside Europe have been barely measured, and Neolithic spread rates substantially faster than 1 km/yr have not been previously reported. Here we show that the transition from hunting and gathering into herding in southern Africa spread at a rate of about 2.4 km/yr, i.e. about twice faster than the European Neolithic transition. Thus the value 1 km/yr is not a universal feature of Neolithic transitions in the world. Resorting to a recent demic-cultural wave-of-advance model, we also find that the main mechanism at work in the southern African Neolithic spread was cultural diffusion (whereas demic diffusion played a secondary role). This is in sharp contrast to the European Neolithic. Our results further suggest that Neolithic spread rates could be mainly driven by cultural diffusion in cases where the final state of this transition is herding/pastoralism (such as in southern Africa) rather than farming and stockbreeding (as in Europe). PMID:25517968
Threshold-based epidemic dynamics in systems with memory
NASA Astrophysics Data System (ADS)
Bodych, Marcin; Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Siegmund-Schultze, Rainer; Sikdar, Sandipan
2016-11-01
In this article we analyze an epidemic dynamics model (SI) where we assume that there are k susceptible states, that is a node would require multiple (k) contacts before it gets infected. In specific, we provide a theoretical framework for studying diffusion rate in complete graphs and d-regular trees with extensions to dense random graphs. We observe that irrespective of the topology, the diffusion process could be divided into two distinct phases: i) the initial phase, where the diffusion process is slow, followed by ii) the residual phase where the diffusion rate increases manifold. In fact, the initial phase acts as an indicator for the total diffusion time in dense graphs. The most remarkable lesson from this investigation is that such a diffusion process could be controlled and even contained if acted upon within its initial phase.
Self-diffusion in dense granular shear flows.
Utter, Brian; Behringer, R P
2004-03-01
Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.
Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.
Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin
2011-10-01
This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.
Intrachain exciton dynamics in conjugated polymer chains in solution.
Tozer, Oliver Robert; Barford, William
2015-08-28
We investigate exciton dynamics on a polymer chain in solution induced by the Brownian rotational motion of the monomers. Poly(para-phenylene) is chosen as the model system and excitons are modeled via the Frenkel exciton Hamiltonian. The Brownian fluctuations of the torsional modes were modeled via the Langevin equation. The rotation of monomers in polymer chains in solution has a number of important consequences for the excited state properties. First, the dihedral angles assume a thermal equilibrium which causes off-diagonal disorder in the Frenkel Hamiltonian. This disorder Anderson localizes the Frenkel exciton center-of-mass wavefunctions into super-localized local exciton ground states (LEGSs) and higher-energy more delocalized quasi-extended exciton states (QEESs). LEGSs correspond to chromophores on polymer chains. The second consequence of rotations-that are low-frequency-is that their coupling to the exciton wavefunction causes local planarization and the formation of an exciton-polaron. This torsional relaxation causes additional self-localization. Finally, and crucially, the torsional dynamics cause the Frenkel Hamiltonian to be time-dependent, leading to exciton dynamics. We identify two distinct types of dynamics. At low temperatures, the torsional fluctuations act as a perturbation on the polaronic nature of the exciton state. Thus, the exciton dynamics at low temperatures is a small-displacement diffusive adiabatic motion of the exciton-polaron as a whole. The temperature dependence of the diffusion constant has a linear dependence, indicating an activationless process. As the temperature increases, however, the diffusion constant increases at a faster than linear rate, indicating a second non-adiabatic dynamics mechanism begins to dominate. Excitons are thermally activated into higher energy more delocalized exciton states (i.e., LEGSs and QEESs). These states are not self-localized by local torsional planarization. During the exciton's temporary occupation of a LEGS-and particularly a quasi-band QEES-its motion is semi-ballistic with a large group velocity. After a short period of rapid transport, the exciton wavefunction collapses again into an exciton-polaron state. We present a simple model for the activated dynamics which is in agreement with the data.
NASA Technical Reports Server (NTRS)
Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.
1993-01-01
Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.
Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames
NASA Technical Reports Server (NTRS)
Lecoustre, V. R.; Sunderland, P. B.; Chao, B. H.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.
2008-01-01
Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions.
D'Angelo, E; Starnes, D
2016-12-01
Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9 cm 2 s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cooper, Justin T; Harris, Joel M
2014-08-05
The development of techniques to probe interfacial molecular transport is important for understanding and optimizing surface-based analytical methods including surface-enhanced spectroscopies, biological assays, and chemical separations. Single-molecule-fluorescence imaging and tracking has been used to measure lateral diffusion rates of fluorescent molecules at surfaces, but the technique is limited to the study of slower diffusion, where molecules must remain relatively stationary during acquisition of an image in order to build up sufficient intensity in a spot to detect and localize the molecule. Although faster time resolution can be achieved by fluorescence-correlation spectroscopy (FCS), where intensity fluctuations in a small spot are related to the motions of molecules on the surface, long-lived adsorption events arising from surface inhomogeneity can overwhelm the correlation measurement and mask the surface diffusion of the moving population. Here, we exploit a combination of these two techniques, imaging-FCS, for measurement of fast interfacial transport at a model chromatographic surface. This is accomplished by rapid imaging of the surface using an electron-multiplied-charged-coupled-device (CCD) camera, while limiting the acquisition to a small area on the camera to allow fast framing rates. The total intensity from the sampled region is autocorrelated to determine surface diffusion rates of molecules with millisecond time resolution. The technique allows electronic control over the acquisition region, which can be used to avoid strong adsorption sites and thus minimize their contribution to the measured autocorrelation decay and to vary the acquisition area to resolve surface diffusion from adsorption and desorption kinetics. As proof of concept, imaging-FCS was used to measure surface diffusion rates, interfacial populations, and adsorption-desorption rates of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (DiI) on planar C18- and C1-modified surfaces.
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang; ...
2016-06-01
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Microfabricated diffusion source
Oborny, Michael C [Albuquerque, NM; Frye-Mason, Gregory C [Cedar Crest, NM; Manginell, Ronald P [Albuquerque, NM
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
NMR spin-rotation relaxation and diffusion of methane
NASA Astrophysics Data System (ADS)
Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.
2018-05-01
The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.
Reaction diffusion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems
NASA Technical Reports Server (NTRS)
Levine, S. R.
1977-01-01
The effects of MCrAl coating-substrate interdiffusion on oxidation life and the general mutliphase, multicomponent diffusion problem were examined. Semi-infinite diffusion couples that had sources representing coatings and sinks representing gas turbine alloys were annealed at 1,000, 1,095, 1,150, or 1,205 C for as long as 500 hours. The source and sink aluminum and chromium contents and the base metal (cobalt or nickel) determined the parabolic diffusion rate constants of the couples and predicted finite coating lives. The beta source strength concept provided a method (1) for correlating beta recession rate constants with composition; (2) for determining reliable average total, diffusion, and constitutional activation energies; and (3) for calculating interdiffusion coefficients.
Biodegradation of sorbed chemicals in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scow, K.M.; Fan, S.; Johnson, C.
Rates of biodegradation of sorbed chemicals are usually lower in soil than in aqueous systems, in part because sorption reduces the availability of the chemical to microorganisms. Biodegradation, sorption, and diffusion occur simultaneously and are tightly coupled. In soil, the rate of biodegradation is a function of a chemical`s diffusion coefficient, sorption partition coefficient, the distance it must diffuse from the site of sorption to microbial populations that can degrade it, and its biodegradation rate constant. A model (DSB model) was developed that describes biodegradation of chemicals limited in the availability by sorption and diffusion. Different kinetics expressions describe biodegradationmore » depending on whether the reaction is controlled by mass transfer (diffusion and sorption) or the intrinsic biodegradation rate, and whether biodegradation begins during or after the majority of sorption has occurred. We tested the hypothesis that there is a direct relationship between how strongly a chemical is sorbed and the chemical`s biodegradation rate. In six soils with different organic carbon contents, there was no relationship between the extent or rate of biodegradation and the sorption partition coefficient for phenanthrene. Aging of phenanthrene residues in soil led to a substantial reduction in the rate of biodegradation compared to biodegradation rates of recently added phenanthrene. Considerable research has focused on identification and development of techniques for enhancing in situ biodegradation of sorbed chemicals. Development of such techniques, especially those involving inoculation with microbial strains, should consider physical mass transfer limitations and potential decreases in bioavailability over time. 4 refs., 3 figs., 1 tab.« less
Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Ma, Q.; Li, W.; Thorne, R. M.; ...
2016-04-28
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less
Flow interaction in the combustor-diffusor system of industrial gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, A.K.; Kapat, J.S.; Yang, T.
1996-05-01
This paper presents an experimental/computational study of cold flow in the combustor-diffuser system of industrial gas turbines to address issues relating to flow interactions and pressure losses in the pre- and dump diffusers. The present configuration with can annular combustors differs substantially from the aircraft engines which typically use a 360 degree annular combustor. Experiments were conducted in a one-third scale, annular 360-degree model using several can combustors equispaced around the turbine axis. A 3-D computational fluid dynamics analysis employing the multidomain procedure was performed to supplement the flow measurements. The measured data correlated well with the computations. The airflowmore » in the dump diffuser adversely affected the prediffuser flow by causing it to accelerate in the outer region at the prediffuser exit. This phenomenon referred to as the sink-effect also caused a large fraction of the flow to bypass much of the dump diffuser and go directly from the prediffuser exit to the bypass air holes on the combustor casing, thereby, rendering the dump diffuser ineffective in diffusing the flow. The dump diffuser was occupied by a large recirculation region which dissipated the flow kinetic energy. Approximately 1.2 dynamic head at the prediffuser inlet was lost in the combustor-diffuser system; much of it in the dump diffuser where the fluid passed through the narrow gaps and pathways. Strong flow interactions in the combustor-diffuser system indicate the need for design modifications which could not be addressed by empirical correlations based on simple flow configurations.« less
Induced and triggered earthquakes at The Geysers geothermal reservoir
NASA Astrophysics Data System (ADS)
Johnson, Lane R.; Majer, Ernest L.
2017-05-01
The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.
A Physical Mechanism for the Asymmetry in Top-Down and Bottom-Up Diffusion.
NASA Astrophysics Data System (ADS)
Wyngaard, J. C.
1987-04-01
Recent large-eddy simulations of the vertical diffusion of a passive, conservative scalar through the convective boundary layer (CBL) show strikingly different eddy diffusivity profiles in the `top-down' and `bottom-up' cases. These results indicate that for a given turbulent velocity field and associated scalar flux, the mean change in scalar mixing ratio across the CBL is several times larger if the flux originates at the top of the boundary layer (i.e., in top-down diffusion) rather than at the bottom. The large-eddy simulation (LES) data show that this asymmetry is due to a breakdown of the eddy-diffusion concept.A simple updraft-downdraft model of the CBL reveals a physical mechanism that could cause this unexpected behavior. The large, positive skewness of the convectively driven vertical velocity gives an appreciably higher probability of downdrafts than updrafts; this excess probability of downdrafts, interacting with the time changes of the mean mixing ratio caused by the nonstationarity of the bottom-up and top-down diffusion processes, decreases the equilibrium value of mean mixing-ratio jump across the mixed layer in the bottom-up case and increases it in the top-down case. The resulting diffusion asymmetry agrees qualitatively with that found through LES.
Measuring the speed of magma ascent during explosive eruptions of Kilauea, Hawaii
NASA Astrophysics Data System (ADS)
Ferguson, D. J.; Ruprecht, P.; Plank, T. A.; Hauri, E. H.; Gonnermann, H. M.; Houghton, B. F.; Swanson, D. A.
2014-12-01
The size and intensity of volcanic eruptions is controlled by a combination of the physical properties of magmas and the conditions of magma ascent. At basaltic volcanoes, where relatively fluid magmas are erupted, sustained explosive eruptions vary widely in style, from Hawaiian fountains erupted 10s to 100s of meter high to large Plinian type events, involving >20 km high eruption plumes. Decompression of magmas leads to volatile saturation and bubble growth, however it remains disputed how the dynamics of shallow ascent and degassing might control this disparate eruptive behaviour, or whether factors such as the initial volatile content exert the primary control on eruption style. A key issue is that the physical conditions of magma ascent, which may significantly impact eruptive dynamics, remain largely unconstrained by observational data. Here we quantify two primary variables - decompression rates and volatile contents - for magmas from three contrasting eruptions of Kīlauea volcano, Hawaii, using microanalysis and modelling of volatile diffusion along small melt tubes or embayments found in olivine crystals carried by the ascending magmas. During ascent decreasing solubility causes dissolved volatiles to diffuse along the embayment towards growing bubbles at the crystal edge. By modelling the diffusion of H2O, CO2 and S we obtain decompression rates, and indirectly ascent velocities, for the rising magma. For Hawaiian style fountaining events we obtain ascent rates of 0.05-0.07 MPa s-1 (~1 m s-1), whereas for a more intense subplinian eruption we obtain a notably faster rate of 0.29 MPa s-1 (>10m s-1). The timescales of melt transport from the storage region during these eruptions varied from around 3 to 40 minutes. We find no link between pre-eruptive volatile contents and eruption intensity, rather our results suggest that the eventual size of sustained explosive basaltic eruptions is likely governed by factors affecting the ascent velocity of melts in the volcanic conduit. The observed decompression rates are consistent with measured discharge rates, and with models predicting greater magma chamber overpressure for larger eruptions. Ascent rates may also further modulate dynamic processes in the volcanic conduit, such as the flow regime and bubble expansion, and consequently eruptive intensity.
Performance of high-area-ratio annular dump diffuser using suction-stabilized-vortex flow control
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Smith, J. M.
1977-01-01
A short annular dump diffuser having a geometry conductive to formation of suction stabilized toroidal vortices in the region of abrupt area change was tested. The overall diffuser area ratio was 4.0 and the length to inlet height ratio was 2.0. Performance data were obtained at near ambient temperature and pressure for inlet Mach numbers of 0.18 and 0.30 with suction rates ranging from 0 to 18 percent of total inlet mass flowrate. Results show that the exit velocity profile could be readily biased toward either wall by adjustment of inner and outer wall suction rates. Symmetric exit velocity profiles were inherently unstable with a tendency to revert to a hub or tip bias. Diffuser effectiveness was increased from about 38 percent without suction to over 85 percent at a total suction rate of 10 to 12 percent. At the same time diffuser total pressure loss was reduced from 3.1 percent to 1.1 percent at an inlet Mach number of 0.3.
Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc
2013-01-01
Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001
Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc
2014-03-15
Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.
Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames
NASA Astrophysics Data System (ADS)
Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi
The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.
Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching
NASA Technical Reports Server (NTRS)
Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald
1997-01-01
For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the inevitably present convective (Rayleigh-Benard) instabilities, associated with hot-under-cold (flame-under-fresh-reactant) stratification of fluid in a gravitational field, have time to grow to finite amplitude during transit of the burner.
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
Gupta, Rahul
2018-01-01
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn. PMID:29444074
Effect of neutrino rest mass on ionization equilibrium freeze-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.
2015-12-23
We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.
Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.
Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho
2017-11-01
We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrof, Julian, E-mail: julian.schrof@ise.fraunhofer.de; Müller, Ralph; Benick, Jan
2015-07-28
Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in moremore » detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr{sub 3} diffusion.« less
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.
Photopolymer holographic recording material
NASA Astrophysics Data System (ADS)
Lawrence, J. R.; O'Neill, F. T.; Sheridan, J. T.
Photopolymers are promising materials for use in holography. They have many advantages, such as ease of preparation, and are capable of efficiencies of up to 100%. A disadvantage of these materials is their inability to record high spatial frequency gratings when compared to other materials such as dichromated gelatin and silver halide photographic emulsion. Until recently, the drop off at high spatial frequencies of the material response was not predicted by any of the diffusion based models available. It has recently been proposed that this effect is due to polymer chains growing away from their initiation point and causing a smeared profile to be recorded. This is termed a non-local material response. Simple analytic expressions have been derived using this model and fits to experimental data have allowed values to be estimated for material parameters such as the diffusion coefficient of monomer, the ratio of polymerisation rate to diffusion rate and the distance that the polymer chains spread during holographic recording. The model predicts that the spatial frequency response might be improved by decreasing the mean polymer chain lengths and/or by increasing the mobility of the molecules used in the material. The experimental work carried out to investigate these predictions is reported here. This work involved (a) the changing of the molecular weights of chemical components within the material (dyes and binders) and (b) the addition of a chemical retarder in order to shorten the polymer chains, thereby decreasing the extent of the non-local effect. Although no significant improvement in spatial frequency response was observed the model appears to offer an improved understanding of the operation of the material.
Disappearing and reappearing differences in drug-eluting stent use by race.
Federspiel, Jerome J; Stearns, Sally C; Reiter, Kristin L; Geissler, Kimberley H; Triplette, Matthew A; D'Arcy, Laura P; Sheridan, Brett C; Rossi, Joseph S
2013-04-01
Drug-eluting coronary stents (DES) rapidly dominated the marketplace in the United States after approval in 2003, but utilization rates were initially lower among African American patients. We assess whether racial differences persisted as DES diffused into practice. Medicare claims data were used to identify coronary stenting procedures among elderly patients with acute coronary syndromes (ACS). Regression models of the choice of DES versus bare mental stent controlled for demographics, ACS type, co-morbidities and hospital characteristics. Diffusion was assessed in the short run (2003-2004) and long run (2007), with the effect of race calculated to allow for time-varying effects. The sample included 381,887 Medicare beneficiaries treated with stent insertion; approximately 5% were African American. Initially (May 2003-February 2004), African American race was associated with lower DES use compared to other races (44.3% versus 46.5%, P < 0.01). Once DES usage was high in all patients (March-December 2004), differences were not significant (79.8% versus 80.3%, P = 0.45). Subsequent concerns regarding DES safety caused reductions in DES use, with African Americans having lower use than other racial groups in 2007 (63.1% versus 65.2%, P < 0.01). Racial disparities in DES use initially disappeared during a period of rapid diffusion and high usage rates; the reappearance of disparities in use by 2007 may reflect DES use tailored to unmeasured aspects of case mix and socio-economic status. Further work is needed to understand whether underlying differences in race reflect decisions regarding treatment appropriateness. © 2011 Blackwell Publishing Ltd.
Kramer, Patrick L; Nishida, Jun; Giammanco, Chiara H; Tamimi, Amr; Fayer, Michael D
2015-05-14
In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, 〈XXY Y〉, than in the standard all parallel configuration, 〈XXXX〉, in which all four pulses have the same polarization. The 2D IR experiment with polarizations 〈XY XY〉 ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the 〈XXXX〉 configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system.
NASA Astrophysics Data System (ADS)
Kramer, Patrick L.; Nishida, Jun; Giammanco, Chiara H.; Tamimi, Amr; Fayer, Michael D.
2015-05-01
In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo,
NASA Astrophysics Data System (ADS)
Renner, Christian; Holak, Tad A.
2000-08-01
Based on the measurement of cross-correlation rates between 15N CSA and 15N-1H dipole-dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R2 = 1/T2) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T1/T2 ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T1/T2 ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N-H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or β-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T1/T2 ratios. The 15N CSA tensor of the residues for this β-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T2 relaxation times for several residues could be mistaken as indications for exchange processes.
Khan, Wasif Ali; Saha, Debasish; Ahmed, Sabeena; Salam, Mohammed Abdus; Bennish, Michael Louis
2015-01-01
We identified a poor clinical response to treatment of cholera with a single 1 g dose of ciprofloxacin, a standard treatment for cholera. To determine reasons for the poor response and better therapeutic approaches we examined the minimal inhibitor concentration (MIC, n = 275) and disc-diffusion zone sizes (n = 205) for ciprofloxacin and nalidixic acid of V. cholerae O1 strains isolated in Bangladesh from 1994 to 2012, and reexamined data from 161 patients infected with Vibrio cholerae O1 recruited in four clinical trials who received single- or multiple-dose ciprofloxacin for treatment of cholera and compared their clinical response to the V. cholerae O1 susceptibility. Although all 275 isolates of V. cholerae O1 remained susceptible to ciprofloxacin using standard MIC and disc-diffusion thresholds, the MIC90 to ciprofloxacin increased from 0.010 in 1994 to 0.475 μgm/ml in 2012. Isolates became frankly resistant to nalidixic with the MIC90 increasing from 21 μgm/ml in 1994 to >256 μgm/ml and 166 of 205 isolates from 1994 to 2005 being frankly resistant using disc-diffusion testing. Isolates resistant to nalidixic acid by disc-diffusion testing had a median ciprofloxacin MIC of 0.190 μgm/ml (10th-90th centiles 0.022 to 0.380); nalidixic acid-susceptible isolates had a median ciprofloxacin MIC of 0.002 (0.002 to 0.012).The rate of clinical success with single-dose ciprofloxacin treatment for nalidixic acid-susceptible strains was 94% (61 of 65 patients) and bacteriologic success 97% (63/65) compared to 18% (12/67) and 8% (5/67) respectively with nalidixic acid-resistant strains (P<0.001 for both comparisons). Multiple-dose treatment with ciprofloxacin had 86% and 100% clinical and bacteriologic success rates respectively in patients infected with nalidixic acid-susceptible strains of V. cholerae O1 compared to clinical success 67% and bacteriologic success 60% with nalidixic acid-resistant strains. Single-dose ciprofloxacin is not effective for treating cholera caused by V. cholerae O1 with diminished susceptibility to ciprofloxacin, and nalidixic acid disc-diffusion testing effectively screens for such isolates.
Evolutionary model of an anonymous consumer durable market
NASA Astrophysics Data System (ADS)
Kaldasch, Joachim
2011-07-01
An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal, while the growth rates exhibit a Laplace distribution. Large price deviations from the mean price are also governed by a Laplace distribution (fat tails). These results are in agreement with empirical findings. The explicit comparison of the time evolution of consumer durables with empirical investigations confirms the close relationship between price decline and Gompertz diffusion, while the product life cycle can be described qualitatively for a long time period.
NASA Astrophysics Data System (ADS)
Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.
2017-12-01
Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation products. Chemical profiles through the clay were modeled using a 1D diffusion-reaction model, and the contributions of abiotic and biotic processes to TCE degradation were determined. The model and experimental data lend insights into transformation processes that control the fate and transport of chlorinated ethenes at contaminated sites.
Materials Outgassing Rate Decay in Vacuum at Isothermal Conditions
NASA Technical Reports Server (NTRS)
Huang, Alvin Y.; Kastanas, George N.; Kramer, Leonard; Soares, Carlos E.; Mikatarian, Ronald R.
2016-01-01
As a laboratory for scientific research, the International Space Station has been in Low Earth Orbit for nearly 20 years and is expected to be on-orbit for another 10 years. The ISS has been maintaining a relatively pristine contamination environment for science payloads. Materials outgassing induced contamination is currently the dominant source for sensitive surfaces on ISS and modeling the outgassing rate decay over a 20 to 30 year period is challenging. Materials outgassing is described herein as a diffusion-reaction process using ASTM E 1559 rate data. The observation of -1/2 (diffusion) or non-integers (reaction limited) as rate decay exponents for common ISS materials indicate classical reaction kinetics is unsatisfactory in modeling materials outgassing. Non-randomness of reactant concentrations at the interface is the source of this deviation from classical reaction kinetics. A diffusion limited decay was adopted as the result of the correlation of the contaminant layer thicknesses on returned ISS hardware, the existence of high outgassing silicone exhibiting near diffusion limited decay, and the confirmation of non-depleted material after ten years in the Low Earth Orbit.Keywords: Materials Outgassing, ASTM E 1559, Reaction Kinetics, Diffusion, Space Environments Effects, Contamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunziker, R.; Gyarmathy, G.
1994-04-01
A centrifugal compressor was tested with three different diffusers with circular-arc vanes. The vane inlet angle was varied from 15 to 30 deg. Detailed static wall pressure measurements show that the pressure field in the diffuser inlet is very sensitive to flow rate. The stability limit regularly occurred at the flow rate giving the maximum pressure rise for the overall stage. Mild surge arises as a dynamic instability of the compression system. The analysis of the pressure rise characteristic of each individual subcomponent (impeller, diffuser inlet, diffuser channel,...) reveals their contribution to the overall pressure rise. The diffuser channels playmore » an inherently destabilizing role while the impeller and the diffuser inlet are typically stabilizing. The stability limit was mainly determined by a change in the characteristic of the diffuser inlet. Further, the stability limit was found to be independent of the development of inducer-tip recirculation.« less
PIV measurements in a compact return diffuser under multi-conditions
NASA Astrophysics Data System (ADS)
Zhou, L.; Lu, W. G.; Shi, W. D.
2013-12-01
Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.
Dependence of radiation belt simulations to assumed radial diffusion rates
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.
2017-12-01
Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.
On the anisotropic advection-diffusion equation with time dependent coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
On the anisotropic advection-diffusion equation with time dependent coefficients
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
2017-02-01
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
A novel cause of community-acquired pneumonia in a young immunocompetent host.
James, Nicholas; Gilman, Matthew; Duncan, Robert; Gray, Anthony
2016-09-01
Diffuse pulmonary infiltrates represent a common problem encountered by pulmonologists. The differential diagnosis is extensive and includes infectious, inflammatory, environmental and malignant conditions. Appropriate evaluation, aside from a thorough history and physical examination, includes serologic, radiographic and procedural elements. We describe a case of a healthy male with diffuse pulmonary infiltrates. Work up revealed a novel infectious etiology. Although this particular microorganism has been described to cause native valve endocarditis, recurrent breast abscesses, osteomyelitis and bacteremia, it has to date not been described as a cause for community acquired pneumonia in immunocompetent hosts. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Iona, Glenn; Butler, James; Guenther, Bruce; Graziani, Larissa; Johnson, Eric; Kennedy, Brian; Kent, Criag; Lambeck, Robert; Waluschka, Eugne; Xiong, Xiaoxiong
2012-01-01
A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the lessons learned section of this paper.
Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise
NASA Astrophysics Data System (ADS)
Deng, M. L.; Zhu, W. Q.
2007-10-01
The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.
Inoue, Hirofumi; Hasegawa, Shunji; Kajimoto, Madoka; Matsushige, Takeshi; Ichiyama, Takashi
2014-10-01
Many studies have reported acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) associated with viral infection at onset, but few studies have reported AESD without infection. We report the case of a 9-month-old boy who had a clinical course mimicking AESD after a traffic accident. The traffic accident caused a mild subdural hematoma without neurological abnormalities on admission. The boy became unconscious on the second day, and he was diagnosed with non-convulsive status epilepticus on the third day. Diffusion-weighted imaging showed reduced water diffusion in the subcortical white matter. On laboratory analysis interleukin (IL)-6 was elevated in the cerebrospinal fluid (CSF), but not in the serum. He had severe neurological sequelae with mental retardation, spastic tetraplegia, and epilepsy. We suggest that brain damage mimicking AESD was caused by the traffic accident and the prolonged seizure during infancy. © 2014 Japan Pediatric Society.
Isotope fractionation by multicomponent diffusion (Invited)
NASA Astrophysics Data System (ADS)
Watkins, J. M.; Liang, Y.; Richter, F. M.; Ryerson, F. J.; DePaolo, D. J.
2013-12-01
Isotope fractionation by multicomponent diffusion The isotopic composition of mineral phases can be used to probe the temperatures and rates of mineral formation as well as the degree of post-mineralization alteration. The ability to interpret stable isotope variations is limited by our knowledge of three key parameters and their relative importance in determining the composition of a mineral grain and its surroundings: (1) thermodynamic (equilibrium) partitioning, (2) mass-dependent diffusivities, and (3) mass-dependent reaction rate coefficients. Understanding the mechanisms of diffusion and reaction in geological liquids, and how these mass transport processes discriminate between isotopes, represents an important problem that is receiving considerable attention in the geosciences. Our focus in this presentation will be isotope fractionation by chemical diffusion. Previous studies have documented that diffusive isotope effects vary depending on the cation as well as the liquid composition, but the ability to predict diffusive isotope effects from theory is limited; for example, it is unclear whether the magnitude of diffusive isotopic fractionations might also vary with the direction of diffusion in composition space. To test this hypothesis and to further guide the theoretical treatment of isotope diffusion, two chemical diffusion experiments and one self diffusion experiment were conducted at 1250°C and 0.7 GPa. In one experiment (A-B), CaO and Na2O counter-diffuse rapidly in the presence of a small SiO2 gradient. In the other experiment (D-E), CaO and SiO2 counter-diffuse more slowly in a small Na2O gradient. In both chemical diffusion experiments, Ca isotopes become fractionated by chemical diffusion but by different amounts, documenting for the first time that the magnitude of isotope fractionation by diffusion depends on the direction of diffusion in composition space. The magnitude of Ca isotope fractionation that develops is positively correlated with the rate of CaO diffusion; in A-B, the total variation is 2.5‰ whereas in D-E it is only 1.3‰. The diffusion of isotopes in a multicomponent system is modeled using a new expression for the isotope-specific diffusive flux that includes self diffusion terms in addition to the multicomponent chemical diffusion matrix. Kinetic theory predicts a mass dependence on isotopic mobility, i.e., self diffusivity, but it is unknown whether or how the mass dependence on self diffusivity translates into a mass dependence on chemical diffusion coefficients. The new experimental results allow us to assess several empirical expressions relating the self diffusivity and its mass dependence to the elements of the diffusion matrix and their mass dependence. Several plausible theoretical treatments can fit the data equally well. We are currently at the stage where experiments are guiding the theoretical treatment of the isotope fractionation by diffusion problem, underscoring the importance of experiments for aiding interpretations of isotopic variations in nature.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2014-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2011-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
Modeling and calculation of turbulent lifted diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, J.P.H.; Lamers, A.P.G.G.
1994-01-01
Liftoff heights of turbulent diffusion flames have been modeled using the laminar diffusion flamelet concept of Peters and Williams. The strain rate of the smallest eddies is used as the stretch describing parameter, instead of the more common scalar dissipation rate. The h(U) curve, which is the mean liftoff height as a function of fuel exit velocity can be accurately predicted, while this was impossible with the scalar dissipation rate. Liftoff calculations performed in the flames as well as in the equivalent isothermal jets, using a standard k-[epsilon] turbulence model yield approximately the same correct slope for the h(U) curvemore » while the offset has to be reproduced by choosing an appropriate coefficient in the strain rate model. For the flame calculations a model for the pdf of the fluctuating flame base is proposed. The results are insensitive to its width. The temperature field is qualitatively different from the field calculated by Bradley et al. who used a premixed flamelet model for diffusion flames.« less
Distribution of randomly diffusing particles in inhomogeneous media
NASA Astrophysics Data System (ADS)
Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.
2017-09-01
Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.
Comments on the Diffusive Behavior of Two Upwind Schemes
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.
Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.
Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux
NASA Astrophysics Data System (ADS)
Chmelik, Christian; Bux, Helge; Caro, Jürgen; Heinke, Lars; Hibbe, Florian; Titze, Tobias; Kärger, Jörg
2010-02-01
Diffusion is known to be quantified by measuring the rate of molecular fluxes in the direction of falling concentration. In contrast with intuition, considering methanol diffusion in a novel type of nanoporous material (MOF ZIF-8), this rate has now been found to be enhanced rather than slowed down by an opposing flux of labeled molecules. In terms of the key quantities of random particle movement, this result means that the self-diffusivity exceeds the transport diffusivity. It is rationalized by considering the strong intermolecular interaction and the dominating role of intercage hopping in mass transfer in the systems under study.
NASA Astrophysics Data System (ADS)
Regev, Shaked; Farago, Oded
2018-10-01
We use a one-dimensional two layer model with a semi-permeable membrane to study the diffusion of a therapeutic drug delivered from a drug-eluting stent (DES). The rate of drug transfer from the stent coating to the arterial wall is calculated by using underdamped Langevin dynamics simulations. Our results reveal that the membrane has virtually no delay effect on the rate of delivery from the DES. The work demonstrates the great potential of underdamped Langevin dynamics simulations as an easy to implement, efficient, method for solving complicated diffusion problems in systems with a spatially-dependent diffusion coefficient.
NASA Astrophysics Data System (ADS)
Drozdov, Alexander; Shprits, Yuri; Aseev, Nikita; Kellerman, Adam; Reeves, Geoffrey
2017-04-01
Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert [2000] and Ozeke et al. [2014] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert [2000] and Ozeke et al. [2014], we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch-angle, energy and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999ja900344. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. Jonathan Rae, and D. K. Milling (2014), Analytic expressions for ULF wave radiation belt radial diffusion coefficients, J. Geophys. Res. [Space Phys.], 119(3), 1587-1605, doi:10.1002/2013JA019204.
NASA Astrophysics Data System (ADS)
Blackman, Eric G.; Subramanian, Kandaswamy
2013-02-01
The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.
On The Molecular Mechanism Of Positive Novolac Resists
NASA Astrophysics Data System (ADS)
Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost
1989-08-01
A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.
Howlader, Nadia; Mariotto, Angela B; Besson, Caroline; Suneja, Gita; Robien, Kim; Younes, Naji; Engels, Eric A
2017-09-01
Survival after the diagnosis of diffuse large B-cell lymphoma (DLBCL) has been increasing since 2002 because of improved therapies; however, long-term outcomes for these patients in the modern treatment era are still unknown. Using Surveillance, Epidemiology, and End Results data, this study first assessed factors associated with DLBCL-specific mortality during 2002-2012. An epidemiologic risk profile, based on clinical and demographic characteristics, was used to stratify DLBCL cases into low-, medium-, and high-risk groups. The proportions of DLBCL cases that might be considered cured in these 3 risk groups was estimated. Risks of death due to various noncancer causes among DLBCL cases versus the general population were also calculated with standardized mortality ratios (SMRs). Overall, 8274 deaths were recorded among 18,047 DLBCL cases; 76% of the total deaths were attributed to DLBCL, and 24% were attributed to noncancer causes. The 10-year survival rates for the low-, medium-, and high-risk groups were 80%, 60%, and 36%, respectively. The estimated cure proportions for the low-, medium-, and high-risk groups were 73%, 49%, and 27%, respectively; however, these cure estimates were uncertain because of the need to extrapolate the survival curves beyond the follow-up time. Mortality risks calculated with SMRs were elevated for conditions including vascular diseases (SMR, 1.3), infections (SMR, 3.1), gastrointestinal diseases (SMR, 2.5), and blood diseases (SMR, 4.6). These mortality risks were especially high within the initial 5 years after the diagnosis and declined after 5 years. Some DLBCL patients may be cured of their cancer, but they continue to experience excess mortality from lymphoma and other noncancer causes. Cancer 2017;123:3326-34. © 2017 American Cancer Society. © 2017 American Cancer Society.
An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes
NASA Astrophysics Data System (ADS)
Dumbović, Mateja; Heber, Bernd; Vršnak, Bojan; Temmer, Manuela; Kirin, Anamarija
2018-06-01
We present an analytical diffusion–expansion Forbush decrease (FD) model ForbMod, which is based on the widely used approach of an initially empty, closed magnetic structure (i.e., flux rope) that fills up slowly with particles by perpendicular diffusion. The model is restricted to explaining only the depression caused by the magnetic structure of the interplanetary coronal mass ejection (ICME). We use remote CME observations and a 3D reconstruction method (the graduated cylindrical shell method) to constrain initial boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several flux rope expansion modes are considered, which can lead to different FD characteristics. In general, the model is qualitatively in agreement with observations, whereas quantitative agreement depends on the diffusion coefficient and the expansion properties (interplay of the diffusion and expansion). A case study was performed to explain the FD observed on 2014 May 30. The observed FD was fitted quite well by ForbMod for all expansion modes using only the diffusion coefficient as a free parameter, where the diffusion parameter was found to correspond to an expected range of values. Our study shows that, in general, the model is able to explain the global properties of an FD caused by a flux rope and can thus be used to help understand the underlying physics in case studies.
Chlorine Dioxide Is a Size-Selective Antimicrobial Agent
Noszticzius, Zoltán; Wittmann, Maria; Kály-Kullai, Kristóf; Beregvári, Zoltán; Kiss, István; Rosivall, László; Szegedi, János
2013-01-01
Background / Aims ClO2, the so-called “ideal biocide”, could also be applied as an antiseptic if it was understood why the solution killing microbes rapidly does not cause any harm to humans or to animals. Our aim was to find the source of that selectivity by studying its reaction-diffusion mechanism both theoretically and experimentally. Methods ClO2 permeation measurements through protein membranes were performed and the time delay of ClO2 transport due to reaction and diffusion was determined. To calculate ClO2 penetration depths and estimate bacterial killing times, approximate solutions of the reaction-diffusion equation were derived. In these calculations evaporation rates of ClO2 were also measured and taken into account. Results The rate law of the reaction-diffusion model predicts that the killing time is proportional to the square of the characteristic size (e.g. diameter) of a body, thus, small ones will be killed extremely fast. For example, the killing time for a bacterium is on the order of milliseconds in a 300 ppm ClO2 solution. Thus, a few minutes of contact time (limited by the volatility of ClO2) is quite enough to kill all bacteria, but short enough to keep ClO2 penetration into the living tissues of a greater organism safely below 0.1 mm, minimizing cytotoxic effects when applying it as an antiseptic. Additional properties of ClO2, advantageous for an antiseptic, are also discussed. Most importantly, that bacteria are not able to develop resistance against ClO2 as it reacts with biological thiols which play a vital role in all living organisms. Conclusion Selectivity of ClO2 between humans and bacteria is based not on their different biochemistry, but on their different size. We hope initiating clinical applications of this promising local antiseptic. PMID:24223899
Fairey, Julian L; Wahman, David G; Lowry, Gregory V
2010-01-01
In situ capping of polychlorinated biphenyl (PCB)-contaminated sediments with a layer of activated carbon has been proposed, but several questions remain regarding the long-term effectiveness of this remediation strategy. Here, we assess the degree to which kinetic limitations, size exclusion effects, and electrostatic repulsions impaired PCB sorption to activated carbon. Sorption of 11 PCB congeners with activated carbon was studied in fixed bed reactors with organic-free water (OFW) and Suwannee River natural organic matter (SR-NOM), made by reconstituting freeze-dried SR-NOM at a concentration of 10 mg L(-1) as carbon. In the OFW test, no PCBs were detected in the column effluent over the 390-d study, indicating that PCB-activated carbon equilibrium sorption capacities may be achieved before breakthrough even at the relatively high hydraulic loading rate (HLR) of 3.1 m h(-1). However, in the SR-NOM fixed-bed test, partial PCB breakthrough occurred over the entire 320-d test (HLRs of 3.1-, 1.5-, and 0.8 m h(-1)). Simulations from a modified pore and surface diffusion model indicated that external (film diffusion) mass transfer was the dominant rate-limiting step but that internal (pore diffusion) mass transfer limitations were also present. The external mass transfer limitation was likely caused by formation of PCB-NOM complexes that reduced PCB sorption through a combination of (i) increased film diffusion resistance; (ii) size exclusion effects; and (iii) electrostatic repulsive forces between the PCBs and the NOM-coated activated carbon. However, the seepage velocities in the SR-NOM fixed bed test were about 1000 times higher than would be expected in a sediment cap. Therefore, additional studies are needed to assess whether the mass transfer limitations described here would be likely to manifest themselves at the lower seepage velocities observed in practice.
Measurement of diffusion coefficients from solution rates of bubbles
NASA Technical Reports Server (NTRS)
Krieger, I. M.
1979-01-01
The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.
Nakatani, Kiyoharu; Matsuta, Emi
2015-01-01
The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.
Charge Diffusion Variations in Pan-STARRS1 CCDs
NASA Astrophysics Data System (ADS)
Magnier, Eugene A.; Tonry, J. L.; Finkbeiner, D.; Schlafly, E.; Burgett, W. S.; Chambers, K. C.; Flewelling, H. A.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C. Z.
2018-06-01
Thick back-illuminated deep-depletion CCDs have superior quantum efficiency over previous generations of thinned and traditional thick CCDs. As a result, they are being used for wide-field imaging cameras in several major projects. We use observations from the Pan-STARRS 3π survey to characterize the behavior of the deep-depletion devices used in the Pan-STARRS 1 Gigapixel Camera. We have identified systematic spatial variations in the photometric measurements and stellar profiles that are similar in pattern to the so-called “tree rings” identified in devices used by other wide-field cameras (e.g., DECam and Hypersuprime Camera). The tree-ring features identified in these other cameras result from lateral electric fields that displace the electrons as they are transported in the silicon to the pixel location. In contrast, we show that the photometric and morphological modifications observed in the GPC1 detectors are caused by variations in the vertical charge transportation rate and resulting charge diffusion variations.
Vortex-scalar element calculations of a diffusion flame stabilized on a plane mixing layer
NASA Technical Reports Server (NTRS)
Ghoniem, Ahmed F.; Givi, Peyman
1987-01-01
The vortex-scalar element method, a scheme which utilizes vortex elements to discretize the region of high vorticity and scalar elements to represent species or temperature fields, is utilized in the numerical simulations of a two-dimensional reacting mixing layer. Computations are performed for a diffusion flame at high Reynolds and Peclet numbers without resorting to turbulence models. In the nonreacting flow, the mean and fluctuation profiles of a conserved scalar show good agreement with experimental measurements. Results for the reacting flow indicate that for temperature independent kinetics, the chemical reaction begins immediately downstream of the splitter plate where mixing starts. Results for the reacting flow with Arrhenius kinetics show an ignition delay, which depends on reactant temperature, before significant chemical reaction occurs. Harmonic forcing changes the structure of the layer, and concomitantly the rates of mixing and reaction, in accordance with experimental results. Strong stretch within the braids in the nonequilibrium kinetics case causes local flame quenching due to the temperature drop associated with the large convective fluxes.
Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S
2007-09-26
A flow system with a multi-channel peristaltic pump placed before the solenoid valves is proposed to overcome some limitations attributed to multi-commuted flow injection systems: the negative pressure can lead to the formation of unwanted air bubbles and limits the use of devices for separation processes (gas diffusion, dialysis or ion-exchange). The proposed approach was applied to the colorimetric determination of ammonium nitrogen. In alkaline medium, ammonium is converted into ammonia, which diffuses over the membrane, causing a pH change and subsequently a colour change in the acceptor stream (bromothymol blue solution). The system allowed the re-circulation of the acceptor solution and was applied to ammonium determination in surface and tap water, providing relative standard deviations lower than 1.5%. A stopped flow approach in the acceptor stream was adopted to attain a low quantification limit (42 microgL(-1)) and a linear dynamic range of 50-1000 microgL(-1) with a determination rate of 20 h(-1).
Hotchen, Christopher E; Nguyen, H Viet; Fisher, Adrian C; Frith, Paul E; Marken, Frank
2015-07-21
Electrochemical processes in highly viscous media such as poly(ethylene glycol) (herein PEG200) are interesting for energy-conversion applications, but problematic due to slow diffusion causing low current densities. Here, a hydrodynamic microgap experiment based on Couette flow is introduced for an inlaid disc electrode approaching a rotating drum. Steady-state voltammetric currents are independent of viscosity and readily increased by two orders of magnitude with further potential to go to higher rotation rates and nanogaps. A quantitative theory is derived for the prediction of currents under high-shear Couette flow conditions and generalised for different electrode shapes. The 1,1'-ferrocene dimethanol redox probe in PEG200 (D=1.4×10 -11 m 2 s -1 ) is employed and data are compared with 1) a Levich-type equation expressing the diffusion-convection-limited current and 2) a COMSOL simulation model providing a potential-dependent current trace. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.
Roper, D Keith; Nakra, Shamit
2006-01-01
Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).
Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes
NASA Astrophysics Data System (ADS)
Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko
2018-06-01
The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sueyoshi, Eijun, E-mail: EijunSueyoshi@aol.com; Sakamoto, Ichiro; Okimoto, Tomoaki
Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.
NASA Astrophysics Data System (ADS)
Barrancos, José; O'Neill, Ryan; Gould, Catherine E.; Padilla, Germán; Rodríguez, Fátima; Amonte, Cecilia; Padrón, Eleazar; Pérez, Nemesio M.
2017-04-01
Tenerife is the largest of the Canary Islands (2100 km2) and the North East Rift (NERZ) volcano is one of the three active volcanic rift-zones of the island (210 km2). The last eruptive activity at NERZ volcano occurred in 1704 and 1705, with three volcanic eruptions: Siete Fuentes, Fasnia and Arafo. In order to provide a multidisciplinary approach to monitor potential volcanic activity changes at the NERZ volcano, diffuse CO2 emission surveys have been undertaken in a yearly basis since 2001. This study shows the results of the last soil CO2 efflux survey undertaken in summer 2016, with 600 soil gas sampling sites homogenously distributed. Soil CO2 efflux measurements were performed at the surface environment by means of a portable non-dispersive infrared spectrophotometer (NDIR) LICOR Li800 following the accumulation chamber method. Soil CO2 efflux values ranged from non-detectable (˜0.5 g m-2 d-1) up to 70 g m-2 d-1, with an average value of 8.8 g m-2 d-1. In order to distinguish the existence of different geochemical populations on the soil CO2 efflux data, a Sinclair graphical analysis was done. The average value of background population was 2.9 g m-2 d-1 and that of peak population was 67.8 g m-2 d-1, value that has been increasing since the year 2014. To quantify the total CO2 emission rate from the NERZ volcano a sequential Gaussian simulation (sGs) was used as interpolation method to construct soil CO2 emission contour maps. The diffuse CO2 emission rate for the studied area was estimated in 1,675 ± 47 t d-1. If we compare the 2016 results with those ones obtained in previous surveys since 2001, two main pulses on diffuse CO2 emission are identified, the first one in 2007 and the second one between during 2014 and 2016. This long-term variation on the diffuse CO2 emission doesn't seem to be masked by the external-meteorological variations. However, the first peak precedes the anomalous seismicity recorded in and around Tenerife Island between 2009 and 2011, suggesting changes in strain-stress at depth as a possible cause of the observed changes in the diffuse CO2 emission rate. On the other hand, the second peak seems to be related to later changes in the seismicity, such as the seismic activity that occurred in Tenerife at the end of 2016. Again, this study demonstrates the importance of studies of soil CO2 efflux at the NERZ volcano of Tenerife island as an effective volcanic monitoring tool.
Isotropic non-white matter partial volume effects in constrained spherical deconvolution.
Roine, Timo; Jeurissen, Ben; Perrone, Daniele; Aelterman, Jan; Leemans, Alexander; Philips, Wilfried; Sijbers, Jan
2014-01-01
Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. Significant partial volume effects (PVEs) are present in the DW signal due to relatively large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter (GM) and cerebrospinal fluid (CSF), and by multiple non-parallel WM fiber populations. High angular resolution diffusion imaging (HARDI) methods have been developed to correctly characterize complex WM fiber configurations, but to date, many of the HARDI methods do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical deconvolution (CSD). Experiments were performed on simulated and real DW-MRI data. In particular, simulations were performed to demonstrate the effects of varying the diffusion weightings, signal-to-noise ratios (SNRs), fiber configurations, and tissue fractions. Our results show that the presence of non-WM tissue signal causes a decrease in the precision of the detected fiber orientations and an increase in the detection of false peaks in CSD. We estimated 35-50% of WM voxels to be affected by non-WM PVEs. For HARDI sequences, which typically have a relatively high degree of diffusion weighting, these adverse effects are most pronounced in voxels with GM PVEs. The non-WM PVEs become severe with 50% GM volume for maximum spherical harmonics orders of 8 and below, and already with 25% GM volume for higher orders. In addition, a low diffusion weighting or SNR increases the effects. The non-WM PVEs may cause problems in connectomics, where reliable fiber tracking at the WM-GM interface is especially important. We suggest acquiring data with high diffusion-weighting 2500-3000 s/mm(2), reasonable SNR (~30) and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs in CSD.
First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe
Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...
2015-02-17
The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less
NASA Astrophysics Data System (ADS)
Sayar, Ersin; Farouk, Bakhtier
2012-07-01
Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid-solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.
Development of a numerical model for the electric current in burner-stabilised methane-air flames
NASA Astrophysics Data System (ADS)
Speelman, N.; de Goey, L. P. H.; van Oijen, J. A.
2015-03-01
This study presents a new model to simulate the electric behaviour of one-dimensional ionised flames and to predict the electric currents in these flames. The model utilises Poisson's equation to compute the electric potential. A multi-component diffusion model, including the influence of an electric field, is used to model the diffusion of neutral and charged species. The model is incorporated into the existing CHEM1D flame simulation software. A comparison between the computed electric currents and experimental values from the literature shows good qualitative agreement for the voltage-current characteristic. Physical phenomena, such as saturation and the diodic effect, are captured by the model. The dependence of the saturation current on the equivalence ratio is also captured well for equivalence ratios between 0.6 and 1.2. Simulations show a clear relation between the saturation current and the total number of charged particles created. The model shows that the potential at which the electric field saturates is strongly dependent on the recombination rate and the diffusivity of the charged particles. The onset of saturation occurs because most created charged particles are withdrawn from the flame and because the electric field effects start dominating over mass based diffusion. It is shown that this knowledge can be used to optimise ionisation chemistry mechanisms. It is shown numerically that the so-called diodic effect is caused primarily by the distance the heavier cations have to travel to the cathode.
Zonal flow evolution and overstability in accretion discs
NASA Astrophysics Data System (ADS)
Vanon, R.; Ogilvie, G. I.
2017-04-01
This work presents a linear analytical calculation on the stability and evolution of a compressible, viscous self-gravitating (SG) Keplerian disc with both horizontal thermal diffusion and a constant cooling time-scale when an axisymmetric structure is present and freely evolving. The calculation makes use of the shearing sheet model and is carried out for a range of cooling times. Although the solutions to the inviscid problem with no cooling or diffusion are well known, it is non-trivial to predict the effect caused by the introduction of cooling and of small diffusivities; this work focuses on perturbations of intermediate wavelengths, therefore representing an extension to the classical stability analysis on thermal and viscous instabilities. For density wave modes, the analysis can be simplified by means of a regular perturbation analysis; considering both shear and thermal diffusivities, the system is found to be overstable for intermediate and long wavelengths for values of the Toomre parameter Q ≲ 2; a non-SG instability is also detected for wavelengths ≳18H, where H is the disc scale-height, as long as γ ≲ 1.305. The regular perturbation analysis does not, however, hold for the entropy and potential vorticity slow modes as their ideal growth rates are degenerate. To understand their evolution, equations for the axisymmetric structure's amplitudes in these two quantities are analytically derived and their instability regions obtained. The instability appears boosted by increasing the value of the adiabatic index and of the Prandtl number, while it is quenched by efficient cooling.
Teacher Adoption of Moodle LMS: A K-12 Diffusion Study
ERIC Educational Resources Information Center
Gagnon, Daniel A.
2012-01-01
This paper describes the diffusion of Moodle within Cherokee County Schools. The diffusion is evaluated using the Bass Model and the RIPPLES model in order to evaluate relative success or failure. The Bass Model of Diffusion was calculated utilizing forecasting by analogy in order to analyze the adoption rates in a county high school. The adoption…
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.
Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.
Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert
2015-11-01
In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation. Copyright © 2015 Elsevier Inc. All rights reserved.
Measurement of pulmonary epithelial permeability with /sup 99m/Tc-DTPA aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, G.; O'Brodovich, H.
1986-10-01
The rate at which inhaled aerosol of /sup 99m/Tc-diethylenetriamine pentaacetate (DTPA) leaves the lung by diffusion into the vascular space can be measured with a gamma camera or simple probe. In normal humans, /sup 99m/Tc-DTPA clears from the lung with a half time of about 80 minutes. Many acute and chronic conditions that alter the integrity of the pulmonary epithelium cause an increased clearance rate. Thus cigarette smoking, alveolitis from a variety of causes, adult respiratory distress syndrome (ARDS), and hyaline membrane disease (HMD) in the infant have all been shown to be associated with rapid pulmonary clearance of /supmore » 99m/Tc-DTPA. Rapid clearance is also promoted by increased lung volume and decreased surfactant activity. Although the mechanism of increased clearance in pathological states is not known, the /sup 99m/Tc-DTPA lung-clearance technique has great potential clinically, particularly in patients at risk from ARDS and HMD and in the diagnosis and follow-up of alveolitis. 58 references.« less
Ytzhak, Shany; Wuskell, Joseph P.; Loew, Leslie M.; Ehrenberg, Benjamin
2010-01-01
Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells’ membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells’ membranes and to their death. In this work we studied the effect of liposomes’ lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K+-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of non-conjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases the leakage trough the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death. PMID:20536150
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Spieler, O.; Ichihara, M.; Dingwell, D. B.; Scarlato, P.
2006-03-01
To visualize the behavior of erupting magma in volcanic conduits, we performed shock tube experiments on the ductile-brittle response of a viscoelastic medium to diffusion-driven bubble expansion. A sample of shear-thinning magma analogue is saturated by gas Ar under high pressure. On rapid decompression, Ar supersaturation causes bubbles to nucleate, grow, and coalesce in the sample, forcing it to expand, flow, and fracture. Experimental variables include saturation pressure and duration, and shape and lubrication of the flow path. Bubble growth in the experiments controls both flow and fracturing, and is consistent with physical models of magma vesiculation. Two types of fractures are observed: i) sharp fractures along the uppermost rim of the sample, and ii) fractures pervasively diffused throughout the sample. Rim fractures open when shear stress accumulates and strain rate is highest at the margin of the flow (a process already inferred from observations and models to occur in magma). Pervasive fractures originate when wall-friction retards expansion of the sample, causing pressure to build-up in the bubbles. When bubble pressure overcomes wall-friction and the tensile strength of the porous sample, fractures open with a range of morphologies. Both types of fracture open normally to flow direction, and both may heal as the flow proceeds. These experiments also illustrate how the development of pervasive fractures allows exsolving gas to escape from the sample before the generation of a permeable network via other processes, e.g., bubble coalescence. This is an observation that potentially impact the degassing of magma and the transition between explosive and effusive eruptions.
van Heerden, Philippus D R; Kiddle, Guy; Pellny, Till K; Mokwala, Phatlane W; Jordaan, Anine; Strauss, Abram J; de Beer, Misha; Schlüter, Urte; Kunert, Karl J; Foyer, Christine H
2008-09-01
Symbiotic nitrogen fixation is sensitive to dark chilling (7 degrees C-15 degrees C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT.
van Heerden, Philippus D.R.; Kiddle, Guy; Pellny, Till K.; Mokwala, Phatlane W.; Jordaan, Anine; Strauss, Abram J.; de Beer, Misha; Schlüter, Urte; Kunert, Karl J.; Foyer, Christine H.
2008-01-01
Symbiotic nitrogen fixation is sensitive to dark chilling (7°C–15°C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT. PMID:18667725
Chemistry and Formation of the Beilby Layer During Polishing of Fused Silica Glass
Suratwala, Tayyab; Steele, William; Wong, Lana; ...
2015-05-19
The chemical characteristics and the proposed formation mechanisms of the modified surface layer (called the Beilby layer) on polished fused silica glasses are described. Fused silica glass samples were polished using different slurries, polyurethane pads, and at different rotation rates. The concentration profiles of several key contaminants, such as Ce, K, and H, were measured in the near surface layer of the polished samples using Secondary Ion Mass Spectroscopy (SIMS). The penetration of K, originating from KOH used for pH control during polishing, decreased with increase in polishing material removal rate. In contrast, penetration of the Ce and H increasedmore » with increase in polishing removal rate. In addition, Ce penetration was largely independent of the other polishing parameters (e.g., particle size distribution and the properties of the polishing pad). The resulting K concentration depth profiles are described using a two-step diffusion process: (1) steady-state moving boundary diffusion (due to material removal during polishing) followed by (2) simple diffusion during ambient postpolishing storage. Using known alkali metal diffusion coefficients in fused silica glass, this diffusion model predicts concentration profiles that are consistent with the measured data at various polishing material removal rates. On the other hand, the observed Ce profiles are inconsistent with diffusion based transport. Rather we propose that Ce penetration is governed by the ratio of Ce–O–Si and Si–O–Si hydrolysis rates; where this ratio increases with interface temperature (which increases with polishing material removal rate) resulting in greater Ce penetration into the Beilby layer. Calculated Ce surface concentrations using this mechanism are in good agreement to the observed change in measured Ce surface concentrations with polishing material removal rate. In conclusion, these new insights into the chemistry of the Beilby layer, combined together with details of the single particle removal function during polishing, are used to develop a more detailed and quantitative picture of the polishing process and the formation of the Beilby layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beebe-Wang,J.
There are three main sources of the radiation background in MeRHIC: forward synchrotron radiation generated upstream of the detector, the direct backward radiation caused by the photons hitting beampipe downstream of the detector, and the indirect secondary radiation caused by hard photons hitting vacuum systems, masks, collimators, absorbers or any other elements in the interaction region. In this paper, we first calculate the primary radiation distribution by employing electromagnetic theory. Then we obtain the direct backward scattering rate by applying the kinematic Born approximation deduced from scattering dynamics. The diffuse scattering cross section is calculated as a function of themore » surface properties of the MeRHIC vacuum system. Finally, the dominating physical processes and minimization of indirect secondary radiation is presented and discussed.« less
Grain boundary diffusion in olivine (Invited)
NASA Astrophysics Data System (ADS)
Marquardt, K.; Dohmen, R.
2013-12-01
Olivine is the main constituent of Earth's upper mantle. The individual mineral grains are separated by grain boundaries that have very distinct properties compared to those of single crystals and strongly affect large-scale physical and chemical properties of rocks, e.g. viscosity, electrical conductivity and diffusivity. Knowledge on the grain boundary physical and chemical properties, their population and distribution in polycrystalline materials [1] is a prerequisite to understand and model bulk (rock) properties, including their role as pathways for element transport [2] and the potential of grain boundaries as storage sites for incompatible elements [3]. Studies on selected and well characterized single grain boundaries are needed for a detailed understanding of the influence of varying grain boundaries. For instance, the dependence of diffusion on the grain boundary structure (defined by the lattice misfit) and width in silicates is unknown [2, 4], but limited experimental studies in material sciences indicate major effects of grain boundary orientation on diffusion rates. We characterized the effect of grain boundary orientation and temperature on element diffusion in forsterite grain boundaries by transmission electron microscopy (TEM).The site specific TEM-foils were cut using the focused ion beam technique (FIB). To study diffusion we prepared amorphous thin-films of Ni2SiO4 composition perpendicular to the grain boundary using pulsed laser deposition. Annealing (800-1450°C) leads to crystallization of the thin-film and Ni-Mg inter-diffuse into the crystal volume and along the grain boundary. The inter-diffusion profiles were measured using energy dispersive x-ray spectrometry in the TEM, standardized using the Cliff-Lorimer equation and EMPA measurements. We obtain volume diffusion coefficients that are comparable to Ni-Mg inter-diffusion rates in forsterite determined in previous studies at comparable temperatures, with similar activation energies. Grain boundary diffusion perpendicular to the dislocation lines of the small angle grain boundaries proved to be about an order of magnitude faster than volume diffusion, whereas diffusion in high angle grain boundaries is several orders of magnitude faster. We will discuss the variation of element diffusion rates with grain boundary orientation and the temperature- and/or time-induced transition from one diffusion regime to the next regime. This is done using time series experiments and two-dimensional grain boundary diffusion simulations. Finally, we will debate the differences between our data and other data sets that result from different experimental setups, conditions and analyses.
Biophysical dynamics in disorderly environments.
Nelson, David R
2012-01-01
Three areas where time-independent disorder plays a key role in biological dynamics far from equilibrium are reviewed. We first discuss the anomalous localization dynamics that arises when a single species spreads in space and time via diffusion and fluid advection in the presence of frozen heterogeneities in the growth rate. Next we treat the unzipping of double-stranded DNA as a function of force and temperature, a challenge that must be surmounted every time a cell divides. Heterogeneity in the DNA sequence dominates the physics of single-molecule force-extension curves for a broad range of forces upon approaching a sharp unzipping transition. The dynamics of the unzipping fork exhibits anomalous drift and diffusion in a similar range above this transition, with energy barriers that scale as the square root of the genome size. Finally, we describe how activated peptidoglycan strand extension sites, called dislocations in materials science, can mediate the growth of bacterial cell walls. Enzymatically driven circumferential motions of a few dozen of these defects are sufficient to describe the exponential elongation rates observed in experiments on Escherichia coli in a nutrient-rich environment. However, long-range elastic forces transmitted by the peptidoglycan meshwork cause the moving dislocations to interact not only with each other, but also with a disorderly array of frozen, inactivated strand ends.
On the role of mobile nanoclusters in 2D island nucleation on Si(111)-(7 × 7) surface
NASA Astrophysics Data System (ADS)
Rogilo, D. I.; Fedina, L. I.; Kosolobov, S. S.; Latyshev, A. V.
2018-01-01
Two-dimensional (2D) Si island nucleation has been studied by in situ reflection electron microscopy within a wide temperature range (650-1090 °C ) on large-scale (∼10-100 μm) terraces to exclude the impact of step permeability and adatom sink to steps. The dependence of 2D island concentration N2D on substrate temperature T and Si deposition rate R displays N2D∝Rχexp (E2D/kT) scaling which parameters change from χ≈0.81, E2D≈1.02 eV to χ≈0.5, E2D≈1.8 eV when Si(111) surface converts from (1 × 1) structure to (7 × 7) reconstruction. We propose that this strong E2D rise accompanied by χ reduction is caused by the change of dominating diffusing particles from adatoms to reconstruction induced nanoclusters. Using a rate-equation model developed to account the dynamics of both diffusing species on the Si(111)-(7 × 7) surface, we show that a stable nucleus of a 2D island appears when two mobile nanoclusters merge together while nucleation kinetics is limited by their attachment to island edges.
Step Permeability on the Pt(111) Surface
NASA Astrophysics Data System (ADS)
Altman, Michael
2005-03-01
Surface morphology will be affected, or even dictated, by kinetic limitations that may be present during growth. Asymmetric step attachment is recognized to be an important and possibly common cause of morphological growth instabilities. However, the impact of this kinetic limitation on growth morphology may be hindered by other factors such as the rate limiting step and step permeability. This strongly motivates experimental measurements of these quantities in real systems. Using low energy electron microscopy, we have measured step flow velocities in growth on the Pt(111) surface. The dependence of step velocity upon adjacent terrace width clearly shows evidence of asymmetric step attachment and step permeability. Step velocity is modeled by solving the diffusion equation simultaneously on several adjacent terraces subject to boundary conditions at intervening steps that include asymmetric step attachment and step permeability. This analysis allows a quantitative evaluation of step permeability and the kinetic length, which characterizes the rate limiting step continuously between diffusion and attachment-detachment limited regimes. This work provides information that is greatly needed to set physical bounds on the parameters that are used in theoretical treatments of growth. The observation that steps are permeable even on a simple metal surface should also stimulate more experimental measurements and theoretical treatments of this effect.
Polycomb group protein complexes exchange rapidly in living Drosophila.
Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J
2005-09-01
Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.
A 2.5D Reactive Transport Model for Fracture Alteration Simulation
Deng, Hang; Molins, Sergi; Steefel, Carl; ...
2016-06-30
Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here in this paper, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the modelmore » is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO 2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. Finally, with an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer.« less
To investigate counter-diffusion in microporous sorbents, the rate of
exchange between deuterated trichloroethylene (DTCE) in fast desorbing sites and
nondeuterated TCE (1HTCE) in slow desorbing sites was measured.
Exchange rates were measured for a sili...
Oxygen depletion speeds and simplifies diffusion in HeLa cells.
Edwald, Elin; Stone, Matthew B; Gray, Erin M; Wu, Jing; Veatch, Sarah L
2014-10-21
Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.
Whitcher, R; Page, R D; Cole, P R
2014-06-01
The characteristics of alpha radiation have for decades been demonstrated in UK schools using small sealed (241)Am sources. There is a small but steady number of schools who report a considerable reduction in the alpha count rate detected by an end-window GM detector compared with when the source was new. This cannot be explained by incorrect apparatus or set-up, foil surface contamination, or degradation of the GM detector. The University of Liverpool and CLEAPSS collaborated to research the cause of this performance degradation. The aim was to find what was causing the performance degradation and the ramifications for both the useful and safe service life of the sources. The research shows that these foil sources have greater energy straggling with a corresponding reduction in spectral peak energy. A likely cause for this increase in straggling is a significant diffusion of the metals over time. There was no evidence to suggest the foils have become unsafe, but precautionary checks should be made on old sources.
NASA Astrophysics Data System (ADS)
Dufty, J. W.
1984-09-01
Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.
NASA Astrophysics Data System (ADS)
Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel
2014-08-01
This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.
Performance of a contact textile-based light diffuser for photodynamic therapy.
Khan, Tania; Unternährer, Merthan; Buchholz, Julia; Kaser-Hotz, Barbara; Selm, Bärbel; Rothmaier, Markus; Walt, Heinrich
2006-03-01
Medical textiles offer a unique contact opportunity that could provide value-added comfort, reliability, and safety for light or laser-based applications. We investigated a luminous textile diffuser for use in photodynamic therapy. Textile diffusers are produced by an embroidery process. Plastic optical fibers are bent and sewn into textile to release light by macrobending. A reflective backing is incorporated to improve surface homogeneity, intensity, and safety. Clonogenic assay (MCF-7 cells) and trypan blue exclusion (NuTu19 cells) tests were performed in vitro using 0.1μg/ml m-THPC with three textile diffusers and a standard front lens diffuser. Heating effects were studied in solution and on human skin. PDT application in vivo was performed with the textile diffuser on equine sarcoids (three animals, 50mW/cm(2), 10-20J) and eight research animals. Lastly, computer simulations were performed to see how the textile diffuser might work on a curved object. At low fluency rate, there is a trend for the textile diffuser to have lower survival rates than the front lens diffuser for both cell lines. The textile diffuser was observed to retain more heat over a long period (>1min). All animals tolerated the treatments well and showed similar initial reactions. The simulations showed a likely focusing effect in a curved geometry. The initial feasibility and application using a textile-based optical diffuser has been demonstrated. Possibilities that provide additional practical advantages of the textile diffuser are discussed.
Diffusion pump modification promotes self-cleansing and high efficiency
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
Modifications eliminate contaminant substances from pump fluid during operation, which are principal causes of torpidity on evaporative surface. Diffusion pump is also acting as still. Resulting 100 percent vigorous working surface provides much greater molecular throughput and greatly improved efficiency.
Diffusion of hydrogen in olivine: Implications for water in the mantle
NASA Astrophysics Data System (ADS)
Mackwell, Stephen J.; Kohlstedt, David L.
1990-04-01
To investigate the kinetics of diffusion of hydrogen in olivine, single crystals from San Carlos in Arizona have been annealed at temperatures between 800° and 1000°C under hydrothermal conditions at a confining pressure of 300 MPa. The hydrogen diffusivities were determined for the [100], [010], and [001] directions from concentration profiles for hydroxyl in the samples. These profiles were obtained from infrared spectra taken at 100-μm intervals across a thin slice which was cut from the central portion of each annealed crystal. The rate of diffusion is anisotropic, with fastest transport along the [100] axis and slowest along the [010] axis. The fit of the data to an Arrhenius law for diffusion parallel to [100] yields an activation enthalpy of 130±30 kJ/mol with a preexponential term of (6±3)×10-5 m2 s-1. For diffusion parallel to [001], as there are insufficient data to calculate the activation enthalpy for diffusion, we used the same value as that for diffusion parallel to [100] and determined a preexponential term of (5±4)×10-6 m2 s-1. The diffusion rate parallel to [010] is about 1 order of magnitude slower than along [001]. The measured diffusivities are large enough that the hydrogen content of olivine grains which are millimeters in diameter will adjust to changing environmental conditions in time scales of hours at temperatures as low as 800°C. As xenoliths ascending from the mantle remain at high temperatures (i.e., >1000°C) but experience a rapid decrease in pressure, and hence hydrogen fugacity, olivine grains may dehydrate during ascent. By comparison, slow rates of carbon diffusion (Tingle et al., 1988) suggest that carbon will not be lost from olivine during ascent. Thus, low hydrogen contents within olivine and within fluid inclusions in olivine cannot be taken as support for low water contents in the mantle.
Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics
Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay
2015-01-01
Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648
Oxidative Uranium Release from Anoxic Sediments under Diffusion-Limited Conditions.
Bone, Sharon E; Cahill, Melanie R; Jones, Morris E; Fendorf, Scott; Davis, James; Williams, Kenneth H; Bargar, John R
2017-10-03
Uranium (U) contamination occurs as a result of mining and ore processing; often in alluvial aquifers that contain organic-rich, reduced sediments that accumulate tetravalent U, U(IV). Uranium(IV) is sparingly soluble, but may be mobilized upon exposure to nitrate (NO 3 - ) and oxygen (O 2 ), which become elevated in groundwater due to seasonal fluctuations in the water table. The extent to which oxidative U mobilization can occur depends upon the transport properties of the sediments, the rate of U(IV) oxidation, and the availability of inorganic reductants and organic electron donors that consume oxidants. We investigated the processes governing U release upon exposure of reduced sediments to artificial groundwater containing O 2 or NO 3 - under diffusion-limited conditions. Little U was mobilized during the 85-day reaction, despite rapid diffusion of groundwater within the sediments and the presence of nonuraninite U(IV) species. The production of ferrous iron and sulfide in conjunction with rapid oxidant consumption suggested that the sediments harbored large concentrations of bioavailable organic carbon that fueled anaerobic microbial respiration and stabilized U(IV). Our results suggest that seasonal influxes of O 2 and NO 3 - may cause only localized mobilization of U without leading to export of U from the reducing sediments when ample organic carbon is present.
Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines
NASA Astrophysics Data System (ADS)
Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.
1980-03-01
The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.
Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange
NASA Astrophysics Data System (ADS)
Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas
2006-03-01
The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.
McCarthy, M R; Vandegriff, K D; Winslow, R M
2001-08-30
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.
Scaling behavior in corrosion and growth of a passive film.
Aarão Reis, F D A; Stafiej, Janusz
2007-07-01
We study a simple model for metal corrosion controlled by the reaction rate of the metal with an anionic species and the diffusion of that species in the growing passive film between the solution and the metal. A crossover from the reaction-controlled to the diffusion-controlled growth regime with different roughening properties is observed. Scaling arguments provide estimates of the crossover time and film thickness as functions of the reaction and diffusion rates and the concentration of anionic species in the film-solution interface, including a nontrivial square-root dependence on that concentration. At short times, the metal-film interface exhibits Kardar-Parisi-Zhang (KPZ) scaling, which crosses over to a diffusion-limited erosion (Laplacian growth) regime at long times. The roughness of the metal-film interface at long times is obtained as a function of the rates of reaction and diffusion and of the KPZ growth exponent. The predictions have been confirmed by simulations of a lattice version of the model in two dimensions. Relations with other erosion and corrosion models and possible applications are discussed.
Mesoscale elucidation of laser-assisted chemical deposition of Sn nanostructured electrodes
NASA Astrophysics Data System (ADS)
Liu, Zhixiao; Deng, Biwei; Cheng, Gary J.; Deng, Huiqiu; Mukherjee, Partha P.
2015-06-01
Nanostructured tin (Sn) is a promising high-capacity electrode for improved performance in lithium-ion batteries for electric vehicles. In this work, Sn nanoisland growth for nanostructured electrodes assisted by the pulse laser irradiation has been investigated based on a mesoscale modeling formalism. The influence of pertinent processing conditions, such as pulse duration, heating/cooling rates, and atom flux, on the Sn nanostructure formation is specifically considered. The interaction between the adsorbed atom and the substrate, represented by the adatom diffusion barrier, is carefully studied. It is found that the diffusion barrier predominantly affects the distribution of Sn atoms. For both α-Sn and β-Sn, the averaged coordination number is larger than 3 when the diffusion barrier equals to 0.15 eV. The averaged coordination number decreases as the diffusion barrier increases. The substrate temperature, which is determined by heating/cooling rates and pulse duration, can also affect the formation of Sn nanoislands. For α-Sn, when applied low heating/cooling rates, nanoislands cannot form if the diffusion barrier is larger than 0.35 eV.
Off-design flow measurements in a centrifugal compressor vaneless diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinarbasi, A.; Johnson, M.W.
1995-10-01
Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16% below and an 11% above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle ismore » used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.« less
NASA Astrophysics Data System (ADS)
Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.
2017-02-01
The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.
NASA Technical Reports Server (NTRS)
Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.
1991-01-01
The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.
Augmenting ejector endwall effects. [V/STOL aircraft
NASA Technical Reports Server (NTRS)
Porter, J. L.; Squyers, R. A.
1979-01-01
Rectangular inlet ejectors which had multiple hypermixing nozzles for their primary jets were investigated for the effects of endwall blowing on thrust augmentation performance. The ejector configurations tested had both straight wall and active boundary layer control type diffusers. Endwall flows were energized and controlled by simple blowing jets suitably located in the ejector. Both the endwall and boundary layer control diffuser blowing rates were varied to determine optimum performance. High area ratio diffusers with insufficient endwall blowing showed endwall separation and rapid degradation of thrust performance. Optimized values of diffuser boundary layer control and endwall nozzle blowing rates in an ejector augmenter were shown to achieve high levels of augmentation performance for maximum compactness.
Resistance is futile: but it is slowing the pace of EHR adoption nonetheless.
Ford, Eric W; Menachemi, Nir; Peterson, Lori T; Huerta, Timothy R
2009-01-01
The purpose of this study is to reassess the projected rate of Electronic Health Record (EHR) diffusion and examine how the federal government's efforts to promote the use of EHR technology have influenced physicians' willingness to adopt such systems. The study recreates and extends the analyses conducted by Ford et al. (1) The two periods examined come before and after the U.S. Federal Government's concerted activity to promote EHR adoption. Meta-analysis and bass modeling are used to compare EHR diffusion rates for two distinct periods of government activity. Very low levels of government activity to promote EHR diffusion marked the first period, before 2004. In 2004, the President of the United States called for a "Universal EHR Adoption" by 2014 (10 yrs), creating the major wave of activity and increased awareness of how EHRs will impact physicians' practices. EHR adoption parameters--external and internal coefficients of influence--are estimated using bass diffusion models and future adoption rates are projected. Comparing the EHR adoption rates before and after 2004 (2001-2004 and 2001-2007 respectively) indicate the physicians' resistance to adoption has increased during the second period. Based on current levels of adoption, less than half the physicians working in small practices will have implemented an EHR by 2014 (47.3%). The external forces driving EHR diffusion have grown in importance since 2004 relative to physicians' internal motivation to adopt such systems. Several national forces are likely contributing to the slowing pace of EHR diffusion.
Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy
2017-04-03
This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.
Kinetics of the reduction of bushveld complex chromite ore at 1416 °C
NASA Astrophysics Data System (ADS)
Soykan, O.; Eric, R. H.; King, R. P.
1991-12-01
The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.
Fission-gas release from uranium nitride at high fission rate density
NASA Technical Reports Server (NTRS)
Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.
1973-01-01
A sweep gas facility has been used to measure the release rates of radioactive fission gases from small UN specimens irradiated to 8-percent burnup at high fission-rate densities. The measured release rates have been correlated with an equation whose terms correspond to direct recoil release, fission-enhanced diffusion, and atomic diffusion (a function of temperature). Release rates were found to increase linearly with burnups between 1.5 and 8 percent. Pore migration was observed after operation at 1550 K to over 6 percent burnup.
Method of producing microporous joints in metal bodies
Danko, Joseph C.
1982-01-01
Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...
2017-03-08
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation
NASA Astrophysics Data System (ADS)
Sorokin, M. V.; Dubinko, V. I.; Borodin, V. A.
2017-01-01
The nucleation of islands in a supersaturated solution of surface adatoms is considered taking into account the possibility of diffusion profile formation in the island vicinity. It is shown that the treatment of diffusion-controlled cluster growth in terms of the Fokker-Planck equation is justified only provided certain restrictions are satisfied. First of all, the standard requirement that diffusion profiles of adatoms quickly adjust themselves to the actual island sizes (adiabatic principle) can be realized only for sufficiently high island concentration. The adiabatic principle is essential for the probabilities of adatom attachment to and detachment from island edges to be independent of the adatom diffusion profile establishment kinetics, justifying the island nucleation treatment as the Markovian stochastic process. Second, it is shown that the commonly used definition of the "diffusion" coefficient in the Fokker-Planck equation in terms of adatom attachment and detachment rates is justified only provided the attachment and detachment are statistically independent, which is generally not the case for the diffusion-limited growth of islands. We suggest a particular way to define the attachment and detachment rates that allows us to satisfy this requirement as well. When applied to the problem of surface island nucleation, our treatment predicts the steady-state nucleation barrier, which coincides with the conventional thermodynamic expression, even though no thermodynamic equilibrium is assumed and the adatom diffusion is treated explicitly. The effect of adatom diffusional profiles on the nucleation rate preexponential factor is also discussed. Monte Carlo simulation is employed to analyze the applicability domain of the Fokker-Planck equation and the diffusion effect beyond it. It is demonstrated that a diffusional cloud is slowing down the nucleation process for a given monomer interaction with the nucleus edge.
NASA Astrophysics Data System (ADS)
Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.
1984-10-01
The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.
The rate of collisions due to Brownian or gravitational motion of small drops
NASA Technical Reports Server (NTRS)
Zhang, Xiaoguang; Davis, Robert H.
1991-01-01
Quantitative predictions of the collision rate of two spherical drops undergoing Brownian diffusion or gravitational sedimentation are presented. The diffusion equation for relative Brownian motion of two drops is derived, and the relative motion of pairs of drops in gravitational sedimentation is traced via a trajectory analysis in order to develop theoretical models to determine the collision efficiencies, both with and without interparticle forces applied between the drops. It is concluded that finite collision rates between nondeforming fluid drops are possible for Brownian diffusion or gravitational sedimentation in the absence of attractive forces, in stark contrast to the prediction that lubrication forces prevent rigid spheres from contacting each other unless an attractive force that becomes infinite as the separation approaches zero is applied. Collision rates are shown to increase as the viscosity of the drop-phase decreases. In general, hydrodynamic interactions reduce the collision rates more for gravitational collisions than for Brownian collisions.
NASA Astrophysics Data System (ADS)
Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto
2018-02-01
The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity ( D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature ( T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates ( T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates ( T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.
Self-diffusion in MgO--a density functional study.
Runevall, Odd; Sandberg, Nils
2011-08-31
Density functional theory calculations have been performed to study self-diffusion in magnesium oxide, a model material for a wide range of ionic compounds. Formation energies and entropies of Schottky defects and divacancies were obtained by means of total energy and phonon calculations in supercell configurations. Transition state theory was used to estimate defect migration rates, with migration energies taken from static calculations, and the corresponding frequency factors estimated from the phonon spectrum. In all static calculations we corrected for image effects using either a multipole expansion or an extrapolation to the low concentration limit. It is shown that both methods give similar results. The results for self-diffusion of Mg and O confirm the previously established picture, namely that in materials of nominal purity, Mg diffuses extrinsically by a single vacancy mechanism, while O diffuses intrinsically by a divacancy mechanism. Quantitatively, the current results are in very good agreement with experiments concerning O diffusion, while for Mg the absolute diffusion rate is generally underestimated by a factor of 5-10. The reason for this discrepancy is discussed.
Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan
2016-04-05
Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.
Formation of amorphous materials
Johnson, William L.; Schwarz, Ricardo B.
1986-01-01
Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.
Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)
NASA Astrophysics Data System (ADS)
Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia
2015-06-01
NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.
Water has no effect on oxygen self-diffusion rate in forsterite
NASA Astrophysics Data System (ADS)
Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.
2014-12-01
Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.
Correcting for diffusion in carbon-14 dating of ground water
Sanford, W.E.
1997-01-01
It has generally been recognized that molecular diffusion can be a significant process affecting the transport of carbon-14 in the subsurface when occurring either from a permeable aquifer into a confining layer or from a fracture into a rock matrix. An analytical solution that is valid for steady-state radionuclide transport through fractured rock is shown to be applicable to many multilayered aquifer systems. By plotting the ratio of the rate of diffusion to the rate of decay of carbon-14 over the length scales representative of several common hydrogeologic settings, it is demonstrated that diffusion of carbon-14 should often be not only a significant process, but a dominant one relative to decay. An age-correction formula is developed and applied to the Bangkok Basin of Thailand, where a mean carbon-14-based age of 21,000 years was adjusted to 11,000 years to account for diffusion. This formula and its graphical representation should prove useful for many studies, for they can be used first to estimate the potential role of diffusion and then to make a simple first-order age correction if necessary.It has generally been recognized that molecular diffusion can be a significant process affecting the transport of carbon-14 in the subsurface when occurring either from a permeable aquifer into a confining layer or from a fracture into a rock matrix. An analytical solution that is valid for steady-state radionuclide transport through fractured rock is shown to be applicable to many multilayered aquifer systems. By plotting the ratio of the rate of diffusion to the rate of decay of carbon-14 over the length scales representative of several common hydrogeologic settings, it is demonstrated that diffusion of carbon-14 should often be not only a significant process, but a dominant one relative to decay. An age-correction formula is developed and applied to the Bangkok Basin of Thailand, where a mean carbon-14-based age of 21,000 years was adjusted to 11,000 years to account for diffusion. This formula and its graphical representation should prove useful for many studies, for they can be used first to estimate the potential role of diffusion and then to make a simple first-order age correction if necessary.
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Agrawal, Sanjay; Sacksteder, Kurt; Baum, Howard R.
1994-01-01
This paper presents the experimental and theoretical results for expanding methane and ethylene diffusion flames in microgravity. A small porous sphere made from a low-density and low-heat-capacity insulating material was used to uniformly supply fuel at a constant rate to the expanding diffusion flame. A theoretical model which includes soot and gas radiation is formulated but only the problem pertaining to the transient expansion of the flame is solved by assuming constant pressure infinitely fast one-step ideal gas reaction and unity Lewis number. This is a first step toward quantifying the effect of soot and gas radiation on these flames. The theoretically calculated expansion rate is in good agreement with the experimental results. Both experimental and theoretical results show that as the flame radius increases, the flame expansion process becomes diffusion controlled and the flame radius grows as gamma t. Theoretical calculations also show that for a constant fuel mass injection rate a quasi-steady state is developed in the region surrounded by the flame and the mass flow rate at any location inside this region equals the mass injection rate.
Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California
Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.
1999-01-01
We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.
Diffusion in plasma: The Hall effect, compositional waves, and chemical spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urpin, V., E-mail: Vadim.urpin@uv.es
2017-03-15
Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.
Enhanced nitrogen diffusion induced by atomic attrition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochoa, E.A.; Figueroa, C.A.; Czerwiec, T.
2006-06-19
The nitrogen diffusion in steel is enhanced by previous atomic attrition with low energy xenon ions. The noble gas bombardment generates nanoscale texture surfaces and stress in the material. The atomic attrition increases nitrogen diffusion at lower temperatures than the ones normally used in standard processes. The stress causes binding energy shifts of the Xe 3d{sub 5/2} electron core level. The heavy ion bombardment control of the texture and stress of the material surfaces may be applied to several plasma processes where diffusing species are involved.
Investigation of the expansion rate scaling of plasmas in the Electron Diffusion Gauge experiment
NASA Astrophysics Data System (ADS)
Morrison, Kyle A.; Davidson, Ronald C.; Paul, Stephen F.; Jenkins, Thomas G.
2002-01-01
The expansion of the Electron Diffusion Gauge (EDG) pure electron plasma due to collisions with background neutral gas atoms is characterized by the pressure and magnetic field scaling of the profile expansion rate (d/dt)
Detecting the sampling rate through observations
NASA Astrophysics Data System (ADS)
Shoji, Isao
2018-09-01
This paper proposes a method to detect the sampling rate of discrete time series of diffusion processes. Using the maximum likelihood estimates of the parameters of a diffusion process, we establish a criterion based on the Kullback-Leibler divergence and thereby estimate the sampling rate. Simulation studies are conducted to check whether the method can detect the sampling rates from data and their results show a good performance in the detection. In addition, the method is applied to a financial time series sampled on daily basis and shows the detected sampling rate is different from the conventional rates.
Viscosity and viscoelasticity of two-phase systems having diffuse interfaces
NASA Technical Reports Server (NTRS)
Hopper, R. W.
1976-01-01
The equilibrium stability criterion for diffuse interfaces in a two-component solution with a miscibility gap requires that the interdiffusion flux vanish. If the system is continuously deformed, convective fluxes disrupt the equilibrium in the interface regions and induce a counter diffusive flux, which is dissipative and contributes to the apparent viscosity of the mixture. Chemical free energy is recoverably stored, causing viscoelastic phenomena. Both effects are significant.
Broad Area Distributed Gain, Distributed Index Profile GaAlAs Semiconductor Laser Diodes
1991-02-14
active region. The external and electron mobilities . This, along with the difference differential quantum efficiency and light-current slope ef- [91...nternotionoi .-. rnri in Circuit Thteor\\ 1991. and Aplications He also has served o~n iechnical and orovrai committees 1 -1 H C Case,, and NI B...sample temperatures. these defects are mobile and cause atomic diffusion, usually called radiation-enhanced diffusion (RED). Since this diffusion
Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy
NASA Astrophysics Data System (ADS)
Jia, Yanyan; Li, Zhefu; Ye, Xiangxi; Liu, Renduo; Leng, Bin; Qiu, Jie; Liu, Min; Li, Zhijun
2017-12-01
The embrittlement of Ni-based structural alloys caused by fission production Te is one of the major challenges for molten salt reactors. It has been reported that solution element Cr can prevent the situation of intergranular cracks caused by Te. However, there is no detailed mechanism explanation on this phenomenon. In this study, the effect of Cr on Te diffusion in Ni-Cr binary system was investigated by diffusion experiments at 800 °C for 100 h. Results show that Te reacts with the alloy mainly forming Ni3Te2, and strip shaped Cr3Te4 is only found on the surface of Ni-15%Cr alloy. According to the discussion of thermodynamic chemical reaction process, Cr3Te4 exhibits the best stability and preferential formation compound in Te/Ni-Cr system as its Gibbs free energy of formation is the lowest. With the increase of Cr content in the alloy, the diffusion depth of Te along grain boundaries significantly decreases. Moreover, the formation process of reaction product and diffusion process are described. The diffusion of Te can be suppressed by high content of Cr in Ni-Cr alloy due to the formation of Cr3Te4 and thus the grain boundary is protected from Te corroding.
An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay
1993-01-01
In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.
NASA Astrophysics Data System (ADS)
Choe, J. I.
2016-04-01
A series mathematical model has been developed for the prediction of flow stress and microstructure evolution during the hot deformation of metals such as copper or austenitic steels with low stacking fault energies, involving features of both diffusional flow and dislocation motion. As the strain rate increases, multiple peaks on the stress-strain curve decrease. At a high strain rate, the stress rises to a single peak, while dynamic recrystallization causes an oscillatory behavior. At a low strain rate (when there is sufficient time for the recrystallizing grains to grow before they become saturated with high dislocation density with an increase in strain rate), the difference in stored stress between recrystallizing and old grains diminishes, resulting in reduced driving force for grain growth and rendering smaller grains in the alloy. The final average grain size at the steady stage (large strain) increases with a decrease in the strain rate. During large strain deformation, grain size reduction accompanying dislocation creep might be balanced by the grain growth at the border delimiting the ranges of realization (field boundary) of the dislocation-creep and diffusion-creep mechanisms.
From conservative to reactive transport under diffusion-controlled conditions
NASA Astrophysics Data System (ADS)
Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.
2016-05-01
We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.
The impact of physiological crowding on the diffusivity of membrane bound proteins.
Houser, Justin R; Busch, David J; Bell, David R; Li, Brian; Ren, Pengyu; Stachowiak, Jeanne C
2016-02-21
Diffusion of transmembrane and peripheral membrane-bound proteins within the crowded cellular membrane environment is essential to diverse biological processes including cellular signaling, endocytosis, and motility. Nonetheless we presently lack a detailed understanding of the influence of physiological levels of crowding on membrane protein diffusion. Utilizing quantitative in vitro measurements, here we demonstrate that the diffusivities of membrane bound proteins follow a single linearly decreasing trend with increasing membrane coverage by proteins. This trend holds for homogenous protein populations across a range of protein sizes and for heterogeneous mixtures of proteins of different sizes, such that protein diffusivity is controlled by the total coverage of the surrounding membrane. These results demonstrate that steric exclusion within the crowded membrane environment can fundamentally limit the diffusive rate of proteins, regardless of their size. In cells this "speed limit" could be modulated by changes in local membrane coverage, providing a mechanism for tuning the rate of molecular interaction and assembly.
Reactive Radial Diffusion Model for the Aging/Sequestration Process
NASA Astrophysics Data System (ADS)
Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.
2001-12-01
A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.
Giske, Christian G.; Haldorsen, Bjørg; Matuschek, Erika; Schønning, Kristian; Leegaard, Truls M.; Kahlmeter, Gunnar
2014-01-01
Different antimicrobial susceptibility testing methods to detect low-level vancomycin resistance in enterococci were evaluated in a Scandinavian multicenter study (n = 28). A phenotypically and genotypically well-characterized diverse collection of Enterococcus faecalis (n = 12) and Enterococcus faecium (n = 18) strains with and without nonsusceptibility to vancomycin was examined blindly in Danish (n = 5), Norwegian (n = 13), and Swedish (n = 10) laboratories using the EUCAST disk diffusion method (n = 28) and the CLSI agar screen (n = 18) or the Vitek 2 system (bioMérieux) (n = 5). The EUCAST disk diffusion method (very major error [VME] rate, 7.0%; sensitivity, 0.93; major error [ME] rate, 2.4%; specificity, 0.98) and CLSI agar screen (VME rate, 6.6%; sensitivity, 0.93; ME rate, 5.6%; specificity, 0.94) performed significantly better (P = 0.02) than the Vitek 2 system (VME rate, 13%; sensitivity, 0.87; ME rate, 0%; specificity, 1). The performance of the EUCAST disk diffusion method was challenged by differences in vancomycin inhibition zone sizes as well as the experience of the personnel in interpreting fuzzy zone edges as an indication of vancomycin resistance. Laboratories using Oxoid agar (P < 0.0001) or Merck Mueller-Hinton (MH) agar (P = 0.027) for the disk diffusion assay performed significantly better than did laboratories using BBL MH II medium. Laboratories using Difco brain heart infusion (BHI) agar for the CLSI agar screen performed significantly better (P = 0.017) than did those using Oxoid BHI agar. In conclusion, both the EUCAST disk diffusion and CLSI agar screening methods performed acceptably (sensitivity, 0.93; specificity, 0.94 to 0.98) in the detection of VanB-type vancomycin-resistant enterococci with low-level resistance. Importantly, use of the CLSI agar screen requires careful monitoring of the vancomycin concentration in the plates. Moreover, disk diffusion methodology requires that personnel be trained in interpreting zone edges. PMID:24599985
Insights into crystal growth rates from a study of orbicular granitoids from western Australia
NASA Astrophysics Data System (ADS)
Zhang, J.; Lee, C. T.
2017-12-01
The purpose of this study is to develop new tools for constraining crystal growth rate in geologic systems. Of interest is the growth of crystals in magmatic systems because crystallization changes the rheology of a magma as well as provides surfaces on which bubbles can nucleate. To explore crystal growth in more detail, we conducted a case study of orbicular granitoids from western Australia. The orbicules occur as spheroids dispersed in a granitic matrix. Most orbicules have at least two to three concentric bands, composed of elongate and radially oriented hornblende surrounded by interstitial plagioclase. We show that mineral modes and hence bulk composition at the scale of the band is homogeneous from rim to core. Crystal number density decreases and crystal size increases from rim to core. These observations suggest that the orbicules crystallized rapidly from rim to core. We hypothesize that the orbicules are blobs of hot dioritic liquid injected into a cold granitic magma and subsequently cooled and solidified. Crystals stop growing when the mass transport rate tends to zero due to the low temperature. We estimated cooling timescales based on conductive cooling models, constraining crystal growth rates to be 10-6 to 10-5 m/s. We also show that the oscillatory banding is controlled by disequilibrium crystallization, wherein hornblende preferentially crystallizes, resulting in the diffusive growth of a chemical boundary layer enriched in plagioclase component, which in turns results in crystallization of plagioclase. We show that the correlation between the width of each crystallization couplet (band) with distance from orbicule rim is linear, with the slope corresponding to the square root of the ratio between chemical diffusivity in the growth medium and thermal diffusivity. We estimate chemical diffusivity of 2*10-7 m2/s, which is remarkably fast for silicate liquids but reasonable for diffusion in hot aqueous fluids, suggesting that crystallization occurred during water-saturated conditions. Combined with the estimate of the boundary layer thickness, we use the diffusivity to estimate the diffusive flux, arriving at crystal growth rates similar to that constrained by thermal modeling. In the presence of fluids, we show that crystal growth rates in magmatic systems may be under-estimated.
NASA Astrophysics Data System (ADS)
Heinlein, S. N.
2013-12-01
Remote sensing data sets are widely used for evaluation of surface manifestations of active tectonics. This study utilizes ASTER GDEM and Landsat ETM+ data sets with Google Earth images draped over terrain models. This study evaluates 1) the surrounding surface geomorphology of the study area with these data sets and 2) the morphology of the Kumroch Fault using diffusion modeling to estimate constant diffusivity (κ) and estimate slip rates by means of real ground data measured across fault scarps by Kozhurin et al. (2006). Models of the evolution of fault scarp morphology provide time elapsed since slip initiated on a faults surface and may therefore provide more accurate estimates of slip rate than the rate calculated by dividing scarp offset by the age of the ruptured surface. Profile modeling of scarps collected by Kozhurin et al. (2006) formed by several events distributed through time and were evaluated using a constant slip rate (CSR) solution which yields a value A/κ (1/2 slip rate/diffusivity). Time elapsed since slip initiated on the fault is determined by establishing a value for κ and measuring total scarp offset. CSR nonlinear modeling estimated of κ range from 8m2/ka - 14m2/ka on the Kumroch Fault which indicates a slip rates of 0.6 mm/yr - 1.0 mm/yr since 3.4 ka -3.7 ka. This method provides a quick and inexpensive way to gather data for a regional tectonic study and establish estimated rates of tectonic activity. Analyses of the remote sensing data are providing new insight into the role of active tectonics within the region. Results from fault scarp diffusion models of Mattson and Bruhn (2001) and DuRoss and Bruhn (2004) and Kozhurin et al. (2006), Kozhurin (2007), Kozhurin et al. (2008) and Pinegina et al. 2012 trench profiles of the KF as calibrated age fault scarp diffusion rates were estimated. (-) mean that no data could be determined.
Enhanced diffusion of pollutants by self-propulsion.
Zhao, Guanjia; Stuart, Emma J E; Pumera, Martin
2011-07-28
Current environmental models mostly account for the passive participation of pollutants in their environmental propagation. Here we demonstrate the paradigm-changing concept that pollutants can propagate themselves with a rate that is greater than the rate for standard molecular diffusion by five orders of magnitude. This journal is © the Owner Societies 2011
Al-Mur, Bandar A; Quicksall, Andrew N; Kaste, James M
2017-09-15
The Red Sea is a unique ecosystem with high biodiversity in one of the warmest regions of the world. In the last five decades, Red Sea coastal development has rapidly increased. Sediments from continental margins are delivered to depths by advection and diffusion-like processes which are difficult to quantify yet provide invaluable data to researchers. Beryllium-7, lead-210 and ceseium-137 were analyzed from sediment cores from the near-coast Red Sea near Jeddah, Saudi Arabia. The results of this work are the first estimates of diffusion, mixing, and sedimentation rates of the Red Sea coastal sediments. Maximum chemical diffusion and particle mixing rates range from 69.1 to 380cm -2 y -1 and 2.54 to 6.80cm -2 y -1 , respectively. Sedimentation rate is constrained to approximately 0.6cm/yr via multiple methods. These data provide baselines for tracking changes in various environmental problems including erosion, marine benthic ecosystem silting, and particle-bound contaminant delivery to the seafloor. Copyright © 2017. Published by Elsevier Ltd.
Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C
NASA Technical Reports Server (NTRS)
Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2000-01-01
Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to the presence of luminous soot particles under fuel-lean conditions when smoke-point conditions are approached. This is very similar to earlier findings concerning differences between laminar smoke- and sootpoint flame lengths in still environments.
Numerical investigations of hybrid rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.
2018-03-01
Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.
NASA Astrophysics Data System (ADS)
Hsu, Sze-Bi; Mei, Linfeng; Wang, Feng-Bin
2015-11-01
Phytoplankton species in a water column compete for mineral nutrients and light, and the existing models usually neglect differences in the nutrient content and the amount of light absorbed of individuals. In this current paper, we examine a size-structured and nonlocal reaction-diffusion-advection system which describes the dynamics of a single phytoplankton species in a water column where the species depends simply on light for its growth. Our model is under the assumption that the amount of light absorbed by individuals is proportional to cell size, which varies for populations that reproduce by simple division into two equally-sized daughters. We first establish the existence of a critical death rate and our analysis indicates that the phytoplankton survives if and only if its death rate is less than the critical death rate. The critical death rate depends on a general reproductive rate, the characteristics of the water column (e.g., turbulent diffusion rate, sinking, depth), cell growth, cell division, and cell size.
Gradient boride layers formed by diffusion carburizing and laser boriding
NASA Astrophysics Data System (ADS)
Kulka, M.; Makuch, N.; Dziarski, P.; Mikołajczak, D.; Przestacki, D.
2015-04-01
Laser boriding, instead of diffusion boriding, was proposed to formation of gradient borocarburized layers. The microstructure and properties of these layers were compared to those-obtained after typical diffusion borocarburizing. First method of treatment consists in diffusion carburizing and laser boriding only. In microstructure three zones are present: laser borided zone, hardened carburized zone and carburized layer without heat treatment. However, the violent decrease in the microhardness was observed below the laser borided zone. Additionally, these layers were characterized by a changeable value of mass wear intensity factor thus by a changeable abrasive wear resistance. Although at the beginning of friction the very low values of mass wear intensity factor Imw were obtained, these values increased during the next stages of friction. It can be caused by the fluctuations in the microhardness of the hardened carburized zone (HAZ). The use of through hardening after carburizing and laser boriding eliminated these fluctuations. Two zones characterized the microstructure of this layer: laser borided zone and hardened carburized zone. Mass wear intensity factor obtained a constant value for this layer and was comparable to that-obtained in case of diffusion borocarburizing and through hardening. Therefore, the diffusion boriding could be replaced by the laser boriding, when the high abrasive wear resistance is required. However, the possibilities of application of laser boriding instead of diffusion process were limited. In case of elements, which needed high fatigue strength, the substitution of diffusion boriding by laser boriding was not advisable. The surface cracks formed during laser re-melting were the reason for relatively quickly first fatigue crack. The preheating of the laser treated surface before laser beam action would prevent the surface cracks and cause the improved fatigue strength. Although the cohesion of laser borided carburized layer was sufficient, the diffusion borocarburized layer showed a better cohesion.
Petrović, Jelena; Dragović, Snežana; Dragović, Ranko; Đorđević, Milan; Đokić, Mrđan; Zlatković, Bojan; Walling, Desmond
2016-07-01
The need for reliable assessments of soil erosion rates in Serbia has directed attention to the potential for using (137)Cs measurements to derive estimates of soil redistribution rates. Since, to date, this approach has not been applied in southeastern Serbia, a reconnaissance study was undertaken to confirm its viability. The need to take account of the occurrence of substantial Chernobyl fallout was seen as a potential problem. Samples for (137)Cs measurement were collected from a zone of uncultivated soils in the watersheds of Pčinja and South Morava Rivers, an area with known high soil erosion rates. Two theoretical conversion models, the profile distribution (PD) model and diffusion and migration (D&M) model were used to derive estimates of soil erosion and deposition rates from the (137)Cs measurements. The estimates of soil redistribution rates derived by using the PD and D&M models were found to differ substantially and this difference was ascribed to the assumptions of the simpler PD model that cause it to overestimate rates of soil loss. The results provided by the D&M model were judged to more reliable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rock deformation models and fluid leak-off in hydraulic fracturing
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya M.; Bercovici, David; Oristaglio, Michael L.
2013-09-01
Fluid loss into reservoir rocks during hydraulic fracturing is modelled via a poro-elastoplastic pressure diffusion equation in which the total compressibility is a sum of fluid, rock and pore space compressibilities. Inclusion of pore compressibility and porosity-dependent permeability in the model leads to a strong pressure dependence of leak-off (i.e. drainage rate). Dilation of the matrix due to fluid invasion causes higher rates of fluid leak-off. The present model is appropriate for naturally fractured and tight gas reservoirs as well as for soft and poorly consolidated formations whose mechanical behaviour departs from simple elastic laws. Enhancement of the leak-off coefficient by dilation, predicted by the new model, may help explain the low percentage recovery of fracturing fluid (usually between 5 and 50 per cent) in shale gas stimulation by hydraulic fracturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Szecsody, James E.; Truex, Michael J.
Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has been studied and has a potential for use in treating inorganic contaminants such as uranium because it induces a high pore-water pH causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application, knowledge of ammonia transport and the geochemical reactions induced by ammonia is needed. Laboratory studies were conducted to support calculations neededmore » for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate reactions among gas, sediment, and water, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions. Ammonia gas quickly partitions into sediment pore water and increases pH up to 13.2. Injected ammonia gas front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Measured diffusion front movement was 0.05, 0.03, and 0.02 cm/hr. in sediments with 2.0%, 8.7%, and 13.0% water content, respectively. Sodium, aluminum, and silica pore-water concentrations increase on exposure to ammonia and then decline as aluminosilicates precipitate with declining pH. When uranium is present in the sediment and pore water, up to 85% of the water-leachable uranium was immobilized by ammonia treatment.« less
NASA Astrophysics Data System (ADS)
Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.
2014-11-01
Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.
Intestinal absorption and biomagnification of organochlorines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gobas, F.A.P.C.; McCorquodale, J.R.; Haffner, G.D.
1993-03-01
Dietary uptake rates of several organochlorines from diets with different lipid contents were measured in goldfish (Carassius auratus) to investigate the mechanism of intestinal absorption and biomagnification of organic chemical. The results suggest that intestinal absorption is predominantly controlled by chemical diffusion rather than lipid cotransport. Data for chemical uptake in human infants are presented to illustrate that biomagnification is caused by the digestion of food in the gastrointestinal tract. The findings are discussed in the context of two conflicting theories for the mechanism of biomagnification, and a mechanistic model is presented for the dietary uptake and biomagnification of organicmore » chemicals in fish and mammals.« less
Gate protective device for SOS array
NASA Technical Reports Server (NTRS)
Meyer, J. E., Jr.; Scott, J. H.
1972-01-01
Protective gate device consisting of alternating heavily doped n(+) and p(+) diffusions eliminates breakdown voltages in silicon oxide on sapphire arrays caused by electrostatic discharge from person or equipment. Diffusions are easily produced during normal double epitaxial processing. Devices with nine layers had 27-volt breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, M.; Kondo, M.; Noda, N.
2015-03-15
In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less
Parsing anomalous versus normal diffusive behavior of bedload sediment particles
Fathel, Siobhan; Furbish, David; Schmeeckle, Mark
2016-01-01
Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.
Unsteady planar diffusion flames: Ignition, travel, burnout
NASA Technical Reports Server (NTRS)
Fendell, F.; Wu, F.
1995-01-01
In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.