NASA Astrophysics Data System (ADS)
Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan
2016-03-01
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.
NASA Astrophysics Data System (ADS)
Guillory, J. U.; Terry, R. E.
1984-07-01
This report describes work done under DNA Contract 001-79-C-0189 from February 1982 to June 1983, and some more recent work. Part 1 includes treatments of a simple zero-D implosion code, analytic but very approximate scaling laws for radiation, and a discussion of preliminary work on nonlinear field penetration of plasma. Part 2 contains a discussion of electrodiffusive 1D modeling of annular plasma implosions. The thermoelectrical field, its role in field penetrations, the nonlocal constraints required in field diffusion (and some arising from field diffusion), flux limits and the acceleration process for annular plasmas are discussed.
Factorized Diffusion Map Approximation
Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos
2013-01-01
Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework. PMID:25309676
Jia, Mengyu; Chen, Xueying; Zhao, Huijuan; Cui, Shanshan; Liu, Ming; Liu, Lingling; Gao, Feng
2015-01-26
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we herein report on an improved explicit model for a semi-infinite geometry, referred to as "Virtual Source" (VS) diffuse approximation (DA), to fit for low-albedo medium and short source-detector separation. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the near-field to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. This parameterized scheme is proved to inherit the mathematical simplicity of the DA approximation while considerably extending its validity in modeling the near-field photon migration in low-albedo medium. The superiority of the proposed VS-DA method to the established ones is demonstrated in comparison with Monte-Carlo simulations over wide ranges of the source-detector separation and the medium optical properties.
NASA Astrophysics Data System (ADS)
Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl
2016-01-01
The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M⊙ progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M⊙ progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia ≳ 0.1-0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100-300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino-electron scattering during collapse will lead to a stronger explosion.
Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl
2016-01-20
The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation–hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M{sub ⊙} progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M{sub ⊙} progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies E{sub dia} ≳ 0.1–0.5 B (1 B ≡ 10{sup 51} erg) for all considered 2D models within approximately 100–300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino–electron scattering during collapse will lead to a stronger explosion.
Chai, Chenggang; Chen, Yaqin; Li, Pengcheng; Luo, Qingming
2007-07-20
Using the algebra transformation method, we develop and demonstrate the use of the delta-P(1) approximation to improve steady-state radiative-transfer estimates on spatial scales comparable to the mean free path. We show that the delta-P(1) approximation agrees well with Monte Carlo simulation from source to infinity when we choose an appropriate parameter f (fractional portion that scatters directly forward) in the delta-Eddington phase function. We also provide the empirical formula to determine the parameter f.
Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao
2014-10-01
In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.
Microfabricated diffusion source
Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
Extending the diffusion approximation to the boundary using an integrated diffusion model
Chen, Chen; Du, Zhidong; Pan, Liang
2015-06-15
The widely used diffusion approximation is inaccurate to describe the transport behaviors near surfaces and interfaces. To solve such stochastic processes, an integro-differential equation, such as the Boltzmann transport equation (BTE), is typically required. In this work, we show that it is possible to keep the simplicity of the diffusion approximation by introducing a nonlocal source term and a spatially varying diffusion coefficient. We apply the proposed integrated diffusion model (IDM) to a benchmark problem of heat conduction across a thin film to demonstrate its feasibility. We also validate the model when boundary reflections and uniform internal heat generation are present.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
NASA Astrophysics Data System (ADS)
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-11-01
Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
Capturing correlations in chaotic diffusion by approximation methods.
Knight, Georgie; Klages, Rainer
2011-10-01
We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line that contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher-order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, while the third method approximates Markov partitions and transition matrices by using a slight variation of the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence, and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in the case of dynamics where exact results for the diffusion coefficient are not available.
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Q.; Lehoucq, Richard B.; Tartakovsky, Alexandre M.
2015-04-01
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. An immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and
NASA Technical Reports Server (NTRS)
Burns, R. E.
1973-01-01
The problem with predicting pollutant diffusion from a line source of arbitrary geometry is treated. The concentration at the line source may be arbitrarily varied with time. Special attention is given to the meteorological inputs which act as boundary conditions for the problem, and a mixing layer of arbitrary depth is assumed. Numerical application of the derived theory indicates the combinations of meteorological parameters that may be expected to result in high pollution concentrations.
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Zhang, Qizhi; Sobel, Eric; Jiang, Huabei
2009-09-01
In this study, a simplified spherical harmonics approximated higher order diffusion model is employed for 3-D diffuse optical tomography of osteoarthritis in the finger joints. We find that the use of a higher-order diffusion model in a stand-alone framework provides significant improvement in reconstruction accuracy over the diffusion approximation model. However, we also find that this is not the case in the image-guided setting when spatial prior knowledge from x-rays is incorporated. The results show that the reconstruction error between these two models is about 15 and 4%, respectively, for stand-alone and image-guided frameworks.
The diffusion approximation. An application to radiative transfer in clouds
NASA Technical Reports Server (NTRS)
Arduini, R. F.; Barkstrom, B. R.
1976-01-01
It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.
Diffusion amid random overlapping obstacles: Similarities, invariants, approximations
Novak, Igor L.; Gao, Fei; Kraikivski, Pavel; Slepchenko, Boris M.
2011-01-01
Efficient and accurate numerical techniques are used to examine similarities of effective diffusion in a void between random overlapping obstacles: essential invariance of effective diffusion coefficients (Deff) with respect to obstacle shapes and applicability of a two-parameter power law over nearly entire range of excluded volume fractions (ϕ), except for a small vicinity of a percolation threshold. It is shown that while neither of the properties is exact, deviations from them are remarkably small. This allows for quick estimation of void percolation thresholds and approximate reconstruction of Deff (ϕ) for obstacles of any given shape. In 3D, the similarities of effective diffusion yield a simple multiplication “rule” that provides a fast means of estimating Deff for a mixture of overlapping obstacles of different shapes with comparable sizes. PMID:21513372
Explorations into quantum state diffusion beyond the Markov approximation
NASA Astrophysics Data System (ADS)
Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.
2011-05-01
The non-Markovian quantum state diffusion equation is rapidly becoming a powerful tool for both theoretical and numerical investigations into non-trivial problems in quantum optical QED. It has been used to rederive the exact master equation for quantum Brownian motion, as well as an optical cavity or a two-level atom which is either damped or dephased under the rotating wave approximation. The exact quantum state diffusion equations for the spin-1 system have also been found, and general theorems have now been derived for solving the N-cavity, N-qubit, and N-level systems. Here, we build upon the results of Ref. to explore other problems from quantum optical QED using the non-Markovian quantum state diffusion equation.
Approximating nonequilibrium processes using a collection of surrogate diffusion models
NASA Astrophysics Data System (ADS)
Calderon, Christopher P.; Chelli, Riccardo
2008-04-01
The surrogate process approximation (SPA) is applied to model the nonequilibrium dynamics of a reaction coordinate (RC) associated with the unfolding and refolding processes of a deca-alanine peptide at 300K. The RC dynamics, which correspond to the evolution of the end-to-end distance of the polypeptide, are produced by steered molecular dynamics (SMD) simulations and approximated using overdamped diffusion models. We show that the collection of (estimated) SPA models contain structural information "orthogonal" to the RC monitored in this study. Functional data analysis ideas are used to correlate functions associated with the fitted SPA models with the work done on the system in SMD simulations. It is demonstrated that the shape of the nonequilibrium work distributions for the unfolding and refolding processes of deca-alanine can be predicted with functional data analysis ideas using a relatively small number of simulated SMD paths for calibrating the SPA diffusion models.
Diffusive approximation for unsteady mud flows with backwater effect
NASA Astrophysics Data System (ADS)
Di Cristo, Cristiana; Iervolino, Michele; Vacca, Andrea
2015-07-01
The adoption of the Diffusive Wave (DW) instead of the Full Dynamic (FD) model in the analysis of mud flood routing within the shallow-water framework may provide a significant reduction of the computational effort, and the knowledge of the conditions in which this approximation may be employed is therefore important. In this paper, the applicability of the DW approximation of a depth-integrated Herschel-Bulkley model is investigated through linear analysis. Assuming as the initial condition a steady hypocritical decelerated flow, induced by downstream backwater, the propagation characteristics of a small perturbation predicted by the DW and FD models are compared. The results show that the spatial variation on the initial profile may preclude the application of DW model with a prescribed accuracy. Whenever the method is applicable, the rising time of the mud flood must satisfy additional constraints, whose dependence on the flow depth, along with the Froude number and the rheological parameters, is deeply analyzed and discussed.
Lazarov, R D; Vassilevski, P S
1999-05-06
In this paper we introduce and study a least-squares finite element approximation for singularly perturbed convection-diffusion equations of second order. By introducing the flux (diffusive plus convective) as a new unknown, the problem is written in a mixed form as a first order system. Further, the flux is augmented by adding the lower order terms with a small parameter. The new first order system is approximated by the least-squares finite element method using the minus one norm approach of Bramble, Lazarov, and Pasciak [2]. Further, we estimate the error of the method and discuss its implementation and the numerical solution of some test problems.
Extended source model for diffusive coupling.
González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo
2016-01-01
Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources.
Finite difference approximations for a fractional advection diffusion problem
NASA Astrophysics Data System (ADS)
Sousa, Ercília
2009-06-01
The use of the conventional advection diffusion equation in many physical situations has been questioned by many investigators in recent years and alternative diffusion models have been proposed. Fractional space derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model. When a fractional derivative replaces the second derivative in a diffusion or dispersion model, it leads to enhanced diffusion, also called superdiffusion. We consider a one-dimensional advection-diffusion model, where the usual second-order derivative gives place to a fractional derivative of order α, with 1<α⩽2. We derive explicit finite difference schemes which can be seen as generalizations of already existing schemes in the literature for the advection-diffusion equation. We present the order of accuracy of the schemes and in order to show its convergence we prove they are stable under certain conditions. In the end we present a test problem.
Yi, Xi; Wang, Bingyuan; Wan, Wenbo; Wang, Yihan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng
2015-05-01
Of the three measurement schemes established for diffuse fluorescence tomography (DFT), the time-domain scheme is well known to provide the richest information about the distribution of the targeting fluorophore in living tissues. However, the explicit use of the full time-resolved data usually leads to a considerably lengthy time for image reconstruction, limiting its applications to three-dimensional or small-volume imaging. To cope with the adversity, we propose herein a computationally efficient scheme for DFT image reconstruction where the time-dependent photon density is expanded to a Fourier-series and calculated by solving the independent frequency-domain diffusion equations at multiple sampling frequencies with the support of a combined multicore CPU-based coarse-grain and multithread GPU-based fine-grain parallelization strategy. With such a parallelized Fourier-series truncated diffusion approximation, both the time- and frequency-domain inversion procedures are developed and validated for their effectiveness and accuracy using simulative and phantom experiments. The results show that the proposed method can generate reconstructions comparable to the explicit time-domain scheme, with significantly reduced computational time.
Berkel, M. van; Tamura, N.; Ida, K.; Hogeweij, G. M. D.; Zwart, H. J.; Inagaki, S.; Baar, M. R. de
2014-11-15
In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on the heat equation in cylindrical geometry using the symmetry (Neumann) boundary condition at the plasma center. This means that the approximations derived here should be used only to estimate transport coefficients between the plasma center and the off-axis perturbative source. If the effect of cylindrical geometry is small, it is also possible to use semi-infinite domain approximations presented in Part I and Part II of this series. A number of new approximations are derived in this part, Part III, based upon continued fractions of the modified Bessel function of the first kind and the confluent hypergeometric function of the first kind. These approximations together with the approximations based on semi-infinite domains are compared for heat waves traveling towards the center. The relative error for the different derived approximations is presented for different values of the frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can be used to estimate the transport coefficients over a large parameter range for cases without convection and damping, cases with damping only, and cases with convection and damping. The relative error between the approximation and its underlying model is below 2% for the case, where only diffusivity and damping are considered. If also convectivity is considered, the diffusivity can be estimated well in a large region, but there is also a large region in which no suitable approximation is found. This paper is the third part (Part III) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part II
Improved approximate formulas for flux from cylindrical and rectangular sources
Wallace, O.J.; Bokharee, S.A.
1993-03-01
This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.
NASA Astrophysics Data System (ADS)
Naglič, Peter; Vidovič, Luka; Milanič, Matija; Randeberg, Lise L.; Majaron, Boris
2013-11-01
Measurement of diffuse reflectance spectra (DRS) is a common experimental approach for non-invasive determination of tissue optical properties, as well as objective monitoring of various tissue malformations. Propagation of light in scattering media is often treated in diffusion approximation (DA). The major advantage of this approach is that it leads to enclosed analytical solutions for tissues with layered structure, which includes human skin. Despite the fact that DA solutions were shown to be inaccurate near tissue boundaries, the practicality of this approach makes it quite popular, especially when attempting extraction of specific chromophore concentrations from measured DRS. In this study we analyze the discrepancies between DRS spectra as obtained by using the DA solutions for three-layer skin model and more accurate predictions from Monte Carlo (MC) modeling. Next, we analyze the artifacts which result from the above discrepancies when extracting the parameters of skin structure and composition by fitting the DA solutions to the MC spectra. The reliability and usefulness of such a fit is then tested also on measurements of seasonal changes in otherwise healthy human skin.
Approximations to and local properties of diffusions with discontinuous controls
NASA Technical Reports Server (NTRS)
Kushner, H. J.
1974-01-01
The paper discusses several properties of control systems defined by stochastic differential equations, which are defined by the method of Girsanov, using a transformation of measures, and where the controls are discontinuous. Uniqueness of the multivariate distributions of the process is proved, and it is shown that the process is a limit, in a natural sense, of a certain discrete time approximation. Other questions, concerning the effects on the distributions of the paths, and of the cost of approximating the control by a smooth control and concerning local properties of the solution, are discussed.
Modeling boundary measurements of scattered light using the corrected diffusion approximation
Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.
2012-01-01
We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102
Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
NASA Astrophysics Data System (ADS)
Azencott, Robert; Ren, Peng; Timofeyev, Ilya
2015-12-01
We study the problem of parameters estimation in indirect observability contexts, where X_t in R^r is an unobservable stationary process parametrized by a vector of unknown parameters and all observable data are generated by an approximating process Y^{\\varepsilon }_t which is close to X_t in L^4 norm.We construct consistent parameter estimators which are smooth functions of the sub-sampled empirical mean and empirical lagged covariance matrices computed from the observable data. We derive explicit optimal sub-sampling schemes specifying the best paired choices of sub-sampling time-step and number of observations. We show that these choices ensure that our parameter estimators reach optimized asymptotic L^2-convergence rates, which are constant multiples of the L^4 norm || Y^{\\varepsilon }_t - X_t ||.
Berkel, M. van; Hogeweij, G. M. D.; Tamura, N.; Ida, K.; Zwart, H. J.; Inagaki, S.; Baar, M. R. de
2014-11-15
In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in a cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based upon the heat equation in a semi-infinite cylindrical domain. The approximations are based upon continued fractions, asymptotic expansions, and multiple harmonics. The relative error for the different derived approximations is presented for different values of frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can yield good approximations over a wide parameter space for different cases, such as no convection and damping, only damping, and both convection and damping. This paper is the second part (Part II) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part III, cylindrical approximations are treated for heat waves traveling towards the center of the plasma.
Source localization using rational approximation on plane sections
NASA Astrophysics Data System (ADS)
Clerc, M.; Leblond, J.; Marmorat, J.-P.; Papadopoulo, T.
2012-05-01
In functional neuroimaging, a crucial problem is to localize active sources within the brain non-invasively, from knowledge of electromagnetic measurements outside the head. Identification of point sources from boundary measurements is an ill-posed inverse problem. In the case of electroencephalography (EEG), measurements are only available at electrode positions, the number of sources is not known in advance and the medium within the head is inhomogeneous. This paper presents a new method for EEG source localization, based on rational approximation techniques in the complex plane. The method is used in the context of a nested sphere head model, in combination with a cortical mapping procedure. Results on simulated data prove the applicability of the method in the context of realistic measurement configurations.
Source Localization using Stochastic Approximation and Least Squares Methods
Sahyoun, Samir S.; Djouadi, Seddik M.; Qi, Hairong; Drira, Anis
2009-03-05
This paper presents two approaches to locate the source of a chemical plume; Nonlinear Least Squares and Stochastic Approximation (SA) algorithms. Concentration levels of the chemical measured by special sensors are used to locate this source. Non-linear Least Squares technique is applied at different noise levels and compared with the localization using SA. For a noise corrupted data collected from a distributed set of chemical sensors, we show that SA methods are more efficient than Least Squares method. SA methods are often better at coping with noisy input information than other search methods.
NASA Astrophysics Data System (ADS)
Magdziarz, M.; Mista, P.; Weron, A.
2007-05-01
We introduce an approximation of the risk processes by anomalous diffusion. In the paper we consider the case, where the waiting times between successive occurrences of the claims belong to the domain of attraction of alpha -stable distribution. The relationship between the obtained approximation and the celebrated fractional diffusion equation is emphasised. We also establish upper bounds for the ruin probability in the considered model and give some numerical examples.
A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes
NASA Astrophysics Data System (ADS)
Ragusa, J. C.; Guermond, J.-L.; Kanschat, G.
2012-02-01
We introduce a new discontinuous Galerkin (DG) method with reduced upwind stabilization for the linear Boltzmann equation applied to particle transport. The asymptotic analysis demonstrates that the new formulation does not suffer from the limitations of standard upwind methods in the thick diffusive regime; in particular, the new method yields the correct diffusion limit for any approximation order, including piecewise constant discontinuous finite elements. Numerical tests on well-established benchmark problems demonstrate the superiority of the new method. The improvement is particularly significant when employing piecewise constant DG approximation for which standard upwinding is known to perform poorly in the thick diffusion limit.
Berkel, M. van; Zwart, H. J.; Tamura, N.; Ida, K.; Hogeweij, G. M. D.; Inagaki, S.; Baar, M. R. de
2014-11-15
In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships between heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.
Horowitz, Jordan M.
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI
NASA Astrophysics Data System (ADS)
Ianuş, Andrada; Siow, Bernard; Drobnjak, Ivana; Zhang, Hui; Alexander, Daniel C.
2013-02-01
Oscillating gradients provide an optimal probe of small pore sizes in diffusion MRI. While sinusoidal oscillations have been popular for some time, recent work suggests additional benefits of square or trapezoidal oscillating waveforms. This paper presents analytical expressions of the free and restricted diffusion signal for trapezoidal and square oscillating gradient spin echo (OGSE) sequences using the Gaussian phase distribution (GPD) approximation and generalises existing similar expressions for sinusoidal OGSE. Accurate analytical models are necessary for exploitation of these pulse sequences in imaging studies, as they allow model fitting and parameter estimation in reasonable computation times. We evaluate the accuracy of the approximation against synthesised data from the Monte Carlo (MC) diffusion simulator in Camino and Callaghan's matrix method and we show that the accuracy of the approximation is within a few percent of the signal, while providing several orders of magnitude faster computation. Moreover, since the expressions for trapezoidal wave are complex, we test sine and square wave approximations to the trapezoidal OGSE signal. The best approximations depend on the gradient amplitude and the oscillation frequency and are accurate to within a few percent. Finally, we explore broader applications of trapezoidal OGSE, in particular for non-model based applications, such as apparent diffusion coefficient estimation, where only sinusoidal waveforms have been considered previously. We show that with the right apodisation, trapezoidal waves also have benefits by virtue of the higher diffusion weighting they provide compared to sinusoidal gradients.
Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI.
Ianuş, Andrada; Siow, Bernard; Drobnjak, Ivana; Zhang, Hui; Alexander, Daniel C
2013-02-01
Oscillating gradients provide an optimal probe of small pore sizes in diffusion MRI. While sinusoidal oscillations have been popular for some time, recent work suggests additional benefits of square or trapezoidal oscillating waveforms. This paper presents analytical expressions of the free and restricted diffusion signal for trapezoidal and square oscillating gradient spin echo (OGSE) sequences using the Gaussian phase distribution (GPD) approximation and generalises existing similar expressions for sinusoidal OGSE. Accurate analytical models are necessary for exploitation of these pulse sequences in imaging studies, as they allow model fitting and parameter estimation in reasonable computation times. We evaluate the accuracy of the approximation against synthesised data from the Monte Carlo (MC) diffusion simulator in Camino and Callaghan's matrix method and we show that the accuracy of the approximation is within a few percent of the signal, while providing several orders of magnitude faster computation. Moreover, since the expressions for trapezoidal wave are complex, we test sine and square wave approximations to the trapezoidal OGSE signal. The best approximations depend on the gradient amplitude and the oscillation frequency and are accurate to within a few percent. Finally, we explore broader applications of trapezoidal OGSE, in particular for non-model based applications, such as apparent diffusion coefficient estimation, where only sinusoidal waveforms have been considered previously. We show that with the right apodisation, trapezoidal waves also have benefits by virtue of the higher diffusion weighting they provide compared to sinusoidal gradients. Copyright © 2012 Elsevier Inc. All rights reserved.
Approximate self-similar solutions to a nonlinear diffusion equation with time-fractional derivative
NASA Astrophysics Data System (ADS)
Płociniczak, Łukasz; Okrasińska, Hanna
2013-10-01
In this paper, we consider a fractional nonlinear problem for anomalous diffusion. The diffusion coefficient we use is of power type, and hence the investigated problem generalizes the porous-medium equation. A generalization is made by introducing a fractional time derivative. We look for self-similar solutions for which the fractional setting introduces other than classical space-time scaling. The resulting similarity equations are of nonlinear integro-differential type. We approximate these equations by an expansion of the integral operator and by looking for solutions in a power function form. Our method can be easily adapted to solve various problems in self-similar diffusion. The approximations obtained give very good results in numerical analysis. Their simplicity allows for easy use in applications, as our fitting with experimental data shows. Moreover, our derivation justifies theoretically some previously used empirical models for anomalous diffusion.
Film model approximation for particle-diffusion-controlled binary ion exchange
Carta, G.; Cincotti, A.; Cao, G.
1999-01-01
A new rate expression for particle-diffusion-controlled ion exchange, based on an equivalent pseudosteady-state film resistance model, is developed. The rate expression approximates the electric field effects on intraparticle diffusion in spherical ion-exchangers. With regard to the prediction of batch exchange and column breakthrough curves for both irreversible and reversible processes, the model captures the essential traits of the coupled diffusion phenomenon described by the Nernst-Planck equation with results of accuracy comparable to that obtained when using the linear driving force approximation for systems with constant diffusivity. Numerical results for the exchange of two counterions of equal valence are presented as application examples for different mobility ratios and selectivity coefficients.
Approximate average head models for EEG source imaging.
Valdés-Hernández, Pedro A; von Ellenrieder, Nicolás; Ojeda-Gonzalez, Alejandro; Kochen, Silvia; Alemán-Gómez, Yasser; Muravchik, Carlos; Valdés-Sosa, Pedro A
2009-12-15
We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual's MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach.
Modification of classical approximations for diffusion in fluids with density gradients.
Aranovich, G L; Whitman, J R; Donohue, M D
2010-08-21
An analysis of classical approximations is performed for diffusion in fluids with density gradients. This approach gives a new diffusion equation taking into account the asymmetry of molecular mean-free paths and the velocity distribution in the flux term. It is shown that new model is consistent with Einstein's evolution equation for an asymmetric distribution of spatial displacements and with molecular dynamic simulations for hard spheres.
An analytical approximation to the diffusion coefficient in overdamped multidimensional systems
NASA Astrophysics Data System (ADS)
Caratti, G.; Ferrando, R.; Spadacini, R.; Tommei, G. E.
1997-02-01
An analytical approximation for the mobility of an overdamped particle in a periodic multi-dimensional system is presented. Attention is focused on two dimensions (quasi-2D approximation) in the most generic case of a 2D-coupled periodic potential in a rectangular lattice and of a position-dependent friction. The approximation is derived in the framework of the Linear Response Theory by fixing the value of one coordinate and solving the problem of diffusion along the other coordinate as strictly 1D. This is expected to be essentially correct if all the most relevant diffusion paths are straight lines. Two different specific applications have been considered: diffusion in a square egg-carton potential and diffusion in absence of potential in a 2D channel with unsurmountable periodic walls. Exact results are available in literature in the latter case and are obtained in the first case by solving the Smoluchowski equation (matrix continued fraction method). Comparisons with the quasi-2D approximation show that the agreement is excellent for the egg-carton potential but far less satisfying for migration in the 2D periodically shaped channel, characterized by important diffusion paths not being straight lines.
Gorpas, Dimitris; Andersson-Engels, Stefan
2012-12-01
The solution of the forward problem in fluorescence molecular imaging strongly influences the successful convergence of the fluorophore reconstruction. The most common approach to meeting this problem has been to apply the diffusion approximation. However, this model is a first-order angular approximation of the radiative transfer equation, and thus is subject to some well-known limitations. This manuscript proposes a methodology that confronts these limitations by applying the radiative transfer equation in spatial regions in which the diffusion approximation gives decreased accuracy. The explicit integro differential equations that formulate this model were solved by applying the Galerkin finite element approximation. The required spatial discretization of the investigated domain was implemented through the Delaunay triangulation, while the azimuthal discretization scheme was used for the angular space. This model has been evaluated on two simulation geometries and the results were compared with results from an independent Monte Carlo method and the radiative transfer equation by calculating the absolute values of the relative errors between these models. The results show that the proposed forward solver can approximate the radiative transfer equation and the Monte Carlo method with better than 95% accuracy, while the accuracy of the diffusion approximation is approximately 10% lower.
The diffusion approximation and transport theory for cosmic rays in relativistic flows
NASA Technical Reports Server (NTRS)
Webb, G. M.
1989-01-01
Equations describing the transport of cosmic rays in relativistic flows in the diffusion approximation are obtained. The analysis is based on the zeroth, first, and second differential moment equations of the relativistic Boltzmann equation with a BGK collision term. A perturbation solution of the moment equations in the diffusion approximation yields both the co-moving frame particle current and viscous stresses. The resultant cosmic-ray continuity equation contains three readily recognized energy change terms: the adiabatic energy change term; the viscous shear energy change term; and a term proportional to the scalar product of the acceleration vector of the scattering frame and the heat flux.
Test particle propagation in magnetostatic turbulence. 1. Failure of the diffusion approximation
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.
1976-01-01
The equation which governs the quasi-linear approximation to the ensemble and gyro-phase averaged one-body probability distribution function is constructed from first principles. This derived equation is subjected to a thorough investigation in order to calculate the possible limitations of the quasi-linear approximation. It is shown that the reduction of this equation to a standard diffusion equation in the Markovian limit can be accomplished through the application of the adiabatic approximation. A numerical solution of the standard diffusion equation in the Markovian limit is obtained for the narrow parallel beam injection. Comparison of the diabatic and adiabatic results explicitly demonstrates the failure of the Markovian description of the probability distribution function. Through the use of a linear time-scale extension the failure of the adiabatic approximation, which leads to the Markovian limit, is shown to be due to mixing of the relaxation and interaction time scales in the presence of the strong mean field.
Clement-Spychala, Meagan E; Couper, David; Zhu, Hongtu; Muller, Keith E
2010-01-01
The diffusion tensor imaging (DTI) protocol characterizes diffusion anisotropy locally in space, thus providing rich detail about white matter tissue structure. Although useful metrics for diffusion tensors have been defined, statistical properties of the measures have been little studied. Assuming homogeneity within a region leads to being able to apply Wishart distribution theory. First, it will be shown that common DTI metrics are simple functions of known test statistics. The average diffusion coefficient (ADC) corresponds to the trace of a Wishart, and is also described as the generalized (multivariate) variance, the average variance of the principal components. Therefore ADC has a known exact distribution (a positively weighted quadratic form in Gaussians) as well as a simple and accurate approximation (Satterthwaite) in terms of a scaled chi square. Of particular interest is that fractional anisotropy (FA) values for given regions of interest are functions of the Geisser-Greenhouse (GG) sphericity estimator. The GG sphericity estimator can be approximated well by a linear transformation of a squared beta random variable. Simulated data demonstrates that the fits work well for simulated diffusion tensors. Applying traditional density estimation techniques for a beta to histograms of FA values from a region allow representing the histogram of hundreds or thousands of values in terms of just two estimates for the beta parameters. Thus using the approximate distribution eliminates the "curse of dimensionality" for FA values. A parallel result holds for ADC.
Piecewise approximation of curves using nonlinear diffusion in scale-space
NASA Astrophysics Data System (ADS)
Pinheiro, Antonio M. G.; Ghanbari, Mohammad
2000-10-01
The emerging Multimedia Content Description Interface standard, MPEG-7, looks at the indexing and retrieval of visual information. In this context the development of shape description and shape querying tools become a fundamental and challenging task. We introduce a method based on non-linear diffusion of contours. The aim is to compute reference points in contours to provide a shape description tool. This reference points will be situated in the sharpest changes in the contour direction. Hence, they provide ideal choices to use as vertices of a polygonal approximation. If a maximum error between the original contour and the polygonal approximation is required, a scale-space procedure can help to find new vertices in order to meet this requirement. Basically, this method follows the non-linear diffusion technique of Perona and Malik. Unlike the usually linear diffusion techniques of contours, where the diffusion is made through the contour points coordinates, this method applies the diffusion in the tangent space. In this case the contour is described by the angle variation, and the non-linear diffusion procedure is applied on it. Perona and Malik model determines how strong diffusion will act on the original function, and depends of a factor K, estimated automatically. In areas with spatial concentration of strong changes of the angle this factor is also adjusted to reduce the noise effect. The proposed method has been extensively tested using the data- base contour of fish shapes in SQUID web site. A shape-based retrieval application was also tested using a similarity measure between two polygonal approximations.
NASA Astrophysics Data System (ADS)
Sweilam, N. H.; Abou Hasan, M. M.
2016-08-01
This paper reports a new spectral algorithm for obtaining an approximate solution for the Lévy-Feller diffusion equation depending on Legendre polynomials and Chebyshev collocation points. The Lévy-Feller diffusion equation is obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative. A new formula expressing explicitly any fractional-order derivatives, in the sense of Riesz-Feller operator, of Legendre polynomials of any degree in terms of Jacobi polynomials is proved. Moreover, the Chebyshev-Legendre collocation method together with the implicit Euler method are used to reduce these types of differential equations to a system of algebraic equations which can be solved numerically. Numerical results with comparisons are given to confirm the reliability of the proposed method for the Lévy-Feller diffusion equation.
Solution of classical evolutionary models in the limit when the diffusion approximation breaks down
NASA Astrophysics Data System (ADS)
Saakian, David B.; Hu, Chin-Kun
2016-10-01
The discrete time mathematical models of evolution (the discrete time Eigen model, the Moran model, and the Wright-Fisher model) have many applications in complex biological systems. The discrete time Eigen model rather realistically describes the serial passage experiments in biology. Nevertheless, the dynamics of the discrete time Eigen model is solved in this paper. The 90% of results in population genetics are connected with the diffusion approximation of the Wright-Fisher and Moran models. We considered the discrete time Eigen model of asexual virus evolution and the Wright-Fisher model from population genetics. We look at the logarithm of probabilities and apply the Hamilton-Jacobi equation for the models. We define exact dynamics for the population distribution for the discrete time Eigen model. For the Wright-Fisher model, we express the exact steady state solution and fixation probability via the solution of some nonlocal equation then give the series expansion of the solution via degrees of selection and mutation rates. The diffusion theories result in the zeroth order approximation in our approach. The numeric confirms that our method works in the case of strong selection, whereas the diffusion method fails there. Although the diffusion method is exact for the mean first arrival time, it provides incorrect approximation for the dynamics of the tail of distribution.
Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia
2016-02-01
The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates.
A diffusion approximation for ocean wave scatterings by randomly distributed ice floes
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley
2016-11-01
This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
NASA Astrophysics Data System (ADS)
Fontaine, G.; Brassard, P.; Dufour, P.; Tremblay, P.-E.
2015-06-01
The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. Some important insights into the process may be derived using an approximate approach which combines static stellar models with estimates of diffusion timescales at the base of the outer convection zone or, in its absence, at the photosphere. Until recently, and to our knowledge, values of diffusion timescales in white dwarfs have all been obtained on the basis of the same physics as that developed initially by Paquette et al., including their diffusion coefficients and thermal diffusion coefficients. In view of the recent exciting discoveries of a plethora of metals (including some never seen before) polluting the atmospheres of an increasing number of cool white dwarfs, we felt that a new look at the estimates of settling timescales would be worthwhile. We thus provide improved estimates of diffusion timescales for all 27 elements from Li to Cu in the periodic table in a wide range of the surface gravity-effective temperature domain and for both DA and non-DA stars.
NASA Astrophysics Data System (ADS)
Naglič, Peter; Vidovič, Luka; Milanič, Matija; Randeberg, Lise L.; Majaron, Boris
2014-03-01
Light propagation in highly scattering biological tissues is often treated in the so-called diffusion approximation (DA). Although the analytical solutions derived within the DA are known to be inaccurate near tissue boundaries and absorbing layers, their use in quantitative analysis of diffuse reflectance spectra (DRS) is quite common. We analyze the artifacts in assessed tissue properties which occur in fitting of numerically simulated DRS with the DA solutions for a three-layer skin model. In addition, we introduce an original procedure which significantly improves the accuracy of such an inverse analysis of DRS. This procedure involves a single comparison run of a Monte Carlo (MC) numerical model, yet avoids the need to implement and run an inverse MC. This approach is tested also in analysis of experimental DRS from human skin.
Barth, Andrea Lang, Annika
2012-12-15
In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, cadlag, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L{sup 2} and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler-Maruyama approximation. Finally, simulations complete the paper.
NASA Astrophysics Data System (ADS)
Winkelmann, Stefanie; Schütte, Christof
2016-12-01
Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest. We consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic reaction-diffusion systems that exhibit properties of metastability. The space of motion is decomposed into metastable compartments, and diffusive motion is approximated by jumps between these compartments. Treating these jumps as first-order reactions, simulation of the resulting stochastic system is possible by the Gillespie method. We present the theory of Markov state models as a theoretical foundation of this intuitive approach. By means of Markov state modeling, both the number and shape of compartments and the transition rates between them can be determined. We consider the ST-CME for two reaction-diffusion systems and compare it to more detailed models. Moreover, a rigorous formal justification of the ST-CME by Galerkin projection methods is presented.
The effects of hyper-spherical approximation of Yukawa potential to diffusion properties
NASA Astrophysics Data System (ADS)
Kim, In Gee; Murillo, Michael S.
2015-11-01
The effects of Yukawa potential to the diffusion properties of binary ionic mixtures are investigated in terms of both the classical molecular dynamics and the kinetic theory. The Yukawa interatomic potential is treated by means of the hyper-spherical approximation, which replaces the Ewald summation by a multiple of the hyperbolic trigonometric functions and the lattice summation of screening. The influence of the hyper-spherical approximation of the Yukawa potential is able to be understood through the calculations of transport coefficients with the relationship to Coulomb logarithm. Numerical studies over a various range of the Debye-Hückel screening parameter and of the plasma coupling parameter to binary ionic mixtures will be provided. We consider primarily the interdiffusion coefficients and then discuss about the mixing properties of self-diffusion coefficients.
Shirdel-Havar, A. H. Masoudian Saadabad, R.
2015-03-21
Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shown that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.
Diffusion approximation and short-path statistics at low to intermediate Knudsen numbers
NASA Astrophysics Data System (ADS)
Terrée, Guillaume; Blanco, Stéphane; El Hafi, Mouna; Fournier, Richard; Rolland, Julien Yves
2015-04-01
In the field of first-return statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. However, general integral constraints have been identified that make it possible to address such short-path statistics indirectly by application of the diffusion approximation to long paths in a simple associated first-passage problem. This approach is exact in the zero Knudsen limit (Blanco S. and Fournier R., Phys. Rev. Lett., 97 (2006) 230604). Its generalization to the low to intermediate Knudsen range is addressed here theoretically and the corresponding predictions are compared to both one-dimension analytical solutions and three-dimension numerical experiments. Direct quantitative relations to the solution of the Schwarzschild-Milne problem are identified.
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Hakim, Vincent; Zeitak, Reuven
1996-09-01
The fraction r\\(t\\) of spins which have never flipped up to time t is studied within a linear diffusion approximation to phase ordering. Numerical simulations show that r\\(t\\) decays with time like a power law with a nontrivial exponent θ which depends on the space dimension. The dynamics is a special case of a stationary Gaussian process of known correlation function. The exponent θ is given by the asymptotic decay of the probability distribution of intervals between consecutive zero crossings. An approximation based on the assumption that successive zero crossings are independent random variables gives values of θ in close agreement with the results of simulations.
Approximation of epidemic models by diffusion processes and their statistical inference.
Guy, Romain; Larédo, Catherine; Vergu, Elisabeta
2015-02-01
Multidimensional continuous-time Markov jump processes [Formula: see text] on [Formula: see text] form a usual set-up for modeling [Formula: see text]-like epidemics. However, when facing incomplete epidemic data, inference based on [Formula: see text] is not easy to be achieved. Here, we start building a new framework for the estimation of key parameters of epidemic models based on statistics of diffusion processes approximating [Formula: see text]. First, previous results on the approximation of density-dependent [Formula: see text]-like models by diffusion processes with small diffusion coefficient [Formula: see text], where [Formula: see text] is the population size, are generalized to non-autonomous systems. Second, our previous inference results on discretely observed diffusion processes with small diffusion coefficient are extended to time-dependent diffusions. Consistent and asymptotically Gaussian estimates are obtained for a fixed number [Formula: see text] of observations, which corresponds to the epidemic context, and for [Formula: see text]. A correction term, which yields better estimates non asymptotically, is also included. Finally, performances and robustness of our estimators with respect to various parameters such as [Formula: see text] (the basic reproduction number), [Formula: see text], [Formula: see text] are investigated on simulations. Two models, [Formula: see text] and [Formula: see text], corresponding to single and recurrent outbreaks, respectively, are used to simulate data. The findings indicate that our estimators have good asymptotic properties and behave noticeably well for realistic numbers of observations and population sizes. This study lays the foundations of a generic inference method currently under extension to incompletely observed epidemic data. Indeed, contrary to the majority of current inference techniques for partially observed processes, which necessitates computer intensive simulations, our method being mostly an
Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling
NASA Astrophysics Data System (ADS)
Yudovsky, Dmitry; Durkin, Anthony J.
2011-07-01
Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer.
Introducing graded meshes in the numerical approximation of distributed-order diffusion equations
NASA Astrophysics Data System (ADS)
Morgado, M. L.; Rebelo, M.
2016-10-01
In this paper we deal with the numerical approximation of initial-boundary value problems to the diffusion equation with distributed order in time. As it is widely known, the solutions of fractional differential equations may present a singularity at t = 0 and therefore in these cases, standard finite difference schemes usually suffer a convergence order reduction with respect to time discretization. In order to overcome this, here we propose a finite difference scheme with a graded time mesh, constructed in such a way that the time step-size is smaller near the potential singular point. Numerical results are presented and compared with those obtained with finite difference schemes with uniform meshes.
Multigroup diffusion preconditioners for multiplying fixed-source transport problems
NASA Astrophysics Data System (ADS)
Roberts, Jeremy A.; Forget, Benoit
2014-10-01
Several preconditioners based on multigroup diffusion are developed for application to multiplying fixed-source transport problems using the discrete ordinates method. By starting from standard, one-group, diffusion synthetic acceleration (DSA), a multigroup diffusion preconditioner is constructed that shares the same fine mesh as the transport problem. As a cheaper but effective alternative, a two-grid, coarse-mesh, multigroup diffusion preconditioner is examined, for which a variety of homogenization schemes are studied to generate the coarse mesh operator. Finally, a transport-corrected diffusion preconditioner based on application of the Newton-Shulz algorithm is developed. The results of several numerical studies indicate the coarse-mesh, diffusion preconditioners work very well. In particular, a coarse-mesh, transport-corrected, diffusion preconditioner reduced the computational time of multigroup GMRES by up to a factor of 17 and outperformed best-case Gauss-Seidel results by over an order of magnitude for all problems studied.
A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs
Rosenbaum, Robert
2016-01-01
Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public. PMID:27148036
A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs.
Rosenbaum, Robert
2016-01-01
Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2017-02-01
Pulsed field gradient (PFG) technique is a noninvasive tool, and has been increasingly employed to study anomalous diffusions in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, the analysis of PFG anomalous diffusion is much more complicated than normal diffusion. In this paper, a fractal derivative model based modified Gaussian phase distribution method is proposed to describe PFG anomalous diffusion. By using the phase distribution obtained from the effective phase shift diffusion method based on fractal derivatives, and employing some of the traditional Gaussian phase distribution approximation techniques, a general signal attenuation expression for free fractional diffusion is derived. This expression describes a stretched exponential function based attenuation, which is distinct from both the exponential attenuation for normal diffusion obtained from conventional Gaussian phase distribution approximation, and the Mittag-Leffler function based attenuation for anomalous diffusion obtained from fractional derivative. The obtained signal attenuation expression can analyze the finite gradient pulse width (FGPW) effect. Additionally, it can generally be applied to all three types of PFG fractional diffusions classified based on time derivative order α and space derivative order β. These three types of fractional diffusions include time-fractional diffusion with { 0 < α ≤ 2 , β = 2 } , space-fractional diffusion with { α = 1 , 0 < β ≤ 2 } , and general fractional diffusion with { 0 < α , β ≤ 2 } . The results in this paper are consistent with reported results based on effective phase shift diffusion equation method and instantaneous signal attenuation method. This method provides a new, convenient approximation formalism for analyzing PFG anomalous diffusion experiments. The expression that can simultaneously interpret general fractional diffusion and FGPW effect could be especially important in PFG MRI, where the narrow
Non-uniform Neutron Source Approximation for Iterative Reconstruction of Coded Source Images
Gregor, Jens; Bingham, Philip R
2016-01-01
X-ray and neutron optics both lack ray focusing capabilities. An x-ray source can be made small and powerful enough to facilitate high-resolution imaging while providing adequate flux. This is not yet possible for neutrons. One remedy is to employ a computational imaging technique such as magnified coded source imaging. The greatest challenge associated with successful reconstruction of high-resolution images from such radiographs is to precisely model the flux distribution for complex non-uniform neutron sources. We have developed a framework based on Monte Carlo simulation and iterative reconstruction that facilitates high- resolution coded source neutron imaging. In this paper, we define a methodology to empirically measure and approximate the flux profile of a non-uniform neutron source, and we show how to incorporate the result within the forward model of an iterative reconstruction algorithm. We assess improvement in image quality by comparing reconstructions based respectively on the new empirical forward model and our previous analytic models.
Diffusion filter eliminates fringe effects of coherent laser light source
NASA Technical Reports Server (NTRS)
Olsasky, M. J.
1970-01-01
Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.
NASA Astrophysics Data System (ADS)
Sarwar, S.; Rashidi, M. M.
2016-07-01
This paper deals with the investigation of the analytical approximate solutions for two-term fractional-order diffusion, wave-diffusion, and telegraph equations. The fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], (1,2), and [1,2], respectively. In this paper, we extended optimal homotopy asymptotic method (OHAM) for two-term fractional-order wave-diffusion equations. Highly approximate solution is obtained in series form using this extended method. Approximate solution obtained by OHAM is compared with the exact solution. It is observed that OHAM is a prevailing and convergent method for the solutions of nonlinear-fractional-order time-dependent partial differential problems. The numerical results rendering that the applied method is explicit, effective, and easy to use, for handling more general fractional-order wave diffusion, diffusion, and telegraph problems.
Boron diffusion in silicon from metal boride sources
Ryan, J.G.
1988-01-01
Thin films of titanium and lanthanum borides were investigated as potential boron diffusion sources. TiB{sub x} and LaB{sub 6} films exhibited room-temperature film stresses and resistivity values similar to refractory-metal silicides, and acted as boron diffusion sources, producing diffusions with high surface concentrations. The source of boron from TiB{sub x} films appears to be the excess boron present in the metal boride or at the metal boride-silicon substrate interface. Boron surface concentration increases with increasing mole fraction of boron in the metal boride source. Boron surface concentration peaks at 1000{degree}C for furnace-annealed TiB{sub 2.2}, but rises until a plateau is reached at 1050{degree}C for rapid-annealed samples of the same composition. The concentration of electrically active boron was consistently lower than the chemical concentration in these studies. The stability of the boride films on silicon substrates was found to be dependent on boride source composition. LaB{sub 6} and TiB films reacted with the silicon substrate. Although the TiB{sub 2.1}, TiB{sub 2.2}, and TiB{sub 2.9} films did not decompose or allow Si to diffuse into them, a silicon boride surface layer was formed in the silicon substrate caused by boron out-diffusing from these sources during furnace annealing.
Output Stream of Leaky Integrate-and-Fire Neuron Without Diffusion Approximation
NASA Astrophysics Data System (ADS)
Vidybida, Alexander K.
2017-01-01
Probability density function (pdf) of output interspike intervals (ISI) as well as mean ISI is found in exact form for leaky integrate-and-fire (LIF) neuron stimulated with Poisson stream. The diffusion approximation is not used. The whole range of possible ISI values is represented as infinite union of disjoint intervals: ]0;∞ [ = ]0;T_2] + sum _{m=0}^∞ ]T_2+m T_3;T_2+(m+1)T_3], where T_2 and T_3 are defined by the LIF's physical parameters. Exact expression for the obtained pdf is different on different intervals and is given as finite sum of multiple integrals. For the first three intervals the integrals are taken which brings about exact expressions with polylogarithm functions. The found distribution can be bimodal for some values of parameters. Conditions, which ensure bimodality are briefly analyzed.
Svyatskiy, Daniil; Shashkov, Mikhail; Kuzmin, D
2008-01-01
A new approach to the design of constrained finite element approximations to second-order elliptic problems is introduced. This approach guarantees that the finite element solution satisfies the discrete maximum principle (DMP). To enforce these monotonicity constrains the sufficient conditions for elements of the stiffness matrix are formulated. An algebraic splitting of the stiffness matrix is employed to separate the contributions of diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass L{sub 2} projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions.
NASA Astrophysics Data System (ADS)
Du, Qiang; Yang, Jiang
2017-03-01
This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge-Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge-Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen-Cahn equations, nonlocal Cahn-Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.
NASA Astrophysics Data System (ADS)
Zhao, Haixia; Gao, Jinghuai; Peng, Jigen
2017-01-01
The frequency-dependent seismic anomalies related to hydrocarbon reservoirs have lately attracted wide interest. The diffusive-viscous model was proposed to explain these anomalies. When an incident diffusive-viscous wave strikes a boundary between two different media, it is reflected and transmitted. The equation for the reflection coefficient is quite complex and laborious, so it does not provide an intuitive understanding of how different amplitude relates to the parameters of the media and how variation of a particular parameter affects the reflection coefficient. In this paper, we firstly derive a two-term (intercept-gradient) and three-term (intercept-gradient-curvature) approximation to the reflection coefficient of the plane diffusive-viscous wave without any assumptions. Then, we study the limitations of the obtained approximations by comparing the approximate value of the reflection coefficient with its exact value. Our results show that the two approximations match well with the exact solutions within the incident angle of 35°. Finally, we analyze the effects of diffusive and viscous attenuation parameters, velocity and density in the diffusive-viscous wave equation on the intercept, gradient and curvature terms in the approximations. The results show that the diffusive attenuation parameter has a big impact on them, while the viscous attenuation parameter is insensitive to them; the velocity and density have a significant influence on the normal reflections and they distinctly affect the intercept, gradient and curvature term at lower acoustic impedance.
Extracting spatial information from large aperture exposures of diffuse sources
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Moos, H. W.
1981-01-01
The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.
Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field
NASA Astrophysics Data System (ADS)
King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio
2017-04-01
This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.
Linaro, Daniele; Storace, Marco; Giugliano, Michele
2011-03-01
Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here.
Gjini, Erida; Haydon, Daniel T; David Barry, J; Cobbold, Christina A
2014-01-21
Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion. © 2013 Published by Elsevier Ltd. All rights reserved.
An approximate algorithm for the flux from a rectangular volume source
Wallace, O.J.
1994-11-09
An exact semi-analytic formula for the flux from a rectangular surface source with a slab shield has been derived and the required function table has been calculated. This formula is the basis for an algorithm which gives a good approximation for the flux from a rectangular volume source. No other hand calculation method for this source geometry is available in the literature.
Mean field approximation for biased diffusion on Japanese inter-firm trading network.
Watanabe, Hayafumi
2014-01-01
By analysing the financial data of firms across Japan, a nonlinear power law with an exponent of 1.3 was observed between the number of business partners (i.e. the degree of the inter-firm trading network) and sales. In a previous study using numerical simulations, we found that this scaling can be explained by both the money-transport model, where a firm (i.e. customer) distributes money to its out-edges (suppliers) in proportion to the in-degree of destinations, and by the correlations among the Japanese inter-firm trading network. However, in this previous study, we could not specifically identify what types of structure properties (or correlations) of the network determine the 1.3 exponent. In the present study, we more clearly elucidate the relationship between this nonlinear scaling and the network structure by applying mean-field approximation of the diffusion in a complex network to this money-transport model. Using theoretical analysis, we obtained the mean-field solution of the model and found that, in the case of the Japanese firms, the scaling exponent of 1.3 can be determined from the power law of the average degree of the nearest neighbours of the network with an exponent of -0.7.
Lin, Guoxing
2016-11-21
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression Eα(-Dfbα,β(*)) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an n(β) dependence upon the order of coherence which is different from the familiar n(2) dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2016-11-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression Eα(-Dfbα,β * ) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an nβ dependence upon the order of coherence which is different from the familiar n2 dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.
de Boissieu, M; Francoual, S; Kaneko, Y; Ishimasa, T
2005-09-02
We report on the absolute scale measurement of the x-ray diffuse scattering in the ZnMgSc icosahedral quasicrystal and its periodic approximant. Whereas the diffuse scattering in the approximant is purely accounted for by thermal diffuse scattering, an additional signal is observed in the quasicrystal. It is related to phason fluctuations as indicated by its Q(2)(per) dependence. Moreover, when compared to previous measurements carried out on the i-AlPdMn phase, we find that the amount of diffuse scattering is smaller in the i-ZnMgSc phase, in agreement with larger phason elastic constants in this phase. This is confirmed by the observation of a large number of weak Bragg peaks having a high Q(per) reciprocal space component.
Boissieu, M. de; Francoual, S.; Kaneko, Y.; Ishimasa, T.
2005-09-02
We report on the absolute scale measurement of the x-ray diffuse scattering in the ZnMgSc icosahedral quasicrystal and its periodic approximant. Whereas the diffuse scattering in the approximant is purely accounted for by thermal diffuse scattering, an additional signal is observed in the quasicrystal. It is related to phason fluctuations as indicated by its Q{sub per}{sup 2} dependence. Moreover, when compared to previous measurements carried out on the i-AlPdMn phase, we find that the amount of diffuse scattering is smaller in the i-ZnMgSc phase, in agreement with larger phason elastic constants in this phase. This is confirmed by the observation of a large number of weak Bragg peaks having a high Q{sub per} reciprocal space component.
The discovery of diffuse steep spectrum sources in Abell 2256
NASA Astrophysics Data System (ADS)
van Weeren, R. J.; Intema, H. T.; Oonk, J. B. R.; Röttgering, H. J. A.; Clarke, T. E.
2009-12-01
Context: Hierarchical galaxy formation models indicate that during their lifetime galaxy clusters undergo several mergers. An example of such a merging cluster is Abell 2256. Here we report on the discovery of three diffuse radio sources in the periphery of Abell 2256, using the Giant Metrewave Radio Telescope (GMRT). Aims: The aim of the observations was to search for diffuse ultra-steep spectrum radio sources within the galaxy cluster Abell 2256. Methods: We have carried out GMRT 325 MHz radio continuum observations of Abell 2256. V, R and I band images of the cluster were taken with the 4.2 m William Herschel Telescope (WHT). Results: We have discovered three diffuse elongated radio sources located about 1 Mpc from the cluster center. Two are located to the west of the cluster center, and one to the southeast. The sources have a measured physical extent of 170, 140 and 240 kpc, respectively. The two western sources are also visible in deep low-resolution 115-165 MHz Westerbork Synthesis Radio Telescope (WSRT) images, although they are blended into a single source. For the combined emission of the blended source we find an extreme spectral index (α) of -2.05 ± 0.14 between 140 and 351 MHz. The extremely steep spectral index suggests these two sources are most likely the result of adiabatic compression of fossil radio plasma due to merger shocks. For the source to the southeast, we find that {α < -1.45} between 1369 and 325 MHz. We did not find any clear optical counterparts to the radio sources in the WHT images. Conclusions: The discovery of the steep spectrum sources implies the existence of a population of faint diffuse radio sources in (merging) clusters with such steep spectra that they have gone unnoticed in higher frequency (⪆1 GHz) observations. Simply considering the timescales related to the AGN activity, synchrotron losses, and the presence of shocks, we find that most massive clusters should possess similar sources. An exciting possibility
NASA Technical Reports Server (NTRS)
Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.
2002-01-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
NASA Astrophysics Data System (ADS)
Ghanbarian, Behzad; Daigle, Hugh; Hunt, Allen G.; Ewing, Robert P.; Sahimi, Muhammad
2015-01-01
Understanding and accurate prediction of gas or liquid phase (solute) diffusion are essential to accurate prediction of contaminant transport in partially saturated porous media. In this study, we propose analytical equations, using concepts from percolation theory and the Effective Medium Approximation (EMA) to model the saturation dependence of both gas and solute diffusion in porous media. The predictions of our theoretical approach agree well with the results of nine lattice Boltzmann simulations. We find that the universal quadratic scaling predicted by percolation theory, combined with the universal linear scaling predicted by the EMA, describes diffusion in porous media with both relatively broad and extremely narrow pore size distributions.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Are diffuse sources responsible for the ARCADE excess emission?
NASA Astrophysics Data System (ADS)
Norris, Ray; Wall, Jasper; Mao, Minnie; Condon, Jim; Seymour, Nick; Vernstrom, Tessa
2013-10-01
We propose to observe a patch of sky at 2.6 GHz at low resolution to try to identify the origin of the anomalous excess in the sky background temperature obtained with the ARCADE2 experiment. The proposed observation will obtain a significant detection if the excess is due to a diffuse component, such as that predicted from dark matter annihilation. We propose to conduct this experiment in the ATLAS-ELAIS S1 field, where we already have excellent high-resolution data to subtract the compact sources. We successfully proposed and observed this in 2012APRS, but the result was marred by the difficulty of correctly subtracting the compact sources. Based on our learning from this experience, we believe we can now redesign the observation which will either detect the alleged diffuse sources or else rule them out to a very stringent limit.
Diffuse optical tomography using dual-interfering source
NASA Astrophysics Data System (ADS)
Chen, Yu; Mu, Chenpeng; Intes, Xavier; Chance, Britton
2002-04-01
A frequency domain heterodyne system for recording the amplitude and phase of diffuse photon density wave (DPDW) is described here. We demonstrated experimentally the possibility of tomographic image reconstruction using a pair of out-of-phase sources. Both iterative method (SIRT) and subspace technique (SVD) have been used to address the inverse problem. The image quality with respect to the number of iterations and regularization numbers is discussed. Further investigations including the relationship between several parameters (such as modulation frequency, the source pair separation and the number of source and detectors) and the image quality are also discussed.
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
Pezo, Danilo; Soudry, Daniel; Orio, Patricio
2014-01-01
To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914
Optimal localization of diffusion sources in complex networks
Hu, Zhao-Long; Han, Xiao; Lai, Ying-Cheng
2017-01-01
Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are discerned, the problem of optimal source localization becomes one of sparse signal reconstruction, which can be solved using compressive sensing. Application of our framework to model and empirical networks demonstrates that sources in homogeneous and denser networks are more readily to be located. A surprising finding is that, for a connected undirected network with random link weights and weak noise, a single messenger node is sufficient for locating any number of sources. The framework deepens our understanding of the network source localization problem and offers efficient tools with broad applications. PMID:28484635
Optimal localization of diffusion sources in complex networks.
Hu, Zhao-Long; Han, Xiao; Lai, Ying-Cheng; Wang, Wen-Xu
2017-04-01
Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are discerned, the problem of optimal source localization becomes one of sparse signal reconstruction, which can be solved using compressive sensing. Application of our framework to model and empirical networks demonstrates that sources in homogeneous and denser networks are more readily to be located. A surprising finding is that, for a connected undirected network with random link weights and weak noise, a single messenger node is sufficient for locating any number of sources. The framework deepens our understanding of the network source localization problem and offers efficient tools with broad applications.
Diffusion of Heat from a Line Source in Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Uberoi, Mahinder S; Corrsin, Stanley
1953-01-01
An experimental and analytical study has been made of some features of the turbulent heat diffusion behind a line heated wire stretched perpendicular to a flowing isotropic turbulence. The mean temperature distributions have been measured with systematic variations in wind speed, size of turbulence-producing grid, and downstream location of heat source. The nature of the temperature fluctuation field has been studied. A comparison of Lagrangian and Eulerian analyses for diffusion in a nondecaying turbulence yields an expression for turbulent-heat-transfer coefficient in terms of turbulence velocity and a Lagrangian "scale." the ratio of Eulerian to Lagrangian microscale has been determined theoretically by generalization of a result of Heisenberg and with arbitrary constants taken from independent sources, shows rough agreement with experimental results. A convenient form has been deduced for the criterion of interchangeability of instantaneous space and time derivatives in a flowing turbulence.
Analysis on a diffusive SIS epidemic model with logistic source
NASA Astrophysics Data System (ADS)
Li, Bo; Li, Huicong; Tong, Yachun
2017-08-01
In this paper, we are concerned with an SIS epidemic reaction-diffusion model with logistic source in spatially heterogeneous environment. We first discuss some basic properties of the parabolic system, including the uniform upper bound of solutions and global stability of the endemic equilibrium when spatial environment is homogeneous. Our primary focus is to determine the asymptotic profile of endemic equilibria (when exist) if the diffusion (migration) rate of the susceptible or infected population is small or large. Combined with the results of Li et al. (J Differ Equ 262:885-913, 2017) where the case of linear source is studied, our analysis suggests that varying total population enhances persistence of infectious disease.
Photoacoustic ultrasound sources from diffusion-limited aggregates
NASA Astrophysics Data System (ADS)
Patel, Krutik; Brubaker, Morgan; Kotlerman, Alexander; Salazar, Robert; Wolf, Eli; Weld, David M.
2016-10-01
Metallic diffusion-limited aggregate (DLA) films are well-known to exhibit near-perfect broadband optical absorption. We demonstrate that such films also manifest a substantial and relatively material-independent photoacoustic response, as a consequence of their random nanostructure. We theoretically and experimentally analyze the photoacoustic phenomena in DLA films and show that they can be used to create broadband air-coupled acoustic sources. These sources are inexpensive and simple to fabricate and work into the ultrasonic regime. We illustrate the device possibilities by building and testing an optically addressed acoustic phased array capable of producing virtually arbitrary acoustic intensity patterns in air.
Traytak, Sergey D
2014-06-14
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
Traytak, Sergey D.
2014-06-14
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
NASA Astrophysics Data System (ADS)
Traytak, Sergey D.
2014-06-01
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
Ion diffusion may introduce spurious current sources in Current-Source Density (CSD) analysis.
Halnes, Geir; Mäki-Marttunen, Tuomo; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T
2017-03-15
Current-source density (CSD) analysis is a well-established method for analyzing recorded ocal field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects.
Kikinzon, Evgeny; Kuznetsov, Yuri; Lipnikov, Konstatin; ...
2017-07-08
In this study, we describe a new algorithm for solving multi-material diffusion problem when material interfaces are not aligned with the mesh. In this case interface reconstruction methods are used to construct approximate representation of interfaces between materials. They produce so-called multi-material cells, in which materials are represented by material polygons that contain only one material. The reconstructed interface is not continuous between cells. Finally, we suggest the new method for solving multi-material diffusion problems on such meshes and compare its performance with known homogenization methods.
Airy pattern approximation of a phased microphone array response to a rotating point source.
Debrouwere, Maarten; Angland, David
2017-02-01
Deconvolution of phased microphone array source maps is a commonly applied technique in order to improve the dynamic range and resolution of beamforming. Most deconvolution algorithms require a point spread function (PSF). In this work, it is shown that the conventional definition of the PSF, based on steering vectors, is changed when the source is rotating. The effect of rotation results in an increase in the resolution and aperture of the array. The concept of virtual array positions created by source rotation is used to derive an approximation of the PSF based on an Airy pattern. The Airy pattern approximation is suitable for use in deconvolution of rotating source maps as it is more accurate and computationally less expensive than the conventional PSF definition. The proposed Airy pattern approximation was tested with both CLEAN and DAMAS deconvolution algorithms. On the same hardware, it was significantly faster when compared to the conventional definition. The limitations of the Airy pattern approximation are shown in a synthesized broadband test case with a high dynamic range. However, in most practical beamforming applications, the proposed Airy pattern approximated PSF for deconvolution is a suitable option considering its accuracy and speed.
Numerical approximation of Levy-Feller diffusion equation and its probability interpretation
NASA Astrophysics Data System (ADS)
Zhang, H.; Liu, F.; Anh, V.
2007-09-01
In this paper, we consider the Levy-Feller fractional diffusion equation, which is obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order and skewness [theta] ([theta][less-than-or-equals, slant]min{[alpha],2-[alpha]}). We construct two new discrete schemes of the Cauchy problem for the above equation with 0<[alpha]<1 and 1<[alpha][less-than-or-equals, slant]2, respectively. We investigate their probabilistic interpretation and the domain of attraction of the corresponding stable Levy distribution. Furthermore, we present a numerical analysis for the Levy-Feller fractional diffusion equation with 1<[alpha]<2 in a bounded spatial domain. Finally, we present a numerical example to evaluate our theoretical analysis.
Uniform asymptotic approximation of diffusion to a small target: Generalized reaction models
NASA Astrophysics Data System (ADS)
Isaacson, Samuel A.; Mauro, Ava J.; Newby, Jay
2016-10-01
The diffusion of a reactant to a binding target plays a key role in many biological processes. The reaction radius at which the reactant and target may interact is often a small parameter relative to the diameter of the domain in which the reactant diffuses. We develop uniform in time asymptotic expansions in the reaction radius of the full solution to the corresponding diffusion equations for two separate reactant-target interaction mechanisms: the Doi or volume reactivity model and the Smoluchowski-Collins-Kimball partial-absorption surface reactivity model. In the former, the reactant and target react with a fixed probability per unit time when within a specified separation. In the latter, upon reaching a fixed separation, they probabilistically react or the reactant reflects away from the target. Expansions of the solution to each model are constructed by projecting out the contribution of the first eigenvalue and eigenfunction to the solution of the diffusion equation and then developing matched asymptotic expansions in Laplace-transform space. Our approach offers an equivalent, but alternative, method to the pseudopotential approach we previously employed [Isaacson and Newby, Phys. Rev. E 88, 012820 (2013), 10.1103/PhysRevE.88.012820] for the simpler Smoluchowski pure-absorption reaction mechanism. We find that the resulting asymptotic expansions of the diffusion equation solutions are identical with the exception of one parameter: the diffusion-limited reaction rates of the Doi and partial-absorption models. This demonstrates that for biological systems in which the reaction radius is a small parameter, properly calibrated Doi and partial-absorption models may be functionally equivalent.
NASA Astrophysics Data System (ADS)
Lin, Xue-lei; Lu, Xin; Ng, Micheal K.; Sun, Hai-Wei
2016-10-01
A fast accurate approximation method with multigrid solver is proposed to solve a two-dimensional fractional sub-diffusion equation. Using the finite difference discretization of fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea is to make use of the block ɛ-circulant approximation via fast Fourier transforms, so that the resulting task is to solve a block diagonal system, where each diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show that the accuracy of the approximation scheme is of O (ɛ). Because of the special diagonal block structure, we employ the multigrid method to solve the resulting linear systems. The convergence of the multigrid method is studied. Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of the proposed solver.
NASA Astrophysics Data System (ADS)
Seyedabbasi, Mir Ahmad; Newell, Charles J.; Adamson, David T.; Sale, Thomas C.
2012-06-01
The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones was investigated. Matrix diffusion is being increasingly recognized as an important non-DNAPL component of source behavior over time, and understanding the persistence of contaminants that have diffused into lower permeability units can impact remedial decision-making. In this study, a hypothetical DNAPL source zone architecture consisting of several different sized pools and fingers originally developed by Anderson et al. (1992) was adapted to include defined low permeability layers. A coupled dissolution-diffusion model was developed to allow diffusion into these layers while in contact with DNAPL, followed by diffusion out of these same layers after complete DNAPL dissolution. This exercise was performed for releases of equivalent masses (675 kg) of three different compounds, including chlorinated solvents with solubilities ranging from low (tetrachloroethene (PCE)), moderate (trichloroethene (TCE)) to high (dichloromethane (DCM)). The results of this simple modeling exercise demonstrate that matrix diffusion can be a critical component of source zone longevity and may represent a longer-term contributor to source longevity (i.e., longer time maintaining concentrations above MCLs) than DNAPL dissolution alone at many sites. For the hypothetical TCE release, the simulation indicated that dissolution of DNAPL would take approximately 38 years, while the back diffusion from low permeability zones could maintain the source for an additional 83 years. This effect was even more dramatic for the higher solubility DCM (97% of longevity due to matrix diffusion), while the lower solubility PCE showed a more equal contribution from DNAPL dissolution vs. matrix diffusion. Several methods were used to describe the resulting source attenuation curves, including a first-order decay model which showed that half-life of
Localizing Sources of Brain Disease Progression with Network Diffusion Model.
Hu, Chenhui; Hua, Xue; Ying, Jun; Thompson, Paul M; Fakhri, Georges E; Li, Quanzheng
2016-10-01
Pinpointing the sources of dementia is crucial to the effective treatment of neurodegenerative diseases. In this paper, we propose a diffusion model with impulsive sources over the brain connectivity network to model the progression of brain atrophy. To reliably estimate the atrophy sources, we impose sparse regularization on the source distribution and solve the inverse problem with an efficient gradient descent method. We localize the possible origins of Alzheimer's disease (AD) based on a large set of repeated magnetic resonance imaging (MRI) scans in Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The distribution of the sources averaged over the sample population is evaluated. We find that the dementia sources have different concentrations in the brain lobes for AD patients and mild cognitive impairment (MCI) subjects, indicating possible switch of the dementia driving mechanism. Moreover, we demonstrate that we can effectively predict changes of brain atrophy patterns with the proposed model. Our work could help understand the dynamics and origin of dementia, as well as monitor the progression of the diseases in an early stage.
Multiport Diffuser as Line Source of Momentum in Shallow Water
NASA Astrophysics Data System (ADS)
Lee, Joseph H.; Jirka, Gerhard H.
1980-08-01
Multiport diffusers are linear structures consisting of many closely spaced nozzles which inject a series of high-velocity jets into an ambient fluid. The discharge of heated water into the shallow coastal zone is considered herein as a typical practice for cooling water disposal from steam electric power generation. The flow and temperature fields, induced in the otherwise stagnant and homogeneous fluid layer, are analyzed by representing the diffuser as a line source of fluid momentum in a two-dimensional coordinate system, thus neglecting the initial momentum transfer zone in which the three-dimensional jets merge to produce a vertically fully mixed flow. A scaling argument which considers the effect of pressure deviations, turbulent bottom friction, and lateral turbulent diffusion shows that the flow field can be divided into the near field, of order of the diffuser length, and into the far field, at longer distances. The near field is characterized by a predominantly inviscid behavior and gives rise to a contracting slipstream motion, qualitatively similar to the slipstream produced by an airscrew. The shape of the slip streamline is found by mapping the complex potential of the flow into the log hodograph plane. The boundary conditions at the diffuser line are assumed to be a uniform normal velocity and a uniform longitudinal acceleration. The interior velocity and pressure distribution are determined through a finite difference solution using the known geometry of the slipstream. Results indicate a strong separation angle (60°) of the slipstream at the diffuser and a rapid approach to the asymptotic contraction value (½). An integral model is developed for the depth-averaged temperature and velocity in the far field of the `diffuser plume' (i.e., a localized current with elevated temperatures with weaker velocities and a uniform temperature outside). The model includes the effect of turbulent friction at the plume bottom, described by a quadratic friction
NASA Astrophysics Data System (ADS)
Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw
2016-11-01
In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.
Approximate Subject Specific Pseudo MRI from an Available MRI Dataset for MEG Source Imaging.
Gohel, Bakul; Lim, Sanghyun; Kim, Min-Young; Kwon, Hyukchan; Kim, Kiwoong
2017-01-01
Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.
Approximate Subject Specific Pseudo MRI from an Available MRI Dataset for MEG Source Imaging
Gohel, Bakul; Lim, Sanghyun; Kim, Min-Young; Kwon, Hyukchan; Kim, Kiwoong
2017-01-01
Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response. PMID:28848418
The use of the diffusion approximation for simulating radiation and thermal processes in the skin
NASA Astrophysics Data System (ADS)
Kovtanyuk, A. E.; Grenkin, G. V.; Chebotarev, A. Yu.
2017-08-01
Radiation and thermal processes in skin exposed to solar radiation are simulated based on the diffusion model of radiative-conductive heat exchange. Using the model proposed for the parameters corresponding to radiation with a wavelength of 800 nm, the contributions of thermal radiation induced by the skin and the reflection and refraction effects are estimated, and the photoprotective properties of titanium dioxide nanoparticles (TiO2) when introduced into the stratum corneum are studied.
NASA Astrophysics Data System (ADS)
Hallo, M.; Gallovič, F.
2016-11-01
Green functions (GFs) are an essential ingredient in waveform-based earthquake source inversions. Hence, the error due to imprecise knowledge of a crustal velocity model is one of the major sources of uncertainty of the inferred earthquake source parameters. Recent strategies in Bayesian waveform inversions rely on statistical description of the GF uncertainty by means of a Gaussian distribution characterized by a covariance matrix. Here we use Monte-Carlo approach to estimate the GF covariance considering randomly perturbed velocity models. We analyse the dependence of the covariance on various parameters (strength of velocity model perturbations, GF frequency content, source-station distance, etc.). Recognizing that the major source of the GF uncertainty is related to the random time shifts of the signal, we propose a simplified approach to obtain approximate covariances, bypassing the numerically expensive Monte-Carlo simulations. The resulting closed-form formulae for the approximate auto-covariances and cross-covariances between stations and components can be easily implemented in existing inversion techniques. We demonstrate that the approximate covariances exhibit very good agreement with the Monte-Carlo estimates, providing realistic variations of the GF waveforms. Furthermore, we show examples of implementation of the covariance matrix in a Bayesian moment tensor inversion using both synthetic and real data sets. We demonstrate that taking the GF uncertainty into account leads to improved estimates of the moment tensor parameters and their uncertainty.
An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data.
Ferrer-Admetlla, Anna; Leuenberger, Christoph; Jensen, Jeffrey D; Wegmann, Daniel
2016-06-01
The joint and accurate inference of selection and demography from genetic data is considered a particularly challenging question in population genetics, since both process may lead to very similar patterns of genetic diversity. However, additional information for disentangling these effects may be obtained by observing changes in allele frequencies over multiple time points. Such data are common in experimental evolution studies, as well as in the comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally challenging, particularly when considering multilocus data sets. To overcome these issues, we introduce a novel, discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of inferring selection and demography from time series data under the classic Wright-Fisher model and demonstrate that our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients with high accuracy and further extend this model to also infer the rates of sequencing errors and mutations. We finally apply our approach to recent experimental data on the evolution of drug resistance in influenza virus, identifying likely targets of selection and finding evidence for much larger viral population sizes than previously reported.
Wealth and price distribution by diffusive approximation in a repeated prediction market
NASA Astrophysics Data System (ADS)
Bottazzi, Giulio; Giachini, Daniele
2017-04-01
The approximate agents' wealth and price invariant densities of a repeated prediction market model is derived using the Fokker-Planck equation of the associated continuous-time jump process. We show that the approximation obtained from the evolution of log-wealth difference can be reliably exploited to compute all the quantities of interest in all the acceptable parameter space. When the risk aversion of the trader is high enough, we are able to derive an explicit closed-form solution for the price distribution which is asymptotically correct.
NASA Astrophysics Data System (ADS)
Zhang, Tianhe C.; Grill, Warren M.
2010-12-01
Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
NASA Astrophysics Data System (ADS)
Korneev, V. G.
2016-11-01
Efficiency of the error control of numerical solutions of partial differential equations entirely depends on the two factors: accuracy of an a posteriori error majorant and the computational cost of its evaluation for some test function/vector-function plus the cost of the latter. In the paper consistency of an a posteriori bound implies that it is the same in the order with the respective unimprovable a priori bound. Therefore, it is the basic characteristic related to the first factor. The paper is dedicated to the elliptic diffusion-reaction equations. We present a guaranteed robust a posteriori error majorant effective at any nonnegative constant reaction coefficient (r.c.). For a wide range of finite element solutions on a quasiuniform meshes the majorant is consistent. For big values of r.c. the majorant coincides with the majorant of Aubin (1972), which, as it is known, for relatively small r.c. (< ch -2 ) is inconsistent and looses its sense at r.c. approaching zero. Our majorant improves also some other majorants derived for the Poisson and reaction-diffusion equations.
NASA Astrophysics Data System (ADS)
Carrasco-Hernandez, Roberto; Smedley, Andrew R. D.; Webb, Ann R.
2016-05-01
Two radiative transfer models are presented that simplify calculations of street canyon spectral irradiances with minimum data input requirements, allowing better assessment of urban exposures than can be provided by standard unobstructed radiation measurements alone. Fast calculations improve the computational performance of radiation models, when numerous repetitions are required in time and location. The core of the models is the calculation of the spectral diffuse-to-global ratios (DGR) from an unobstructed global spectral measurement. The models are based on, and have been tested against, outcomes of the SMARTS2 algorithm (i.e. Simple Model of the Atmospheric Radiative Transfer of Sunshine). The modelled DGRs can then be used to partition global spectral irradiance values into their direct and diffuse components for different solar zenith angles. Finally, the effects of canyon obstructions can be evaluated independently on the direct and diffuse components, which are then recombined to give the total canyon irradiance. The first model allows ozone and aerosol inputs, while the second provides a further simplification, restricted to average ozone and aerosol contents but specifically designed for faster calculations. To assess the effect of obstructions and validate the calculations, a set of experiments with simulated obstructions (simulated canyons) were performed. The greatest source of uncertainty in the simplified calculations is in the treatment of diffuse radiation. The measurement-model agreement is therefore dependent on the region of the sky obscured and ranges from <5 % at all wavelengths to 20-40 % (wavelength dependent) when diffuse sky only is visible from the canyon.
McKinley, M.S.; Rahnema, F.
2002-06-26
A second-order response matrix method is developed for solving the diffusion equation in a coarse-mesh grid. In this method, the problem domain is divided into a grid of coarse meshes (nodes) of the size of a fuel assembly. Then, by using the fact that all nodes have the same eigenvalue, an equation is developed for the node interface current to flux ratio. The fine-mesh solution in the domain is then obtained by evaluating perturbation expressions for the core eigenvalue and the flux with the node interface current to flux ratios and the precomputed Green's functions for the unique assemblies in the system. The Green's functions and the perturbation expressions for the eigenvalue and flux are based on a high-order boundary condition perturbation method developed recently. Two example problems are used to assess the accuracy of the new method.
Approximately a Thousand Ultra-diffuse Galaxies in the Coma Cluster
NASA Astrophysics Data System (ADS)
Koda, Jin; Yagi, Masafumi; Yamanoi, Hitomi; Komiyama, Yutaka
2015-07-01
We report the discovery of 854 ultra-diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and Hα band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way (MW) sized with very large effective radii of {r}{e}\\gt 1.5 {kpc}. This study was motivated by the recent discovery of 47 UDGs by Dokkum et al.; our discovery suggests \\gt 1000 UDGs after accounting for the smaller Subaru field (4.1 {{degree}}2; about one-half of Dragonfly). The new Subaru UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the color-magnitude diagram with no signature of Hα emission. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii {r}{e}˜ 800\\{pc}-5 {kpc}, effective surface brightnesses {μ }{e}({\\text{}}R) = 25-28 mag arcsec-2, and stellar masses ˜ 1× {10}7{\\text{}}{M}⊙ -5× {10}8{\\text{}}{M}⊙ . There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction ≲ 1% is less than the cosmic average, and thus the gas must have been removed (from the possibly massive dark halo). The UDG population is elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.
Zhou, Quanlin; Oldenburg, Curtis M.; Spangler, Lee H.; ...
2017-01-05
Analytical solutions with infinite exponential series are available to calculate the rate of diffusive transfer between low-permeability blocks and high-permeability zones in the subsurface. Truncation of these series is often employed by neglecting the early-time regime. Here in this paper, we present unified-form approximate solutions in which the early-time and the late-time solutions are continuous at a switchover time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the first coefficient dependent only on the dimensionless area-to-volume ratio. The last two coefficients are either determined analytically for isotropic blocks (e.g., spheresmore » and slabs) or obtained by fitting the exact solutions, and they solely depend on the aspect ratios for rectangular columns and parallelepipeds. For the late-time solutions, only the leading exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic rectangular blocks. The optimal switchover time is between 0.157 and 0.229, with highest relative approximation error less than 0.2%. The solutions are used to demonstrate the storage of dissolved CO2 in fractured reservoirs with low-permeability matrix blocks of single and multiple shapes and sizes. These approximate solutions are building blocks for development of analytical and numerical tools for hydraulic, solute, and thermal diffusion processes in low-permeability matrix blocks.« less
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
NASA Technical Reports Server (NTRS)
Kottarchyk, M.; Chen, S.-H.; Asano, S.
1979-01-01
The study tests the accuracy of the Rayleigh-Gans-Debye (RGD) approximation against a rigorous scattering theory calculation for a simplified model of E. coli (about 1 micron in size) - a solid spheroid. A general procedure is formulated whereby the scattered field amplitude correlation function, for both polarized and depolarized contributions, can be computed for a collection of particles. An explicit formula is presented for the scattered intensity, both polarized and depolarized, for a collection of randomly diffusing or moving particles. Two specific cases for the intermediate scattering functions are considered: diffusing particles and freely moving particles with a Maxwellian speed distribution. The formalism is applied to microorganisms suspended in a liquid medium. Sensitivity studies revealed that for values of the relative index of refraction greater than 1.03, RGD could be in serious error in computing the intensity as well as correlation functions.
Ultra-compact holographic spectrometers for diffuse source spectroscopy
NASA Astrophysics Data System (ADS)
Hsieh, Chaoray
Compact and sensitive spectrometers are of high utility in biological and environmental sensing applications. Over the past half century, enormous research resources are dedicated in making the spectrometers more compact and sensitive. However, since all works are based on the same structure of the conventional spectrometers, the improvement on the performance is limited. Therefore, this ancient research filed still deserves further investigation, and a revolutionary idea is required to take the spectrometers to a whole new level. The research work presented in this thesis focuses on developing a new class of spectrometers that work based on diffractive properties of volume holograms. The hologram in these spectrometers acts as a spectral diversity filter, which maps different input wavelengths into different locations in the output plane. The experimental results show that properly designed volume holograms have excellent capability for separating different wavelength channels of a collimated incident beam. By adding a Fourier transforming lens behind the hologram, a slitless Fourier-transform volume holographic spectrometer is demonstrated, and it works well under diffuse light without using any spatial filter (i.e., slit) in the input. By further design of the hologram, a very compact slitless and lensless spectrometer is implemented for diffuse source spectroscopy by using only a volume hologram and a CCD camera. More sophisticated output patterns are also demonstrated using specially designed holograms to improve the performance of the holographic spectrometers. Finally, the performance of the holographic spectrometers is evaluated and the building of the holographic spectrometer prototype is also discussed.
Diffusion of Cosmic-Rays and Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
del Pozo, E. D. C.; Torres, D. F.; Rodríguez Marrero, A. Y.
It is commonly accepted that supernova remnants (SNR) are one of the most probable scenarios of leptonic and hadronic cosmic-ray (CR) acceleration. Such energetic CR can interact with interstellar gas to produce high-energy gamma rays, which can be detected through ground-based air Cherenkov detectors and space telescopes. Here we present a theoretical model that explains the high energy phenomenology of the neighborhood SNR IC 443, as observed with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope and the Energetic Gamma-ray Experiment Telescope (EGRET). We interpret MAGIC J0616 + 225 as delayed TeV emission of CR diffusing from IC 443, what naturally explains the displacement between EGRET and MAGIC sources.
Diffuse optical tomography using multi-directional sources and detectors
Shimokawa, Takeaki; Ishii, Toshihiro; Takahashi, Yoichiro; Sugawara, Satoru; Sato, Masa-aki; Yamashita, Okito
2016-01-01
Diffuse optical tomography (DOT) is an advanced imaging method used to visualize the internal state of biological tissues as 3D images. However, current continuous-wave DOT requires high-density probe arrays for measurement (less than 15-mm interval) to gather enough information for 3D image reconstruction, which makes the experiment time-consuming. In this paper, we propose a novel DOT measurement system using multi-directional light sources and multi-directional photodetectors instead of high-density probe arrays. We evaluated this system’s multi-directional DOT through computer simulation and a phantom experiment. From the results, we achieved DOT with less than 5-mm localization error up to a 15-mm depth with low-density probe arrays (30-mm interval), indicating that the multi-directional measurement approach allows DOT without requiring high-density measurement. PMID:27446694
Nazarov, R.; Shulenburger, L.; Hood, Randolph Q.; Morales, M.
2016-03-01
We performed diffusion Monte Carlo (DMC) calculations of the spectroscopic properties of a large set of molecules, assessing the effect of different approximations. In systems containing elements with large atomic numbers, we show that the errors associated with the use of nonlocal mean-field-based pseudopotentials in DMC calculations can be significant and may surpass the fixed-node error. In conclusion, we suggest practical guidelines for reducing these pseudopotential errors, which allow us to obtain DMC-computed spectroscopic parameters of molecules and equation of state properties of solids in excellent agreement with experiment.
Nazarov, Roman; Shulenburger, Luke; Morales, Miguel A.; ...
2016-03-28
Diffusion Monte Carlo (DMC) calculations of the spectroscopic properties of a large set of molecules were performed, assessing the effect of different approximations. In systems containing elements with large atomic numbers, we show that the errors associated with the use of nonlocal mean-field-based pseudopotentials in DMC calculations can be significant and may surpass the fixed-node error. We suggest practical guidelines for reducing these pseudopotential errors, which allow us to obtain DMC-computed spectroscopic parameters of molecules and equation of state properties of solids in excellent agreement with experiment.
NASA Astrophysics Data System (ADS)
Einstein, T. L.; Jacobsen, J.; Schiff, C.
1997-03-01
To simulate epitaxial growth, one needs an a priori understanding of how atomic diffusion barriers depend on the occupation of near-neighbor sites of the initial and final positions. From a histogram of such barriers computed for Cu/Cu(100) using the embedded atom method (EAM), Karimi et al.(M. Karimi, T. Tomkowski, G. Vidali, and O. Biham, Phys. Rev. B 52), 5364 (1995); O. Biham et al., preprint found that these energies fell into four groups. They proposed a simple approximation for the local-configuration dependence of the energy barriers. From a reexamination of these energies, using effective medium theory, we propose an approximation which also depends solely on near-neighbor occupations but accounts better for the energy barriers. The scheme is comparably accurate for Ag/Ag(100), but requires some modification for Ni/Ni(100). We also describe some noteworthy effects of fcc geometry in this approximation, particularly a mechanism which, like the Ehrlich-Schwoebel barrier, enhances roughness with increasing temperature. In the next talk we describe and compare simulations using both approximations.
NASA Astrophysics Data System (ADS)
Han, Qin; Zender, Charles S.; Moore, J. Keith; Buck, Clifton S.; Chen, Ying; Johansen, Anne; Measures, Christopher I.
2012-06-01
Mineral aerosol deposition is recognized as the dominant source of iron to the open ocean and the solubility of iron in the dust aerosol is highly variable, with measurements ranging from 0.01-80%. Global models have difficulty capturing the observed variations in solubility, and have ignored the solubility dependence on aerosol size. We introduce two idealized physical models to estimate the size dependence of mineral aerosol solubility: a diffusion-controlled model and a surface-area-controlled model. These models produce differing time- and space-varying solubility maps for aerosol Fe and Al given the dust age at deposition, size-resolved dust entrainment fields, and the aerosol acidity. The resulting soluble iron deposition fluxes are substantially different, and more realistic, than a globally uniform solubility approximation. The surface-area-controlled solubility varies more than the diffusion-controlled solubility and better captures the spatial pattern of observed solubility in the Atlantic. However, neither of these two models explains the large solubility variation observed in the Pacific. We then examine the impacts of spatially variable, size-dependent solubility on marine biogeochemistry with the Biogeochemical Elemental Cycling (BEC) ocean model by comparing the modeled surface ocean dissolved Fe and Al with observations. The diffusion-based variable solubility does not significantly improve the simulation of dissolved Fe relative to a 5% globally uniform solubility, while the surface-area-based variable solubility improves the simulation in the North Atlantic but worsens it in the Pacific and Indian Oceans.
NASA Astrophysics Data System (ADS)
Margerin, Ludovic
2013-01-01
This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Singha, Bandana Solanki, Chetan Singh
2016-05-06
In limited dopant source diffusion process, the deposition and the drive in conditions of the source play an important role in pn- junction formation. The pre diffusion anomalies can introduce defects in the emitter region during the process of diffusion which can glide into the bulk region. So, the defects formed in the emitter region due to different pre diffusion issues are studied in this work with boron spin on dopant source diffused in n-type crystalline Si. The samples are prepared for different diffusion conditions of times carried out at diffusion temperature of 900°C. Different characterization techniques used in this work confirms the presence of these defects in the emitter region. The dopant distribution under the same diffusion condition result in non- uniformity, varying the junction depth of the emitter. A single process step anomaly is sufficient enough to degrade the emitter performance and should be avoided.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Solanki, Chetan Singh
2016-05-01
In limited dopant source diffusion process, the deposition and the drive in conditions of the source play an important role in pn- junction formation. The pre diffusion anomalies can introduce defects in the emitter region during the process of diffusion which can glide into the bulk region. So, the defects formed in the emitter region due to different pre diffusion issues are studied in this work with boron spin on dopant source diffused in n-type crystalline Si. The samples are prepared for different diffusion conditions of times carried out at diffusion temperature of 900°C. Different characterization techniques used in this work confirms the presence of these defects in the emitter region. The dopant distribution under the same diffusion condition result in non- uniformity, varying the junction depth of the emitter. A single process step anomaly is sufficient enough to degrade the emitter performance and should be avoided.
Ma, Guobin; Delorme, Jean-François; Gallant, Pascal; Boas, David A
2007-04-01
A simplified approach is proposed to simulate the fluorescence signal from a fluorophore submerged inside a turbid medium using the Monte Carlo method. Based on the reversibility of photon propagation, the fluorescence signal can be obtained from a single Monte Carlo simulation of the excitation light. This is computationally less expensive and also allows for the direct use of well-validated nonfluorescence photon migration Monte Carlo codes. Fluorescence signals from a mouse tissuelike phantom were computed using both the simplified Monte Carlo simulation and the diffusion approximation. The relative difference of signal intensity was found to be at most 30% for a fluorophore placed in the medium at various depths and horizontally midway between a source-detector pair separated by 3 mm. The difference in time characteristics of the signal is also examined.
Bayesian estimation of a source term of radiation release with approximately known nuclide ratios
NASA Astrophysics Data System (ADS)
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek
2016-04-01
We are concerned with estimation of a source term in case of an accidental release from a known location, e.g. a power plant. Usually, the source term of an accidental release of radiation comprises of a mixture of nuclide. The gamma dose rate measurements do not provide a direct information on the source term composition. However, physical properties of respective nuclide (deposition properties, decay half-life) can be used when uncertain information on nuclide ratios is available, e.g. from known reactor inventory. The proposed method is based on linear inverse model where the observation vector y arise as a linear combination y = Mx of a source-receptor-sensitivity (SRS) matrix M and the source term x. The task is to estimate the unknown source term x. The problem is ill-conditioned and further regularization is needed to obtain a reasonable solution. In this contribution, we assume that nuclide ratios of the release is known with some degree of uncertainty. This knowledge is used to form the prior covariance matrix of the source term x. Due to uncertainty in the ratios the diagonal elements of the covariance matrix are considered to be unknown. Positivity of the source term estimate is guaranteed by using multivariate truncated Gaussian distribution. Following Bayesian approach, we estimate all parameters of the model from the data so that y, M, and known ratios are the only inputs of the method. Since the inference of the model is intractable, we follow the Variational Bayes method yielding an iterative algorithm for estimation of all model parameters. Performance of the method is studied on simulated 6 hour power plant release where 3 nuclide are released and 2 nuclide ratios are approximately known. The comparison with method with unknown nuclide ratios will be given to prove the usefulness of the proposed approach. This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases
NASA Astrophysics Data System (ADS)
Hofman, Radek; Seibert, Petra; Kovalets, Ivan; Andronopoulos, Spyros
2015-04-01
We are concerned with source term retrieval in the case of an accident in a nuclear power with off-site consequences. The goal is to optimize atmospheric dispersion model inputs using inverse modeling of gamma dose rate measurements (instantaneous or time-integrated). These are the most abundant type of measurements provided by various radiation monitoring networks across Europe and available continuously in near-real time. Usually, a source term of an accidental release comprises of a mixture of nuclides. Unfortunately, gamma dose rate measurements do not provide a direct information on the source term composition; however, physical properties of respective nuclides (deposition properties, decay half-life) can yield some insight. In the method presented, we assume that nuclide ratios are known at least approximately, e.g. from nuclide specific observations or reactor inventory and assumptions on the accident type. The source term can be in multiple phases, each being characterized by constant nuclide ratios. The method is an extension of a well-established source term inversion approach based on the optimization of an objective function (minimization of a cost function). This function has two quadratic terms: mismatch between model and measurements weighted by an observation error covariance matrix and the deviation of the solution from a first guess weighted by the first-guess error covariance matrix. For simplicity, both error covariance matrices are approximated as diagonal. Analytical minimization of the cost function leads to a liner system of equations. Possible negative parts of the solution are iteratively removed by the means of first guess error variance reduction. Nuclide ratios enter the problem in the form of additional linear equations, where the deviations from prescribed ratios are weighted by factors; the corresponding error variance allows us to control how strongly we want to impose the prescribed ratios. This introduces some freedom into the
NASA Astrophysics Data System (ADS)
Cassan, Arnaud
2017-07-01
The exoplanet detection rate from gravitational microlensing has grown significantly in recent years thanks to a great enhancement of resources and improved observational strategy. Current observatories include ground-based wide-field and/or robotic world-wide networks of telescopes, as well as space-based observatories such as satellites Spitzer or Kepler/K2. This results in a large quantity of data to be processed and analysed, which is a challenge for modelling codes because of the complexity of the parameter space to be explored and the intensive computations required to evaluate the models. In this work, I present a method that allows to compute the quadrupole and hexadecapole approximations of the finite-source magnification with more efficiency than previously available codes, with routines about six times and four times faster, respectively. The quadrupole takes just about twice the time of a point-source evaluation, which advocates for generalizing its use to large portions of the light curves. The corresponding routines are available as open-source python codes.
Congedo, Marco; Gouy-Pailler, Cédric; Jutten, Christian
2008-12-01
Over the last ten years blind source separation (BSS) has become a prominent processing tool in the study of human electroencephalography (EEG). Without relying on head modeling BSS aims at estimating both the waveform and the scalp spatial pattern of the intracranial dipolar current responsible of the observed EEG. In this review we begin by placing the BSS linear instantaneous model of EEG within the framework of brain volume conduction theory. We then review the concept and current practice of BSS based on second-order statistics (SOS) and on higher-order statistics (HOS), the latter better known as independent component analysis (ICA). Using neurophysiological knowledge we consider the fitness of SOS-based and HOS-based methods for the extraction of spontaneous and induced EEG and their separation from extra-cranial artifacts. We then illustrate a general BSS scheme operating in the time-frequency domain using SOS only. The scheme readily extends to further data expansions in order to capture experimental source of variations as well. A simple and efficient implementation based on the approximate joint diagonalization of Fourier cospectral matrices is described (AJDC). We conclude discussing useful aspects of BSS analysis of EEG, including its assumptions and limitations.
NASA Astrophysics Data System (ADS)
Kopka, P.; Wawrzynczak, A.; Borysiewicz, M.
2015-09-01
In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found.
Solute source depletion control of forward and back diffusion through low-permeability zones.
Yang, Minjune; Annable, Michael D; Jawitz, James W
2016-10-01
Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence. Copyright © 2016 Elsevier B.V. All rights reserved.
Solute source depletion control of forward and back diffusion through low-permeability zones
NASA Astrophysics Data System (ADS)
Yang, Minjune; Annable, Michael D.; Jawitz, James W.
2016-10-01
Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence.
1984-07-16
Plasmas," JAYCOR Report J207-81-004, January, 1981 . 6. R. PoI, D. Fisher, T. Wilcox , S. Wong, H. Sze, L. Deraad anld W. Tsai, "Experiments on, Multiple...step with this are both r 2E and r at -0.52 cm (in from -0.66 cm thisare oth / ndE 1/20 at 2.48 ns) and the velocity profile for r>0.5245 cm is
NASA Astrophysics Data System (ADS)
Qin, Zhuanping; Hou, Qiang; Zhao, Huijuan; Yang, Yanshuang; Zhou, Xiaoqing; Gao, Feng
2013-03-01
In this paper, frequency-domain endoscopic diffuse optical tomography image reconstruction algorithm based on dual-modulation-frequency and dual-points source diffuse equation is investigated for the reconstruction of the optical parameters including the absorption and reducing scattering coefficients. The forward problem is solved by the finite element method based on the frequency domain diffuse equation (FD-DE) for dual-points source approximation and multi-modulation-frequency. In the image reconstruction, a multi-modulation-frequency Newton-Raphson algorithm is applied to obtain the solution. To further improve the image accuracy and quality, a method based on the region of interest (ROI) is applied on the above procedures. The simulation is performed in the tubular model to verify the validity of the algorithm. Results show that the FD-DE with dual-points source approximate is more accuracy at shorter source-detector separation. The reconstruction with dual-modulation-frequency improves the image accuracy and quality compared to the results with single-modulation-frequency and triple-modulation-frequency method. The peak optical coefficients in ROI (ROI_max) are almost equivalent to the true optical coefficients with the relative error less than 6.67%. The full width at half maximum (FWHM) achieves 82% of the true radius. The contrast-to-noise ratio (CNR) and image coefficient(IC) is 5.678 and 26.962, respectively. Additionally, the results with the method based on ROI show that the ROI_max is equivalent to the true value. The FWHM can improve by 88% of the true radius. The CNR and IC is improved over 7.782 and 45.335, respectively.
Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P
2005-10-21
In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model.
Location of the effective diffusing-photon source in a strongly scattering medium.
Kostko, A F; Pavlov, V A
1997-10-20
When a narrow laser beam illuminates a strongly scattering medium, the effective pointlike source of diffusing photons appears inside the medium. By the method worked out, which is based on measurements of the diffusive intensity of light emerging from a turbid spherical sample, the depth of this source site (the penetration depth) is determined relatively to the sample diameter, which is known accurately. By using this method of locating the effective source, we have discovered that its position inside the medium is unexpectedly deep. We obtained the penetration depth D(0) = 4.6 l* +/- 0.7 l* instead of one transport mean free path, where l* is the value of D(0) in the standard diffusion theory. Information about this source dipping is useful in diffusing-photon correlation spectroscopy because of its influence on the geometric factor calculated from the diffusion equation.
Boitard, Simon; Loisel, Patrice
2007-05-01
The probability distribution of haplotype frequencies in a population, and the way it is influenced by genetical forces such as recombination, selection, random drift ...is a question of fundamental interest in population genetics. For large populations, the distribution of haplotype frequencies for two linked loci under the classical Wright-Fisher model is almost impossible to compute because of numerical reasons. However the Wright-Fisher process can in such cases be approximated by a diffusion process and the transition density can then be deduced from the Kolmogorov equations. As no exact solution has been found for these equations, we developed a numerical method based on finite differences to solve them. It applies to transient states and models including selection or mutations. We show by several tests that this method is accurate for computing the conditional joint density of haplotype frequencies given that no haplotype has been lost. We also prove that it is far less time consuming than other methods such as Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Jun, K S; Kang, J W; Lee, K S
2007-01-01
Diffuse pollution sources along a stream reach are very difficult to both monitor and estimate. In this paper, a systematic method using an optimal estimation algorithm is presented for simultaneous estimation of diffuse pollution and model parameters in a stream water quality model. It was applied with the QUAL2E model to the South Han River in South Korea for optimal estimation of kinetic constants and diffuse loads along the river. Initial calibration results for kinetic constants selected from a sensitivity analysis reveal that diffuse source inputs for nitrogen and phosphorus are essential to satisfy the system mass balance. Diffuse loads for total nitrogen and total phosphorus were estimated by solving the expanded inverse problem. Comparison of kinetic constants estimated simultaneously with diffuse sources to those estimated without diffuse loads, suggests that diffuse sources must be included in the optimization not only for its own estimation but also for adequate estimation of the model parameters. Application of the optimization method to river water quality modeling is discussed in terms of the sensitivity coefficient matrix structure.
Duval, Jérôme F L; Merlin, Jenny; Narayana, Puranam A L
2011-01-21
We report a steady-state theory for the evaluation of electrostatic interactions between identical or dissimilar spherical soft multi-layered (bio)particles, e.g. microgels or microorganisms. These generally consist of a rigid core surrounded by concentric ion-permeable layers that may differ in thickness, soft material density, chemical composition and degree of dissociation for the ionogenic groups. The formalism allows the account of diffuse interphases where distributions of ionogenic groups from one layer to the other are position-dependent. The model is valid for any number of ion-permeable layers around the core of the interacting soft particles and covers all limiting situations in terms of nature of interacting particles, i.e. homo- and hetero-interactions between hard, soft or entirely porous colloids. The theory is based on a rigorous numerical solution of the non-linearized Poisson-Boltzmann equation including radial and angular distortions of the electric field distribution within and outside the interacting soft particles in approach. The Gibbs energy of electrostatic interaction is obtained from a general expression derived following the method by Verwey and Overbeek based on appropriate electric double layer charging mechanisms. Original analytical solutions are provided here for cases where interaction takes place between soft multi-layered particles whose size and charge density are in line with Deryagin treatment and Debye-Hückel approximation. These situations include interactions between hard and soft particles, hard plate and soft particle or soft plate and soft particle. The flexibility of the formalism is highlighted by the discussion of few situations which clearly illustrate that electrostatic interaction between multi-layered particles may be partly or predominantly governed by potential distribution within the most internal layers. A major consequence is that both amplitude and sign of Gibbs electrostatic interaction energy may
Mimicking diffuse supernova antineutrinos with the sun as a source
Raffelt, G. G.; Rashba, T. I.
2010-04-15
Measuring the {nu}-bar{sub e} component of the cosmic diffuse supernova neutrino background (DSNB) is the next ambitious goal for low-energy neutrino astronomy. The largest flux is expected in the lowest accessible energy bin. However, for E {<=} 15 MeV a possible signal can be mimicked by a solar {nu}-bar{sub e} flux that originates from the usual {sup 8}B neutrinos by spin-flavor oscillations. We show that such an interpretation is possible within the allowed range of neutrino electromagnetic transition moments and solar turbulent field strengths and distributions. Therefore, an unambiguous detection of the DSNB requires a significant number of events at E {>=} 15 MeV.
Modeling diffuse sources of surface water contamination with plant protection products
NASA Astrophysics Data System (ADS)
Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David
2015-04-01
Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff
Diffuse sources of heavy metals entering an urban wastewater catchment.
Rule, K L; Comber, S D W; Ross, D; Thornton, A; Makropoulos, C K; Rautiu, R
2006-03-01
New legislation such as the Water Framework Directive (WFD) will require Member States to better understand the concentrations and loads of contaminants entering surface waters. This will include inputs from wastewater treatment plants (WWTP) as well as from other urban, industrial and agricultural sources. A review of available literature revealed a shortage of data on the levels and sources of heavy metals entering WWTP from urban sources. As a consequence, the concentrations of heavy metals (cadmium, chromium, copper, mercury, nickel, lead and zinc) were determined in the wastewater from an urban catchment located in the UK, as part of a project undertaken for UK Water Industry Research (UKWIR). Both foul and surface water samples were taken. Metal concentrations varied considerably in the foul water samples, both between sources and over the course of the week. Concentrations of most metals were higher in the Monday town centre samples, attributed to leaching from stagnant water remaining in the pipework of office buildings over the weekend. Runoff concentrations were higher in the light industrial estate samples than in the domestic samples for all the metals, and exhibited highest levels in the 'first flush' samples, coincident with the initial flow of runoff containing the highest concentrations of suspended solids.
An economic approach to reducing water pollution: point and diffuse sources.
O'Shea, Lucy
2002-01-23
A review of economic policy towards pollution control is presented which shows that appropriate measures will depend on whether the pollution is of a point or a diffuse nature. Regulation of the former is comparatively straightforward, with command and control and market instruments the tools of pollution control. The advantages and disadvantages of each measure are outlined. However, the inability to monitor emissions at source, precludes the application of point source measures in the case of diffuse source pollution. Instead, methods are required which overcome the need for direct monitoring. Several suggestions that propose ways of achieving this have been put forward and these are described. It is concluded that appropriate measures depend on the particular features of the problem and it is not possible to offer a blanket solution to either point sources or diffuse pollution.
Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico.
Sracek, Ondra; Armienta, María Aurora; Rodríguez, Ramiro; Villaseñor, Guadalupe
2010-01-01
There are two principal sources of arsenic in Zimapán. Point sources are linked to mining and smelting activities and especially to mine tailings. Diffuse sources are not well defined and are linked to regional flow systems in carbonate rocks. Both sources are caused by the oxidation of arsenic-rich sulfidic mineralization. Point sources are characterized by Ca-SO(4)-HCO(3) ground water type and relatively enriched values of deltaD, delta(18)O, and delta(34)S(SO(4)). Diffuse sources are characterized by Ca-Na-HCO(3) type of ground water and more depleted values of deltaD, delta(18)O, and delta(34)S(SO(4)). Values of deltaD and delta(18)O indicate similar altitude of recharge for both arsenic sources and stronger impact of evaporation for point sources in mine tailings. There are also different values of delta(34)S(SO(4)) for both sources, presumably due to different types of mineralization or isotopic zonality in deposits. In Principal Component Analysis (PCA), the principal component 1 (PC1), which describes the impact of sulfide oxidation and neutralization by the dissolution of carbonates, has higher values in samples from point sources. In spite of similar concentrations of As in ground water affected by diffuse sources and point sources (mean values 0.21 mg L(-1) and 0.31 mg L(-1), respectively, in the years from 2003 to 2008), the diffuse sources have more impact on the health of population in Zimapán. This is caused by the extraction of ground water from wells tapping regional flow system. In contrast, wells located in the proximity of mine tailings are not generally used for water supply.
COS-B gamma ray sources beyond the predicted diffuse emission
NASA Technical Reports Server (NTRS)
Mayer-Hasselwander, H. A.; Simpson, G.
1990-01-01
COS-B data were reanalyzed using for background subtraction the modeled galactic diffuse gamma-ray emission based on HI- and CO-line surveys and the gamma-ray data itself. A methodology was developed for this purpose with the following three features: automatic generation of source catalogs using correlation analysis, simulation of trials to derive significance thresholds for source detection, and bootstrap sampling to drive error boxes and confidence intervals for source parameters. The analysis shows that about half of the 2CG sources are explained by concentrations in the distribution of molecular hydrogen. Indication for a few weak new sources is also obtained.
Sources of Anomalous Diffusion on Cell Membranes: A Monte Carlo Study
Nicolau, Dan V.; Hancock, John F.; Burrage, Kevin
2007-01-01
A stochastic random walk model of protein molecule diffusion on a cell membrane was used to investigate the fundamental causes of anomalous diffusion in two-dimensional biological media. Three different interactions were considered: collisions with fixed obstacles, picket fence posts, and capture by, or exclusion from, lipid rafts. If motion is impeded by randomly placed, fixed obstacles, we find that diffusion can be highly anomalous, in agreement with previous studies. In contrast, collision with picket fence posts has a negligible effect on the anomalous exponent at realistic picket fence parameters. The effects of lipid rafts are more complex. If proteins partition into lipid rafts there is a small to moderate effect on the anomalous exponent, whereas if proteins are excluded from rafts there is a large effect on the anomalous exponent. In combination, these mechanisms can explain the level of anomaly in experimentally observed membrane diffusion, suggesting that anomalous diffusion is caused by multiple mechanisms whose effects are approximately additive. Finally, we show that the long-range diffusion rate, Dmacro, estimated from fluorescence recovery after photobleaching studies, can be much smaller than Dmicro, the small-scale diffusion rate, and is highly sensitive to obstacle densities and other impeding structures. PMID:17189312
Vacuum-compatible standard diffuse source, manufacture and calibration
Byrd, D.A.; Atkins, W.H.; Bender, S.C.; Christensen, R.W.; Michaud, F.D.
1999-03-01
Los Alamos National Laboratories has completed the design, manufacture and calibration of a vacuum-compatible, tungsten lamp, integrated sphere. The light source has been calibrated at the National Institute of Standards and Technology (NIST) and is intended for use as a calibration standard for remote sensing instrumentation. Calibration 2{sigma} uncertainty varied with wavelength from 1.21% at 400 nm and 0.73% at 900 nm, to 3.95% at 2,400 nm. The inner radius of the Spectralon-coated sphere is 21.2 cm with a 7.4 cm square exit aperture. A small satellite sphere is attached to the main sphere and its output coupled through a stepper motor driven aperture. The variable aperture allows a constant radiance without effecting the color temperature output from the main sphere. The sphere`s output is transmitted into a vacuum test environment through a fused silica window that is an integral part of the outer housing of the vacuum shell assembly. The atmosphere within this outer housing is composed of 240 K nitrogen gas, provided by a custom LN{sub 2} vaporizer unit. Use of the nitrogen gas maintains the internal temperature of the sphere at a nominal 300 K {+-}10{degree}. The calibrated spectral range of the source is 0.4 {micro}m through 2.4 {micro}m. Three, color temperature matched, 20 W bulbs together with a 10 W bulb are within the main integrating sphere. Two 20 W bulbs, also color temperature matched, reside in the satellite integrating sphere. A Silicon and a Germanium broadband detector are situated within the inner surface of the main sphere. Their purpose is for the measurement of the internal broadband irradiance. A fiber-optic-coupled spectrometer measures the internal color temperature that is maintained by current control on the lamps. Each lamp is independently operated allowing for radiances with common color temperatures ranging from near 0.026 W/cm{sup 2}/sr to about 0.1 W/cm{sup 2}/sr at a wavelength of 0.9 {micro}m (the location of the peak spectral
NASA Astrophysics Data System (ADS)
Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.
2017-01-01
This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.
Diffuse and point sources of silica in the Seine River watershed.
Sferratore, Agata; Garnier, Josette; Billen, Gilles; Conley, Daniel I; Pinault, Séverine
2006-11-01
Dissolved silica (DSi) is believed to enter aquatic ecosystems primarily through diffuse sources by weathering. Point sources have generally been considered negligible, although recent reports of DSi inputs from domestic and industrial sources suggest otherwise. In addition, particulate amorphous silica (ASi) inputs from terrestrial ecosystems during soil erosion and in vegetation can dissolve and also be a significant source of DSi. We quantify here both point and diffuse sources of DSi and particulate ASi to the Seine River watershed. The total per capita point source inputs of Si (DSi + ASi) were found to be 1.0 and 0.8 g Si inhabitant(-1) d(-1) in raw and treated waters of the Achères wastewater treatment plant, in agreement with calculations based on average food intake and silica-containing washing products consumption. A mass balance of Si inputs and outputs for the Seine drainage network was established for wet and dry hydrological conditions (2001 and 2003, respectively). Diffuse sources of Si are of 1775 kg Si km(-2) y(-1) in wet conditions and 762 kg Si km(-2) y(-1) in dry conditions, with the proportion of ASi around 6%. Point sources of Si from urban discharge can contribute to more than 8% of the total Si inputs at the basin scale in hydrologically dry years. An in-stream retention of 6% of total inputs in dry conditions and 12% in wet conditions is inferred from the budget.
Broadband signal generator for the approximation of a magnetotelluric source for indoor testing
NASA Astrophysics Data System (ADS)
Ge, Shuang-chao; Deng, Ming; Chen, Kai; Shi, Xin-yu
2016-08-01
To test the frequency response of a magnetotelluric (MT) receiver, a broadband source, especially white noise is more efficient and intuitive than single frequency signals. In view of the absence of an appropriate source generator for MT receiver indoor testing, we designed a broadband signal generator based on a pseudo-random binary sequence (PRBS). Firstly, we divided the whole MT band into two segments to avoid data redundancy and simplify calculation in data processing and designed a generator composed of several modules: a clock module, a PRBS logic module, and a voltage level conversion module. We conducted a detailed analysis of the optimal parameter selection methods for each module, and key parameters including clock frequency, order, the primitive polynomial and the original states of the linear registers were determined. The generator provides four-channel PRBS signals with two effective bandwidths of 5 × 10-4-714 Hz and 0.1 Hz-14 kHz which are broad enough to cover the frequency range for different MT methods. These four-channel signals were used to simulate two modes of sources (xy and yx) with strong auto-correlation and weak cross-correlation. The power spectral density is quite stable in the whole passband. The new generator is characterized by broadband output in low-frequency bands, low power consumption, simple operation and reliable performance. Indoor and field tests indicated that the generator can provide an analog MT source and is a practical tool for MT receiver indoor testing.
Source term evaluation during seismic events in the Paducah Gaseous Diffusion Plant
Kim, S.H.; Chen, N.C.J.; Schmidt, R.W.; Taleyarkhan, R.P.
1996-12-30
The 00 buildings are expected to collapse (per guidance from structure evaluation) during a seismic event in which acceleration level exceeds 0.15g. All roof beams may slip off supports, and collapse. Equipment may slip off from supports and fall onto the floor. The cell floor is also supposed to collapse due to structural instability and distortion due to excessive acceleration forces. Following structure collapse, expansion joints in the process piping and joints between the piping and equipment are expected to fail. Preliminary analysis showed that converters are likely to remain intact. The UF{sub 6} gas released from the break will rapidly interact with moisture in the air to produce UO{sub 2}F{sub 2} and HF with exothermic energy released of {approximately}0.32 MJ/kg of UF{sub 6} reacted. Depending on the degree of mixing between UF{sub 6} gas, its reaction products, air and freon (R-114), there may occur a strong buoyancy force to disperse UO{sub 2}F{sub 2} aerosol particles that are subjected to the gravitational force for settling. Such a chemical reaction will also occur inside the converters. A substantial amount of UF{sub 6} must be stagnated at the bottom of the converters. At the interface between this stagnated UF{sub 6} and air, UF{sub 6} gas will diffuse into the air, undergo the chemical reaction with moisture there, and eventually be released through the break. Furthermore, lubricant oil fire in the building, if it occurs, will enhance the UF{sub 6} release into the atmosphere. The purpose of this study is to evaluate source term (UO{sub 2}F{sub 2} and HF) during such a seismic event. This study takes an approach using multiple steps as follows: (1) Source term evaluation at the break due to mixing between UF{sub 6} and air along with thermal buoyancy induced by chemical reaction energy, (2) Evaluation of additional source term from the converters in which a substantial UF{sub 6} vapor remains, and (3) Source term evaluation with lubricant oil
Nature of the Diffuse Source and Its Central Point-like Source in SNR 0509–67.5
NASA Astrophysics Data System (ADS)
Litke, Katrina C.; Chu, You-Hua; Holmes, Abigail; Santucci, Robert; Blindauer, Terrence; Gruendl, Robert A.; Li, Chuan-Jui; Pan, Kuo-Chuan; Ricker, Paul M.; Weisz, Daniel R.
2017-03-01
We examine a diffuse emission region near the center of SNR 0509‑67.5 to determine its nature. Within this diffuse region we observe a point-like source that is bright in the near-IR, but is not visible in the B and V bands. We consider an emission line observed at 6766 Å and the possibilities that it is Lyα, Hα, and [O ii] λ3727. We examine the spectral energy distribution (SED) of the source, comprised of Hubble Space Telescope B, V, I, J, and H bands in addition to Spitzer/IRAC 3.6, 4.5, 5.8, and 8 μm bands. The peak of the SED is consistent with a background galaxy at z ≈ 0.8 ± 0.2 and a possible Balmer jump places the galaxy at z ≈ 0.9 ± 0.3. These SED considerations support the emission line’s identification as [O ii] λ3727. We conclude that the diffuse source in SNR 0509‑67.5 is a background galaxy at z ≈ 0.82. Furthermore, we identify the point-like source superposed near the center of the galaxy as its central bulge. Finally, we find no evidence for a surviving companion star, indicating a double-degenerate origin for SNR 0509‑67.5.
NASA Astrophysics Data System (ADS)
Baran, Timothy M.
2016-07-01
We demonstrate recovery of optical properties using arrays of interstitial cylindrical diffusing fibers as sources and detectors. A single 1-cm diffuser delivered laser illumination at 665 nm, while seven 1- and 2-cm diffusers at 1-cm grid spacing acted as detectors. Extraction of optical properties from these measurements was based upon a diffusion model of emission and detection distributions for these diffuser fibers, informed by previous measurements of heterogeneous axial detection. Verification of the technique was performed in 15 liquid tissue-simulating phantoms consisting of deionized water, India ink as absorber, and Intralipid 20% as scatterer. For the range of optical properties tested, mean errors were 4.4% for effective attenuation coefficient, 12.6% for absorption coefficient, and 7.6% for reduced scattering coefficient. Error in recovery tended to increase with decreasing transport albedo. For therapeutic techniques involving the delivery of light to locations deep within the body, such as interstitial photodynamic and photothermal therapies, the methods described here would allow the treatment diffuser fibers also to be used as sources and detectors for recovery of optical properties. This would eliminate the need for separately inserted fibers for spectroscopy, reducing clinical complexity and improving the accuracy of treatment planning.
A strategy for characterizing homogeneous, diffusion-controlled, indoor sources and sinks
Little, J.C.; Hodgson, A.T.
1996-12-31
Physically based models for predicting the source and sink behavior of homogeneous, diffusion-controlled polymer materials are described. The source model was initially developed to interpret emissions of volatile organic compounds (VOCs) from the polymer backing of new carpets measured in a chamber study. That work is extended here to include the equivalent sink model. Analogous models should be applicable to the uptake and release of volatile compounds by other homogeneous, diffusion controlled indoor materials. Key parameters for the models may be inferred from experimental chamber data. The use of more direct methods to measure these parameters is proposed. Possible analytical methods to quantify the concentration of VOC in the polymer are briefly discussed and the use of a microbalance to directly measure diffusion and partition coefficients is described using illustrative experimental data. These procedures can eliminate, to a large extent, the need for chamber studies, which are costly, time consuming, and may be subject to confounding sink effects. Results from the carpet study are presented showing that the diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the partition coefficients generally increase as the vapor pressure of the compounds decreases. Evidence suggests that correlations based solely on commonly available properties such as molecular weight, and vapor pressure can be developed. Ultimately, the prediction of the diffusion controlled source/sink behavior of indoor materials may be possible based solely on a knowledge of the properties of the relevant volatile compounds and the indoor material.
Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E
2015-01-01
Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).
NASA Astrophysics Data System (ADS)
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
Modelling of phosphorus inputs to rivers from diffuse and point sources.
Bowes, Michael J; Smith, Jim T; Jarvie, Helen P; Neal, Colin
2008-06-01
The difference in timing of point and diffuse phosphorus (P) delivery to a river produces clear differences in the P concentration-flow relationship. Point inputs decrease in concentration with increasing river flow, due to dilution of a relatively constant input, whereas diffuse (non-point) load usually increases with river flow. This study developed a simple model, based on this fundamental difference, which allowed point and diffuse inputs to be quantified by modelling their contribution to river P concentration as a power-law function of flow. The relationships between total phosphorus (TP) concentration and river flow were investigated for three contrasting UK river catchments; the Swale (Yorkshire), the Frome (Dorset) and the Avon (Warwickshire). A load apportionment model was fitted to this empirical data to give estimates of point and diffuse load inputs at each monitoring site, at high temporal resolution. The model produced TP source apportionments that were similar to those derived from an export coefficient approach. For many diffuse-dominated sites within this study (with up to 75% of the annual TP load derived from diffuse sources), the model showed that reductions of point inputs would be most effective in order to reduce eutrophication risk, due to point source dominance during the plant and algae growing period. This modelling approach should provide simple, robust and rapid TP source apportionment from most concentration-flow datasets. It does not require GIS, information on land use, catchment size, population or livestock density, and could provide a valuable and versatile tool to catchment managers for determining suitable river mitigation options.
Required distribution of noise sources for Green's function recovery in diffusive fields
NASA Astrophysics Data System (ADS)
Shamsalsadati, S.; Weiss, C. J.
2011-12-01
In the most general sense, noise is the part of the signal of little or no interest, due to a multitude of reasons such as operator error, imperfect instrumentation, experiment design, or inescapable background interference. Considering the latter, it has been shown that Green's function can be extracted from cross-correlation of the ambient, diffusive wavefields arising from background random noise sources. Pore pressure and low-frequency electromagnetic induction are two such examples of diffusive fields. In theory, applying Green's function method in geophysical exploration requires infinity of volumetrically distributed sources; however, in the real world the number of noise sources in an area is limited, and furthermore, unevenly distributed in time, space and spectral content. Hence, quantification of the requisite noise sources that enable us to calculate Green's function acceptably well remains an open research question. The purpose of this study is to find the area of noise sources that contribute most to the Green's function estimation in diffusive systems. We call such a region the Volume of Relevance (VoR). Our analysis builds upon recent work in 1D homogeneous system where it was shown that sources located between two receivers positions are the most important ones for the purpose of Green's function recovery. Our results confirm the previous finding but we also examine the effect of heterogeneity, dimensionality and receiver location in both 1D and 2D at a fixed frequency. We demonstrate that for receivers located symmetrically across an interface between regions of contrasting diffusivity, the VoR rapidly shifts from one side of the interface to the other, and back again, as receiver separation increases. We also demonstrate that where the receiver pair is located on the interface itself, the shifting is less rapid, and for moderate to high diffusivity contrasts, the VoR remains entirely on the more diffusive side. In addition, because classical
An algorithm for solving the fractional convection diffusion equation with nonlinear source term
NASA Astrophysics Data System (ADS)
Momani, Shaher
2007-10-01
In this paper an algorithm based on Adomian's decomposition method is developed to approximate the solution of the nonlinear fractional convection-diffusion equation {∂αu}/{∂tα}={∂2u}/{∂x2}-c{∂u}/{∂x}+Ψ(u)+f(x,t),0
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Roze, Denis; Rousset, François
2003-01-01
Population structure affects the relative influence of selection and drift on the change in allele frequencies. Several models have been proposed recently, using diffusion approximations to calculate fixation probabilities, fixation times, and equilibrium properties of subdivided populations. We propose here a simple method to construct diffusion approximations in structured populations; it relies on general expressions for the expectation and variance in allele frequency change over one generation, in terms of partial derivatives of a "fitness function" and probabilities of genetic identity evaluated in a neutral model. In the limit of a very large number of demes, these probabilities can be expressed as functions of average allele frequencies in the metapopulation, provided that coalescence occurs on two different timescales, which is the case in the island model. We then use the method to derive expressions for the probability of fixation of new mutations, as a function of their dominance coefficient, the rate of partial selfing, and the rate of deme extinction. We obtain more precise approximations than those derived by recent work, in particular (but not only) when deme sizes are small. Comparisons with simulations show that the method gives good results as long as migration is stronger than selection. PMID:14704194
Taheriyoun, Ali R; Moghimbeygi, Meisam
2017-02-14
An approximation of the fractional Brownian motion based on the Ornstein-Uhlenbeck process is used to obtain an asymptotic likelihood function. Two estimators of the Hurst index are then presented in the likelihood approach. The first estimator is produced according to the observed values of the sample path; while the second one employs the likelihood function of the incremental process. We also employ visual roughness of realization to restrict the parameter space and to obtain prior information in Bayesian approach. The methods are then compared with three contemporary estimators and an experimental data set is studied.
Locating the source of diffusion in complex networks by time-reversal backward spreading.
Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene
2016-03-01
Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.
Locating the source of diffusion in complex networks by time-reversal backward spreading
NASA Astrophysics Data System (ADS)
Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene
2016-03-01
Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100 ps, ∼0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices
NASA Astrophysics Data System (ADS)
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.
Baran, Timothy M; Foster, Thomas H
2014-02-01
For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved
Baran, Timothy M. Foster, Thomas H.
2014-02-15
Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J
Turbulent diffusion from a heated line source in non-equilibrium grid turbulence
NASA Astrophysics Data System (ADS)
Nedic, Jovan; Tavoularis, Stavros
2015-11-01
We have investigated turbulent diffusion of heat injected passively from a line source in equilibrium and non-equilibrium grid-generated turbulence, which are, respectively, flows in which the value of the non-dimensional rate of kinetic energy dissipation is constant or changes with streamwise distance from the grid. We used three grids with uniform square meshes and one fractal square grid (FSG), all of the same solidity, to generate non-equilibrium and equilibrium turbulence in a wind-tunnel. The regular grids have mesh sizes that are comparable to the first (RG160), second (RG80) and fourth (RG18) iterations of the fractal grid. The heated line source was inserted on the centre-plane of the grids at either of two downstream locations or an upstream one and it spanned the entire width of the wind-tunnel. We found that RG160 produced the greatest heat diffusion, followed by FSG, RG80 and RG18, in this order. The apparent turbulent diffusivity produced by the four grids also decreased in the same order. These findings conform with Taylor's theory of diffusion by continuous movements. Moreover, the present study demonstrates that the fractal space-scale unfolding (SSU) mechanism does not apply to grids with the same solidity but different effective mesh sizes. Supported by NSERC.
Mathematical modeling of boron diffusion from boron oxide glass film sources
Yeckel, A.; Middleman, S.
1988-09-01
Mathematical models are developed to examine two alternative means of boron doping from boron-rich glass films. For the planar source diffusion system, in which boron diffusion and glass film growth occur simultaneously at high temperature (900-1200/sup 0/C), glass film growth rates and the degree of doping achieved are predicted. In most cases, the solubility limit of boron in silicon is attained at the silicon surface. It is found that depletion of the boron source wafers used in this process may be slowed considerably by their removal from the reactor after a short time. Model predictions for an alternative method, in which the glass film is pregrown at low temperature (300/sup 0/C) and the diffusion subsequently performed at high temperature, demonstrate a strong dependence of the boron surface concentration on the initial boron content in the pregrown glass film, for concentrations of boron near the solubility limit. The conditions for which a masking film of SiO/sub 2/ is insufficient to prevent boron diffusion into silicon, known as mask failure, are also predicted by the models.
NASA Astrophysics Data System (ADS)
Cuchí, J. E.; Gil-Rivero, A.; Molina, A.; Ruiz, E.
2013-07-01
We use analytic perturbation theory to present a new approximate metric for a rigidly rotating perfect fluid source with equation of state (EOS) ɛ +(1-n)p=ɛ _0. This EOS includes the interesting cases of strange matter, constant density and the fluid of the Wahlquist metric. It is fully matched to its approximate asymptotically flat exterior using Lichnerowicz junction conditions and it is shown to be a totally general matching using Darmois-Israel conditions and properties of the harmonic coordinates. Then we analyse the Petrov type of the interior metric and show first that, in accordance with previous results, in the case corresponding to Wahlquist's metric it can not be matched to the asymptotically flat exterior. Next, that this kind of interior can only be of Petrov types I, D or (in the static case) O and also that the non-static constant density case can only be of type I. Finally, we check that it can not be a source of Kerr's metric.
NASA Astrophysics Data System (ADS)
Gorpas, D.; Yova, D.; Politopoulos, K.
2009-02-01
Although fluorescence imaging has been applied in tumour diagnosis from the early 90s, just the last few years it has met an increasing scientific interest due to the advances in the biophotonics field and the combined technological progress of the acquisition and computational systems. In addition there are expectations that fluorescence imaging will be further developed and applied in deep tumour diagnosis in the years to come. However, this evolving field of imaging sciences has still to encounter important challenges. Among them is the expression of an accurate forward model for the solution of the reconstruction problem. The scope of this work is to introduce a three dimensional coupled radiative transfer and diffusion approximation model, applicable on the fluorescence imaging. Furthermore, the solver incorporates the super-ellipsoid models and sophisticated image processing algorithms to additionally provide a-priori estimation about the fluorophores distribution, information that is very important for the solution of the inverse problem. Simulation experiments have proven that the proposed methodology preserves the accuracy levels of the radiative transfer equation and the time efficacy of the diffusion approximation, while in the same time shows extended success on the registration between acquired and simulated images.
On the source function of the soft X-ray diffuse background
NASA Technical Reports Server (NTRS)
Burrows, David N.; Kraft, Ralph P.
1993-01-01
Radiation transfer theory has been used recently to derive the source function of the soft X-ray diffuse background, resulting in the claim of evidence for 10 exp 6 K gas in the Galactic halo. We show that this analysis has several errors that invalidate its conclusions. We argue that the case for an extensive hot halo remains open, pending further work, but may be settled by the continuing series of Rosat observations of high-latitude soft X-ray shadows.
NASA Astrophysics Data System (ADS)
Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian
2014-05-01
Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering
NASA Astrophysics Data System (ADS)
Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.
2017-01-01
We calculate transport timescales of martian methane and investigate the effect of potential release mechanisms into the atmosphere using a numerical model that includes both Fickian and Knudsen diffusion. The incorporation of Knudsen diffusion, which improves on a Fickian description of transport given the low permeability of the martian regolith, means that transport timescales from sources collocated with a putative martian water table are very long, up to several million martian years. Transport timescales also mean that any temporally varying source process, even in the shallow subsurface, would not result in a significant, observable variation in atmospheric methane concentration since changes resulting from small variations in flux would be rapidly obscured by atmospheric transport. This means that a short-lived 'plume' of methane, as detected by Mumma et al. (2009) and Webster et al. (2014), cannot be reconciled with diffusive transport from any reasonable depth and instead must invoke alternative processes such as fracturing or convective plumes. It is shown that transport through the martian regolith will cause a significant change in the isotopic composition of the gas, meaning that methane release from depth will produce an isotopic signature in the atmosphere that could be significantly different than the source composition. The deeper the source, the greater the change, and the change in methane composition in both δ13C and δD approaches -1000 ‰ for sources at a depth greater than around 1 km. This means that signatures of specific sources, in particular the methane produced by biogenesis that is generally depleted in 13CH4 and CH3D, could be obscured. We find that an abiogenic source of methane could therefore display an isotopic fractionation consistent with that expected for biogenic source processes if the source was at sufficient depth. The only unambiguous inference that can be made from measurements of methane isotopes alone is a measured
Zhang, Yu-Jia; Xu, Xiao-Xuan; Song, Ning; Wu, Zhong-Chen; Zhou, Xiang; Chen, Jin; Cao, Xue-Wei; Wang, Bin
2011-04-01
Near-infrared (NIR) and mid-infrared (MIR) diffuse reflection spectra were compared and evaluated for hydrocarbon potential generation of source rocks. Near-infrared diffuse reflectance often exhibits significant differences in the spectra due to the non-homogeneous distribution of the particles, so the signal-to-noise ratio of NIR is much lower than MIR It is too difficult to get accurate results by NIR without using a strong spectral preprocessing method to remove systematic noise such as base-line variation and multiplicative scatter effects. In the present paper, orthogonal signal correction (OSC) and an improved algorithm of it, i.e. direct orthogonal signal correction (DOSC), are used as different methods to preprocess both the NIR and MIR spectra of the hydrocarbon source rocks. Another algorithm, wavelet multi-scale direct orthogonal signal correction (WMDOSC), which is a combination of discrete wavelet transform (DWT) and DOSC, is also used as a preprocessing method. Then, the calibration model of hydrocarbon source rocks before and after pretreatment was established by interval partial least square (iPLS). The experimental results show that WMDOSC is more successfully applied to preprocess the NIR spectra data of the hydrocarbon source rocks than other two algorithms, and NIR performed as good as MIR in the analysis of hydrocarbon potential generation of source rocks with WMDOSC-iPLS pretreatment calibration model.
Gozzard, E; Mayes, W M; Potter, H A B; Jarvis, A P
2011-10-01
Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows.
Shumaker, D E; Woodward, C S
2005-05-03
In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.
A size of approximately 1 au for the radio source Sgr A* at the centre of the Milky Way.
Shen, Zhi-Qiang; Lo, K Y; Liang, M-C; Ho, Paul T P; Zhao, J-H
2005-11-03
Although it is widely accepted that most galaxies have supermassive black holes at their centres, concrete proof has proved elusive. Sagittarius A* (Sgr A*), an extremely compact radio source at the centre of our Galaxy, is the best candidate for proof, because it is the closest. Previous very-long-baseline interferometry observations (at 7 mm wavelength) reported that Sgr A* is approximately 2 astronomical units (au) in size, but this is still larger than the 'shadow' (a remarkably dim inner region encircled by a bright ring) that should arise from general relativistic effects near the event horizon of the black hole. Moreover, the measured size is wavelength dependent. Here we report a radio image of Sgr A* at a wavelength of 3.5 mm, demonstrating that its size is approximately 1 au. When combined with the lower limit on its mass, the lower limit on the mass density is 6.5 x 10(21)M(o) pc(-3) (where M(o) is the solar mass), which provides strong evidence that Sgr A* is a supermassive black hole. The power-law relationship between wavelength and intrinsic size (size proportional, variantwavelength(1.09)) explicitly rules out explanations other than those emission models with stratified structure, which predict a smaller emitting region observed at a shorter radio wavelength.
Chaudhury, Srabanti; Cherayil, Binny J
2007-09-14
Single-molecule equations for the Michaelis-Menten [Biochem. Z. 49, 333 (1913)] mechanism of enzyme action are analyzed within the Wilemski-Fixman [J. Chem. Phys. 58, 4009 (1973); 60, 866 (1974)] approximation after the effects of dynamic disorder--modeled by the anomalous diffusion of a particle in a harmonic well--are incorporated into the catalytic step of the reaction. The solution of the Michaelis-Menten equations is used to calculate the distribution of waiting times between successive catalytic turnovers in the enzyme beta-galactosidase. The calculated distribution is found to agree qualitatively with experimental results on this enzyme obtained at four different substrate concentrations. The calculations are also consistent with measurements of correlations in the fluctuations of the fluorescent light emitted during the course of catalysis, and with measurements of the concentration dependence of the randomness parameter.
Development of a GIS method to localize critical source areas of diffuse nitrate pollution.
Orlikowski, D; Bugey, A; Périllon, C; Julich, S; Guégain, C; Soyeux, E; Matzinger, A
2011-01-01
The present study aimed at developing a universal method for the localization of critical source areas (CSAs) of diffuse nitrate (NO3-) pollution in rural catchments with low data availability. Based on existing methods, land use, soil, slope, riparian buffer strips and distance to surface waters were identified as the most relevant indicator parameters for diffuse agricultural NO3- pollution. The five parameters were averaged in a GIS-overlay to localize areas with low, medium and high risk of NO3- pollution. A first application of the GIS approach to the Ic catchment in France, showed that identified CSAs were in good agreement with results from river monitoring and numerical modelling. Additionally, the GIS approach showed low sensitivity to single parameters, which makes it robust to varying data availability. As a result, the tested GIS-approach provides a promising, easy-to-use CSA identification concept, applicable for a wide range of rural catchments.
Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources
Beernink, K.J.; Thornton, R.L.; Anderson, G.B.; Emanuel, M.A.
1995-05-08
Si diffusion and impurity-induced layer intermixing from a buried impurity source have been studied by transmission electron microscopy and secondary ion mass spectroscopy of isolated, Si-doped GaAs layers in an undoped Al{sub 0.4}Ga{sub 0.6}As/GaAs superlattice and by photoluminescence measurements on Si-doped GaAs quantum wells with undoped Al{sub 0.4}Ga{sub 0.6}As barriers. In annealed samples, the Si profile suggests a Si diffusion process involving multiply ionized column III vacancies. The width of the resulting Si profile and the spatial extent and completeness of intermixing strongly depend on the initial Si concentration in the doped layer.
Steady-state total diffuse reflectance with an exponential decaying source.
Symvoulidis, Panagiotis; Jentoft, Karin M; Garcia-Allende, P Beatriz; Glatz, Jürgen; Ripoll, Jorge; Ntziachristos, Vasilis
2014-07-01
The increasing preclinical and clinical utilization of digital cameras for photographic measurements of tissue conditions motivates the study of reflectance measurements obtained with planar illumination. We examine herein a formula that models the total diffuse reflectance measured from a semi-infinite medium using an exponentially decaying source, assuming continuous plane wave epi-illumination. The model is validated with experimental reflectance measurements from tissue mimicking phantoms. The need for adjusting the blood absorption spectrum due to pigment packaging is discussed along with the potential applications of the proposed formulation.
Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale
NASA Astrophysics Data System (ADS)
Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.
2012-04-01
The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl
NASA Astrophysics Data System (ADS)
Poulenard, J.; Legout, C.; Némery, J.; Bramorski, J.; Navratil, O.; Estèves, M.; Fanget, B.; Perrette, Y.
2009-04-01
The identification and the quantification of the source of the suspended sediment transported by a river is becoming an increasingly important requirement in sediment investigations. An increasing number of works used "fingerprinting" to identify and trace one or more distinctive characteristics of the source material that can be recognized in the final sediment. As sediment fingerprints are often a combination of two or more characteristics, fingerprinting frequently requires a multi-tracer, composite or multi-proxy approach. The most commonly used tracers are radionuclides (137Cs, unsupported 210Pb, 7Be), chemical extracts of reactive elements and total chemical analyses. However, current sediment fingerprinting techniques are very selective and they are not always practical for catchment area monitoring because of their high cost (time and money) and because of the complexity of the analyses required. As consequences such approach is rarely used to compute the sources of sediment during flood events. Hence, the challenge is to develop methods (experimental and instrumental) that can be applied to large numbers of samples, that involve minimal sample preparation and that provide an acceptable level of sediment source selectivity. In the framework of the STREAMS project aiming at understanding and modelling the sediment transport in mountainous areas (Bleone River, Southern French Alps), we study the potential use of a combination of Diffuse Reflectance Infra-red Fourier Transform (DRIFT) and multivariate analysis (Partial Least Squared) to quantify the main sources of suspended sediments during flood events. The objectives of this study were i) to identify the sediment sources areas in the Galabre sub-catchment (20 km²) for various rainstorm events and ii) to quantify the contribution of each sediment source in the suspended sediment flux at the outlet of the sub-catchment during floods. A set of 38 soil samples were collected on the Galabre sub-catchment in
A study of diffuse radio sources and X-ray emission in six massive clusters
NASA Astrophysics Data System (ADS)
Parekh, V.; Dwarakanath, K. S.; Kale, R.; Intema, H.
2017-01-01
The goal of this study is to extend our current knowledge of the diffuse radio source (halo and relic) populations to z > 0.3. Here, we report GMRT and EVLA radio observations of six galaxy clusters taken from the MAssive Cluster Survey (MACS) catalogue to detect diffuse radio emission. We used archival GMRT (150, 235, and 610 MHz) and EVLA (L band) data and made images at multiple radio frequencies of the following six clusters - MACSJ0417.5-1154, MACSJ1131.8-1955, MACSJ0308.9+2645, MACSJ2243.3-0935, MACSJ2228.5+2036, and MACSJ0358.8-2955. We detect diffuse radio emission (halo or relic, or both) in the first four clusters. In the last two clusters, we do not detect any diffuse radio emission but we put stringent upper limits on their radio powers. We also use archival Chandra X-ray data to carry out morphology and substructure analysis of these clusters. We find that based on X-ray data, these MACS clusters are non-relaxed and show substructures in their temperature distribution. The radio powers of the first four MACS clusters are consistent with their expected values in the LX-P1.4 GHz plot. However, we found ultrasteep spectrum radio halo in the MACSJ0417.5-1154 cluster whose rest-frame cut-off frequency is at ˜900 MHz. The remaining two clusters whose radio powers are ˜11 times below the expected values are most likely to be in the `off-state' as has been postulated in some of the models of radio halo formation.
Point-source and diffuse high-energy neutrino emission from Type IIn supernovae
NASA Astrophysics Data System (ADS)
Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.
2017-09-01
Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ∼10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.
NASA Astrophysics Data System (ADS)
Alves, I. P.; Degrazia, G. A.; Buske, D.; Vilhena, M. T.; Moraes, O. L. L.; Acevedo, O. C.
2012-12-01
In this study an integral and an algebraic formulation for the eddy diffusivities in a shear driven planetary boundary layer are derived for pollutant dispersion applications. The expressions depend on the turbulence properties and on the distance from the source. They are based on the turbulent kinetic energy spectra, Taylor’s statistical diffusion theory and measured turbulent characteristics during intense wind events. The good agreement between the algebraic and the integral formulation for the eddy diffusivities corroborate the hypothesis that using an algebraic formulation as a surrogate for the eddy diffusivities in the neutral planetary boundary layer is valid. As a consequence, the vertical eddy diffusivity provided by the algebraic formulation and its asymptotic limit for large time (diffusion time much larger than the Lagrangian integral time scale), were introduced into an analytical air pollution model and validated against data from the classic Prairie Grass project. A statistical analysis, employing specific indices shows that the results are in good agreement with the observations. Furthermore, this study suggests that the inclusion of the memory effect, which is important in regions near to a continuous point source, improves the description of the turbulent transport process of atmospheric contaminants. Therefore, the major finding of this paper is the necessity of including the downwind distance-dependent eddy diffusivity for low continuous point sources in air quality modeling studies.
NASA Astrophysics Data System (ADS)
Martin-Samos, Layla; Bussi, Giovanni
2009-08-01
We present here SaX (Self-energies and eXcitations), a plane-waves package aimed at electronic-structure and optical-properties calculations in the GW framework, namely using the GW approximation for quasi-particle properties and the Bethe-Salpeter equation for the excitonic effects. The code is mostly written in FORTRAN90 in a modern style, with extensive use of data abstraction (i.e. objects). SaX employs state of the art techniques and can treat large systems. The package is released with an open source license and can be also download from http://www.sax-project.org/. Program summaryProgram title: SaX (Self-energies and eXcitations) Catalogue identifier: AEDF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 779 771 No. of bytes in distributed program, including test data, etc.: 4 894 755 Distribution format: tar.gz Programming language: FORTRAN, plus some C utilities Computer: Linux PC, Linux clusters, IBM-SP5 Operating system: Linux, Aix Has the code been vectorised or parallelized?: Yes RAM: depending on the system complexity Classification: 7.3 External routines: Message-Passing Interface (MPI) to perform parallel computations. ESPRESSO ( http://www.quantum-espresso.org) Nature of problem: SaX is designed to calculate the electronic band-structure of semiconductors, including quasi-particle effects and optical properties including excitonic effects. Solution method: The electronic band-structure is calculated using the GW approximation for the self-energy operator. The optical properties are calculated solving the Bethe-Salpeter equation in the GW approximation. The wavefunctions are expanded on a plane-waves basis set, using norm-conserving pseudopotentials. Restrictions: Many objects are non-local matrix represented in plane wave basis
Tetsu, Hiroyuki; Nakamoto, Taishi
2016-03-15
Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.
NASA Astrophysics Data System (ADS)
Tetsu, Hiroyuki; Nakamoto, Taishi
2016-03-01
Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton-Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas & Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.
Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun
2014-06-15
Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin.
Giannotti, E; Waugh, S; Priba, L; Davis, Z; Crowe, E; Vinnicombe, S
2015-09-01
Apparent Diffusion Coefficient (ADC) measurements are increasingly used for assessing breast cancer response to neoadjuvant chemotherapy although little data exists on ADC measurement reproducibility. The purpose of this work was to investigate and characterise the magnitude of errors in ADC measures that may be encountered in such follow-up studies- namely scanner stability, scan-scan reproducibility, inter- and intra- observer measures and the most reproducible measurement of ADC. Institutional Review Board approval was obtained for the prospective study of healthy volunteers and written consent acquired for the retrospective study of patient images. All scanning was performed on a 3.0-T MRI scanner. Scanner stability was assessed using an ice-water phantom weekly for 12 weeks. Inter-scan repeatability was assessed across two scans of 10 healthy volunteers (26-61 years; mean: 44.7 years). Inter- and intra-reader analysis repeatability was measured in 52 carcinomas from clinical patients (29-70 years; mean: 50.0 years) by measuring the whole tumor ADC value on a single slice with maximum tumor diameter (ADCS) and the ADC value of a small region of interest (ROI) on the same slice (ADCmin). Repeatability was assessed using intraclass correlation coefficients (ICC) and coefficients of repeatability (CoR). Scanner stability contributed 6% error to phantom ADC measurements (0.071×10(-3)mm(2)/s; mean ADC=1.089×10(-3)mm(2)/s). The measured scan-scan CoR in the volunteers was 0.122×10(-3)mm(2)/s, contributing an error of 8% to the mean measured values (ADCscan1=1.529×10(-3)mm(2)/s; ADCscan2=1.507×10(-3)mm(2)/s). Technical and clinical observers demonstrated excellent intra-observer repeatability (ICC>0.9). Clinical observer CoR values were marginally better than technical observer measures (ADCS=0.035×10(-3)mm(2)/s vs. 0.097×10(-3)mm(2)/s; ADCmin=0.09×10(-3)mm(2)/s vs. 0.114×10(-3)mm(2)/s). Inter-reader ICC values were good 0.864 (ADCS) and fair 0.677 (ADCmin
NASA Astrophysics Data System (ADS)
Liu, Chongxuan; Ball, William P.
1999-07-01
This paper presents a refinement and expansion of our previously described efforts to estimate contaminant plume history from observed contaminant concentrations within a low-permeability aquitard at the site of a field-scale groundwater remediation experiment at Dover Air Force Base. At this site, a two-layer aquitard has been contaminated with tetrachloroethene and trichloroethene through diffusive mass transfer from an overlying contaminated aquifer. Measurements of contaminant concentrations in the aquitard are used, together with independently obtained information about the sorption and diffusion properties of the aquitard medium, to estimate the timewise variation of the boundary concentration at the interface between the aquitard and aquifer, thus providing evidence related to the overlying plume history. In our refined analysis, we assume the contaminant source history to be a function of time with unknown form, and we supplement our interpretations with a second coring result at a different location. The results demonstrate how "forensic" interpretations of this kind can provide useful and important information regarding the contaminant release history at sites of groundwater contamination and cleanup; however, the results also show that the forensic problem is a highly nonunique problem associated with potentially large uncertainty. Interpretation of the estimated results therefore requires careful consideration in the context of other available information.
NASA Astrophysics Data System (ADS)
Qin, G.; He, H.-Q.; Zhang, M.
2011-09-01
Recently, Tan and coworkers studied the 2001 September 24 solar energetic particle (SEP) event observed by the Wind spacecraft at 1 AU and found that there is a counter-streaming particle beam with a deep depression of flux at 90° pitch angle during the beginning of the event. They suggested that it is a result of a reflecting boundary at some distance outside of 1 AU. While this scenario could be true under some specific configuration of an interplanetary magnetic field, in this paper we offer another possible explanation. We simulated the SEP event by solving the five-dimensional focused transport equation numerically for 40 keV electrons with perpendicular diffusion. We find that a counter-streaming particle beam with deep depression at 90° pitch angle can form on Parker magnetic field lines that do not directly connect to the main particle source on the Sun in the beginning of an SEP event. It can happen when a significant number of observed particles come from adjacent field lines through parallel transport to large radial distance first, hopping across field lines through perpendicular diffusion, and then getting scattered back to 1 AU, where they combine with the particles directly coming from the Sun to form a counter-streaming beam.
Qin, G.; He, H.-Q.; Zhang, M. E-mail: hqhe@spaceweather.ac.cn
2011-09-01
Recently, Tan and coworkers studied the 2001 September 24 solar energetic particle (SEP) event observed by the Wind spacecraft at 1 AU and found that there is a counter-streaming particle beam with a deep depression of flux at 90{sup 0} pitch angle during the beginning of the event. They suggested that it is a result of a reflecting boundary at some distance outside of 1 AU. While this scenario could be true under some specific configuration of an interplanetary magnetic field, in this paper we offer another possible explanation. We simulated the SEP event by solving the five-dimensional focused transport equation numerically for 40 keV electrons with perpendicular diffusion. We find that a counter-streaming particle beam with deep depression at 90{sup 0} pitch angle can form on Parker magnetic field lines that do not directly connect to the main particle source on the Sun in the beginning of an SEP event. It can happen when a significant number of observed particles come from adjacent field lines through parallel transport to large radial distance first, hopping across field lines through perpendicular diffusion, and then getting scattered back to 1 AU, where they combine with the particles directly coming from the Sun to form a counter-streaming beam.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Sun, HongGuang; Lu, Bingqing; Garrard, Rhiannon; Neupauer, Roseanna M.
2017-09-01
Backward models have been applied for four decades by hydrologists to identify the source of pollutants undergoing Fickian diffusion, while analytical tools are not available for source identification of super-diffusive pollutants undergoing decay. This technical note evaluates analytical solutions for the source location and release time of a decaying contaminant undergoing super-diffusion using backward probability density functions (PDFs), where the forward model is the space fractional advection-dispersion equation with decay. Revisit of the well-known MADE-2 tracer test using parameter analysis shows that the peak backward location PDF can predict the tritium source location, while the peak backward travel time PDF underestimates the tracer release time due to the early arrival of tracer particles at the detection well in the maximally skewed, super-diffusive transport. In addition, the first-order decay adds additional skewness toward earlier arrival times in backward travel time PDFs, resulting in a younger release time, although this impact is minimized at the MADE-2 site due to tritium's half-life being relatively longer than the monitoring period. The main conclusion is that, while non-trivial backward techniques are required to identify pollutant source location, the pollutant release time can and should be directly estimated given the speed of the peak resident concentration for super-diffusive pollutants with or without decay.
Estimating the contribution of Galactic sources to the diffuse neutrino flux
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Goldberg, Haim; Paul, Thomas C.; da Silva, Luiz H. M.; Vlcek, Brian J.
2014-12-01
Motivated by recent IceCube observations we reexamine the idea that microquasars are high energy neutrino emitters. By stretching to the maximum the parameters of the Fermi engine we show that the nearby high-mass x-ray binary LS 5039 could accelerate protons up to above about 20 PeV. These highly relativistic protons could subsequently interact with the plasma producing neutrinos up to the maximum observed energies. After that we adopt the spatial density distribution of high-mass x-ray binaries obtained from the deep INTEGRAL Galactic plane survey, and we assume LS 5039 typifies the microquasar population to demonstrate that these powerful compact sources could provide a dominant contribution to the diffuse neutrino flux recently observed by IceCube.
Dust and gas jets: Evidence for a diffuse source in Halley's coma
NASA Technical Reports Server (NTRS)
Clairemidi, Jacques; Rousselot, Philippe; Vernotte, F.; Moreels, Guy
1992-01-01
The distribution of dust-scattered intensity in Halley's inner coma is measured with the Vega three-channel spectrometer at three selected wavelengths: 377, 482, and 607 nm. The variation along a cometo-centric radius may be described by a p(sup -s) law where p is the distance between nucleus and optical axis and s is an exponent which is equal to 1 except in an intermediate 3000 less than p less than 7000 km region where s = 1.5. The shape of the radial distribution may be explained with a model including solar radiation pressure effect and quantum scattering efficiencies calculated from Mie theory. Monochromatic images inside an angular sector having its apex at the nucleus show evidence of two dust jets which extend to 40,000 Km. The pixel-to-pixel ratio of two images of dust intensity at 377 and 482 nm shows that the scattered intensity presents an excess of blue coloration in a zone located around the jets between 10,000 and 25,000 km. This coloration is interpreted as being due to a population of sub-micronic grains which result of the fragmentation of dust particles transported in the jets. It is suggested that the diffuse source where an additional quantity of CO was detected might be connected with the presence of a dust jet. In the present scheme, grain particles with a size of several micron or 10 micron would be transported inside a dust jet to distances of several 10,000 km where they would suffer fragmentation and produce sub-micronic particles and a release of gas which would be at the origin of the diffuse source.
Condensations and diffuse source of C 2 in Comet Hyakutake C/1996 B2
NASA Astrophysics Data System (ADS)
Laffont, Céline; Rousselot, Philippe; Clairemidi, Jacques; Moreels, Guy
1998-05-01
An observation program of Comet Hyakutake C/1996 B2 was conducted in the long-slit spectrometric and narrow-band imagery modes at the Observatoire de Haute Provence on March 24-25 and March 30-April 2, 1996. Images in the continuum taken on March 31, at 19 h 30 UT, show dust jets in the solar-side hemisphere and the presence of two condensationsat r = 2000 and 8000 km (±200 km) along a line in the anti-solar direction. Images in the C 2 (1,1) (at 513 nm) and (0,0) (at 516 nm) bands show the presence of an arc perpendicular to the anti-solar direction at r = 2000 km (±200 km). A bi-dimensional visualisation of the 513 nm/516 nm intensity ratio for C 2 and of the dust "red" colour parameter given by the 682 nm/527 nm intensity ratio shows that both parameters are correlated in the inner coma at r < 5000 km. Synthetic spectra of C 2 are calculated by using a model in which the vibrational and rotational temperatures are adjusted in order to obtain the best fit to the measured spectra. It is shown that both temperatures increase with increasing cometocentric distance. The C 2513 nm/516 nm ratio shows a V-type behaviour centred on the nucleus, with the exception of a region around 1200 km where it reaches a maximum value. It is suggested that the condensations are dust particle clusters released by the nucleus, which create a diffuse source producing the C 2 molecules at a high excitation temperature. The colour of dust in this scheme suggests that the diffuse source contains a higher proportion of small grains than the surrounding coma.
Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi
2015-01-01
A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility. PMID:25673970
Curotto, E; Mella, Massimo
2015-03-21
We test the second order Milstein method adapted to simulate diffusion in general compact Riemann manifolds on a number of systems characterized by nonconfining potential energy surfaces of increasing complexity. For the 2-sphere and more complex spaces derived from it, we compare the Milstein method with a number of other first and second order approaches. In each case tested, we find evidence that demonstrate the versatility and relative ease of implementation of the Milstein method derived in Part I.
Ambipolar and non-ambipolar diffusion in an rf plasma source containing a magnetic filter
Lafleur, T.; Aanesland, A.
2014-06-15
By placing a magnetic filter across a rectangular plasma source (closed at one end with a ceramic plate and an rf antenna, and terminated at the opposite end by a grounded grid), we experimentally investigate the effect of conducting and insulating source walls on the nature of the plasma diffusion phenomena. The use of a magnetic filter creates a unique plasma, characterized by a high upstream electron temperature (T{sub e{sub u}}∼5 eV) near the rf antenna and a low downstream electron temperature (T{sub e{sub d}}∼1 eV) near the grid, which more clearly demonstrates the role of the source wall materials. For conducting walls a net ion current to ground is measured on the grid, and the plasma potential is determined by a mean electron temperature within the source. For insulating walls the plasma potential is determined by the downstream electron temperature (i.e., V{sub p}∼5.2T{sub e{sub d}} in argon), and the net current to the grid is exactly zero. Furthermore, by inserting a small additional upstream conductor (that can be made floating or grounded through an external circuit switch), we demonstrate that the plasma potential can be controlled and set to a low (V{sub p}∼5.2T{sub e{sub d}}), or high (V{sub p}∼5.2T{sub e{sub u}}) value.
NASA Astrophysics Data System (ADS)
Kamalabadi, F.; Cook, T.; Taylor, V.; Chakrabarti, S.
1999-05-01
We present a novel concept for spectral imaging suitable for the study of the interstellar medium at ultraviolet wavelengths. The technique is capable of performing simultaneous multi-object spectroscopy on point sources and imaging spectroscopy of faint diffuse sources. Unlike conventional specral imaging techniques, our method encodes three dimensions of data (RA, DEC, wavelength) into a two-dimensional signal, using an optical system where photons from the entire scence are collected at all times. Inversion of this data back into the three-dimensional space is accomplished by formulating a tomographic reconstruction problem. Intrinsic presence of noise, however, poses difficulties on conventional inversion methods such as the filtered back-projection (FBP) or the minimum-norm least square methods such that they often produce unacceptable results. This limitation is overcome by incorporating sophisticated regularization schemes. We investigate issues concerning the required inversion, and develop a suitable approach to image reconstruction using stochastic regularization by minimizing appropriate L_1 and L_2-norm functionals. We demonstrate the performance of our technique quantitatively in comparison with conventional spectral imaging techniques.
NASA Astrophysics Data System (ADS)
Orlova, A. G.; Turchin, I. V.; Plehanov, V. I.; Shakhova, N. M.; Fiks, I. I.; Kleshnin, M. I.; Konuchenko, N. Yu; Kamensky, V. A.
2008-04-01
An experimental setup for multicolor frequency-domain diffuse optical tomography (FD DOT) was created to visualize neoplasia of breast tissue and to estimate its size. The breast is gently pressed between two glass plates and scanned in the transilluminative configuration by a single source and detector pair. Illumination at three wavelengths (684 nm, 794 nm, and 850 nm) which correspond to different parts of the absorption spectrum in a therapeutic transparency window provides information about concentration of the main absorbers (oxygenated hemoglobin, deoxygenated hemoglobin, and fat/water). Source amplitude modulation at 140 MHz increases spatial resolution and provides separate reconstruction of scattering and absorption coefficients. Moreover, it gives information about breast thickness, which is important for reconstruction. The sensitivity of the system enables one to detect the light propagated through tissue having thickness up to 8 cm. Studies on model media and preliminary in vivo experiments with normal breast and breast carcinoma were performed. An increase of scattering coefficient and total hemoglobin concentration is observed in the tumor area. This corroborates validity of the FD DOT method for breast cancer diagnosis.
Chen, Hao; Zheng, Bing-Hui; Zhang, Lei
2013-02-01
Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components.
[DWT-iPLS applied in the infrared diffuse reflection spectrum of hydrocarbon source rocks].
Song, Ning; Xu, Xiao-xuan; Wu, Zhong-chen; Zhang, Cun-zhou; Wang, Bin
2008-08-01
Infrared spectroscopy is useful to monitor the quality of products on-line, or to quality multivariate properties simultaneously. The IR spectrometer satisfies the requirements of users who want to have quantitative product information in real-time because the instrument provides the information promptly and easily. However, Samples that are measured using diffuse reflectance often exhibit significant differences in the spectra due to the non-homogeneous distribution of the particles. In fact, multiple spectral measurements of the same sample can look completely different. In many cases, the scattering can be an overpowering contributor to the spectrum, sometimes accounting for most of the variance in the data. Although the degree of scattering is dependent on the wavelength of the light that is used and the particle size and refractive index of the sample, the scattering is not uniform throughout the spectrum. Typically, this appears as a baseline shift, tilt and sometimes curvature, where the degree of influence is more pronounced at the longer-wavelength end of the spectrum. The diffuse reflection spectrum is unsatisfactory and the calibration may provide unsatisfactory prediction results. So we must use some methods to remove the effects of the scattering for multivariate calibration of IR spectral signals. Discrete wavelet transform (DWT) is a good method to remove the effects of the scattering for multivariate calibration of IR spectral signals. By using DWT on individual signals as a preprocessing method in regression modeling on IR spectra, good compression is achieved with almost no loss of information, the low-frequency varying background and the high-frequency noise be removed simultaneously. In this report, we use the iPLS method to establish the calibration models of hydrocarbon source rocks. iPLS is a new regression method and the authors can get better results by using DTW- iPLS.
Glass diffusion source for constraining BSF region of a solar cell
Lesk, I.A.; Pryor, R.A.; Coleman, M.G.
1982-08-27
The present invention is directed to a method of fabricating a solar cell comprising simultaneous diffusion of the p and n dopant materials into the solar cell substrate. The simultaneous diffusion process is preceded by deposition of a capping layer impervious to doping by thermal diffusion processes.
Assessment tools are being developed to predict diffuse NPS effects from watershed development and distinguish these from local impacts (point sources, contaminated sediments). Using EMAP data from the New England Wadeable Stream Survey and two state datasets (CT, ME), we are de...
Assessment tools are being developed to predict diffuse NPS effects from watershed development and distinguish these from local impacts (point sources, contaminated sediments). Using EMAP data from the New England Wadeable Stream Survey and two state datasets (CT, ME), we are de...
Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Ott, Wayne R; Fringer, Oliver B; Hildemann, Lynn M
2011-05-01
For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF₆ tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.
USDA-ARS?s Scientific Manuscript database
Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...
Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping
NASA Astrophysics Data System (ADS)
Massard, H.; Fudym, Olivier; Orlande, H. R. B.; Batsale, J. C.
2010-07-01
This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis-Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.
Study on gas diffusion emitted from different height of point source.
Yassin, Mohamed F
2009-01-01
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.
Water quality along a river continuum subject to point and diffuse sources
NASA Astrophysics Data System (ADS)
Neal, Colin; Jarvie, Helen P.; Love, Alison; Neal, Margaret; Wickham, Heather; Harman, Sarah
2008-02-01
SummaryThe water quality along the River Kennet, in the Thames basin of southern England, was examined in terms of the influence of point- and diffuse-nutrient inputs. The river is supplied mainly from a Cretaceous Chalk aquifer and hence the waters are of a calcium bicarbonate type. The nitrate largely comes from agricultural sources, with concentrations decreasing downstream due to plant uptake and probable denitrification. In contrast, soluble reactive phosphorus (SRP) is largely associated with sewage inputs and concentrations increase downstream in line with effluents from major towns such as Newbury and Reading. Adjacent to the river in the lower half of the catchment is the Kennet and Avon Canal and the two are in places hydrologically connected. The canal inputs may influence calcium carbonate (calcite) precipitation and increase suspended sediment and particulate phosphorus concentrations in the river. Monitoring upstream and downstream of Marlborough sewage treatment works (STW) showed that SRP concentrations in the effluent were highly variable due to variable efficiency of P stripping and still sufficiently concentrated to dominate downstream river SRP with potential impacts on stream ecology. Biological recovery in this river following P stripping at STWs is complex and controlling those spikes in SRP that are above a threshold of 100 μg l -1 may be a critical requirement. More stringent effluent targets than are currently recommended may be needed (less than 800 μg RP l -1) to achieve good ecological status in this river depending on SRP concentrations upstream.
Abdo, A. A.
2010-08-11
This is the first of a series of papers aimed at characterizing the populations detected in the high-latitude sky of the Fermi-LAT survey. In this work, we focus on the intrinsic spectral and flux properties of the source sample. We show that when selection effects are properly taken into account, Fermi sources are on average steeper than previously found (e.g., in the bright source list) with an average photon index of 2.40 ± 0.02 over the entire 0.1-100 GeV energy band. We confirm that flat spectrum radio quasars have steeper spectra than BL Lacertae objects with an average index ofmore » 2.48 ± 0.02 versus 2.18 ± 0.02. Using several methods, we build the deepest source count distribution at GeV energies, deriving that the intrinsic source (i.e., blazar) surface density at F 100 ≥ 10–9 ph cm–2 s–1 is 0.12+0.03 –0.02 deg–2. The integration of the source count distribution yields that point sources contribute 16(±1.8)% (±7% systematic uncertainty) of the GeV isotropic diffuse background. At the fluxes currently reached by LAT, we can rule out the hypothesis that pointlike sources (i.e., blazars) produce a larger fraction of the diffuse emission.« less
FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET.
Ingargiola, Antonino; Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier
2016-01-01
Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to
FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET
Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier
2016-01-01
Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to
Soils as sinks or sources for diffuse pollution of the water cycle
NASA Astrophysics Data System (ADS)
Grathwohl, Peter
2010-05-01
Numerous chemical compounds have been released into the environment by human activities and can nowadays be found everywhere, i.e. in the compartments water, soil, and air, at the poles and in high mountains. Examples for a global distribution of toxic compounds are the persistent organic pollutants (PCB, dioxins, PAH, fluorinated surfactants and flame retardants, etc.: "the Stockholm dirty dozen") but also mercury and other metals. Many of these compounds reached a global distribution via the atmo¬sphere; others have been and are still directly applied to top soils at the large scale by agriculture or are released into groundwater at landfill sites or by discharge of treated or untreated waste waters. Sooner or later such compounds end up in the water cycle - often via an intermediate storage in soils. Pollutants in soils are leached by seepage waters, transferred to ground¬water, and transported to rivers via groundwater flow. Adsorbed compounds may be transported from soils into surface waters by erosion processes and will end up in the sediments. Diffuse pollution of the subsurface environment not only reflects the history of the economic development of the modern society but it is still ongoing - e.g. the number of organic pollutants released into the environment is increasing even though the con¬centrations may decrease compared to the past. Evidence shows that many compounds are persistent in the subsurface environment at large time scales (up to centuries). Thus polluted soils already are or may become a future source for pollution of adjacent compartments such as the atmosphere and groundwater. A profound understanding on how diffuse pollutants are stored and processed in the subsurface environment is crucial to assess their long term fate and transport at large scales. Thus integrated studies e.g. at the catchment scale and models are needed which couple not only the relevant compartments (soil - atmosphere - groundwater/surface waters) but also flow
Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.
2014-01-01
To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown
Kolpin, Dana W; Schenzel, Judith; Meyer, Michael T; Phillips, Patrick J; Hubbard, Laura E; Scott, Tia-Marie; Bucheli, Thomas D
2014-02-01
To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1,000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown.
Hergt, Steven; Schaefer, Gerhard
2008-05-15
The Kerr metric outside the ergosphere is transformed into Arnowitt-Deser-Misner coordinates up to the orders 1/r{sup 4} and a{sup 2}, respectively, in radial coordinate r and reduced angular momentum variable a, starting from the Kerr solution in quasi-isotropic as well as harmonic coordinates. The distributional source terms for the approximate solution are calculated. To leading order in linear momenta, higher-order-in-spin interaction Hamiltonians for black hole binaries are derived.
Hybrid radiative-transfer-diffusion model for optical tomography
NASA Astrophysics Data System (ADS)
Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Kaipio, Jari P.
2005-02-01
A hybrid radiative-transfer-diffusion model for optical tomography is proposed. The light propagation is modeled with the radiative-transfer equation in the vicinity of the laser sources, and the diffusion approximation is used elsewhere in the domain. The solution of the radiative-transfer equation is used to construct a Dirichlet boundary condition for the diffusion approximation on a fictitious interface within the object. This boundary condition constitutes an approximative distributed source model for the diffusion approximation in the remaining area. The results from the proposed approach are compared with finite-element solutions of the radiative-transfer equation and the diffusion approximation and Monte Carlo simulation. The results show that the method improves the accuracy of the forward model compared with the conventional diffusion model.
Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang
2013-01-21
A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.
NASA Astrophysics Data System (ADS)
Sujatha, N.; Nivetha, K. Bala; Singhal, Akshay
2014-05-01
Localization and determination of blood region parameters in skin tissue can serve as a valuable supplement to standard non invasive techniques, especially in accessing the degree of depth of burns on skin and for the classification of vascular malformations. Quantitative optical examination of skin local blood region requires the use of depth sensitive techniques and preferential probing for assessment of data from specific layers of skin tissue. This work incorporates the depth sensitivity of diffuse reflectance spectroscopy and optimal source to detector fiber separation for maximum reflectance collection efficiency from local blood region in skin. Monte Carlo simulation for diffuse reflectance was performed on a multi layered skin tissue model consisting of epidermis, perfused dermis and localized blood region. It was found that the slope of the spatially resolved reflectance curve plotted with respect to the source to detector separation distance in semi log scale varies with the depth of the local blood region at specific wavelengths corresponding to the absorption wavelengths of hemoglobin. From the depth information obtained from the spatially resolved reflectance data, the optimum source to detector separation (SDS) is determined for maximum collection efficiency from the chromophore layer. The results obtained from simulation suggest the design of a linearly variable source to detector separation probe for preferential analysis of the depth of a specific tissue layer and subsequent determination of optimal source to detector separation for extracting the layer information.
NASA Technical Reports Server (NTRS)
Maoz, Eyal; Grindlay, Jonathan E.
1995-01-01
The incompatibility of the properties of the X-ray background (XRB) with active galactic nuclei (AGNs) contributing approximately greater than 60% at energies of a few keV has often been interpreted as being due to a substantial contribution of a new population of yet unrecognized X-ray sources. The existence of such population has been recently suggested also by an analysis of very deep ROSAT observations which revealed a considerable excess of faint X-ray sources over that expected from QSO evolution models, and that the average spectrum of the resolved sources becomes harder with decreasing flux limit. These sources could be extragalactic in origin, but if they make a substantial contribution to the XRB then they must exhibit much weaker clustering than galaxies or QSOs in order to be consistent with the stringent constraints on source clustering imposed by autocorrelation analyses of the unresolved XRB. We investigate the possibility that the indicated new population of X-ray sources is Galactic in origin. Examining spherical halo and thick disk distributions, we derive the allowed properties of such populations which would resolve the discrepancy found in the number counts of faint sources and be consistent with observational constraints on the total background intensity, the XRB anisotropy, the number of unidentified bright sources, the Galaxy's total X-ray luminosity, and with the results of fluctuation analyses of the unresolved XRB. We find that a flattened Galactic halo (or a thick disk) distribution with a scale height of a few kpc is consistent with all the above requirements. The typical X-ray luminosity of the sources is approximately equal to 10(exp 30-31)ergs/s in the 0.5-2 keV band, the number density of sources in the solar vicinity is approximately 10(exp -4.5)pc(exp -3), their total number in the Galaxy is approximately 10(exp 8.5), and their total contribution to the Galaxy's X-ray luminosity is approximately 10(exp 39) ergs/s. We discuss the
NASA Astrophysics Data System (ADS)
Park, Kyoungsu; Lee, Minseok; Lee, Seung-ha; Cerussi, Albert E.; Chung, Phil-sang; Kim, Sehwan
2015-03-01
Many biomedical applications require an efficient combination and localization of multiple discrete light sources. In this paper, we present a compact six-channel combiner of optical sub-assembly type that couples the output of independent solid-state light sources into a single 400 μm diameter optical fiber. It is equipped with six discrete laser diodes, 658, 690, 705, 785, 830, and 850 nm for the measurement of the tissue optical properties from optical spectroscopy and imaging. We demonstrate coupling efficiencies ≥ 77% and output optical power ≥ 20 mW for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity modulated laser diodes (with bandwidth ≥ 3 GHz). The developed light source could be used to construct custom multi-wavelength sources for tissue oximeters, diffuse optical imaging, and molecular imaging technologies.
Zushi, Yasuyuki; Masunaga, Shigeki
2011-11-01
To efficiently reduce perfluorinated compound (PFC) pollution, it is important to have an understanding of PFC sources and their contribution to the pollution. In this study, source identification of diffuse water pollution by PFCs was conducted using a GIS-based approach. Major components of the source identification were collection of the monitoring data and preparation of the corresponding geographic information that was extracted from a constructed GIS database. The spatially distributed pollution factors were then explored by multiple linear regression analysis, after which they were visually expressed using GIS. Among the 35 PFC homologues measured in a survey of the Tokyo Bay basin, 18 homologues were analyzed. Pollution by perfluorooctane sulfonate (PFOS) was explained well by the percentage of arterial traffic area in the basin, and the 84% variance of the measured PFOS concentration was explained by two geographic variables, arterial traffic area and population. Source apportionment between point and nonpoint sources was conducted based on the results of the analysis. The contribution of PFOS from nonpoint sources was comparable to that from point sources in several major rivers flowing into Tokyo Bay. Source identification and apportionment using the GIS-based approach was shown to be effective, especially for ubiquitous types of pollution, such as PFC pollution.
A diffusion source for sodium and potassium in the atmospheres of Mercury and the moon
NASA Technical Reports Server (NTRS)
Sprague, Ann L.
1990-01-01
Deep grain-boundary diffusion and regolith diffusion through a fractured crust and regolith can account not only for the Na/K ratios observed in the Mercurian and lunar atmospheres, but the large Na abundance enhancement of Mercury over lunar levels. A hot component of Na and K at Mercury is noted to be smaller in proportion to the total abundances of these two constituents than at the moon; this hot component is consistent with a population of meteoritic substances similar to lunar ones, as well as with a surface composition which has undergone no greater K depletion than that of the moon.
A diffusion source for sodium and potassium in the atmospheres of Mercury and the moon
NASA Technical Reports Server (NTRS)
Sprague, Ann L.
1990-01-01
Deep grain-boundary diffusion and regolith diffusion through a fractured crust and regolith can account not only for the Na/K ratios observed in the Mercurian and lunar atmospheres, but the large Na abundance enhancement of Mercury over lunar levels. A hot component of Na and K at Mercury is noted to be smaller in proportion to the total abundances of these two constituents than at the moon; this hot component is consistent with a population of meteoritic substances similar to lunar ones, as well as with a surface composition which has undergone no greater K depletion than that of the moon.
NASA Astrophysics Data System (ADS)
Healy, R. W.
2015-12-01
Water movement through soils is often dominated by preferential flow processes such as fingering and macropore flow. Traditional models of flow in the unsaturated zone are based on the diffusion or Richards equation and assume that diffusive (surface-tension viscous) flow is the only flow process. These models are incapable of accurately simulating preferential flow. Several alternative approaches, including kinematic wave, transfer function, and water-content wave models, have been suggested for simulating water movement through preferential flow paths. The source-responsive model proposed by Nimmo (2010) and Nimmo and Mitchell (2013) is unique among such models in that water transfer from land surface to depth is controlled by the water-application rate at land surface. The source-responsive model has been coupled with a one-dimensional version of the Richards-equation based model of variably saturated flow, VS2DT. The new model, can simulate flow within the preferential (S) domain alone, within the diffuse (D) domain alone, or within both the S and D domains simultaneously. Water exchange between the two domains is treated as a first-order diffusive process, with the exchange coefficient being a function of soil-water content. The new model was used to simulate field and laboratory infiltration experiments described in the literature. Simulations were calibrated against measured soil water contents with the PEST parameter estimation package; values for hydraulic conductivity and 3 van Genuchten and 3 source-responsive parameters were optimized. Although exact matches between measured and simulated water contents were not obtained, the simulation results captured the salient characteristics of the published data sets, including features typical of preferential as well as diffusive flow. Results obtained from simulating flow simultaneously in both the S and D domain provided better matches to measured data than results obtained from simulating flow independently
Diffusion of radon through concrete block walls: A significant source of indoor radon
Lively, R.S.; Goldberg, L.F.
1999-01-01
Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.
NASA Astrophysics Data System (ADS)
Liu, Yikan; Zhang, Zhidong
2017-07-01
In this article, we consider the reconstruction of ρ(t) in the (time-fractional) diffusion equation (\\partial_t^α-\\triangle)u(x, t)=ρ(t)g(x) (0<α≤slant1 ) by observation at a single point x 0. We are mainly concerned with the situation of x_0\
NASA Astrophysics Data System (ADS)
Chang, Xiao-Chuan; Liu, Ruo-Yu; Wang, Xiang-Yu
2016-07-01
The nearly isotropic distribution of teraelectronvolt to petaelectronvolt neutrinos recently detected by the IceCube Collaboration suggests that they come from sources at a distance beyond our Galaxy, but how far away they are is largely unknown because of a lack of any associations with known sources. In this paper, we propose that the cumulative TeV gamma-ray emission accompanying the production of neutrinos can be used to constrain the distance of these neutrino sources, since the opacity of TeV gamma rays due to absorption by the extragalactic background light depends on the distance these TeV gamma rays have traveled. As the diffuse extragalactic TeV background measured by Fermi is much weaker than the expected cumulative flux associated with IceCube neutrinos, the majority of IceCube neutrinos, if their sources are transparent to TeV gamma rays, must come from distances larger than the horizon of TeV gamma rays. We find that above 80% of the IceCube neutrinos should come from sources at redshift z > 0.5. Thus, the chance of finding nearby sources correlated with IceCube neutrinos would be small. We also find that, to explain the flux of neutrinos under the TeV gamma-ray emission constraint, the redshift evolution of neutrino source density must be at least as fast as the cosmic star formation rate.
NASA Astrophysics Data System (ADS)
Jia, Junxiong; Peng, Jigen; Yang, Jiaqing
2017-04-01
In this paper, we focus on a space-time fractional diffusion equation with the generalized Caputo's fractional derivative operator and a general space nonlocal operator (with the fractional Laplace operator as a special case). A weak Harnack's inequality has been established by using a special test function and some properties of the space nonlocal operator. Based on the weak Harnack's inequality, a strong maximum principle has been obtained which is an important characterization of fractional parabolic equations. With these tools, we establish a uniqueness result of an inverse source problem on the determination of the temporal component of the inhomogeneous term, which seems to be the first theoretical result of the inverse problem for such a general fractional diffusion model.
Greiner, R; Herr, A; Brodie, J; Haynes, D
2005-01-01
This paper presents a multi-criteria based tool for assessing the relative impact of diffuse-source pollution to the Great Barrier Reef (GBR) from the river basins draining into the GBR lagoon. The assessment integrates biophysical and ecological data of water quality and pollutant concentrations with socio-economic information pertaining to non-point source pollution and (potential) pollutant impact. The tool generates scores for each river basin against four criteria, thus profiling the basins and enabling prioritization of management alternatives between and within basins. The results support policy development for pollution control through community participation, scientific data integration and expert knowledge contributed by people from across the catchment. The results specifically provided support for the Reef Water Quality Protection Plan, released in October 2003. The aim of the plan is to provide a framework for reducing discharge of sediment, nutrient and other diffuse-source loads and (potential) impact of that discharge and for prioritising management actions both between and within river basins.
NASA Astrophysics Data System (ADS)
Taheriyoun, Ali R.; Moghimbeygi, Meisam
2017-02-01
An approximation of the fractional Brownian motion based on the Ornstein-Uhlenbeck process is used to obtain an asymptotic likelihood function. Two estimators of the Hurst index are then presented in the likelihood approach. The first estimator is produced according to the observed values of the sample path; while the second one employs the likelihood function of the incremental process. We also employ visual roughness of realization to restrict the parameter space and to obtain prior information in Bayesian approach. The methods are then compared with three contemporary estimators and an experimental data set is studied.
Taheriyoun, Ali R.; Moghimbeygi, Meisam
2017-01-01
An approximation of the fractional Brownian motion based on the Ornstein-Uhlenbeck process is used to obtain an asymptotic likelihood function. Two estimators of the Hurst index are then presented in the likelihood approach. The first estimator is produced according to the observed values of the sample path; while the second one employs the likelihood function of the incremental process. We also employ visual roughness of realization to restrict the parameter space and to obtain prior information in Bayesian approach. The methods are then compared with three contemporary estimators and an experimental data set is studied. PMID:28195153
Shi, Zhenzhi; Fan, Ying; Zhao, Huijuan; Xu, Kexin
2012-06-01
Accurate determination of the optical properties (the absorption coefficient μ(a) and the reduced scattering coefficient μ(s) (')) of tissues is very important in a variety of diagnostic and therapeutic procedures. Optical diffusion theory is frequently used as the forward model for describing the photon transfer in media with large reduced albedos (a(')) and in large source-detector separations (SDS). Several other methods (PN approximation, hybrid diffusion-P3 approximation) have also been published that describe photon transfer in media with low a(') or small SDSs. We studied the theoretical models for the steady-state spatially resolved diffuse reflectance measurement to accurately determine μ(a) and μ(s) (') at large a(') range but small SDSs. Instead of using a single model, a joint derivation method is proposed. The developed method uses one of the best aforementioned theoretical methods separately in five ranges of a(') determined from several forward models. In the region of small SDSs (the range between 0.4 and 8 mm) and large a(') range (between 0.5 and 0.99), the best theoretical derivation model was determined. The results indicate that the joint derivation method can improve the derivation accuracy and that a(') range can be determined by the steady-state spatially resolved diffuse reflectance measurement.
NASA Technical Reports Server (NTRS)
Cohen, Martin; Jones, B. F.
1987-01-01
Spectroscopy of the starlike optical counterpart to IRAS 21282+5050, a source with the hydrocarbon infrared emission band spectrum, shows an 07(f)-(WC11) planetary nebula nucleus suffering an extinction of 5.7 mag. Emission line widths in the WC spectrum are only approx. 100 km/s, indicating a very slow stellar wind. Optical diffuse interstellar bands (DIBs) are prominent. Five DIBs are strongly enhanced, namely lamda lamda 5797, 6196, 6203, 6283, and 6613. The presence of circumstellar hydrocarbon molecules may explain both the infrared emission bands and the enhanced DIBs.
Cecchi, Giuliano; Munafò, Michele; Baiocco, Fabio; Andreani, Paolo; Mancini, Laura
2007-01-01
This paper describes the application of the Index of Potential Non-point Pollution (PNPI) to the territory of the Viterbo Province (Central Italy). PNPI is a GIS tool that allows managers to assess the pressure on surface aquatic ecosystems deriving from diffuse sources of pollution. The index aims to assemble the available environmental datasets and specialists' expertise to set up a user-friendly and informative tool that can support decision-making processes and foster a multi-disciplinary approach. The index calculation is described and results are reported in order to give an overview of PNPI possible applications.
NASA Astrophysics Data System (ADS)
Shishkin, G. I.; Shishkina, L. P.
2011-06-01
In the case of the Dirichlet problem for a singularly perturbed ordinary differential reaction-diffusion equation, a new approach is used to the construction of finite difference schemes such that their solutions and their normalized first- and second-order derivatives converge in the maximum norm uniformly with respect to a perturbation parameter ɛ ∈(0, 1]; the normalized derivatives are ɛ-uniformly bounded. The key idea of this approach to the construction of ɛ-uniformly convergent finite difference schemes is the use of uniform grids for solving grid subproblems for the regular and singular components of the grid solution. Based on the asymptotic construction technique, a scheme of the solution decomposition method is constructed such that its solution and its normalized first- and second-order derivatives converge ɛ-uniformly at the rate of O( N -2ln2 N), where N + 1 is the number of points in the uniform grids. Using the Richardson technique, an improved scheme of the solution decomposition method is constructed such that its solution and its normalized first and second derivatives converge ɛ-uniformly in the maximum norm at the same rate of O( N -4ln4 N).
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.
2015-04-01
An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.
Baksht, E Kh; Burachenko, A G; Lomaev, M I; Panchenko, A N; Tarasenko, V F
2015-04-30
An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)
NASA Astrophysics Data System (ADS)
Cernak, M.; Kovacik, D.; Zahoranova, A.; Rahel, J.
2008-07-01
Collaborating Czech and Slovakian university teams have recently developed an innovative plasma source, the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD), which has the potential to move a step closer to the industry requirement for in-line treatment of low-added-value materials using a highly-nonequlibrium ambient air plasma (Simor et al. 2002, The idea is to generate a thin (on the order of 0.1 mm) layer of highly-nonequlibrium plasma with a high power density (up to 100 W/cm^3) in the immediate vicinity of the treated surface and bring it into a close contact with the treated surface. Comparing to atmospheric-pressure glow discharge, volume dielectric barrier discharge, and plasma jet plasmas, such a diffuse plasma layer is believed to provide substantial advantages in energy consumption, exposure time, and technical simplicity. A brief outline of physical mechanism and basic properties of DCSBD will given using the results of emission spectroscopy, high-speed camera, and spatially resolved cross-correlation spectroscopy studies. The presentation will review also a current state of the art in in-line plasma treatment of low-cost materials and opportunities for the use of the so-called Diffuse Coplanar Surface Dielectric Barrier Discharge (DCSBD). The results obtained on the ambient air plasma treatments of textile, paper, wood, and glass illustrate that DCSBD offers outstanding performance with extremely low energy consumption for large area, uniform surface modifications of materials under continuous process conditions.
Analysis of XMM-Newton Data from Extended Sources and the Diffuse X-Ray Background
NASA Technical Reports Server (NTRS)
Snowden, Steven
2011-01-01
Reduction of X-ray data from extended objects and the diffuse background is a complicated process that requires attention to the details of the instrumental response as well as an understanding of the multiple background components. We present methods and software that we have developed to reduce data from XMM-Newton EPIC imaging observations for both the MOS and PN instruments. The software has now been included in the Science Analysis System (SAS) package available through the XMM-Newton Science Operations Center (SOC).
Caruso, B S
2001-11-01
Management of agricultural diffuse pollution requires targeting or prioritising critical source areas at various spatial scales within watersheds. This study develops, evaluates and illustrates a risk-based approach for assessment and targeting of source areas at catchment, subarea and individual farm scales. Catchment water quality data are used in conjunction with information on watershed characteristics from the New Zealand Land Resources Inventory at the subarea scale and land use information at the farm scale to assess risk and target source areas. Total phosphorus in the Lake Hayes Catchment, a high country pastoral catchment in the South Island of New Zealand, is used as a case study. Use, comparison and evaluation of several different methodologies for subareas and individual properties showed that a subarea in the upper catchment and one immediately upstream from the lake were the worst source areas. Targeting of other subareas varied dependent on the method used. The worst individual properties were targeted based on the combination of intensity of cattle and sheep grazing, fertilizer usage, bank erosion and location in the worst subareas. Water quality results are critical to successful targeting, particularly for convincing landowners that streams will benefit from best management practices on their properties. In addition to concentrations, average and extreme loadings are important. Data on catchment characteristics, particularly land use, are needed for targeting, but are not always readily available at small scales. This study demonstrated simple but useful methods for application of assessment information for quantitative targeting of contaminant source areas at different spatial scales.
NASA Astrophysics Data System (ADS)
Guo, Chao; Han, Tongshuai; Zhang, Ziyang; Sun, Di; Liu, Jin
2016-10-01
In the non-invasive blood glucose concentration (BGC) sensing, the measurement based on near infrared spectroscopy has been a promising technology since it had acquired dozens of satisfactory results in short-term glucose monitoring tests. However, it's still necessary to improve the measurement precision because it has challenges of the reduced precision in a long-term test when a lot of variables in the test would exist. Considering the requirement of multivariable analysis, the signals of diffuse reflectance spectra should include enough absorption information from glucose. However, the sensitivity of diffuse light intensity to the absorption variation at different source detector separations (SDSs) could be different. We present an analysis method using Monte-Carlo (MC) simulation and the diffuse equation for reasonably selecting proper SDS to get a satisfactory glucose measurement precision when there are multivariable disturbances. In the case of measuring glucose in a tissue phantom using the waveband of 1000-1340 nm, we show the SDS optimization result by using this analysis method. The experiment was designed to measure the diffuse reflectance spectra at 0.1-3.0 mm with the step of 0.1 mm, and the phantom solutions with different glucose concentrations and hemoglobin concentrations are tested. The glucose prediction precision was evaluated using the root mean squared error of prediction (RMSEP) for the all SDSs of 0.1-3.0 mm, and the SDSs with the lower RMSEP were selected for use. Moreover, the selected SDSs in the experiment shows a similar conclusion from the MC simulation. This work could be referenced to the in vivo BGC measurement.
Diffuse radio emission around FR II sources as exemplified by 3C452
NASA Astrophysics Data System (ADS)
Wiita, Paul J.; Sirothia, S. K.; Gopal-Krishna, ..
2014-01-01
We have discovered a pair of megaparsec size radio lobes of extremely steep spectrum straddling the well-known classical double radio source 3C452. For the past several decades 3C452 has been regarded as a textbook example of an edge-brightened double radio source of Fanaroff-Riley type II (FR II) but we show it to be a bonafide "double-double" radio galaxy (DDRG). The inner double fed by the jets has evolved into a perfectly normal FR II radio source. Thus, 3C452 presents a uniquely robust example of recurrent nuclear activity in which the restarted jets are expanding non-relativistically within the relic synchrotron plasma from an earlier active phase. This situation contrasts markedly with the strikingly narrow inner doubles observed in a few other DDRGs that have been interpreted in terms of compression of the synchrotron plasma of the relic outer lobes at the relativistic bow-shocks driven by the near ballistic propagation of the two inner jets through the relic plasma. We also present additional examples of the occurrence of faded outer lobes around well defined FRII sources, using our deep GMRT images at meter wavelengths processed with AIPS++ software. We also examine the statistics of the occurrence of such sources using a flux density limited sample. A key ramification of our findings are that they caution against the use of FR II classical double radio sources for testing cosmological models and unification schemes for active galactic nuclei.
NASA Astrophysics Data System (ADS)
Shcherbak, I.; Robertson, G. P.
2012-12-01
Agriculture is a major anthropogenic source of the potent GHG nitrous oxide (N2O). Distribution of subsurface sources of N2O in agricultural soils is not well understood. We examined N2O production at different soil depths to 1 meter in order to quantify by depth the total flux produced and the factors responsible for production. We measured subsurface N2O concentrations and surface N2O flux in three experiments: 1) duplicated tilled and no-tillage plots planted to corn, 2) rainfed and irrigated plots planted to corn at six N fertilizer levels, and 3) different replicated treatments of KBS LTER site - corn/soybean/wheat under conventional tillage, no-tillage, reduced input, and organic management, poplar trees, alfalfa, and early- and mid-successional communities. We measured diffusivity by injecting an inert tracer (SF6) and high concentrations of nitrous oxide to different depths to validate a diffusivity model. We developed a production function from experiments studying the effects of tillage, fertilization, and irrigation and applied it to treatments of KBS LTER. We attributed specific portions of N2O produced at different soil depths, with lower fluxes produced at depth despite surprisingly high N2O concentrations to 1m. Major seasonal fluxes were produced in the top 25 cm.
2010-02-20
x’ integration takes place within a single grid cell . For these energies, the finite difference 4 approximation is not even qualitatively correct...temperature variation within a few grid cells . However numerical instability occurs on the very shortest spatial scale length, so the background appears...proportional to /5-2 varies over 8 orders of magnitude, and since a laser plasma simulation typically has fewer than 1000 spatial cells , flux cannot be treated
Study of diffuse source pollution management for land use and drainage system planning.
Yamada, K; Funaki, T; Honda, S; Sugihara, M
2001-01-01
This study aims to clarify the mass balance of pollutants during both dry periods and storm events and to discuss the effects of some strategies such as pollutant removal, land use planning and new drainage systems by simulation. Three subjects are discussed in this paper. First, the amount of pollutants entering Lake Biwa from an urban area have been roughly estimated by using data collected by the local government. Second, many additional samples were collected from road surfaces, house roofs and parking lots to consider the role of land use in pollutant runoff. Third, some ongoing BMP projects in an urban area are introduced. As a result, some ideas on how to solve the problem of diffuse pollution in urban areas have been obtained.
Interacting biochemical and diffusive controls on trace gas sources in unsaturated soils
NASA Astrophysics Data System (ADS)
Rubol, S.; Manzoni, S.; Bellin, A.; Porporato, A. M.
2011-12-01
Microbes react to environmental conditions on different timescales. When conditions improve (e.g., rewetting, substrate amendment), the residing population exits the dormant state, becomes active and starts synthesizing extra-cellular enzymes. If substrate availability, and hence energy, is sufficient, microbes may start to reproduce and increase the size of their population. These dynamics make it complicated to interpret measured relationships between microbial activity (e.g., respiration, denitrification, N mineralization) and environmental conditions. In particular, the relationship between bacterial activity and soil moisture, which is derived by incubating soil samples at constant soil moisture levels, seems to vary under dynamic hydrological conditions. This may be related to both soil physical properties and the resilience of bacteria to adapt to rapid changes in soil moisture. We present a process-based model that includes both the above effects and test the hypothesis that the ratio of the time scale of biological versus physical factors determines the shape describing the relationship between microbial activity and soil moisture. In particular, we focus on the role of oxygen dynamics, which regulate the prevalence of aerobic versus anaerobic conditions and thus the prevalence of nitrification versus denitrification. We identify and compare the time scale of the biological oxygen consumption with the time scale of physical diffusion. Starting from well-aerated conditions, as bacteria consume O2 in solution, more oxygen dissolves from the atmosphere - depending on gas-filled porosity. If water dynamics or tillage limits re-aeration, this can affect the equilibrium between the aqueous and the gaseous phase and thus alter the time scale of the reactions. This balance between consumption and re-aeration by diffusion ultimately controls the water quality as well the production of trace gases.
CONTRIBUTION OF UNRESOLVED POINT SOURCES TO THE DIFFUSE X-RAY BACKGROUND BELOW 1 keV
Gupta, A.; Galeazzi, M.
2009-09-01
We present here the analysis of X-ray point sources detected in several observations available in the XMM-Newton public archive. We focused, in particular, on energies below 1 keV, which are of particular relevance to the understanding of the diffuse X-ray background (DXB). The average field of all the exposures is 0.09 deg{sup -2}. We reached an average flux sensitivity of 5.8 x 10{sup -16}ergs{sup -1}cm{sup -2} in the soft band (0.5-2.0 keV) and 2.5 x 10{sup -16}ergs{sup -1}cm{sup -2} in the very soft band (0.4-0.6 keV). In this paper, we discuss the log N-log S results, the contribution to the integrated X-ray sky flux, and the properties of the cumulative spectrum from all sources. In particular, we found an excess flux at around 0.5 keV in the composite spectrum of faint sources. The excess seems to be a general property of all the fields observed suggesting an additional class of weak sources is contributing to the X-ray emission at these energies. Combining our results with previous investigations, we have also quantified the contribution of the individual components of the DXB in the 3/4 keV band.
Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C
2011-07-01
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.
Tseng, Sheng-Hao; Hayakawa, Carole; Spanier, Jerome; Durkin, Anthony J.
2009-01-01
We design a special diffusing probe to investigate the optical properties of human skin in vivo. The special geometry of the probe enables a modified two-layer (MTL) diffusion model to precisely describe the photon transport even when the source-detector separation is shorter than 3 mean free paths. We provide a frequency domain comparison between the Monte Carlo model and the diffusion model in both the MTL geometry and conventional semiinfinite geometry. We show that using the Monte Carlo model as a benchmark method, the MTL diffusion theory performs better than the diffusion theory in the semiinfinite geometry. In addition, we carry out Monte Carlo simulations with the goal of investigating the dependence of the interrogation depth of this probe on several parameters including source-detector separation, sample optical properties, and properties of the diffusing high-scattering layer. From the simulations, we find that the optical properties of samples modulate the interrogation volume greatly, and the source-detector separation and the thickness of the diffusing layer are the two dominant probe parameters that impact the interrogation volume. Our simulation results provide design guidelines for a MTL geometry probe. PMID:19895144
Tseng, Sheng-Hao; Hayakawa, Carole; Spanier, Jerome; Durkin, Anthony J
2009-01-01
We design a special diffusing probe to investigate the optical properties of human skin in vivo. The special geometry of the probe enables a modified two-layer (MTL) diffusion model to precisely describe the photon transport even when the source-detector separation is shorter than 3 mean free paths. We provide a frequency domain comparison between the Monte Carlo model and the diffusion model in both the MTL geometry and conventional semiinfinite geometry. We show that using the Monte Carlo model as a benchmark method, the MTL diffusion theory performs better than the diffusion theory in the semiinfinite geometry. In addition, we carry out Monte Carlo simulations with the goal of investigating the dependence of the interrogation depth of this probe on several parameters including source-detector separation, sample optical properties, and properties of the diffusing high-scattering layer. From the simulations, we find that the optical properties of samples modulate the interrogation volume greatly, and the source-detector separation and the thickness of the diffusing layer are the two dominant probe parameters that impact the interrogation volume. Our simulation results provide design guidelines for a MTL geometry probe.
Source term evaluation for UF{sub 6} release event in feed facility at gaseous diffusion plants
Kim, S.H.; Taleyarkhan, R.P.
1997-01-30
An assessment of UF{sub 6} release accidents was conducted for the feed facility of a gaseous diffusion plant (GDP). Release rates from pig-tail connections were estimated from CYLIND code predictions, whereas, MELCOR was utilized for simulating reactions of UF{sub 6} with moisture and consequent transport of UO{sub 2}F{sub 2} aerosols and HF vapor through the building and to the environment. Two wind speeds were utilized. At the high end (Case 1) a wind speed of {approximately} 1 m/s (200 fpm) was assumed to flow parallel to the building length. At the low end (Case 2) to represent stagnant conditions a corresponding wind speed of 1 cm/s (2 fpm) was utilized. A further conservative assumption was made to specify no closure of crane and train doors at either end of the building. Relaxation of this assumption should provide for additional margins. Results indicated that, for the high (200 fpm) wind speed, close to 66% of the UO{sub 2}F{sub 2} aerosols and 100% of the HF gas get released to the environment over a 10-minute period. However, for the low (2 fpm) wind speed, negligible amount ({approximately} 1% UO{sub 2}F{sub 2}) of aerosols get released even over a 2 hour period.
Source stabilization for high quality time-domain diffuse optical tomography
NASA Astrophysics Data System (ADS)
Mo, Weirong; Chen, Nanguang
2009-02-01
We report a new close-loop feedback control method to keep a Mach-Zehnder electro-optic modulator (MZ-EOM) biased at the quadrature point and simultaneously correct the bias drift caused by the temperature changes as well as the inherent photorefractive effect. The modulator is a key part of our high speed time-domain diffuse optical tomography system. It modulates the dual-wavelength near-infrared light with the high speed pseudorandom bit sequence (PRBS) signal for the temporal point spread function (TPSF) measurements. Our method applies a periodical low frequency square wave with 50% duty cycle as the pilot tone upon the MZ-EOM together with the PRBS and sweep the bias voltage of the MZ-EOM in a self-adaptive step. A constant fraction of the modulated output power is measured by a photodiode via a tap coupler. After demodulation, the modulation depth versus the bias voltage can be measured from which the peak value corresponding to the quadrature point can be located quickly by curve fitting. Our stabilization technique is simple, fast and cost effective and is effective to correct the bias drift caused by the photorefractive and the change of ambient conditions. The experiment results show the TPSFs measurements can be stabilized to within +/-2% in an hour duration, which helps improved the image quality.
Knowledge Diffusion in ERP Development: The Case of Open Source ERP Downloads
NASA Astrophysics Data System (ADS)
Johansson, Björn
This paper reports on an investigation of challenges in enterprise resource planning systems (ERPs) development. The investigation, conducted as interviews with executives at a major ERP software vendor, identified six challenges when developing future ERPs. The challenges are then related to a question of knowledge sharing in ERP development. The question is, can downloads of open source ERPs be seen as a knowledge sharing activity with the potential to decrease the gap between ERP developers and users of ERPs? From identified challenges and by discussing reasons for the high attention and the high numbers of download of open source ERPs, the article presents some conclusions that could act as input for future research. The paper aims at building a foundation for the basic question: In what way could knowledge sharing in ERP development be improved? The main conclusion is that challenges for future development of ERPs addressed by proprietary ERP software vendors could be one reason for the high attention among developers of open source ERPs.
Bieniasz, L K
2003-07-01
Accurate calculation of concentration gradients at the boundaries is crucial in electrochemical kinetic simulations, owing to the frequent occurrence of gradient-dependent boundary conditions, and the importance of the gradient-dependent electric current. By using the information about higher spatial derivatives of the concentrations, contained in the time-dependent, kinetic reaction-diffusion partial differential equation(s) in one-dimensional space geometry, under appropriate assumptions it is possible to increase the accuracy orders of the conventional, one-sided n-point finite-difference formulae for the concentration gradients at the boundaries, without increasing n. In this way a new class of high order accurate gradient approximations is derived, and tested in simulations of potential-step chronoamperometric and current-step chronopotentiometric transients for the Reinert-Berg system. The new formulae possess advantages over the conventional gradient approximations. For example, they allow one to obtain a third order accuracy by using two space points only, or fourth order accuracy by using three points, and yet they yield smaller errors than the conventional four-point, or five-point formulae, respectively. Needing fewer points, for approximating the gradients with a given accuracy, simplifies also the solution of the linear algebraic equations arising from the application of implicit time integration schemes.
Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.
1997-01-01
Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525
Liebert, Adam; Sawosz, Piotr; Kacprzak, Michal; Weigl, Wojciech; Botwicz, Marcin; Maniewski, Roman
2010-01-01
Multichannel time-resolved optical monitoring system was constructed for measurements of diffuse reflectance in optically turbid medium at very large source-detector separation up to 9 cm. The system is based on femtosecond TiSa laser and sensitive photomultiplier tube detector. The laser light of 300mW of power was delivered to the surface of the head with the use of an optical fiber. A beam expander was applied in order to distribute the laser light on a large spot which allowed to avoid energetic stimulation of the tissue. The photomultiplier tube detector was positioned directly on the surface of the medium at the distance of 9cm from the center of the source position. In this paper we report results of an in-vivo experiment carried out on the head of an adult healthy volunteer. The time-resolved system was applied during intravenous injection of an optical contrast agent (indocyanine green - ICG) and the distributions of times of flight of photons were successfully acquired showing inflow and washout of the dye to the tissue. Time-courses of the moments of distributions of times of flight of photons are presented and compared with the results obtained simultaneously at shorter source-detector separations (3 cm, 4 cm and 5 cm).
Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source
Vanacore, G. M.; Zani, M.; Tagliaferri, A.; Nicotra, G.; Bollani, M.; Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F.; Capellini, G.; Isella, G.; Osmond, J.
2015-03-14
The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.
Jing, Min; McGinnity, T Martin; Coleman, Sonya; Zhang, Huaizhong; Fuchs, Armin; Kelso, J A Scott
2012-02-01
In diffusion-weighted imaging (DWI), reliable fiber tracking results rely on the accurate reconstruction of the fiber orientation distribution function (fODF) in each individual voxel. For high angular resolution diffusion imaging (HARDI), deconvolution-based approaches can reconstruct the complex fODF and have advantages in terms of computational efficiency and no need to estimate the number of distinct fiber populations. However, HARDI-based methods usually require relatively high b-values and a large number of gradient directions to produce good results. Such requirements are not always easy to meet in common clinical studies due to limitations in MRI facilities. Moreover, most of these approaches are sensitive to noise. In this study, we propose a new framework to enhance the performance of the spherical deconvolution (SD) approach in low angular resolution DWI by employing a single channel blind source separation (BSS) technique to decompose the fODF initially estimated by SD such that the desired fODF can be extracted from the noisy background. The results based on numerical simulations and two phantom datasets demonstrate that the proposed method achieves better performance than SD in terms of robustness to noise and variation in b-values. In addition, the results show that the proposed method has the potential to be applied to low angular resolution DWI which is commonly used in clinical studies. © 2011 IEEE
Diffuse-source pesticide inputs in surface waters: online risk assessment at field scale
NASA Astrophysics Data System (ADS)
Reichenberger, S.; Röpke, B.; Bach, M.; Frede, H.-G.
2003-04-01
Diffuse pesticide input from agricultural fields into surface waters depends, apart from substance properties, also on soil properties, site hydrology, tillage and application practices, weather conditions, and distance to water bodies. A product which can be used safely at one site may pose unacceptable risk to aquatic life at another site. Thus, there is a great need for site-specific risk assessment approaches. Our objective is therefore to develop a tool for assessing pesticide inputs via runoff/erosion, drainflow, and spraydrift for single fields. The tool will be part of the web-based Information System for Integrated Plant Production (ISIP, www.isip.de), but also able to run independently. ISIP is an interactive portal for both farmers and advisors and will become the leading decision support system for plant production and plant protection in Germany over the next years. The aim is an approach which i) is applicable for the majority of European countries, ii) needs only input data readily available for large areas (such as provided by hydrological and soil maps), iii) predicts, with daily resolution, realistic (not worst-case) loads and resulting aquatic concentrations (PECsw), and iv) provides a substance-specific risk assessment on the basis of model results for consulting and management purposes. Special emphasis is laid on scientifically up-to-date model approaches and robust, but site-specific parameterization. For instance, drainage inputs will be calculated using the preferential flow model MACRO 5 (Nick Jarvis, SLU, Sweden). In the later stages of the project, the tool will provide a fully GIS-based risk assessment in ISIP for single fields in Germany.
NASA Technical Reports Server (NTRS)
Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.
1994-01-01
Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.
NASA Technical Reports Server (NTRS)
Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.
1994-01-01
Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.
Kay, D; Aitken, M; Crowther, J; Dickson, I; Edwards, A C; Francis, C; Hopkins, M; Jeffrey, W; Kay, C; McDonald, A T; McDonald, D; Stapleton, C M; Watkins, J; Wilkinson, J; Wyer, M D
2007-05-01
The European Water Framework Directive requires the integrated management of point and diffuse pollution to achieve 'good' water quality in 'protected areas'. These include bathing waters, which are regulated using faecal indicator organisms as compliance parameters. Thus, for the first time, European regulators are faced with the control of faecal indicator fluxes from agricultural sources where these impact on bathing water compliance locations. Concurrently, reforms to the European Union (EU) Common Agricultural Policy offer scope for supporting on-farm measures producing environmental benefits through the new 'single farm payments' and the concept of 'cross-compliance'. This paper reports the first UK study involving remedial measures, principally stream bank fencing, designed to reduce faecal indicator fluxes at the catchment scale. Considerable reduction in faecal indicator flux was observed, but this was insufficient to ensure bathing water compliance with either Directive 76/160/EEC standards or new health-evidence-based criteria proposed by WHO and the European Commission.
INTEGRAL SPI All-Sky View in Soft Gamma Rays: A Study of Point-Source and Galactic Diffuse Emission
NASA Astrophysics Data System (ADS)
Bouchet, L.; Jourdain, E.; Roques, J.-P.; Strong, A.; Diehl, R.; Lebrun, F.; Terrier, R.
2008-06-01
We have processed the data accumulated with the INTEGRAL SPI instrument over 4 years (~51 Ms) to study the morphology of the Galactic "diffuse" emission in the 20 keV to 8 MeV energy range. To achieve this, we simultaneously derived an all-sky census of emitting sources and images of the Galactic ridge (GR) emission. In the central radian, the resolved point-source emission amounts to 88%, 91%, and 68% of the total in the 25-50, 50-100, and 100-300 keV domains, respectively. We compare the spatial distribution of the GR emission with the distributions obtained from CO and near-IR maps and quantify our results through latitude and longitude profiles. Below 50 keV, the SPI data are better traced by the latter, supporting a stellar origin for this emission. Furthermore, we find that the GR emission spectrum follows a power law with a photon index ~1.55 above 50 keV, while an additional component is required below that energy. This component shows a cutoff around 30 keV, reinforcing a stellar origin, as proposed by Krivonos et al. The component of the diffuse emission due to e± annihilations is extracted simultaneously, leading to the determination of the related parameters (positronium flux and fraction). Specific discussion is devoted to the annihilation-line distribution, since significant emission is detected over a region as large as ~80° × ~10°, potentially associated with the disk or halo surrounding the central regions of our Galaxy. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic, and Poland, and with the participation of Russia and the US.
NASA Astrophysics Data System (ADS)
Johansson, Jonas; Woods, Tyrone E.; Gilfanov, Marat; Sarzi, Marc; Chen, Yan-Mei; Oh, Kyuseok
2016-10-01
We present emission-line templates for passively-evolving (`retired') galaxies, useful for investigation of the evolution of the interstellar medium in these galaxies, and characterization of their high-temperature source populations. The templates are based on high signal-to-noise (>800) co-added spectra (3700-6800 Å) of ˜11 500 gas-rich Sloan Digital Sky Survey galaxies devoid of star formation and active galactic nuclei. Stacked spectra are provided for the entire sample and sub-samples binned by mean stellar age. In our previous paper, Johansson et al., these spectra provided the first measurements of the He II 4686 Å line in passively-evolving galaxies, and the observed He II/Hβ ratio constrained the contribution of accreting white dwarfs (the `single-degenerate' scenario) to the Type Ia supernova rate. In this paper, the full range of unambiguously detected emission lines are presented. Comparison of the observed [O I] 6300 Å/Hα ratio with photoionization models further constrains any high-temperature single-degenerate scenario for Type Ia supernovae (with 1.5 ≲ T/105 K ≲ 10) to ≲3-6 per cent of the observed rate in the youngest age bin (i.e. highest SN Ia rate). Hence, for the same temperatures, in the presence of an ambient population of post-asymptotic giant branch stars, we exclude additional high-temperature sources with a combined ionizing luminosity of ≈1.35 × 1030 L⊙/M⊙,* for stellar populations with mean ages of 1-4 Gyr. Furthermore, we investigate the extinction affecting both the stellar and nebular continuum. The latter shows about five times higher values. This contradicts isotropically distributed dust and gas that renders similar extinction values for both cases.
NASA Astrophysics Data System (ADS)
Hey, J. D.
2017-03-01
The Coulomb approximation (CA) has long been regarded as a useful tool for rapid estimates of line strengths, absorption oscillator strengths, and spontaneous transition probabilities of the lighter multi-electron atoms and ions, in situations where large quantities of atomic data are required for the analysis of spectroscopic measurements from a variety of plasma sources, in particular interesting stellar objects (e.g. white dwarf stars) and magnetically confined fusion plasmas. This applies especially in cases where the plasma is spatially inhomogeneous, and produces several ionisation stages of the same impurity element, emitting copious radiation in bound-bound transitions from cascade processes following charge-exchange recombination. While more advanced theoretical methods are routinely used by the specialist, the CA provides a very convenient method of checking atomic data chosen by the experimentalist from extensive compilations through the internet, or by the use of machine codes provided by others. The origins, advantages and shortcomings of the method are described and discussed, as well as convenient modifications thereof, which may readily be implemented for these purposes. Particular attention is paid to the choice of electron coupling of states in which the optical electron has a large orbital angular momentum ({\\ell }≥slant 3). The text is illustrated by numerous examples of application to spectra of practical interest from astrophysical and laboratory plasmas.
Benes, V; Pĕkný, V; Skorepa, J; Vrba, J
1989-01-01
In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making. PMID:2559844
NASA Astrophysics Data System (ADS)
Yang, Xiaohua; Yang, Zhifeng; Yin, Xinan; Li, Jianqiang
2008-10-01
In order to reduce the computational amount and improve computational precision for nonlinear optimizations and pollution source identification in convection-diffusion equation, a new algorithm, chaos gray-coded genetic algorithm (CGGA) is proposed, in which initial population are generated by chaos mapping, and new chaos mutation and Hooke-Jeeves evolution operation are used. With the shrinking of searching range, CGGA gradually directs to an optimal result with the excellent individuals obtained by gray-coded genetic algorithm. Its convergence is analyzed. It is very efficient in maintaining the population diversity during the evolution process of gray-coded genetic algorithm. This new algorithm overcomes any Hamming-cliff phenomena existing in other encoding genetic algorithm. Its efficiency is verified by application of 20 nonlinear test functions of 1-20 variables compared with standard binary-coded genetic algorithm and improved genetic algorithm. The position and intensity of pollution source are well found by CGGA. Compared with Gray-coded hybrid-accelerated genetic algorithm and pure random search algorithm, CGGA has rapider convergent speed and higher calculation precision.
NASA Astrophysics Data System (ADS)
Thomas, Ian; Jordan, Phil; Mellander, Per-Erik; Fenton, Owen; Shine, Oliver; hUallacháin, Daire Ó.; Creamer, Rachel; McDonald, Noeleen; Dunlop, Paul; Murphy, Paul
2016-04-01
Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants such as phosphorus (P). A new GIS-based HSA Index is presented that identifies HSAs at the sub-field scale. It uses a soil topographic index (STI) and accounts for the hydrological disconnection of overland flow via topographic impediment from flow sinks such as hedgerows and depressions. High resolution (0.25-2 m) LiDAR Digital Elevation Models (DEMs) are utilised to capture these microtopographic controls on flow pathways and hydrological connectivity. The HSA Index was applied to four agricultural catchments (~7.5-12 km2) with contrasting topography and soil types. Catchment HSA sizes were estimated using high resolution rainfall-quickflow measurements during saturated winter storm events in 2009-2014, and mapped using the HSA Index. HSA sizes ranged from 1.6-3.4% of the catchment area during median storm events and 2.9-8.5% during upper quartile events depending on whether well or poorly drained soils dominated, which validated HSA Index value distributions. Total flow sink volume capacities ranged from 8,298-59,584 m3 and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'delivery points' along surface runoff pathways where transported pollutants such as P are delivered to the open drainage network. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips (RBS) reduced costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5 years respectively, which included LiDAR DEM acquisition costs. Considering that HSAs are often the dominant P CSA factor in agricultural catchments and can override
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...
NASA Astrophysics Data System (ADS)
Chen, Yung-Sheng; Wang, Jeng-Yau
2015-09-01
Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.
NASA Astrophysics Data System (ADS)
Schwandner, F. M.; Seward, T. M.; Giże, A. P.; Hall, K.
2003-12-01
. Unlike with ion trap MS, relatively soft electron impact ionization with either sector scanning or quadrupole MS instruments yields characteristic mass fragment spectra for a large range of compound types, from saturated and cyclic hydrocarbons to more labile iodocarbons. Detection limits of 10 to 50 pptv can be achieved routinely. Data are available from several volcanoes around the world, ranging in emission temperatures from 100 to 900° C. Global fumarolic fluxes (volcanic source strengths) for certain halocarbons are estimated to be on the order of up to 10-5 Tgy-1. Although this represents only a small fraction of the total releases including anthropogenic sources, the global fumarolic fluxes for some halocarbons account for a comparatively more significant fraction of natural sources. For example, CCl3F (CFC-11) has been detected in volcanic gases with an estimated flux of 1.3 x 10-5 Tgy-1, making subaerial volcanism the sole natural source currently known for this compound. Diffuse degassing appears to emit amounts similar to those of high-temperature fumarolic discharges, whereas the output by explosive emissions is not known. During pre-industrial times, volcanic emissions would have represented a larger fraction of global emissions, since the anthropogenic burden at the time was negligible.
NASA Astrophysics Data System (ADS)
Wang, Zion Shay
The purpose of this research is to explain how three different vertical diffusion schemes in the SARMAP Air Quality Model (SAQM) affect simulation results. Vertical diffusion describes turbulent mixing of species in the vertical direction. The three vertical diffusion schemes used here are the K-theory, the asymmetrical convective mixing, and the turbulent transilient theory. I have also implemented the Integrated Process Rate Analysis method (IPRAM) and the Continuous Process Composition and Source Receptor (CPCSR) methodology into SAQM to explain the origins of the differences among these three vertical diffusion schemes for the August 3-6, 1990 ozone episode in the San Joaquin Valley, CA. I show that the use of different vertical diffusion schemes has a major impact on model predictions. Vertical diffusion redistributes the species mixing ratios in the vertical and thus affects advection in the horizontal, as well as the vertical direction. Eventually, the chemistry in each grid cell was impacted by the different species mixing ratio that resulted from the differences in transport. The results also show that the two non-local methods (turbulent transilient and asymmetrical convective methods) are more vertically diffusive than the local K- theory. The asymmetrical convective model caused most vertical diffusion and the semi-implicit K-theory caused least vertical diffusion. A three-dimensional analysis is necessary to determine the area that influenced ozone mixing ratio at a particular region. Due to the nonlinear nature of ozone formation, it is insufficient to only examine species mixing ratios. All model processes need to be examined to provide a full explanation of the model's results. My IPRAM results revealed that the mass correction and ozone deposition processes were sometimes the dominate processes in the model's predictions. This had not been previously understood in the model's evaluation. My results suggest that the CPCSR methodology is very useful
NASA Astrophysics Data System (ADS)
Harris, W.; Roesler, F.; Mierkiewicz, E.; Corliss, J.
2003-05-01
A Spatial Heterodyne Spectrometer (SHS) instrument combines high etendue and high spectral resolution in a compact package that is very effective for the study of diffuse low surface brightness emissions. SHS instruments require no telescope to achieve high sensitivity on extended sources and may be designed with fields of view exceeding 1 degree and spectral resolutions exceeding 100000. This combination makes them well suited to many solar system targets including comets, the interplanetary medium, and planetary atmospheres/coronas, using platforms from sounding rockets to remote probes. We are currently developing two variations of the SHS. The first of these is a new form of all-reflective, common-path SHS optimized for the study of FUV emission lines where transmitting optics will introduce an unacceptable attenuation of the incident beam. Secondly we are developing a multiorder variation of the SHS, where a customized high order grating is used to overlap integer orders of multiple target emission lines that can then be separated using a transform technique or with order separation filters. In this presentation we will describe the basic SHS technique, the design variations we are pursuing, and their rationale, both technical and scientific.
NASA Astrophysics Data System (ADS)
Maeda, Tatsuro; Morita, Yukinori; Takagi, Shinichi
2010-06-01
We fabricate high-k/Ge n-channel metal-insulator-semiconductor field-effect transistors (MISFETs) by the gate-last process with the thermal solid source diffusion to achieve both of high quality source/drain (S/D) and gate stack. The n+/p junction formed by solid source diffusion technique of Sb dopant shows the excellent diode characteristics of ˜1.5×105 on/off ratio between +1 and -1 V and the quite low reverse current density of ˜4.1×10-4 A/cm2 at +1 V after the fabrication of high-k/Ge n-channel MISFETs that enable us to observe well-behaved transistor performances. The extracted electron mobility with the peak of 891 cm2/(V.s) is high enough to be superior to the Si universal electron mobility especially in low Eeff.
NASA Astrophysics Data System (ADS)
Cuccoli, Fabrizio; Facheris, Luca; Vaselli, Orlando
2006-09-01
A simple method for estimating the gas emission flux by spot source fields based on IR laser measurements and atmospheric diffusion models is presented. The method is based on a proper arrangement of the optical links around the emission area, over which the determination of the gas integral concentration is required. The first objective of such measurements is to tune the parameters of a basic diffusion model in order to estimate, as second objective, the gas emission flux by applying the tuned model to experimental measurements. After discussing the proposed model and method, experimental data obtained from some CO II-rich natural discharges in Tuscany (Central Italy) are presented
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1983-01-01
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.
Kobulnicky, Henry A.; Alexander, Michael J.; Babler, Brian L.; Meade, Marilyn R.; Whitney, Barbara A.; Churchwell, Edward B. E-mail: malexan9@uwyo.edu E-mail: meade@astro.wisc.edu E-mail: ebc@astro.wisc.edu
2013-07-01
We characterize the completeness of point source lists from Spitzer Space Telescope surveys in the four Infrared Array Camera (IRAC) bandpasses, emphasizing the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) programs (GLIMPSE I, II, 3D, 360; Deep GLIMPSE) and their resulting point source Catalogs and Archives. The analysis separately addresses effects of incompleteness resulting from high diffuse background emission and incompleteness resulting from point source confusion (i.e., crowding). An artificial star addition and extraction analysis demonstrates that completeness is strongly dependent on local background brightness and structure, with high-surface-brightness regions suffering up to five magnitudes of reduced sensitivity to point sources. This effect is most pronounced at the IRAC 5.8 and 8.0 {mu}m bands where UV-excited polycyclic aromatic hydrocarbon emission produces bright, complex structures (photodissociation regions). With regard to diffuse background effects, we provide the completeness as a function of stellar magnitude and diffuse background level in graphical and tabular formats. These data are suitable for estimating completeness in the low-source-density limit in any of the four IRAC bands in GLIMPSE Catalogs and Archives and some other Spitzer IRAC programs that employ similar observational strategies and are processed by the GLIMPSE pipeline. By performing the same analysis on smoothed images we show that the point source incompleteness is primarily a consequence of structure in the diffuse background emission rather than photon noise. With regard to source confusion in the high-source-density regions of the Galactic Plane, we provide figures illustrating the 90% completeness levels as a function of point source density at each band. We caution that completeness of the GLIMPSE 360/Deep GLIMPSE Catalogs is suppressed relative to the corresponding Archives as a consequence of rejecting stars that lie in the point
Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.
2012-01-01
Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.
Cross, P.E.; Thompson, S.L.; Haskins, S.
2007-07-01
This paper describes the In Situ Chemical Oxidation (ISCO) remediation being implemented for the the X-701B groundwater plume at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). Modified Fenton's reagent is the principal oxidant for the remedy, and Direct Push Technology (DPT) is being used for delivery of the oxidant. Trichloroethene (TCE) is the primary contaminant of concern and is present within the unit as a dense nonaqueous phase liquid (DNAPL). A phased approach is being implemented to optimize the type, location, and mass of the oxidant injections. During Phase I, a unique near-real time monitoring approach was utilized to observe the transient effects of the oxidant injections on the formation. As a result of the positive results from Phase I, Ohio EPA has approved the final work plan for the remedy, and the approach is now being applied to the source area of the plume. The results from Phase I and the layout for the first series of Phase II injections are presented in this paper. Previous testing at the site has shown that the shallow, water-bearing formation is primarily composed of silty gravel and clay, and is both heterogeneous and anisotropic. These factors have significantly compromised earlier attempts to remediate the unit. A patented ISCO process from In-Situ Oxidative Technologies, Inc. (ISOTEC) was selected for the remediation of the plume. Phase I results indicate that oxidant delivery via DPT is feasible for the unit. Contaminant reduction to date has been minimal due to the small quantity of oxidant injected during Phase I. Contaminant rebound in the aqueous phase remains a concern and will be monitored closely during the remedy. (authors)
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro
2017-06-01
Solid source diffusions of phosphorus (P) and boron (B) into the half-inch (12.5 mm) minimal silicon (Si) wafers by spin on dopants (SOD) have been systematically investigated and the physical-vapor-deposited (PVD) titanium nitride (TiN) metal gate minimal silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have successfully been fabricated using the developed SOD thermal diffusion technique. It was experimentally confirmed that a low temperature oxidation (LTO) process which depresses a boron silicide layer formation is effective way to remove boron-glass in a diluted hydrofluoric acid (DHF) solution. It was also found that top Si layer thickness of SOI wafers is reduced in the SOD thermal diffusion process because of its consumption by thermal oxidation owing to the oxygen atoms included in SOD films, which should be carefully considered in the ultrathin SOI device fabrication. Moreover, normal operations of the fabricated minimal PVD-TiN metal gate SOI-CMOS inverters, static random access memory (SRAM) cells and ring oscillators have been demonstrated. These circuit level results indicate that no remarkable particles and interface traps were introduced onto the minimal wafers during the device fabrication, and the developed solid source diffusion by SOD is useful for the fabrication of functional logic gate minimal SOI-CMOS integrated circuits.
NASA Technical Reports Server (NTRS)
1981-01-01
A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.
NASA Astrophysics Data System (ADS)
Plucinsky, P. P.; Snowden, S. L.; Briel, U. G.; Hasinger, G.; Pfeffermann, E.
1993-11-01
In order to permit quantitative studies of the cosmic diffuse X-ray background (DXRB) and of extended X-ray sources, we present updated calibrations of the particle-induced background of the Position Sensitive Proportional Counters (PSPCs) on board the Röntgen Satellite (ROSAT). We present new parameterizations of the temporal, spectral, and spatial distributions of the particle-induced events following closely the analysis discussed in Snowden et al. (1992). The ROSAT Guest Observer (GO) may find a step-by-step method for applying these parameterizations to a GO observation in § 3.4. Except for a variable contamination which is present in channels ≤ 18 and a change in our understanding of the externally produced components, the current parameterizations are quite similar to the previous results. We have used the spectral information available on the variable contamination to formulate a method for determining the level of this contamination in a given observation. The PSPC rejection efficiency for particle background events in the pulse-height range 18 ≤ CH ≤ 249 is 99.90%, with a typical count rate of 4 × 10-6 counts s-1 arcmin-2 keV-1. During typical conditions, the count rate of residual events is well correlated with the Master Veto count rate. The spectrum in the pulse-height range 18 ≤ CH ≤ 249 is well described by a power law, a flat component, and an Al Kα line at 1.5 keV. The spatial distribution of counts with pulse heights ≥ 18 is uniform over the field of view except for a small radial gradient and shadowing of the Al Kα line and part of the flat continuum by the window support structure. During an astronomical observation in low-gain mode (after 1991 October 11), the particle background can also be monitored by the count rate in channels 260 ≤ CH ≤ 370, since in most cases all these events are produced by particles. We have used a 54 ks observation of the Ursa Major region to verify the accuracy of our model. We have also
Cavanagh, Bridget A; Johnson, Paul C; Daniels, Eric J
2014-12-16
Residual contamination contained in lower permeability zones is difficult to remediate and can, through diffusive emissions to adjacent higher permeability zones, result in long-term impacts to groundwater. This work investigated the effectiveness of oxidant delivery for reducing diffusive emissions from lower permeability zones. The experiment was conducted in a 1.2 m tall × 1.2 m wide × 6 cm thick tank containing two soil layers having 3 orders of magnitude contrast in hydraulic conductivity. The lower permeability layer initially contained dissolved methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and p-xylenes (BTEX). The treatment involved delivery of 10% w/w nonactivated sodium persulfate (Na2S2O8) solution to the high permeability layer for 14 days. The subsequent diffusion into the lower permeability layer and contaminant emission response were monitored for about 240 days. The S2O8(2-) diffused about 14 cm at 1% w/w into the lower permeability layer during the 14 day delivery and continued diffusing deeper into the layer as well as back toward the higher-lower permeability interface after delivery ceased. Over 209 days, the S2O8(2-) diffused 60 cm into the lower permeability layer, the BTEX mass and emission rate were reduced by 95-99%, and the MTBE emission rate was reduced by 63%. The overall treatment efficiency was about 60-110 g-S2O8(2-)delivered/g-hydrocarbon oxidized, with a significant fraction of the oxidant delivered likely lost by back-diffusion and not involved in hydrocarbon destruction.
ERIC Educational Resources Information Center
Michaelides, Michalis P.; Haertel, Edward H.
2014-01-01
The standard error of equating quantifies the variability in the estimation of an equating function. Because common items for deriving equated scores are treated as fixed, the only source of variability typically considered arises from the estimation of common-item parameters from responses of samples of examinees. Use of alternative, equally…
ERIC Educational Resources Information Center
Michaelides, Michalis P.; Haertel, Edward H.
2014-01-01
The standard error of equating quantifies the variability in the estimation of an equating function. Because common items for deriving equated scores are treated as fixed, the only source of variability typically considered arises from the estimation of common-item parameters from responses of samples of examinees. Use of alternative, equally…
Abdo, A. A.
2010-08-11
This is the first of a series of papers aimed at characterizing the populations detected in the high-latitude sky of the Fermi-LAT survey. In this work, we focus on the intrinsic spectral and flux properties of the source sample. We show that when selection effects are properly taken into account, Fermi sources are on average steeper than previously found (e.g., in the bright source list) with an average photon index of 2.40 ± 0.02 over the entire 0.1-100 GeV energy band. We confirm that flat spectrum radio quasars have steeper spectra than BL Lacertae objects with an average index of 2.48 ± 0.02 versus 2.18 ± 0.02. Using several methods, we build the deepest source count distribution at GeV energies, deriving that the intrinsic source (i.e., blazar) surface density at F _{100} ≥ 10^{–9} ph cm^{–2} s^{–1} is 0.12^{+0.03} _{–0.02} deg^{–2}. The integration of the source count distribution yields that point sources contribute 16(±1.8)% (±7% systematic uncertainty) of the GeV isotropic diffuse background. At the fluxes currently reached by LAT, we can rule out the hypothesis that pointlike sources (i.e., blazars) produce a larger fraction of the diffuse emission.
NASA Astrophysics Data System (ADS)
Putze, A.; Maurin, D.; Donato, F.
2011-02-01
Context. The source spectrum of cosmic rays is not well determined by diffusive shock acceleration models. The propagated fluxes of proton, helium, and heavier primary cosmic-ray species (up to Fe) are a means to indirectly access it. But how robust are the constraints, and how degenerate are the source and transport parameters? Aims: We check the compatibility of the primary fluxes with the transport parameters derived from the B/C analysis, but also ask whether they add further constraints. We study whether the spectral shapes of these fluxes and their ratios are mostly driven by source or propagation effects. We then derive the source parameters (slope, abundance, and low-energy shape). Methods: Simple analytical formulae are used to address the issue of degeneracies between source/transport parameters, and to understand the shape of the p/He and C/O to Fe/O data. The full analysis relies on the USINE propagation package, the MINUIT minimisation routines (χ2 analysis) and a Markov Chain Monte Carlo (MCMC) technique. Results: Proton data are well described in the simplest model defined by a power-law source spectrum and plain diffusion. They can also be accommodated by models with, e.g., convection and/or reacceleration. There is no need for breaks in the source spectral indices below ~1 TeV/n. Fits to the primary fluxes alone do not provide physical constraints on the transport parameters. If we leave the source spectrum free, parametrised by the form dQ/dE = q βη_S R-α, and fix the diffusion coefficient K(R) = K_0βη_T Rδ so as to reproduce the B/C ratio, the MCMC analysis constrains the source spectral index α to be in the range 2.2-2.5 for all primary species up to Fe, regardless of the value of the diffusion slope δ. The values of the parameter ηS describing the low-energy shape of the source spectrum are degenerate with the parameter ηT describing the low-energy shape of the diffusion coefficient: we find ηS - ηT ≈ 0 for p and He data, but
Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Remy; Lebouteiller, Vianney; Bernard-Salas, Jeronimo; Brandl, Bernhard R. E-mail: kej7a@virginia.edu E-mail: vianney.lebouteiller@cea.fr E-mail: epeeters@uwo.ca E-mail: brandl@strw.leidenuniv.nl
2013-07-01
The focus of this work is to study mid-infrared point sources and the diffuse interstellar medium (ISM) in the low-metallicity ({approx}0.2 Z{sub Sun }) giant H II region N66 in order to determine properties that may shed light on star formation in these conditions. Using the Spitzer Space Telescope's Infrared Spectrograph, we study polycyclic aromatic hydrocarbon (PAH), dust continuum, silicate, and ionic line emission from 14 targeted infrared point sources as well as spectra of the diffuse ISM that is representative of both the photodissociation regions (PDRs) and the H II regions. Among the point source spectra, we spectroscopically confirm that the brightest mid-infrared point source is a massive embedded young stellar object, we detect silicates in emission associated with two young stellar clusters, and we see spectral features of a known B[e] star that are commonly associated with Herbig Be stars. In the diffuse ISM, we provide additional evidence that the very small grain population is being photodestroyed in the hard radiation field. The 11.3 {mu}m PAH complex emission exhibits an unexplained centroid shift in both the point source and ISM spectra that should be investigated at higher signal-to-noise and resolution. Unlike studies of other regions, the 6.2 {mu}m and 7.7 {mu}m band fluxes are decoupled; the data points cover a large range of I{sub 7.7}/I{sub 11.3} PAH ratio values within a narrow band of I{sub 6.2}/I{sub 11.3} ratio values. Furthermore, there is a spread in PAH ionization, being more neutral in the dense PDR where the radiation field is relatively soft, but ionized in the diffuse ISM/PDR. By contrast, the PAH size distribution appears to be independent of local ionization state. Important to unresolved studies of extragalactic low-metallicity star-forming regions, we find that emission from the infrared-bright point sources accounts for only 20%-35% of the PAH emission from the entire region. These results make a comparative data set to
The paper proposes three alternative, diffusion-limited mathematical models to account for volatile organic compound (VOC) interactions with indoor sinks, using the linear isotherm model as a reference point. (NOTE: Recent reports by both the U.S. EPA and a study committee of the...
MELCOR source term evaluation for UF{sub 6} release event in a gaseous diffusion plant feed facility
Kim, S.H.; Taleyarkhan, R.P.; Lombardi, D.; Schmidt, R.; Keith, K.
1998-09-01
An assessment of UF{sub 6} release accidents was conducted for the feed facility of a gaseous diffusion plant. The MELCOR code was utilized for simulating the reactions of UF{sub 6} with moisture and the consequent transport of UO{sub 2}F{sub 2} aerosols and HF vapor through the building and to the environment.
The paper proposes three alternative, diffusion-limited mathematical models to account for volatile organic compound (VOC) interactions with indoor sinks, using the linear isotherm model as a reference point. (NOTE: Recent reports by both the U.S. EPA and a study committee of the...
Chen, Yu-Wen; Chen, Chien-Chih; Huang, Po-Jung; Tseng, Sheng-Hao
2016-01-01
Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm. PMID:27446671
Chen, Yu-Wen; Chen, Chien-Chih; Huang, Po-Jung; Tseng, Sheng-Hao
2016-04-01
Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm.
Suzaku observations of two diffuse hard X-ray source regions, G22.0+0.0 and G23.5+0.1
NASA Astrophysics Data System (ADS)
Yamauchi, Shigeo; Sumita, Mayu; Bamba, Aya
2016-06-01
G22.0+0.0 and G23.5+0.1 are diffuse hard X-ray sources discovered in the ASCA Galactic Plane Survey. We present Suzaku results of spectral analysis for these sources. G22.0+0.0 is confirmed to be a largely extended emission. Its spectra were represented by a highly absorbed power-law model with a photon index of 1.7 ± 0.3 and a moderately absorbed thermal emission with a temperature of 0.34^{+0.11}_{-0.08}keV. The difference in the NH values between the two components suggests that the thermal component is unrelated to the power-law component and is a foreground emission located in the same line of sight. G23.5+0.1 is an extended source with a size of ˜3{^'.}5. Its spectra were fitted with an absorbed power-law model with a photon index of 2.4^{+0.5}_{-0.4}. The spatial and spectral properties show that both sources are candidates for old pulsar wind nebulae (PWNe). In addition to the extended sources, we analyzed spectra of three point sources found in the observed fields. Based on the spectral features, we discuss the origin of the sources.
Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.
2010-02-15
The physical mechanisms involved in the extraction of H{sup -} ions from the negative ion source are studied with a PIC 2D3V code. The effect of a weak magnetic field transverse to the extraction direction is taken into account, along with a variable bias voltage applied on the plasma electrode (PE). In addition to previous modeling works, the electron diffusion across the magnetic field is taken into account as a simple one-dimensional random-walk process. The results show that without PE bias, the value of the diffusion coefficient has a significant influence upon the value of the extracted H{sup -} current. However, the value of this coefficient does not affect qualitatively the mechanism leading to the peak of extracted H{sup -} ion current observed for an optimum value of the PE bias.
Zeinali-Rafsanjani, B.; Mosleh-Shirazi, M. A.; Faghihi, R.; Karbasi, S.; Mosalaei, A.
2015-01-01
To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam. PMID:26170553
Diffusion and Advection using Cellular Potts Model
NASA Astrophysics Data System (ADS)
Dan, Debasis; Glazier, James
2005-03-01
The Cellular Potts Model (CPM) is a robust cell level methodology for simulation of biological tissues and morphogenesis. Standard diffusion solvers in the CPM use finite difference methods on the underlying CPM lattice. These methods have difficulty in simulating local advection in the ECM due to physiology and morphogenesis. To circumvent the problem of instabilities we simulate advection-diffusion within the framework of CPM using off-lattice finite-difference methods. We define a set of generalised fluid "cells" or particles which separate advection and diffusion from the lattice. Diffusion occurs between neighboring fluid cells by local averaging rules which approximate the Laplacian. CPM movement of the cells by spin flips handles the advection. The extension allows the CPM to model viscosity explicitly by including a relative velocity constraint on the fluid. The extended CPM correctly reproduces flow profiles of viscous fluids in cylindrical tube, during Stokes flow across a sphere and in flow in concentric cylindrical shells. We illustrate various conditions for diffusion including multiple instantaneous sources, continuous sources, moving sources and different boundary geometries and conditions to validate our approximation by comparing with analytical and established numerical solutions.
Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source
Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.
2014-05-21
In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.
Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.
1994-06-01
NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.
NASA Astrophysics Data System (ADS)
Uryson, A. V.
2017-08-01
We provide our estimates of the intensity of the gamma-ray emission with an energy near 0.1 TeV generated in intergalactic space in the interactions of cosmic rays with background emissions. We assume that the cosmic-ray sources are pointlike and that these are active galactic nuclei. The following possible types of sources are considered: remote and powerful ones, at redshifts up to z = 1.1, with a monoenergetic particle spectrum, E = 1021 eV; the same objects, but with a power-law particle spectrum; and nearby sources at redshifts 0 < z ≤ 0.0092, i.e., at distances no larger than 50 Mpc also with a power-law particle spectrum. The contribution of cosmic rays to the extragalactic diffuse gammaray background at an energy of 0.1 TeVhas been found to depend on the type of sources or, more specifically, the contribution ranges from f ≪ 10-4 to f ≈ 0.1, depending on the source model. We conclude that the data on the extragalactic background gamma-ray emission can be used to determine the characteristics of extragalactic cosmic-ray sources, i.e., their distances and the pattern of the particle energy spectrum.
Handbook on atmospheric diffusion
Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.
1982-01-01
Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)
Badieirostami, Majid; Momtahan, Omid; Hsieh, Chaoray; Adibi, Ali; Brady, David J
2008-01-01
We demonstrate a compact and slitless spectrometer with high resolution formed by cascading a Fabry-Perot etalon (FPE) and a cylindrical beam volume hologram (CBVH). The most significant advantage of this combined spectrometer is that we can independently encode spectral information of a diffuse beam in a 2D plane. Also, we show that in this slitless configuration we can simultaneously benefit from the advantages of both elements: the high resolution of the FPE and the large spectral range of the CBVH. Here, we report on the experimental demonstration of a spectrometer with better than 0.2 nm resolution.
Wei, Peng; Ouyang, Wei; Hao, Fanghua; Gao, Xiang; Yu, Yongyong
2016-05-15
The loss of diffuse phosphorus (P) presented different characteristics in the freeze-thaw area due to the combined impacts of precipitation and temperature, which caused spatiotemporal variations of the critical source area of diffuse P (CSAP). The temperature and precipitation classification (TPC) method was proposed to identify the spatiotemporal characteristics of the CSAP in the cold area, and each year was divided into a freeze-thaw season and a growing season according to the average monthly temperature. The Soil and Water Assessment Tool (SWAT) provided the spatiotemporal patterns of the diffuse P loads. The years were also reclassified into dry, normal and wet years according to the annual precipitation levels. The CSAP with the 1st cumulative load level shared 9.68% of the same area between the two seasons, which had dry land as the dominant land use with direct P fertilization. The spatial distributions of the potential areas and the CSAP with the 2nd cumulative load level were more sensitive to the variation in temperature, which had 30.8%-46.1% of unvaried area between seasons. The cumulative load level analysis indicated that 14 subbasins in the freeze-thaw season and 7 subbasins in the growing season, which covered 61.2% and 48.6% of the total basin area, respectively, changed with the traditional CSAP identification among dry, normal and wet years. The fluctuation level analysis was carried out to compare the distributional difference of the CSAP and the potential areas between the TPC method and the traditional method, which highlighted the advantages of the TPC method. The results would be useful in identifying the distribution of the CSAP in cold areas, which improved the efficiency of diffuse pollution control.
Ott, Swidbert R; Philippides, Andrew; Elphick, Maurice R; O'Shea, Michael
2007-01-01
The messenger molecule nitric oxide (NO) is a key mediator of memory formation that can diffuse in the brain over tens of micrometres. It would seem therefore that NO derived from many individual neurones may merge into a volume signal that is inevitably ambiguous, relatively unspecific and thus unreliable. Here we report on the neuronal architecture that supports the NO-cyclic GMP signalling pathway in the mushroom body of an insect brain, the key centre for associative learning. We show that, in the locust (Schistocerca gregaria), parallel axons of intrinsic neurones (Kenyon cells) form tubular NO-producing zones surrounding central cores of NO-receptive Kenyon cell axons, which do not produce NO. This segregated architecture requires NO to spread at physiological concentrations up to 60 microm from the tube walls into the central NO-receptive cores. By modelling NO diffusion we show that a segregated architecture, which requires NO to act at a distance, affords significant advantages over a system where the same sources and targets intermingle. Segregation enhances the precision of NO volume signals by reducing noise and ambiguity, achieving a reliable integration of the activity of thousands of NO-source neurones. In a neural structure that forms NO-dependent associations, these properties of the segregated architecture may reduce the likelihood of forming spurious memories.
Schalchli, H; Hormazábal, E; Rubilar, O; Briceño, G; Mutis, A; Zocolo, G J; Diez, M C
2017-10-01
The aim of this study was to evaluate the synthesis of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi (WRF) using peels or discarded potato as the sole nutrient source. The strain Trametes hirsuta Ru-513 highlighted for its laccase activity (595 ± 33 U l(-1) ), which is able to decolourize 87% of an anthraquinone dye using potato peels as the sole nutritional support. A native polyacrylamide gel of laccase proteins showed the presence of two isoenzymes, corresponding to proteins of 56 and 67 kDa, which were detected by SDS-PAGE. The antifungal activity of ethyl acetate extracts was evaluated by the agar diffusion method, where Anthracophyllum discolor Sp4 and Inonotus sp. Sp2 showed the highest inhibition zones of Mucor miehei. The fungal extracts also inhibited Fusarium oxysporum and Botrytis cinerea growth, with inhibition zones of up to 18 mm. The extract with the highest antifungal activity, from A. discolor Sp4 grown in discarded potato medium, was analysed using a gas chromatograph coupled to a mass spectrometer. Among the identified compounds, chlorinated aromatic compounds and veratryl alcohol were the most abundant compounds. The results revealed the relevance of potato waste valorization for the sustainable production of ligninolytic enzymes and antifungal compounds. This study reports the synthesis of ligninolytic enzymes and diffusible antifungal compounds by WRF using potato wastes as the sole nutrient source and suggests a relationship between the enzymatic activity and the synthesis of antifungal compounds. These compounds and the synthesis of halogen compounds by WRF using agro-industrial wastes have been poorly studied before. © 2017 The Society for Applied Microbiology.
The equilibrium-diffusion limit for radiation hydrodynamics
Ferguson, J. M.; Morel, J. E.; Lowrie, R.
2017-07-27
The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less
Interpolation and Approximation Theory.
ERIC Educational Resources Information Center
Kaijser, Sten
1991-01-01
Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)
Diffusion-convection function of cosmic rays
NASA Technical Reports Server (NTRS)
Zhang, G.; Yang, G.
1985-01-01
The fundamental properties and some numerical results of the solution of the diffusion equation of an impulsive cosmic-ray point source in an uniform, unbounded and spherically symmetrical moving medium is presented. The diffusion-convection(D-C) function is an elementary composite function of the solution of the D-C equation for the particles injected impulsively from a diffusive point source into the medium. It is the analytic solution derived by the dimensional method for the propagation equation of solar cosmic rays in the heliosphere, i.e. the interplanetary space. Because of the introduction of convection effect of solar wind, a nonhomogeneous term appears in the propagation equation, it is difficult to express its solution in terms of the ordinary special functions. The research made so far has led to a solution containing only the first order approximation of the convection effect.
Methodology and apparatus for diffuse photon mimaging
Feng, Shechao C.; Zeng, Fanan; Zhao, Hui-Lin
1997-12-09
Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue.
Methodology and apparatus for diffuse photon imaging
Feng, S.C.; Zeng, F.; Zhao, H.L.
1997-12-09
Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue. 58 figs.
Bowes, Michael J; Smith, Jim T; Jarvie, Helen P; Neal, Colin; Barden, Ruth
2009-03-01
Changes in the relationship between soluble reactive phosphorus (SRP) concentration and river flow between 1966 and 2006 were assessed for the River Frome, UK using the recently developed Load Apportionment Model. The resulting source load estimates gave good agreement with known changes within the catchment. The model indicated an increase in point source contribution to the total river load from 46% to 62% between 1970 and 1985. This corresponded with the population increase within the catchment during that time. The predicted mean SRP load was highest between 1996 and 2000 (30 t y(-1)), with 49% coming from point sources. Despite no lowering in population or major changes in agricultural practice, the model predicted a reduced load of 18.1 t y(-1) for the period 2001 to 2005, due mainly to a decrease in point source inputs from 14.6 t y(-1) to 6.1 t y(-1) (equivalent to 34% of the total load). This prediction matches the major improvements in sewage treatment that occurred within the catchment in 2002. This study thus provides a major validation of the Load Apportionment Model. The model provides an effective and rapid method of determining past changes in phosphorus sources, based entirely on the P concentration - flow relationship: critically, it does not require any historical information on land use, fertiliser application rates, topography, soil types and sewage inputs. Further decreases in SRP concentration in the River Frome during the algal growing season would be best achieved by further reductions of STW inputs.
NASA Astrophysics Data System (ADS)
Wang, I. T.
A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.
NASA Astrophysics Data System (ADS)
Lund, David C.
2013-11-01
Enhanced ventilation of the deep ocean during the last deglaciation may have caused the rise in atmospheric carbon dioxide that drove Earth's climate from a glacial to interglacial state. Recent results based on the projection age method, however, suggest the ventilation rate of the deep Pacific slowed during the deglaciation, opposite the expected pattern (Lund et al., 2011). Because the projection age method does not account for tracer diffusion (Adkins and Boyle, 1997) it can yield spurious results and therefore requires validation with alternative techniques. Here ventilation ages are determined using the transit-time equilibration-time distribution (TTD-ETD) method which explicitly accounts for diffusive mixing in the ocean interior (DeVries and Primeau, 2010). The overall time history of deep Pacific TTD-ETD and projection ages is very similar; both show a 1000-yr increase in ventilation age during Heinrich Stadial 1 (HS1; 14.5-17.5 kyr BP) and a 500-yr increase during the Younger Dryas (YD). The similarity is due in part to the use of projection age error estimates that take into account uncertainty in both calendar age and benthic 14C age. Centennial-scale offsets between the TTD-ETD and projection ages are due primarily to the different approaches used to estimate surface ocean radiocarbon content. Both the TTD-ETD and projection age results imply that the ventilation rate of the deep Pacific decreased during the deglaciation, opposite the pattern expected if Southern Ocean upwelling and enhanced meridional overturning drove outgassing of CO2 from the abyss. Variations in surface water reservoir age could cause an apparent shift in deep Pacific ventilation age but existing proxy records from the Southern Ocean appear to be inconsistent with such a driver.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2012-08-01
The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E ν between 1017 eV and 1020 eV from point-like sources across the sky south of +55° and north of -65° declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ~3.5 years of a full surface detector array for the Earth-skimming channel and ~2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k PS · E -2 ν from a point-like source, 90% confidence level upper limits for k PS at the level of ≈5 × 10-7 and 2.5 × 10-6 GeV cm-2 s-1 have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.
NASA Technical Reports Server (NTRS)
Lebedeff, S. A.; Hameed, S.
1975-01-01
The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.
The diffuse neutrino flux from FR-II radio galaxies and blazars: A source property based estimate
NASA Astrophysics Data System (ADS)
Becker, Julia K.; Biermann, Peter L.; Rhode, Wolfgang
2005-05-01
Water and ice Cherenkov telescopes of the present and future aim for the detection of a neutrino signal from extraterrestrial sources at energies Eν > PeV [Woschnagg and AMANDA Collaboration, Astro-ph/0409423, talk at Neutrino 2004; Montaruli, in: Peter W. Gorham, Particle Astrophysics Instrumentation, Proceedings of the SPIE, vol. 4858, 2003, p. 92; IceCube Collaboration, Astropart. Phys. 20 (2004) 507]. Some of the most promising extragalactic sources are active galactic nuclei (AGN). In this paper, the neutrino flux from two kinds of AGN sources will be estimated assuming pγ interactions in the jets of the AGN. The first analyzed sample contains FR-II radio galaxies while the second AGN type examined are blazars. The result is highly dependent on the proton's index of the energy spectrum. To normalize the spectrum, the connection between neutrino and disk luminosity will be used by applying the jet-disk symbiosis model from Falcke and Biermann [Astron. Astrophys. 293 (1995) 665]. The maximum proton energy and thus, also the maximum neutrino energy of the source is connected to its disk luminosity, which was shown by Lovelace [Nature 262 (1976) 649] and was confirmed by Falcke et al. [Astron. Astrophys. 298 (1995) 375].
NASA Astrophysics Data System (ADS)
Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi
2013-04-01
In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is
Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian
2014-02-01
Using dynamic, mass budget, and empirical models, we quantified sulphate-sulphur (SO4-S) leaching from soils in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900-2010). SO4-S inputs to soils with synthetic fertilisers and atmospheric deposition increased in the 1950s-1980s, then rapidly decreased (~80%), and remained low since the middle 1990s. The proportion of drained agricultural land rapidly increased from 4 to 43% between the 1950s and 1990s; then the draining ability of the system slowly decreased due to its ageing. Sulphate concentrations in the Vltava exhibited similar trends as the external SO4-S inputs, suggesting that they could be explained by changes in atmospheric and fertiliser S inputs. The available data and modelling, however, showed that (i) internal SO4-S sources (mineralization of soil organic S in the drained agricultural land), (ii) a hysteresis in SO4-S leaching from forest soils (a net S retention at the high S inputs and then a net release at the lowered inputs), and (iii) hydrology must be taken into account. An empirical model was then employed, based on parameters representing hydrology (discharge), external SO4-S sources (inputs by synthetic fertilisers and atmospheric deposition), and internal SO4-S sources (mineralization related to soil drainage). The model explained 84% of the observed variability in annual SO4-S concentrations in the Vltava river during 1900-2010 and showed that forest soils were a net sink (105 kg ha(-1)) while agricultural land was a net source (55 kg ha(-1)) of SO4-S during 1960-2010. In the late 1980s, forest soils changed from a sink to a source of S, and the present release of SO4-S accumulated in forest soils thus delays recovery of surface waters from acidification, while S losses from agricultural soils increase the risk of future S deficiency in S-demanding crops. © 2013.
NASA Astrophysics Data System (ADS)
Poulenard, J.; Legout, C.; Némery, J.; Bramorski, J.; Navratil, O.; Douchin, A.; Fanget, B.; Perrette, Y.; Evrard, O.; Esteves, M.
2012-01-01
SummaryIn mountainous catchments, large quantities of sediment are exported within very short periods leading to numerous environmental problems (e.g. reservoir siltation). The origin of suspended sediment during two distinct floods was determined by conducting an original fingerprinting method coupling Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and a chemometric technique (i.e. Partial Least Squares - PLS-analysis). Samples of the potential sediment sources were collected in badland areas developed on various substrates (i.e. molasse, marly limestones, black marls and gypsum) in the Galabre 20 km 2-catchment located in the French Southern Alps. DRIFTS spectra provided a way to discriminate between the different potential sediment sources. Furthermore, the use of mid-infrared spectra allowed the direct quantification of the gypsum proportion in sediment. This contribution was systematically null at the catchment outlet because of the rapid dissolution of gypsum in the river. A PLS model was then constructed to estimate the contribution of the three other potential sources to the sediment flux during the floods. This model was developed and validated using a set of 45 "experimental" samples that were prepared in the laboratory in order to contain various proportions of the three remaining sources. By introducing DRIFTS spectra into the PLS model, we could predict the proportions of those sources in the mixed 'experimental' samples with a confidence interval of ca. ±10%. The model was then applied to the sediment collected during the two selected floods in order to outline their origin. Black marls provided the highest contribution of sediment during both events, but the analysis also revealed a significant contribution of molasse. Results also showed the remobilisation of sediment originated from molassic substrates that deposited on the riverbed during a preceding event. Opportunities for improvement and further use of this method as an
NASA Astrophysics Data System (ADS)
Liebert, Adam; Sawosz, Piotr; Milej, Daniel; Kacprzak, Michał; Weigl, Wojciech; Botwicz, Marcin; MaCzewska, Joanna; Fronczewska, Katarzyna; Mayzner-Zawadzka, Ewa; Królicki, Leszek; Maniewski, Roman
2011-04-01
Recently, it was shown in measurements carried out on humans that time-resolved near-infrared reflectometry and fluorescence spectroscopy may allow for discrimination of information originating directly from the brain avoiding influence of contaminating signals related to the perfusion of extracerebral tissues. We report on continuation of these studies, showing that the near-infrared light can be detected noninvasively on the surface of the tissue at large interoptode distance. A multichannel time-resolved optical monitoring system was constructed for measurements of diffuse reflectance in optically turbid medium at very large source-detector separation up to 9 cm. The instrument was applied during intravenous injection of indocyanine green and the distributions of times of flight of photons were successfully acquired showing inflow and washout of the dye in the tissue. Time courses of the statistical moments of distributions of times of flight of photons are presented and compared to the results obtained simultaneously at shorter source-detector separations (3, 4, and 5 cm). We show in a series of experiments carried out on physical phantom and healthy volunteers that the time-resolved data acquisition in combination with very large source-detector separation may allow one to improve depth selectivity of perfusion assessment in the brain.
ARIANI, IMELDA
2004-04-21
Version 04 NESTLE solves the few-group neutron diffusion equation utilizing the NEM. The NESTLE code can solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- or four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) if desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed.
Liao, Yu-Kai; Tseng, Sheng-Hao
2014-03-01
Accurately determining the optical properties of multi-layer turbid media using a layered diffusion model is often a difficult task and could be an ill-posed problem. In this study, an iterative algorithm was proposed for solving such problems. This algorithm employed a layered diffusion model to calculate the optical properties of a layered sample at several source-detector separations (SDSs). The optical properties determined at various SDSs were mutually referenced to complete one round of iteration and the optical properties were gradually revised in further iterations until a set of stable optical properties was obtained. We evaluated the performance of the proposed method using frequency domain Monte Carlo simulations and found that the method could robustly recover the layered sample properties with various layer thickness and optical property settings. It is expected that this algorithm can work with photon transport models in frequency and time domain for various applications, such as determination of subcutaneous fat or muscle optical properties and monitoring the hemodynamics of muscle.
NASA Astrophysics Data System (ADS)
Blanc-Betes, E.; Thurnhoffer, B. M.; Gonzalez-Meler, M. A.; Sturchio, N. C.; Welker, J. M.
2012-12-01
Rapid climate warming in the Arctic is contributing to structural and functional changes in tundra ecosystems, possibly through increases in winter precipitation. Greater snow cover and higher surface temperatures in the Arctic are likely to expose C stored over millennia, leading to forcing feedbacks on the climate system through alterations in decomposition rates. However, greater winter snow cover is also likely to contribute to the expansion of shrubs into tundra ecosystems, affecting ecosystem productivity. Although potential increases in NPP may offset enhanced soil respiration rates, reduced redox conditions accompanying waterlogging may prompt methanogenic activity. Ecosystem CO2 and CH4 efflux and their soil profile concentrations were measured across a snow addition gradient experiment established in 1994 at Toolik Lake, AK. Our findings reveal important alterations of the CH4 production/consumption mechanisms in response to changes in snow cover. Stable isotope evidence suggests a shift in the dominant pathways contributing to the ecosystem CH4 emissions. Impaired methanotrophic activity was also observed linked to changes in the redox conditions throughout the soil column. Whereas CH4 emission rates were drastically increased under deeper snow cover, CO2 efflux response to the treatment resulted buffered despite the observed increases in soil temperature. Reduced diffusion coefficients (measured with 222Rn) may result in the apparent lack of temperature sensitivity in soil fluxes. Taken together, our results suggest that predicted changes in winter precipitation patterns and subsequent alterations in environmental variables have differing impact on CO2 and CH4 dynamics, and their contribution to ecosystem C efflux. Therefore, it is relevant to include these mechanisms in models predicting C feedbacks from permafrost-affected areas to the global climate system.
NASA Astrophysics Data System (ADS)
Bernstein, L. S.; Clark, F. O.; Lynch, D. K.
2013-05-01
We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ("seed"), embedded in a single-layer shell of H2 molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H2 molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H2 shell. We refer to these clusters as contaminated H2 clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectral profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from ~centimeter-sized, dirty H2 ice balls, called contaminated H2 ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H2 molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the ~10-100 GHz spectral region.
NASA Astrophysics Data System (ADS)
Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.
2016-04-01
Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.
NASA Technical Reports Server (NTRS)
Brock, T. W.; Field, M. B.
1979-01-01
Low-melting phosphate and borate glasses were screen printed on silicon wafers and heated to form n and p junctions. Data on surface appearance, sheet resistance and junction depth are presented. Similar data are reported for vapor phase transport from sintered aluminum metaphosphate and boron-containing glass-ceramic solid sources. Simultaneous diffusion of an N(+) layer with screen-printed glass and a p(+) layer with screen-printed Al alloy paste was attempted. No p(+) back surface field formation was achieved. Some good cells were produced but the heating in an endless-belt furnace caused a large scatter in sheet resistance and junction depth for three separate lots of wafers.
Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T
2012-02-01
The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.
Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V
2011-04-30
The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)
Kumar, Malay; Islam, Mohammed N; Terry, Fred L; Freeman, Michael J; Chan, Allan; Neelakandan, Manickam; Manzur, Tariq
2012-05-20
We measure the diffuse reflection spectrum of solid samples such as explosives (TNT, RDX, PETN), fertilizers (ammonium nitrate, urea), and paints (automotive and military grade) at a stand-off distance of 5 m using a mid-infrared supercontinuum light source with 3.9 W average output power. The output spectrum extends from 750-4300 nm, and it is generated by nonlinear spectral broadening in a 9 m long fluoride fiber pumped by high peak power pulses from a dual-stage erbium-ytterbium fiber amplifier operating at 1543 nm. The samples are distinguished using unique spectral signatures that are attributed to the molecular vibrations of the constituents. Signal-to-noise ratio (SNR) calculations demonstrate the feasibility of increasing the stand-off distance from 5 to ~150 m, with a corresponding drop in SNR from 28 to 10 dB.
The Origin of Diffuse X-Ray Emission from the Galactic Ridge. I. Energy Output of Particle Sources
NASA Astrophysics Data System (ADS)
Dogiel, Vladimir A.; Inoue, Hajime; Masai, Kuniaki; Schönfelder, Volker; Strong, Andrew W.
2002-12-01
We analyze processes for the hard X-ray emission from the Galactic disk, whose origin has remained enigmatic for many years. Up until now, no model has been able to explain the physical origin of this emission. Even the most plausible mechanism of bremsstrahlung radiation requires an energy output in emitting particles higher than the luminosity provided by known Galactic sources. We show that this energy enigma can be resolved if the emission comes directly from regions of particle acceleration. In this case, a broad quasi-thermal transition region of particle excess is formed between the thermal and nonthermal energy regions. The necessary energy output for production of electrons emitting 10 keV X-rays is of the order of 1041 ergs s-1, which can definitely be supplied by supernovae or other known Galactic sources of energy. The temperature of the accelerating region is restricted to a value of a few 100 eV, and plasmas with these temperatures are hydrostatically stable in the Galaxy. Since only background electrons are supposed to be accelerated, the acceleration process does not violate the state of hydrostatic equilibrium in the Galactic disk.
Alexander, R.B.; Smith, R.A.; Schwarz, G.E.
2004-01-01
The statistical watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes) was used to estimate the sources and transport of total phosphorus (TP) in surface waters of the United States. We calibrated the model using stream measurements of TP from 336 watersheds of mixed land use and spatial data on topography, soils, stream hydrography, and land use (agriculture, forest, shrub/grass, urban). The model explained 87% of the spatial variability in log transformed stream TP flux (kg yr-1). Predictions of stream yield (kg ha-1 yr-1) were typically within 45% of the observed values at the monitoring sites. The model identified appreciable effects of soils, streams, and reservoirs on TP transport, The estimated aquatic rates of phosphorus removal declined with increasing stream size and rates of water flushing in reservoirs (i.e. areal hydraulic loads). A phosphorus budget for the 2.9 million km2 Mississippi River Basin provides a detailed accounting of TP delivery to streams, the removal of TP in surface waters, and the stream export of TP from major interior watersheds for sources associated with each land-use type. ?? US Government 2004.
NASA Astrophysics Data System (ADS)
Anand, S.; Mayya, Y. S.
2011-08-01
Coagulation and condensation/evaporation combined with atmospheric dispersion are the main processes responsible for the evolution of aerosol particle size distributions and number concentrations emitted from localized sources. A crucial question is: what fraction of freshly emitted particles survive intra-coagulation effect to persist in the atmosphere and become available for further interaction with background aerosols?. The difficulty in estimating this quantity, designated as the number survival fraction, arises due chiefly to the joint action of atmospheric diffusion with nonlinear coagulation effects which are computationally intensive to handle. We provide a simplified approach to evaluate this quantity in the context of instantaneous (puff) and continuous (plume) releases based on a reduction of the respective coagulation-diffusion equations under the assumption of a constant coagulation kernel ( K). The condensation/evaporation processes, being number conserving, are not included in the study. The approach consists of constructing moment equations for the evolution of number concentration and variance of the spatial extension of puff or plume in terms of either time or downstream distance. The puff model, applicable to instantaneous releases is solved within a 3-D, spherically symmetric framework, under an additional assumption of a constant diffusion coefficient ( D) which renders itself amenable to a closed form solution that provides a benchmark for developing the solution to the plume model. The latter case, corresponding to continuous releases, is discussed within a 2-D framework under the assumptions of constant advection velocity ( U) and space dependent diffusion coefficient expressed in terms of turbulent energy dissipation rate ( ɛ). The study brings out the special effect of the coagulation-induced flattening of the spatial concentration profiles because of which particle sizes will be larger at the centre of a Gaussian puff. For a puff of
Heathwaite, A L; Dils, R M; Liu, S; Carvalho, L; Brazier, R E; Pope, L; Hughes, M; Phillips, G; May, L
2005-05-15
Implementation of the European Union Water Framework Directive requires an assessment of the pressures from human activity, which, combined with information on the sensitivity of the receiving waterbody to the pressures, will identify those water bodies at risk of failing to meet the Directive's environmental objectives. Part of the process of undertaking the risk assessment for lakes is an assessment of diffuse agricultural phosphorus (P) pressures. Three approaches of increasing sophistication were developed for this purpose: a basic 'risk screening' approach (tier 1) applicable to all lakes in Great Britain (GB) and based on export coefficients for different land cover classes and animal types; the Pressure Delivery Risk Screening Matrix approach (tier 2) that differentiated between pressures in surface water and groundwater river basins; and the Phosphorus Indicators Tool (PIT), a simple model of locational risk and P delivery potential (tier 3). Application of the three approaches to a range of lake catchments in England demonstrated that a tiered risk assessment approach was appropriate which was tailored to the quality of the available data. A step-wise procedure was developed whereby if the tier 1 and 2 approaches showed a catchment to be at high risk of failing to meet the Directive's environmental objectives with regard to P, it was justifiable to undertake a more detailed assessment using the tier 3 approach. The tier 1 approach was applied to all lakes in GB greater than 1 ha in size on the assumption that the boundary between the good/moderate status classes under the Water Framework Directive guidelines represented a doubling of the total P (TP) reference conditions. The initial outputs suggested that 51% of lakes in GB are predicted to not meet the TP targets identified for high or good status and must, therefore, be considered at risk. There were regional differences in numbers of lakes at risk. Scotland appeared to have the fewest sites at risk (18
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Collaboration: Pierre Auger Collaboration; and others
2012-08-10
The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E{sub {nu}} between 10{sup 17} eV and 10{sup 20} eV from point-like sources across the sky south of +55 Degree-Sign and north of -65 Degree-Sign declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of {approx}3.5 years of a full surface detector array for the Earth-skimming channel and {approx}2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k{sub PS} {center_dot} E {sup -2}{sub {nu}} from a point-like source, 90% confidence level upper limits for k{sub PS} at the level of Almost-Equal-To 5 Multiplication-Sign 10{sup -7} and 2.5 Multiplication-Sign 10{sup -6} GeV cm{sup -2} s{sup -1} have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.
Solving the advection-diffusion equations in biological contexts using the cellular Potts model
NASA Astrophysics Data System (ADS)
Dan, Debasis; Mueller, Chris; Chen, Kun; Glazier, James A.
2005-10-01
The cellular Potts model (CPM) is a robust, cell-level methodology for simulation of biological tissues and morphogenesis. Both tissue physiology and morphogenesis depend on diffusion of chemical morphogens in the extra-cellular fluid or matrix (ECM). Standard diffusion solvers applied to the cellular potts model use finite difference methods on the underlying CPM lattice. However, these methods produce a diffusing field tied to the underlying lattice, which is inaccurate in many biological situations in which cell or ECM movement causes advection rapid compared to diffusion. Finite difference schemes suffer numerical instabilities solving the resulting advection-diffusion equations. To circumvent these problems we simulate advection diffusion within the framework of the CPM using off-lattice finite-difference methods. We define a set of generalized fluid particles which detach advection and diffusion from the lattice. Diffusion occurs between neighboring fluid particles by local averaging rules which approximate the Laplacian. Directed spin flips in the CPM handle the advective movement of the fluid particles. A constraint on relative velocities in the fluid explicitly accounts for fluid viscosity. We use the CPM to solve various diffusion examples including multiple instantaneous sources, continuous sources, moving sources, and different boundary geometries and conditions to validate our approximation against analytical and established numerical solutions. We also verify the CPM results for Poiseuille flow and Taylor-Aris dispersion.
Policicchio, Alfonso; Maccallini, Enrico; Kalantzopoulos, Georgios N; Cataldi, Ugo; Abate, Salvatore; Desiderio, Giovanni; Agostino, Raffaele Giuseppe
2013-10-01
The development of a volumetric apparatus (also known as a Sieverts' apparatus) for accurate and reliable hydrogen adsorption measurement is shown. The instrument minimizes the sources of systematic errors which are mainly due to inner volume calibration, stability and uniformity of the temperatures, precise evaluation of the skeletal volume of the measured samples, and thermodynamical properties of the gas species. A series of hardware and software solutions were designed and introduced in the apparatus, which we will indicate as f-PcT, in order to deal with these aspects. The results are represented in terms of an accurate evaluation of the equilibrium and dynamical characteristics of the molecular hydrogen adsorption on two well-known porous media. The contribution of each experimental solution to the error propagation of the adsorbed moles is assessed. The developed volumetric apparatus for gas storage capacity measurements allows an accurate evaluation over a 4 order-of-magnitude pressure range (from 1 kPa to 8 MPa) and in temperatures ranging between 77 K and 470 K. The acquired results are in good agreement with the values reported in the literature.
Sharma, Manu; Hennessy, Ricky; Markey, Mia K.; Tunnell, James W.
2013-01-01
A two-layer Monte Carlo lookup table-based inverse model is validated with two-layered phantoms across physiologically relevant optical property ranges. Reflectance data for source-detector separations of 370 μm and 740 μm were collected from these two-layered phantoms and top layer thickness, reduced scattering coefficient and the top and bottom layer absorption coefficients were extracted using the inverse model and compared to the known values. The results of the phantom verification show that this method is able to accurately extract top layer thickness and scattering when the top layer thickness ranges from 0 to 550 μm. In this range, top layer thicknesses were measured with an average error of 10% and the reduced scattering coefficient was measured with an average error of 15%. The accuracy of top and bottom layer absorption coefficient measurements was found to be highly dependent on top layer thickness, which agrees with physical expectation; however, within appropriate thickness ranges, the error for absorption properties varies from 12–25%. PMID:24466475
Policicchio, Alfonso; Maccallini, Enrico; Kalantzopoulos, Georgios N.; Cataldi, Ugo; Abate, Salvatore; Desiderio, Giovanni
2013-10-15
The development of a volumetric apparatus (also known as a Sieverts’ apparatus) for accurate and reliable hydrogen adsorption measurement is shown. The instrument minimizes the sources of systematic errors which are mainly due to inner volume calibration, stability and uniformity of the temperatures, precise evaluation of the skeletal volume of the measured samples, and thermodynamical properties of the gas species. A series of hardware and software solutions were designed and introduced in the apparatus, which we will indicate as f-PcT, in order to deal with these aspects. The results are represented in terms of an accurate evaluation of the equilibrium and dynamical characteristics of the molecular hydrogen adsorption on two well-known porous media. The contribution of each experimental solution to the error propagation of the adsorbed moles is assessed. The developed volumetric apparatus for gas storage capacity measurements allows an accurate evaluation over a 4 order-of-magnitude pressure range (from 1 kPa to 8 MPa) and in temperatures ranging between 77 K and 470 K. The acquired results are in good agreement with the values reported in the literature.
Sharma, Manu; Hennessy, Ricky; Markey, Mia K; Tunnell, James W
2013-12-02
A two-layer Monte Carlo lookup table-based inverse model is validated with two-layered phantoms across physiologically relevant optical property ranges. Reflectance data for source-detector separations of 370 μm and 740 μm were collected from these two-layered phantoms and top layer thickness, reduced scattering coefficient and the top and bottom layer absorption coefficients were extracted using the inverse model and compared to the known values. The results of the phantom verification show that this method is able to accurately extract top layer thickness and scattering when the top layer thickness ranges from 0 to 550 μm. In this range, top layer thicknesses were measured with an average error of 10% and the reduced scattering coefficient was measured with an average error of 15%. The accuracy of top and bottom layer absorption coefficient measurements was found to be highly dependent on top layer thickness, which agrees with physical expectation; however, within appropriate thickness ranges, the error for absorption properties varies from 12-25%.
NASA Astrophysics Data System (ADS)
Panchenko, A. N.; Panchenko, N. A.; Tarasenko, V. F.
2017-05-01
REP DD was suggested as an excitation source of various gas lasers. The efficient lasing was obtained in the IR, UV, and VUV spectral ranges. The ultimate intrinsic efficiency of non-chain chemical lasers on HF(DF) molecules was achieved. REP DD pumped N2 laser with an ultimate electrical efficiency of 0.2% was developed. Lasing on N2 molecules with 2 or 3 peaks in successive REP DD current oscillations was obtained for the first time. The laser action on F2* at 157 nm and rare gas fluorides (KrF*, XeF*) under REP DD pumping was obtained for the first time, as well. It has been shown that the volume stage of REP DD in mixtures with fluorine can last over 50 ns during several current half-cycles. Therewith, the efficiency and the pulse duration of lasers on rare gas fluorides and VUV F2* laser parameters under REP DD excitation are comparable with those obtained in suitable transverse discharges. The results allow the conclusion that the REP DD homogeneity in mixtures with F2 and SF6 is high enough for attaining high laser efficiency.
NASA Astrophysics Data System (ADS)
Stonestrom, D. A.; Werner, C. A.; Schulz, M. S.; Howle, J. F.; Farrar, C. D.; Smith, T. R.; Rogie, J. D.
2011-12-01
Naturally occurring emissions of nearly pure CO2 at Mammoth Mountain, California, have been suggested as an analog of possible leakage from large-scale carbon capture and sequestration operations. Impacts of sustained elevated levels (>20%) of soil CO2 are greater than the observable forest dieback. Repeated soil-transect studies six and 22 years after onset of CO2 emissions demonstrate substantial degradation of base-cation status in the area of active emission. Detailed time series of soil-gas pressures, CO2 concentrations and fluxes, water contents, and snow-cover dynamics show large short-term (minutes-to-days) variability and switching between quasi-stable states, suggesting countercurrent gas and liquid movement within a shared fracture-pore network. Single fluid phase (Darcian-Fickian) approaches are inadequate to explain the gross features of the measured time series; engineering equations developed for two-fluid-phase flow reactors are more likely to apply. Micrometeorological data show that atmospheric forcing affects total CO2 fluxes. Data presented here show that interactions among the atmospheric boundary layer, water in all its forms (snowpack, percolating soil moisture, groundwater), and upward moving CO2 must be taken into account so that changes in surface CO2 concentrations and fluxes due to hydrologic perturbations can be differentiated from those due to changes in sources at depth.
NASA Astrophysics Data System (ADS)
Niiniluoto, Ilkka
2014-03-01
Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).
The one-particle approximation in the reflecting discharge simulation
NASA Astrophysics Data System (ADS)
Schitov, N. N.; Yurkov, D. I.
2017-05-01
The method of some reflecting discharge (Penning discharge) characteristics computation, based on the one-particle approximation is proposed. This discharge is widely used in ion sources aimed at surface modification. However, only the steady state of this discharge is sufficiently described, whereas pulsed modes are preferable in many cases. In fact, the proposed method is similar to the approach used in the early times of first glow discharge investigations and crossed fields ion sources. It may be applied for the early discharge stages (the Townsend regime) description. It is somehow simpler than the diffusion-drift approximation used as a rule for the stationary state description, because plasma does not exist yet. On the other hand, one need not use most of usual diffusion-drift simplifications e.g. 1 or 2D models, uniform magnetic field etc. So the process of discharge formation may be described exactly for different kinds of Penning cells geometries and fields configurations. The discharge ignition condition for the Penning cell, analogous to the Townsend law is evaluated. It allows one to appreciate the discharge formation time as a function of cell geometric parameters, field configurations, anode voltage and Townsend’s coefficients α and γ. This time, or exactly the trajectory length during this time, plays the role of the Townsend parameter d - the distance between electrodes. The calculated values of such times show good agreement with experimental data.
Heat pipe transient response approximation.
Reid, R. S.
2001-01-01
A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper.
NASA Astrophysics Data System (ADS)
Lu, Yujie; Douraghy, Ali; Machado, Hidevaldo B.; Stout, David; Tian, Jie; Herschman, Harvey; Chatziioannou, Arion F.
2009-11-01
Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative three-dimensional bioluminescent source information obtained by using bioluminescence tomography can directly and much more accurately reflect biological changes as opposed to planar bioluminescence imaging. Preliminary simulated and experimental reconstruction results demonstrate the feasibility and promise of bioluminescence tomography. However, the use of multiple approximations, particularly the diffusion approximation theory, affects the quality of in vivo small animal-based image reconstructions. In the development of new reconstruction algorithms, high-order approximation models of the radiative transfer equation and spectrally resolved data introduce new challenges to the reconstruction algorithm and speed. In this paper, an SP3-based (the third-order simplified spherical harmonics approximation) spectrally resolved reconstruction algorithm is proposed. The simple linear relationship between the unknown source distribution and the spectrally resolved data is established in this algorithm. A parallel version of this algorithm is realized, making BLT reconstruction feasible for the whole body of small animals especially for fine spatial domain discretization. In simulation validations, the proposed algorithm shows improved reconstruction quality compared with diffusion approximation-based methods when high absorption, superficial sources and detection modes are considered. In addition, comparisons between fine and coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the potential and effectiveness of the SP3-based reconstruction algorithm.
Liu, Kai; Lu, Yujie; Tian, Jie; Qin, Chenghu; Yang, Xin; Zhu, Shouping; Yang, Xiang; Gao, Quansheng; Han, Dong
2010-09-27
In vivo bioluminescence imaging (BLI) has played a more and more important role in biomedical research of small animals. Bioluminescence tomography (BLT) further translates the BLI optical information into three-dimensional bioluminescent source distribution, which could greatly facilitate applications in related studies. Although the diffusion approximation (DA) is one of the most widely-used forward models, higher-order approximations are still needed for in vivo small animal imaging. In this work, as a relatively accurate and higher-order approximation theory, the performance of the simplified spherical harmonics approximation (SPN) in BLT is evaluated detailedly in heterogeneous small animals. In the numerical validations, the SPN based results demonstrate better imaging quality compared with diffusion approximation heterogeneously under various source locations over wide optical domain. Although the evaluation for the effects of the optical property mismatch indicates the sensitivity of SPN is similar with DA model in the source localization, it may offer improved performance with much less artifacts. In what follows, heterogeneous experimental BLT reconstructions using in vivo mouse further evaluate the capability of the higher-order method for practical biomedical applications.
Optical imaging of phantoms from real data by an approximately globally convergent inverse algorithm
Su, Jianzhong; Klibanov, Michael V.; Liu, Yueming; Lin, Zhijin; Pantong, Natee; Liu, Hanli
2013-01-01
A numerical method for an inverse problem for an elliptic equation with the running source at multiple positions is presented. This algorithm does not rely on a good first guess for the solution. The so-called “approximate global convergence” property of this method is shown here. The performance of the algorithm is verified on real data for Diffusion Optical Tomography. Direct applications are in near-infrared laser imaging technology for stroke detection in brains of small animals. PMID:24187574
NASA Astrophysics Data System (ADS)
Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.
Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical
Approximate symmetries of Hamiltonians
NASA Astrophysics Data System (ADS)
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Digel, Seth W.; /SLAC
2007-10-25
Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.
Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Wendel, M.W.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.
1996-12-30
Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. For the current study, gaseous UF{sub 6} is assumed to get released in the cell housing atmosphere through B-line break at 58.97 kg/s for 10 min and 30 min duration at the Paducah and Portsmouth Gaseous Diffusion Plants. The released UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}) while it disperses throughout the process building. As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. To characterize leakage flow through the cell housing wall, 3-D CFD tool (CFDS-FLOW3D) was used. About 57% of UO{sub 2}F{sub 2} was predicted to be released into the environment. Since HF was treated as vapor, close to 100% was estimated to get released into the environment.
Thomas, I A; Jordan, P; Mellander, P-E; Fenton, O; Shine, O; Ó hUallacháin, D; Creamer, R; McDonald, N T; Dunlop, P; Murphy, P N C
2016-06-15
Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants. A new GIS-based HSA Index is presented that improves the identification of HSAs at the sub-field scale by accounting for microtopographic controls. The Index is based on high resolution LiDAR data and a soil topographic index (STI) and also considers the hydrological disconnection of overland flow via topographic impediment from flow sinks. The HSA Index was applied to four intensive agricultural catchments (~7.5-12km(2)) with contrasting topography and soil types, and validated using rainfall-quickflow measurements during saturated winter storm events in 2009-2014. Total flow sink volume capacities ranged from 8298 to 59,584m(3) and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'breakthrough points' and 'delivery points' along surface runoff pathways as vulnerable points where diffuse pollutants could be transported between fields or delivered to the open drainage network, respectively. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips reduced potential costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5years respectively, which included LiDAR DEM acquisition costs. The HSA Index can be used as a hydrologically realistic transport component within a fully evolved sub-field scale CSA model, and can also be used to guide the implementation of 'treatment-train' mitigation strategies concurrent with sustainable agricultural intensification.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
Modeling diffuse reflectance measurements of light scattered by layered tissues
NASA Astrophysics Data System (ADS)
Rohde, Shelley B.
In this dissertation, we first present a model for the diffuse reflectance due to a continuous beam incident normally on a half space composed of a uniform scattering and absorbing medium. This model is the result of an asymptotic analysis of the radiative transport equation for strong scattering, weak absorption and a defined beam width. Through comparison with the diffuse reflectance computed using the numerical solution of the radiative transport equation, we show that this diffuse reflectance model gives results that are accurate for small source-detector separation distances. We then present an explicit model for the diffuse reflectance due to a collimated beam of light incident normally on layered tissues. This model is derived using the corrected diffusion approximation applied to a layered medium, and it takes the form of a convolution with an explicit kernel and the incident beam profile. This model corrects the standard diffusion approximation over all source-detector separation distances provided the beam is sufficiently wide compared to the scattering mean-free path. We validate this model through comparison with Monte Carlo simulations. Then we use this model to estimate the optical properties of an epithelial layer from Monte Carlo simulation data. Using measurements at small source-detector separations and this model, we are able to estimate the absorption coefficient, scattering coefficient and anisotropy factor of epithelial tissues efficiently with reasonable accuracy. Finally, we present an extension of the corrected diffusion approximation for an obliquely incident beam. This model is formed through a Fourier Series representation in the azimuthal angle which allows us to exhibit the break in axisymmetry when combined with the previous analysis. We validate this model with Monte Carlo simulations. This model can also be written in the form of a convolution of an explicit kernel with the incident beam profile. Additionally, it can be used to
Multispecies diffusion models: A study of uranyl species diffusion
Liu, Chongxuan; Shang, Jianying; Zachara, John M.
2011-12-14
Rigorous numerical description of multi-species diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication for imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multi-species diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multi-species diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multi-species U(VI) diffusion under steady-state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that a fully coupled diffusion model can be well approximated by a component-based diffusion model, which considers difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be rigorously enforced, if necessary, by adding an artificial kinetic reaction term induced by the charge separation. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from US Department of Energy's Hanford 300A where intragrain diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that has been described using a semi-empirical, multi-rate model
NASA Astrophysics Data System (ADS)
Barry, D. A.; Parlange, J.-Y.; Li, L.; Jeng, D.-S.; Crapper, M.
2005-10-01
The solution to the Green and Ampt infiltration equation is expressible in terms of the Lambert W-1 function. Approximations for Green and Ampt infiltration are thus derivable from approximations for the W-1 function and vice versa. An infinite family of asymptotic expansions to W-1 is presented. Although these expansions do not converge near the branch point of the W function (corresponds to Green-Ampt infiltration with immediate ponding), a method is presented for approximating W-1 that is exact at the branch point and asymptotically, with interpolation between these limits. Some existing and several new simple and compact yet robust approximations applicable to Green-Ampt infiltration and flux are presented, the most accurate of which has a maximum relative error of 5 × 10 -5%. This error is orders of magnitude lower than any existing analytical approximations.
Approximate analytic solutions to the NPDD: Short exposure approximations
NASA Astrophysics Data System (ADS)
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
NASA Astrophysics Data System (ADS)
Campbell, Julie; Jordan, Phil
2013-04-01
Monitoring the efficacy of phosphorus (P) mitigation measures for both diffuse and point sources is difficult due to sample resolution and processes related to seasonality and hydrology. High-resolution monitoring by bankside analysers has increased in catchment studies, capturing the variation of P signals in flowing water from multiple sources and hydrological dependencies. However, while these high-resolution data can offer new insights into P patterns related to process, there is no theory on how these data should be used to investigate catchment change influences on stream P chemistry over time. Here we demonstrate the analysis of a five-year sub-hourly dataset of total P spanning a period of voluntary and mandatory mitigation measures to reduce soil P in high status fields and also replacement of defective septic systems. These two mitigation measures were deemed to have influences on both diffuse, storm dependent P transfers during high flows, and point, storm-independent P transfers during low flows. The data were gathered by Hach-Lange Phosphax systems linked to hydrometric stations in two 5km2 rural catchments (in the Irish border region) so that P concentration and discharge were measured synchronously. A series of ranked percentile high flow and low flow discharge ranges (e.g. Q5-Q10 and Q90-Q95, respectively) were determined for the five year period and, in each year, the P concentration data were extracted, which corresponded to these ranges. Each discharge percentile range was associated with several hundred mean hourly total P concentrations in each year and were compared using ANOVA to determine the magnitude and significance of change on a year-by-year basis. Over the five year period, the high flow analysis indicated that diffuse stream P concentrations had increased in both catchments (0.152 to 0.280 mg l-1, and 0.228 to 0.391 mg l-1), despite efforts to reduce soil P status. Subsequently, it was shown that the potency of high flow P transfers
Brog, Jean-Pierre; Crochet, Aurélien; Seydoux, Joël; Clift, Martin J D; Baichette, Benoît; Maharajan, Sivarajakumar; Barosova, Hana; Brodard, Pierre; Spodaryk, Mariana; Züttel, Andreas; Rothen-Rutishauser, Barbara; Kwon, Nam Hee; Fromm, Katharina M
2017-08-22
LiCoO2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 °C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO2 (HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li(+)) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Several new single source precursors containing lithium (Li(+)) and cobalt (Co(2+)) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 °C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our LiCoO2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO2 have faster kinetics for Li(+) insertion/extraction compared to microparticles. Overall, nano-sized LiCoO2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles.
Intrinsic Nilpotent Approximation.
1985-06-01
RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It
Anomalous diffraction approximation limits
NASA Astrophysics Data System (ADS)
Videen, Gorden; Chýlek, Petr
It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.
2006-05-01
Diffusion of thorium has been characterized in synthetic monazite under dry conditions. The synthetic monazites (either pure CePO4, NdPO4, or a mixed LREE phosphate containing Ce, Nd, and Sm) were grown via a Na2CO3-MoO3 flux method. The source of diffusant for the experiments were either synthesized ThSiO4 or CaTh(PO4)2 powders. Experiments were performed by placing source and monazite in Pt capsules and annealing capsules in 1 atm furnaces for times ranging from 10 days to a few hours, at temperatures from 1400 to 1550C. The Th distributions in the monazite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation was obtained for diffusion in monazite: DSm = 7.2x103 exp(-814 kJ mol-1/RT) m2sec-1 The diffusivity of Th was similar for monazites containing a single REE and the mixed LREE phosphates. Th diffusion was also similar for experiments run using the Th silicate and Ca-Th phosphate sources, suggesting that the substitutional mechanism for Th in monazite, i.e, Th+4 + Si+4 for REE+3 + P+5 with the ThSiO4 source, and Th+4 + Ca+2 for 2REE+3 with the CaTh(PO4)2 source, does not significantly affect Th diffusivities, and that Th is likely the rate-limiting species. Th diffusion in monazite is about 4 orders of magnitude slower than Pb diffusion (Cherniak et al., 2004). This contrasts with findings of Gardes et al. (2005) who determined that Pb, Th and REE diffusivities in monazite are similar. Th diffusion in zircon (Cherniak et al., 1997) is about an order of magnitude slower than in monazite, but with similar activation energy for diffusion. The smaller diffusivities in zircon may be a consequence of the larger disparity in size between Th and the Zr site in zircon as compared with Th and the REE site in monazite. Nonetheless, Th is essentially immobile in monazite with respect to exchange by volume diffusion under most geologic conditions; these findings may have implications for containment of high- level actinide
Instrumentation in Diffuse Optical Imaging
Zhang, Xiaofeng
2014-01-01
Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804
The JWKB approximation in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Craig, David; Singh, Parampreet
2017-01-01
We explore the JWKB approximation in loop quantum cosmology in a flat universe with a scalar matter source. Exact solutions of the quantum constraint are studied at small volume in the JWKB approximation in order to assess the probability of tunneling to small or zero volume. Novel features of the approximation are discussed which appear due to the fact that the model is effectively a two-dimensional dynamical system. Based on collaborative work with Parampreet Singh.
Covariant approximation averaging
NASA Astrophysics Data System (ADS)
Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2015-06-01
We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.
Doody, D G; Archbold, M; Foy, R H; Flynn, R
2012-01-01
The Water Framework Directive (WFD) has initiated a shift towards a targeted approach to implementation through its focus on river basin districts as management units and the natural ecological characteristics of waterbodies. Due to its role in eutrophication, phosphorus (P) has received considerable attention, resulting in a significant body of research, which now forms the evidence base for the programme of measures (POMs) adopted in WFD River Basin Management Plans (RBMP). Targeting POMs at critical sources areas (CSAs) of P could significantly improve environmental efficiency and cost effectiveness of proposed mitigation strategies. This paper summarises the progress made towards targeting mitigation measures at CSAs in Irish catchments. A review of current research highlights that knowledge related to P export at field scale is relatively comprehensive however; the availability of site-specific data and tools limits widespread identification of CSA at this scale. Increasing complexity of hydrological processes at larger scales limits accurate identification of CSA at catchment scale. Implementation of a tiered approach, using catchment scale tools in conjunction with field-by-field surveys could decrease uncertainty and provide a more practical and cost effective method of delineating CSA in a range of catchments. Despite scientific and practical uncertainties, development of a tiered CSA-based approach to assist in the development of supplementary measures would provide a means of developing catchment-specific and cost-effective programmes of measures for diffuse P. The paper presents a conceptual framework for such an approach, which would have particular relevance for the development of supplementary measures in High Status Waterbodies (HSW). The cost and resources necessary for implementation are justified based on HSWs' value as undisturbed reference condition ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cross, Paul E.
2007-07-01
This paper describes the In Situ Chemical Oxidation (ISCO) remediation being implemented for the X-701B groundwater plume at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). Modified Fenton's reagent is the principal oxidant for the remedy, and Direct Push Technology (DPT) is being used for delivery of the oxidant. Trichloroethene (TCE) is the primary contaminant of concern and is present within the unit as a dense non - aqueous phase liquid (DNAPL). A phased approach is being implemented to optimize the type, location, and mass of the oxidant injections. During Phase I, a unique near-real time monitoring approach was utilized to observe the transient effects of the oxidant injections on the formation. As a result of the positive results from Phase I, Ohio EPA has approved the final work plan for the remedy, and the approach is now being applied to the source area of the plume. The results from Phase I and the layout for the first series of Phase II injections are presented in this paper. Previous testing at the site has shown that the shallow, water-bearing formation is primarily composed of silty gravel and clay, and is both heterogeneous and anisotropic. These factors have significantly compromised earlier attempts to remediate the unit. A patented ISCO process from In-Situ Oxidative Technologies, Inc. (ISOTEC) was selected for the remediation of the plume. Phase I results indicate that oxidant delivery via DPT is feasible for the unit. Contaminant reduction to date has been minimal due to the small quantity of oxidant injected during Phase I. Contaminant rebound in the aqueous phase remains a concern and will be monitored closely during the remedy. (author)
Role of pressure diffusion in non-homogeneous shear flows
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Lele, S. K.; Durbin, P.
1994-01-01
A non-local model is presented for approximating the pressure diffusion in calculations of turbulent free shear and boundary layer flows. It is based on the solution of an elliptic relaxation equation which enables local diffusion sources to be distributed over lengths of the order of the integral scale. The pressure diffusion model was implemented in a boundary layer code within the framework of turbulence models based on both the kappa-epsilon-(bar)upsilon(exp 2) system of equations and the full Reynolds stress equations. Model computations were performed for mixing layers and boundary layer flows. In each case, the pressure diffusion model enabled the well-known free-stream edge singularity problem to be eliminated. There was little effect on near-wall properties. Computed results agreed very well with experimental and DNS data for the mean flow velocity, the turbulent kinetic energy, and the skin-friction coefficient.
Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Cisewski, Jessi
2015-08-01
Explicitly specifying a likelihood function is becoming increasingly difficult for many problems in astronomy. Astronomers often specify a simpler approximate likelihood - leaving out important aspects of a more realistic model. Approximate Bayesian computation (ABC) provides a framework for performing inference in cases where the likelihood is not available or intractable. I will introduce ABC and explain how it can be a useful tool for astronomers. In particular, I will focus on the eccentricity distribution for a sample of exoplanets with multiple sub-populations.
Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.
1998-05-01
The Deposit Removal Project was undertaken with the support of the U. S. Department of Energy at the East Tennessee Technology Park (ETTP) formerly the Oak Ridge K-25 Site. The project team performed the safe removal of the hydrated uranyl fluoride (UO{sub 2}F{sub 2}) deposits from the K-29 Building of the former Oak Ridge Gaseous Diffusion Plant. The deposits had developed as a result of air leakage into UF{sub 6} gas process pipes; UO{sub 2}F{sub 2} became hydrated by moisture from the air and deposited inside the pipes. The mass, its distribution, and the hydrogen content [that is, the ratio of H to U (H/U)], were the key parameters that controlled the nuclear criticality safety of the deposits. Earlier gamma-ray spectrometry measurements in K-29 had identified the largest deposits in the building. The first and third largest deposits in the building were measured in this program. The first deposit, found in the Unit 2, Cell 7, B-Line Outlet process pipe (called the ''Hockey Stick'') was about 1,300 kg ({+-} 50% uncertainty) at 3.34 wt% {sup 235}U enrichment ({+-}50% uncertainty) and according to the gamma-ray spectroscopy was uniformly distributed. The second deposit (the third-largest deposit in the building), found in the Unit 2, Cell 6, A-Line Outlet process pipe (called the ''Tee-Pipe''), had a uranium deposit estimated to be about 240 kg ({+-} 50% uncertainty) at 3.4 wt % {sup 235}U enrichment ({+-} 20% uncertainty). Before deposit removal activities began, the Deposit Removal Project team needed to survey the inside of the pipes intrusively to assess the nuclear criticality safety of the deposits. Therefore, the spatial distribution of the deposits, the total uranium deposit mass, and the moderation level resulting from hydration of the deposits, all of which affect nuclear criticality safety were required. To perform the task safely and effectively, the Deposit Removal Project team requested that Oak Ridge National Laboratory (ORNL) characterize the two
Approximate Solution to the Generalized Boussinesq Equation
NASA Astrophysics Data System (ADS)
Telyakovskiy, A. S.; Mortensen, J.
2010-12-01
The traditional Boussinesq equation describes motion of water in groundwater flows. It models unconfined groundwater flow under the Dupuit assumption that the equipotential lines are vertical, making the flowlines horizontal. The Boussinesq equation is a nonlinear diffusion equation with diffusivity depending linearly on water head. Here we analyze a generalization of the Boussinesq equation, when the diffusivity is a power law function of water head. For example polytropic gases moving through porous media obey this equation. Solving this equation usually requires numerical approximations, but for certain classes of initial and boundary conditions an approximate analytical solution can be constructed. This work focuses on the latter approach, using the scaling properties of the equation. We consider one-dimensional semi-infinite initially empty aquifer with boundary conditions at the inlet in case of cylindrical symmetry. Such situation represents the case of an injection well. Solutions would propagate with the finite speed. We construct an approximate scaling function, and we compare the approximate solution with the direct numerical solutions obtained by using the scaling properties of the equations.
Multicriteria approximation through decomposition
Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.
1998-06-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Multicriteria approximation through decomposition
Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |
1997-12-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
ERIC Educational Resources Information Center
Wolff, Hans
This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Diffuse photon density wave measurements and Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Kuzmin, Vladimir L.; Neidrauer, Michael T.; Diaz, David; Zubkov, Leonid A.
2015-10-01
Diffuse photon density wave (DPDW) methodology is widely used in a number of biomedical applications. Here, we present results of Monte Carlo simulations that employ an effective numerical procedure based upon a description of radiative transfer in terms of the Bethe-Salpeter equation. A multifrequency noncontact DPDW system was used to measure aqueous solutions of intralipid at a wide range of source-detector separation distances, at which the diffusion approximation of the radiative transfer equation is generally considered to be invalid. We find that the signal-noise ratio is larger for the considered algorithm in comparison with the conventional Monte Carlo approach. Experimental data are compared to the Monte Carlo simulations using several values of scattering anisotropy and to the diffusion approximation. Both the Monte Carlo simulations and diffusion approximation were in very good agreement with the experimental data for a wide range of source-detector separations. In addition, measurements with different wavelengths were performed to estimate the size and scattering anisotropy of scatterers.
A Production Network Model and Its Diffusion Approximation.
1982-09-01
Buffers. 3 .....................-............ 9, - ’*** * ** ** *-- . 8 4 . . . . . . . . . . . * sheet metal , or the cooling of hot liquid Input in a...Appear. ;4 (71 Xglebart, D. and Whitt, W., -Multiple Channel Queue in Havy Traffic I,- Advances In Applied Probability, Vol. 2, 1970, pp. 150-177. (81 Ito
Multispecies diffusion models: A study of uranyl species diffusion
NASA Astrophysics Data System (ADS)
Liu, Chongxuan; Shang, Jianying; Zachara, John M.
2011-12-01
Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A
NASA Astrophysics Data System (ADS)
Fukuyama, Hidenao
Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment
NASA Astrophysics Data System (ADS)
Witherden, F. D.; Farrington, A. M.; Vincent, P. E.
2014-11-01
High-order numerical methods for unstructured grids combine the superior accuracy of high-order spectral or finite difference methods with the geometric flexibility of low-order finite volume or finite element schemes. The Flux Reconstruction (FR) approach unifies various high-order schemes for unstructured grids within a single framework. Additionally, the FR approach exhibits a significant degree of element locality, and is thus able to run efficiently on modern streaming architectures, such as Graphical Processing Units (GPUs). The aforementioned properties of FR mean it offers a promising route to performing affordable, and hence industrially relevant, scale-resolving simulations of hitherto intractable unsteady flows within the vicinity of real-world engineering geometries. In this paper we present PyFR, an open-source Python based framework for solving advection-diffusion type problems on streaming architectures using the FR approach. The framework is designed to solve a range of governing systems on mixed unstructured grids containing various element types. It is also designed to target a range of hardware platforms via use of an in-built domain specific language based on the Mako templating engine. The current release of PyFR is able to solve the compressible Euler and Navier-Stokes equations on grids of quadrilateral and triangular elements in two dimensions, and hexahedral elements in three dimensions, targeting clusters of CPUs, and NVIDIA GPUs. Results are presented for various benchmark flow problems, single-node performance is discussed, and scalability of the code is demonstrated on up to 104 NVIDIA M2090 GPUs. The software is freely available under a 3-Clause New Style BSD license (see www.pyfr.org). Catalogue identifier: AETY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: New style BSD license No. of lines in
Dakshinamurthy, S.; Shetty, S.; Bhat, I.; Hitchcock, C.; Gutmann, R.; Charache, G.; Freeman, M.
1998-06-01
The GaInSb material system is attractive for application in thermophotovoltaic (TPV) cells since its band gap can be tuned to match the radiation of the emitter. At present, most of the TPV cells are fabricated using epitaxial layers and hence are expensive. To reduce the cost, Zn diffusion using elemental vapors in a semi-closed diffusion system is being pursued by several laboratories. In this paper, the authors present studies carried out on Zn diffusion into n-type (Te-doped) GaSb substrates in an open tube diffusion furnace. The dopant precursor was a 2,000 {angstrom} thick, zinc doped spin-on glass. The diffusion was carried out at temperatures ranging from 550 to 600 C, for times from 1 to 10 hours. The diffused layers were characterized by Hall measurements using step-and-repeat etching by anodic oxidation, secondary ion mass spectrometry (SIMS) measurements and TPV device fabrication. For diffusion carried out at 600 C, the junction depth was 0.3 {micro}m, and the hole concentration near the surface was 5 {times} 10{sup 19}/cm{sup 3}. The external quantum efficiency, measured without any anti-reflection coating, of the TPV cells fabricated using mesa-etching had a maximum value of 38%. Masked diffusion was also carried out by opening windows in a Si{sub 3}N{sub 4} coated, GaSb wafer. TPV cells fabricated on these structures had similar quantum efficiency, but lower dark current.
Kryvohuz, M; Marcus, R A
2010-06-14
A classical theory is proposed to describe the non-RRKM effects in activated asymmetric top triatomic molecules observed numerically in classical molecular dynamics simulations of ozone. The Coriolis coupling is shown to result in an effective diffusive energy exchange between the rotational and vibrational degrees of freedom. A stochastic differential equation is obtained for the K-component of the rotational angular momentum that governs the diffusion.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Cytoplasmic hydrogen ion diffusion coefficient.
al-Baldawi, N F; Abercrombie, R F
1992-01-01
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134
Topics in Metric Approximation
NASA Astrophysics Data System (ADS)
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
NASA Technical Reports Server (NTRS)
Horwitz, J. L.
1983-01-01
The Bohm diffusion coefficient and observed electrostatic wave scattering are used as the bases of estimates of the smoothing effect that diffusion may have on steep plasmapause density gradients. The estimate for diffusion resulting from scattering by observed electrostatic waves is found to be much lower than that of the perpendicular Bohm diffusion coefficient for characteristic plasma temperatures and magnetic fields. This diffusion rate estimate may be too small, however, if the wave amplitudes are significantly higher for steep plasmapauses. The effects are therefore negligible for most considerations of macroscopic plasmapause dynamics, but may be significant in limiting drift wave instabilities and similar phenomena driven by the steepness of the plasmapause density gradient.
NASA Astrophysics Data System (ADS)
Arauzo, M.; Valladolid, M.; Martínez-Bastida, J. J.
2011-12-01
SummaryReducing nitrate pollution from diffuse agricultural sources is the major environmental challenge in the two adjacent catchments of the Oja-Tirón and Zamaca rivers (La Rioja and Castilla y León, northern Spain). For this reason, part of their territory was designated a Nitrate Vulnerable Zone (NVZ) according to the Nitrates Directive. The Oja Alluvial Aquifer, the Tirón Alluvial Aquifer and their associated rivers are particularly vulnerable to nitrogen pollution due to the shallow water table, the high permeability of alluvial deposits, interconnections between the alluvial aquifers and surface waters and pressures from agriculture. To this end, nine sampling campaigns, organised on a semi-annual basis and focused on the rivers and alluvial aquifers of the two catchments, were carried out from April 2005 to April 2009. The main objectives of the study were: (1) to investigate the chemical forms of nitrogen in river-alluvial aquifer systems of the Oja-Tirón and Zamaca catchments, (2) to improve our understanding of the spatio-temporal patterns of nitrogen distribution in the alluvial aquifers and associated rivers by integrating hydrochemical data and hydrogeological and environmental parameters, (3) to estimate the amount of nitrogen exported from the rivers and alluvial aquifers to the River Ebro, and (4) to evaluate the suitability of the current method of designating NVZs in the area. High groundwater flow velocities in the upper alluvial zones favoured the advective transport of nitrate and generated a dilution effect. In these areas, inter-annual variations in nitrate concentrations were observed related to precipitation and N-input from agriculture. However, low flow velocities favoured processes of accumulation in the lower alluvial zones. Our results demonstrated that the entire alluvial surface was highly vulnerable, according to dynamics of the nitrogen in the river-alluvial aquifer systems being studied. The amount of nitrogen exported from
Chalasani, P.; Saias, I.; Jha, S.
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Beyond the Kirchhoff approximation
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1989-01-01
The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.
Double-diffusive convection in Lake Nyos, Cameroon
NASA Astrophysics Data System (ADS)
Schmid, Martin; Lorke, Andreas; Dinkel, Christian; Tanyileke, Gregory; Wüest, Alfred
2004-08-01
Since the catastrophic CO 2 eruption in 1986, Lake Nyos has been investigated in detail by several research groups. However, no signs of double-diffusive convection were observed before December 2002, when a set of 26 well-mixed layers with thicknesses of 0.2-2.1 m and sharp interfaces in between were discovered at 53-74 m depth. Such pronounced steps are a characteristic feature of double-diffusive convection of the diffusive regime. A temperature time series measured at 62 m depth indicates that the double-diffusive convection started in the second half of March 2002. The trigger was most probably the cooling at the top of this layer caused by relatively strong seasonal convective mixing down to 52.5 m depth during the dry season in February 2002. The heat fluxes calculated by the heat budget method and the thicknesses of the layers agree within the uncertainties with the values expected from the double-diffusive flux laws. The heat fluxes increased by an order of magnitude since the establishment of the double-diffusive convection and reached values comparable to the heat input by a source of warm and CO 2-enriched water to the deepest zone of the water column. In contrast, the CO 2 fluxes caused by double diffusion are negligible compared to the input by this source. Because the double-diffusive heat fluxes were higher in the upper layers of the staircase compared to the lower ones, the temperature gradient between 60 and 75 m depth approximately doubled from March 2002 to December 2002, whereas the total dissolved solids gradient remained almost constant during this period. Consequently, this process is reducing the stability of the staircase and could potentially lead to a complete homogenization of this zone within a few years. It cannot be excluded that a similar double-diffusive event could have been the trigger of the CO 2 eruption in 1986.
Diffuse mass transport in a porous medium
NASA Astrophysics Data System (ADS)
Ho, F. G.
1981-08-01
Variational methods are used to investigate the problems of diffusive mass transport in a porous medium. Calculations of the effective diffusivities are performed for a model pore structure generated by randomly placed, freely overlapping solid spheres all of the same radius. Effects of the tortuosity of the diffusion paths are considered. Numerical evaluations are used to test some approximate engineering models. For gaseous transition region diffusion the mean free path kinetic theory is used to derive a variational upper bound on the effective transition region diffusivity. For the simultaneous liquid or gas phase Fickian bulk diffusion in the void and Fickian surface diffusion on the pore wall surface, an analytical expression for effective diffusion coefficient is obtained and compared with the usual engineering model of parallel surface and void diffusion. The simultaneous gaseous transition region diffusion in the void and the Fickian surface diffusion on the pore wall surface are examined numerically.
NASA Technical Reports Server (NTRS)
Yang, T.-T.; Nelson, C. D.
1979-01-01
Contoured wall diffusers are designed by using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffith in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions across the flow channel at various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be removed for the purpose of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs.
NASA Technical Reports Server (NTRS)
Yang, T.-T.; Nelson, C. D.
1979-01-01
Contoured wall diffusers are designed by using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffith in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions across the flow channel at various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be removed for the purpose of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs.
Hierarchical Approximate Bayesian Computation
Turner, Brandon M.; Van Zandt, Trisha
2013-01-01
Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436
Roy, Swapnoneel; Thakur, Ashok Kumar
2008-01-01
Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients.
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-03-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Analytic expressions for the radial diffusion coefficients are presentedThe coefficients do not dependent on energy or wave m valueThe electric field diffusion coefficient dominates over the magnetic.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Novel Diffusivity Measurement Technique
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser
2001-01-01
A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Anderson, Claire J.; Glassman, Myron
1997-01-01
effective innovation diffusion which, according to Fischer (1979), is essentially information exchange. And, third, studies of innovative project management have found that information availability was a critical factor in project success or failure (e.g., Link & Zmud, 1987; Tushman, 1978, 1979). We propose that a gap in the literature exists that centers on whether U.S. paradigms of commnunications behavior apply to other cultures. First, we will explore early findings in the U.S. that held that the choice of an information source was a function of the 'law of least effort' rather than quality (e.g., Allen, 1977; Cuinan, 1983; DeWhirst, 1971; Hardy, 1982; O'Reilly, 1982; Rosenberg, 1967). Second, we will explore the contingency approaches such as that of Tushman (1979) and the later work of Daft and Lengel (1984, 1987), Huber and Daft (1987) and Lengel and Daft (1988) who held that information choice was a function of the nature of the task at hand. A third issue to be addressed is the confounding problem of presumed differences between scientists and engineers in information gathering behavior (Allen, 1977). Finally, we will investigate whether cultural differences cast doubt on the applicability of findings from U.S. situations to other cultures.
NASA Astrophysics Data System (ADS)
Kanmani, B.; Vasu, R. M.
2007-03-01
An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme.
Light reflection visualization to determine solute diffusion into clays.
Yang, Minjune; Annable, Michael D; Jawitz, James W
2014-06-01
Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0=0.1, Brilliant Blue FCF in kaolinite (R=11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R=7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments.
Hybrid Approximate Message Passing
NASA Astrophysics Data System (ADS)
Rangan, Sundeep; Fletcher, Alyson K.; Goyal, Vivek K.; Byrne, Evan; Schniter, Philip
2017-09-01
The standard linear regression (SLR) problem is to recover a vector $\\mathbf{x}^0$ from noisy linear observations $\\mathbf{y}=\\mathbf{Ax}^0+\\mathbf{w}$. The approximate message passing (AMP) algorithm recently proposed by Donoho, Maleki, and Montanari is a computationally efficient iterative approach to SLR that has a remarkable property: for large i.i.d.\\ sub-Gaussian matrices $\\mathbf{A}$, its per-iteration behavior is rigorously characterized by a scalar state-evolution whose fixed points, when unique, are Bayes optimal. AMP, however, is fragile in that even small deviations from the i.i.d.\\ sub-Gaussian model can cause the algorithm to diverge. This paper considers a "vector AMP" (VAMP) algorithm and shows that VAMP has a rigorous scalar state-evolution that holds under a much broader class of large random matrices $\\mathbf{A}$: those that are right-rotationally invariant. After performing an initial singular value decomposition (SVD) of $\\mathbf{A}$, the per-iteration complexity of VAMP can be made similar to that of AMP. In addition, the fixed points of VAMP's state evolution are consistent with the replica prediction of the minimum mean-squared error recently derived by Tulino, Caire, Verd\\'u, and Shamai. The effectiveness and state evolution predictions of VAMP are confirmed in numerical experiments.
Countably QC-Approximating Posets
Mao, Xuxin; Xu, Luoshan
2014-01-01
As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730
Fast approximate stochastic tractography.
Iglesias, Juan Eugenio; Thompson, Paul M; Liu, Cheng-Yi; Tu, Zhuowen
2012-01-01
Many different probabilistic tractography methods have been proposed in the literature to overcome the limitations of classical deterministic tractography: (i) lack of quantitative connectivity information; and (ii) robustness to noise, partial volume effects and selection of seed region. However, these methods rely on Monte Carlo sampling techniques that are computationally very demanding. This study presents an approximate stochastic tractography algorithm (FAST) that can be used interactively, as opposed to having to wait several minutes to obtain the output after marking a seed region. In FAST, tractography is formulated as a Markov chain that relies on a transition tensor. The tensor is designed to mimic the features of a well-known probabilistic tractography method based on a random walk model and Monte-Carlo sampling, but can also accommodate other propagation rules. Compared to the baseline algorithm, our method circumvents the sampling process and provides a deterministic solution at the expense of partially sacrificing sub-voxel accuracy. Therefore, the method is strictly speaking not stochastic, but provides a probabilistic output in the spirit of stochastic tractography methods. FAST was compared with the random walk model using real data from 10 patients in two different ways: 1. the probability maps produced by the two methods on five well-known fiber tracts were directly compared using metrics from the image registration literature; and 2. the connectivity measurements between different regions of the brain given by the two methods were compared using the correlation coefficient ρ. The results show that the connectivity measures provided by the two algorithms are well-correlated (ρ = 0.83), and so are the probability maps (normalized cross correlation 0.818 ± 0.081). The maps are also qualitatively (i.e., visually) very similar. The proposed method achieves a 60x speed-up (7 s vs. 7 min) over the Monte Carlo sampling scheme, therefore
Sucrose diffusion in aqueous solution
Murray, Benjamin J.
2016-01-01
The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512
NASA Astrophysics Data System (ADS)
Kiyosugi, K.; Koyaguchi, T.
2012-12-01
Understanding how pyroclasts disperse from volcanic plumes is a fundamental problem of volcanology to reconstruct eruption conditions from tephra fallout deposits. Tephra dispersion is not only a scientifically interesting but also socially and economically important problem (e.g., the air traffic disruption caused by the 2010 Eyjafjallaokull volcano eruption). PUFF is a tephra-tracking model developed by the University of Alaska for the use of aviation service alert. In this model, position vector of each particle at a time step is calculated with Lagrangian formulation using local wind velocity and terminal gravitational fallout vector at one time step before; diffusivity due to turbulent behavior is simulated by a random walk formulation. We applied this model to the sub-Plinian phase of the Kirishima 2011 eruption to test the effects of simulation parameters on the features of tephra dispersion and fallout deposits in the field. We systematically investigated the effects of two parameters of PUFF model to tephra dispersion: vertical diffusivity and spatial resolution of wind data. Our results show that, as the value of vertical diffusivity increases, the distribution of settled particles on the ground surface becomes a more elongated shape in the wind direction. This effect is more remarkable for finer particles. These results indicate that the simulation results of the diffusion advection models in general depend on the assumed vertical diffusivity and the spatial resolution of wind data as well as on the source condition (e.g., the release levels of particles and grain size distribution). During the 2011 Kirishima eruption, a sub-Plinian eruption plume of 8 km high was observed by weather radars. The plume extended southeastward around the vent (~60 km), and traveled in the higher altitudes eastward (about 900 km from the vent). The simulation results of PUFF reconstructed these qualitative features observed in the satellite images and the deposits near the
Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.
1999-09-01
Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.
DALI: Derivative Approximation for LIkelihoods
NASA Astrophysics Data System (ADS)
Sellentin, Elena
2015-07-01
DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.
Femtolensing: Beyond the semiclassical approximation
NASA Technical Reports Server (NTRS)
Ulmer, Andrew; Goodman, Jeremy
1995-01-01
Femtolensoing is a gravitational lensing effect in which the magnification is a function not only of the position and sizes of the source and lens, but also of the wavelength of light. Femtolensing is the only known effect of 10(exp -13) - 10(exp -16) solar mass) dark-matter objects and may possibly be detectable in cosmological gamma-ray burst spectra. We present a new and efficient algorithm for femtolensing calculation in general potentials. The physical optics results presented here differ at low frequencies from the semiclassical approximation, in which the flux is attributed to a finite number of mutually coherent images. At higher frequencies, our results agree well with the semicalssical predictions. Applying our method to a point-mass lens with external shear, we find complex events that have structure at both large and small spectral resolution. In this way, we show that femtolensing may be observable for lenses up to 10(exp -11) solar mass, much larger than previously believed. Additionally, we discuss the possibility of a search femtolensing of white dwarfs in the Large Magellanic Cloud at optical wavelengths.
NASA Astrophysics Data System (ADS)
Dorman, L. I.; Iucci, N.; Murat, M.; Parisi, M.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.
In Paper 1 [Dorman, L.I., Pustil’nik, L.A., Sternlieb, A., Zukerman, I.G. Forecasting of Radiation Hazard: 1. Alerts on Great FEP Events Beginning; Probabilities of False and Missed Alerts; on-Line Determination of Solar Energetic Particle Spectrum by using Spectrographic Method, Paper tCOSPAR tPSW1-0022-04, This Issue, 2005] it was described the behavior of programs “FEP-Search” and “FEP-Research/Spectrum” estimating, on the basis of on-line one-minute NM data, the beginning of event and FEP spectrum out of the Earth’s magnetosphere. We show that after these two steps it is possible to determine the time of ejection, diffusion coefficient in the interplanetary space, and energy spectrum at the source of FEP. We consider the following possibilities: (1) one of the above parameters is unknown; (2) two parameters are unknown; (3) all three parameters are unknown. We show that in the first case it is necessary to determine the energy spectrum of FEP on the Earth in two different times and automatically, from two equations, the unknown parameter can be determined (energy spectrum at the source or diffusion coefficient, or time of ejection; the determination is done by one equation, and the other is used for control of the model). In the second case it is necessary to determine the energy spectrum of FEP on the Earth in three different times and from three equations two parameters can be determined automatically (for example, the energy spectrum at the source and diffusion coefficient in the interplanetary space). In the third case, by using data for four different times all three unknown parameters can be determined (time of ejection, diffusion coefficient in the interplanetary space and energy spectrum at the source of FEP), and one equation can be used for control of the model. We describe in detail the algorithms of the programs “FEP-Research/Time of Ejection”, “FEP-Research/Source” and “FEP-Research/Diffusion”. We show the behavior of these
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
Taylor Approximations and Definite Integrals
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2007-01-01
We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)
Taylor Approximations and Definite Integrals
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2007-01-01
We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)
Approximate equilibria for Bayesian games
NASA Astrophysics Data System (ADS)
Mallozzi, Lina; Pusillo, Lucia; Tijs, Stef
2008-07-01
In this paper the problem of the existence of approximate equilibria in mixed strategies is central. Sufficient conditions are given under which approximate equilibria exist for non-finite Bayesian games. Further one possible approach is suggested to the problem of the existence of approximate equilibria for the class of multicriteria Bayesian games.
Diffusion on ruffled membrane surfaces.
Naji, Ali; Brown, Frank L H
2007-06-21
We present a position Langevin equation for overdamped particle motion on rough two-dimensional surfaces. A Brownian dynamics algorithm is suggested to evolve this equation numerically, allowing for the prediction of effective (projected) diffusion coefficients over corrugated surfaces. In the case of static surface roughness, we find that a simple area-scaling prediction for the projected diffusion coefficient leads to seemingly quantitative agreement with numerical results. To study the effect of dynamic surface evolution on the diffusive process, we consider particle diffusion over a thermally fluctuating elastic membrane. Surface fluctuation has the effect of increasing the effective diffusivity toward a limiting annealed-surface value discussed previously. We argue that protein motion over cell surfaces spans a variety of physical regimes, making it impossible to identify a single approximation scheme appropriate to all measurements of interest.
Li Changqing; Zhao Hongzhi; Anderson, Bonnie; Jiang Huabei
2006-03-15
We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.
Influence of diffusion on the kinetics of multisite phosphorylation.
Gopich, Irina V; Szabo, Attila
2016-01-01
When an enzyme modifies multiple sites on a substrate, the influence of the relative diffusive motion of the reactants cannot be described by simply altering the rate constants in the rate equations of chemical kinetics. We have recently shown that, even as a first approximation, new transitions between the appropriate species must also be introduced. The physical reason for this is that a kinase, after phosphorylating one site, can rebind and modify another site instead of diffusing away. The corresponding new rate constants depend on the capture or rebinding probabilities that an enzyme-substrate pair, which is formed after dissociation from one site, reacts at the other site rather than diffusing apart. Here we generalize our previous work to describe both random and sequential phosphorylation by considering inequivalent modification sites. In addition, anisotropic reactive sites (instead of uniformly reactive spheres) are explicitly treated by using localized sink and source terms in the reaction-diffusion equations for the enzyme-substrate pair distribution function. Finally, we show that our results can be rederived using a phenomenological approach based on introducing transient encounter complexes into the standard kinetic scheme and then eliminating them using the steady-state approximation.
Diffusion in silicon isotope heterostructures
Silvestri, Hughes Howland
2004-01-01
The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and ^{28}Si enriched layers, enables the observation of ^{30}Si self-diffusion from the natural layers into the ^{28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly
The Chandra M10l Megasecond: Diffuse Emission
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2009-01-01
Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.
NASA Astrophysics Data System (ADS)
Stenhouse, Iona; O'Neill, Hugh; Lister, Gordon
2010-05-01
Diffusion rates in natural ilmenite of composition Fe0.842+ Fe0.163+Mn0.07Mg0.01Ti 0.92O3 from the Vishnevye Mountains (Urals, Russia) have been measured at 1000° C. Experiments were carried out in a one atmosphere furnace with oxygen fugacity controlled by flow of a CO-CO2 gas mixture, over a period of four hours. The diffusant source was a synthetic ilmenite (FeTiO3) powder doped with trace amounts of Mg, Co, Ni, Zr, Hf, V, Nb, Ta, Al, Cr, Ga and Y. Since, the natural ilmenite crystal contained Mn it was also possible to study diffusion of Mn from the ilmenite crystal. The experiments were analysed using the electron microprobe and scanning laser ablation ICP-MS. Diffusion profiles were measured for Al, Mg, Mn, Co, Ni, Ga, and Y. Diffusion of Cr, Hf, Zr, V, Nb and Ta was too slow to allow diffusion profiles to be accurately measured for the times and temperatures studied so far. The preliminary results show that diffusion in ilmenite is fast, with the diffusivity determined in this study on the order of 10-13 to 10-16 m2s-1. For comparison, Chakraborty (1997) found interdiffusion of Fe and Mg in olivine at 1000° C on the order of 10-17 to 10-18m2s-1 and Dieckmann (1998) found diffusivity of Fe, Mg, Co in magnetite at 1200° C to be on the order of 10-13 to 10-14 m2s-1. The order in which the diffusivity of the elements decreases is Mn > Co > Mg ≥ Ni > Al ≥ Y ≥ Ga, that is to say that Mn diffuses the fastest and Ga the slowest. Overall, this study intends to determine diffusion parameters such as frequency factor, activation energy and activation volume as a function of temperature and oxygen fugacity. This research is taking place in the context of a larger study focusing on the use of the garnet-ilmenite system as a geospeedometer. Examination of the consequences of simultaneous diffusion of multiple elements is a necessity if we are to develop an understanding of the crystal-chemical controls on diffusion (cf Spandler & O'Neill, in press). Chakraborty
ERIC Educational Resources Information Center
Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah
2013-01-01
Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…
ERIC Educational Resources Information Center
Foy, Barry G.
1977-01-01
Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)
ERIC Educational Resources Information Center
Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah
2013-01-01
Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…
ERIC Educational Resources Information Center
Foy, Barry G.
1977-01-01
Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)
Zhang, Duan Z.; Padrino, Juan C.
2017-06-01
The ensemble averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of pockets connected by tortuous channels. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pocket mass density. The so-called dual-porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem,more » we consider the one-dimensional mass diffusion in a semi-infinite domain. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt$-$1/4 rather than xt$-$1/2 as in the traditional theory. We found this early time similarity can be explained by random walk theory through the network.« less
Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California
Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.
1999-01-01
We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.
Riemann equation for prime number diffusion.
Chen, Wen; Liang, Yingjie
2015-05-01
This study makes the first attempt to propose the Riemann diffusion equation to describe in a manner of partial differential equation and interpret in physics of diffusion the classical Riemann method for prime number distribution. The analytical solution of this equation is the well-known Riemann representation. The diffusion coefficient is dependent on natural number, a kind of position-dependent diffusivity diffusion. We find that the diffusion coefficient of the Riemann diffusion equation is nearly a straight line having a slope 0.99734 in the double-logarithmic axis. Consequently, an approximate solution of the Riemann diffusion equation is obtained, which agrees well with the Riemann representation in predicting the prime number distribution. Moreover, we interpret the scale-free property of prime number distribution via a power law function with 1.0169 the scale-free exponent in respect to logarithmic transform of the natural number, and then the fractal characteristic of prime number distribution is disclosed.
Combining global and local approximations
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1991-01-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.
Combining global and local approximations
Haftka, R.T. )
1991-09-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model. 6 refs.
Phenomenological applications of rational approximants
NASA Astrophysics Data System (ADS)
Gonzàlez-Solís, Sergi; Masjuan, Pere
2016-08-01
We illustrate the powerfulness of Padé approximants (PAs) as a summation method and explore one of their extensions, the so-called quadratic approximant (QAs), to access both space- and (low-energy) time-like (TL) regions. As an introductory and pedagogical exercise, the function 1 zln(1 + z) is approximated by both kind of approximants. Then, PAs are applied to predict pseudoscalar meson Dalitz decays and to extract Vub from the semileptonic B → πℓνℓ decays. Finally, the π vector form factor in the TL region is explored using QAs.
Approximation methods in gravitational-radiation theory
NASA Technical Reports Server (NTRS)
Will, C. M.
1986-01-01
The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.
Approximation methods in gravitational-radiation theory
NASA Technical Reports Server (NTRS)
Will, C. M.
1986-01-01
The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.
NASA Astrophysics Data System (ADS)
Colica, Antonella; Chiarantini, Laura; Rimondi, Valentina; Benvenuti, Marco; Costagliola, Pilario; Lattanzi, Pierfranco; Paolieri, Mario; Rinaldi, Massimo
2016-04-01
Rivers draining mining areas may contribute to the diffusion of contaminants through their dispersion and accumulation into different morphological river units. The Paglia River's catchment (southern Tuscany) hosts the SE portion of the Mt. Amiata mercury district, the third most important worldwide (exploited from 1880 to 1980 with a total production of 100,000 tonnes Hg) before becoming a tributary of the Tiber River, which directly flows into Mediterranean Sea. The goals of this study are: 1) to recognize and distinguish different morphological units along the Paglia River watercourse, 2) to determine spatial/temporal distribution and concentration of Hg (and other toxic elements, particularly As) in different units. The analysis of morphological units was made by mapping their evolution from the beginning of mining activity (1883) to present day along 43 km of the Paglia watercourse defining eleven morphological sections across this river, and one across one of its tributaries, the Siele Creek, which drains various Hg mines located upstream. Four fundamental morphological/sedimentary unit types have been distinguished: stream sediments, bar, floodplain, and terraces. The latter occur in various orders and age: Pleistocenic, pre-mining (i.e., dating before 1880), and coeval to the mining activity. A total of 100 samples were taken from the various units in the selected transects, georeferenced and then analyzed for their Hg and As contents by ICP-OES. Arsenic contents generally never exceed 10 mg/kg. The observed ranges are: stream sediments 4.1÷8.2 mg/kg; bars 4.1÷6.6 mg/kg; floodplains 3.8÷6.6 mg/kg; terrace coeval with mining activity 3.2÷10.1 mg/kg. Hg contents in present-day stream sediments and bars are extremely variable (0.2÷27.5 and 1.4÷22.4 mg/kg respectively), and show a sharp increase at the confluence with Siele Creek. Floodplain sediments may reach up to 98 mg/kg. Terraces coeval with mining activity also show variable Hg contents (0.1÷66
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Glassman, Nanci A.
1992-01-01
A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.
Dotta, Blake T; Lafrenie, Robert M; Karbowski, Lukasz M; Persinger, Michael A
2014-01-01
If parameters for lateral diffusion of lipids within membranes are macroscopic metaphors of the angular magnetic moment of the Bohr magneton then the energy emission should be within the visible wavelength for applied ~1 µT magnetic fields. Single or paired digital photomultiplier tubes (PMTs) were placed near dishes of ~1 million B16 mouse melanoma cells that had been removed from incubation. In very dark conditions (10(-11) W/m(2)) different averaged (RMS) intensities between 5 nT and 3.5 µT were applied randomly in 4 min increments. Numbers of photons were recorded directly over or beside the cell dishes by PMTs placed in pairs within various planes. Spectral analyses were completed for photon power density. The peak photon emissions occurred around 1 µT as predicted by the equation. Spectra analyses showed reliable discrete peaks between 0.9 and 1.8 µT but not for lesser or greater intensities; these peak frequencies corresponded to the energy difference of the orbital-spin magnetic moment of the electron within the applied range of magnetic field intensities and the standard solution for Rydberg atoms. Numbers of photons from cooling cells can be modified by applying specific intensities of temporally patterned magnetic fields. There may be a type of "cellular" magnetic moment that, when stimulated by intensity-tuned magnetic fields, results in photon emissions whose peak frequencies reflect predicted energies for fundamental orbital/spin properties of the electron and atomic aggregates with large principal quantum numbers.
Development of New Density Functional Approximations
NASA Astrophysics Data System (ADS)
Su, Neil Qiang; Xu, Xin
2017-05-01
Kohn-Sham density functional theory has become the leading electronic structure method for atoms, molecules, and extended systems. It is in principle exact, but any practical application must rely on density functional approximations (DFAs) for the exchange-correlation energy. Here we emphasize four aspects of the subject: (a) philosophies and strategies for developing DFAs; (b) classification of DFAs; (c) major sources of error in existing DFAs; and (d) some recent developments and future directions.
NASA Technical Reports Server (NTRS)
Snow, W. L.
1974-01-01
The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.
Anderson, Robert C.
1976-06-22
1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.
The diffuse source at the center of LMC SNR 0509–67.5 is a background galaxy at z = 0.031
Pagnotta, Ashley; Walker, Emma S.; Schaefer, Bradley E.
2014-06-20
Type Ia supernovae (SNe Ia) are well-known for their use in the measurement of cosmological distances, but our continuing lack of concrete knowledge about their progenitor stars is both a matter of debate and a source of systematic error. In our attempts to answer this question, we presented unambiguous evidence that LMC SNR 0509–67.5, the remnant of an SN Ia that exploded in the Large Magellanic Cloud 400 ± 50 yr ago, did not have any point sources (stars) near the site of the original supernova explosion, from which we concluded that this particular supernova must have had a progenitor system consisting of two white dwarfs. There is, however, evidence of nebulosity near the center of the remnant, which could have been left over detritus from the less massive WD, or could have been a background galaxy unrelated to the supernova explosion. We obtained long-slit spectra of the central nebulous region using GMOS on Gemini South to determine which of these two possibilities is correct. The spectra show Hα emission at a redshift of z = 0.031, which implies that the nebulosity in the center of LMC SNR 0509–67.5 is a background galaxy, unrelated to the supernova.
Approximating Functions with Exponential Functions
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2005-01-01
The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Overdamped Diffusion in Coupled Potentials
NASA Astrophysics Data System (ADS)
Caratti, G.; Ferrando, R.; Spadacini, R.; Tommei, G. E.
An analytical "quasi-2D" approximation (Q2DA) for the diffusion coefficient of an adatom migrating in a rectangular lattice, in the presence of a high damping and of a general 2D-coupled potential, is derived. The validity of the Q2DA lies on the assumption that all the most relevant diffusion paths can be treated as straight lines. That is the case of the square 2D-coupled egg-carton potential, where the Q2DA is applied. Comparison with the exact numerical results (2D Smoluchowski equation) shows that the Q2DA provides a very good approximation of the diffusion constant even in the strongest coupling situations.
Transport- and diffusion-based optical tomography in small domains: a comparative study.
Ren, Kui; Bal, Guillaume; Hielscher, Andreas H
2007-09-20
We compare reconstructions based on the radiative transport and diffusion equations in optical tomography for media of small sizes. While it is well known that the diffusion approximation is less accurate to describe light propagation in such media, it has not yet been shown how this inaccuracy affects the images obtained with model-based iterative image reconstructions schemes. Using synthetic nondifferential data we calculate the error in the reconstructed images of optical properties as functions of source modulation frequency, noise level in measurement, and diffusion extrapolation length. We observe that the differences between diffusion and transport reconstructions are large when high modulation frequencies and noise-free data are used in the reconstructions. When the noise in data reaches a certain level, approximately 12% in our simulations, the differences between diffusion- and transport-based reconstructions become almost indistinguishable. Given that state-of-the-art optical imaging systems operate at much lower noise levels, the benefits of transport-based reconstructions of small imaging domains can be realized with most of the currently available systems. However, transport-based reconstructions are considerably slower than diffusion-based reconstructions.
The Diffuse Extreme Ultraviolet Background
NASA Technical Reports Server (NTRS)
Vallerga, John; Slavin, Jonathan
1996-01-01
Observations of the diffuse EUV background towards 138 different directions using the spectrometers aboard the Extreme Ultraviolet Explorer satellite (EUVE) have been combined into a spectrum from 150A to 730A and represent an effective exposure of 18 million seconds. There is no significant evidence of any non-local line flux in the resultant spectrum such as that from a hot coronal plasma. These results are inconsistent with the Wisconsin C and B broad-band surveys assuming the source is a logT = 5.8 - 6.1 hot plasma in ionization equilibrium with solar abundances, confirming the previous result of Jelinksy, Vallerga and Edelstein) (hereafter Paper 1) using an observation along the ecliptic with the same instrument. To make these results consistent with the previous broad-band surveys, the plasma responsible for the emission must either be depleted in Fe by a factor of approximately 6, be behind an absorbing slab of neutral H with a column of 2 x 10(exp 19)/sq cm, or not be in collisional ionization equilibrium (CIE). One such non-CIE model (Breitswerdt and Schmutzier) that explains the soft x-ray results is also inconsistent with this EUV data.
NASA Astrophysics Data System (ADS)
Hosseini, Seyedeh Sona
The purpose of this dissertation is to discuss the need for new technology in broadband high-resolution spectroscopy based on the emerging technique of Spatial Heterodyne Spectroscopy (SHS) and to propose new solutions that should enhance and generalize this technology to other fields. Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. In current high resolving power devices, the drawback of high-resolution spectroscopy is bound to the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become handicapping for observation of faint and/or extended targets and for spacecraft encounters. A technique with promise for the study of faint and extended sources at high resolving power is the reflective format of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally tailored for both high etendue (defined in section 2.2.5) and high resolving power. In contrast, to achieve similar spectral grasp, grating spectrometers require large telescopes. For reference, SHS is a cyclical interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. The large etendue obtained by SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables one to study the dynamical and physical properties described above. This document contains four chapters. Chapter 1, introduces a class of scientific targets that formerly have
Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf
2004-01-01
Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.
Diffusion of Super-Gaussian Profiles
ERIC Educational Resources Information Center
Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.
2007-01-01
The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Watson, E. B.; Boehnke, P.; Harrison, T. M.
2016-12-01
With the recent discovery of potentially biogenic carbon in 4.1 billion-year-old zircon (Bell et al., 2015), it is important to understand diffusion of C in zircon in order to assess the potential of these carbonaceous inclusions to preserve isotopic evidence of Earth's early history. In this study, we have characterized carbon diffusion in natural zircon at 1-atm and under high-pressure conditions in the presence of hydrous species. The 1-atm experiments were conducted by implanting 13C into polished, oriented slabs of zircon, with implanted samples heated in air or under buffered conditions in silica glass ampoules sealed under vacuum. High-pressure experiments (1 GPa) were conducted in a piston-cylinder apparatus, using 13C labeled glycine as the starting source (this breaks down at run conditions). In all cases, 13C distributions in zircon were measured by Nuclear Reaction Analysis (NRA) using the reaction 13C(p,γ)14N. In addition to the NRA measurements, we have also conducted analyses of carbon in zircon by ion microprobe. For diffusion parallel to c we obtain a well-constrained Arrhenius relation over the temperature range 600-1100°C. Diffusion normal to c is similar. Data from the high-pressure experiments and those run under buffered conditions also yield similar diffusivities, suggesting that carbon diffusion is not significantly affected by these parameters over the range of conditions studied. Carbon diffuses more rapidly than most cations in zircon, with the exception of lithium, but several orders of magnitude more slowly than helium. Zircon will therefore be moderately retentive of carbon. For example, diffusion distances on Gyr timescales would be on order of nm at 200°C, μm at 350°C and mm at 650°C, suggesting that car