Science.gov

Sample records for diffusion source approximation

  1. Parameterized source term in the diffusion approximation for enhanced near-field modeling of collimated light

    NASA Astrophysics Data System (ADS)

    Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan

    2016-03-01

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.

  2. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  3. Approximate Solutions Of Equations Of Steady Diffusion

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1992-01-01

    Rigorous analysis yields reliable criteria for "best-fit" functions. Improved "curve-fitting" method yields approximate solutions to differential equations of steady-state diffusion. Method applies to problems in which rates of diffusion depend linearly or nonlinearly on concentrations of diffusants, approximate solutions analytic or numerical, and boundary conditions of Dirichlet type, of Neumann type, or mixture of both types. Applied to equations for diffusion of charge carriers in semiconductors in which mobilities and lifetimes of charge carriers depend on concentrations.

  4. Microfabricated diffusion source

    DOEpatents

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  5. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  6. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    SciTech Connect

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.

  7. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  8. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    SciTech Connect

    Du, Q.; Lehoucq, Richard B.; Tartakovsky, Alexandre M.

    2015-04-01

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. An immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.

  9. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and

  10. Diffusion from a line source

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1973-01-01

    The problem with predicting pollutant diffusion from a line source of arbitrary geometry is treated. The concentration at the line source may be arbitrarily varied with time. Special attention is given to the meteorological inputs which act as boundary conditions for the problem, and a mixing layer of arbitrary depth is assumed. Numerical application of the derived theory indicates the combinations of meteorological parameters that may be expected to result in high pollution concentrations.

  11. Least-squares streamline diffusion finite element approximations to singularly perturbed convection-diffusion problems

    SciTech Connect

    Lazarov, R D; Vassilevski, P S

    1999-05-06

    In this paper we introduce and study a least-squares finite element approximation for singularly perturbed convection-diffusion equations of second order. By introducing the flux (diffusive plus convective) as a new unknown, the problem is written in a mixed form as a first order system. Further, the flux is augmented by adding the lower order terms with a small parameter. The new first order system is approximated by the least-squares finite element method using the minus one norm approach of Bramble, Lazarov, and Pasciak [2]. Further, we estimate the error of the method and discuss its implementation and the numerical solution of some test problems.

  12. Compensation of optode sensitivity and position errors in diffuse optical tomography using the approximation error approach.

    PubMed

    Mozumder, Meghdoot; Tarvainen, Tanja; Arridge, Simon R; Kaipio, Jari; Kolehmainen, Ville

    2013-01-01

    Diffuse optical tomography is highly sensitive to measurement and modeling errors. Errors in the source and detector coupling and positions can cause significant artifacts in the reconstructed images. Recently the approximation error theory has been proposed to handle modeling errors. In this article, we investigate the feasibility of the approximation error approach to compensate for modeling errors due to inaccurately known optode locations and coupling coefficients. The approach is evaluated with simulations. The results show that the approximation error method can be used to recover from artifacts in reconstructed images due to optode coupling and position errors.

  13. The Approximate Number System Acuity Redefined: A Diffusion Model Approach

    PubMed Central

    Park, Joonkoo; Starns, Jeffrey J.

    2015-01-01

    While all humans are capable of non-verbally representing numerical quantity using so-called the approximate number system (ANS), there exist considerable individual differences in its acuity. For example, in a non-symbolic number comparison task, some people find it easy to discriminate brief presentations of 14 dots from 16 dots while others do not. Quantifying individual ANS acuity from such a task has become an essential practice in the field, as individual differences in such a primitive number sense is thought to provide insights into individual differences in learned symbolic math abilities. However, the dominant method of characterizing ANS acuity—computing the Weber fraction (w)—only utilizes the accuracy data while ignoring response times (RT). Here, we offer a novel approach of quantifying ANS acuity by using the diffusion model, which accounts both accuracy and RT distributions. Specifically, the drift rate in the diffusion model, which indexes the quality of the stimulus information, is used to capture the precision of the internal quantity representation. Analysis of behavioral data shows that w is contaminated by speed-accuracy tradeoff, making it problematic as a measure of ANS acuity, while drift rate provides a measure more independent from speed-accuracy criterion settings. Furthermore, drift rate is a better predictor of symbolic math ability than w, suggesting a practical utility of the measure. These findings demonstrate critical limitations of the use of w and suggest clear advantages of using drift rate as a measure of primitive numerical competence. PMID:26733929

  14. Extended source model for diffusive coupling.

    PubMed

    González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo

    2016-01-01

    Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources.

  15. Extended source model for diffusive coupling.

    PubMed

    González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo

    2016-01-01

    Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources. PMID:26802012

  16. Full time-resolved diffuse fluorescence tomography accelerated with parallelized Fourier-series truncated diffusion approximation.

    PubMed

    Yi, Xi; Wang, Bingyuan; Wan, Wenbo; Wang, Yihan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2015-05-01

    Of the three measurement schemes established for diffuse fluorescence tomography (DFT), the time-domain scheme is well known to provide the richest information about the distribution of the targeting fluorophore in living tissues. However, the explicit use of the full time-resolved data usually leads to a considerably lengthy time for image reconstruction, limiting its applications to three-dimensional or small-volume imaging. To cope with the adversity, we propose herein a computationally efficient scheme for DFT image reconstruction where the time-dependent photon density is expanded to a Fourier-series and calculated by solving the independent frequency-domain diffusion equations at multiple sampling frequencies with the support of a combined multicore CPU-based coarse-grain and multithread GPU-based fine-grain parallelization strategy. With such a parallelized Fourier-series truncated diffusion approximation, both the time- and frequency-domain inversion procedures are developed and validated for their effectiveness and accuracy using simulative and phantom experiments. The results show that the proposed method can generate reconstructions comparable to the explicit time-domain scheme, with significantly reduced computational time.

  17. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. III. Cylindrical approximations for heat waves traveling inwards

    SciTech Connect

    Berkel, M. van; Tamura, N.; Ida, K.; Hogeweij, G. M. D.; Zwart, H. J.; Inagaki, S.; Baar, M. R. de

    2014-11-15

    In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on the heat equation in cylindrical geometry using the symmetry (Neumann) boundary condition at the plasma center. This means that the approximations derived here should be used only to estimate transport coefficients between the plasma center and the off-axis perturbative source. If the effect of cylindrical geometry is small, it is also possible to use semi-infinite domain approximations presented in Part I and Part II of this series. A number of new approximations are derived in this part, Part III, based upon continued fractions of the modified Bessel function of the first kind and the confluent hypergeometric function of the first kind. These approximations together with the approximations based on semi-infinite domains are compared for heat waves traveling towards the center. The relative error for the different derived approximations is presented for different values of the frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can be used to estimate the transport coefficients over a large parameter range for cases without convection and damping, cases with damping only, and cases with convection and damping. The relative error between the approximation and its underlying model is below 2% for the case, where only diffusivity and damping are considered. If also convectivity is considered, the diffusivity can be estimated well in a large region, but there is also a large region in which no suitable approximation is found. This paper is the third part (Part III) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part II

  18. An asymptotic homogenized neutron diffusion approximation. I. Theory

    SciTech Connect

    Trahan, T. J.; Larsen, E. W.

    2012-07-01

    A monoenergetic, homogenized, anisotropic diffusion equation is derived asymptotically for large, 3-D, multiplying systems with a periodic lattice structure. The primary assumption is that the system is slightly perturbed from an infinite, periodic lattice, and that the length scale of a lattice element is small relative to the total system size. The perturbed flux is slightly buckled, and the leading order term is the product of a slowly varying amplitude component, and a rapidly varying periodic component. The amplitude function is the solution to the homogenized diffusion equation, while the periodic component is the solution to the unperturbed, infinite system, and can be found using any high-order transport method. The first order term acts as a correction term, and makes it possible to obtain a zero flux extrapolation distance for the diffusion equation by applying the Marshak boundary condition. (authors)

  19. Low-diffusion approximate Riemann solvers for Reynolds-stress transport

    NASA Astrophysics Data System (ADS)

    Ben Nasr, N.; Gerolymos, G. A.; Vallet, I.

    2014-07-01

    The paper investigates the use of low-diffusion (contact-discontinuity-resolving) approximate Riemann solvers for the convective part of the Reynolds-averaged Navier-Stokes (RANS) equations with Reynolds-stress model (RSM) for turbulence. Different equivalent forms of the RSM-RANS system are discussed and classification of the complex terms introduced by advanced turbulence closures is attempted. Computational examples are presented, which indicate that the use of contact-discontinuity-resolving convective numerical fluxes, along with a passive-scalar approach for the Reynolds-stresses, may lead to unphysical oscillations of the solution. To determine the source of these instabilities, theoretical analysis of the Riemann problem for a simplified Reynolds-stress transport model-system, which incorporates the divergence of the Reynolds-stress tensor in the convective part of the mean-flow equations, and includes only those nonconservative products which are computable (do not require modelling), was undertaken, highlighting the differences in wave-structure compared to the passive-scalar case. A hybrid solution, allowing the combination of any low-diffusion approximate Riemann solver with the complex tensorial representations used in advanced models, is proposed, combining low-diffusion fluxes for the mean-flow equations with a more dissipative massflux for Reynolds-stress-transport. Several computational examples are presented to assess the performance of this approach, demonstrating enhanced accuracy and satisfactory convergence.

  20. Classification and Approximate Functional Separable Solutions to the Generalized Diffusion Equations with Perturbation

    NASA Astrophysics Data System (ADS)

    Ji, Fei-Yu; Zhang, Shun-Li

    2013-11-01

    In this paper, the generalized diffusion equation with perturbation ut = A(u;ux)uII+eB(u;ux) is studied in terms of the approximate functional variable separation approach. A complete classification of these perturbed equations which admit approximate functional separable solutions is presented. Some approximate solutions to the resulting perturbed equations are obtained by examples.

  1. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. II. Semi-infinite cylindrical approximations

    SciTech Connect

    Berkel, M. van; Hogeweij, G. M. D.; Tamura, N.; Ida, K.; Zwart, H. J.; Inagaki, S.; Baar, M. R. de

    2014-11-15

    In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in a cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based upon the heat equation in a semi-infinite cylindrical domain. The approximations are based upon continued fractions, asymptotic expansions, and multiple harmonics. The relative error for the different derived approximations is presented for different values of frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can yield good approximations over a wide parameter space for different cases, such as no convection and damping, only damping, and both convection and damping. This paper is the second part (Part II) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part III, cylindrical approximations are treated for heat waves traveling towards the center of the plasma.

  2. Validation of practical diffusion approximation for virtual near infrared spectroscopy using a digital head phantom

    NASA Astrophysics Data System (ADS)

    Oki, Yosuke; Kawaguchi, Hiroshi; Okada, Eiji

    2009-03-01

    Light propagation in the digital head phantom for virtual near infrared spectroscopy and imaging is calculated by diffusion theory. In theory, diffusion approximation is not valid in a low-scattering cerebrospinal fluid (CSF) layer around the brain. The optical path length and spatial sensitivity profile predicted by the finite element method based upon the diffusion theory are compared with those predicted by the Monte Carlo method to validate a practical implementation of diffusion approximation to light propagation in an adult head. The transport scattering coefficient of the CSF layer is varied from 0.01 to 1.0 mm-1 to evaluate the influence of that layer on the error caused by diffusion approximation. The error is practically ignored and the geometry of the brain surface such as the sulcus structure in the digital head phantom scarcely affects the error when the transport scattering coefficient of the CSF layer is greater than 0.3 mm-1.

  3. Source localization using rational approximation on plane sections

    NASA Astrophysics Data System (ADS)

    Clerc, M.; Leblond, J.; Marmorat, J.-P.; Papadopoulo, T.

    2012-05-01

    In functional neuroimaging, a crucial problem is to localize active sources within the brain non-invasively, from knowledge of electromagnetic measurements outside the head. Identification of point sources from boundary measurements is an ill-posed inverse problem. In the case of electroencephalography (EEG), measurements are only available at electrode positions, the number of sources is not known in advance and the medium within the head is inhomogeneous. This paper presents a new method for EEG source localization, based on rational approximation techniques in the complex plane. The method is used in the context of a nested sphere head model, in combination with a cortical mapping procedure. Results on simulated data prove the applicability of the method in the context of realistic measurement configurations.

  4. Source Localization using Stochastic Approximation and Least Squares Methods

    SciTech Connect

    Sahyoun, Samir S.; Djouadi, Seddik M.; Qi, Hairong; Drira, Anis

    2009-03-05

    This paper presents two approaches to locate the source of a chemical plume; Nonlinear Least Squares and Stochastic Approximation (SA) algorithms. Concentration levels of the chemical measured by special sensors are used to locate this source. Non-linear Least Squares technique is applied at different noise levels and compared with the localization using SA. For a noise corrupted data collected from a distributed set of chemical sensors, we show that SA methods are more efficient than Least Squares method. SA methods are often better at coping with noisy input information than other search methods.

  5. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations

    SciTech Connect

    Berkel, M. van; Zwart, H. J.; Tamura, N.; Ida, K.; Hogeweij, G. M. D.; Inagaki, S.; Baar, M. R. de

    2014-11-15

    In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships between heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.

  6. Local isotropic diffusion approximation for coupled internal and overall molecular motions in NMR spin relaxation.

    PubMed

    Gill, Michelle L; Palmer, Arthur G

    2014-09-25

    The present work demonstrates that NMR spin relaxation rate constants for molecules interconverting between states with different diffusion tensors can be modeled theoretically by combining orientational correlation functions for exchanging spherical molecules with locally isotropic approximations for the diffusion anisotropic tensors. The resulting expressions are validated by comparison with correlation functions obtained by Monte Carlo simulations and are accurate for moderate degrees of diffusion anisotropy typically encountered in investigations of globular proteins. The results are complementary to an elegant, but more complex, formalism that is accurate for all degrees of diffusion anisotropy [Ryabov, Y.; Clore, G. M.; Schwieters, C. D. J. Chem. Phys. 2012, 136, 034108].

  7. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    PubMed

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  8. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    SciTech Connect

    Horowitz, Jordan M.

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  9. The Heavy-Ion Approximation for Ambipolar Diffusion Calcuations for Weakly Ionized Plasmas

    SciTech Connect

    Li, P; McKee, C; Klein, R

    2006-07-27

    Ambipolar diffusion redistributes magnetic flux in weakly ionized plasmas and plays a critical role in star formation. Simulations of ambipolar diffusion using explicit MHD codes are prohibitively expensive for the level of ionization observed in molecular clouds ({approx}< 10{sup -6}) since an enormous number of time steps is required to represent the dynamics of the dominant neutral component with a time step determined by the trace ion component. Here we show that ambipolar diffusion calculations can be significantly accelerated by the 'heavy-ion approximation', in which the mass density of the ions is increased and the collisional coupling constant with the neutrals decreased such that the product remains constant. In this approximation, the ambipolar diffusion time and the ambipolar magnetic Reynolds number remain unchanged. We present three tests of the heavy-ion approximation: C-type shocks, the Wardle instability, and the 1D collapse of a magnetized slab. We show that this approximation is quite accurate provided that (1) the square of the Alfven Mach number is small compared to the ambipolar diffusion Reynolds number for dynamical problems, and that (2) the ion mass density is negligible for quasi-static problems; a specific criterion is given for the magnetized slab problem. The first condition can be very stringent for turbulent flows with large density fluctuations.

  10. Test particle propagation in magnetostatic turbulence. 1. Failure of the diffusion approximation

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.

    1976-01-01

    The equation which governs the quasi-linear approximation to the ensemble and gyro-phase averaged one-body probability distribution function is constructed from first principles. This derived equation is subjected to a thorough investigation in order to calculate the possible limitations of the quasi-linear approximation. It is shown that the reduction of this equation to a standard diffusion equation in the Markovian limit can be accomplished through the application of the adiabatic approximation. A numerical solution of the standard diffusion equation in the Markovian limit is obtained for the narrow parallel beam injection. Comparison of the diabatic and adiabatic results explicitly demonstrates the failure of the Markovian description of the probability distribution function. Through the use of a linear time-scale extension the failure of the adiabatic approximation, which leads to the Markovian limit, is shown to be due to mixing of the relaxation and interaction time scales in the presence of the strong mean field.

  11. Nodal approximations of varying order by energy group for solving the diffusion equation

    SciTech Connect

    Broda, J.T.

    1992-02-01

    The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined.

  12. Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion

    NASA Astrophysics Data System (ADS)

    Lin, Zhigui; Ruiz-Baier, Ricardo; Tian, Canrong

    2014-01-01

    This paper is concerned with the study of pattern formation for an inhomogeneous Brusselator model with cross-diffusion, modeling an autocatalytic chemical reaction taking place in a three-dimensional domain. For the spatial discretization of the problem we develop a novel finite volume element (FVE) method associated to a piecewise linear finite element approximation of the cross-diffusion system. We study the main properties of the unique equilibrium of the related dynamical system. A rigorous linear stability analysis around the spatially homogeneous steady state is provided and we address in detail the formation of Turing patterns driven by the cross-diffusion effect. In addition we focus on the spatial accuracy of the FVE method, and a series of numerical simulations confirm the expected behavior of the solutions. In particular we show that, depending on the spatial dimension, the magnitude of the cross-diffusion influences the selection of spatial patterns.

  13. Delayed-exponential approximation of a linear homogeneous diffusion model of neuron.

    PubMed

    Pacut, A; Dabrowski, L

    1988-01-01

    The diffusion models of neuronal activity are general yet conceptually simple and flexible enough to be useful in a variety of modeling problems. Unfortunately, even simple diffusion models lead to tedious numerical calculations. Consequently, the existing neural net models use characteristics of a single neuron taken from the "pre-diffusion" era of neural modeling. Simplistic elements of neural nets forbid to incorporate a single learning neuron structure into the net model. The above drawback cannot be overcome without the use of the adequate structure of the single neuron as an element of a net. A linear (not necessarily homogeneous) diffusion model of a single neuron is a good candidate for such a structure, it must, however, be simplified. In the paper the structure of the diffusion model of neuron is discussed and a linear homogeneous model with reflection is analyzed. For this model an approximation is presented, which is based on the approximation of the first passage time distribution of the Ornstein-Uhlenbeck process by the delayed (shifted) exponential distribution. The resulting model has a simple structure and has a prospective application in neural modeling and in analysis of neural nets.

  14. Metal Accretion onto White Dwarfs. I. The Approximate Approach Based on Estimates of Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Dufour, P.; Tremblay, P.-E.

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. Some important insights into the process may be derived using an approximate approach which combines static stellar models with estimates of diffusion timescales at the base of the outer convection zone or, in its absence, at the photosphere. Until recently, and to our knowledge, values of diffusion timescales in white dwarfs have all been obtained on the basis of the same physics as that developed initially by Paquette et al., including their diffusion coefficients and thermal diffusion coefficients. In view of the recent exciting discoveries of a plethora of metals (including some never seen before) polluting the atmospheres of an increasing number of cool white dwarfs, we felt that a new look at the estimates of settling timescales would be worthwhile. We thus provide improved estimates of diffusion timescales for all 27 elements from Li to Cu in the periodic table in a wide range of the surface gravity-effective temperature domain and for both DA and non-DA stars.

  15. Milstein Approximation for Advection-Diffusion Equations Driven by Multiplicative Noncontinuous Martingale Noises

    SciTech Connect

    Barth, Andrea Lang, Annika

    2012-12-15

    In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, cadlag, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L{sup 2} and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler-Maruyama approximation. Finally, simulations complete the paper.

  16. Ballistic-diffusive approximation for the thermal dynamics of metallic nanoparticles in nanocomposite materials

    SciTech Connect

    Shirdel-Havar, A. H. Masoudian Saadabad, R.

    2015-03-21

    Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shown that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.

  17. Approximations of the operator exponential in a periodic diffusion problem with drift

    SciTech Connect

    Pastukhova, Svetlana E

    2013-02-28

    A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the L{sup 2}-operator norm on sections t=const of order O(t{sup -m/2}) as t{yields}{infinity} for m=1 or m=2. The spectral method based on the Bloch representation of an operator with periodic coefficients is used. Bibliography: 25 titles.

  18. Approximation of epidemic models by diffusion processes and their statistical inference.

    PubMed

    Guy, Romain; Larédo, Catherine; Vergu, Elisabeta

    2015-02-01

    Multidimensional continuous-time Markov jump processes [Formula: see text] on [Formula: see text] form a usual set-up for modeling [Formula: see text]-like epidemics. However, when facing incomplete epidemic data, inference based on [Formula: see text] is not easy to be achieved. Here, we start building a new framework for the estimation of key parameters of epidemic models based on statistics of diffusion processes approximating [Formula: see text]. First, previous results on the approximation of density-dependent [Formula: see text]-like models by diffusion processes with small diffusion coefficient [Formula: see text], where [Formula: see text] is the population size, are generalized to non-autonomous systems. Second, our previous inference results on discretely observed diffusion processes with small diffusion coefficient are extended to time-dependent diffusions. Consistent and asymptotically Gaussian estimates are obtained for a fixed number [Formula: see text] of observations, which corresponds to the epidemic context, and for [Formula: see text]. A correction term, which yields better estimates non asymptotically, is also included. Finally, performances and robustness of our estimators with respect to various parameters such as [Formula: see text] (the basic reproduction number), [Formula: see text], [Formula: see text] are investigated on simulations. Two models, [Formula: see text] and [Formula: see text], corresponding to single and recurrent outbreaks, respectively, are used to simulate data. The findings indicate that our estimators have good asymptotic properties and behave noticeably well for realistic numbers of observations and population sizes. This study lays the foundations of a generic inference method currently under extension to incompletely observed epidemic data. Indeed, contrary to the majority of current inference techniques for partially observed processes, which necessitates computer intensive simulations, our method being mostly an

  19. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.

    PubMed

    Thygesen, Uffe Høgsbro

    2016-03-01

    We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion. PMID:27012850

  20. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling.

    PubMed

    Yudovsky, Dmitry; Durkin, Anthony J

    2011-07-20

    Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer.

  1. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-07-01

    Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer.

  2. Neutron diffusion in a randomly inhomogeneous multiplying medium with random phase approximation

    NASA Astrophysics Data System (ADS)

    Imre, Kaya; Akcasu, A. Ziya

    2012-06-01

    Neutron diffusion in a randomly inhomogeneous multiplying medium is studied. By making use of a random phase assumption we show that the average neutron density approximately satisfies an integral equation in Fourier space, which is solved using Kummer functions. We used multi-dimensional formulation. In the case of one dimension, we obtain the result of Rosenbluth and Tao for the mean total density for large t. In the three-dimensional case, a closed form of solution is derived for the mean total neutron density. Its asymptotic behavior is also investigated for large t.

  3. A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs

    PubMed Central

    Rosenbaum, Robert

    2016-01-01

    Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public. PMID:27148036

  4. A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs.

    PubMed

    Rosenbaum, Robert

    2016-01-01

    Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathematical and numerical approaches, often relying on a Fokker-Planck formalism. These approaches force a compromise between biological realism, accuracy and computational efficiency. In this article we develop an extension of existing diffusion approximations to more accurately approximate the response of neurons with adaptation currents and noisy synaptic currents. The implementation refines existing numerical schemes for solving the associated Fokker-Planck equations to improve computationally efficiency and accuracy. Computer code implementing the developed algorithms is made available to the public. PMID:27148036

  5. Multigroup diffusion preconditioners for multiplying fixed-source transport problems

    NASA Astrophysics Data System (ADS)

    Roberts, Jeremy A.; Forget, Benoit

    2014-10-01

    Several preconditioners based on multigroup diffusion are developed for application to multiplying fixed-source transport problems using the discrete ordinates method. By starting from standard, one-group, diffusion synthetic acceleration (DSA), a multigroup diffusion preconditioner is constructed that shares the same fine mesh as the transport problem. As a cheaper but effective alternative, a two-grid, coarse-mesh, multigroup diffusion preconditioner is examined, for which a variety of homogenization schemes are studied to generate the coarse mesh operator. Finally, a transport-corrected diffusion preconditioner based on application of the Newton-Shulz algorithm is developed. The results of several numerical studies indicate the coarse-mesh, diffusion preconditioners work very well. In particular, a coarse-mesh, transport-corrected, diffusion preconditioner reduced the computational time of multigroup GMRES by up to a factor of 17 and outperformed best-case Gauss-Seidel results by over an order of magnitude for all problems studied.

  6. Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method

    NASA Astrophysics Data System (ADS)

    Sarwar, S.; Rashidi, M. M.

    2016-07-01

    This paper deals with the investigation of the analytical approximate solutions for two-term fractional-order diffusion, wave-diffusion, and telegraph equations. The fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], (1,2), and [1,2], respectively. In this paper, we extended optimal homotopy asymptotic method (OHAM) for two-term fractional-order wave-diffusion equations. Highly approximate solution is obtained in series form using this extended method. Approximate solution obtained by OHAM is compared with the exact solution. It is observed that OHAM is a prevailing and convergent method for the solutions of nonlinear-fractional-order time-dependent partial differential problems. The numerical results rendering that the applied method is explicit, effective, and easy to use, for handling more general fractional-order wave diffusion, diffusion, and telegraph problems.

  7. Approximating edges of source bodies from magnetic or gravity anomalies.

    USGS Publications Warehouse

    Blakely, R.J.; Simpson, R.W.

    1986-01-01

    Cordell and Grauch (1982, 1985) discussed a technique to estimate the location of abrupt lateral changes in magnetization or mass density of upper crustal rocks. The final step of their procedure is to identify maxima on a contoured map of horizontal gradient magnitudes. Attempts to automate their final step. The method begins with gridded magnetic or gravity anomaly data and produces a plan view of inferred boundaries of magnetic or gravity sources. The method applies to both local surveys and to continent-wide compilations of magnetic and gravity data.-from Authors

  8. Non-uniform Neutron Source Approximation for Iterative Reconstruction of Coded Source Images

    SciTech Connect

    Gregor, Jens; Bingham, Philip R

    2016-01-01

    X-ray and neutron optics both lack ray focusing capabilities. An x-ray source can be made small and powerful enough to facilitate high-resolution imaging while providing adequate flux. This is not yet possible for neutrons. One remedy is to employ a computational imaging technique such as magnified coded source imaging. The greatest challenge associated with successful reconstruction of high-resolution images from such radiographs is to precisely model the flux distribution for complex non-uniform neutron sources. We have developed a framework based on Monte Carlo simulation and iterative reconstruction that facilitates high- resolution coded source neutron imaging. In this paper, we define a methodology to empirically measure and approximate the flux profile of a non-uniform neutron source, and we show how to incorporate the result within the forward model of an iterative reconstruction algorithm. We assess improvement in image quality by comparing reconstructions based respectively on the new empirical forward model and our previous analytic models.

  9. Diffusion filter eliminates fringe effects of coherent laser light source

    NASA Technical Reports Server (NTRS)

    Olsasky, M. J.

    1970-01-01

    Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.

  10. Evidence for electron acceleration up to approximately 300 keV in the magnetic reconnection diffusion region of earth's magnetotail.

    PubMed

    ØIeroset, M; Lin, R P; Phan, T D; Larson, D E; Bale, S D

    2002-11-01

    We report direct measurements of high-energy particles in a rare crossing of the diffusion region in Earth's magnetotail by the Wind spacecraft. The fluxes of energetic electrons up to approximately 300 keV peak near the center of the diffusion region and decrease monotonically away from this region. The diffusion region electron flux spectrum obeys a power law with an index of -3.8 above approximately 2 keV, and the electron angular distribution displays strong field-aligned bidirectional anisotropy at energies below approximately 2 keV, becoming isotropic above approximately 6 keV. These observations indicate significant electron acceleration inside the diffusion region. Ions show no such energization.

  11. Coherent potential approximation for diffusion and wave propagation in topologically disordered systems

    NASA Astrophysics Data System (ADS)

    Köhler, S.; Ruocco, G.; Schirmacher, W.

    2013-08-01

    Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment, and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self-energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency nonanalyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable of treating the percolative aspects of hopping transport adequately.

  12. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria.

    PubMed

    Kotlarchyk, M; Chen, S H; Asano, S

    1979-07-15

    The quasi-elastic light scattering has become an established technique for a rapid and quantitative characterization of an average motility pattern of motile bacteria in suspensions. Essentially all interpretations of the measured light scattering intensities and spectra so far are based on the Rayleigh-Gans-Debye (RGD) approximation. Since the range of sizes of bacteria of interest is generally larger than the wavelength of light used in the measurement, one is not certain of the justification for the use of the RGD approximation. In this paper we formulate a method by which both the scattering intensity and the quasi-elastic light scattering spectra can be calculated from a rigorous scattering theory. For a specific application we study the case of bacteria Escherichia coli (about 1 microm in size) by using numerical solutions of the scattering field amplitudes from a prolate spheroid, which is known to simulate optical properties of the bacteria well. We have computed (1) polarized scattered light intensity vs scattering angle for a randomly oriented bacteria population; (2) polarized scattered field correlation functions for both a freely diffusing bacterium and for a bacterium undergoing a straight line motion in random directions and with a Maxwellian speed distribution; and (3) the corresponding depolarized scattered intensity and field correlation functions. In each case sensitivity of the result to variations of the index of refraction and size of the bacterium is investigated. The conclusion is that within a reasonable range of parameters applicable to E. coli, the accuracy of the RGD is good to within 10% at all angles for the properties (1) and (2), and the depolarized contributions in (3) are generally very small. PMID:20212685

  13. Mean field approximation for biased diffusion on Japanese inter-firm trading network.

    PubMed

    Watanabe, Hayafumi

    2014-01-01

    By analysing the financial data of firms across Japan, a nonlinear power law with an exponent of 1.3 was observed between the number of business partners (i.e. the degree of the inter-firm trading network) and sales. In a previous study using numerical simulations, we found that this scaling can be explained by both the money-transport model, where a firm (i.e. customer) distributes money to its out-edges (suppliers) in proportion to the in-degree of destinations, and by the correlations among the Japanese inter-firm trading network. However, in this previous study, we could not specifically identify what types of structure properties (or correlations) of the network determine the 1.3 exponent. In the present study, we more clearly elucidate the relationship between this nonlinear scaling and the network structure by applying mean-field approximation of the diffusion in a complex network to this money-transport model. Using theoretical analysis, we obtained the mean-field solution of the model and found that, in the case of the Japanese firms, the scaling exponent of 1.3 can be determined from the power law of the average degree of the nearest neighbours of the network with an exponent of -0.7. PMID:24626149

  14. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media.

    PubMed

    Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L

    2002-06-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. PMID:12165255

  15. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  16. An approximate algorithm for the flux from a rectangular volume source

    SciTech Connect

    Wallace, O.J.

    1994-11-09

    An exact semi-analytic formula for the flux from a rectangular surface source with a slab shield has been derived and the required function table has been calculated. This formula is the basis for an algorithm which gives a good approximation for the flux from a rectangular volume source. No other hand calculation method for this source geometry is available in the literature.

  17. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM

    PubMed Central

    Singh, Brajesh K.; Srivastava, Vineet K.

    2015-01-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639

  18. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    PubMed

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  19. Multi-source information diffusion in online social networks

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun; Zhang, Hai-Feng

    2015-07-01

    Individual spreading behavior in online social networks is closely related to user activity, tie strength, and other user and network features. The results concentrate on personal spreading decisions; however, whether these features promote the global information diffusion and increase the macroscopic density of infected agents, remains unclear to us. In this paper, we propose a multi-source diffusion model in which agents may create new messages and spread other agents’ messages. Agents receive many messages, and each time they select a certain message preferentially to spread in consideration of different features. Simulation results show the density of infected agents for different messages follows a power-law distribution in both scale-free and small-world networks. Selecting the largest author degree, author activity and tie strength preferentially can advance the overall diffusion process. Weak tie bias is the least effective feature for multiple information diffusion, but it helps to diffuse a single message. Unexpectedly, the bias of interest similarity does not have an apparent effect. Integrated with the influence on individual diffusion behavior, strong tie bias is a significant feature both for local and global diffusion.

  20. Comparison and content of the Wright-Fisher model of random genetic drift, the diffusion approximation, and an intermediate model.

    PubMed

    Waxman, D

    2011-01-21

    We investigate the detailed connection between the Wright-Fisher model of random genetic drift and the diffusion approximation, under the assumption that selection and drift are weak and so cause small changes over a single generation. A representation of the mathematics underlying the Wright-Fisher model is introduced which allows the connection to be made with the corresponding mathematics underlying the diffusion approximation. Two 'hybrid' models are also introduced which lie 'between' the Wright-Fisher model and the diffusion approximation. In model 1 the relative allele frequency takes discrete values while time is continuous; in model 2 time is discrete and relative allele frequency is continuous. While both hybrid models appear to have a similar status and the same level of plausibility, the different nature of time and frequency in the two models leads to significant mathematical differences. Model 2 is mathematically inconsistent and has to be ruled out as being meaningful. Model 1 is used to clarify the content of Kimura's solution of the diffusion equation, which is shown to have the natural interpretation as describing only those populations where alleles are segregating. By contrast the Wright-Fisher model and the solution of the diffusion equation of McKane and Waxman cover populations of all categories, namely populations where alleles segregate, are lost, or fix.

  1. Evaluation of the Kirkwood approximation for the diffusivity of channel-confined DNA chains in the de Gennes regime

    PubMed Central

    Dorfman, Kevin D.

    2015-01-01

    We use Brownian dynamics with hydrodynamic interactions to calculate both the Kirkwood (short-time) diffusivity and the long-time diffusivity of DNA chains from free solution down to channel confinement in the de Gennes regime. The Kirkwood diffusivity in confinement is always higher than the diffusivity obtained from the mean-squared displacement of the center-of-mass, as is the case in free solution. Moreover, the divergence of the local diffusion tensor, which is non-zero in confinement, makes a negligible contribution to the latter diffusivity in confinement. The maximum error in the Kirkwood approximation in our simulations is about 2% for experimentally relevant simulation times. The error decreases with increasing confinement, consistent with arguments from blob theory and the molecular-weight dependence of the error in free solution. In light of the typical experimental errors in measuring the properties of channel-confined DNA, our results suggest that the Kirkwood approximation is sufficiently accurate to model experimental data. PMID:25945138

  2. Statistical multiple diffuse scattering from rough surfaces in RHEED — beyond the distorted-wave Born approximation

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.

    1996-10-01

    In reflection high-energy electron diffraction (RHEED) of growing surfaces in molecular beam epitaxy (MBE), diffuse scattering is generated by atom vibrations, point vacancies and growth islands (or surface roughness). Most of the existing RHEED theories have been developed under the first-order diffuse scattering approximation, and thus they are restricted for surfaces whose roughness is relatively low. In fact, crystal surfaces grown by MBE are usually rough; the change of surface coverage from 0 to 1 monolayer accounts for the observed RHEED oscillation. In this paper, a formal dynamical theory of RHEED has been developed to calculate the diffuse scattering produced by both atom vibrations and point vacancies at surfaces. The theory is aimed at recovering the multiple diffuse scattering that has been dropped by the distorted-wave Born approximation (DWBA). With the inclusion of a complex potential in the dynamical calculation, a rigorous proof is given to show that the high-order diffuse scattering terms are recovered in the calculation using the equation originally derived under the DWBA. This conclusion establishes the basis for expanding the RHEED theories developed under the first-order diffuse scattering to cases where the degree of surface roughness is high, allowing dynamical calculation of RHEED rocking curves for any growing surface. The statistical time and structure averages over the distorted crystal potential are evaluated analytically before numerical calculation. The dynamic form factor is calculated with consideration of anisotropic surface atom vibration and point vacancies at a growing surface.

  3. Finite difference approximations of multidimensional convection-diffusion-reaction problems with small diffusion on a special grid

    NASA Astrophysics Data System (ADS)

    Kaya, Adem; Sendur, Ali

    2015-11-01

    A numerical scheme for the convection-diffusion-reaction (CDR) problems is studied herein. We propose a finite difference method on a special grid for solving CDR problems particularly designed to treat the most interesting case of small diffusion. We use the subgrid nodes in the Link-cutting bubble (LCB) strategy [5] to construct a numerical algorithm that can easily be extended to the higher dimensions. The method adapts very well to all regimes with continuous transitions from one regime to another. We also compare the performance of the present method with the Streamline-upwind Petrov-Galerkin (SUPG) and the Residual-Free Bubbles (RFB) methods on several benchmark problems. The numerical experiments confirm the good performance of the proposed method.

  4. Asymptotic solution of the diffusion equation in slender impermeable tubes of revolution. I. The leading-term approximation

    SciTech Connect

    Traytak, Sergey D.

    2014-06-14

    The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.

  5. Quantum diffusion of electrons in quasiperiodic and periodic approximant lattices in the rare earth-cadmium system

    NASA Astrophysics Data System (ADS)

    Armstrong, N. M. R.; Mortimer, K. D.; Kong, T.; Bud'ko, S. L.; Canfield, P. C.; Basov, D. N.; Timusk, T.

    2016-04-01

    Icosahedral quasicrystals are characterised by the absence of a distinct Drude peak in their low-frequency optical conductivity and the same is true of their crystalline approximants. We have measured the optical conductivity of i-GdCd?, an icosahedral quasicrystal, and two approximants, GdCd? and YCd?. We find that there is a significant difference in the optical properties of these compounds. The approximants have a zero frequency peak, characteristic of a metal, whereas the quasicrystal has a striking minimum. This is the first example where the transport properties of a quasicrystal and its approximant differ in such a fundamental way. Using a generalised Drude model introduced by Mayou, we find that our data are well described by this model. It implies that the quantum diffusion of electron wave packets through the periodic and quasiperiodic lattices is responsible for these dramatic differences: in the approximants, the transport is superdiffusive, whereas the quasicrystals show subdiffusive motion of the electrons.

  6. The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. I. Isotropic pitch-angle scattering

    SciTech Connect

    Effenberger, Frederic; Litvinenko, Yuri E.

    2014-03-01

    The diffusion approximation to the Fokker-Planck equation is commonly used to model the transport of solar energetic particles in interplanetary space. In this study, we present exact analytical predictions of a higher order telegraph approximation for particle transport and compare them with the corresponding predictions of the diffusion approximation and numerical solutions of the full Fokker-Planck equation. We specifically investigate the role of the adiabatic focusing effect of a spatially varying magnetic field on an evolving particle distribution. Comparison of the analytical and numerical results shows that the telegraph approximation reproduces the particle intensity profiles much more accurately than does the diffusion approximation, especially when the focusing is strong. However, the telegraph approximation appears to offer no significant advantage over the diffusion approximation for calculating the particle anisotropy. The telegraph approximation can be a useful tool for describing both diffusive and wave-like aspects of the cosmic-ray transport.

  7. Approximation of effective moisture-diffusion coefficient to characterize performance of a barrier coating

    NASA Astrophysics Data System (ADS)

    Nagai, Shingo

    2013-11-01

    We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.

  8. Diffusion of Heat from a Line Source in Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Uberoi, Mahinder S; Corrsin, Stanley

    1953-01-01

    An experimental and analytical study has been made of some features of the turbulent heat diffusion behind a line heated wire stretched perpendicular to a flowing isotropic turbulence. The mean temperature distributions have been measured with systematic variations in wind speed, size of turbulence-producing grid, and downstream location of heat source. The nature of the temperature fluctuation field has been studied. A comparison of Lagrangian and Eulerian analyses for diffusion in a nondecaying turbulence yields an expression for turbulent-heat-transfer coefficient in terms of turbulence velocity and a Lagrangian "scale." the ratio of Eulerian to Lagrangian microscale has been determined theoretically by generalization of a result of Heisenberg and with arbitrary constants taken from independent sources, shows rough agreement with experimental results. A convenient form has been deduced for the criterion of interchangeability of instantaneous space and time derivatives in a flowing turbulence.

  9. Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation.

    PubMed

    Huang, Jianping; Wang, Lihui; Chu, Chunyu; Zhang, Yanli; Liu, Wanyu; Zhu, Yuemin

    2016-04-29

    Diffusion tensor magnetic resonance (DTMR) imaging and diffusion tensor imaging (DTI) have been widely used to probe noninvasively biological tissue structures. However, DTI suffers from long acquisition times, which limit its practical and clinical applications. This paper proposes a new Compressed Sensing (CS) reconstruction method that employs joint sparsity and rank deficiency to reconstruct cardiac DTMR images from undersampled k-space data. Diffusion-weighted images acquired in different diffusion directions were firstly stacked as columns to form the matrix. The matrix was row sparse in the transform domain and had a low rank. These two properties were then incorporated into the CS reconstruction framework. The underlying constrained optimization problem was finally solved by the first-order fast method. Experiments were carried out on both simulation and real human cardiac DTMR images. The results demonstrated that the proposed approach had lower reconstruction errors for DTI indices, including fractional anisotropy (FA) and mean diffusivities (MD), compared to the existing CS-DTMR image reconstruction techniques. PMID:27163322

  10. Diffusion and reaction for a spherical source and sink

    NASA Astrophysics Data System (ADS)

    McDonald, Nyrée; Strieder, William

    2003-03-01

    Two chemically active spheres in an infinite medium, one a zeroth-order reactant source and the other a first-order sink, are considered for various sphere size ratios, center-to-center distances, and sink strengths from chemical to diffusion controlled conditions. This source-sink model simulates some aspects of biological mutualism interactions between different cells. Infinite series expansions in a single index n are obtained for the sink reaction rate and reactant concentration profiles using the bispherical expansion. Each of the coefficients, generated exactly by a matrix elimination method, is expressed in terms of nested, continued fractions easily evaluated for the given n. At intermediate and larger sink-source separation distances the sink reaction rate decays harmonically. For smaller sink-source separations with a highly reactive small sink, a local maximum in the sink reaction rate is found.

  11. A soft X-ray spectrometer for diffuse cosmic sources

    NASA Technical Reports Server (NTRS)

    Borken, R. J.; Kraushaar, W. L.

    1976-01-01

    The design of a Bragg crystal spectrometer for the diffuse soft X-ray background is described. The instrument has no moving parts; a 6 degree x 20 degree FWHM field of view; resolution in the range 20-100; and spans wavelength ranges 44-80 A or 13-23 A when lead stearate or KAP crystals are used. If placed on a small spacecraft, integration times of approximately 1000 s will be required to detect the existence of the stronger lines expected in the X-ray background.

  12. A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation

    NASA Astrophysics Data System (ADS)

    Lin, Xue-lei; Lu, Xin; Ng, Micheal K.; Sun, Hai-Wei

    2016-10-01

    A fast accurate approximation method with multigrid solver is proposed to solve a two-dimensional fractional sub-diffusion equation. Using the finite difference discretization of fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea is to make use of the block ɛ-circulant approximation via fast Fourier transforms, so that the resulting task is to solve a block diagonal system, where each diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show that the accuracy of the approximation scheme is of O (ɛ). Because of the special diagonal block structure, we employ the multigrid method to solve the resulting linear systems. The convergence of the multigrid method is studied. Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of the proposed solver.

  13. Diffusion in heterogeneous media: An iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Bologna, Mauro; Svenkeson, Adam; West, Bruce J.; Grigolini, Paolo

    2015-07-01

    Diffusion processes in heterogeneous media, and biological systems in particular, are riddled with the difficult theoretical issue of whether the true origin of anomalous behavior is renewal or memory, or a special combination of the two. Accounting for the possible mixture of renewal and memory sources of subdiffusion is challenging from a computational point of view as well. This problem is exacerbated by the limited number of techniques available for solving fractional diffusion equations with time-dependent coefficients. We propose an iterative scheme for solving fractional differential equations with time-dependent coefficients that is based on a parametric expansion in the fractional index. We demonstrate how this method can be used to predict the long-time behavior of nonautonomous fractional differential equations by studying the anomalous diffusion process arising from a mixture of renewal and memory sources.

  14. Super-resolution image reconstruction using diffuse source models.

    PubMed

    Ellis, Michael A; Viola, Francesco; Walker, William F

    2010-06-01

    Image reconstruction is central to many scientific fields, from medical ultrasound and sonar to computed tomography and computer vision. Although lenses play a critical reconstruction role in these fields, digital sensors enable more sophisticated computational approaches. A variety of computational methods have thus been developed, with the common goal of increasing contrast and resolution to extract the greatest possible information from raw data. This paper describes a new image reconstruction method named the Diffuse Time-domain Optimized Near-field Estimator (dTONE). dTONE represents each hypothetical target in the system model as a diffuse region of targets rather than a single discrete target, which more accurately represents the experimental data that arise from signal sources in continuous space, with no additional computational requirements at the time of image reconstruction. Simulation and experimental ultrasound images of animal tissues show that dTONE achieves image resolution and contrast far superior to those of conventional image reconstruction methods. We also demonstrate the increased robustness of the diffuse target model to major sources of image degradation through the addition of electronic noise, phase aberration and magnitude aberration to ultrasound simulations. Using experimental ultrasound data from a tissue-mimicking phantom containing a 3-mm-diameter anechoic cyst, the conventionally reconstructed image has a cystic contrast of -6.3 dB, whereas the dTONE image has a cystic contrast of -14.4 dB.

  15. An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data.

    PubMed

    Ferrer-Admetlla, Anna; Leuenberger, Christoph; Jensen, Jeffrey D; Wegmann, Daniel

    2016-06-01

    The joint and accurate inference of selection and demography from genetic data is considered a particularly challenging question in population genetics, since both process may lead to very similar patterns of genetic diversity. However, additional information for disentangling these effects may be obtained by observing changes in allele frequencies over multiple time points. Such data are common in experimental evolution studies, as well as in the comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally challenging, particularly when considering multilocus data sets. To overcome these issues, we introduce a novel, discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of inferring selection and demography from time series data under the classic Wright-Fisher model and demonstrate that our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients with high accuracy and further extend this model to also infer the rates of sequencing errors and mutations. We finally apply our approach to recent experimental data on the evolution of drug resistance in influenza virus, identifying likely targets of selection and finding evidence for much larger viral population sizes than previously reported.

  16. An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data.

    PubMed

    Ferrer-Admetlla, Anna; Leuenberger, Christoph; Jensen, Jeffrey D; Wegmann, Daniel

    2016-06-01

    The joint and accurate inference of selection and demography from genetic data is considered a particularly challenging question in population genetics, since both process may lead to very similar patterns of genetic diversity. However, additional information for disentangling these effects may be obtained by observing changes in allele frequencies over multiple time points. Such data are common in experimental evolution studies, as well as in the comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally challenging, particularly when considering multilocus data sets. To overcome these issues, we introduce a novel, discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of inferring selection and demography from time series data under the classic Wright-Fisher model and demonstrate that our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients with high accuracy and further extend this model to also infer the rates of sequencing errors and mutations. We finally apply our approach to recent experimental data on the evolution of drug resistance in influenza virus, identifying likely targets of selection and finding evidence for much larger viral population sizes than previously reported. PMID:27038112

  17. Application of the Approximate Bayesian Computation methods in the stochastic estimation of atmospheric contamination parameters for mobile sources

    NASA Astrophysics Data System (ADS)

    Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw

    2016-11-01

    In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.

  18. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.

    PubMed

    Seyedabbasi, Mir Ahmad; Newell, Charles J; Adamson, David T; Sale, Thomas C

    2012-06-01

    The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones was investigated. Matrix diffusion is being increasingly recognized as an important non-DNAPL component of source behavior over time, and understanding the persistence of contaminants that have diffused into lower permeability units can impact remedial decision-making. In this study, a hypothetical DNAPL source zone architecture consisting of several different sized pools and fingers originally developed by Anderson et al. (1992) was adapted to include defined low permeability layers. A coupled dissolution-diffusion model was developed to allow diffusion into these layers while in contact with DNAPL, followed by diffusion out of these same layers after complete DNAPL dissolution. This exercise was performed for releases of equivalent masses (675 kg) of three different compounds, including chlorinated solvents with solubilities ranging from low (tetrachloroethene (PCE)), moderate (trichloroethene (TCE)) to high (dichloromethane (DCM)). The results of this simple modeling exercise demonstrate that matrix diffusion can be a critical component of source zone longevity and may represent a longer-term contributor to source longevity (i.e., longer time maintaining concentrations above MCLs) than DNAPL dissolution alone at many sites. For the hypothetical TCE release, the simulation indicated that dissolution of DNAPL would take approximately 38 years, while the back diffusion from low permeability zones could maintain the source for an additional 83 years. This effect was even more dramatic for the higher solubility DCM (97% of longevity due to matrix diffusion), while the lower solubility PCE showed a more equal contribution from DNAPL dissolution vs. matrix diffusion. Several methods were used to describe the resulting source attenuation curves, including a first-order decay model which showed that half-life of

  19. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    SciTech Connect

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  20. Fast and cheap approximation of Green function uncertainty for waveform-based earthquake source inversions

    NASA Astrophysics Data System (ADS)

    Hallo, M.; Gallovič, F.

    2016-11-01

    Green functions (GFs) are an essential ingredient in waveform-based earthquake source inversions. Hence, the error due to imprecise knowledge of a crustal velocity model is one of the major sources of uncertainty of the inferred earthquake source parameters. Recent strategies in Bayesian waveform inversions rely on statistical description of the GF uncertainty by means of a Gaussian distribution characterized by a covariance matrix. Here we use Monte-Carlo approach to estimate the GF covariance considering randomly perturbed velocity models. We analyse the dependence of the covariance on various parameters (strength of velocity model perturbations, GF frequency content, source-station distance, etc.). Recognizing that the major source of the GF uncertainty is related to the random time shifts of the signal, we propose a simplified approach to obtain approximate covariances, bypassing the numerically expensive Monte-Carlo simulations. The resulting closed-form formulae for the approximate auto-covariances and cross-covariances between stations and components can be easily implemented in existing inversion techniques. We demonstrate that the approximate covariances exhibit very good agreement with the Monte-Carlo estimates, providing realistic variations of the GF waveforms. Furthermore, we show examples of implementation of the covariance matrix in a Bayesian moment tensor inversion using both synthetic and real data sets. We demonstrate that taking the GF uncertainty into account leads to improved estimates of the moment tensor parameters and their uncertainty.

  1. Fast calculations of the spectral diffuse-to-global ratios for approximating spectral irradiance at the street canyon level

    NASA Astrophysics Data System (ADS)

    Carrasco-Hernandez, Roberto; Smedley, Andrew R. D.; Webb, Ann R.

    2016-05-01

    Two radiative transfer models are presented that simplify calculations of street canyon spectral irradiances with minimum data input requirements, allowing better assessment of urban exposures than can be provided by standard unobstructed radiation measurements alone. Fast calculations improve the computational performance of radiation models, when numerous repetitions are required in time and location. The core of the models is the calculation of the spectral diffuse-to-global ratios (DGR) from an unobstructed global spectral measurement. The models are based on, and have been tested against, outcomes of the SMARTS2 algorithm (i.e. Simple Model of the Atmospheric Radiative Transfer of Sunshine). The modelled DGRs can then be used to partition global spectral irradiance values into their direct and diffuse components for different solar zenith angles. Finally, the effects of canyon obstructions can be evaluated independently on the direct and diffuse components, which are then recombined to give the total canyon irradiance. The first model allows ozone and aerosol inputs, while the second provides a further simplification, restricted to average ozone and aerosol contents but specifically designed for faster calculations. To assess the effect of obstructions and validate the calculations, a set of experiments with simulated obstructions (simulated canyons) were performed. The greatest source of uncertainty in the simplified calculations is in the treatment of diffuse radiation. The measurement-model agreement is therefore dependent on the region of the sky obscured and ranges from <5 % at all wavelengths to 20-40 % (wavelength dependent) when diffuse sky only is visible from the canyon.

  2. Nonlocal diffusion problems that approximate a parabolic equation with spatial dependence

    NASA Astrophysics Data System (ADS)

    Molino, Alexis; Rossi, Julio D.

    2016-06-01

    In this paper, we show that smooth solutions to the Dirichlet problem for the parabolic equation v_t(x,t)=sum_{i,j=1}N a_{ij}(x)partial2v(x,t)/partial{xipartial{x}j} + sum_{i =1}N bi(x)partial{v}(x,t)/partial{x_i} qquad x in Ω, with v( x, t) = g( x, t), {x in partial Ω,} can be approximated uniformly by solutions of nonlocal problems of the form ut^{\\varepsilon}(x,t)=int_{mathbb{R}n} K_{\\varepsilon}(x,y)(u^{\\varepsilon}(y,t)-u^{\\varepsilon}(x,t))dy, quad x in Ω, with {u^{\\varepsilon}(x,t)=g(x,t)}, {x notin Ω}, as {\\varepsilon to 0}, for an appropriate rescaled kernel {K_{\\varepsilon}}. In this way, we show that the usual local evolution problems with spatial dependence can be approximated by nonlocal ones. In the case of an equation in divergence form, we can obtain an approximation with symmetric kernels, that is, {K_{\\varepsilon}(x,y) = K_{\\varepsilon}(y,x)}.

  3. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Tianhe C.; Grill, Warren M.

    2010-12-01

    Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation

  4. A Multi-Entity Field Approximation to determine the source location of multiple atmospheric contaminant releases

    NASA Astrophysics Data System (ADS)

    Annunzio, Andrew J.; Young, George S.; Haupt, Sue Ellen

    2012-12-01

    In the event of an accidental or intentional contaminant release, it is imperative to locate the source of the contaminant for use in hazard prediction models. In some situations more than a single contaminant release will be present, which becomes a complicating factor when contaminants from these releases significantly overlap. Here we present a Lagrangian approach to determine the source locations of multiple contaminant releases. For this approach, we assume that the concentration field is approximated by a superposition of contaminant entities, where an entity is a discrete object; namely a puff for an instantaneous release and a plume for a continuous release. The state of each entity is inferred from surface observations of the contaminant, and extrapolation of each entity's state provides an estimate of the contaminant source locations. We call this method a Multi-Entity Field Approximation (MEFA) because together the entities' concentration fields sum to approximate the observed concentration field. In this work, we outline the MEFA process for both instantaneous and continuous contaminant releases using data from two FUSION Field Trial 2007 (FFT07) Trials where contaminant fields from multiple contaminant releases overlap close to the source location.

  5. Approximation of super-ions for single-file diffusion of multiple ions through narrow pores.

    PubMed

    Kharkyanen, Valery N; Yesylevskyy, Semen O; Berezetskaya, Natalia M

    2010-11-01

    The general theory of the single-file multiparticle diffusion in the narrow pores could be greatly simplified in the case of inverted bell-like shape of the single-particle energy profile, which is often observed in biological ion channels. There is a narrow and deep groove in the energy landscape of multiple interacting ions in such profiles, which corresponds to the pre-defined optimal conduction pathway in the configurational space. If such groove exists, the motion of multiple ions can be reduced to the motion of single quasiparticle, called the superion, which moves in one-dimensional effective potential. The concept of the superions dramatically reduces the computational complexity of the problem and provides very clear physical interpretation of conduction phenomena in the narrow pores.

  6. Approximately a Thousand Ultra-diffuse Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Yagi, Masafumi; Yamanoi, Hitomi; Komiyama, Yutaka

    2015-07-01

    We report the discovery of 854 ultra-diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and Hα band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way (MW) sized with very large effective radii of {r}{e}\\gt 1.5 {kpc}. This study was motivated by the recent discovery of 47 UDGs by Dokkum et al.; our discovery suggests \\gt 1000 UDGs after accounting for the smaller Subaru field (4.1 {{degree}}2; about one-half of Dragonfly). The new Subaru UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the color–magnitude diagram with no signature of Hα emission. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii {r}{e}∼ 800\\{pc}–5 {kpc}, effective surface brightnesses {μ }{e}({\\text{}}R) = 25–28 mag arcsec‑2, and stellar masses ∼ 1× {10}7{\\text{}}{M}ȯ –5× {10}8{\\text{}}{M}ȯ . There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction ≲ 1% is less than the cosmic average, and thus the gas must have been removed (from the possibly massive dark halo). The UDG population is elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.

  7. A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation

    NASA Astrophysics Data System (ADS)

    Whitehouse, Stuart C.; Bate, Matthew R.; Monaghan, Joe J.

    2005-12-01

    We describe a new, faster implicit algorithm for solving the radiation hydrodynamics equations in the flux-limited diffusion approximation for smoothed particle hydrodynamics. This improves on the method elucidated in Whitehouse and Bate by using a Gauss-Seidel iterative method rather than iterating over the exchange of energy between pairs of particles. The new algorithm is typically many thousands of times faster than the old one, which will enable more complex problems to be solved. The new algorithm is tested using the same tests performed by Turner and Stone for ZEUS-2D, and repeated by Whitehouse and Bate.

  8. Benchmarking the pseudopotential and fixed-node approximations in diffusion Monte Carlo calculations of molecules and solids

    DOE PAGES

    Nazarov, Roman; Shulenburger, Luke; Morales, Miguel A.; Hood, Randolph Q.

    2016-03-28

    Diffusion Monte Carlo (DMC) calculations of the spectroscopic properties of a large set of molecules were performed, assessing the effect of different approximations. In systems containing elements with large atomic numbers, we show that the errors associated with the use of nonlocal mean-field-based pseudopotentials in DMC calculations can be significant and may surpass the fixed-node error. We suggest practical guidelines for reducing these pseudopotential errors, which allow us to obtain DMC-computed spectroscopic parameters of molecules and equation of state properties of solids in excellent agreement with experiment.

  9. Temperature distribution in tissues from a regular array of hot source implants: an analytical approximation.

    PubMed

    Haider, S A; Cetas, T C; Roemer, R B

    1993-05-01

    An approximate analytical model based upon the bioheat transfer equation is derived and used to calculate temperatures within a perfused region implanted regularly with dielectrically coated hot source implants; for example, hot water tubes, electrically heated rods, or inductively heated ferromagnetic implants. The effect of a regular array of mutually parallel heat sources of cylindrical shape is approximated by idealizing one of the boundary conditions. The solution, as could be expected, is in terms of modified Bessel functions. In calculating the temperature of each thermoregulating source in the array, the steady state power balance is enforced. The important feature of the model is that the finite size of implant diameter and its dielectric coating can be incorporated. The effect of thickness and thermal conductivity of the coating on the source and tissue temperatures along with various other interesting features are deduced from this model. The analytically calculated implant and tissue temperatures are compared with those of a numerical 3-D finite difference model. The analytical model also is used to define a range of parameters such that minimal therapeutic temperatures will be achieved in the implanted volume without exceeding prescribed maximum temperatures. This approach leads to a simple means of selecting implant spacing and regulation temperatures of hot source methods prospectively.

  10. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    SciTech Connect

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  11. An inverse time-dependent source problem for a time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Wei, T.; Li, X. L.; Li, Y. S.

    2016-08-01

    This paper is devoted to identifying a time-dependent source term in a multi-dimensional time-fractional diffusion equation from boundary Cauchy data. The existence and uniqueness of a strong solution for the corresponding direct problem with homogeneous Neumann boundary condition are firstly proved. We provide the uniqueness and a stability estimate for the inverse time-dependent source problem. Then we use the Tikhonov regularization method to solve the inverse source problem and propose a conjugate gradient algorithm to find a good approximation to the minimizer of the Tikhonov regularization functional. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed method. This paper was supported by the NSF of China (11371181) and the Fundamental Research Funds for the Central Universities (lzujbky-2013-k02).

  12. Diffuse optical tomography using multi-directional sources and detectors

    PubMed Central

    Shimokawa, Takeaki; Ishii, Toshihiro; Takahashi, Yoichiro; Sugawara, Satoru; Sato, Masa-aki; Yamashita, Okito

    2016-01-01

    Diffuse optical tomography (DOT) is an advanced imaging method used to visualize the internal state of biological tissues as 3D images. However, current continuous-wave DOT requires high-density probe arrays for measurement (less than 15-mm interval) to gather enough information for 3D image reconstruction, which makes the experiment time-consuming. In this paper, we propose a novel DOT measurement system using multi-directional light sources and multi-directional photodetectors instead of high-density probe arrays. We evaluated this system’s multi-directional DOT through computer simulation and a phantom experiment. From the results, we achieved DOT with less than 5-mm localization error up to a 15-mm depth with low-density probe arrays (30-mm interval), indicating that the multi-directional measurement approach allows DOT without requiring high-density measurement. PMID:27446694

  13. Evaluation of diffusion coefficients by means of an approximate steady-state condition in sedimentation velocity distributions.

    PubMed

    Scott, David J; Harding, Stephen E; Winzor, Donald J

    2015-12-01

    This investigation examined the feasibility of manipulating the rotor speed in sedimentation velocity experiments to spontaneously generate an approximate steady-state condition where the extent of diffusional spreading is matched exactly by the boundary sharpening arising from negative s-c dependence. Simulated sedimentation velocity distributions based on the sedimentation characteristics for a purified mucin preparation were used to illustrate a simple procedure for determining the diffusion coefficient from such steady-state distributions in situations where the concentration dependence of the sedimentation coefficient, s = s(0)/(1 + Kc), was quantified in terms of the limiting sedimentation coefficient as c → 0 (s(0)) and the concentration coefficient (K). Those simulations established that spontaneous generation of the approximate steady state could well be a feature of sedimentation velocity distributions for many unstructured polymer systems because the requirement that Kcoω(2)s(0)/D be between 46 and 183 cm(-2) is not unduly restrictive. Although spontaneous generation of the approximate steady state is also a theoretical prediction for structured macromolecular solutes exhibiting linear concentration dependence of the sedimentation coefficient, s = s(0)(1 - kc), the required value of k is far too large for any practical advantage to be taken of this approach with globular proteins. PMID:26321223

  14. APPROXIMATION OF MULTIFLUID MIXTURE RESPONSE FOR SIMULATION OF SHARP AND DIFFUSE MATERIAL INTERFACES ON AN EULERIAN GRID

    SciTech Connect

    Lomov, I; Liu, B

    2005-09-29

    Multimaterial Eulerian and Arbitrary Lagragian-Eulerian (ALE) codes usually use volume fractions of materials to track individual components in mixed cells. Material advection usually is calculated either by interface capturing, where a high-order van Leer-like slope reconstruction technique is applied, or interface tracking, where a normal reconstruction technique is applied. The former approach is more appropriate for gas-like substances, and the latter is ideal for solids and liquids, since it does not smear out material interfaces. A wide range of problems involves both diffuse and sharp interfaces between substances and demands a combination of these techniques. It is possible to treat all substances that can diffuse into each other as a single material and only keep mass fractions of the individual components of the mixture. The material response can be determined based on the assumption of pressure and temperature equilibrium between components of the mixture. Unfortunately, it is extremely difficult to solve the corresponding system of equations. In order to avoid these problems one can introduce an effective gamma and employ the ideal gas approximation to calculate mixture response. This method provides reliable results, is able to compute strong shock waves, and deals with complex equations of state. Results from a number of simulations using this scheme are presented.

  15. Bayesian estimation of a source term of radiation release with approximately known nuclide ratios

    NASA Astrophysics Data System (ADS)

    Tichý, Ondřej; Šmídl, Václav; Hofman, Radek

    2016-04-01

    We are concerned with estimation of a source term in case of an accidental release from a known location, e.g. a power plant. Usually, the source term of an accidental release of radiation comprises of a mixture of nuclide. The gamma dose rate measurements do not provide a direct information on the source term composition. However, physical properties of respective nuclide (deposition properties, decay half-life) can be used when uncertain information on nuclide ratios is available, e.g. from known reactor inventory. The proposed method is based on linear inverse model where the observation vector y arise as a linear combination y = Mx of a source-receptor-sensitivity (SRS) matrix M and the source term x. The task is to estimate the unknown source term x. The problem is ill-conditioned and further regularization is needed to obtain a reasonable solution. In this contribution, we assume that nuclide ratios of the release is known with some degree of uncertainty. This knowledge is used to form the prior covariance matrix of the source term x. Due to uncertainty in the ratios the diagonal elements of the covariance matrix are considered to be unknown. Positivity of the source term estimate is guaranteed by using multivariate truncated Gaussian distribution. Following Bayesian approach, we estimate all parameters of the model from the data so that y, M, and known ratios are the only inputs of the method. Since the inference of the model is intractable, we follow the Variational Bayes method yielding an iterative algorithm for estimation of all model parameters. Performance of the method is studied on simulated 6 hour power plant release where 3 nuclide are released and 2 nuclide ratios are approximately known. The comparison with method with unknown nuclide ratios will be given to prove the usefulness of the proposed approach. This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases

  16. Analytical source term optimization for radioactive releases with approximate knowledge of nuclide ratios

    NASA Astrophysics Data System (ADS)

    Hofman, Radek; Seibert, Petra; Kovalets, Ivan; Andronopoulos, Spyros

    2015-04-01

    We are concerned with source term retrieval in the case of an accident in a nuclear power with off-site consequences. The goal is to optimize atmospheric dispersion model inputs using inverse modeling of gamma dose rate measurements (instantaneous or time-integrated). These are the most abundant type of measurements provided by various radiation monitoring networks across Europe and available continuously in near-real time. Usually, a source term of an accidental release comprises of a mixture of nuclides. Unfortunately, gamma dose rate measurements do not provide a direct information on the source term composition; however, physical properties of respective nuclides (deposition properties, decay half-life) can yield some insight. In the method presented, we assume that nuclide ratios are known at least approximately, e.g. from nuclide specific observations or reactor inventory and assumptions on the accident type. The source term can be in multiple phases, each being characterized by constant nuclide ratios. The method is an extension of a well-established source term inversion approach based on the optimization of an objective function (minimization of a cost function). This function has two quadratic terms: mismatch between model and measurements weighted by an observation error covariance matrix and the deviation of the solution from a first guess weighted by the first-guess error covariance matrix. For simplicity, both error covariance matrices are approximated as diagonal. Analytical minimization of the cost function leads to a liner system of equations. Possible negative parts of the solution are iteratively removed by the means of first guess error variance reduction. Nuclide ratios enter the problem in the form of additional linear equations, where the deviations from prescribed ratios are weighted by factors; the corresponding error variance allows us to control how strongly we want to impose the prescribed ratios. This introduces some freedom into the

  17. Source-position transformation: an approximate invariance in strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Schneider, Peter; Sluse, Dominique

    2014-04-01

    The main obstacle that gravitational lensing has in determining accurate masses of deflectors, or in determining precise estimates for the Hubble constant, is the degeneracy of lensing observables with respect to the mass-sheet transformation (MST). The MST is a global modification of the mass distribution which leaves all image positions, shapes, and flux ratios invariant, but which changes the time delay. Here we show that another global transformation of lensing mass distributions exists which leaves image positions and flux ratios almost invariant, and of which the MST is a special case. As is the case for the MST, this new transformation only applies if one considers only those source components that are at the same distance from us. Whereas for axi-symmetric lenses this source position transformation exactly reproduces all strong lensing observables, it does so only approximately for more general lens situations. We provide crude estimates for the accuracy with which the transformed mass distribution can reproduce the same image positions as the original lens model, and present an illustrative example of its performance. This new invariance transformation is most likely the reason why the same strong lensing information can be accounted for with rather different mass models.

  18. Solute source depletion control of forward and back diffusion through low-permeability zones

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2016-10-01

    Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence.

  19. Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler mode waves

    NASA Astrophysics Data System (ADS)

    Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V.; Li, W.

    2014-12-01

    The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler mode hiss, lightning-generated or chorus waves, is the dominant process. Quiet time distributions are well recovered, as well as the evolution of energized relativistic electron distributions during disturbed geomagnetic conditions. It is further shown that careful comparisons between the analytical solutions and measured distributions may allow to infer important bounce- and drift-averaged wave characteristics (such as wave amplitude). It could also help to improve the global understanding of underlying physical phenomena.

  20. Probability distribution of haplotype frequencies under the two-locus Wright-Fisher model by diffusion approximation.

    PubMed

    Boitard, Simon; Loisel, Patrice

    2007-05-01

    The probability distribution of haplotype frequencies in a population, and the way it is influenced by genetical forces such as recombination, selection, random drift ...is a question of fundamental interest in population genetics. For large populations, the distribution of haplotype frequencies for two linked loci under the classical Wright-Fisher model is almost impossible to compute because of numerical reasons. However the Wright-Fisher process can in such cases be approximated by a diffusion process and the transition density can then be deduced from the Kolmogorov equations. As no exact solution has been found for these equations, we developed a numerical method based on finite differences to solve them. It applies to transient states and models including selection or mutations. We show by several tests that this method is accurate for computing the conditional joint density of haplotype frequencies given that no haplotype has been lost. We also prove that it is far less time consuming than other methods such as Monte Carlo simulations. PMID:17316725

  1. Location of the effective diffusing-photon source in a strongly scattering medium.

    PubMed

    Kostko, A F; Pavlov, V A

    1997-10-20

    When a narrow laser beam illuminates a strongly scattering medium, the effective pointlike source of diffusing photons appears inside the medium. By the method worked out, which is based on measurements of the diffusive intensity of light emerging from a turbid spherical sample, the depth of this source site (the penetration depth) is determined relatively to the sample diameter, which is known accurately. By using this method of locating the effective source, we have discovered that its position inside the medium is unexpectedly deep. We obtained the penetration depth D(0) = 4.6 l* +/- 0.7 l* instead of one transport mean free path, where l* is the value of D(0) in the standard diffusion theory. Information about this source dipping is useful in diffusing-photon correlation spectroscopy because of its influence on the geometric factor calculated from the diffusion equation. PMID:18264271

  2. Simultaneous estimation of model parameters and diffuse pollution sources for river water quality modeling.

    PubMed

    Jun, K S; Kang, J W; Lee, K S

    2007-01-01

    Diffuse pollution sources along a stream reach are very difficult to both monitor and estimate. In this paper, a systematic method using an optimal estimation algorithm is presented for simultaneous estimation of diffuse pollution and model parameters in a stream water quality model. It was applied with the QUAL2E model to the South Han River in South Korea for optimal estimation of kinetic constants and diffuse loads along the river. Initial calibration results for kinetic constants selected from a sensitivity analysis reveal that diffuse source inputs for nitrogen and phosphorus are essential to satisfy the system mass balance. Diffuse loads for total nitrogen and total phosphorus were estimated by solving the expanded inverse problem. Comparison of kinetic constants estimated simultaneously with diffuse sources to those estimated without diffuse loads, suggests that diffuse sources must be included in the optimization not only for its own estimation but also for adequate estimation of the model parameters. Application of the optimization method to river water quality modeling is discussed in terms of the sensitivity coefficient matrix structure.

  3. Astrophysical Sources of Statistical Uncertainty in Precision Radial Velocities and Their Approximations

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas G.; Gaudi, B. Scott

    2015-12-01

    We investigate various astrophysical contributions to the statistical uncertainty of precision radial velocity measurements of stellar spectra. We first analytically determine the intrinsic uncertainty in centroiding isolated spectral lines broadened by Gaussian, Lorentzian, Voigt, and rotational profiles, finding that for all cases and assuming weak lines, the uncertainty in the line centroid is σV ≈ C\\Theta3/2/(WI1/20), where Θ is the full-width at half-maximum of the line, W is the equivalent width, and I0 is the continuum signal-to-noise ratio, with C a constant of order unity that depends on the specific line profile. We use this result to motivate approximate analytic expressions to the total radial velocity uncertainty for a stellar spectrum with a given photon noise, resolution, wavelength, effective temperature, surface gravity, metallicity, macroturbulence, and stellar rotation. We use these relations to determine the dominant contributions to the statistical uncertainties in precision radial velocity measurements as a function of effective temperature and mass for main-sequence stars. For stars more massive than ~1.1 Msolar we find that stellar rotation dominates the velocity uncertainties for moderate and high-resolution spectra (R gsim 30,000). For less-massive stars, a variety of sources contribute depending on the spectral resolution and wavelength, with photon noise due to decreasing bolometric luminosity generally becoming increasingly important for low-mass stars at fixed exposure time and distance. In most cases, resolutions greater than 60,000 provide little benefit in terms of statistical precision, although higher resolutions would likely allow for better control of systematic uncertainties. We find that the spectra of cooler stars and stars with higher metallicity are intrinsically richer in velocity information, as expected. We determine the optimal wavelength range for stars of various spectral types, finding that the optimal region

  4. Modeling diffuse sources of surface water contamination with plant protection products

    NASA Astrophysics Data System (ADS)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  5. Mimicking diffuse supernova antineutrinos with the sun as a source

    SciTech Connect

    Raffelt, G. G.; Rashba, T. I.

    2010-04-15

    Measuring the {nu}-bar{sub e} component of the cosmic diffuse supernova neutrino background (DSNB) is the next ambitious goal for low-energy neutrino astronomy. The largest flux is expected in the lowest accessible energy bin. However, for E {<=} 15 MeV a possible signal can be mimicked by a solar {nu}-bar{sub e} flux that originates from the usual {sup 8}B neutrinos by spin-flavor oscillations. We show that such an interpretation is possible within the allowed range of neutrino electromagnetic transition moments and solar turbulent field strengths and distributions. Therefore, an unambiguous detection of the DSNB requires a significant number of events at E {>=} 15 MeV.

  6. Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico.

    PubMed

    Sracek, Ondra; Armienta, María Aurora; Rodríguez, Ramiro; Villaseñor, Guadalupe

    2010-01-01

    There are two principal sources of arsenic in Zimapán. Point sources are linked to mining and smelting activities and especially to mine tailings. Diffuse sources are not well defined and are linked to regional flow systems in carbonate rocks. Both sources are caused by the oxidation of arsenic-rich sulfidic mineralization. Point sources are characterized by Ca-SO(4)-HCO(3) ground water type and relatively enriched values of deltaD, delta(18)O, and delta(34)S(SO(4)). Diffuse sources are characterized by Ca-Na-HCO(3) type of ground water and more depleted values of deltaD, delta(18)O, and delta(34)S(SO(4)). Values of deltaD and delta(18)O indicate similar altitude of recharge for both arsenic sources and stronger impact of evaporation for point sources in mine tailings. There are also different values of delta(34)S(SO(4)) for both sources, presumably due to different types of mineralization or isotopic zonality in deposits. In Principal Component Analysis (PCA), the principal component 1 (PC1), which describes the impact of sulfide oxidation and neutralization by the dissolution of carbonates, has higher values in samples from point sources. In spite of similar concentrations of As in ground water affected by diffuse sources and point sources (mean values 0.21 mg L(-1) and 0.31 mg L(-1), respectively, in the years from 2003 to 2008), the diffuse sources have more impact on the health of population in Zimapán. This is caused by the extraction of ground water from wells tapping regional flow system. In contrast, wells located in the proximity of mine tailings are not generally used for water supply.

  7. Vacuum-compatible standard diffuse source, manufacture and calibration

    SciTech Connect

    Byrd, D.A.; Atkins, W.H.; Bender, S.C.; Christensen, R.W.; Michaud, F.D.

    1999-03-01

    Los Alamos National Laboratories has completed the design, manufacture and calibration of a vacuum-compatible, tungsten lamp, integrated sphere. The light source has been calibrated at the National Institute of Standards and Technology (NIST) and is intended for use as a calibration standard for remote sensing instrumentation. Calibration 2{sigma} uncertainty varied with wavelength from 1.21% at 400 nm and 0.73% at 900 nm, to 3.95% at 2,400 nm. The inner radius of the Spectralon-coated sphere is 21.2 cm with a 7.4 cm square exit aperture. A small satellite sphere is attached to the main sphere and its output coupled through a stepper motor driven aperture. The variable aperture allows a constant radiance without effecting the color temperature output from the main sphere. The sphere`s output is transmitted into a vacuum test environment through a fused silica window that is an integral part of the outer housing of the vacuum shell assembly. The atmosphere within this outer housing is composed of 240 K nitrogen gas, provided by a custom LN{sub 2} vaporizer unit. Use of the nitrogen gas maintains the internal temperature of the sphere at a nominal 300 K {+-}10{degree}. The calibrated spectral range of the source is 0.4 {micro}m through 2.4 {micro}m. Three, color temperature matched, 20 W bulbs together with a 10 W bulb are within the main integrating sphere. Two 20 W bulbs, also color temperature matched, reside in the satellite integrating sphere. A Silicon and a Germanium broadband detector are situated within the inner surface of the main sphere. Their purpose is for the measurement of the internal broadband irradiance. A fiber-optic-coupled spectrometer measures the internal color temperature that is maintained by current control on the lamps. Each lamp is independently operated allowing for radiances with common color temperatures ranging from near 0.026 W/cm{sup 2}/sr to about 0.1 W/cm{sup 2}/sr at a wavelength of 0.9 {micro}m (the location of the peak spectral

  8. Broadband signal generator for the approximation of a magnetotelluric source for indoor testing

    NASA Astrophysics Data System (ADS)

    Ge, Shuang-chao; Deng, Ming; Chen, Kai; Shi, Xin-yu

    2016-08-01

    To test the frequency response of a magnetotelluric (MT) receiver, a broadband source, especially white noise is more efficient and intuitive than single frequency signals. In view of the absence of an appropriate source generator for MT receiver indoor testing, we designed a broadband signal generator based on a pseudo-random binary sequence (PRBS). Firstly, we divided the whole MT band into two segments to avoid data redundancy and simplify calculation in data processing and designed a generator composed of several modules: a clock module, a PRBS logic module, and a voltage level conversion module. We conducted a detailed analysis of the optimal parameter selection methods for each module, and key parameters including clock frequency, order, the primitive polynomial and the original states of the linear registers were determined. The generator provides four-channel PRBS signals with two effective bandwidths of 5  ×  10‑4–714 Hz and 0.1 Hz–14 kHz which are broad enough to cover the frequency range for different MT methods. These four-channel signals were used to simulate two modes of sources (xy and yx) with strong auto-correlation and weak cross-correlation. The power spectral density is quite stable in the whole passband. The new generator is characterized by broadband output in low-frequency bands, low power consumption, simple operation and reliable performance. Indoor and field tests indicated that the generator can provide an analog MT source and is a practical tool for MT receiver indoor testing.

  9. Broadband signal generator for the approximation of a magnetotelluric source for indoor testing

    NASA Astrophysics Data System (ADS)

    Ge, Shuang-chao; Deng, Ming; Chen, Kai; Shi, Xin-yu

    2016-08-01

    To test the frequency response of a magnetotelluric (MT) receiver, a broadband source, especially white noise is more efficient and intuitive than single frequency signals. In view of the absence of an appropriate source generator for MT receiver indoor testing, we designed a broadband signal generator based on a pseudo-random binary sequence (PRBS). Firstly, we divided the whole MT band into two segments to avoid data redundancy and simplify calculation in data processing and designed a generator composed of several modules: a clock module, a PRBS logic module, and a voltage level conversion module. We conducted a detailed analysis of the optimal parameter selection methods for each module, and key parameters including clock frequency, order, the primitive polynomial and the original states of the linear registers were determined. The generator provides four-channel PRBS signals with two effective bandwidths of 5  ×  10-4-714 Hz and 0.1 Hz-14 kHz which are broad enough to cover the frequency range for different MT methods. These four-channel signals were used to simulate two modes of sources (xy and yx) with strong auto-correlation and weak cross-correlation. The power spectral density is quite stable in the whole passband. The new generator is characterized by broadband output in low-frequency bands, low power consumption, simple operation and reliable performance. Indoor and field tests indicated that the generator can provide an analog MT source and is a practical tool for MT receiver indoor testing.

  10. X-Ray Analysis of Point Sources and Diffuse Gas in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Broming, Emma J.; Fuse, C.

    2010-01-01

    In an effort to determine the evolutionary state of Hickson Compact Groups (HCGs), we have performed an analysis of the sixteen HCGs in the Chandra X-Ray Observatory archives. HCGs are dense galactic systems, interacting on short time scales, which are ideal for studying galaxy mergers and interactions. We have analyzed both the diffuse gas emission of the compact groups as well as their associated individual point source populations. The total X-ray gas and total point source luminosities were used to determine the group's state of evolution. It was expected that the point source activity would allow for a clear-cut separation between compact groups in different evolutionary states. The sample groups were sorted into three evolutionary categories. Type-A groups are young systems, displaying a group dominated by spiral galaxies, active star formation, and little intragroup X-ray gas. Type-B groups are characterized by an intermediate X-ray point source population, an increased activity and interaction between group members, and intermediate diffuse gas component. HCG 97 is an example of a type-B system. It contains an intragroup gas medium, and eleven associated point sources. As the system further evolves, we expect to find a greater number of point sources. Type-C systems display an advanced stage of interaction between members, an extensive luminous point source population and a large diffuse gas reservoir. HCG 92, Stephan's Quintet, is the archetypical type-C system; it contains a large intragroup gas halo and twenty-six associated point sources. The archival HCGs investigated display a positive correlation between total point source luminosity and total diffuse gas luminosity. The results suggest X-ray point sources can be used to evaluate the evolutionary state of a group. Further research will probe the connection between fully coalesced compact groups and isolated elliptical galaxies.

  11. Recovery of optical properties using interstitial cylindrical diffusers as source and detector fibers

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.

    2016-07-01

    We demonstrate recovery of optical properties using arrays of interstitial cylindrical diffusing fibers as sources and detectors. A single 1-cm diffuser delivered laser illumination at 665 nm, while seven 1- and 2-cm diffusers at 1-cm grid spacing acted as detectors. Extraction of optical properties from these measurements was based upon a diffusion model of emission and detection distributions for these diffuser fibers, informed by previous measurements of heterogeneous axial detection. Verification of the technique was performed in 15 liquid tissue-simulating phantoms consisting of deionized water, India ink as absorber, and Intralipid 20% as scatterer. For the range of optical properties tested, mean errors were 4.4% for effective attenuation coefficient, 12.6% for absorption coefficient, and 7.6% for reduced scattering coefficient. Error in recovery tended to increase with decreasing transport albedo. For therapeutic techniques involving the delivery of light to locations deep within the body, such as interstitial photodynamic and photothermal therapies, the methods described here would allow the treatment diffuser fibers also to be used as sources and detectors for recovery of optical properties. This would eliminate the need for separately inserted fibers for spectroscopy, reducing clinical complexity and improving the accuracy of treatment planning.

  12. A strategy for characterizing homogeneous, diffusion-controlled, indoor sources and sinks

    SciTech Connect

    Little, J.C.; Hodgson, A.T.

    1996-12-31

    Physically based models for predicting the source and sink behavior of homogeneous, diffusion-controlled polymer materials are described. The source model was initially developed to interpret emissions of volatile organic compounds (VOCs) from the polymer backing of new carpets measured in a chamber study. That work is extended here to include the equivalent sink model. Analogous models should be applicable to the uptake and release of volatile compounds by other homogeneous, diffusion controlled indoor materials. Key parameters for the models may be inferred from experimental chamber data. The use of more direct methods to measure these parameters is proposed. Possible analytical methods to quantify the concentration of VOC in the polymer are briefly discussed and the use of a microbalance to directly measure diffusion and partition coefficients is described using illustrative experimental data. These procedures can eliminate, to a large extent, the need for chamber studies, which are costly, time consuming, and may be subject to confounding sink effects. Results from the carpet study are presented showing that the diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the partition coefficients generally increase as the vapor pressure of the compounds decreases. Evidence suggests that correlations based solely on commonly available properties such as molecular weight, and vapor pressure can be developed. Ultimately, the prediction of the diffusion controlled source/sink behavior of indoor materials may be possible based solely on a knowledge of the properties of the relevant volatile compounds and the indoor material.

  13. Selection and drift in subdivided populations: a straightforward method for deriving diffusion approximations and applications involving dominance, selfing and local extinctions.

    PubMed

    Roze, Denis; Rousset, François

    2003-12-01

    Population structure affects the relative influence of selection and drift on the change in allele frequencies. Several models have been proposed recently, using diffusion approximations to calculate fixation probabilities, fixation times, and equilibrium properties of subdivided populations. We propose here a simple method to construct diffusion approximations in structured populations; it relies on general expressions for the expectation and variance in allele frequency change over one generation, in terms of partial derivatives of a "fitness function" and probabilities of genetic identity evaluated in a neutral model. In the limit of a very large number of demes, these probabilities can be expressed as functions of average allele frequencies in the metapopulation, provided that coalescence occurs on two different timescales, which is the case in the island model. We then use the method to derive expressions for the probability of fixation of new mutations, as a function of their dominance coefficient, the rate of partial selfing, and the rate of deme extinction. We obtain more precise approximations than those derived by recent work, in particular (but not only) when deme sizes are small. Comparisons with simulations show that the method gives good results as long as migration is stronger than selection.

  14. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    SciTech Connect

    Colombant, Denis Manheimer, Wallace

    2010-06-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  15. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    PubMed

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration). PMID:26287831

  16. Required distribution of noise sources for Green's function recovery in diffusive fields

    NASA Astrophysics Data System (ADS)

    Shamsalsadati, S.; Weiss, C. J.

    2011-12-01

    In the most general sense, noise is the part of the signal of little or no interest, due to a multitude of reasons such as operator error, imperfect instrumentation, experiment design, or inescapable background interference. Considering the latter, it has been shown that Green's function can be extracted from cross-correlation of the ambient, diffusive wavefields arising from background random noise sources. Pore pressure and low-frequency electromagnetic induction are two such examples of diffusive fields. In theory, applying Green's function method in geophysical exploration requires infinity of volumetrically distributed sources; however, in the real world the number of noise sources in an area is limited, and furthermore, unevenly distributed in time, space and spectral content. Hence, quantification of the requisite noise sources that enable us to calculate Green's function acceptably well remains an open research question. The purpose of this study is to find the area of noise sources that contribute most to the Green's function estimation in diffusive systems. We call such a region the Volume of Relevance (VoR). Our analysis builds upon recent work in 1D homogeneous system where it was shown that sources located between two receivers positions are the most important ones for the purpose of Green's function recovery. Our results confirm the previous finding but we also examine the effect of heterogeneity, dimensionality and receiver location in both 1D and 2D at a fixed frequency. We demonstrate that for receivers located symmetrically across an interface between regions of contrasting diffusivity, the VoR rapidly shifts from one side of the interface to the other, and back again, as receiver separation increases. We also demonstrate that where the receiver pair is located on the interface itself, the shifting is less rapid, and for moderate to high diffusivity contrasts, the VoR remains entirely on the more diffusive side. In addition, because classical

  17. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C072)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  18. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C048)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  19. A methodology for estimating an annual release from a diffuse transuranic source

    SciTech Connect

    Culp, T.; Kovacic, J.

    1995-12-31

    United States government and industrial facilities that emit radioactive materials into the air are required to comply with the Environmental Protection Agency`s (EPA) National Emissions Standards for Hazardous Air Pollutants (NESHAPs), 40 CFR 61 (EPA, 1992). According to the regulations, emissions of radionuclides to the ambient air shall not exceed those amounts that would cause any member of the public to receive, in any year, an effective dose equivalent of 10 mrem/y. The dose to members of the public from radionuclide emissions are to be determined using EPA approved modeling methods which require knowledge of the annual radionuclide releases. NESHAPs provides clear guidance for the determination of annual radionuclide releases from point sources (i.e., facility stacks and vents). However, NESHAPs does not provide sufficient guidance for the determination of radionuclide releases from diffuse or area sources. A methodology was developed to determine an annual airborne radionuclide release from a diffuse source based on data obtained from an aerial gamma-ray survey of transuranic contaminated soils. The diffuse radionuclide release was calculated using corrected surface-contamination concentrations and wind speed dependent resuspension rates. The aerial gamma-ray-survey results were corrected for additional radionuclides found in the contaminant source, radioactive decay, radioactive ingrowth, and resuspendable surface soil thickness. In addition, the results were converted from volumetric to area contamination. Using standard air dispersion models, the release can be used to estimate the dose to a given receptor due to each radionuclide in the source material.

  20. Diffuse steep-spectrum sources from the 74 MHz VLSS survey

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Röttgering, H. J. A.; Brüggen, M.

    2011-03-01

    Context. Galaxy clusters grow by a sequence of mergers with other clusters and galaxy groups. During these mergers, shocks and/or turbulence are created within the intracluster medium (ICM). In this process, particles could be accelerated to highly relativistic energies. The synchrotron radiation from these particles is observed in the form of radio relics and halos that are generally characterized by a steep radio spectral index. Shocks can also revive fossil radio plasma from a previous episode of AGN activity, creating a so-called radio "phoenix". Here we present multi-frequency radio observations of diffuse steep-spectrum radio sources selected from the 74 MHz VLSS survey. Previous Giant Metrewave Radio Telescope (GMRT) observations showed that some of these sources had filamentary and elongated morphologies, which are expected for radio relics. Aims: We attempt to understand the nature of diffuse steep-spectrum radio sources and characterize their spectral index and polarization properties. Methods: We carried out radio continuum observations at 325 MHz with the GMRT. Observations with the Very Large Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) were taken at 1.4 GHz in full polarization mode. Optical images around the radio sources were taken with the William Herschel and Isaac Newton Telescope (WHT, INT). Results: Most of the sources in our sample consist of old radio plasma from AGNs located in small galaxy clusters. The sources can be classified as AGN relics or radio phoenices. The spectral indices across most of the radio sources display large variations. Conclusions: We conclude that diffuse steep-spectrum radio sources are not only found in massive X-ray luminous galaxy clusters but also in smaller systems. Future low-frequency surveys will uncover large numbers of steep-spectrum radio relics related to previous episodes of AGN activity.

  1. Locating the source of diffusion in complex networks by time-reversal backward spreading

    NASA Astrophysics Data System (ADS)

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  2. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy

    SciTech Connect

    Baran, Timothy M. Foster, Thomas H.

    2014-02-15

    Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J

  3. Anisotropies of ultrahigh energy cosmic ray nuclei diffusing from extragalactic sources

    NASA Astrophysics Data System (ADS)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban

    2015-09-01

    We obtain the dipolar anisotropies in the arrival directions of ultrahigh energy cosmic ray nuclei diffusing from nearby extragalactic sources. We consider mixed-composition scenarios in which different cosmic ray nuclei are accelerated up to the same maximum rigidity, so that E diffusion in extragalactic turbulent fields as well as the effects of photodisintegrations and other energy losses. Dipolar anisotropies at the level of 5% to 10% at energies ˜10 EeV are predicted for plausible values of the source density and magnetic fields.

  4. Design and evaluation of a miniature probe integrating diffuse optical tomography and electroencephalographic source localization.

    PubMed

    Yang, Hao; Jiang, Huabei

    2013-07-10

    We present a dual-modality three-dimensional imaging approach that integrates diffuse optical tomography (DOT) and electroencephalographic source localization (ESL). This dual-modal DOT/ESL approach is evaluated using solid tissue-like phantoms where targets having both optical and electrical contrasts relative to the background phantom are included. The results obtained from extensive phantom experiments show that this dual-modal approach is suitable for imaging seizure focus in the study of epilepsy.

  5. Comprehensive model-based prediction of micropollutants from diffuse sources in the Swiss river network

    NASA Astrophysics Data System (ADS)

    Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian

    2014-05-01

    Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering

  6. [The evaluation of hydrocarbon potential generation for source rocks by near-infrared diffuse reflection spectra].

    PubMed

    Zhang, Yu-Jia; Xu, Xiao-Xuan; Song, Ning; Wu, Zhong-Chen; Zhou, Xiang; Chen, Jin; Cao, Xue-Wei; Wang, Bin

    2011-04-01

    Near-infrared (NIR) and mid-infrared (MIR) diffuse reflection spectra were compared and evaluated for hydrocarbon potential generation of source rocks. Near-infrared diffuse reflectance often exhibits significant differences in the spectra due to the non-homogeneous distribution of the particles, so the signal-to-noise ratio of NIR is much lower than MIR It is too difficult to get accurate results by NIR without using a strong spectral preprocessing method to remove systematic noise such as base-line variation and multiplicative scatter effects. In the present paper, orthogonal signal correction (OSC) and an improved algorithm of it, i.e. direct orthogonal signal correction (DOSC), are used as different methods to preprocess both the NIR and MIR spectra of the hydrocarbon source rocks. Another algorithm, wavelet multi-scale direct orthogonal signal correction (WMDOSC), which is a combination of discrete wavelet transform (DWT) and DOSC, is also used as a preprocessing method. Then, the calibration model of hydrocarbon source rocks before and after pretreatment was established by interval partial least square (iPLS). The experimental results show that WMDOSC is more successfully applied to preprocess the NIR spectra data of the hydrocarbon source rocks than other two algorithms, and NIR performed as good as MIR in the analysis of hydrocarbon potential generation of source rocks with WMDOSC-iPLS pretreatment calibration model.

  7. High-energy diffuse scattering on the 1-ID beamline at the Advanced Photon Source.

    SciTech Connect

    Welberry, T. R.; Goossens, D. J.; Haeffner, D. R.; Lee, P. L.; Almer, J.; Australian National Univ.

    2003-05-01

    This paper reports on experiments in which high-energy (65.35 keV) X-rays were used to record the detailed diffuse diffraction patterns of a number of ceramic materials. The methodology has enabled a greater q-range to be explored (up to sintheta/lambda approximately 0.97) than is possible with laboratory-based experiments, with better q-space resolution and increased sensitivity, thus allowing previously unseen detail in diffraction patterns to be recorded. In all, 11 sections of data have been collected for Ca-CSZ, eight for Y-CSZ and six for wuestite.

  8. High-energy diffuse scattering on the 1-ID beamline at the advanced photon source.

    PubMed

    Welberry, T R; Goossens, D J; Haeffner, D R; Lee, P L; Almer, J

    2003-05-01

    This paper reports on experiments in which high-energy (65.35 keV) X-rays were used to record the detailed diffuse diffraction patterns of a number of ceramic materials. The methodology has enabled a greater q-range to be explored (up to sintheta/lambda approximately 0.97) than is possible with laboratory-based experiments, with better q-space resolution and increased sensitivity, thus allowing previously unseen detail in diffraction patterns to be recorded. In all, 11 sections of data have been collected for Ca-CSZ, eight for Y-CSZ and six for wüstite.

  9. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  10. Dynamic disorder in single-molecule Michaelis-Menten kinetics: The reaction-diffusion formalism in the Wilemski-Fixman approximation

    NASA Astrophysics Data System (ADS)

    Chaudhury, Srabanti; Cherayil, Binny J.

    2007-09-01

    Single-molecule equations for the Michaelis-Menten [Biochem. Z. 49, 333 (1913)] mechanism of enzyme action are analyzed within the Wilemski-Fixman [J. Chem. Phys. 58, 4009 (1973); 60, 866 (1974)] approximation after the effects of dynamic disorder—modeled by the anomalous diffusion of a particle in a harmonic well—are incorporated into the catalytic step of the reaction. The solution of the Michaelis-Menten equations is used to calculate the distribution of waiting times between successive catalytic turnovers in the enzyme β-galactosidase. The calculated distribution is found to agree qualitatively with experimental results on this enzyme obtained at four different substrate concentrations. The calculations are also consistent with measurements of correlations in the fluctuations of the fluorescent light emitted during the course of catalysis, and with measurements of the concentration dependence of the randomness parameter.

  11. A size of approximately 1 au for the radio source Sgr A* at the centre of the Milky Way.

    PubMed

    Shen, Zhi-Qiang; Lo, K Y; Liang, M-C; Ho, Paul T P; Zhao, J-H

    2005-11-01

    Although it is widely accepted that most galaxies have supermassive black holes at their centres, concrete proof has proved elusive. Sagittarius A* (Sgr A*), an extremely compact radio source at the centre of our Galaxy, is the best candidate for proof, because it is the closest. Previous very-long-baseline interferometry observations (at 7 mm wavelength) reported that Sgr A* is approximately 2 astronomical units (au) in size, but this is still larger than the 'shadow' (a remarkably dim inner region encircled by a bright ring) that should arise from general relativistic effects near the event horizon of the black hole. Moreover, the measured size is wavelength dependent. Here we report a radio image of Sgr A* at a wavelength of 3.5 mm, demonstrating that its size is approximately 1 au. When combined with the lower limit on its mass, the lower limit on the mass density is 6.5 x 10(21)M(o) pc(-3) (where M(o) is the solar mass), which provides strong evidence that Sgr A* is a supermassive black hole. The power-law relationship between wavelength and intrinsic size (size proportional, variantwavelength(1.09)) explicitly rules out explanations other than those emission models with stratified structure, which predict a smaller emitting region observed at a shorter radio wavelength.

  12. Radiometric calibration of a 100 cm sphere integrating source for VIIRS solar diffuser stability monitor bands

    NASA Astrophysics Data System (ADS)

    Kim, Eugene D.; Murgai, Vijay; Menzel, Reinhard W.

    2012-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Joint Polar-orbiting Satellite System (JPSS) mission has a solar diffuser as a reflective band calibrator. Due to UV solarization of the solar diffuser, the Solar Diffuser Stability Monitor (SDSM) is on-board to track the reflectance change of the solar diffuser in visible to near IR wavelengths. A 100 cm Sphere Integrating Source (SIS) has been used to configure and test the SDSM on the ground since MODerate resolution Imaging Spectroradiometer (MODIS) programs. Recent upgrades of the radiance transfer and BRDF measurement instruments in Raytheon have enabled more spectral data and faster measurement time with comparable uncertainty to the previous methods. The SIS has a Radiance Monitor, which has been mainly used as a SIS real-time health checker. It has been observed that the Radiance Monitor response is sufficiently linear and stable thus the Radiance Monitor can be used as a calibrator for ground tests. This paper describes the upgraded SIS calibration instruments, and the changes in the calibration philosophy of the SIS for the SDSM bands.

  13. Gamma-ray observations of Ophiuchus with EGRET: The diffuse emission and point sources

    NASA Technical Reports Server (NTRS)

    Hunter, S. D.; Digel, S. W.; De Geus, E. J.; Kanbach, G.

    1994-01-01

    Observations of the Ophiuchus region made with the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during the first 2 1/2 years of operation show the diffuse emission from the interstellar gas in Ophiuchus as well as variable emission from two point sources. The gamma-ray emission is modeled in terms of cosmic-ray interactions with atomic and molecular hydrogen in Ophiuchus and with low-energy photons along the line of sight. The model also includes the flux from the two point sources and an isotropic diffuse contribution. The cosmic-ray density is assumed to be uniform. The derived ratio of molecular hydrogen column density to integrated CO intensity is (1.1 +/- 0.2) x 10(exp 20) H-mols/sq cm (K km/s)(exp -1). At the sensitivity and resolution of the gamma-ray data, no variation of this ratio over the modeled region is discernible, nor are any regions of enhanced cosmic-ray density apparent. The model was fitted to seven narrow energy bands to obtain the energy depedence of the gamma-ray production function and the spectra of the point sources. The derived production function is in good agreement with theoretical calculations and the local cosmic-ray electron and proton spectra. The positions of the point sources were determined from maximum likelihood analysis of the gamma-ray emission observed in excess of the diffuse model. We identify one point source with the quasar PKS 1622-253, which has an average flux, E greater than 100 MeV, of (2.5 +/- 0.5) x 10(exp -7) photons/sq cm/s and photon spectral index -1.9 +/- 0.3. The other source, denoted GRO J1631-27, has not yet been identified at other wavelengths. Its average flux, E greater than 100 MeV, is (1.1 +/- 0.4) x 10(exp -7) photons/sq cm/s; however, its spectral index is poorly determined. The spectral index and intensity of the isotropic contribution to the model agree well with the extragalactic diffuse emission derived from the SAS 2 data.

  14. Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources

    SciTech Connect

    Beernink, K.J.; Thornton, R.L.; Anderson, G.B.; Emanuel, M.A.

    1995-05-08

    Si diffusion and impurity-induced layer intermixing from a buried impurity source have been studied by transmission electron microscopy and secondary ion mass spectroscopy of isolated, Si-doped GaAs layers in an undoped Al{sub 0.4}Ga{sub 0.6}As/GaAs superlattice and by photoluminescence measurements on Si-doped GaAs quantum wells with undoped Al{sub 0.4}Ga{sub 0.6}As barriers. In annealed samples, the Si profile suggests a Si diffusion process involving multiply ionized column III vacancies. The width of the resulting Si profile and the spatial extent and completeness of intermixing strongly depend on the initial Si concentration in the doped layer.

  15. A new method for apportionnement of diffuse nutrient sources of surface water contamination

    NASA Astrophysics Data System (ADS)

    Groenendijk, Piet; Mulder, Martin; Van Boekel, Erwin; Van der Bolt, Frank; Hendriks, Rob; Renaud, Leo

    2014-05-01

    Surface water quality has improved slightly in many regions of the Netherlands during the last decades, due to a reduction of the nutrient loads from point sources, but in most areas the concentrations do not meet the targets to comply with the objectives of the Water Framework Directive. Leaching from agricultural soils is currently the largest source. Quantitative insight into the contribution of the various land management related sources is necessary to discuss the responsibility of different authorities to further improve the quality. Such an understanding is also needed to assess the effects of mitigation measures. The STONE model was developed in 1998- 2000 aiming at the assessment of the effectiveness of Dutch policy measures to reduce nutrient loads to groundwater and surface waters from agricultural land. The process oriented model simulates the carbon, nitrogen and phosphorus cycles in soil and is capable to calculate N and P fluxes to surface waters. Due to the nature of the interdependent soil transformation processes, straight forward model runs don't yield in the relative contribution of the use of fertilizers and other diffuse sources to the total diffuse loads to surface waters. A new method was developed to reveal the relative contribution to surface water contamination of resp. the actual fertilization practise, the historical fertilizer excesses, the atmospheric deposition rates, the inputs by upward seeping water flow, the inputs by infiltrated surface water during summer time in polders and the natural soil release. The method is based on a linear proxy model of the STONE model. The coefficients were derived from the results of a sensitivity analysis. At the national level, the diffuse nitrogen and phosphorus load on surface waters due to the actual fertilization practise amounts to resp. 64% and 48% of the total diffuse loads from agricultural land. Deposition, the input by upward seeping water and the input by infiltrated surface water in

  16. Analytic solutions of the time-dependent quasilinear diffusion equation with source and loss terms

    SciTech Connect

    Hassan, M.H.A. ); Hamza, E.A. )

    1993-08-01

    A simplified one-dimensional quasilinear diffusion equation describing the time evolution of collisionless ions in the presence of ion-cyclotron-resonance heating, sources, and losses is solved analytically for all harmonics of the ion cyclotron frequency. Simple time-dependent distribution functions which are initially Maxwellian and vanish at high energies are obtained and calculated numerically for the first four harmonics of resonance heating. It is found that the strongest ion tail of the resulting anisotropic distribution function is driven by heating at the second harmonic followed by heating at the fundamental frequency.

  17. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    NASA Astrophysics Data System (ADS)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  18. Modeling the reversible, diffusive sink effect in response to transient contaminant sources.

    PubMed

    Zhao, D; Little, J C; Hodgson, A T

    2002-09-01

    A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gasphase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile. PMID:12244748

  19. Comparison of Implicit Schemes to Solve Equations of Radiation Hydrodynamics with a Flux-limited Diffusion Approximation: Newton--Raphson, Operator Splitting, and Linearization

    NASA Astrophysics Data System (ADS)

    Tetsu, Hiroyuki; Nakamoto, Taishi

    2016-03-01

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton-Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas & Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  20. Reynolds number dependence of thermal diffusion from a line source in decaying grid turbulence

    NASA Astrophysics Data System (ADS)

    Johnson, Erika; Warhaft, Zellman

    2008-11-01

    Existing experiments on line source dispersion in isotropic turbulence are for low Reynolds numbers (Taylor scale Reynolds numbers of less than 100) and there has been no attempt to systematically vary the Reynolds number. Here we present new results of passive temperature fluctuations produced by a fine heated wire in decaying grid turbulence. The Taylor Reynolds number is varied from approximately 50 to 500 by means of active and passive grids. We study the dependence of the mean and r.m.s. temperature profiles on the Reynolds number. The effects of source size are also investigated. The results are compared with the recent modeling work of Viswanathan and Pope (Physics of Fluids, to be published) who find significant Reynolds number dependence but small effects when varying the source size. The peak centerline ratio of the r.m.s. to the mean of the scalar is also examined and compared with predictions. This work is funded by the US National Science Foundation.

  1. SaX: An open source package for electronic-structure and optical-properties calculations in the GW approximation

    NASA Astrophysics Data System (ADS)

    Martin-Samos, Layla; Bussi, Giovanni

    2009-08-01

    We present here SaX (Self-energies and eXcitations), a plane-waves package aimed at electronic-structure and optical-properties calculations in the GW framework, namely using the GW approximation for quasi-particle properties and the Bethe-Salpeter equation for the excitonic effects. The code is mostly written in FORTRAN90 in a modern style, with extensive use of data abstraction (i.e. objects). SaX employs state of the art techniques and can treat large systems. The package is released with an open source license and can be also download from http://www.sax-project.org/. Program summaryProgram title: SaX (Self-energies and eXcitations) Catalogue identifier: AEDF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 779 771 No. of bytes in distributed program, including test data, etc.: 4 894 755 Distribution format: tar.gz Programming language: FORTRAN, plus some C utilities Computer: Linux PC, Linux clusters, IBM-SP5 Operating system: Linux, Aix Has the code been vectorised or parallelized?: Yes RAM: depending on the system complexity Classification: 7.3 External routines: Message-Passing Interface (MPI) to perform parallel computations. ESPRESSO ( http://www.quantum-espresso.org) Nature of problem: SaX is designed to calculate the electronic band-structure of semiconductors, including quasi-particle effects and optical properties including excitonic effects. Solution method: The electronic band-structure is calculated using the GW approximation for the self-energy operator. The optical properties are calculated solving the Bethe-Salpeter equation in the GW approximation. The wavefunctions are expanded on a plane-waves basis set, using norm-conserving pseudopotentials. Restrictions: Many objects are non-local matrix represented in plane wave basis

  2. Derivation of an eddy diffusivity coefficient depending on source distance for a shear dominated planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Alves, I. P.; Degrazia, G. A.; Buske, D.; Vilhena, M. T.; Moraes, O. L. L.; Acevedo, O. C.

    2012-12-01

    In this study an integral and an algebraic formulation for the eddy diffusivities in a shear driven planetary boundary layer are derived for pollutant dispersion applications. The expressions depend on the turbulence properties and on the distance from the source. They are based on the turbulent kinetic energy spectra, Taylor’s statistical diffusion theory and measured turbulent characteristics during intense wind events. The good agreement between the algebraic and the integral formulation for the eddy diffusivities corroborate the hypothesis that using an algebraic formulation as a surrogate for the eddy diffusivities in the neutral planetary boundary layer is valid. As a consequence, the vertical eddy diffusivity provided by the algebraic formulation and its asymptotic limit for large time (diffusion time much larger than the Lagrangian integral time scale), were introduced into an analytical air pollution model and validated against data from the classic Prairie Grass project. A statistical analysis, employing specific indices shows that the results are in good agreement with the observations. Furthermore, this study suggests that the inclusion of the memory effect, which is important in regions near to a continuous point source, improves the description of the turbulent transport process of atmospheric contaminants. Therefore, the major finding of this paper is the necessity of including the downwind distance-dependent eddy diffusivity for low continuous point sources in air quality modeling studies.

  3. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach.

    PubMed

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-06-15

    Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin. PMID:24686140

  4. AN EFFECT OF PERPENDICULAR DIFFUSION ON THE ANISOTROPY OF SOLAR ENERGETIC PARTICLES FROM UNCONNECTED SOURCES

    SciTech Connect

    Qin, G.; He, H.-Q.; Zhang, M. E-mail: hqhe@spaceweather.ac.cn

    2011-09-01

    Recently, Tan and coworkers studied the 2001 September 24 solar energetic particle (SEP) event observed by the Wind spacecraft at 1 AU and found that there is a counter-streaming particle beam with a deep depression of flux at 90{sup 0} pitch angle during the beginning of the event. They suggested that it is a result of a reflecting boundary at some distance outside of 1 AU. While this scenario could be true under some specific configuration of an interplanetary magnetic field, in this paper we offer another possible explanation. We simulated the SEP event by solving the five-dimensional focused transport equation numerically for 40 keV electrons with perpendicular diffusion. We find that a counter-streaming particle beam with deep depression at 90{sup 0} pitch angle can form on Parker magnetic field lines that do not directly connect to the main particle source on the Sun in the beginning of an SEP event. It can happen when a significant number of observed particles come from adjacent field lines through parallel transport to large radial distance first, hopping across field lines through perpendicular diffusion, and then getting scattered back to 1 AU, where they combine with the particles directly coming from the Sun to form a counter-streaming beam.

  5. Alignment of sources and detectors on breast surface for noncontact diffuse correlation tomography of breast tumors

    PubMed Central

    Huang, Chong; Lin, Yu; He, Lian; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang

    2016-01-01

    Noncontact diffuse correlation tomography (ncDCT) is an emerging technology for 3D imaging of deep tissue blood flow distribution without distorting hemodynamic properties. To adapt the ncDCT for imaging in vivo breast tumors, we designed a motorized ncDCT probe to scan over the breast surface. A computer-aided design (CAD)-based approach was proposed to create solid volume mesh from arbitrary breast surface obtained by a commercial 3D camera. The sources and detectors of ncDCT were aligned on the breast surface through ray tracing to mimic the ncDCT scanning with CAD software. The generated breast volume mesh along with the boundary data of ncDCT at the aligned source and detector pairs were used for finite-element-method-based flow image reconstruction. We evaluated the accuracy of source alignments on mannequin and human breasts; largest alignment errors were less than 10% in both tangential and radial directions of scanning. The impact of alignment errors (assigned 10%) on the tumor reconstruction was estimated using computer simulations. The deviations of simulated tumor location and blood flow contrast resulted from the alignment errors were 0.77 mm (less than the node distance of 1 mm) and 1%, respectively, which result in minor impact on flow image reconstruction. Finally, a case study on a human breast tumor was conducted and a tumor-to-normal flow contrast was reconstructed, demonstrating the feasibility of ncDCT in clinical application. PMID:26479823

  6. Non-contact time-resolved diffuse reflectance imaging at null source-detector separation.

    PubMed

    Mazurenka, M; Jelzow, A; Wabnitz, H; Contini, D; Spinelli, L; Pifferi, A; Cubeddu, R; Mora, A Dalla; Tosi, A; Zappa, F; Macdonald, R

    2012-01-01

    We report results of the proof-of-principle tests of a novel non-contact tissue imaging system. The system utilizes a quasi-null source-detector separation approach for time-domain near-infrared spectroscopy, taking advantage of an innovative state-of-the-art fast-gated single photon counting detector. Measurements on phantoms demonstrate the feasibility of the non-contact approach for the detection of optically absorbing perturbations buried up to a few centimeters beneath the surface of a tissue-like turbid medium. The measured depth sensitivity and spatial resolution of the new system are close to the values predicted by Monte Carlo simulations for the inhomogeneous medium and an ideal fast-gated detector, thus proving the feasibility of the non-contact approach for high density diffuse reflectance measurements on tissue. Potential applications of the system are also discussed. PMID:22274351

  7. Electrosphere of macroscopic 'quark nuclei': A source for diffuse MeV emissions from dark matter

    SciTech Connect

    Forbes, Michael McNeil; Lawson, Kyle; Zhitnitsky, Ariel R.

    2010-10-15

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultrarelativistic densities to the nonrelativistic Boltzmann regime that we use to present microscopically justified calculations of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from the Galaxy. As no phenomenological parameters are required to describe these observations, the calculation provides another nontrivial verification of the dark-matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.

  8. Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources

    PubMed Central

    2013-01-01

    Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 μm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems. PMID:24024736

  9. Dust and gas jets: Evidence for a diffuse source in Halley's coma

    NASA Technical Reports Server (NTRS)

    Clairemidi, Jacques; Rousselot, Philippe; Vernotte, F.; Moreels, Guy

    1992-01-01

    The distribution of dust-scattered intensity in Halley's inner coma is measured with the Vega three-channel spectrometer at three selected wavelengths: 377, 482, and 607 nm. The variation along a cometo-centric radius may be described by a p(sup -s) law where p is the distance between nucleus and optical axis and s is an exponent which is equal to 1 except in an intermediate 3000 less than p less than 7000 km region where s = 1.5. The shape of the radial distribution may be explained with a model including solar radiation pressure effect and quantum scattering efficiencies calculated from Mie theory. Monochromatic images inside an angular sector having its apex at the nucleus show evidence of two dust jets which extend to 40,000 Km. The pixel-to-pixel ratio of two images of dust intensity at 377 and 482 nm shows that the scattered intensity presents an excess of blue coloration in a zone located around the jets between 10,000 and 25,000 km. This coloration is interpreted as being due to a population of sub-micronic grains which result of the fragmentation of dust particles transported in the jets. It is suggested that the diffuse source where an additional quantity of CO was detected might be connected with the presence of a dust jet. In the present scheme, grain particles with a size of several micron or 10 micron would be transported inside a dust jet to distances of several 10,000 km where they would suffer fragmentation and produce sub-micronic particles and a release of gas which would be at the origin of the diffuse source.

  10. sfDM: Open-Source Software for Temporal Analysis and Visualization of Brain Tumor Diffusion MR Using Serial Functional Diffusion Mapping

    PubMed Central

    Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi

    2015-01-01

    A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility. PMID:25673970

  11. sfDM: Open-Source Software for Temporal Analysis and Visualization of Brain Tumor Diffusion MR Using Serial Functional Diffusion Mapping.

    PubMed

    Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi

    2015-01-01

    A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility.

  12. Quantifying suspended sediment sources during flood events in headwater catchments using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Legout, Cédric; Poulenard, Jérôme; Nemery, Julien; Navratil, Oldrich; Grangeon, Thomas; Evrard, Olivier; Esteves, Michel

    2013-04-01

    Increasing the understanding of the hydro-sedimentary dynamics at the catchment scale requires data on the origin of suspended sediments in addition to the classical measurements of suspended sediment concentrations and discharge. In mountainous environments the extremely high spatial and temporal variability of suspended sediment fluxes suggests that the proportions of suspended sediment sources transiting at outlets may also exhibit strong variations during flood events. However, conventional fingerprinting techniques based on geochemical and radionuclide measurements are time-consuming and rather expensive. They constitute a major limitation to conduct routine characterisation of the source of suspended sediment transiting at outlets that would require the analysis of a large number of samples. We investigated how visible or infrared diffuse reflectance spectroscopy coupled with partial least squares chemometrics techniques could be used to predict the proportion of source material in suspended sediment samples and how it could help understanding the hydro-sedimentary processes occurring during floods. The studied catchment is located in the southern French Alps, draining an area of 22-km². It is composed of black marls, limestones, molasses, undifferentiated deposits and gypsum. Forty-eight source material samples were collected in badlands areas and 328 suspended sediment samples were collected at the outlet during 23 flood events. Spectroscopic measurements were carried out on dried samples. Given that the erosion processes are particle size selective, five size fractions of source material were measured in order to assess the potential alteration of the signatures. As the biogeochemical processes occurring in the river such as iron oxidation could also affect the signatures, source materials that were immersed in the river for durations ranging from 1 day to 9 weeks were analysed. Finally, partial least-squares regression models were constructed on 81

  13. Glass diffusion source for constraining BSF region of a solar cell

    DOEpatents

    Lesk, I.A.; Pryor, R.A.; Coleman, M.G.

    1982-08-27

    The present invention is directed to a method of fabricating a solar cell comprising simultaneous diffusion of the p and n dopant materials into the solar cell substrate. The simultaneous diffusion process is preceded by deposition of a capping layer impervious to doping by thermal diffusion processes.

  14. [DWT-iPLS applied in the infrared diffuse reflection spectrum of hydrocarbon source rocks].

    PubMed

    Song, Ning; Xu, Xiao-xuan; Wu, Zhong-chen; Zhang, Cun-zhou; Wang, Bin

    2008-08-01

    Infrared spectroscopy is useful to monitor the quality of products on-line, or to quality multivariate properties simultaneously. The IR spectrometer satisfies the requirements of users who want to have quantitative product information in real-time because the instrument provides the information promptly and easily. However, Samples that are measured using diffuse reflectance often exhibit significant differences in the spectra due to the non-homogeneous distribution of the particles. In fact, multiple spectral measurements of the same sample can look completely different. In many cases, the scattering can be an overpowering contributor to the spectrum, sometimes accounting for most of the variance in the data. Although the degree of scattering is dependent on the wavelength of the light that is used and the particle size and refractive index of the sample, the scattering is not uniform throughout the spectrum. Typically, this appears as a baseline shift, tilt and sometimes curvature, where the degree of influence is more pronounced at the longer-wavelength end of the spectrum. The diffuse reflection spectrum is unsatisfactory and the calibration may provide unsatisfactory prediction results. So we must use some methods to remove the effects of the scattering for multivariate calibration of IR spectral signals. Discrete wavelet transform (DWT) is a good method to remove the effects of the scattering for multivariate calibration of IR spectral signals. By using DWT on individual signals as a preprocessing method in regression modeling on IR spectra, good compression is achieved with almost no loss of information, the low-frequency varying background and the high-frequency noise be removed simultaneously. In this report, we use the iPLS method to establish the calibration models of hydrocarbon source rocks. iPLS is a new regression method and the authors can get better results by using DTW- iPLS.

  15. Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.

    PubMed

    Chen, Hao; Zheng, Bing-Hui; Zhang, Lei

    2013-02-01

    Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components.

  16. Distinguishing Betwen Effects of Local Inputs (Contaminated Sediments, Point Sources) and Upstream Diffuse Nonpoint Source Input: Refinement of a Watershed Development Index for New England

    EPA Science Inventory

    Assessment tools are being developed to predict diffuse NPS effects from watershed development and distinguish these from local impacts (point sources, contaminated sediments). Using EMAP data from the New England Wadeable Stream Survey and two state datasets (CT, ME), we are de...

  17. Modeling exposure close to air pollution sources in naturally ventilated residences: association of turbulent diffusion coefficient with air change rate.

    PubMed

    Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Ott, Wayne R; Fringer, Oliver B; Hildemann, Lynn M

    2011-05-01

    For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF₆ tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.

  18. Determination of releaes from a fugitive or diffuse source using downwind air-monitoring and site-specific meteorological data

    SciTech Connect

    Culp, T.; Kovacic, J.; Deola, R.

    1996-12-31

    In order to demonstrate compliance with annual radiological dose limits, air-dispersion modeling is often performed. Many air-dispersion models calculate the effects of radionuclide releases. These models do not determine the actual release; they rely on either measured release data from the source or an estimate of the source release based on process knowledge. The EPA provides clear guidance for the determination of annual radionuclide releases from point sources (i.e. facility stacks and vents). However, clear guidance for the determination of radionuclide releases from diffuse or fugitive sources is not available.

  19. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  20. Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping

    NASA Astrophysics Data System (ADS)

    Massard, H.; Fudym, Olivier; Orlande, H. R. B.; Batsale, J. C.

    2010-07-01

    This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis-Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.

  1. Fully quantum mechanical calculation of the diffusivity of hydrogen in iron using the tight-binding approximation and path integral theory

    NASA Astrophysics Data System (ADS)

    Katzarov, Ivaylo H.; Pashov, Dimitar L.; Paxton, Anthony T.

    2013-08-01

    We present calculations of free energy barriers and diffusivities as functions of temperature for the diffusion of hydrogen in α-Fe. This is a fully quantum mechanical approach since the total energy landscape is computed using a self-consistent, transferable tight binding model for interstitial impurities in magnetic iron. Also the hydrogen nucleus is treated quantum mechanically and we compare here two approaches in the literature both based in the Feynman path integral formulation of statistical mechanics. We find that the quantum transition state theory which admits greater freedom for the proton to explore phase space gives result in better agreement with experiment than the alternative which is based on fixed centroid calculations of the free energy barrier. This will have an impact on future modeling and the simulation of hydrogen trapping and diffusion.

  2. SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks.

    PubMed

    Ander, M; Beltrao, P; Di Ventura, B; Ferkinghoff-Borg, J; Foglierini, M; Kaplan, A; Lemerle, C; Tomás-Oliveira, I; Serrano, L

    2004-06-01

    SmartCell has been developed to be a general framework for modelling and simulation of diffusion-reaction networks in a whole-cell context. It supports localisation and diffusion by using a mesoscopic stochastic reaction model. The SmartCell package can handle any cell geometry, considers different cell compartments, allows localisation of species, supports DNA transcription and translation, membrane diffusion and multistep reactions, as well as cell growth. Moreover, different temporal and spatial constraints can be applied to the model. A GUI interface that facilitates model making is also available. In this work we discuss limitations and advantages arising from the approach used in SmartCell and determine the impact of localisation on the behaviour of simple well-defined networks, previously analysed with differential equations. Our results show that this factor might play an important role in the response of networks and cannot be neglected in cell simulations.

  3. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET.

    PubMed

    Ingargiola, Antonino; Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to

  4. Soils as sinks or sources for diffuse pollution of the water cycle

    NASA Astrophysics Data System (ADS)

    Grathwohl, Peter

    2010-05-01

    Numerous chemical compounds have been released into the environment by human activities and can nowadays be found everywhere, i.e. in the compartments water, soil, and air, at the poles and in high mountains. Examples for a global distribution of toxic compounds are the persistent organic pollutants (PCB, dioxins, PAH, fluorinated surfactants and flame retardants, etc.: "the Stockholm dirty dozen") but also mercury and other metals. Many of these compounds reached a global distribution via the atmo¬sphere; others have been and are still directly applied to top soils at the large scale by agriculture or are released into groundwater at landfill sites or by discharge of treated or untreated waste waters. Sooner or later such compounds end up in the water cycle - often via an intermediate storage in soils. Pollutants in soils are leached by seepage waters, transferred to ground¬water, and transported to rivers via groundwater flow. Adsorbed compounds may be transported from soils into surface waters by erosion processes and will end up in the sediments. Diffuse pollution of the subsurface environment not only reflects the history of the economic development of the modern society but it is still ongoing - e.g. the number of organic pollutants released into the environment is increasing even though the con¬centrations may decrease compared to the past. Evidence shows that many compounds are persistent in the subsurface environment at large time scales (up to centuries). Thus polluted soils already are or may become a future source for pollution of adjacent compartments such as the atmosphere and groundwater. A profound understanding on how diffuse pollutants are stored and processed in the subsurface environment is crucial to assess their long term fate and transport at large scales. Thus integrated studies e.g. at the catchment scale and models are needed which couple not only the relevant compartments (soil - atmosphere - groundwater/surface waters) but also flow

  5. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET

    PubMed Central

    Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to

  6. Higher-order-in-spin interaction Hamiltonians for binary black holes from source terms of Kerr geometry in approximate ADM coordinates

    SciTech Connect

    Hergt, Steven; Schaefer, Gerhard

    2008-05-15

    The Kerr metric outside the ergosphere is transformed into Arnowitt-Deser-Misner coordinates up to the orders 1/r{sup 4} and a{sup 2}, respectively, in radial coordinate r and reduced angular momentum variable a, starting from the Kerr solution in quasi-isotropic as well as harmonic coordinates. The distributional source terms for the approximate solution are calculated. To leading order in linear momenta, higher-order-in-spin interaction Hamiltonians for black hole binaries are derived.

  7. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams.

    PubMed

    Kolpin, Dana W; Schenzel, Judith; Meyer, Michael T; Phillips, Patrick J; Hubbard, Laura E; Scott, Tia-Marie; Bucheli, Thomas D

    2014-02-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1,000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown.

  8. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams

    USGS Publications Warehouse

    Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.

    2014-01-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown

  9. Optimal source to detector separation for extracting sub-dermal chromophores in fiber optic diffuse reflectance spectroscopy: a simulation study

    NASA Astrophysics Data System (ADS)

    Sujatha, N.; Nivetha, K. Bala; Singhal, Akshay

    2014-05-01

    Localization and determination of blood region parameters in skin tissue can serve as a valuable supplement to standard non invasive techniques, especially in accessing the degree of depth of burns on skin and for the classification of vascular malformations. Quantitative optical examination of skin local blood region requires the use of depth sensitive techniques and preferential probing for assessment of data from specific layers of skin tissue. This work incorporates the depth sensitivity of diffuse reflectance spectroscopy and optimal source to detector fiber separation for maximum reflectance collection efficiency from local blood region in skin. Monte Carlo simulation for diffuse reflectance was performed on a multi layered skin tissue model consisting of epidermis, perfused dermis and localized blood region. It was found that the slope of the spatially resolved reflectance curve plotted with respect to the source to detector separation distance in semi log scale varies with the depth of the local blood region at specific wavelengths corresponding to the absorption wavelengths of hemoglobin. From the depth information obtained from the spatially resolved reflectance data, the optimum source to detector separation (SDS) is determined for maximum collection efficiency from the chromophore layer. The results obtained from simulation suggest the design of a linearly variable source to detector separation probe for preferential analysis of the depth of a specific tissue layer and subsequent determination of optimal source to detector separation for extracting the layer information.

  10. A compact, multi-wavelength, and high frequency response light source for diffuse optical spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoungsu; Lee, Minseok; Lee, Seung-ha; Cerussi, Albert E.; Chung, Phil-sang; Kim, Sehwan

    2015-03-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources. In this paper, we present a compact six-channel combiner of optical sub-assembly type that couples the output of independent solid-state light sources into a single 400 μm diameter optical fiber. It is equipped with six discrete laser diodes, 658, 690, 705, 785, 830, and 850 nm for the measurement of the tissue optical properties from optical spectroscopy and imaging. We demonstrate coupling efficiencies ≥ 77% and output optical power ≥ 20 mW for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity modulated laser diodes (with bandwidth ≥ 3 GHz). The developed light source could be used to construct custom multi-wavelength sources for tissue oximeters, diffuse optical imaging, and molecular imaging technologies.

  11. A diffusion source for sodium and potassium in the atmospheres of Mercury and the moon

    NASA Technical Reports Server (NTRS)

    Sprague, Ann L.

    1990-01-01

    Deep grain-boundary diffusion and regolith diffusion through a fractured crust and regolith can account not only for the Na/K ratios observed in the Mercurian and lunar atmospheres, but the large Na abundance enhancement of Mercury over lunar levels. A hot component of Na and K at Mercury is noted to be smaller in proportion to the total abundances of these two constituents than at the moon; this hot component is consistent with a population of meteoritic substances similar to lunar ones, as well as with a surface composition which has undergone no greater K depletion than that of the moon.

  12. GIS-based source identification and apportionment of diffuse water pollution: perfluorinated compound pollution in the Tokyo Bay basin.

    PubMed

    Zushi, Yasuyuki; Masunaga, Shigeki

    2011-11-01

    To efficiently reduce perfluorinated compound (PFC) pollution, it is important to have an understanding of PFC sources and their contribution to the pollution. In this study, source identification of diffuse water pollution by PFCs was conducted using a GIS-based approach. Major components of the source identification were collection of the monitoring data and preparation of the corresponding geographic information that was extracted from a constructed GIS database. The spatially distributed pollution factors were then explored by multiple linear regression analysis, after which they were visually expressed using GIS. Among the 35 PFC homologues measured in a survey of the Tokyo Bay basin, 18 homologues were analyzed. Pollution by perfluorooctane sulfonate (PFOS) was explained well by the percentage of arterial traffic area in the basin, and the 84% variance of the measured PFOS concentration was explained by two geographic variables, arterial traffic area and population. Source apportionment between point and nonpoint sources was conducted based on the results of the analysis. The contribution of PFOS from nonpoint sources was comparable to that from point sources in several major rivers flowing into Tokyo Bay. Source identification and apportionment using the GIS-based approach was shown to be effective, especially for ubiquitous types of pollution, such as PFC pollution.

  13. Simulating Diffusive and Preferential Water Flow in Soils with a Coupled Source-Responsive/Richards-Equation Model

    NASA Astrophysics Data System (ADS)

    Healy, R. W.

    2015-12-01

    Water movement through soils is often dominated by preferential flow processes such as fingering and macropore flow. Traditional models of flow in the unsaturated zone are based on the diffusion or Richards equation and assume that diffusive (surface-tension viscous) flow is the only flow process. These models are incapable of accurately simulating preferential flow. Several alternative approaches, including kinematic wave, transfer function, and water-content wave models, have been suggested for simulating water movement through preferential flow paths. The source-responsive model proposed by Nimmo (2010) and Nimmo and Mitchell (2013) is unique among such models in that water transfer from land surface to depth is controlled by the water-application rate at land surface. The source-responsive model has been coupled with a one-dimensional version of the Richards-equation based model of variably saturated flow, VS2DT. The new model, can simulate flow within the preferential (S) domain alone, within the diffuse (D) domain alone, or within both the S and D domains simultaneously. Water exchange between the two domains is treated as a first-order diffusive process, with the exchange coefficient being a function of soil-water content. The new model was used to simulate field and laboratory infiltration experiments described in the literature. Simulations were calibrated against measured soil water contents with the PEST parameter estimation package; values for hydraulic conductivity and 3 van Genuchten and 3 source-responsive parameters were optimized. Although exact matches between measured and simulated water contents were not obtained, the simulation results captured the salient characteristics of the published data sets, including features typical of preferential as well as diffusive flow. Results obtained from simulating flow simultaneously in both the S and D domain provided better matches to measured data than results obtained from simulating flow independently

  14. Chandra Observations of Diffuse Gas and Luminous X-Ray Sources around the X-Ray-bright Elliptical Galaxy NGC 1600

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory R.; Sarazin, Craig L.; Carlin, Jeffrey L.

    2004-12-01

    We observed the X-ray-bright E3 galaxy NGC 1600 and nearby members of the NGC 1600 group with the Chandra X-Ray Observatory ACIS-S3 to study their X-ray properties. Unresolved emission dominates the observation; however, we resolved some of the emission into 71 sources, most of which are low-mass X-ray binaries associated with NGC 1600. Twenty-one of the sources have LX>2×1039 ergs s-1 (0.3-10.0 keV; assuming they are at the distance of NGC 1600), marking them as ultraluminous X-ray point source (ULX) candidates; we expect that only 11+/-2 are unrelated foreground/background sources. NGC 1600 may have the largest number of ULX candidates in an early-type galaxy to date; however, cosmic variance in the number of background active galactic nuclei cannot be ruled out. The spectrum and luminosity function (LF) of the resolved sources are more consistent with sources found in other early-type galaxies than with sources found in star-forming regions of galaxies. The source LF and the spectrum of the unresolved emission both indicate that there are a large number of unresolved point sources. We propose that these sources are associated with globular clusters (GCs) and that NGC 1600 has a large GC specific frequency. Observations of the GC population in NGC 1600 would be very useful for testing this prediction. Approximately 50%-75% of the unresolved flux comes from diffuse gaseous emission. The spectral fits, hardness ratios, and X-ray surface brightness profile all point to two gas components. We interpret the soft inner component (a<~25'', kT~0.85 keV) as the interstellar medium of NGC 1600 and the hotter outer component (a>~25'', kT~1.5 keV) as the intragroup medium of the NGC 1600 group. The X-ray image shows several interesting structures. First, there is a central region of excess emission that is roughly cospatial with Hα and dust filaments immediately west of the center of NGC 1600. There appear to be holes in the X-ray emission to the north and south of the

  15. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  16. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    NASA Astrophysics Data System (ADS)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  17. Atoms in carbon cages as a source of interstellar diffuse lines

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Antoniewicz, P. R.; Smoluchowski, R.

    1990-01-01

    A model to describe the resonance absorption lines of various atoms trapped in closed carbon cages is presented. These systems may be responsible for some of the as yet unexplained diffuse interstellar bands. Model potentials for possible atom-C60 systems are obtained and used to calculate the resonance lines. The trapped atoms considered are O, N, Si, Mg, Al, Na, and S, and in all cases the resonance lines are shifted toward the red as compared to the isolated atoms. The calculated wavelengths are compared to the range of wavelengths observed for the diffuse interstellar bands, and good agreement is found for Mg and Si resonance lines. Other lines may be caused by other than resonance transitions or by trapped molecules. The oscillator strengths and the abundances are evaluated and compared with observation. Mechanisms to explain the observed band width of the lines and the existence of certain correlated pairs of lines are discussed.

  18. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    NASA Astrophysics Data System (ADS)

    Singh, Gyanendra; Singh Mehta, Dalip

    2013-02-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq2) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ)2(acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported.

  19. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  20. Analysis of XMM-Newton Data from Extended Sources and the Diffuse X-Ray Background

    NASA Technical Reports Server (NTRS)

    Snowden, Steven

    2011-01-01

    Reduction of X-ray data from extended objects and the diffuse background is a complicated process that requires attention to the details of the instrumental response as well as an understanding of the multiple background components. We present methods and software that we have developed to reduce data from XMM-Newton EPIC imaging observations for both the MOS and PN instruments. The software has now been included in the Science Analysis System (SAS) package available through the XMM-Newton Science Operations Center (SOC).

  1. Interacting biochemical and diffusive controls on trace gas sources in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Manzoni, S.; Bellin, A.; Porporato, A. M.

    2011-12-01

    Microbes react to environmental conditions on different timescales. When conditions improve (e.g., rewetting, substrate amendment), the residing population exits the dormant state, becomes active and starts synthesizing extra-cellular enzymes. If substrate availability, and hence energy, is sufficient, microbes may start to reproduce and increase the size of their population. These dynamics make it complicated to interpret measured relationships between microbial activity (e.g., respiration, denitrification, N mineralization) and environmental conditions. In particular, the relationship between bacterial activity and soil moisture, which is derived by incubating soil samples at constant soil moisture levels, seems to vary under dynamic hydrological conditions. This may be related to both soil physical properties and the resilience of bacteria to adapt to rapid changes in soil moisture. We present a process-based model that includes both the above effects and test the hypothesis that the ratio of the time scale of biological versus physical factors determines the shape describing the relationship between microbial activity and soil moisture. In particular, we focus on the role of oxygen dynamics, which regulate the prevalence of aerobic versus anaerobic conditions and thus the prevalence of nitrification versus denitrification. We identify and compare the time scale of the biological oxygen consumption with the time scale of physical diffusion. Starting from well-aerated conditions, as bacteria consume O2 in solution, more oxygen dissolves from the atmosphere - depending on gas-filled porosity. If water dynamics or tillage limits re-aeration, this can affect the equilibrium between the aqueous and the gaseous phase and thus alter the time scale of the reactions. This balance between consumption and re-aeration by diffusion ultimately controls the water quality as well the production of trace gases.

  2. CONTRIBUTION OF UNRESOLVED POINT SOURCES TO THE DIFFUSE X-RAY BACKGROUND BELOW 1 keV

    SciTech Connect

    Gupta, A.; Galeazzi, M.

    2009-09-01

    We present here the analysis of X-ray point sources detected in several observations available in the XMM-Newton public archive. We focused, in particular, on energies below 1 keV, which are of particular relevance to the understanding of the diffuse X-ray background (DXB). The average field of all the exposures is 0.09 deg{sup -2}. We reached an average flux sensitivity of 5.8 x 10{sup -16}ergs{sup -1}cm{sup -2} in the soft band (0.5-2.0 keV) and 2.5 x 10{sup -16}ergs{sup -1}cm{sup -2} in the very soft band (0.4-0.6 keV). In this paper, we discuss the log N-log S results, the contribution to the integrated X-ray sky flux, and the properties of the cumulative spectrum from all sources. In particular, we found an excess flux at around 0.5 keV in the composite spectrum of faint sources. The excess seems to be a general property of all the fields observed suggesting an additional class of weak sources is contributing to the X-ray emission at these energies. Combining our results with previous investigations, we have also quantified the contribution of the individual components of the DXB in the 3/4 keV band.

  3. Assessment for potential radionuclide emissions from stacks and diffuse and fugitive sources on the Hanford Site

    SciTech Connect

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-06-01

    By using the six EPA-approved methods, instead of only the original back calculation method for assessing the 84 WHC registered stacks, the number of stacks requiring continuous monitoring was reduced from 32 to 19 stacks. The intercomparison between results showed that no correlation existed between back calculations and release fractions. Also the NDA, upstream air samples, and powder release fraction method results were at least three orders of magnitude lower then the back calculations results. The most surprising results of the assessment came from NDA. NDA was found to be an easy method for assessing potential emissions. For the nine stacks assessed by NDA, all nine of the stacks would have required continuous monitoring when assessed by back calculations. However, when NDA was applied all stacks had potential emissions that would cause an EDE below the > 0.1 mrem/y standard. Apparent DFs for the HEPA filter systems were calculated for eight nondesignated stacks with emissions above the detection limit. These apparent DFs ranged from 0.5 to 250. The EDE dose to the MEI was calculated to be 0.028 mrem/y for diffuse and fugitive emissions from the Hanford Sited. This is well below the > 0.1 mrem/y standard.

  4. Knowledge Diffusion in ERP Development: The Case of Open Source ERP Downloads

    NASA Astrophysics Data System (ADS)

    Johansson, Björn

    This paper reports on an investigation of challenges in enterprise resource planning systems (ERPs) development. The investigation, conducted as interviews with executives at a major ERP software vendor, identified six challenges when developing future ERPs. The challenges are then related to a question of knowledge sharing in ERP development. The question is, can downloads of open source ERPs be seen as a knowledge sharing activity with the potential to decrease the gap between ERP developers and users of ERPs? From identified challenges and by discussing reasons for the high attention and the high numbers of download of open source ERPs, the article presents some conclusions that could act as input for future research. The paper aims at building a foundation for the basic question: In what way could knowledge sharing in ERP development be improved? The main conclusion is that challenges for future development of ERPs addressed by proprietary ERP software vendors could be one reason for the high attention among developers of open source ERPs.

  5. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    SciTech Connect

    Vanacore, G. M.; Zani, M.; Tagliaferri, A.; Nicotra, G.; Bollani, M.; Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F.; Capellini, G.; Isella, G.; Osmond, J.

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  6. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    NASA Astrophysics Data System (ADS)

    Vanacore, G. M.; Nicotra, G.; Zani, M.; Bollani, M.; Bonera, E.; Montalenti, F.; Capellini, G.; Isella, G.; Osmond, J.; Picco, A.; Boioli, F.; Tagliaferri, A.

    2015-03-01

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  7. Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.

    PubMed

    Kumar, Deept; Little, John C

    2003-09-01

    Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.

  8. Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.

    PubMed

    Kumar, Deept; Little, John C

    2003-09-01

    Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data. PMID:12967101

  9. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

  10. Reducing fluxes of faecal indicator compliance parameters to bathing waters from diffuse agricultural sources: the Brighouse Bay study, Scotland.

    PubMed

    Kay, D; Aitken, M; Crowther, J; Dickson, I; Edwards, A C; Francis, C; Hopkins, M; Jeffrey, W; Kay, C; McDonald, A T; McDonald, D; Stapleton, C M; Watkins, J; Wilkinson, J; Wyer, M D

    2007-05-01

    The European Water Framework Directive requires the integrated management of point and diffuse pollution to achieve 'good' water quality in 'protected areas'. These include bathing waters, which are regulated using faecal indicator organisms as compliance parameters. Thus, for the first time, European regulators are faced with the control of faecal indicator fluxes from agricultural sources where these impact on bathing water compliance locations. Concurrently, reforms to the European Union (EU) Common Agricultural Policy offer scope for supporting on-farm measures producing environmental benefits through the new 'single farm payments' and the concept of 'cross-compliance'. This paper reports the first UK study involving remedial measures, principally stream bank fencing, designed to reduce faecal indicator fluxes at the catchment scale. Considerable reduction in faecal indicator flux was observed, but this was insufficient to ensure bathing water compliance with either Directive 76/160/EEC standards or new health-evidence-based criteria proposed by WHO and the European Commission.

  11. Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration.

    PubMed

    Moyes, Andrew B; Gaines, Sarah J; Siegwolf, Rolf T W; Bowling, David R

    2010-11-01

    Carbon isotope ratios (δ¹³C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ¹³C of soil respiratory CO₂ on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO₂ mole fraction and δ¹³C and continuous open chambers. δ¹³C of respired CO₂ and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ¹³C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ¹³C variation was driven by non-steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ¹³C of the soil surface CO₂ flux. Seasonal δ¹³C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO₂ source. PMID:20545887

  12. Experimental investigations of the swirling flow in the conical diffuser using flow-feedback control technique with additional energy source

    NASA Astrophysics Data System (ADS)

    Tǎnasǎ, C.; Bosioc, A. I.; Susan-Resiga, R. F.; Muntean, S.

    2012-11-01

    The previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water injection along to the axis mitigates the pressure fluctuations associated to the precessing vortex rope [1]. However, for swirling flows similar to Francis turbines operated at partial discharge, the water jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, it was introduced a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser [2]. This is called flow-feedback control technique (FFCT) and it was investigated experimentally in order to assess its capability [3]. The FFCT approach not requires additional energy to supply the jet. Consequently, the turbine efficiency is not diminished due to the volumetric losses injected even if around 10% of the main flow is used. However, the equivalent amplitude of the pressure pulsations associated to the vortex rope decreases with 30% if 10% jet discharge is applied [3]. Using 12% water jet discharge from upstream then the equivalent amplitude of the pressure pulsations is mitigated with 70% according to Bosioc et al. [4]. In our case, an extra 2% jet discharge is required in order to obtain similar results with FFCT. This extra discharge is provided using an additional energy source. Therefore, the paper presents experimental investigation performed with FFCT with additional energy source. The experimental results obtained with this technique are compared against FFCT and the swirling flow with vortex rope, respectively.

  13. Diffuse gas in retired galaxies: nebular emission templates and constraints on the sources of ionization

    NASA Astrophysics Data System (ADS)

    Johansson, Jonas; Woods, Tyrone E.; Gilfanov, Marat; Sarzi, Marc; Chen, Yan-Mei; Oh, Kyuseok

    2016-10-01

    We present emission-line templates for passively-evolving (`retired') galaxies, useful for investigation of the evolution of the interstellar medium in these galaxies, and characterization of their high-temperature source populations. The templates are based on high signal-to-noise (>800) co-added spectra (3700-6800 Å) of ˜11 500 gas-rich Sloan Digital Sky Survey galaxies devoid of star formation and active galactic nuclei. Stacked spectra are provided for the entire sample and sub-samples binned by mean stellar age. In our previous paper, Johansson et al., these spectra provided the first measurements of the He II 4686 Å line in passively-evolving galaxies, and the observed He II/Hβ ratio constrained the contribution of accreting white dwarfs (the `single-degenerate' scenario) to the Type Ia supernova rate. In this paper, the full range of unambiguously detected emission lines are presented. Comparison of the observed [O I] 6300 Å/Hα ratio with photoionization models further constrains any high-temperature single-degenerate scenario for Type Ia supernovae (with 1.5 ≲ T/105 K ≲ 10) to ≲3-6 per cent of the observed rate in the youngest age bin (i.e. highest SN Ia rate). Hence, for the same temperatures, in the presence of an ambient population of post-asymptotic giant branch stars, we exclude additional high-temperature sources with a combined ionizing luminosity of ≈1.35 × 1030 L⊙/M⊙,* for stellar populations with mean ages of 1-4 Gyr. Furthermore, we investigate the extinction affecting both the stellar and nebular continuum. The latter shows about five times higher values. This contradicts isotropically distributed dust and gas that renders similar extinction values for both cases.

  14. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia.

    PubMed Central

    Benes, V; Pĕkný, V; Skorepa, J; Vrba, J

    1989-01-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making. PMID:2559844

  15. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia.

    PubMed

    Benes, V; Pĕkný, V; Skorepa, J; Vrba, J

    1989-11-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making.

  16. Identifying hydrologically sensitive areas using LiDAR DEMs to mitigate critical source areas of diffuse pollution: development and application

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Jordan, Phil; Mellander, Per-Erik; Fenton, Owen; Shine, Oliver; hUallacháin, Daire Ó.; Creamer, Rachel; McDonald, Noeleen; Dunlop, Paul; Murphy, Paul

    2016-04-01

    Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants such as phosphorus (P). A new GIS-based HSA Index is presented that identifies HSAs at the sub-field scale. It uses a soil topographic index (STI) and accounts for the hydrological disconnection of overland flow via topographic impediment from flow sinks such as hedgerows and depressions. High resolution (0.25-2 m) LiDAR Digital Elevation Models (DEMs) are utilised to capture these microtopographic controls on flow pathways and hydrological connectivity. The HSA Index was applied to four agricultural catchments (~7.5-12 km2) with contrasting topography and soil types. Catchment HSA sizes were estimated using high resolution rainfall-quickflow measurements during saturated winter storm events in 2009-2014, and mapped using the HSA Index. HSA sizes ranged from 1.6-3.4% of the catchment area during median storm events and 2.9-8.5% during upper quartile events depending on whether well or poorly drained soils dominated, which validated HSA Index value distributions. Total flow sink volume capacities ranged from 8,298-59,584 m3 and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'delivery points' along surface runoff pathways where transported pollutants such as P are delivered to the open drainage network. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips (RBS) reduced costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5 years respectively, which included LiDAR DEM acquisition costs. Considering that HSAs are often the dominant P CSA factor in agricultural catchments and can override

  17. Characterization of Secondary Mineral Grain Coatings and their Role as Diffusion-controlled Sinks and Sources for Metal Contaminants

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Guo, H.; Lai, B.; Kemner, K. M.; Ercius, P.; Fox, P. M.; Singer, D. M.; Minor, A.; Waychunas, G.

    2012-12-01

    ) tomography, it can be seen that there are large numbers of pore throat sizes less than 10 nm within the coatings. We hypothesize that diffusion through these pores, which likely have electrically charged surfaces, controls the observed macroscopic rates of U(VI) sorption in batch experiments with sand grains. Evidence to support this hypothesis was observed by studying U and Fe fluorescence spatial variation within FIB samples (1 micron thick) at 200 nm spatial resolution. With this greater spatial resolution, it is possible to see U concentration variations within the coatings that are dependent on the time of sorption reaction, and illustrates how the coating environment constitutes a diffusion constraint to achieve adsorptive equilibrium between an aqueous phase and the mineral surfaces. Including this diffusion constraint within conceptual models for reactive contaminant transport may be significant at the field scale, because secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site. This is important in resolving long-term transport predictions at DOE sites, such as Hanford and Savannah River, where equilibrium versus kinetic reactive transport models are being evaluated.

  18. Implementation of cost-effective diffuse light source mechanism to reduce specular reflection and halo effects for resistor-image processing

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Sheng; Wang, Jeng-Yau

    2015-09-01

    Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.

  19. Combining Land Use Information and Small Stream Sampling with PCR-Based Methods for Better Characterization of Diffuse Sources of Human Fecal Pollution

    EPA Science Inventory

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...

  20. In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization

    PubMed Central

    Yang, Hao; Zhang, Tao; Zhou, Junli; Carney, Paul R.; Jiang, Huabei

    2014-01-01

    SUMMARY Objective The goal of this work is to establish a new dual-modal brain mapping technique based on diffuse optical tomography (DOT) and electroencephalographic source localization (ESL) that can chronically/intracranially record optical/EEG data to precisely map seizures and localize the seizure onset zone and associated epileptic brain network. Methods The dual-modal imaging system was employed to image seizures in an experimental acute bicuculline methiodide rat model of focal epilepsy. Depth information derived from DOT was used as constraint in ESL to enhance the image reconstruction. Groups of animals were compared based on localization of seizure foci, either at different positions or at different depths. Results This novel imaging technique successfully localized the seizure onset zone in rat induced by bicuculline methiodide injected at a depth of 1mm, 2mm and 3mm, respectively. The results demonstrated that the incorporation of the depth information from DOT into the ESL image reconstruction resulted in more accurate and reliable ESL images. Although the ESL images showed a horizontal shift of the source localization, the DOT identified the seizure focus accurately. In one case, when the BMI was injected at a site outside the field of view (FOV) of the DOT/ESL interface, ESL gives false positive detection of the focus while DOT shows negative detection. Significance This study represents the first to identify seizure onset zone using implantable DOT. In addition, the combination of DOT/ESL has never been documented in neuroscience and epilepsy imaging. This technology will enable us to precisely measure the neural activity and hemodynamic response at exactly the same tissue site and at both cortical and sub cortical levels. PMID:25524046

  1. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  2. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

    2012-07-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  3. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

    2013-03-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is presented and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via preferential flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in preferential flow pathways due to seasonal ploughing of the topsoil and to a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  4. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    USGS Publications Warehouse

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  5. Synoptic monitoring as an approach to discriminating between point and diffuse source contributions to zinc loads in mining impacted catchments.

    PubMed

    Banks, V J; Palumbo-Roe, B

    2010-09-01

    One of the global legacies of industrialisation is the environmental impacts of historic mineral exploitation. Recent national initiatives to manage the impacts on ground and surface waters have driven the need to develop better techniques for assessing understanding of the catchment-scale distribution and characterisation of the relative contribution of point and diffuse contaminant sources. The benefits of a detailed, multidisciplinary investigation are highlighted through a case study focused on the Rookhope Burn, a tributary of the River Wear, which falls within a significantly mine impacted area of the North Pennines Orefield, UK. Zinc (Zn) has been identified as the contaminant of concern within this catchment, which is judged by the Environment Agency to be at risk of failing to achieve good water quality status in the context of the Water Framework Directive. The results of synoptic flow monitoring and sampling for chemical determinations of major and trace elements have been used to calculate mass balances of instream and inflow chemical loads in the Rookhope Burn. Despite a dominant impact on the water quality from a mine outburst (especially Zn [1.45 to 2.42 mg/l], Fe [2.18 to 3.97 mg/l], Mn [3.69 to 6.77 mg/l], F [3.99 to 4.80 mg/l] and SO(4) [178 to 299 mg/l]), mass balance calculations combined with geological mapping have facilitated the identification of significant, previously unknown, subsurface contributions of Zn contaminated groundwater (with Zn concentrations in excess of 0.4 to 0.9 mg/l and 0.18 to 0.36 mg/l) to the Burn. The subsurface contributions exhibit spatial correspondence to mine workings with associated mineral veins and adits, or to points of suspected karst groundwater resurgence. These findings reiterate the challenges posed in decision making with respect to remediation, in this case in the context of the management of significant subsurface contributions.

  6. EFFECTS OF DIFFUSE BACKGROUND EMISSION AND SOURCE CROWDING ON PHOTOMETRIC COMPLETENESS IN SPITZER SPACE TELESCOPE IRAC SURVEYS: THE GLIMPSE CATALOGS AND ARCHIVES

    SciTech Connect

    Kobulnicky, Henry A.; Alexander, Michael J.; Babler, Brian L.; Meade, Marilyn R.; Whitney, Barbara A.; Churchwell, Edward B. E-mail: malexan9@uwyo.edu E-mail: meade@astro.wisc.edu E-mail: ebc@astro.wisc.edu

    2013-07-01

    We characterize the completeness of point source lists from Spitzer Space Telescope surveys in the four Infrared Array Camera (IRAC) bandpasses, emphasizing the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) programs (GLIMPSE I, II, 3D, 360; Deep GLIMPSE) and their resulting point source Catalogs and Archives. The analysis separately addresses effects of incompleteness resulting from high diffuse background emission and incompleteness resulting from point source confusion (i.e., crowding). An artificial star addition and extraction analysis demonstrates that completeness is strongly dependent on local background brightness and structure, with high-surface-brightness regions suffering up to five magnitudes of reduced sensitivity to point sources. This effect is most pronounced at the IRAC 5.8 and 8.0 {mu}m bands where UV-excited polycyclic aromatic hydrocarbon emission produces bright, complex structures (photodissociation regions). With regard to diffuse background effects, we provide the completeness as a function of stellar magnitude and diffuse background level in graphical and tabular formats. These data are suitable for estimating completeness in the low-source-density limit in any of the four IRAC bands in GLIMPSE Catalogs and Archives and some other Spitzer IRAC programs that employ similar observational strategies and are processed by the GLIMPSE pipeline. By performing the same analysis on smoothed images we show that the point source incompleteness is primarily a consequence of structure in the diffuse background emission rather than photon noise. With regard to source confusion in the high-source-density regions of the Galactic Plane, we provide figures illustrating the 90% completeness levels as a function of point source density at each band. We caution that completeness of the GLIMPSE 360/Deep GLIMPSE Catalogs is suppressed relative to the corresponding Archives as a consequence of rejecting stars that lie in the point

  7. Two-dimensional analytical model for estimating crosswind integrated concentration in a capping inversion: eddy diffusivity as a function of downwind distance from the source

    NASA Astrophysics Data System (ADS)

    Sharan, Maithili; Gupta, Suman

    A mathematical model has been proposed for computing crosswind-integrated concentration in a capping inversion layer by considering the eddy diffusivity as a function of down wind distance from the source. An analytical solution of the resulting partial differential equation with the physically relevant boundary conditions has been obtained for the general functional form of eddy diffusivity using the method of eigen-function expansion. The model with eddy diffusivity as a linear function of downwind distance is validated with the available data in the literature from Copenhagen in Denmark and plume validation experiment conducted by Electric Power Research Institute at Kincaid in USA. The agreement is found to be good between the computed and the observed concentrations in both the experiments. In fact, majority of the concentrations predicted from the model are with in a factor of two to observations.

  8. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  9. Reduction of diffusive contaminant emissions from a dissolved source in a lower permeability layer by sodium persulfate treatment.

    PubMed

    Cavanagh, Bridget A; Johnson, Paul C; Daniels, Eric J

    2014-12-16

    Residual contamination contained in lower permeability zones is difficult to remediate and can, through diffusive emissions to adjacent higher permeability zones, result in long-term impacts to groundwater. This work investigated the effectiveness of oxidant delivery for reducing diffusive emissions from lower permeability zones. The experiment was conducted in a 1.2 m tall × 1.2 m wide × 6 cm thick tank containing two soil layers having 3 orders of magnitude contrast in hydraulic conductivity. The lower permeability layer initially contained dissolved methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and p-xylenes (BTEX). The treatment involved delivery of 10% w/w nonactivated sodium persulfate (Na2S2O8) solution to the high permeability layer for 14 days. The subsequent diffusion into the lower permeability layer and contaminant emission response were monitored for about 240 days. The S2O8(2-) diffused about 14 cm at 1% w/w into the lower permeability layer during the 14 day delivery and continued diffusing deeper into the layer as well as back toward the higher-lower permeability interface after delivery ceased. Over 209 days, the S2O8(2-) diffused 60 cm into the lower permeability layer, the BTEX mass and emission rate were reduced by 95-99%, and the MTBE emission rate was reduced by 63%. The overall treatment efficiency was about 60-110 g-S2O8(2-)delivered/g-hydrocarbon oxidized, with a significant fraction of the oxidant delivered likely lost by back-diffusion and not involved in hydrocarbon destruction.

  10. Selection of Common Items as an Unrecognized Source of Variability in Test Equating: A Bootstrap Approximation Assuming Random Sampling of Common Items

    ERIC Educational Resources Information Center

    Michaelides, Michalis P.; Haertel, Edward H.

    2014-01-01

    The standard error of equating quantifies the variability in the estimation of an equating function. Because common items for deriving equated scores are treated as fixed, the only source of variability typically considered arises from the estimation of common-item parameters from responses of samples of examinees. Use of alternative, equally…

  11. p, He, and C to Fe cosmic-ray primary fluxes in diffusion models. Source and transport signatures on fluxes and ratios

    NASA Astrophysics Data System (ADS)

    Putze, A.; Maurin, D.; Donato, F.

    2011-02-01

    Context. The source spectrum of cosmic rays is not well determined by diffusive shock acceleration models. The propagated fluxes of proton, helium, and heavier primary cosmic-ray species (up to Fe) are a means to indirectly access it. But how robust are the constraints, and how degenerate are the source and transport parameters? Aims: We check the compatibility of the primary fluxes with the transport parameters derived from the B/C analysis, but also ask whether they add further constraints. We study whether the spectral shapes of these fluxes and their ratios are mostly driven by source or propagation effects. We then derive the source parameters (slope, abundance, and low-energy shape). Methods: Simple analytical formulae are used to address the issue of degeneracies between source/transport parameters, and to understand the shape of the p/He and C/O to Fe/O data. The full analysis relies on the USINE propagation package, the MINUIT minimisation routines (χ2 analysis) and a Markov Chain Monte Carlo (MCMC) technique. Results: Proton data are well described in the simplest model defined by a power-law source spectrum and plain diffusion. They can also be accommodated by models with, e.g., convection and/or reacceleration. There is no need for breaks in the source spectral indices below ~1 TeV/n. Fits to the primary fluxes alone do not provide physical constraints on the transport parameters. If we leave the source spectrum free, parametrised by the form dQ/dE = q βη_S R-α, and fix the diffusion coefficient K(R) = K_0βη_T Rδ so as to reproduce the B/C ratio, the MCMC analysis constrains the source spectral index α to be in the range 2.2-2.5 for all primary species up to Fe, regardless of the value of the diffusion slope δ. The values of the parameter ηS describing the low-energy shape of the source spectrum are degenerate with the parameter ηT describing the low-energy shape of the diffusion coefficient: we find ηS - ηT ≈ 0 for p and He data, but

  12. CRITICAL EVALUATION OF THE DIFFUSION HYPOTHESIS IN THE THEORY OF POROUS MEDIA VOLATILE ORGANIC COMPOUND (VOC) SOURCES AND SINKS

    EPA Science Inventory

    The paper proposes three alternative, diffusion-limited mathematical models to account for volatile organic compound (VOC) interactions with indoor sinks, using the linear isotherm model as a reference point. (NOTE: Recent reports by both the U.S. EPA and a study committee of the...

  13. Temporal changes of diffusion patterns in mild traumatic brain injury via group-based semi-blind source separation.

    PubMed

    Jing, Min; McGinnity, T Martin; Coleman, Sonya; Fuchs, Armin; Kelso, J A Scott

    2015-07-01

    Despite the emerging applications of diffusion tensor imaging (DTI) to mild traumatic brain injury (mTBI), very few investigations have been reported related to temporal changes in quantitative diffusion patterns, which may help to assess recovery from head injury and the long term impact associated with cognitive and behavioral impairments caused by mTBI. Most existing methods are focused on detection of mTBI affected regions rather than quantification of temporal changes following head injury. Furthermore, most methods rely on large data samples as required for statistical analysis and, thus, are less suitable for individual case studies. In this paper, we introduce an approach based on spatial group independent component analysis (GICA), in which the diffusion scalar maps from an individual mTBI subject and the average of a group of controls are arranged according to their data collection time points. In addition, we propose a constrained GICA (CGICA) model by introducing the prior information into the GICA decomposition process, thus taking available knowledge of mTBI into account. The proposed method is evaluated based on DTI data collected from American football players including eight controls and three mTBI subjects (at three time points post injury). The results show that common spatial patterns within the diffusion maps were extracted as spatially independent components (ICs) by GICA. The temporal change of diffusion patterns during recovery is revealed by the time course of the selected IC. The results also demonstrate that the temporal change can be further influenced by incorporating the prior knowledge of mTBI (if available) based on the proposed CGICA model. Although a small sample of mTBI subjects is studied, as a proof of concept, the preliminary results provide promising insight for applications of DTI to study recovery from mTBI and may have potential for individual case studies in practice. PMID:25167559

  14. Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media

    PubMed Central

    Zeinali-Rafsanjani, B.; Mosleh-Shirazi, M. A.; Faghihi, R.; Karbasi, S.; Mosalaei, A.

    2015-01-01

    To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam. PMID:26170553

  15. Interpretation of Gravity Data using 3D Euler Deconvolution, Tilt Angle, Horizontal Tilt Angle and Source Edge Approximation of the North-West Himalaya

    NASA Astrophysics Data System (ADS)

    Ghosh, Gopal K.

    2016-08-01

    The collision of the Indian plate and the Eurasian plate created shortening and imbrications with thrusting and faulting which influences northward tectonic movement. This plate movement has divided the Himalaya into four parts, viz. Outer Himalaya, Lesser Himalaya, Greater Himalaya, and Tethys Himalaya. The crystalline basement rock plays an imperative role for structural and tectonic association. The study has been carried out near Rishikesh-Badrinath neighborhood in the northwestern part of the Himalayan girdle with multifarious tectonic set up with thrusted and faulted geological setting. In this study area, 3D Euler deconvolution, horizontal gradient analysis, tilt angle (TILT) and horizontal tilt angle (TDX) analysis have been carried out using gravity data to delineate the subsurface geology and heterogeneity in the northwestern part of Himalaya. The Euler depth solutions suggest the source depth of about 12 km and various derivative analyses suggest the trend of the delineation thrust-fault boundaries along with the dip and strike direction in the study area.

  16. Influence of the electron cross-field diffusion in negative ion sources with the transverse magnetic field and the plasma-electrode bias

    SciTech Connect

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2010-02-15

    The physical mechanisms involved in the extraction of H{sup -} ions from the negative ion source are studied with a PIC 2D3V code. The effect of a weak magnetic field transverse to the extraction direction is taken into account, along with a variable bias voltage applied on the plasma electrode (PE). In addition to previous modeling works, the electron diffusion across the magnetic field is taken into account as a simple one-dimensional random-walk process. The results show that without PE bias, the value of the diffusion coefficient has a significant influence upon the value of the extracted H{sup -} current. However, the value of this coefficient does not affect qualitatively the mechanism leading to the peak of extracted H{sup -} ion current observed for an optimum value of the PE bias.

  17. Handbook on atmospheric diffusion

    SciTech Connect

    Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.

    1982-01-01

    Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)

  18. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    SciTech Connect

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.

    2014-05-21

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  19. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    SciTech Connect

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.

  20. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  1. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  2. The use of sediment colour measured by diffuse reflectance spectrometry to determine sediment sources: Application to the Attert River catchment (Luxembourg)

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, Núria; Udelhoven, Thomas; Krein, Andreas; Gallart, Francesc; Iffly, Jean F.; Ziebel, Johanna; Hoffmann, Lucien; Pfister, Laurent; Walling, Desmond E.

    2010-03-01

    SummaryColour coefficients measured by diffuse reflectance spectrometry were used to quantify suspended sediment sources using the fingerprinting approach. The investigations were undertaken in the Attert River catchment (NW Luxembourg), where time-integrated suspended sediment samples and samples of potential sediment sources (topsoil and channel bank samples) were collected, in order to test the ability of colour to provide a fingerprint property for sediment source tracing. Sediment colour coefficients were computed from diffuse reflectance spectrometry measurements (ASD FieldSpec-II spectrometer, 0.4-2.5 μm) taken over the visible wavelength range. The linearly additive behaviour of these colour coefficients, which is an important requirement for its use in the mixing models, was tested in the laboratory by means of artificial mixtures. Model prediction uncertainty associated with the spatial variability of source tracer properties was assessed using an inclusive approach to mixing models based on Bayesian error estimation and employing Monte-Carlo simulation. The results provided by the colour measurements were compared with those obtained using the classical fingerprinting approach in the same catchments (i.e. using geochemical, radionuclide and organic tracers). Even though neither of the two approaches is definitive, and the results involve considerable uncertainty, the consistency between the approaches encouraged the extension of the approach to include measurements on the particles retained on glass fibre filters. This permitted use of small samples collected by an automatic sampler to investigate source variability during a storm runoff event. Preliminary results obtained using this approach demonstrated that colour provides a useful property for use in sediment source fingerprinting investigations, which is both fast and easy to measure. It also provides a rapid and cheap means of investigating hillslope-to-channel coupling and the transfer of eroded

  3. Methodology and apparatus for diffuse photon mimaging

    DOEpatents

    Feng, Shechao C.; Zeng, Fanan; Zhao, Hui-Lin

    1997-12-09

    Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue.

  4. Methodology and apparatus for diffuse photon imaging

    DOEpatents

    Feng, S.C.; Zeng, F.; Zhao, H.L.

    1997-12-09

    Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue. 58 figs.

  5. Diffusion-convection function of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zhang, G.; Yang, G.

    1985-01-01

    The fundamental properties and some numerical results of the solution of the diffusion equation of an impulsive cosmic-ray point source in an uniform, unbounded and spherically symmetrical moving medium is presented. The diffusion-convection(D-C) function is an elementary composite function of the solution of the D-C equation for the particles injected impulsively from a diffusive point source into the medium. It is the analytic solution derived by the dimensional method for the propagation equation of solar cosmic rays in the heliosphere, i.e. the interplanetary space. Because of the introduction of convection effect of solar wind, a nonhomogeneous term appears in the propagation equation, it is difficult to express its solution in terms of the ordinary special functions. The research made so far has led to a solution containing only the first order approximation of the convection effect.

  6. Li diffusion in zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2010-09-01

    Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0-1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O-CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703-1.151°C at 1 atm for experiments run with the spodumene source: D_{text{Li}} = 7.17 × 10^{ - 7} { exp }( - 275 ± 11 {text{kJmol}}^{ - 1} /{text{RT}}){text{m}}2 {text{s}}^{ - 1}. Diffusivities are similar for transport parallel to the c-axis, indicating little anisotropy for Li diffusion in zircon. Similar Li diffusivities were also found for experiments run under fluid-present conditions and for the experiment run with the Dy-bearing source. Li diffusion is considerably faster than diffusion of other cations in zircon, with a smaller activation energy for diffusion. Although Li diffusion in zircon is comparatively rapid, zircons will be moderately retentive of Li signatures at mid-crustal metamorphic temperatures, but they are unlikely to retain this information for geologically significant times under high-grade metamorphism.

  7. Diffusion of a linear-source passive contaminant by a turbulent flow - Effect of an imposed uniform deformation

    NASA Astrophysics Data System (ADS)

    Polychronidis, H. C.; Marechal, J.

    The thermal wake of a heated wire in a 9-m/sec turbulent flow subjected to uniform compression or expansion by the section geometry is investigated experimentally, considering the heat of the wire as a passive contaminant. One working section has an inlet 15 cm high and 60 cm wide tapering smoothly over its 1-m length to an outlet 60 cm high and 15 cm wide; the other has inlet and outlet 15 cm high and 60 cm wide tapering to 30 by 30 cm at the midpoint of its 1-m length. Mean and fluctuating temperature and velocity fields and temperature-signal probability-density functions are determined, and the results are presented graphically. It is shown that turbulent diffusion is potentiated by compression and suppressed by expansion. A theoretical model of thermal-wake structure is proposed. The design of the test apparatus is treated in detail in an appendix.

  8. Determination of transport wind speed in the gaussian plume diffusion equation for low-lying point sources

    NASA Astrophysics Data System (ADS)

    Wang, I. T.

    A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.

  9. Perpendicular Diffusion in the Transport of Solar Energetic Particles from Unconnected Sources: The Counter-streaming Particle Beams Revisited

    NASA Astrophysics Data System (ADS)

    He, H.-Q.

    2015-12-01

    In some solar energetic particle (SEP) events, a counter-streaming particle beam with a deep depression of flux at ∼ 90^\\circ pitch angle during the beginning phase is observed. Two different interpretations exist within the community to explain this interesting phenomenon. One explanation invokes the hypothesis of an outer reflecting boundary or a magnetic mirror beyond the observer. The other one considers the effect of perpendicular diffusion on the transport process of SEPs in interplanetary space. In this work, we revisit the problem of counter-streaming particle beams observed in SEP events and discuss the possible mechanisms responsible for the formation of this phenomenon. We clarify some results in previous works.

  10. Deep Pacific ventilation ages during the last deglaciation: Evaluating the influence of diffusive mixing and source region reservoir age

    NASA Astrophysics Data System (ADS)

    Lund, David C.

    2013-11-01

    Enhanced ventilation of the deep ocean during the last deglaciation may have caused the rise in atmospheric carbon dioxide that drove Earth's climate from a glacial to interglacial state. Recent results based on the projection age method, however, suggest the ventilation rate of the deep Pacific slowed during the deglaciation, opposite the expected pattern (Lund et al., 2011). Because the projection age method does not account for tracer diffusion (Adkins and Boyle, 1997) it can yield spurious results and therefore requires validation with alternative techniques. Here ventilation ages are determined using the transit-time equilibration-time distribution (TTD-ETD) method which explicitly accounts for diffusive mixing in the ocean interior (DeVries and Primeau, 2010). The overall time history of deep Pacific TTD-ETD and projection ages is very similar; both show a 1000-yr increase in ventilation age during Heinrich Stadial 1 (HS1; 14.5-17.5 kyr BP) and a 500-yr increase during the Younger Dryas (YD). The similarity is due in part to the use of projection age error estimates that take into account uncertainty in both calendar age and benthic 14C age. Centennial-scale offsets between the TTD-ETD and projection ages are due primarily to the different approaches used to estimate surface ocean radiocarbon content. Both the TTD-ETD and projection age results imply that the ventilation rate of the deep Pacific decreased during the deglaciation, opposite the pattern expected if Southern Ocean upwelling and enhanced meridional overturning drove outgassing of CO2 from the abyss. Variations in surface water reservoir age could cause an apparent shift in deep Pacific ventilation age but existing proxy records from the Southern Ocean appear to be inconsistent with such a driver.

  11. Search for Point-like Sources of Ultra-high Energy Neutrinos at the Pierre Auger Observatory and Improved Limit on the Diffuse Flux of Tau Neutrinos

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-08-01

    The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E ν between 1017 eV and 1020 eV from point-like sources across the sky south of +55° and north of -65° declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ~3.5 years of a full surface detector array for the Earth-skimming channel and ~2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k PS · E -2 ν from a point-like source, 90% confidence level upper limits for k PS at the level of ≈5 × 10-7 and 2.5 × 10-6 GeV cm-2 s-1 have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.

  12. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    NASA Technical Reports Server (NTRS)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  13. The diffuse neutrino flux from FR-II radio galaxies and blazars: A source property based estimate

    NASA Astrophysics Data System (ADS)

    Becker, Julia K.; Biermann, Peter L.; Rhode, Wolfgang

    2005-05-01

    Water and ice Cherenkov telescopes of the present and future aim for the detection of a neutrino signal from extraterrestrial sources at energies Eν > PeV [Woschnagg and AMANDA Collaboration, Astro-ph/0409423, talk at Neutrino 2004; Montaruli, in: Peter W. Gorham, Particle Astrophysics Instrumentation, Proceedings of the SPIE, vol. 4858, 2003, p. 92; IceCube Collaboration, Astropart. Phys. 20 (2004) 507]. Some of the most promising extragalactic sources are active galactic nuclei (AGN). In this paper, the neutrino flux from two kinds of AGN sources will be estimated assuming pγ interactions in the jets of the AGN. The first analyzed sample contains FR-II radio galaxies while the second AGN type examined are blazars. The result is highly dependent on the proton's index of the energy spectrum. To normalize the spectrum, the connection between neutrino and disk luminosity will be used by applying the jet-disk symbiosis model from Falcke and Biermann [Astron. Astrophys. 293 (1995) 665]. The maximum proton energy and thus, also the maximum neutrino energy of the source is connected to its disk luminosity, which was shown by Lovelace [Nature 262 (1976) 649] and was confirmed by Falcke et al. [Astron. Astrophys. 298 (1995) 375].

  14. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian

    2014-02-01

    Using dynamic, mass budget, and empirical models, we quantified sulphate-sulphur (SO4-S) leaching from soils in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900-2010). SO4-S inputs to soils with synthetic fertilisers and atmospheric deposition increased in the 1950s-1980s, then rapidly decreased (~80%), and remained low since the middle 1990s. The proportion of drained agricultural land rapidly increased from 4 to 43% between the 1950s and 1990s; then the draining ability of the system slowly decreased due to its ageing. Sulphate concentrations in the Vltava exhibited similar trends as the external SO4-S inputs, suggesting that they could be explained by changes in atmospheric and fertiliser S inputs. The available data and modelling, however, showed that (i) internal SO4-S sources (mineralization of soil organic S in the drained agricultural land), (ii) a hysteresis in SO4-S leaching from forest soils (a net S retention at the high S inputs and then a net release at the lowered inputs), and (iii) hydrology must be taken into account. An empirical model was then employed, based on parameters representing hydrology (discharge), external SO4-S sources (inputs by synthetic fertilisers and atmospheric deposition), and internal SO4-S sources (mineralization related to soil drainage). The model explained 84% of the observed variability in annual SO4-S concentrations in the Vltava river during 1900-2010 and showed that forest soils were a net sink (105 kg ha(-1)) while agricultural land was a net source (55 kg ha(-1)) of SO4-S during 1960-2010. In the late 1980s, forest soils changed from a sink to a source of S, and the present release of SO4-S accumulated in forest soils thus delays recovery of surface waters from acidification, while S losses from agricultural soils increase the risk of future S deficiency in S-demanding crops.

  15. Magnetoelectric charge states of matter-energy. A second approximation. Part VII. Diffuse relativistic superconductive plasma. Measurable and non-measurable physical manifestations. Kirlian photography. Laser phenomena. Cosmic effects on chemical and biological systems.

    PubMed

    Cope, F W

    1980-01-01

    Experimental evidence suggests that all objects, and especially living objects, contain and are surrounded by diffuse clouds of matter-energy probably best considered as a superconductive plasma state and best analyzed by application of an extended form of the Einstein special theory of relativity. Such a plasma state would have physical properties that for relativistic reasons the experimentalists could not expect to measure, and also those he could expect to measure. Not possible to measure should be (a) absorption or reflection of light, (b) electric charge mobilities of Hall effects, and (c) any particulate structure within the plasma. Possible to measure should be (a) channel formation ("arcing") in high applied electric fields (e.g., as in Kirlian photography), (b) effects of the plasma on temperatures and potentials of electrons in solid objects moving through that plasma, (c) facilitation of coupling between electromagnetic oscillations in sets of adjacent molecules, resulting in facilitation of laser and maser emissions of electromagnetic waves and in facilitation of geometrical alignment of adjacent molecules, and (d) magnetic and electric flux trapping with resultant magnetic and/or electric dipole moments. Experimental evidence suggests that diffuse superconductive plasma may reach the earth from the sun, resulting in diurnal and seasonal fluctuations in rates of antigen-antibody reactions as well as in rates of precipitation and crystallization of solids from solutions.

  16. Magnetoelectric charge states of matter-energy. A second approximation. Part VII. Diffuse relativistic superconductive plasma. Measurable and non-measurable physical manifestations. Kirlian photography. Laser phenomena. Cosmic effects on chemical and biological systems.

    PubMed

    Cope, F W

    1980-01-01

    Experimental evidence suggests that all objects, and especially living objects, contain and are surrounded by diffuse clouds of matter-energy probably best considered as a superconductive plasma state and best analyzed by application of an extended form of the Einstein special theory of relativity. Such a plasma state would have physical properties that for relativistic reasons the experimentalists could not expect to measure, and also those he could expect to measure. Not possible to measure should be (a) absorption or reflection of light, (b) electric charge mobilities of Hall effects, and (c) any particulate structure within the plasma. Possible to measure should be (a) channel formation ("arcing") in high applied electric fields (e.g., as in Kirlian photography), (b) effects of the plasma on temperatures and potentials of electrons in solid objects moving through that plasma, (c) facilitation of coupling between electromagnetic oscillations in sets of adjacent molecules, resulting in facilitation of laser and maser emissions of electromagnetic waves and in facilitation of geometrical alignment of adjacent molecules, and (d) magnetic and electric flux trapping with resultant magnetic and/or electric dipole moments. Experimental evidence suggests that diffuse superconductive plasma may reach the earth from the sun, resulting in diurnal and seasonal fluctuations in rates of antigen-antibody reactions as well as in rates of precipitation and crystallization of solids from solutions. PMID:7454856

  17. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  18. The Diffuse Emission and a Variable Ultraluminous X-Ray Point Source in the Elliptical Galaxy NGC 3379

    NASA Astrophysics Data System (ADS)

    David, Laurence P.; Jones, Christine; Forman, William; Murray, Steven S.

    2005-12-01

    A Chandra observation of the intermediate-luminosity (MB=-20) elliptical galaxy NGC 3379 resolves 75% of the X-ray emission within the central 5 kpc into point sources. Spectral analysis of the remaining unresolved emission within the central 770 pc indicates that 90% of the emission probably arises from undetected point sources, while 10% arises from thermal emission from kT=0.6 keV gas. Assuming a uniform density distribution in the central region of the galaxy gives a gas mass of 5×105 Msolar. Such a small amount of gas can be supplied by stellar mass loss in only 107 yr. Thus, the gas must be accreting into the central supermassive black hole at a very low radiative efficiency as in the ADAF or RIAF models, or it is being expelled in a galactic wind driven by the same AGN feedback mechanism as that observed in cluster cooling flows. If the gas is being expelled in an AGN-driven wind, then the ratio of mechanical to radio power of the AGN must be 104, which is comparable to that measured in cluster cooling flows that have recently been perturbed by radio outbursts. Only 8% of the detected point sources are coincident with globular cluster positions, which is significantly less than that found among other elliptical galaxies observed by Chandra. The low specific frequency of globular clusters and the small fraction of X-ray point sources associated with globular clusters in NGC 3379 is more similar to the properties of lenticular galaxies rather than elliptical galaxies. The brightest point source in NGC 3379 is located 360 pc from the central AGN with a peak luminosity of 3.5×1039 ergs s-1, which places it in the class of ultraluminous X-ray point sources (ULXs). Analysis of an archival ROSAT HRI observation of NGC 3379 shows that this source was at a comparable luminosity 5 yr prior to the Chandra observation. The spectrum of the ULX is well described by a power-law model with Γ=1.6+/-0.1 and galactic absorption, similar to other ULXs observed by Chandra and

  19. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  20. [Quantities analysis of the infrared diffuse reflection spectrum of hydrocarbon source rocks by OSC-iPLS].

    PubMed

    Song, Ning; Xu, Xiao-Xuan; Wang, Bin; Zhang, Cun-Zhou

    2009-02-01

    In many cases, the scattering can be an overpowering contributor to the spectrum, sometimes accounting for most of the variance in the data. Although the degree of scattering is dependent on the wavelength of the light that is used and the particle size and refractive index of the sample, the scattering is not uniform throughout the spectrum. In order to remove the effects of scattering and noise on multivariate calibration of IR spectral signals, orthogonal signal correction (OSC) was used as a method to preprocess the infrared spectra of the hydrocarbon source rocks to be quantitatively determined, thus to establish the calibration model of hydrocarbon source rocks before and after pretreatment by inetval partial least square (iPLS). Pretreatment was smoother and more orderly array. This indicated that the major information in hydrocarbon source rocks spectra could be reserved while part of noise was removed by OSC method. In this study, pretreatment calibration model was obtained, the model's correlation coefficient is 0.994 04 and RMSE is 0.635 2, but with no pretreatment the calibration model's correlation coefficient is 0.770 9 and RMSE is 3.925 7.

  1. Approximate Bayesian multibody tracking.

    PubMed

    Lanz, Oswald

    2006-09-01

    Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730

  2. Code System to Solve the Few-Group Neutron Diffusion Equation Utilizing the Nodal Expansion Method (NEM) for Eigenvalue, Adjoint, and Fixed-Source

    2004-04-21

    Version 04 NESTLE solves the few-group neutron diffusion equation utilizing the NEM. The NESTLE code can solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- ormore » four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) if desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed.« less

  3. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    NASA Astrophysics Data System (ADS)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  4. Approximation of Laws

    NASA Astrophysics Data System (ADS)

    Niiniluoto, Ilkka

    2014-03-01

    Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).

  5. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    PubMed

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.

  6. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    SciTech Connect

    Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V

    2011-04-30

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)

  7. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Cao, Jian-Zhu; Sun, Li-Feng

    2011-05-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (UO2) particle is built. The adsorption effect of the fission product on the surface of the UO2 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag—Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.

  8. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    NASA Astrophysics Data System (ADS)

    Dolotov, L. E.; Sinichkin, Yu P.; Tuchin, Valerii V.; Al'tshuler, G. B.; Yaroslavskii, I. V.

    2011-04-01

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption.

  9. Alternate methods of applying diffusants to silicon solar cells. [screen printing of thick-film paste materials and vapor phase transport from solid sources

    NASA Technical Reports Server (NTRS)

    Brock, T. W.; Field, M. B.

    1979-01-01

    Low-melting phosphate and borate glasses were screen printed on silicon wafers and heated to form n and p junctions. Data on surface appearance, sheet resistance and junction depth are presented. Similar data are reported for vapor phase transport from sintered aluminum metaphosphate and boron-containing glass-ceramic solid sources. Simultaneous diffusion of an N(+) layer with screen-printed glass and a p(+) layer with screen-printed Al alloy paste was attempted. No p(+) back surface field formation was achieved. Some good cells were produced but the heating in an endless-belt furnace caused a large scatter in sheet resistance and junction depth for three separate lots of wafers.

  10. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.

    2004-01-01

    The statistical watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes) was used to estimate the sources and transport of total phosphorus (TP) in surface waters of the United States. We calibrated the model using stream measurements of TP from 336 watersheds of mixed land use and spatial data on topography, soils, stream hydrography, and land use (agriculture, forest, shrub/grass, urban). The model explained 87% of the spatial variability in log transformed stream TP flux (kg yr-1). Predictions of stream yield (kg ha-1 yr-1) were typically within 45% of the observed values at the monitoring sites. The model identified appreciable effects of soils, streams, and reservoirs on TP transport, The estimated aquatic rates of phosphorus removal declined with increasing stream size and rates of water flushing in reservoirs (i.e. areal hydraulic loads). A phosphorus budget for the 2.9 million km2 Mississippi River Basin provides a detailed accounting of TP delivery to streams, the removal of TP in surface waters, and the stream export of TP from major interior watersheds for sources associated with each land-use type. ?? US Government 2004.

  11. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model.

    PubMed

    Alexander, R B; Smith, R A; Schwarz, G E

    2004-01-01

    The statistical watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes) was used to estimate the sources and transport of total phosphorus (TP) in surface waters of the United States. We calibrated the model using stream measurements of TP from 336 watersheds of mixed land use and spatial data on topography, soils, stream hydrography, and land use (agriculture, forest, shrub/grass, urban). The model explained 87% of the spatial variability in log transformed stream TP flux (kg yr(-1)). Predictions of stream yield (kg ha(-1) yr(-1)) were typically within 45% of the observed values at the monitoring sites. The model identified appreciable effects of soils, streams, and reservoirs on TP transport. The estimated aquatic rates of phosphorus removal declined with increasing stream size and rates of water flushing in reservoirs (i.e. areal hydraulic loads). A phosphorus budget for the 2.9 million km2 Mississippi River Basin provides a detailed accounting of TP delivery to streams, the removal of TP in surface waters, and the stream export of TP from major interior watersheds for sources associated with each land-use type. PMID:15053093

  12. Multigroup Complex Geometry Neutron Diffusion Code System.

    2002-12-18

    Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates.more » The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.« less

  13. Multigroup Complex Geometry Neutron Diffusion Code System.

    SciTech Connect

    MCCALLIEN, C. W.J.

    2002-12-18

    Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates. The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.

  14. Globally accelerated reconstruction algorithm for diffusion tomography with continuous-wave source in an arbitrary convex shape domain.

    PubMed

    Pantong, Natee; Su, Jianzhong; Shan, Hua; Klibanov, Michael V; Liu, Hanli

    2009-03-01

    A new numerical imaging algorithm is presented for reconstruction of optical absorption coefficients from near-infrared light data with a continuous-wave source. As a continuation of our earlier efforts in developing a series of methods called "globally convergent reconstruction methods" [J. Opt. Soc. Am. A23, 2388 (2006)], this numerical algorithm solves the inverse problem through solution of a boundary-value problem for a Volterra-type integral partial differential equation. We deal here with the particular issues in solving the inverse problems in an arbitrary convex shape domain. It is demonstrated in numerical studies that this reconstruction technique is highly efficient and stable with respect to the complex distribution of actual unknown absorption coefficients. The method is particularly useful for reconstruction from a large data set obtained from a tissue or organ of particular shape, such as the prostate. Numerical reconstructions of a simulated prostate-shaped phantom with three different settings of absorption-inclusions are presented.

  15. SEARCH FOR POINT-LIKE SOURCES OF ULTRA-HIGH ENERGY NEUTRINOS AT THE PIERRE AUGER OBSERVATORY AND IMPROVED LIMIT ON THE DIFFUSE FLUX OF TAU NEUTRINOS

    SciTech Connect

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Collaboration: Pierre Auger Collaboration; and others

    2012-08-10

    The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E{sub {nu}} between 10{sup 17} eV and 10{sup 20} eV from point-like sources across the sky south of +55 Degree-Sign and north of -65 Degree-Sign declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of {approx}3.5 years of a full surface detector array for the Earth-skimming channel and {approx}2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k{sub PS} {center_dot} E {sup -2}{sub {nu}} from a point-like source, 90% confidence level upper limits for k{sub PS} at the level of Almost-Equal-To 5 Multiplication-Sign 10{sup -7} and 2.5 Multiplication-Sign 10{sup -6} GeV cm{sup -2} s{sup -1} have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.

  16. Sparse pseudospectral approximation method

    NASA Astrophysics Data System (ADS)

    Constantine, Paul G.; Eldred, Michael S.; Phipps, Eric T.

    2012-07-01

    Multivariate global polynomial approximations - such as polynomial chaos or stochastic collocation methods - are now in widespread use for sensitivity analysis and uncertainty quantification. The pseudospectral variety of these methods uses a numerical integration rule to approximate the Fourier-type coefficients of a truncated expansion in orthogonal polynomials. For problems in more than two or three dimensions, a sparse grid numerical integration rule offers accuracy with a smaller node set compared to tensor product approximation. However, when using a sparse rule to approximately integrate these coefficients, one often finds unacceptable errors in the coefficients associated with higher degree polynomials. By reexamining Smolyak's algorithm and exploiting the connections between interpolation and projection in tensor product spaces, we construct a sparse pseudospectral approximation method that accurately reproduces the coefficients of basis functions that naturally correspond to the sparse grid integration rule. The compelling numerical results show that this is the proper way to use sparse grid integration rules for pseudospectral approximation.

  17. Approximations for photoelectron scattering

    NASA Astrophysics Data System (ADS)

    Fritzsche, V.

    1989-04-01

    The errors of several approximations in the theoretical approach of photoelectron scattering are systematically studied, in tungsten, for electron energies ranging from 10 to 1000 eV. The large inaccuracies of the plane-wave approximation (PWA) are substantially reduced by means of effective scattering amplitudes in the modified small-scattering-centre approximation (MSSCA). The reduced angular momentum expansion (RAME) is so accurate that it allows reliable calculations of multiple-scattering contributions for all the energies considered.

  18. Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy.

    PubMed

    Sharma, Manu; Hennessy, Ricky; Markey, Mia K; Tunnell, James W

    2013-12-01

    A two-layer Monte Carlo lookup table-based inverse model is validated with two-layered phantoms across physiologically relevant optical property ranges. Reflectance data for source-detector separations of 370 μm and 740 μm were collected from these two-layered phantoms and top layer thickness, reduced scattering coefficient and the top and bottom layer absorption coefficients were extracted using the inverse model and compared to the known values. The results of the phantom verification show that this method is able to accurately extract top layer thickness and scattering when the top layer thickness ranges from 0 to 550 μm. In this range, top layer thicknesses were measured with an average error of 10% and the reduced scattering coefficient was measured with an average error of 15%. The accuracy of top and bottom layer absorption coefficient measurements was found to be highly dependent on top layer thickness, which agrees with physical expectation; however, within appropriate thickness ranges, the error for absorption properties varies from 12-25%. PMID:24466475

  19. Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy

    PubMed Central

    Sharma, Manu; Hennessy, Ricky; Markey, Mia K.; Tunnell, James W.

    2013-01-01

    A two-layer Monte Carlo lookup table-based inverse model is validated with two-layered phantoms across physiologically relevant optical property ranges. Reflectance data for source-detector separations of 370 μm and 740 μm were collected from these two-layered phantoms and top layer thickness, reduced scattering coefficient and the top and bottom layer absorption coefficients were extracted using the inverse model and compared to the known values. The results of the phantom verification show that this method is able to accurately extract top layer thickness and scattering when the top layer thickness ranges from 0 to 550 μm. In this range, top layer thicknesses were measured with an average error of 10% and the reduced scattering coefficient was measured with an average error of 15%. The accuracy of top and bottom layer absorption coefficient measurements was found to be highly dependent on top layer thickness, which agrees with physical expectation; however, within appropriate thickness ranges, the error for absorption properties varies from 12–25%. PMID:24466475

  20. Volumetric apparatus for hydrogen adsorption and diffusion measurements: Sources of systematic error and impact of their experimental resolutions

    SciTech Connect

    Policicchio, Alfonso; Maccallini, Enrico; Kalantzopoulos, Georgios N.; Cataldi, Ugo; Abate, Salvatore; Desiderio, Giovanni

    2013-10-15

    The development of a volumetric apparatus (also known as a Sieverts’ apparatus) for accurate and reliable hydrogen adsorption measurement is shown. The instrument minimizes the sources of systematic errors which are mainly due to inner volume calibration, stability and uniformity of the temperatures, precise evaluation of the skeletal volume of the measured samples, and thermodynamical properties of the gas species. A series of hardware and software solutions were designed and introduced in the apparatus, which we will indicate as f-PcT, in order to deal with these aspects. The results are represented in terms of an accurate evaluation of the equilibrium and dynamical characteristics of the molecular hydrogen adsorption on two well-known porous media. The contribution of each experimental solution to the error propagation of the adsorbed moles is assessed. The developed volumetric apparatus for gas storage capacity measurements allows an accurate evaluation over a 4 order-of-magnitude pressure range (from 1 kPa to 8 MPa) and in temperatures ranging between 77 K and 470 K. The acquired results are in good agreement with the values reported in the literature.

  1. Diffuse CO2 Emanations from a Deep Magmatic Source-Multiphase Dynamics, Soil Impacts, and Lessons for Sequestration Monitoring

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Werner, C. A.; Schulz, M. S.; Howle, J. F.; Farrar, C. D.; Smith, T. R.; Rogie, J. D.

    2011-12-01

    Naturally occurring emissions of nearly pure CO2 at Mammoth Mountain, California, have been suggested as an analog of possible leakage from large-scale carbon capture and sequestration operations. Impacts of sustained elevated levels (>20%) of soil CO2 are greater than the observable forest dieback. Repeated soil-transect studies six and 22 years after onset of CO2 emissions demonstrate substantial degradation of base-cation status in the area of active emission. Detailed time series of soil-gas pressures, CO2 concentrations and fluxes, water contents, and snow-cover dynamics show large short-term (minutes-to-days) variability and switching between quasi-stable states, suggesting countercurrent gas and liquid movement within a shared fracture-pore network. Single fluid phase (Darcian-Fickian) approaches are inadequate to explain the gross features of the measured time series; engineering equations developed for two-fluid-phase flow reactors are more likely to apply. Micrometeorological data show that atmospheric forcing affects total CO2 fluxes. Data presented here show that interactions among the atmospheric boundary layer, water in all its forms (snowpack, percolating soil moisture, groundwater), and upward moving CO2 must be taken into account so that changes in surface CO2 concentrations and fluxes due to hydrologic perturbations can be differentiated from those due to changes in sources at depth.

  2. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  3. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  4. Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants

    NASA Astrophysics Data System (ADS)

    Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.

    Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical

  5. Anaerobic degradation of DCM diffusing through clay

    SciTech Connect

    Rowe, R.K.; Hrapovic, L.; Kosaric, N.; Cullimore, D.R.

    1997-12-01

    Two series of diffusion tests were performed to examine the degradation of dichloromethane (DCM) as it diffuses through clay. The first series showed the use of a synthetic leachate with no significant initial bacterial population diffusing through a plug of intact clay; there was an induction period of 95--135 d, during which diffusion was as expected in the absence of degradation, followed by a second stage, where degradation occurred with an apparent half-life of less than 55 d at a temperature of 24 C. The second series of tests examined the diffusion of an actual leachate from the Keele Valley Landfill (KVL) (which provided both nutrients and a source of bacteria), through a compacted clay. In these tests, the induction period was reduced to 40--60 d, after which the apparent half-life was 20 d or less at 27 C. The diffusion coefficient for DCM was approximately 8 {times} 10{sup {minus}10} m{sup 2}/s, with partitioning coefficient K{sub d} = 1.5 cm{sup 3}/g. Biological activity was confirmed by evaluating the change in the concentration of adenosine-5-triphosphate and the biological activity reaction test (BART). The degradation of DCM did not produce any detectable levels of chloromethane.

  6. Source term evaluation for postulated UF{sub 6} release accidents in gaseous diffusion plants -- Summer ventilation mode (non-seismic cases)

    SciTech Connect

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Wendel, M.W.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.

    1996-12-30

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. For the current study, gaseous UF{sub 6} is assumed to get released in the cell housing atmosphere through B-line break at 58.97 kg/s for 10 min and 30 min duration at the Paducah and Portsmouth Gaseous Diffusion Plants. The released UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}) while it disperses throughout the process building. As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. To characterize leakage flow through the cell housing wall, 3-D CFD tool (CFDS-FLOW3D) was used. About 57% of UO{sub 2}F{sub 2} was predicted to be released into the environment. Since HF was treated as vapor, close to 100% was estimated to get released into the environment.

  7. Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution.

    PubMed

    Thomas, I A; Jordan, P; Mellander, P-E; Fenton, O; Shine, O; Ó hUallacháin, D; Creamer, R; McDonald, N T; Dunlop, P; Murphy, P N C

    2016-06-15

    Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants. A new GIS-based HSA Index is presented that improves the identification of HSAs at the sub-field scale by accounting for microtopographic controls. The Index is based on high resolution LiDAR data and a soil topographic index (STI) and also considers the hydrological disconnection of overland flow via topographic impediment from flow sinks. The HSA Index was applied to four intensive agricultural catchments (~7.5-12km(2)) with contrasting topography and soil types, and validated using rainfall-quickflow measurements during saturated winter storm events in 2009-2014. Total flow sink volume capacities ranged from 8298 to 59,584m(3) and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'breakthrough points' and 'delivery points' along surface runoff pathways as vulnerable points where diffuse pollutants could be transported between fields or delivered to the open drainage network, respectively. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips reduced potential costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5years respectively, which included LiDAR DEM acquisition costs. The HSA Index can be used as a hydrologically realistic transport component within a fully evolved sub-field scale CSA model, and can also be used to guide the implementation of 'treatment-train' mitigation strategies concurrent with sustainable agricultural intensification. PMID:26974575

  8. Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution.

    PubMed

    Thomas, I A; Jordan, P; Mellander, P-E; Fenton, O; Shine, O; Ó hUallacháin, D; Creamer, R; McDonald, N T; Dunlop, P; Murphy, P N C

    2016-06-15

    Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants. A new GIS-based HSA Index is presented that improves the identification of HSAs at the sub-field scale by accounting for microtopographic controls. The Index is based on high resolution LiDAR data and a soil topographic index (STI) and also considers the hydrological disconnection of overland flow via topographic impediment from flow sinks. The HSA Index was applied to four intensive agricultural catchments (~7.5-12km(2)) with contrasting topography and soil types, and validated using rainfall-quickflow measurements during saturated winter storm events in 2009-2014. Total flow sink volume capacities ranged from 8298 to 59,584m(3) and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'breakthrough points' and 'delivery points' along surface runoff pathways as vulnerable points where diffuse pollutants could be transported between fields or delivered to the open drainage network, respectively. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips reduced potential costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5years respectively, which included LiDAR DEM acquisition costs. The HSA Index can be used as a hydrologically realistic transport component within a fully evolved sub-field scale CSA model, and can also be used to guide the implementation of 'treatment-train' mitigation strategies concurrent with sustainable agricultural intensification.

  9. Multispecies diffusion models: A study of uranyl species diffusion

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-14

    Rigorous numerical description of multi-species diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication for imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multi-species diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multi-species diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multi-species U(VI) diffusion under steady-state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that a fully coupled diffusion model can be well approximated by a component-based diffusion model, which considers difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be rigorously enforced, if necessary, by adding an artificial kinetic reaction term induced by the charge separation. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from US Department of Energy's Hanford 300A where intragrain diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that has been described using a semi-empirical, multi-rate model

  10. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.

  11. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318

  12. Disentangling sources of anomalous diffusion.

    PubMed

    Thiel, Felix; Flegel, Franziska; Sokolov, Igor M

    2013-07-01

    We show that some important properties of subdiffusion of unknown origin (including ones of mixed origins) can be easily assessed when finding the "fundamental moment" of the corresponding random process, i.e., the one which is additive in time. In subordinated processes, the index of the fundamental moment is inherited from the parent process and its time dependence from the leading one. In models of a particle's motion in disordered potentials, the index is governed by the structural part of the disorder while the time dependence is given by its energetic part.

  13. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  14. Analysis of Finite Difference Discretization Schemes for Diffusion in Spheres with Variable Diffusivity

    PubMed Central

    Versypt, Ashlee N. Ford; Braatz, Richard D.

    2014-01-01

    Two finite difference discretization schemes for approximating the spatial derivatives in the diffusion equation in spherical coordinates with variable diffusivity are presented and analyzed. The numerical solutions obtained by the discretization schemes are compared for five cases of the functional form for the variable diffusivity: (I) constant diffusivity, (II) temporally-dependent diffusivity, (III) spatially-dependent diffusivity, (IV) concentration-dependent diffusivity, and (V) implicitly-defined, temporally- and spatially-dependent diffusivity. Although the schemes have similar agreement to known analytical or semi-analytical solutions in the first four cases, in the fifth case for the variable diffusivity, one scheme produces a stable, physically reasonable solution, while the other diverges. We recommend the adoption of the more accurate and stable of these finite difference discretization schemes to numerically approximate the spatial derivatives of the diffusion equation in spherical coordinates for any functional form of variable diffusivity, especially cases where the diffusivity is a function of position. PMID:25642003

  15. On Stochastic Approximation.

    ERIC Educational Resources Information Center

    Wolff, Hans

    This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…

  16. Optimal approximate doubles

    NASA Astrophysics Data System (ADS)

    Huang, Siendong

    2009-11-01

    The nonlocality of quantum states on a bipartite system \\mathcal {A+B} is tested by comparing probabilistic outcomes of two local observables of different subsystems. For a fixed observable A of the subsystem \\mathcal {A,} its optimal approximate double A' of the other system \\mathcal {B} is defined such that the probabilistic outcomes of A' are almost similar to those of the fixed observable A. The case of σ-finite standard von Neumann algebras is considered and the optimal approximate double A' of an observable A is explicitly determined. The connection between optimal approximate doubles and quantum correlations is explained. Inspired by quantum states with perfect correlation, like Einstein-Podolsky-Rosen states and Bohm states, the nonlocality power of an observable A for general quantum states is defined as the similarity that the outcomes of A look like the properties of the subsystem \\mathcal {B} corresponding to A'. As an application of optimal approximate doubles, maximal Bell correlation of a pure entangled state on \\mathcal {B}(\\mathbb {C}^{2})\\otimes \\mathcal {B}(\\mathbb {C}^{2}) is found explicitly.

  17. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  18. Role of pressure diffusion in non-homogeneous shear flows

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Lele, S. K.; Durbin, P.

    1994-01-01

    A non-local model is presented for approximating the pressure diffusion in calculations of turbulent free shear and boundary layer flows. It is based on the solution of an elliptic relaxation equation which enables local diffusion sources to be distributed over lengths of the order of the integral scale. The pressure diffusion model was implemented in a boundary layer code within the framework of turbulence models based on both the kappa-epsilon-(bar)upsilon(exp 2) system of equations and the full Reynolds stress equations. Model computations were performed for mixing layers and boundary layer flows. In each case, the pressure diffusion model enabled the well-known free-stream edge singularity problem to be eliminated. There was little effect on near-wall properties. Computed results agreed very well with experimental and DNS data for the mean flow velocity, the turbulent kinetic energy, and the skin-friction coefficient.

  19. Optimizing the Zeldovich approximation

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.

    1994-01-01

    We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment

  20. Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments.

    PubMed

    Doody, D G; Archbold, M; Foy, R H; Flynn, R

    2012-01-01

    The Water Framework Directive (WFD) has initiated a shift towards a targeted approach to implementation through its focus on river basin districts as management units and the natural ecological characteristics of waterbodies. Due to its role in eutrophication, phosphorus (P) has received considerable attention, resulting in a significant body of research, which now forms the evidence base for the programme of measures (POMs) adopted in WFD River Basin Management Plans (RBMP). Targeting POMs at critical sources areas (CSAs) of P could significantly improve environmental efficiency and cost effectiveness of proposed mitigation strategies. This paper summarises the progress made towards targeting mitigation measures at CSAs in Irish catchments. A review of current research highlights that knowledge related to P export at field scale is relatively comprehensive however; the availability of site-specific data and tools limits widespread identification of CSA at this scale. Increasing complexity of hydrological processes at larger scales limits accurate identification of CSA at catchment scale. Implementation of a tiered approach, using catchment scale tools in conjunction with field-by-field surveys could decrease uncertainty and provide a more practical and cost effective method of delineating CSA in a range of catchments. Despite scientific and practical uncertainties, development of a tiered CSA-based approach to assist in the development of supplementary measures would provide a means of developing catchment-specific and cost-effective programmes of measures for diffuse P. The paper presents a conceptual framework for such an approach, which would have particular relevance for the development of supplementary measures in High Status Waterbodies (HSW). The cost and resources necessary for implementation are justified based on HSWs' value as undisturbed reference condition ecosystems.

  1. Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments.

    PubMed

    Doody, D G; Archbold, M; Foy, R H; Flynn, R

    2012-01-01

    The Water Framework Directive (WFD) has initiated a shift towards a targeted approach to implementation through its focus on river basin districts as management units and the natural ecological characteristics of waterbodies. Due to its role in eutrophication, phosphorus (P) has received considerable attention, resulting in a significant body of research, which now forms the evidence base for the programme of measures (POMs) adopted in WFD River Basin Management Plans (RBMP). Targeting POMs at critical sources areas (CSAs) of P could significantly improve environmental efficiency and cost effectiveness of proposed mitigation strategies. This paper summarises the progress made towards targeting mitigation measures at CSAs in Irish catchments. A review of current research highlights that knowledge related to P export at field scale is relatively comprehensive however; the availability of site-specific data and tools limits widespread identification of CSA at this scale. Increasing complexity of hydrological processes at larger scales limits accurate identification of CSA at catchment scale. Implementation of a tiered approach, using catchment scale tools in conjunction with field-by-field surveys could decrease uncertainty and provide a more practical and cost effective method of delineating CSA in a range of catchments. Despite scientific and practical uncertainties, development of a tiered CSA-based approach to assist in the development of supplementary measures would provide a means of developing catchment-specific and cost-effective programmes of measures for diffuse P. The paper presents a conceptual framework for such an approach, which would have particular relevance for the development of supplementary measures in High Status Waterbodies (HSW). The cost and resources necessary for implementation are justified based on HSWs' value as undisturbed reference condition ecosystems. PMID:22054589

  2. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    The Deposit Removal Project was undertaken with the support of the U. S. Department of Energy at the East Tennessee Technology Park (ETTP) formerly the Oak Ridge K-25 Site. The project team performed the safe removal of the hydrated uranyl fluoride (UO{sub 2}F{sub 2}) deposits from the K-29 Building of the former Oak Ridge Gaseous Diffusion Plant. The deposits had developed as a result of air leakage into UF{sub 6} gas process pipes; UO{sub 2}F{sub 2} became hydrated by moisture from the air and deposited inside the pipes. The mass, its distribution, and the hydrogen content [that is, the ratio of H to U (H/U)], were the key parameters that controlled the nuclear criticality safety of the deposits. Earlier gamma-ray spectrometry measurements in K-29 had identified the largest deposits in the building. The first and third largest deposits in the building were measured in this program. The first deposit, found in the Unit 2, Cell 7, B-Line Outlet process pipe (called the ''Hockey Stick'') was about 1,300 kg ({+-} 50% uncertainty) at 3.34 wt% {sup 235}U enrichment ({+-}50% uncertainty) and according to the gamma-ray spectroscopy was uniformly distributed. The second deposit (the third-largest deposit in the building), found in the Unit 2, Cell 6, A-Line Outlet process pipe (called the ''Tee-Pipe''), had a uranium deposit estimated to be about 240 kg ({+-} 50% uncertainty) at 3.4 wt % {sup 235}U enrichment ({+-} 20% uncertainty). Before deposit removal activities began, the Deposit Removal Project team needed to survey the inside of the pipes intrusively to assess the nuclear criticality safety of the deposits. Therefore, the spatial distribution of the deposits, the total uranium deposit mass, and the moderation level resulting from hydration of the deposits, all of which affect nuclear criticality safety were required. To perform the task safely and effectively, the Deposit Removal Project team requested that Oak Ridge National Laboratory (ORNL) characterize the two

  3. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A

  4. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  5. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  6. Nodal Diffusion & Transport Theory

    1992-02-19

    DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.

  7. Tungsten diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  8. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  9. Coriolis coupling as a source of non-RRKM effects in triatomic near-symmetric top molecules: Diffusive intramolecular energy exchange between rotational and vibrational degrees of freedom.

    PubMed

    Kryvohuz, M; Marcus, R A

    2010-06-14

    A classical theory is proposed to describe the non-RRKM effects in activated asymmetric top triatomic molecules observed numerically in classical molecular dynamics simulations of ozone. The Coriolis coupling is shown to result in an effective diffusive energy exchange between the rotational and vibrational degrees of freedom. A stochastic differential equation is obtained for the K-component of the rotational angular momentum that governs the diffusion.

  10. Fabrication and characterization of GaSb based thermophotovoltaic cells using Zn diffusion from a doped spin-on glass source

    SciTech Connect

    Dakshinamurthy, S.; Shetty, S.; Bhat, I.; Hitchcock, C.; Gutmann, R.; Charache, G.; Freeman, M.

    1998-06-01

    The GaInSb material system is attractive for application in thermophotovoltaic (TPV) cells since its band gap can be tuned to match the radiation of the emitter. At present, most of the TPV cells are fabricated using epitaxial layers and hence are expensive. To reduce the cost, Zn diffusion using elemental vapors in a semi-closed diffusion system is being pursued by several laboratories. In this paper, the authors present studies carried out on Zn diffusion into n-type (Te-doped) GaSb substrates in an open tube diffusion furnace. The dopant precursor was a 2,000 {angstrom} thick, zinc doped spin-on glass. The diffusion was carried out at temperatures ranging from 550 to 600 C, for times from 1 to 10 hours. The diffused layers were characterized by Hall measurements using step-and-repeat etching by anodic oxidation, secondary ion mass spectrometry (SIMS) measurements and TPV device fabrication. For diffusion carried out at 600 C, the junction depth was 0.3 {micro}m, and the hole concentration near the surface was 5 {times} 10{sup 19}/cm{sup 3}. The external quantum efficiency, measured without any anti-reflection coating, of the TPV cells fabricated using mesa-etching had a maximum value of 38%. Masked diffusion was also carried out by opening windows in a Si{sub 3}N{sub 4} coated, GaSb wafer. TPV cells fabricated on these structures had similar quantum efficiency, but lower dark current.

  11. PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach

    NASA Astrophysics Data System (ADS)

    Witherden, F. D.; Farrington, A. M.; Vincent, P. E.

    2014-11-01

    High-order numerical methods for unstructured grids combine the superior accuracy of high-order spectral or finite difference methods with the geometric flexibility of low-order finite volume or finite element schemes. The Flux Reconstruction (FR) approach unifies various high-order schemes for unstructured grids within a single framework. Additionally, the FR approach exhibits a significant degree of element locality, and is thus able to run efficiently on modern streaming architectures, such as Graphical Processing Units (GPUs). The aforementioned properties of FR mean it offers a promising route to performing affordable, and hence industrially relevant, scale-resolving simulations of hitherto intractable unsteady flows within the vicinity of real-world engineering geometries. In this paper we present PyFR, an open-source Python based framework for solving advection-diffusion type problems on streaming architectures using the FR approach. The framework is designed to solve a range of governing systems on mixed unstructured grids containing various element types. It is also designed to target a range of hardware platforms via use of an in-built domain specific language based on the Mako templating engine. The current release of PyFR is able to solve the compressible Euler and Navier-Stokes equations on grids of quadrilateral and triangular elements in two dimensions, and hexahedral elements in three dimensions, targeting clusters of CPUs, and NVIDIA GPUs. Results are presented for various benchmark flow problems, single-node performance is discussed, and scalability of the code is demonstrated on up to 104 NVIDIA M2090 GPUs. The software is freely available under a 3-Clause New Style BSD license (see www.pyfr.org). Catalogue identifier: AETY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: New style BSD license No. of lines in

  12. Lie group invariant finite difference schemes for the neutron diffusion equation

    SciTech Connect

    Jaegers, P.J.

    1994-06-01

    Finite difference techniques are used to solve a variety of differential equations. For the neutron diffusion equation, the typical local truncation error for standard finite difference approximation is on the order of the mesh spacing squared. To improve the accuracy of the finite difference approximation of the diffusion equation, the invariance properties of the original differential equation have been incorporated into the finite difference equations. Using the concept of an invariant difference operator, the invariant difference approximations of the multi-group neutron diffusion equation were determined in one-dimensional slab and two-dimensional Cartesian coordinates, for multiple region problems. These invariant difference equations were defined to lie upon a cell edged mesh as opposed to the standard difference equations, which lie upon a cell centered mesh. Results for a variety of source approximations showed that the invariant difference equations were able to determine the eigenvalue with greater accuracy, for a given mesh spacing, than the standard difference approximation. The local truncation errors for these invariant difference schemes were found to be highly dependent upon the source approximation used, and the type of source distribution played a greater role in determining the accuracy of the invariant difference scheme than the local truncation error.

  13. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  14. Hierarchical Approximate Bayesian Computation

    PubMed Central

    Turner, Brandon M.; Van Zandt, Trisha

    2013-01-01

    Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436

  15. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  16. Three Approximate Entropies

    NASA Astrophysics Data System (ADS)

    Lubkin, Elihu

    2002-04-01

    In 1993,(E. & T. Lubkin, Int.J.Theor.Phys. 32), 993 (1993) we gave exact mean trace of squared density matrix P for 3 models of an n-dimensional part of an nK-dimensional pure state. Models named: random nK ket (Haar); pure-pure driven by random Hamiltonian (Gauss); Gauss with n,K coupling reset small (weak). Neglecting higher powers of P gives the approximation: ln(n)- defines deficit = (n - 1)/2 which yields deficits, Haar: n((n+K)/(nK+1) - 1)/2 = ( n - 1/n - 1/K + 1/nnK )/2K + Order(f[n] / KKK); Gauss: (n/2)( (n+K)/(nK+1) + 2(nK+1-n-K)/nK(nK+1)(nK+3)) - 1/2 = ( n - 1/n - 1/K + 2/nK - 1/nnK )/2K + Order( f[n]/KKK ); weak: (n/2)(2(K+n)/((K+1)(n+1))) - 1/2 = (n/(n+1))(1 + (n-1)/K - (n-1)/KK + Order(f[n]/KKK)) - 1/2 [unreliable]. These would stay poor even as Karrow∞ unless deficit << 1 bit. Haar and Gauss come out good, but weak has too large a deficit. Though many authors (beginning with Don Page(D.N.Page, PRL 71), 1291 (1993)) have found the exact for Haar, I haven't yet seen exact for Gauss or for weak.

  17. Approximation by hinge functions

    SciTech Connect

    Faber, V.

    1997-05-01

    Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Use of Communications Sources: An Intercultural Investigation of Practices in the US and Russia

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Anderson, Claire J.; Glassman, Myron

    1997-01-01

    effective innovation diffusion which, according to Fischer (1979), is essentially information exchange. And, third, studies of innovative project management have found that information availability was a critical factor in project success or failure (e.g., Link & Zmud, 1987; Tushman, 1978, 1979). We propose that a gap in the literature exists that centers on whether U.S. paradigms of commnunications behavior apply to other cultures. First, we will explore early findings in the U.S. that held that the choice of an information source was a function of the 'law of least effort' rather than quality (e.g., Allen, 1977; Cuinan, 1983; DeWhirst, 1971; Hardy, 1982; O'Reilly, 1982; Rosenberg, 1967). Second, we will explore the contingency approaches such as that of Tushman (1979) and the later work of Daft and Lengel (1984, 1987), Huber and Daft (1987) and Lengel and Daft (1988) who held that information choice was a function of the nature of the task at hand. A third issue to be addressed is the confounding problem of presumed differences between scientists and engineers in information gathering behavior (Allen, 1977). Finally, we will investigate whether cultural differences cast doubt on the applicability of findings from U.S. situations to other cultures.

  19. Vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  20. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  1. Sucrose diffusion in aqueous solution.

    PubMed

    Price, Hannah C; Mattsson, Johan; Murray, Benjamin J

    2016-07-28

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  2. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  3. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): Evidence for the importance of diffuse combustion sources

    SciTech Connect

    Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.

    1999-09-01

    Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.

  4. Influence of diffusion on the kinetics of multisite phosphorylation.

    PubMed

    Gopich, Irina V; Szabo, Attila

    2016-01-01

    When an enzyme modifies multiple sites on a substrate, the influence of the relative diffusive motion of the reactants cannot be described by simply altering the rate constants in the rate equations of chemical kinetics. We have recently shown that, even as a first approximation, new transitions between the appropriate species must also be introduced. The physical reason for this is that a kinase, after phosphorylating one site, can rebind and modify another site instead of diffusing away. The corresponding new rate constants depend on the capture or rebinding probabilities that an enzyme-substrate pair, which is formed after dissociation from one site, reacts at the other site rather than diffusing apart. Here we generalize our previous work to describe both random and sequential phosphorylation by considering inequivalent modification sites. In addition, anisotropic reactive sites (instead of uniformly reactive spheres) are explicitly treated by using localized sink and source terms in the reaction-diffusion equations for the enzyme-substrate pair distribution function. Finally, we show that our results can be rederived using a phenomenological approach based on introducing transient encounter complexes into the standard kinetic scheme and then eliminating them using the steady-state approximation.

  5. Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfven waves

    NASA Technical Reports Server (NTRS)

    Ng, C. K.; Reames, D. V.

    1994-01-01

    We present a model of the focused transport of approximately 1 MeV solar energetic protons through interplanetary Alfven waves that the protons themselves amplify or damp. It is based on the quasi-linear theory but with a phenomenological pitch angle diffusion coefficient in the 'resonance gap.' For initial Alfven wave distributions that give mean free paths greater than approximately 0.5 AU for approximately 1 MeV protons in the inner heliosphere, the model predicts greater than roughly an order of magnitude amplification (damping) in the outward (inward) propagating resonant Alfven waves at less than or approximately equal to o.3 AU heliocentric distance. As the strength of proton source is increased, the peak differential proton intensity at approximately 1 MeV at 1 AU increases to a maximum of approximately 250 particles (/(sq cm)(s)(sr)(MeV)) and then decreases slowly. It may be attenuated by a factor of 5 or more relative to the case without wave evolution, provided that the proton source is sufficiently intense that the resulting peak differential intensity of approximately 1 MeV protons at 1 AU exceeds approximately 200 particles (/(sq cm)(s)(sr)(MeV)). Therefore, in large solar proton events, (1) one may have to take into account self-amplified waves in studying solar particle propagation, (2) the number of accelerated protons escaping from a flare or interplanetary shock may have been underestimated in past studies by a significant factor, and (3) accelerated protons escaping from a traveling interplanetary shock at r less than or approximately equal to 0.3 AU should amplify the ambient hydromagnetic waves siginificantly to make the shock an efficient accelerator, even if initially the mean free path is greater than or approximately equal to 1 AU.

  6. Diffusion in silicon isotope heterostructures

    SciTech Connect

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P

  7. Multispectral breast imaging using a ten-wavelength, 64x64 source/detector channels silicon photodiode-based diffuse optical tomography system

    SciTech Connect

    Li Changqing; Zhao Hongzhi; Anderson, Bonnie; Jiang Huabei

    2006-03-15

    We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.

  8. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  9. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  10. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  11. Phenomenological applications of rational approximants

    NASA Astrophysics Data System (ADS)

    Gonzàlez-Solís, Sergi; Masjuan, Pere

    2016-08-01

    We illustrate the powerfulness of Padé approximants (PAs) as a summation method and explore one of their extensions, the so-called quadratic approximant (QAs), to access both space- and (low-energy) time-like (TL) regions. As an introductory and pedagogical exercise, the function 1 zln(1 + z) is approximated by both kind of approximants. Then, PAs are applied to predict pseudoscalar meson Dalitz decays and to extract Vub from the semileptonic B → πℓνℓ decays. Finally, the π vector form factor in the TL region is explored using QAs.

  12. Minimum Error Fickian Diffusion Coefficients for Mass Diffusion in Multicomponent Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Subramaniam, S.

    1999-04-01

    Mass diffusion in multicomponent gas mixtures is governed by a coupled system of linear equations for the diffusive mass fluxes in terms of thermodynamic driving forces, known as the generalized Stefan-Maxwell equation. In computations of mass diffusion in multicomponent gas mixtures, this coupling between the different components results in considerable computational overhead. Consequently, simplified diffusion models for the diffusive mass fluxes as explicit functions of the driving forces are an attractive alternative. These models can be interpreted as an approximate solution to the Stefan-Maxwell equation. Simplified diffusion models require the specification of “effective” diffusion coefficients which are usually expressed as functions of the binary diffusion coefficients of each species pair in the mixture. Current models for the effective diffusion coefficients are incapable of providing a priori control over the error incurred in the approximate solution. In this paper a general form for diagonal approximations is derived, which accounts for the requirement imposed by the special structure of the Stefan-Maxwell equation that such approximations be constructed in a reduced-dimensional subspace. In addition, it is shown that current models can be expressed as particular cases of two general forms, but not all these models correspond to the general form for diagonal approximations. A new minimum error diagonal approximation (MEDA) model is proposed, based on the criterion that the diagonal approximation minimize the error in the species velocities. Analytic expressions are derived for the MEDA model's effective diffusion coefficients based on this criterion. These effective diffusion coefficients automatically give the correct solution in two important limiting cases: for that of a binary mixture, and for the case of arbitrary number of components with identical binary diffusivities. Although these minimum error effective diffusion

  13. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  14. Thermal diffusivity imaging

    NASA Astrophysics Data System (ADS)

    Gfroerer, Tim; Phillips, Ryan; Rossi, Peter

    2015-11-01

    The tip of a rod is heated with a torch and brought into contact with the center of a metal sheet. A thermal camera is then used to image the temperature profile of the surface as a function of time. The infrared camera is capable of recording radiometric data with 1 mK resolution in nearly 105 pixels, so thermal diffusion can be monitored with unprecedented precision. With a frame rate of approximately 10 Hz, the pace of the data acquisition minimizes the loss of accuracy due to inevitable cooling mechanisms. We report diffusivity constants equal to 1.23 ± 0.06 cm2/s in copper and 0.70 ± 0.05 cm2/s in aluminum. The behavior is modeled with a straightforward but oddly under-utilized one-dimensional finite difference method.

  15. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  16. Ti Diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2006-12-01

    Diffusion of Ti under anhydrous conditions at 1 atmosphere and under fluid-present conditions at 1.1-1.2 GPa has been measured in natural zircon. The source of diffusant for 1-atm experiments was a ZrO2- TiO2-ZrSiO4 mixture, with experiments run in Pt capsules. Diffusion experiments conducted in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source of ground TiO2, ZrSiO4 and SiO2, with oxalic acid added to produce H2O-CO2 vapor and partially melt the solid source material, yielding an assemblage of rutile + zircon + melt + vapor. Resonant nuclear reaction analysis (NRA) with the nuclear reaction ^{48}Ti(p,Γ)^{49}V was used to measure diffusion profiles for both sets of experiments. The following Arrhenius relation was obtained for Ti diffusion normal to c over the temperature range 1350-1550C at one atmosphere: DTi = 3.3x102 exp(-754 ± 56 kJ mol-1 /RT) m2sec-1 Ti diffusivities were found to be similar for experiments run under fluid-present conditions. A fit to all of the data yields the Arrhenius relation D = 1.3x103 exp(-741 ± 46 kJ mol-1 /RT) m2sec-1. These data suggest that zircon should be extremely retentive of Ti chemical signatures, indicating that the recently developed Ti-in-zircon crystallization geothermometer (Watson and Harrison, 2005; Watson et al., 2006) will be quite robust in preserving temperatures of zircon crystallization. Titanium diffuses somewhat faster in zircon than larger tetravalent cations U, Th, and Hf, but considerably more slowly than Pb, the REE, and oxygen; hence Ti crystallization temperatures may be retained under circumstances when radiometric ages or other types of geochemical information are lost. Watson EB, Harrison TM (2005) Science 308, 841-844. Watson EB, Wark DA, Thomas JB (2006) CMP(in press).

  17. Approximating Functions with Exponential Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2005-01-01

    The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…

  18. Diffusion rates for elevated releases

    SciTech Connect

    Ramsdell, J.V.

    1983-11-01

    A search of the literature related to diffusion from elevated sources has determined that an adequate data base exists for use in developing parameterizations for estimating diffusion rates for material released from free standing stacks at nuclear power plants. A review of published data analyses indicates that a new parameterization of horizontal diffusion rates specifically for elevated releases is not likely to significantly change the magnitudes of horizontal diffusion coefficients on the average. However, the uncertainties associated with horizontal diffusion coefficient estimates under any given set of atmospheric conditions could be reduced by a new parameterization. Similarly, a new parameterization of vertical diffusion rates would be unlikely to significantly alter the magnitudes of diffusion coefficients for unstable atmospheric conditons. However, for neutral and stable atmospheric conditions, a new parameterization of vertical diffusion rates might increase vertical diffusion coefficients significantly. The increase would move ground-level time-integrated concentration maxima closer to the plant and would increase the maxima. 55 references, 2 figures, 4 tables.

  19. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  20. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  1. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  2. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  3. Diffusion effects on the CPMG relaxation rate in a dipolar field.

    PubMed

    Ziener, C H; Kampf, T; Jakob, P M; Bauer, W R

    2010-01-01

    The diffusion in the magnetic dipolar field around a sphere is considered. The diffusion is restricted to the space between two concentric spheres, where the inner sphere is the source of the magnetic dipolar field. Analytical expressions for the CPMG transverse relaxation rate as well as the free induction decay and the spin echo time evolution are given in the Gaussian approximation. The influence of the inter-echo time is analyzed. The limiting cases of small and large inter-echo times as well as the short and long time behavior are evaluated.

  4. The Diffuse Extreme Ultraviolet Background

    NASA Technical Reports Server (NTRS)

    Vallerga, John; Slavin, Jonathan

    1996-01-01

    Observations of the diffuse EUV background towards 138 different directions using the spectrometers aboard the Extreme Ultraviolet Explorer satellite (EUVE) have been combined into a spectrum from 150A to 730A and represent an effective exposure of 18 million seconds. There is no significant evidence of any non-local line flux in the resultant spectrum such as that from a hot coronal plasma. These results are inconsistent with the Wisconsin C and B broad-band surveys assuming the source is a logT = 5.8 - 6.1 hot plasma in ionization equilibrium with solar abundances, confirming the previous result of Jelinksy, Vallerga and Edelstein) (hereafter Paper 1) using an observation along the ecliptic with the same instrument. To make these results consistent with the previous broad-band surveys, the plasma responsible for the emission must either be depleted in Fe by a factor of approximately 6, be behind an absorbing slab of neutral H with a column of 2 x 10(exp 19)/sq cm, or not be in collisional ionization equilibrium (CIE). One such non-CIE model (Breitswerdt and Schmutzier) that explains the soft x-ray results is also inconsistent with this EUV data.

  5. Toxic metal dispersion in mining areas: from point source to diffusion pollution. The case of the Mt. Amiata Hg mining district (Southern Tuscany - Italy): new results.

    NASA Astrophysics Data System (ADS)

    Colica, Antonella; Chiarantini, Laura; Rimondi, Valentina; Benvenuti, Marco; Costagliola, Pilario; Lattanzi, Pierfranco; Paolieri, Mario; Rinaldi, Massimo

    2016-04-01

    Rivers draining mining areas may contribute to the diffusion of contaminants through their dispersion and accumulation into different morphological river units. The Paglia River's catchment (southern Tuscany) hosts the SE portion of the Mt. Amiata mercury district, the third most important worldwide (exploited from 1880 to 1980 with a total production of 100,000 tonnes Hg) before becoming a tributary of the Tiber River, which directly flows into Mediterranean Sea. The goals of this study are: 1) to recognize and distinguish different morphological units along the Paglia River watercourse, 2) to determine spatial/temporal distribution and concentration of Hg (and other toxic elements, particularly As) in different units. The analysis of morphological units was made by mapping their evolution from the beginning of mining activity (1883) to present day along 43 km of the Paglia watercourse defining eleven morphological sections across this river, and one across one of its tributaries, the Siele Creek, which drains various Hg mines located upstream. Four fundamental morphological/sedimentary unit types have been distinguished: stream sediments, bar, floodplain, and terraces. The latter occur in various orders and age: Pleistocenic, pre-mining (i.e., dating before 1880), and coeval to the mining activity. A total of 100 samples were taken from the various units in the selected transects, georeferenced and then analyzed for their Hg and As contents by ICP-OES. Arsenic contents generally never exceed 10 mg/kg. The observed ranges are: stream sediments 4.1÷8.2 mg/kg; bars 4.1÷6.6 mg/kg; floodplains 3.8÷6.6 mg/kg; terrace coeval with mining activity 3.2÷10.1 mg/kg. Hg contents in present-day stream sediments and bars are extremely variable (0.2÷27.5 and 1.4÷22.4 mg/kg respectively), and show a sharp increase at the confluence with Siele Creek. Floodplain sediments may reach up to 98 mg/kg. Terraces coeval with mining activity also show variable Hg contents (0.1÷66

  6. Relativistic diffusive motion in thermal electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2013-04-01

    We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.

  7. String theory as a diffusing system

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Nardelli, Giuseppe

    2010-02-01

    Recent results on the effective non-local dynamics of the tachyon mode of open string field theory (OSFT) show that approximate solutions can be constructed which obey the diffusion equation. We argue that this structure is inherited from the full theory, where it admits a universal formulation. In fact, all known exact OSFT solutions are superpositions of diffusing surface states. In particular, the diffusion equation is a spacetime manifestation of OSFT gauge symmetries.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  9. Brownian simulations and unidirectional flux in diffusion

    NASA Astrophysics Data System (ADS)

    Singer, A.; Schuss, Z.

    2005-02-01

    The prediction of ionic currents in protein channels of biological membranes is one of the central problems of computational molecular biophysics. Existing continuum descriptions of ionic permeation fail to capture the rich phenomenology of the permeation process, so it is therefore necessary to resort to particle simulations. Brownian dynamics (BD) simulations require the connection of a small discrete simulation volume to large baths that are maintained at fixed concentrations and voltages. The continuum baths are connected to the simulation through interfaces, located in the baths sufficiently far from the channel. Average boundary concentrations have to be maintained at their values in the baths by injecting and removing particles at the interfaces. The particles injected into the simulation volume represent a unidirectional diffusion flux, while the outgoing particles represent the unidirectional flux in the opposite direction. The classical diffusion equation defines net diffusion flux, but not unidirectional fluxes. The stochastic formulation of classical diffusion in terms of the Wiener process leads to a Wiener path integral, which can split the net flux into unidirectional fluxes. These unidirectional fluxes are infinite, though the net flux is finite and agrees with classical theory. We find that the infinite unidirectional flux is an artifact caused by replacing the Langevin dynamics with its Smoluchowski approximation, which is classical diffusion. The Smoluchowski approximation fails on time scales shorter than the relaxation time 1/γ of the Langevin equation. We find that the probability of Brownian trajectories that cross an interface in one direction in unit time Δt equals that of the probability of the corresponding Langevin trajectories if γΔt=2 . That is, we find the unidirectional flux (source strength) needed to maintain average boundary concentrations in a manner consistent with the physics of Brownian particles. This unidirectional flux

  10. Diffusion of Super-Gaussian Profiles

    ERIC Educational Resources Information Center

    Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.

    2007-01-01

    The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…

  11. Nonpoint sources

    SciTech Connect

    Selzer, L.

    1994-12-31

    Nonpoint source pollution remains the most pervasive water quality issue faced today. Unlike pollution from point sources, nonpoint source pollution is diffuse both in terms of its origin and the manner in which it enters ground and surface waters. It results from a great variety of human activities that take place over a wide geographic area perhaps many hundreds or even thousands of acres. And unlike pollutants from point sources--which enter the environment at well-defined locations and in relatively even, continuous discharges--pollutants from nonpoint sources usually find their way into surface and ground waters in sudden surges associated with rainfall, thunderstorms, or snowmelt. The author discusses some of the most significant sources of nonpoint source pollution.

  12. Thermal properties of composite materials: a complex systems approximation

    NASA Astrophysics Data System (ADS)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  13. The diffuse source at the center of LMC SNR 0509–67.5 is a background galaxy at z = 0.031

    SciTech Connect

    Pagnotta, Ashley; Walker, Emma S.; Schaefer, Bradley E.

    2014-06-20

    Type Ia supernovae (SNe Ia) are well-known for their use in the measurement of cosmological distances, but our continuing lack of concrete knowledge about their progenitor stars is both a matter of debate and a source of systematic error. In our attempts to answer this question, we presented unambiguous evidence that LMC SNR 0509–67.5, the remnant of an SN Ia that exploded in the Large Magellanic Cloud 400 ± 50 yr ago, did not have any point sources (stars) near the site of the original supernova explosion, from which we concluded that this particular supernova must have had a progenitor system consisting of two white dwarfs. There is, however, evidence of nebulosity near the center of the remnant, which could have been left over detritus from the less massive WD, or could have been a background galaxy unrelated to the supernova explosion. We obtained long-slit spectra of the central nebulous region using GMOS on Gemini South to determine which of these two possibilities is correct. The spectra show Hα emission at a redshift of z = 0.031, which implies that the nebulosity in the center of LMC SNR 0509–67.5 is a background galaxy, unrelated to the supernova.

  14. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  15. Interference of diffusive light waves.

    PubMed

    Schmitt, J M; Knüttel, A; Knutson, J R

    1992-10-01

    We examine interference effects resulting from the superposition of photon-density waves produced by coherently modulated light incident upon a turbid medium. Photon-diffusion theory is used to derive expressions for the ac magnitude and phase of the aggregate diffusive wave produced in full- and half-space volumes by two sources. Using a frequency-domain spectrometer operating at 410 MHz, we verify interference patterns predicted by the model in scattering samples having optical properties similar to those of skin tissue. Potential imaging applications of interfering diffusive waves are discussed in the context of the theoretical and experimental results.

  16. Mathematical algorithms for approximate reasoning

    NASA Technical Reports Server (NTRS)

    Murphy, John H.; Chay, Seung C.; Downs, Mary M.

    1988-01-01

    Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away

  17. Approximating random quantum optimization problems

    NASA Astrophysics Data System (ADS)

    Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.

    2013-06-01

    We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.

  18. Single file diffusion in microtubules

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Farrell, Spencer; Brown, Aidan

    2015-03-01

    We investigate the single file diffusion (SFD) of large particles entering a confined tubular geometry, such as luminal diffusion of proteins inside microtubules or flagella. While single-file effects have no effect on particle density, we report significant single-file effects for individually-tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0 , tracked particles display super-diffusive effective exponents just after they enter the system and trends towards diffusive exponents at later times. Equivalently, if diffusive exponents are assumed the effective diffusivity is reduced at early times and enhanced at later times through a logarithmic factor logN , where N is the number of particles in the tube. When we number each particle from the first (n = 1) to the most recent (n = N), we find good scaling collapse of the effective diffusivity for all n. Techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching, will exhibit single-file effects.

  19. New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation

    PubMed Central

    Baran, Timothy M.; Foster, Thomas H.

    2011-01-01

    We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μs'/μa = 8 in the tissue and 70 to 88% is collected in this region for μs'/μa = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy. PMID:21895311

  20. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  1. Dynamics and evolution of the plumbing system source of three major pumiceous eruptions in Dominica (Lesser Antilles): crystal system analysis and diffusion modeling on orthopyroxenes.

    NASA Astrophysics Data System (ADS)

    Solaro, Clara; Balcone-Boissard, Hélène; Boudon, Georges; Martel, Caroline; Morgan, Daniel

    2016-04-01

    significant magmatic environment. Occurrence of ME4 (En59-63) in the Roseau and Rosalie eruptions further suggests a progression toward a less-evolved composition. To assess timescales of these remobilization events, intra-crystalline diffusion has been modeled along the a- and b-axes of 22 zoned orthopyroxenes per eruption at the magmatic temperature of 850°C. Independently of the orthopyroxene zoning patterns, timescales for Layou and Roseau are of the same order of magnitude, showing that the crystal mobilization event occurred tens of years before each eruption. We propose that orthopyroxene crystals of ME2 (~80%, En52-53) represent the main crystallized mush body. About ten years before the Layou and Roseau eruptions, the intrusion in the system of a less evolved magma re-heats the system, extracting eruptible melt plus crystals from the mush and producing the zoning patterns in pyroxenes (En54-56 and En58-63 rims).

  2. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  3. Real-time creased approximate subdivision surfaces with displacements.

    PubMed

    Kovacs, Denis; Mitchell, Jason; Drone, Shanon; Zorin, Denis

    2010-01-01

    We present an extension of Loop and Schaefer's approximation of Catmull-Clark surfaces (ACC) for surfaces with creases and corners. We discuss the integration of ACC into Valve's Source game engine and analyze performance of our implementation.

  4. Controllable uncertain opinion diffusion under confidence bound and unpredicted diffusion probability

    NASA Astrophysics Data System (ADS)

    Yan, Fuhan; Li, Zhaofeng; Jiang, Yichuan

    2016-05-01

    The issues of modeling and analyzing diffusion in social networks have been extensively studied in the last few decades. Recently, many studies focus on uncertain diffusion process. The uncertainty of diffusion process means that the diffusion probability is unpredicted because of some complex factors. For instance, the variety of individuals' opinions is an important factor that can cause uncertainty of diffusion probability. In detail, the difference between opinions can influence the diffusion probability, and then the evolution of opinions will cause the uncertainty of diffusion probability. It is known that controlling the diffusion process is important in the context of viral marketing and political propaganda. However, previous methods are hardly feasible to control the uncertain diffusion process of individual opinion. In this paper, we present suitable strategy to control this diffusion process based on the approximate estimation of the uncertain factors. We formulate a model in which the diffusion probability is influenced by the distance between opinions, and briefly discuss the properties of the diffusion model. Then, we present an optimization problem at the background of voting to show how to control this uncertain diffusion process. In detail, it is assumed that each individual can choose one of the two candidates or abstention based on his/her opinion. Then, we present strategy to set suitable initiators and their opinions so that the advantage of one candidate will be maximized at the end of diffusion. The results show that traditional influence maximization algorithms are not applicable to this problem, and our algorithm can achieve expected performance.

  5. Impact of inflow transport approximation on light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Choi, Sooyoung; Smith, Kord; Lee, Hyun Chul; Lee, Deokjung

    2015-10-01

    The impact of the inflow transport approximation on light water reactor analysis is investigated, and it is verified that the inflow transport approximation significantly improves the accuracy of the transport and transport/diffusion solutions. A methodology for an inflow transport approximation is implemented in order to generate an accurate transport cross section. The inflow transport approximation is compared to the conventional methods, which are the consistent-PN and the outflow transport approximations. The three transport approximations are implemented in the lattice physics code STREAM, and verification is performed for various verification problems in order to investigate their effects and accuracy. From the verification, it is noted that the consistent-PN and the outflow transport approximations cause significant error in calculating the eigenvalue and the power distribution. The inflow transport approximation shows very accurate and precise results for the verification problems. The inflow transport approximation shows significant improvements not only for the high leakage problem but also for practical large core problem analyses.

  6. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    SciTech Connect

    Cleveland, Mathew A. Gentile, Nick

    2015-06-15

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  7. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleveland, Mathew A.; Gentile, Nick

    2015-06-01

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  8. Self-consistent pitch angle diffusion of newborn ions

    SciTech Connect

    Yoon, P.H.; Ziebell, L.F.; Wu, C.S. )

    1991-04-01

    It is well known from the study of ion pickup process by the solar wind that hydromagnetic turbulence can cause the newborn ions to undergo rapid pitch angle diffusion or scattering, thus forming a partial or complete velocity shell distribution. In most of the recent discussions based on quasi-linear theory it is assumed that the spectral wave energy density associated with the hydromagnetic turbulence is constant in time, implying a saturated turbulence level. In contrast, in this work the effect of self-consistently generated waves on the ion dynamics is discussed on the basis of a simple theoretical model, and it is shown both analytically and numerically that the self-consistent diffusion process leads to a time-asymptotic partial shell distribution which extends approximately from the initial pitch angle cos{sup {minus}1}{mu}{sub 0} to {approximately}{pi}/2 in pitch angle space. Particularly, the role of resonant versus nonresonant diffusion processes is discussed in detail. In addition, the effect of continuous ion source term is also incorporated in the numerical analysis since in cometary environment the ions are continuously created.

  9. Adaptive approximation models in optimization

    SciTech Connect

    Voronin, A.N.

    1995-05-01

    The paper proposes a method for optimization of functions of several variables that substantially reduces the number of objective function evaluations compared to traditional methods. The method is based on the property of iterative refinement of approximation models of the optimand function in approximation domains that contract to the extremum point. It does not require subjective specification of the starting point, step length, or other parameters of the search procedure. The method is designed for efficient optimization of unimodal functions of several (not more than 10-15) variables and can be applied to find the global extremum of polymodal functions and also for optimization of scalarized forms of vector objective functions.

  10. Pythagorean Approximations and Continued Fractions

    ERIC Educational Resources Information Center

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  11. Error Bounds for Interpolative Approximations.

    ERIC Educational Resources Information Center

    Gal-Ezer, J.; Zwas, G.

    1990-01-01

    Elementary error estimation in the approximation of functions by polynomials as a computational assignment, error-bounding functions and error bounds, and the choice of interpolation points are discussed. Precalculus and computer instruction are used on some of the calculations. (KR)

  12. Partially coherent contrast-transfer-function approximation.

    PubMed

    Nesterets, Yakov I; Gureyev, Timur E

    2016-04-01

    The contrast-transfer-function (CTF) approximation, widely used in various phase-contrast imaging techniques, is revisited. CTF validity conditions are extended to a wide class of strongly absorbing and refracting objects, as well as to nonuniform partially coherent incident illumination. Partially coherent free-space propagators, describing amplitude and phase in-line contrast, are introduced and their properties are investigated. The present results are relevant to the design of imaging experiments with partially coherent sources, as well as to the analysis and interpretation of the corresponding images. PMID:27140752

  13. Status of the Development of an Embedded Transport Treatment of Control Rods and of Radial Flux Expansion in Cylindrical Nodal Diffusion Codes

    SciTech Connect

    Frederick N. Gleicher II; Abderrafi M. Ougouag

    2009-09-01

    A new diffusion-transport hybrid nodal method in R-Z is presented that can effectively treat non-multiplying zones in pebble bed reactors. The new method seamlessly combines the analytic coarse mesh finite difference (CMFD) diffusion formulation and a transport theory based response matrix formulation while retaining the properties and structure of the CMFD diffusion solver. The resulting combined formulation is utilized in selected non-multiplying nodes to capture angular effects on the flux. Test results indicate that the method has been implemented correctly into the CYNOD reactor kinetics code. This document also presents a status report on the development of a better source approximation for the Green’s function nodal solution in the radial direction of cylindrical geometry. The basic theory has been developed, including obtaining polynomials that are orthonormal over the domain of integration and the derivation of approximately half of the required matrix elements (single and double integrals in the source expansions).

  14. Chemical Laws, Idealization and Approximation

    NASA Astrophysics Data System (ADS)

    Tobin, Emma

    2013-07-01

    This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.

  15. PROX: Approximated Summarization of Data Provenance

    PubMed Central

    Ainy, Eleanor; Bourhis, Pierre; Davidson, Susan B.; Deutch, Daniel; Milo, Tova

    2016-01-01

    Many modern applications involve collecting large amounts of data from multiple sources, and then aggregating and manipulating it in intricate ways. The complexity of such applications, combined with the size of the collected data, makes it difficult to understand the application logic and how information was derived. Data provenance has been proven helpful in this respect in different contexts; however, maintaining and presenting the full and exact provenance may be infeasible, due to its size and complex structure. For that reason, we introduce the notion of approximated summarized provenance, where we seek a compact representation of the provenance at the possible cost of information loss. Based on this notion, we have developed PROX, a system for the management, presentation and use of data provenance for complex applications. We propose to demonstrate PROX in the context of a movies rating crowd-sourcing system, letting participants view provenance summarization and use it to gain insights on the application and its underlying data. PMID:27570843

  16. RADIATION SOURCES

    DOEpatents

    Brucer, M.H.

    1958-04-15

    A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

  17. Importance Sampling Approach for the Nonstationary Approximation Error Method

    NASA Astrophysics Data System (ADS)

    Huttunen, J. M. J.; Lehikoinen, A.; Hämäläinen, J.; Kaipio, J. P.

    2010-09-01

    The approximation error approach has been earlier proposed to handle modelling, numerical and computational errors in inverse problems. The idea of the approach is to include the errors to the forward model and compute the approximate statistics of the errors using Monte Carlo sampling. This can be a computationally tedious task but the key property of the approach is that the approximate statistics can be calculated off-line before measurement process takes place. In nonstationary problems, however, information is accumulated over time, and the initial uncertainties may turn out to have been exaggerated. In this paper, we propose an importance weighing algorithm with which the approximation error statistics can be updated during the accumulation of measurement information. As a computational example, we study an estimation problem that is related to a convection-diffusion problem in which the velocity field is not accurately specified.

  18. Delinating Thermohaline Double-Diffusive Rayleigh Regimes

    NASA Astrophysics Data System (ADS)

    Graf, T.; Walther, M.; Kolditz, O.; Liedl, R.

    2013-12-01

    In natural systems, convective flow induced from density differences may occur in near-coastal aquifers, atmospheric boundary layers, oceanic streams or within the earth crust. Whether an initially stable, diffusive regime evolves into a convective (stable or chaotic) regime, or vice versa, depends on the system's framing boundary conditions. A conventional parameter to express the relation between diffusive and convective forces of such a density-driven regime is Rayleigh number (Ra). While most systems are mainly dominated by only a single significant driving force (i.e. only temperature or salinity), some systems need to consider two boundary processes (e.g. deep, thus warm, haline flow in porous media). In that case, a two-dimensional, 'double-diffusive' Rayleigh system can be defined. Nield (1998) postulated a boundary between diffusive and convective regime at RaT + RaC = 4pi^2 in the first quadrant (Q1), with Rayleigh numbers for temperature and concentration respectively. The boundary in the forth quadrant (Q4) could not exactly be determined, yet the approximate position estimated. Simulations with HydroGeoSphere (Therrien, 2010) using a vertical, quadratic, homogeneous, isotropic setup confirmed the existence of the 4pi^2-boundary and revealed additional regimes (diffusive, single-roll, double-roll, chaotic) in Q1. Also, non-chaotic, oscillating patterns could be identified in Q4. More detailed investigations with OpenGeoSys (Kolditz, 2012) confirmed the preceding HGS results, and, using a 1:10-scaled domain (height:length), uncovered even more distinctive regimes (diffusive, minimum ten roles, supposely up to 25 roles, and chaotic?) in Q1, while again, oscillating patterns were found in the transition zone between diffusive and chaotic regimes in Q4. Output of numerical simulations from Q1 and Q4 show the mentioned regimes (diffusive, stable-convective, stable-oscillatory, chaotic) while results are displayed in context of a possible delination between

  19. Diffusion releases through one and two finite planar zones from a nuclear waste package

    SciTech Connect

    Ueng, Tzou-Shin; O`Connell, W.J.

    1992-07-01

    For a radioactive waste package emplacement in a potential repository, a partially saturated rock rubble zone may act more as a diffusive barrier than as a pathway to release. We approximate the diffusive transport from the waste packaging using one-dimensional one- and two-barrier geometries. When the effective diffusion coefficient in the first zone is several orders of magnitude lower than that in the host rock, then the two-zone geometry can be approximately by a one-zone problem, keeping only the narrow rubble zone. When the effective diffusion coefficients in the two zones are comparable, or there is an additional barrier, then a two-zone (both of finite extent) approach is adopted. We present solutions for the diffusion response in the two planar geometries for three input cases: a pulse transient input, a steady input rate, and a constant concentration at the source. The solutions have algebraic key elements allowing identification of sensitive factors. For the one-zone case, dimensionless parameters allow plotting of the family of transient response solutions on a single graph. Comparisons with several problems analyzed by others, and on problems where the one-zone and two-zone analyses should give comparable results, support verification of the method.

  20. Testing the frozen flow approximation

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1993-01-01

    We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.

  1. Approximate line shapes for hydrogen

    NASA Technical Reports Server (NTRS)

    Sutton, K.

    1978-01-01

    Two independent methods are presented for calculating radiative transport within hydrogen lines. In Method 1, a simple equation is proposed for calculating the line shape. In Method 2, the line shape is assumed to be a dispersion profile and an equation is presented for calculating the half half-width. The results obtained for the line shapes and curves of growth by the two approximate methods are compared with similar results using the detailed line shapes by Vidal et al.

  2. Tangent plane approximation and some of its generalizations

    NASA Astrophysics Data System (ADS)

    Voronovich, A. G.

    2007-05-01

    A review of the tangent plane approximation proposed by L.M. Brekhovskikh is presented. The advantage of the tangent plane approximation over methods based on the analysis of integral equations for surface sources is emphasized. A general formula is given for the scattering amplitude of scalar plane waves under an arbitrary boundary condition. The direct generalization of the tangent plane approximation is shown to yield approximations that include a correct description of the Bragg scattering and allow one to avoid the use of a two-scale model.

  3. Approximate reasoning using terminological models

    NASA Technical Reports Server (NTRS)

    Yen, John; Vaidya, Nitin

    1992-01-01

    Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.

  4. Computer Experiments for Function Approximations

    SciTech Connect

    Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C

    2007-10-15

    This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.

  5. Ultrafast approximation for phylogenetic bootstrap.

    PubMed

    Minh, Bui Quang; Nguyen, Minh Anh Thi; von Haeseler, Arndt

    2013-05-01

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira-Hasegawa-like approximate likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approximation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66-33.3) to 10.2 (range: 1.32-41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.at/software/iqtree) to perform the UFBoot analysis with ML tree inference.

  6. Approximate Counting of Graphical Realizations

    PubMed Central

    2015-01-01

    In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994

  7. Can we approximate non-Newtonian rheology to model mantle convection?

    NASA Astrophysics Data System (ADS)

    Hüttig, Christian; Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris

    2014-05-01

    convective planform and stress distribution differ substantially. In addition, for thermal evolution scenarios with decreasing internal heat sources, the reduction of activation parameter is not well constrained. We conclude that approximating dislocation creep with diffusion creep and a reduced activation enthalpy may strongly affect local temperature and stress distribution and thus influences partial melting and plastic yielding. REFERENCES [1] J. van Hunen et al., EPSL, 2005; [2] S. Karato and P. Wu, Science, 1993; [3] U. Christensen, Geophys. J. R. astr. Soc., 1984; [4] J. Huang et al., EPSL, 2013; [5] Zhang et al. JGR 2013; [6] N. Tosi et al., EPSL, 2010; [7] C. Hüttig et al., PEPI, 2013.

  8. Approximate supernova remnant dynamics with cosmic ray production

    NASA Technical Reports Server (NTRS)

    Voelk, H. J.; Drury, L. O.; Dorfi, E. A.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.

  9. Compression of strings with approximate repeats.

    PubMed

    Allison, L; Edgoose, T; Dix, T I

    1998-01-01

    We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.

  10. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    SciTech Connect

    Teodorescu, Razvan

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.

  11. Diffuse flow from hydrothermal vents. Doctoral thesis

    SciTech Connect

    Trivett, D.A.

    1991-08-01

    The effluent from a collection of diffuse hydrothermal vents was modelled to determine the fate of the source of flow under typical environmental conditions at seafloor spreading centers. A laboratory simulation was conducted to test an analytic model of diffuse plume rise. The results showed that diffuse plumes are likely to remain near the seafloor, with their maximum rise height scaled with the diameter of the source of diffuse flow. The entrainment of ambient seawater into these plumes is limited by the proximity to the seafloor, thus slowing the rate of dilution. The model of diffuse plume behaviour was used to guide the design and implementation of a scheme for monitoring the flow from diffuse hydrothermal vents in the ocean. A deployment of an array at the Southern Juan de Fuca Ridge yielded measurements of a variety of diffuse plume properties, including total heat output. Two distinct sources of hydrothermal flow were detected during the field deployment. The larger source was 1-1.5km north of the instrument array, and its energy output was 450 + or - 270MW. A smaller source was located 100m east of one instrument in the array. The energy output of the source was 12 + or - 8MW. The rise heights of the centerlines of these plumes were 45m and 10m, respectively.

  12. Quantifying protein diffusion and capture on filaments.

    PubMed

    Reithmann, Emanuel; Reese, Louis; Frey, Erwin

    2015-02-17

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together, one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  13. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  14. Using the thermal Gaussian approximation approximation for theBoltzmann Operator in Semiclassical Initial Value Time CorrelationFunctions

    SciTech Connect

    Liu, Jian; Miller, William H.

    2006-09-06

    The thermal Gaussian approximation (TGA) recently developed by Mandelshtam et al has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-{beta}H) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the 'forward-backward semiclassical dynamics' (FBSD) approximation developed by Makri et al. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.

  15. Numerical Test of Different Approximations Used in the Transport Theory of Energetic Particles

    NASA Astrophysics Data System (ADS)

    Qin, G.; Shalchi, A.

    2016-05-01

    Recently developed theories for perpendicular diffusion work remarkably well. The diffusion coefficients they provide agree with test-particle simulations performed for different turbulence setups ranging from slab and slab-like models to two-dimensional and noisy reduced MHD turbulence. However, such theories are still based on different analytical approximations. In the current paper we use a test-particle code to explore the different approximations used in diffusion theory. We benchmark different guiding center approximations, simplifications of higher-order correlations, and the Taylor-Green-Kubo formula. We demonstrate that guiding center approximations work very well as long as the particle's unperturbed Larmor radius is smaller than the perpendicular correlation length of the turbulence. Furthermore, the Taylor-Green-Kubo formula and the definition of perpendicular diffusion coefficients via mean square displacements provide the same results. The only approximation that was used in the past in nonlinear diffusion theory that fails is to replace fourth-order correlations by a product of two second-order correlation functions. In more advanced nonlinear theories, however, this type of approximation is no longer used. Therefore, we confirm the validity of modern diffusion theories as a result of the work presented in the current paper.

  16. Antibody diffusion in human cervical mucus.

    PubMed Central

    Saltzman, W M; Radomsky, M L; Whaley, K J; Cone, R A

    1994-01-01

    The mucosal immune system actively transports large quantities of antibodies into all mucus secretions, and these secreted antibodies help prevent infectious entry of many pathogens. Mucus is generally thought to protect epithelial cells by forming a diffusional barrier through which only small molecules can pass. However, electron microscopy indicates that the pore size in mucus is approximately 100 nm, which suggests that antibodies as well as other large molecules might also diffuse through mucus. We measured the diffusion coefficients for antibodies and other proteins within human midcycle cervical mucus using two techniques: fluorescence imaging of concentration profiles and fluorescence photobleaching recovery. The two techniques are complementary, since the rates of diffusion are observed over millimeter distances with fluorescence imaging of concentration profiles and micron distances with fluorescence photobleaching recovery. Both methods yielded essentially the same diffusion coefficients. In contrast to previous reports indicating mucus significantly impedes diffusion of small molecules, antibody diffusion in mucus was relatively unimpeded. In our observations IgG, IgG fragments, IgA, and IgM diffused almost as rapidly in cervical mucus as in water (1.0 > Dmucus/Dwater > 0.7). Simple models for diffusion through water-filled pores suggest that the hydrodynamic pore size for cervical mucus is approximately 100 nm, smaller than the approximately 1000 nm pore size of a collagen gel (at 1 mg/ml) and larger than the approximately 10 nm pore size of gelatin (at 100 mg/ml). This estimated pore size is consistent both with electron micrographs and geometric models of interfiber spacing. Based on these results, we predict that particles as large as viruses can diffuse rapidly through human midcycle cervical mucus, provided the particle forms no adhesive interactions with mucus glycoproteins. Images FIGURE 4 PMID:8161703

  17. Nitrate concentrations and fluxes in the River Thames, London UK 1868 to 2008: catchment-scale modelling of diffuse agricultural sources and groundwater response using the world's longest water quality time series

    NASA Astrophysics Data System (ADS)

    Howden, N. J.; Burt, T. P.; Worrall, F.; Mathias, S.; Whelan, M.

    2011-12-01

    This paper presents analyses of the world's longest water quality record: 140 years of monthly-average nitrate concentrations (1868 to 2008) and fluxes (1883 to 2008) for the River Thames north of London. We show how short- and long- term patterns in these time series are influenced by both climatic and anthropogenic pressures, in the case of the latter, particularly land use and land management practices. Climate change does not play a significant role in controlling annual average concentrations or fluxes, rather large-scale land conversions from permanent grassland to arable farming have created sustained diffuse sources of nitrate that have caused (almost four-fold) increases in concentrations and fluxes that persist for many decades after the initial changes. Our analyses of this unique time series highlight four areas of particular interest: (1) Despite several layers of regulation and source control, fluvial concentrations and fluxes remain in- tractably high - no decrease has been observed since the early 1970s; (2) Catchment response to changing nitrogen inputs from land use and land management is subject to considerable lag: present conditions in the river reflect land practices from some years ago; (3) Following (2), we suggest that current changes to land use and land management practices will not be reflected in river water quality for some time to come; (4) Overall, the long-term view afforded by this record questions the derivation of "baseline conditions" that are formulated from records that do not reflect the massive changes in land use and land management in the mid-20th century. Overall, a better understanding of the links, and time delays, between cause (i.e. changing land use / land management) and fluvial response (i.e. concentration increase/decrease) will improve our ability both to predict changes in the coming decades, and inform management decision making now, to ensure the appropriate balance between agricultural development and

  18. News Diffusion after the Reagan Shooting.

    ERIC Educational Resources Information Center

    Bantz, Charles R.; And Others

    1983-01-01

    Provides additional evidence on the role interpersonal communication plays in the diffusion of news about crisis events. Adds information about the rapidity of such diffusion, daily routine and first source, demographic differences and communicative behavior/personal reactions, and possible effects of research methods. (PD)

  19. Approximately Independent Features of Languages

    NASA Astrophysics Data System (ADS)

    Holman, Eric W.

    To facilitate the testing of models for the evolution of languages, the present paper offers a set of linguistic features that are approximately independent of each other. To find these features, the adjusted Rand index (R‧) is used to estimate the degree of pairwise relationship among 130 linguistic features in a large published database. Many of the R‧ values prove to be near zero, as predicted for independent features, and a subset of 47 features is found with an average R‧ of -0.0001. These 47 features are recommended for use in statistical tests that require independent units of analysis.

  20. The structural physical approximation conjecture

    NASA Astrophysics Data System (ADS)

    Shultz, Fred

    2016-01-01

    It was conjectured that the structural physical approximation (SPA) of an optimal entanglement witness is separable (or equivalently, that the SPA of an optimal positive map is entanglement breaking). This conjecture was disproved, first for indecomposable maps and more recently for decomposable maps. The arguments in both cases are sketched along with important related results. This review includes background material on topics including entanglement witnesses, optimality, duality of cones, decomposability, and the statement and motivation for the SPA conjecture so that it should be accessible for a broad audience.

  1. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  2. Quantum tunneling beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Ranjan Majhi, Bibhas

    2008-06-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  3. Fermion tunneling beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Majhi, Bibhas Ranjan

    2009-02-01

    Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys.JHEPFG1029-8479 06 (2008) 09510.1088/1126-6708/2008/06/095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.

  4. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    PubMed

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  5. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  6. NIST Diffusion Data Center

    National Institute of Standards and Technology Data Gateway

    NIST Diffusion Data Center (Web, free access)   The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.

  7. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  8. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  9. Thermal diffusivity of some crystalline rocks

    SciTech Connect

    Drury, M.J.

    1987-01-01

    Thermal diffusivity data at room temperature and uniaxial pressure of 1 MPa are reported for five sets of crystalline rocks - granite, granodiorite, gabbro, basalt and gneiss. Diffusivity ranges between approximately 0.6 and 1.9 mm/sup 2//s, the lower end of the range being appropriate for basic rocks and the upper end for quartz-bearing acidic rocks. The scatter in diffusivity for each data set is significantly more than that of thermal conductivity, because the diffusivity of water is typically less than 10% of the diffusivity of most common minerals, whereas water conductivity is 25 - 30% of the conductivity of the minerals. For a sample set of uniform mineralogy in which porosity varies, a greater variation of diffusivity than of conductivity is therefore expected. For three of the sets sufficient mineralogical data were available to permit the assessment of methods of estimating thermal diffusivity from mineral content. All models tested yielded higher mean values of diffusivity than the means of the measured values. No model was found to be able to predict diffusivity to better than approximately 20%, but if that accuracy is sufficient, a simple geometrical model, for which only quartz content must be known, is adequate. The diffusivity data have been combined with measurements of thermal conductivity and density to provide estimates of specific heat. These all tend to be higher than those reported in the literature. For some rocks, such as the basalts, this can be explained in terms of relatively high water content and the very high specific heat of water compared with that of most common minerals. For the granites and granodiorites, the new specific heat data redefine the previously published means and ranges, by increasing the data base by approximately an order of magnitude.

  10. Finite-difference schemes for anisotropic diffusion

    SciTech Connect

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  11. Multicomponent diffusion in two-temperature magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramshaw, J. D.; Chang, C. H.

    1996-06-01

    A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations.

  12. Plasma Physics Approximations in Ares

    SciTech Connect

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  13. Wavelet Approximation in Data Assimilation

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.

  14. Stochastic models for surface diffusion of molecules

    SciTech Connect

    Shea, Patrick Kreuzer, Hans Jürgen

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  15. Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion

    NASA Astrophysics Data System (ADS)

    Chubynsky, Mykyta V.; Slater, Gary W.

    2014-08-01

    Wang et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009)] have found that in several systems the linear time dependence of the mean-square displacement (MSD) of diffusing colloidal particles, typical of normal diffusion, is accompanied by a non-Gaussian displacement distribution G(x ,t), with roughly exponential tails at short times, a situation they termed "anomalous yet Brownian" diffusion. The diversity of systems in which this is observed calls for a generic model. We present such a model where there is diffusivity memory but no direction memory in the particle trajectory, and we show that it leads to both a linear MSD and a non-Gaussian G(x ,t) at short times. In our model, the diffusivity is undergoing a (perhaps biased) random walk, hence the expression "diffusing diffusivity". G(x ,t) is predicted to be exactly exponential at short times if the distribution of diffusivities is itself exponential, but an exponential remains a good fit for a variety of diffusivity distributions. Moreover, our generic model can be modified to produce subdiffusion.

  16. Approximating metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  17. New generalized gradient approximation functionals

    NASA Astrophysics Data System (ADS)

    Boese, A. Daniel; Doltsinis, Nikos L.; Handy, Nicholas C.; Sprik, Michiel

    2000-01-01

    New generalized gradient approximation (GGA) functionals are reported, using the expansion form of A. D. Becke, J. Chem. Phys. 107, 8554 (1997), with 15 linear parameters. Our original such GGA functional, called HCTH, was determined through a least squares refinement to data of 93 systems. Here, the data are extended to 120 systems and 147 systems, introducing electron and proton affinities, and weakly bound dimers to give the new functionals HCTH/120 and HCTH/147. HCTH/120 has already been shown to give high quality predictions for weakly bound systems. The functionals are applied in a comparative study of the addition reaction of water to formaldehyde and sulfur trioxide, respectively. Furthermore, the performance of the HCTH/120 functional in Car-Parrinello molecular dynamics simulations of liquid water is encouraging.

  18. Interplay of approximate planning strategies.

    PubMed

    Huys, Quentin J M; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J; Dayan, Peter; Roiser, Jonathan P

    2015-03-10

    Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or "options." PMID:25675480

  19. Indexing the approximate number system.

    PubMed

    Inglis, Matthew; Gilmore, Camilla

    2014-01-01

    Much recent research attention has focused on understanding individual differences in the approximate number system, a cognitive system believed to underlie human mathematical competence. To date researchers have used four main indices of ANS acuity, and have typically assumed that they measure similar properties. Here we report a study which questions this assumption. We demonstrate that the numerical ratio effect has poor test-retest reliability and that it does not relate to either Weber fractions or accuracy on nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly skewed distribution and that they have lower test-retest reliability than a simple accuracy measure. We conclude by arguing that in the future researchers interested in indexing individual differences in ANS acuity should use accuracy figures, not Weber fractions or numerical ratio effects. PMID:24361686

  20. IONIS: Approximate atomic photoionization intensities

    NASA Astrophysics Data System (ADS)

    Heinäsmäki, Sami

    2012-02-01

    A program to compute relative atomic photoionization cross sections is presented. The code applies the output of the multiconfiguration Dirac-Fock method for atoms in the single active electron scheme, by computing the overlap of the bound electron states in the initial and final states. The contribution from the single-particle ionization matrix elements is assumed to be the same for each final state. This method gives rather accurate relative ionization probabilities provided the single-electron ionization matrix elements do not depend strongly on energy in the region considered. The method is especially suited for open shell atoms where electronic correlation in the ionic states is large. Program summaryProgram title: IONIS Catalogue identifier: AEKK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1149 No. of bytes in distributed program, including test data, etc.: 12 877 Distribution format: tar.gz Programming language: Fortran 95 Computer: Workstations Operating system: GNU/Linux, Unix Classification: 2.2, 2.5 Nature of problem: Photoionization intensities for atoms. Solution method: The code applies the output of the multiconfiguration Dirac-Fock codes Grasp92 [1] or Grasp2K [2], to compute approximate photoionization intensities. The intensity is computed within the one-electron transition approximation and by assuming that the sum of the single-particle ionization probabilities is the same for all final ionic states. Restrictions: The program gives nonzero intensities for those transitions where only one electron is removed from the initial configuration(s). Shake-type many-electron transitions are not computed. The ionized shell must be closed in the initial state. Running time: Few seconds for a

  1. A handy approximation for a mediated bioelectrocatalysis process, related to Michaelis-Menten equation.

    PubMed

    Filobello-Nino, Uriel; Vazquez-Leal, Hector; Benhammouda, Brahim; Hernandez-Martinez, Luis; Khan, Yasir; Jimenez-Fernandez, Victor Manuel; Herrera-May, Agustin Leobardo; Castaneda-Sheissa, Roberto; Pereyra-Diaz, Domitilo; Cervantes-Perez, Juan; Agustin Perez-Sesma, Jose Antonio; Hernandez-Machuca, Sergio Francisco; Cuellar-Hernandez, Leticia

    2014-01-01

    In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is quite efficient. PMID:24741477

  2. Magnetically stimulated diffusion of Rydberg gases.

    PubMed

    Dumin, Yurii V

    2013-01-18

    The specific kind of diffusion stimulated (rather than suppressed) by the external magnetic field, which was predicted for the first time by Schmelcher and Cederbaum in 1992, is considered here for the case of high-angular-momentum (i.e., approximately "circular") Rydberg atoms. The coefficient of such diffusion was calculated by a purely analytical approach and was found to be very relevant to the experiments on antihydrogen formation.

  3. Locally learning biomedical data using diffusion frames.

    PubMed

    Ehler, M; Filbir, F; Mhaskar, H N

    2012-11-01

    Diffusion geometry techniques are useful to classify patterns and visualize high-dimensional datasets. Building upon ideas from diffusion geometry, we outline our mathematical foundations for learning a function on high-dimension biomedical data in a local fashion from training data. Our approach is based on a localized summation kernel, and we verify the computational performance by means of exact approximation rates. After these theoretical results, we apply our scheme to learn early disease stages in standard and new biomedical datasets.

  4. Phylogeography by diffusion on a sphere: whole world phylogeography

    PubMed Central

    2016-01-01

    Background Techniques for reconstructing geographical history along a phylogeny can answer many questions of interest about the geographical origins of species. Bayesian models based on the assumption that taxa move through a diffusion process have found many applications. However, these methods rely on diffusion processes on a plane, and do not take the spherical nature of our planet in account. Performing an analysis that covers the whole world thus does not take in account the distortions caused by projections like the Mercator projection. Results In this paper, we introduce a Bayesian phylogeographical method based on diffusion on a sphere. When the area where taxa are sampled from is small, a sphere can be approximated by a plane and the model results in the same inferences as with models using diffusion on a plane. For taxa sampled from the whole world, we obtain substantial differences. We present an efficient algorithm for performing inference in a Markov Chain Monte Carlo (MCMC) algorithm, and show applications to small and large samples areas. We compare results between planar and spherical diffusion in a simulation study and apply the method by inferring the origin of Hepatitis B based on sequences sampled from Eurasia and Africa. Conclusions We describe a framework for performing phylogeographical inference, which is suitable when the distortion introduced by map projections is large, but works well on a smaller scale as well. The framework allows sampling tips from regions, which is useful when the exact sample location is unknown, and placing prior information on locations of clades in the tree. The method is implemented in the GEO_SPHERE package in BEAST 2, which is open source licensed under LGPL and allows joint tree and geography inference under a wide range of models.

  5. Phylogeography by diffusion on a sphere: whole world phylogeography

    PubMed Central

    2016-01-01

    Background Techniques for reconstructing geographical history along a phylogeny can answer many questions of interest about the geographical origins of species. Bayesian models based on the assumption that taxa move through a diffusion process have found many applications. However, these methods rely on diffusion processes on a plane, and do not take the spherical nature of our planet in account. Performing an analysis that covers the whole world thus does not take in account the distortions caused by projections like the Mercator projection. Results In this paper, we introduce a Bayesian phylogeographical method based on diffusion on a sphere. When the area where taxa are sampled from is small, a sphere can be approximated by a plane and the model results in the same inferences as with models using diffusion on a plane. For taxa sampled from the whole world, we obtain substantial differences. We present an efficient algorithm for performing inference in a Markov Chain Monte Carlo (MCMC) algorithm, and show applications to small and large samples areas. We compare results between planar and spherical diffusion in a simulation study and apply the method by inferring the origin of Hepatitis B based on sequences sampled from Eurasia and Africa. Conclusions We describe a framework for performing phylogeographical inference, which is suitable when the distortion introduced by map projections is large, but works well on a smaller scale as well. The framework allows sampling tips from regions, which is useful when the exact sample location is unknown, and placing prior information on locations of clades in the tree. The method is implemented in the GEO_SPHERE package in BEAST 2, which is open source licensed under LGPL and allows joint tree and geography inference under a wide range of models. PMID:27651992

  6. Multidimensional stochastic approximation Monte Carlo.

    PubMed

    Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383

  7. Interplay of approximate planning strategies

    PubMed Central

    Huys, Quentin J. M.; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J.; Dayan, Peter; Roiser, Jonathan P.

    2015-01-01

    Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or “options.” PMID:25675480

  8. Multidimensional stochastic approximation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .

  9. Semiclassics beyond the diagonal approximation

    NASA Astrophysics Data System (ADS)

    Turek, Marko

    2004-05-01

    The statistical properties of the energy spectrum of classically chaotic closed quantum systems are the central subject of this thesis. It has been conjectured by O.Bohigas, M.-J.Giannoni and C.Schmit that the spectral statistics of chaotic systems is universal and can be described by random-matrix theory. This conjecture has been confirmed in many experiments and numerical studies but a formal proof is still lacking. In this thesis we present a semiclassical evaluation of the spectral form factor which goes beyond M.V.Berry's diagonal approximation. To this end we extend a method developed by M.Sieber and K.Richter for a specific system: the motion of a particle on a two-dimensional surface of constant negative curvature. In particular we prove that these semiclassical methods reproduce the random-matrix theory predictions for the next to leading order correction also for a much wider class of systems, namely non-uniformly hyperbolic systems with f>2 degrees of freedom. We achieve this result by extending the configuration-space approach of M.Sieber and K.Richter to a canonically invariant phase-space approach.

  10. Randomized approximate nearest neighbors algorithm.

    PubMed

    Jones, Peter Wilcox; Osipov, Andrei; Rokhlin, Vladimir

    2011-09-20

    We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + log k), with T the number of iterations performed. The memory requirements of the procedure are of the order N·(d + k). A by-product of the scheme is a data structure, permitting a rapid search for the k nearest neighbors among {x(j)} for an arbitrary point x ∈ R(d). The cost of each such query is proportional to T·(d·(log d) + log(N/k)·k·(d + log k)), and the memory requirements for the requisite data structure are of the order N·(d + k) + T·(d + N). The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed by a local graph search. We analyze the scheme's behavior for certain types of distributions of {x(j)} and illustrate its performance via several numerical examples.

  11. Molecular diffusion in plasma-polymerized tetrafluoroethylene

    SciTech Connect

    Butler, M.A.; Buss, R.J. )

    1992-11-01

    Diffusion of an array of molecules in micrometer-thick films of plasma-polymerized tetrafluoroethylene has been measured using an optical interferometric technique. The diffusivity is approximately independent of molecular size up to a molar volume of about 100 cm{sup 3} and drops rapidly for larger molecules. For much larger molecules no penetration of the films is observed. These results suggest that plasma-polymerized tetrafluoroethylene films are heavily cross linked and that this limits the size of the molecules that can penetrate the polymer. The temperature dependence and the molecular size dependence of the diffusivities are discussed in the context of free-volume theory.

  12. Sources of dioxins in the United Kingdom: the steel industry and other sources.

    PubMed

    Anderson, David R; Fisher, Raymond

    2002-01-01

    Several countries have compiled national inventories of dioxin (polychlorinated dibenzo-p-dioxin [PCDD] and polychlorinated dibenzofuran [PCDF]) releases that detail annual mass emission estimates for regulated sources. High temperature processes, such as commercial waste incineration and iron ore sintering used in the production of iron and steel, have been identified as point sources of dioxins. Other important releases of dioxins are from various diffuse sources such as bonfire burning and domestic heating. The PCDD/F inventory for emissions to air in the UK has decreased significantly from 1995 to 1998 because of reduced emissions from waste incinerators which now generally operate at waste gas stack emissions of 1 ng I-TEQ/Nm3 or below. The iron ore sintering process is the only noteworthy source of PCDD/Fs at integrated iron and steelworks operated by Corus (formerly British Steel plc) in the UK. The mean waste gas stack PCDD/F concentration for this process is 1,2 ng I-TEQ/Nm3 based on 94 measurements and it has been estimated that this results in an annual mass release of approximately 38 g I-TEQ per annum. Diffuse sources now form a major contribution to the UK inventory as PCDD/Fs from regulated sources have decreased, for example, the annual celebration of Bonfire Night on 5th November in the UK causes an estimated release of 30 g I-TEQ, similar to that emitted by five sinter plants in the UK.

  13. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  14. Diffusing obesity myths.

    PubMed

    Ramos Salas, X; Forhan, M; Sharma, A M

    2014-06-01

    Misinformation or myths about obesity can lead to weight bias and obesity stigma. Counteracting myths with facts and evidence has been shown to be effective educational tools to increase an individuals' knowledge about a certain condition and to reduce stigma.The purpose of this study was to identify common obesity myths within the healthcare and public domains and to develop evidence-based counterarguments to diffuse them. An online search of grey literature, media and public health information sources was conducted to identify common obesity myths. A list of 10 obesity myths was developed and reviewed by obesity experts and key opinion leaders. Counterarguments were developed using current research evidence and validated by obesity experts. A survey of obesity experts and health professionals was conducted to determine the usability and potential effectiveness of the myth-fact messages to reduce weight bias. A total of 754 individuals responded to the request to complete the survey. Of those who responded, 464 (61.5%) completed the survey. All 10 obesity myths were identified to be deeply pervasive within Canadian healthcare and public domains. Although the myth-fact messages were endorsed, respondents also indicated that they would likely not be sufficient to reduce weight bias. Diffusing deeply pervasive obesity myths will require multilevel approaches. PMID:25826775

  15. Approximations in the performance evaluation of queueing systems. Final technical report

    SciTech Connect

    Knessl, Charles; Tier, Charles

    2001-06-06

    The research program on this grant was to develop new asymptotic and perturbation methods for approximating the performance of queueing systems. This involved obtaining approximations to complicated equations.The approximations provide accurate formulas for the performance measures. Queueing models of these types arise in the analysis of computer and communications systems such as ATM networks. In addition, the methods developed in the proposal were also found to be applicable to other stochastic and diffusion models.

  16. Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1993-01-01

    Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.

  17. Nonadiabatic charged spherical evolution in the postquasistatic approximation

    SciTech Connect

    Rosales, L.; Barreto, W.; Peralta, C.; Rodriguez-Mueller, B.

    2010-10-15

    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in general relativity. The numerical implementation of our approach leads to a solver which is globally second-order convergent. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming-out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstroem exterior solution. Two models are considered: (i) a Schwarzschild-like shell in the diffusion limit; and (ii) a Schwarzschild-like interior in the free-streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming-out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.

  18. Assessment of the zinc diffusion rate in estuarine zones.

    PubMed

    Sámano, María Luisa; Pérez, María Luisa; Claramunt, Inigo; García, Andrés

    2016-03-15

    Industrial pressures suffered by estuarine zones leave a pollution record in their sediment. Thus, high concentrations of many heavy metals and some organic compounds are often found in estuarine sediment. This work aims to contribute to the enhancement of water quality management strategies in these zones by studying in detail the diffusive processes that take place between the water and sediment using a two-pronged approach: experimental practice and numerical simulation. To provide an example of the practical application of the methodologies proposed in this paper, the Suances Estuary (northern Spain) was selected as the study zone. This estuary exhibits significant historical pollution and its sediment acts as a continuous internal source of zinc, mainly due to diffusive processes derived from the concentration gradient between the interstitial water at the solid particles of the sediment and the bottom of the water column. The experimentally obtained results, based on 6 case studies, demonstrated the buffering capacity of the system and allowed the determination of the required time for the mass transfer processes to reach an equilibrium state. Furthermore, the diffusion rate of zinc was approximately modeled taking into consideration the high concentration variability observed in sediment along the entire estuary. The convergence between the modeled and the experimental results indicated the required contact time to reach an equilibrium state in a real field situation. PMID:26851870

  19. Ballistic diffusion induced by non-Gaussian noise

    NASA Astrophysics Data System (ADS)

    Qin, Li; Li, Qiang

    2013-03-01

    In this letter, we have analyzed the diffusive behavior of a Brownian particle subject to both internal Gaussian thermal and external non-Gaussian noise sources. We discuss two time correlation functions C(t) of the non-Gaussian stochastic process, and find that they depend on the parameter q, indicating the departure of the non-Gaussian noise from Gaussian behavior: for q <= 1, C(t) is fitted very well by the first-order exponentially decaying curve and approaches zero in the long-time limit, whereas for q > 1, C(t) can be approximated by a second-order exponentially decaying function and converges to a non-zero constant. Due to the properties of C(t), the particle exhibits a normal diffusion for q <= 1, while for q > 1 the non-Gaussian noise induces a ballistic diffusion, i.e., the long-time mean square displacement of the free particle reads <[x(t) - ]2> ∝ t2.

  20. Analytical approximations for spatial stochastic gene expression in single cells and tissues

    PubMed Central

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2016-01-01

    Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686

  1. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; McEnery, J. E.; Troja, E.

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  2. Improved diffusion coefficients generated from Monte Carlo codes

    SciTech Connect

    Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.

    2013-07-01

    Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)

  3. Statistical analysis of diffuse ion events upstream of the Earth's bow shock

    NASA Technical Reports Server (NTRS)

    Trattner, K. J.; Mobius, E.; Scholer, M.; Klecker, B.; Hilchenbach, M.; Luehr, H.

    1994-01-01

    A statistical study of diffuse energetic ion events and their related waves upstream of the Earth's bow shock was performed using data from the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) satellite over two 5-month periods in 1984 and 1985. The data set was used to test the assumption in the self-consistent model of the upstream wave and particle populations by Lee (1982) that the particle acceleration through hydromagnetic waves and the wave generation are directly coupled. The comparison between the observed wave power and the wave power predicted on the observed energetic particle energy density and solar wind parameters results in a high correlation coefficient of about 0.89. The intensity of diffuse ions falls off approximately exponentially with the distance upstream from the bow shock parallel to the magnetic field with e-folding distances which vary from approximately 3.3 R(sub E) to approximately 11.7 R(sub E) over the energy range from 10 keV/e to 67.3 keV/e for both protons and alpha particles. After normalizing the upstream particle densities to zero bow shock distance by using these exponential variations, a good correlation (0.7) of the density of the diffuse ions with the solar wind density was found. This supports the suggestion that the solar wind is the source of the diffuse ions. Furthermore, the spectral slope of the diffuse ions correlates well with the solar wind velocity component in the direction of the interplanetary magnetic field (0.68 and 0.66 for protons and alpha particles) which concurs with the notion that the solar wind plays an important role in the acceleration of the upstream particles.

  4. Prediction of the diffuse neutrino flux from cosmic ray interactions near supernova remnants

    NASA Astrophysics Data System (ADS)

    Mandelartz, Matthias; Becker Tjus, Julia

    2015-05-01

    In this paper, we present high-energy neutrino spectra from 21 Galactic supernova remnants (SNRs), derived from gamma-ray measurements in the GeV-TeV range. We find that only the strongest sources, i.e. G40.5-0.5 in the north and Vela Junior in the south could be detected as single point sources by IceCube or KM3NeT, respectively. For the first time, it is also possible to derive a diffuse signal by applying the observed correlation between gamma-ray emission and radio signal. Radio data from 234 supernova remnants listed in Green's catalog are used to show that the total diffuse neutrino flux is approximately a factor of 2.5 higher compared to the sources that are resolved so far. We show that the signal at above 10 TeV energies can actually become comparable to the diffuse neutrino flux component from interactions in the interstellar medium. Recently, the IceCube collaboration announced the detection of a first diffuse signal of astrophysical high-energy neutrinos. Directional information cannot unambiguously reveal the nature of the sources at this point due to low statistics. A number of events come from close to the Galactic center and one of the main questions is whether at least a part of the signal can be of Galactic nature. In this paper, we show that the diffuse flux from well-resolved SNRs is at least a factor of 20 below the observed flux.

  5. Is anomalous transport diffusive

    SciTech Connect

    Rewoldt, G.

    1989-09-01

    It has often been assumed that the anomalous transport from saturated plasma instabilities is diffusive'' in the sense that the particle flux, {Gamma}, the electron energy flux, q{sub e}, and the ion energy flux, q{sub i}, can be written in forms that are linear in the density gradient, dn/dr, the electron temperature gradient, dT{sub e}/dr, and the ion temperature gradient dT{sub i}/dr. In the simplest form, {Gamma} = {minus} D{sub n}{sup n}(dn/dr), q{sub e} = {minus} D{sub e}{sup e}n(dT{sub e}/dr), and q{sub i} = {minus}D{sub i}{sup i}n(dT{sub i}/dr). A possible generalization of this is to include so-called off-diagonal'' terms, with {Gamma} = nV{sub n} {minus} D{sub n}{sup n}(dn/dr) {minus} D{sub n}{sup e}(n/T{sub e})(dT{sub e}/dr) {minus} D{sub n}{sup i}(n/T{sub i})(dT{sub i}/dr), with corresponding forms for the energy fluxes. Here, general results for the quasilinear particle and energy fluxes, resulting from tokamak linear microinstabilities, are evaluated to assess the relative importance of the diagonal and the off-diagonal terms. A further possible generatlization is to include also contributions to the fluxes from higher powers of the gradients, specifically quadratic'' contributions proportional to (dn/dr){sup 2}, (dn/dr)(dT{sub e}/dr), and so on. A procedure is described for evaluating the corresponding coefficients, and results are presented for illustrative realistic tokamak cases. Qualitatively, it is found that the off-diagonal diffusion coefficients can be as big as the diagonal ones, and that the quadratic terms can be larger than the linear ones. The results thus strongly suggest that the commonly used diffusive'' approximation with only diagonal terms, {Gamma} = {minus}D{sub n}{sup n}(dn/dr), and correspondingly for the energy fluxes, is not adequate in practice. 9 refs., 1 tabs.

  6. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  7. Hybrid Diffusion Imaging

    PubMed Central

    Wu, Yu-Chien; Alexander, Andrew L.

    2007-01-01

    Diffusion measurements in the human central nervous system are complex to characterize and a broad spectrum of methods have been proposed. In this study, a comprehensive diffusion encoding and analysis approach, Hybrid Diffusion Imaging (HYDI), is described. The HYDI encoding scheme is composed of multiple concentric “shells” of constant diffusion-weighting, which may be used to characterize the signal behavior with low, moderate and high diffusion-weighting. HYDI facilitates the application of multiple data-analyses strategies including diffusion tensor imaging (DTI), multi-exponential diffusion measurements, diffusion spectrum imaging (DSI) and q-ball imaging (QBI). These different analysis strategies may provide complementary information. DTI measures (mean diffusivity and fractional anisotropy) may be estimated from either data in the inner shells or the entire HYDI data. Fast and slow diffusivities were estimated using a nonlinear least-squares bi-exponential fit on geometric means of the HYDI shells. DSI measurements from the entire HYDI data yield empirical model-independent diffusion information and are well-suited for characterizing tissue regions with complex diffusion behavior. DSI measurements were characterized using the zero displacement probability and the mean squared displacement. The outermost HYDI shell was analyzed using QBI analysis to estimate the orientation distribution function (ODF), which is useful for characterizing the directions of multiple fiber groups within a voxel. In this study, a HYDI encoding scheme with 102 diffusion-weighted measurements was obtained over most of the human cerebrum in under 30 minutes. PMID:17481920

  8. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    SciTech Connect

    Koumetz, Serge D. Martin, Patrick; Murray, Hugues

    2014-09-14

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method, is proposed.

  9. Dynamic Padé approximants for chemical center waves

    NASA Astrophysics Data System (ADS)

    Bose, Shubha; Bose, Subir; Ortoleva, P.

    1980-04-01

    A model of reaction and diffusion is shown to exhibit composition center waves. The analysis is based on a Padé approximant scheme carried out in a completely self-consistent way. Evidence is given to show that these patterns may exist over a domain of wave vectors (of the outer plane wave region) that may exceed that of plane waves but may have gaps of forbidden wave vectors. Furthermore multiple centers consistent with a given outer domain may exist. Chaotic centers with shock structures may also exist as attractors in systems which also have periodic center attractors under identical conditions.

  10. 'Averaged' Diffusion of Radiation in Spectral Lines intra Interjacent Plasma-Gas Layer

    SciTech Connect

    Demura, A. V.; Demchenko, G. V.

    2008-10-22

    The approximate model of 'averaged diffusion' for resonance radiation transfer is introduced. It allows to reduce computational efforts preserving satisfactory accuracy while modeling divertor plasmas.

  11. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  12. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  13. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  14. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  15. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-11-01

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefuly their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stabe boundary layer (SBL), and model uncertainty.

  16. Diffusion Strategy Guide.

    ERIC Educational Resources Information Center

    McCutcheon, James R.; Sanders, John R.

    A methodology is presented for planning and managing the spread of educational innovations. The first portion of the guide develops a theoretical framework for diffusion which summarizes and capitalizes on the latest marketing and on the latest marketing and diffusion research findings. Major stages in the diffusion paradigm discussed include…

  17. Reduce Confusion about Diffusion.

    ERIC Educational Resources Information Center

    Hebrank, Mary R.

    1997-01-01

    Presents activities that allow students to explore the fundamental but poorly understood concept of diffusion by appealing to their kinesthetic senses first, then challenging their analytical skills as they try to deduce the mathematical principle involved. Presents a computer simulation of diffusion and discusses diffusion's limitations and…

  18. The diffusion properties of ion implanted species in selected target materials

    SciTech Connect

    Alton, G.D.; Dellwo, J.; Carter, H.K.; Kormicki, J.; Bartolo, G. di; Batchelder, J.C.; Breitenbach, J.; Chediak, J.A.; Jentoff-Nilsen, K.; Ichikawa, S.

    1995-02-01

    Experiments important to the future success of the Holifield Radioactive Ion Beam Facility (HRIBF) are in progress at the Oak Ridge National Laboratory which are designed to select the most appropriate target material for generating a particular radioactive ion beam (RIB). The 25-MV HHIRF tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is {open_quotes}on-line{close_quotes} at the UNISOR facility. The intensity versus time of implanted species, which diffuse from the high-temperature target material ({approximately}1700{degrees}C) and are ionized in the FEBIAD ion source, is used to determine release times for a particular projectile/target material combination. From such release data, diffusion coefficients can be derived by fitting the theoretical results obtained by computational solution of Fick`s second equation to experimental data. The diffusion coefficient can be used subsequently to predict the release properties of the particular element from the same material in other target geometries and at other temperatures, provided that the activation energy is also known. Diffusion coefficients for Cl implanted into and diffused from CeS and Zr{sub 5}Si{sub 3} and As, Br, and Se implanted into and diffused from Zr{sub 5}Ge{sub 3} have been derived from the resulting intensity versus time profiles. Brief descriptions of the experimental apparatus and procedures utilized in the present experiments and plans for future related experiments are presented.

  19. Matrix-dependent multigrid-homogenization for diffusion problems

    SciTech Connect

    Knapek, S.

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  20. Diffusion-controlled reaction rate to an active site

    NASA Astrophysics Data System (ADS)

    Traytak, S. D.

    1995-02-01

    The diffusion-controlled reactions of chemically anisotropic reactants are treated for the simplest model of Solc and Stockmayer (Intern. J. Chem. Kinet. 5 (1973) 733) in the absence of rotational diffusion. Using the dual series relations approach we can find the effective steric factor with any necessary accuracy. A few simple analytical approximations for the effective steric factor are proposed. The derived results we compare with the relevant analytical approximations and numerical calculations available in the literature.

  1. Saddlepoint distribution function approximations in biostatistical inference.

    PubMed

    Kolassa, J E

    2003-01-01

    Applications of saddlepoint approximations to distribution functions are reviewed. Calculations are provided for marginal distributions and conditional distributions. These approximations are applied to problems of testing and generating confidence intervals, particularly in canonical exponential families.

  2. Stray light reduction in optical computed tomography using a convergent cone-beam source

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Dekker, Kurtis; Battista, Jerry

    2015-01-01

    The planar diffuser light source for a cone-beam optical CT scanner was replaced with a filtered LED and large Fresnel lens. The source was focused on a camera and convergent cone-beam images were acquired. Images are sensitive to mismatches in the refractive index of vessels, samples and matching liquid. For PETE jars and water solutions, a loss of approximately 30% of the projections was demonstrated. Teflon PFA cylinders provided better refractive index matching and more accurate reconstructions. The convergent cone-beam source dramatically increased imaging efficiency by a factor of 1000 and reduced stray light levels by confining illumination to image forming rays.

  3. An approximation technique for jet impingement flow

    SciTech Connect

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  4. Analysis of Multipoint-Multitime Correlations and Diffusion in Decaying Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1961-01-01

    Two-point, two-time correlation equations are obtained by considering the Navier-Stokes equations for two points in a fluid at two time. By neglecting the triple correlations in the equations, a solution is obtained for the final period of decay. The analysis is extended to earlier times by considering three points at three different times. The set of equations is made determinate by neglecting the quadruple correlations in comparison with the triple correlations. The diffusion of particles from a source in a decaying turbulent field is calculated approximately by assuming that the velocity fluctuations are small.

  5. Superluminal sources.

    PubMed Central

    Vermeulen, R C

    1995-01-01

    Predictions for the apparent velocity statistics under simple beaming models are presented and compared to the observations. The potential applications for tests of unification models and for cosmology (source counts, measurements of the Hubble constant H0 and the deceleration parameter q0) are discussed. First results from a large homogeneous survey are presented. The data do not show compelling evidence for the existence of intrinsically different populations of galaxies, BL Lacertae objects, or quasars. Apparent velocities betaapp in the range 1-5 h-1, where h = H0/100 km.s-1.Mpc-1 [1 megaparsec (Mpc) = 3.09 x 10(22) m], occur with roughly equal frequency; higher values, up to betaapp = 10 h-1, are rather more scarce than appeared to be the case from earlier work, which evidently concentrated on sources that are not representative of the general population. The betaapp distribution suggests that there might be a skewed distribution of Lorentz factors over the sample, with a peak at gammab approximately 2 h-1 and a tail up to at least gammab approximately 10 h-1. There appears to be a clearly rising upper envelope to the betaapp distribution when plotted as a function of observed 5-GHz luminosity; a combination of source counts and the apparent velocity statistics in a larger sample could provide much insight into the properties of radio jet sources. PMID:11607604

  6. Magnetic field generation and diffusion by a laser-produced blast wave propagating in non-homogenous plasma

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2015-04-01

    In this paper we discuss the magnetic field self generation, via the so-called Biermann battery effect, and its diffusion for a blast wave (BW) expanding in a perturbed background medium. A series of simulations verify the bi-linear behavior of the Biermann battery source term both in amplitude and in wavenumber. Such a behavior is valid in the limit of no diffusivity. When diffusivity is also considered, we observe an inverse proportionality with the wavenumber: for large wavenumber perturbation magnetic diffusivity plays a key role. Writing the induction equation in a dimensionless form we discuss how, in terms of magnetic properties, the BW can be subdivided into three main regions: the remnant where the frozen-in-flow approximation holds, the thin shell where the magnetic field is in fact generated but at the same time begins to diffuse, and the shock front where the magnetic field diffuses away. A possible experimental scenario that could induce magnetic fields of about 100 gauss is finally investigated. Simulations have been performed with the code DUED.

  7. Thermal conductivity and diffusivity of soil

    SciTech Connect

    Sorour, M.M. ); Saleh, M.M.; Mahmoud, R.A. )

    1990-03-01

    The thermal conductivity and diffusivity of soil has been experimentally measured using the line heat source transient method. Representative samples of different textures were collected and analyzed from different localities and depths. The effect of temperatures, in the range of {minus}10{degrees}C {yields} 35{degrees}C and moisture content up to 40% on the conductivity and diffusivity were investigated. The results of this investigation indicate some interesting results and confirm some previously published data.

  8. New design of textile light diffusers for photodynamic therapy.

    PubMed

    Cochrane, Cédric; Mordon, Serge R; Lesage, Jean Claude; Koncar, Vladan

    2013-04-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm(2): 5×20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/ cm(2)) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18±2.5 mw/cm(2). Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm(2)) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes.

  9. Asymptotic Diffusion-Limit Accuracy of Sn Angular Differencing Schemes

    SciTech Connect

    Bailey, T S; Morel, J E; Chang, J H

    2009-11-05

    In a previous paper, Morel and Montry used a Galerkin-based diffusion analysis to define a particular weighted diamond angular discretization for S{sub n}n calculations in curvilinear geometries. The weighting factors were chosen to ensure that the Galerkin diffusion approximation was preserved, which eliminated the discrete-ordinates flux dip. It was also shown that the step and diamond angular differencing schemes, which both suffer from the flux dip, do not preserve the diffusion approximation in the Galerkin sense. In this paper we re-derive the Morel and Montry weighted diamond scheme using a formal asymptotic diffusion-limit analysis. The asymptotic analysis yields more information than the Galerkin analysis and demonstrates that the step and diamond schemes do in fact formally preserve the diffusion limit to leading order, while the Morel and Montry weighted diamond scheme preserves it to first order, which is required for full consistency in this limit. Nonetheless, the fact that the step and diamond differencing schemes preserve the diffusion limit to leading order suggests that the flux dip should disappear as the diffusion limit is approached for these schemes. Computational results are presented that confirm this conjecture. We further conjecture that preserving the Galerkin diffusion approximation is equivalent to preserving the asymptotic diffusion limit to first order.

  10. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    SciTech Connect

    Ramshaw, J.D.; Chang, C.H.

    1995-12-31

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.

  11. Simultaneous P and B diffusion, in-situ surface passivation, impurity filtering and gettering for high-efficiency silicon solar cells

    SciTech Connect

    Krygowski, T.; Rohatgi, A.; Ruby, D.

    1997-11-01

    A technique is presented to simultaneously diffuse boron and phosphorus in silicon, and grow an in-situ passivating oxide in a single furnace step. It is shown that limited solid doping sources made from P and B Spin-On Dopant (SOD) films can produce optimal n{sup +} and p{sup +} profiles simultaneously without the deleterious effects of cross doping. A high quality passivating oxide is grown in-situ beneath the thin ({approximately} 60 {angstrom}) diffusion glass, resulting in low J{sub o} values below 100 fA/cm{sup 2} for transparent ({approximately} 100 {Omega}/{open_square}) phosphorus and boron diffusions. For the first time it is shown that impurities present in the boron SOD film can be effectively filtered out by employing separate source wafers, resulting in bulk lifetimes in excess of 1 ms for the sample wafers. The degree of lifetime degradation in the sources is related to the gettering efficiency of boron in silicon. This novel simultaneous diffusion, in-situ oxidation, impurity filtering and gettering technique was successfully used to produce 20.3% Fz, and 19.1% Cz solar cells, in one furnace step.

  12. Image-based color ink diffusion rendering.

    PubMed

    Wang, Chung-Ming; Wang, Ren-Jie

    2007-01-01

    This paper proposes an image-based painterly rendering algorithm for automatically synthesizing an image with color ink diffusion. We suggest a mathematical model with a physical base to simulate the phenomenon of color colloidal ink diffusing into absorbent paper. Our algorithm contains three main parts: a feature extraction phase, a Kubelka-Munk (KM) color mixing phase, and a color ink diffusion synthesis phase. In the feature extraction phase, the information of the reference image is simplified by luminance division and color segmentation. In the color mixing phase, the KM theory is employed to approximate the result when one pigment is painted upon another pigment layer. Then, in the color ink diffusion synthesis phase, the physically-based model that we propose is employed to simulate the result of color ink diffusion in absorbent paper using a texture synthesis technique. Our image-based ink diffusing rendering (IBCIDR) algorithm eliminates the drawback of conventional Chinese ink simulations, which are limited to the black ink domain, and our approach demonstrates that, without using any strokes, a color image can be automatically converted to the diffused ink style with a visually pleasing appearance.

  13. A unified approach to the Darwin approximation

    SciTech Connect

    Krause, Todd B.; Apte, A.; Morrison, P. J.

    2007-10-15

    There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting.

  14. Diffusion of silicon in crystalline germanium

    SciTech Connect

    Silvestri, H.H.; Bracht, H.; Hansen, J. Lundsgaard; Larsen, A.Nylandsted; Haller, E.E.

    2005-06-06

    We report the determination of the diffusion coefficient of Si in crystalline Ge over the temperature range of 550 to 900 C. A molecular beam epitaxy (MBE) grown buried Si layer in an epitaxial Ge layer on a crystalline Ge substrate was used as the source for the diffusion experiments. For samples annealed at temperatures above 700 C, a 50 nm thick SiO{sub 2} cap layer was deposited to prevent decomposition of the Ge surface. We found the temperature dependence of the diffusion coefficient to be described by a single activation energy (3.32 eV) and pre-factor (38 cm{sup 2}/s) over the entire temperature range studied. The diffusion of the isovalent Si in Ge is slower than Ge self-diffusion over the full temperature range and reveals an activation enthalpy which is higher than that of self-diffusion. This points to a reduced interaction potential between the Si atom and the native defect mediating the diffusion process. For Si, which is smaller in size than the Ge self-atom, a reduced interaction is expected for a Si-vacancy (Si-V{sub Ge}) pair. Therefore we conclude that Si diffuses in Ge via the vacancy mechanism.

  15. Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits

    PubMed Central

    Carbone, N. A.; Baez, G. R.; García, H. A.; Waks Serra, M. V.; Di Rocco, H. O.; Iriarte, D. I.; Pomarico, J. A.; Grosenick, D.; Macdonald, R.

    2014-01-01

    In the present contribution we investigate the images of CW diffusely reflected light for a point-like source, registered by a CCD camera imaging a turbid medium containing an absorbing lesion. We show that detection of μa variations (absorption anomalies) is achieved if images are normalized to background intensity. A theoretical analysis based on the diffusion approximation is presented to investigate the sensitivity and the limitations of our proposal and a novel procedure to find the location of the inclusions in 3D is given and tested. An analysis of the noise and its influence on the detection capabilities of our proposal is provided. Experimental results on phantoms are also given, supporting the proposed approach. PMID:24876999

  16. Numerical analysis of particulate organic waste diffusion in an aquaculture area of Gokasho Bay, Japan.

    PubMed

    Zhang, Junbo; Kitazawa, Daisuke

    2015-04-15

    Particulate organic waste, originating from fish cultured in cages, often brings about negative effects on the structure of bottom sediments. These effects result in deterioration of the aquatic environment. In the present study, a three-dimensional numerical model was coupled with developed submodels of fish cage drag and aquaculture waste diffusion to simulate the hydrodynamic environment and distribution of particulate organic waste. Numerical simulation results showed that fish cages exerted an influence on both the velocity and direction of water current; the reduction of water current velocity was a maximum of approximately 38%. The contribution of fish fecal matter was dominant during winter (ca. 80%), whereas waste fish feed was the main source in other seasons. The distribution of organic waste near the sea bottom indicated that organic waste not only loaded mainly on the sea floor just beneath the fish cages but also diffused towards the coastlines.

  17. Quantification and normalization of noise variance with sparsity regularization to enhance diffuse optical tomography

    PubMed Central

    Yao, Jixing; Tian, Fenghua; Rakvongthai, Yothin; Oraintara, Soontorn; Liu, Hanli

    2015-01-01

    Conventional reconstruction of diffuse optical tomography (DOT) is based on the Tikhonov regularization and the white Gaussian noise assumption. Consequently, the reconstructed DOT images usually have a low spatial resolution. In this work, we have derived a novel quantification method for noise variance based on the linear Rytov approximation of the photon diffusion equation. Specifically, we have implemented this quantification of noise variance to normalize the measurement signals from all source-detector channels along with sparsity regularization to provide high-quality DOT images. Multiple experiments from computer simulations and laboratory phantoms were performed to validate and support the newly developed algorithm. The reconstructed images demonstrate that quantification and normalization of noise variance with sparsity regularization (QNNVSR) is an effective reconstruction approach to greatly enhance the spatial resolution and the shape fidelity for DOT images. Since noise variance can be estimated by our derived expression with relatively limited resources available, this approach is practically useful for many DOT applications. PMID:26309760

  18. Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond [approximately]2 AU: Ulysses

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; Feldman, W.C.; Mcomas, D.J.; Phillips, J.L. ); Goldstein, B.E. )

    1993-11-05

    Enhanced fluxes of suprathermal electrons are commonly observed upstream of corotating forward and reverse shocks in the solar wind at heliocentric distances beyond [approximately]2 AU by the Los Alamos plasma experiment on Ulysses. The average duration of these events, which are most intense immediately upstream from the shocks and which fade with increasing distance from them, is [approximately]2.4 days near 5 AU. These events are caused by the leakage of shock-heated electrons into the upstream region. The upstream regions of these shocks face back toward the SUN along the interplanetary magnetic field, so these leaked electrons commonly counterstream relative to the normal solar wind electron heat flux. The observations suggest that conservation of magnetic moment and scattering typically limit the sunward propagation of these electrons as beams to field-aligned distances of [approximately]15 AU. Although it seems unlikely that these shock-associated events are an important source of counterstreaming events near 1 AU, remnants of the backstreaming beams may contribute importantly to the diffuse solar wind halo electron population there. 13 refs., 3 figs.

  19. Method for estimating closed-form solutions of the light diffusion equation for turbid media of any boundary shape

    PubMed Central

    Alqasemi, Umar; Salehi, Hassan S.; Zhu, Quing

    2016-01-01

    This paper reports a method of estimating an approximate closed-form solution to the light diffusion equation for any type of geometry involving Dirichlet’s boundary condition with known source location. It is based on estimating the optimum locations of multiple imaginary point sources to cancel the fluence at the extrapolated boundary by constrained optimization using a genetic algorithm. The mathematical derivation of the problem to approach the optimum solution for the direct-current type of diffuse optical systems is described in detail. Our method is first applied to slab geometry and compared with a truncated series solution. After that, it is applied to hemispherical geometry and compared with Monte Carlo simulation results. The method provides a fast and sufficiently accurate fluence distribution for optical reconstruction. PMID:26831771

  20. User's Manual for the APRAC-1A Urban Diffusion Model Computer Program.

    ERIC Educational Resources Information Center

    Mancuso, R. L.; And Others

    The APRAC-1A diffusion model was developed as a versatile and practical model for computing the concentrations of pollutants at any point within a city. The model calculates pollutant contributions from diffusion on various scales, including: extra-urban diffusion, mainly from sources in upwind cities; intra-urban diffusion from freeway, arterial,…

  1. Approximating conductive ellipsoid inductive responses using static quadrupole moments

    SciTech Connect

    Smith, J. Torquil

    2008-10-01

    Smith and Morrison (2006) developed an approximation for the inductive response of conducting magnetic (permeable) spheroids (e.g., steel spheroids) based on the inductive response of conducting magnetic spheres of related dimensions. Spheroids are axially symmetric objects with elliptical cross-sections along the axis of symmetry and circular cross sections perpendicular to the axis of symmetry. Spheroids are useful as an approximation to the shapes of unexploded ordnance (UXO) for approximating their responses. Ellipsoids are more general objects with three orthogonal principal axes, with elliptical cross sections along planes normal to the axes. Ellipsoids reduce to spheroids in the limiting case of ellipsoids with cross-sections that are in fact circles along planes normal to one axis. Parametrizing the inductive response of unknown objects in terms of the response of an ellipsoid is useful as it allows fitting responses of objects with no axis of symmetry, in addition to fitting the responses of axially symmetric objects. It is thus more appropriate for fitting the responses of metal scrap to be distinguished electromagnetically from unexploded ordnance. Here the method of Smith and Morrison (2006) is generalized to the case of conductive magnetic ellipsoids, and a simplified form used to parametrize the inductive response of isolated objects. The simplified form is developed for the case of non-uniform source fields, for the first eight terms in an ellipsoidal harmonic decomposition of the source fields, allowing limited corrections for source field geometry beyond the common assumption of uniform source fields.

  2. Cochlear Implant Microphone Location Affects Speech Recognition in Diffuse Noise

    PubMed Central

    Kolberg, Elizabeth R.; Sheffield, Sterling W.; Davis, Timothy J.; Sunderhaus, Linsey W.; Gifford, René H.

    2015-01-01

    Background Despite improvements in cochlear implants (CIs), CI recipients continue to experience significant communicative difficulty in background noise. Many potential solutions have been proposed to help increase signal-to-noise ratio in noisy environments, including signal processing and external accessories. To date, however, the effect of microphone location on speech recognition in noise has focused primarily on hearing aid users. Purpose The purpose of this study was to (1) measure physical output for the T-Mic as compared with the integrated behind-the-ear(BTE) processor mic for various source azimuths, and (2) to investigate the effect of CI processor mic location for speech recognition in semi-diffuse noise with speech originating from various source azimuths as encountered in everyday communicative environments. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample A total of 11 adults with Advanced Bionics CIs were recruited for this study. Data Collection and Analysis Physical acoustic output was measured on a Knowles Experimental Mannequin for Acoustic Research (KEMAR) for the T-Mic and BTE mic, with broadband noise presented at 0 and 90° (directed toward the implant processor). In addition to physical acoustic measurements, we also assessed recognition of sentences constructed by researchers at Texas Instruments, the Massachusetts Institute of Technology, and the Stanford Research Institute (TIMIT sentences) at 60 dBA for speech source azimuths of 0, 90, and 270°. Sentences were presented in a semi-diffuse restaurant noise originating from the R-SPACE 8-loudspeaker array. Signal-to-noise ratio was determined individually to achieve approximately 50% correct in the unilateral implanted listening condition with speech at 0°. Performance was compared across the T-Mic, 50/50, and the integrated BTE processor mic. Results The integrated BTE mic provided approximately 5

  3. Photoacoustic thermal diffusion flowmetry

    PubMed Central

    Sheinfeld, Adi; Eyal, Avishay

    2012-01-01

    Thermal Diffusion Flowmetry (TDF) (also called Heat Clearance Method or Thermal Clearance Method) is a longstanding technique for measuring blood flow or blood perfusion in living tissues. Typically, temperature transients and/or gradients are induced in a volume of interest and the temporal and/or spatial temperature variations which follow are measured and used for calculation of the flow. In this work a new method for implementing TDF is studied theoretically and experimentally. The heat deposition which is required for TDF is implemented photothermally (PT) and the measurement of the induced temperature variations is done by photoacoustic (PA) thermometry. Both excitation light beams (the PT and the PA) are produced by directly modulated 830 nm laser diodes and are conveniently delivered to the volume under test by the same optical fiber. The method was tested experimentally using a blood-filled phantom vessel and the results were compared with a theoretical prediction based on the heat and the photoacoustic equations. The fitting of a simplified lumped thermal model to the experimental data yielded estimated values of the blood velocity at different flow rates. By combining additional optical sources at different wavelengths it will be possible to utilize the method for non-invasive simultaneous measurement of blood flow and oxygen saturation using a single fiber probe. PMID:22574267

  4. Back diffusion from thin low permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2015-01-01

    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers.

  5. Back diffusion from thin low permeability zones.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2015-01-01

    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers. PMID:25478850

  6. Butterfly wing patterns: how good a determining mechanism is the simple diffusion of a single morphogen?

    PubMed

    Bard, J B; French, V

    1984-12-01

    The formation of the wing pigmentation patterns of three species of butterflies has been modelled using a mechanism based on a tripod of assumptions. First, that there may be morphogen sources in the foci of eyespots and morphogen sinks at some parts of the wing margin, all other cells being passive. Second, that the morphogen has a finite half life and diffuses simply and freely away from the sources throughout a wing of hexagonally packed cells. Third, that the overt pattern derives from cells interpreting the local morphogen concentration with respect to thresholds which determine scale colours. The final pattern thus follows lines of constant morphogen concentration and may, depending on the distribution of sources, comprise rings, curves or bands. With such a model, we have been able to compute stable patterns having the essential topology of the compound spots of Tenaris domitilla, the large rings of Diaethria marchalii and the pattern of eyespots, rings and asymmetric bands of Ragadia minoa. Quantitative analysis of the pattern-forming process shows that, with a biologically realistic diffusion constant (approximately 5.10(-7) cm2 sec-1) and a morphogen half life less than 6h, the patterns form within approximately 12h over a wing of approximately 1000 cells in length. The limitations of the model are that the exact morphology of the eyespots and bands do not match precisely those of the original wings, that there are edge distortions and that optimal patterns may be critically dependent on the exact positions of sources and sinks. An explanation for part of the discrepancy is that we have assumed an adult wing shape and foci coordinates in modelling a process that took place earlier in development. Nevertheless, the limitations of the model argue against a mechanism based on a single morphogen operating in vivo. However, as the model can generate many features of butterfly wing patterns, it may be considered as a degenerate case of that mechanism. PMID

  7. Butterfly wing patterns: how good a determining mechanism is the simple diffusion of a single morphogen?

    PubMed

    Bard, J B; French, V

    1984-12-01

    The formation of the wing pigmentation patterns of three species of butterflies has been modelled using a mechanism based on a tripod of assumptions. First, that there may be morphogen sources in the foci of eyespots and morphogen sinks at some parts of the wing margin, all other cells being passive. Second, that the morphogen has a finite half life and diffuses simply and freely away from the sources throughout a wing of hexagonally packed cells. Third, that the overt pattern derives from cells interpreting the local morphogen concentration with respect to thresholds which determine scale colours. The final pattern thus follows lines of constant morphogen concentration and may, depending on the distribution of sources, comprise rings, curves or bands. With such a model, we have been able to compute stable patterns having the essential topology of the compound spots of Tenaris domitilla, the large rings of Diaethria marchalii and the pattern of eyespots, rings and asymmetric bands of Ragadia minoa. Quantitative analysis of the pattern-forming process shows that, with a biologically realistic diffusion constant (approximately 5.10(-7) cm2 sec-1) and a morphogen half life less than 6h, the patterns form within approximately 12h over a wing of approximately 1000 cells in length. The limitations of the model are that the exact morphology of the eyespots and bands do not match precisely those of the original wings, that there are edge distortions and that optimal patterns may be critically dependent on the exact positions of sources and sinks. An explanation for part of the discrepancy is that we have assumed an adult wing shape and foci coordinates in modelling a process that took place earlier in development. Nevertheless, the limitations of the model argue against a mechanism based on a single morphogen operating in vivo. However, as the model can generate many features of butterfly wing patterns, it may be considered as a degenerate case of that mechanism.

  8. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  9. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-01-01

    Most diffusion models currently used in air-quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefully their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stable boundary layer (SBL), and model uncertainty. Progress has been made in all areas, but it is most significant and ready for application to practical models in the case of the CBL. This has resulted from a clear understanding of the vertical structure and diffusion in the CBL, as demonstrated by laboratory experiments, numerical simulations, and field observations. Understanding of turbulence structure and diffusion in the SBL is less complete and not yet ready for general use in applications.

  10. Approximate Analysis of Semiconductor Laser Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, William K.; Katz, Joseph

    1987-01-01

    Simplified equation yields useful information on gains and output patterns. Theoretical method based on approximate waveguide equation enables prediction of lateral modes of gain-guided planar array of parallel semiconductor lasers. Equation for entire array solved directly using piecewise approximation of index of refraction by simple functions without customary approximation based on coupled waveguid modes of individual lasers. Improved results yield better understanding of laser-array modes and help in development of well-behaved high-power semiconductor laser arrays.

  11. Bent approximations to synchrotron radiation optics

    SciTech Connect

    Heald, S.

    1981-01-01

    Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors.

  12. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  13. Locally Learning Biomedical Data Using Diffusion Frames

    PubMed Central

    Filbir, F.; Mhaskar, H.N.

    2012-01-01

    Abstract Diffusion geometry techniques are useful to classify patterns and visualize high-dimensional datasets. Building upon ideas from diffusion geometry, we outline our mathematical foundations for learning a function on high-dimension biomedical data in a local fashion from training data. Our approach is based on a localized summation kernel, and we verify the computational performance by means of exact approximation rates. After these theoretical results, we apply our scheme to learn early disease stages in standard and new biomedical datasets. PMID:23101786

  14. Generalized Drift-Diffusion Model In Semiconductors

    SciTech Connect

    Mesbah, S.; Bendib-Kalache, K.; Bendib, A.

    2008-09-23

    A new drift-diffusion model is proposed based on the computation of the stationary nonlocal current density. The semi classical Boltzmann equation is solved keeping all the anisotropies of the distribution function with the use of the continued fractions. The conductivity is calculated in the linear approximation and for arbitrary collision frequency with respect to Kv{sub t} where K{sup -1} is the characteristic length scale of the system and V{sub t} is the thermal velocity. The nonlocal conductivity can be used to close the generalized drift-diffusion equations valid for arbitrary collisionality.

  15. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  16. Local carbon diffusion coefficient measurement in the S-1 spheromak

    SciTech Connect

    Mayo, R.M.; Levinton, F.M.; Meyerhofer, D.D.; Chu, T.K.; Paul, S.F.; Yamada, M.

    1988-10-01

    The local carbon diffusion coefficient was measured in the S - 1 spheromak by detecting the radial spread of injected carbon impurity. The radial impurity density profile is determined by the balance of ionization and diffusion. Using measured local electron temperature T/sub e/ and density n/sub e/, the ionization rate is determined from which the particle diffusion coefficient is inferred. The results found in this work are consistent with Bohm diffusion. The absolute magnitude of D/sub /perpendicular// was determined to be (4/approximately/6) /times/ D/sub Bohm/. 25 refs., 13 figs., 2 tabs.

  17. Inpainting using airy diffusion

    NASA Astrophysics Data System (ADS)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  18. Multicomponent diffusion revisited

    NASA Astrophysics Data System (ADS)

    Lam, S. H.

    2006-07-01

    The derivation of the multicomponent diffusion law is revisited. Following Furry [Am. J. Phys. 16, 63 (1948)], Williams [Am. J. Phys. 26, 467 (1958); Combustion Theory, 2nd ed. (Benjamin/Cummings , Menlo Park, CA,1985)] heuristically rederived the classical kinetic theory results using macroscopic equations, and pointed out that the dynamics of the mixture fluid had been assumed inviscid. This paper generalizes the derivation, shows that the inviscid assumption can easily be relaxed to add a new term to the classical diffusion law, and the thermal diffusion term can also be easily recovered. The nonuniqueness of the multicomponent diffusion coefficient matrix is emphasized and discussed.

  19. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  20. Characterization of Source and Wave Propagation Effects of Volcano-seismic Events and Tremor Using the Amplitude Source Location Method

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Londono, J. M.; López, C. M.; Ruiz, M. C.; Mothes, P. A.; Maeda, Y.

    2015-12-01

    We propose application of the amplitude source location (ASL) method to characterize source and wave propagation effects of volcano-seismic events and tremor observed at different volcanoes. We used this method to estimate the source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We estimated the cumulative source amplitude (Is) as the offset value of the time-integrated envelope of the vertical seismogram corrected for geometrical spreading and medium attenuation in the 5-10 Hz band. We studied these parameters of tremor signals associated with eruptions and explosion events at Tungurahua volcano, Ecuador; long-period (LP) events at Cotopaxi volcano, Ecuador; and LP events at Nevado del Ruiz volcano, Colombia. We identified two types of eruption tremor at Tungurahua; noise-like inharmonic waveforms and harmonic oscillatory signals. We found that Is increased linearly with increasing source amplitude for explosion events and LP events, and that Is increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. The Is values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The linear relationship between the source amplitude and Is for LP events can be explained by the wave propagation effects in the diffusion model for multiple scattering assuming a diffusion coefficient of 105 m2/s and an intrinsic Q factor of around 50. The resultant mean free path is approximately 100 m. Our results suggest that Cotopaxi and Nevado del Ruiz volcanoes have similar highly scattering and attenuating structures. Our approach provides a systematic way to compare the size of volcano-seismic signals observed at different volcanoes. The scaling relations among source parameters that we identified

  1. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  2. Analytical model of diffuse reflectance spectrum of skin tissue

    SciTech Connect

    Lisenko, S A; Kugeiko, M M; Firago, V A; Sobchuk, A N

    2014-01-31

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)

  3. Analytical model of diffuse reflectance spectrum of skin tissue

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.

    2014-01-01

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.

  4. Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling

    NASA Astrophysics Data System (ADS)

    McWhinney, Hylton G.; James, William D.; Schweikert, Emile A.; Williams, John R.; Hollenberg, Glen; Welsh, John; Sereatan, Washington

    1993-07-01

    Lithium Ceramics offer tremendous potential as a source for the production of tritium ( 3H) for fusion power reactors. Their successful application will depend to a great extent upon the diffusion properties of the 6Li within the matrix. Consequently knowledge od 6Li concentration gradients in the ceramic matrices is an important requirement in the continued development of the technology. In this investigation, the neutron depth profile (NDP) technique has been applied to the study of concentration profiles of 6Li in lithium aluminate ceramics, doped with 1.8%, 50% and 95% 6Li isotopic concentrations. Specimen for analysis were prepared at Battelle (PNL) as pellet discs. Samples for diffusion studies were arranged as diffusion couples in the following manner: 1.8% 6Li discs/85% 6Li powder. Experiments were performed at the Texas A&M Nuclear Science Center Reactor Building, utilizing 1 MW equivalent thermal neutron fluxes 3 × 10 11n/ m2s. The depth probed by the technique is approximately 15 μ.m. Diffusion coefficients are in the range of 2.1 × 10 -12 to 7.0 × 10 -11m2s-1 for 1.8% 6Li-doped ceramics annealed at 1200 and 1400° C, for 4 to 48-h anneal times.

  5. Geometry-specific heterogeneity of the apparent diffusion rate of materials inside sperm cells.

    PubMed

    Takao, Daisuke; Kamimura, Shinji

    2010-04-21

    In sea urchin spermatozoa, the energy source powering flagellar motion is provided as ATP produced by mitochondria located at the proximal ends of flagella. However, the bottleneck structure between the sperm head and the flagellar tail seems to restrict the free entry of ATP from mitochondria into the tail region. To test this possibility, we investigated the diffusion properties in sperm cells using fluorescence recovery after photobleaching. We found that the rate of fluorescence recovery in the head region was approximately 10% of that observed in the flagellar tail regions. We also found that, even within the tail region, rates varied depending on location, i.e., rates were slower at the more distal regions. Using computational analysis, the rate heterogeneity was shown to be caused mainly by the geometry of the sperm structure, even if little or no difference in diffusion rates through the neck region was assumed. Therefore, we concluded that materials such as ATP would generally diffuse freely between the heads and the flagella of sperm cells. We believe these findings regarding the diffusion properties inside spermatozoa provide further insights into material transportation and chemical signaling inside eukaryotic cilia and flagella. PMID:20409478

  6. Diffusion of Nerve Growth Factor in Rat Striatum as Determined by Multiphoton Microscopy

    PubMed Central

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Webb, Watt W.; Saltzman, W. Mark

    2003-01-01

    Neurotrophins such as nerve growth factor (NGF) may be useful for treating diseases in the central nervous system; our ability to harness the potential therapeutic benefit of NGF is directly related to our understanding of the fate of exogenously supplied factors in brain tissue. We utilized multiphoton microscopy to quantify the dynamic behavior of NGF in coronal, 400-μm thick, fresh rat brain tissue slices. We administered a solution containing bioactive rhodamine nerve growth factor conjugate via pressure injection and monitored the dispersion in the striatal region of the coronal slices. Multiphoton microscopy facilitated repeated imaging deep (∼200 μm) into tissue slices with minimal photodamage of tissue and photobleaching of label. The pressure injection paradigm approximated diffusion from a point source, and we therefore used the corresponding solution to the diffusion equation to estimate an apparent diffusion coefficient in brain tissue (Db(34°C)) of 2.75 ± 0.24 × 10−7 cm2/s (average ± SE). In contrast, we determined a corresponding free diffusion coefficient in buffered solution (Df(34°C)) of 12.6 ± 0.9 × 10−7 cm2/s using multiphoton fluorescence photobleaching recovery. The tortuosity, defined as the square root of the ratio of Df to Db, was 2.14 and moderate in magnitude. PMID:12829512

  7. Geometry-specific heterogeneity of the apparent diffusion rate of materials inside sperm cells.

    PubMed

    Takao, Daisuke; Kamimura, Shinji

    2010-04-21

    In sea urchin spermatozoa, the energy source powering flagellar motion is provided as ATP produced by mitochondria located at the proximal ends of flagella. However, the bottleneck structure between the sperm head and the flagellar tail seems to restrict the free entry of ATP from mitochondria into the tail region. To test this possibility, we investigated the diffusion properties in sperm cells using fluorescence recovery after photobleaching. We found that the rate of fluorescence recovery in the head region was approximately 10% of that observed in the flagellar tail regions. We also found that, even within the tail region, rates varied depending on location, i.e., rates were slower at the more distal regions. Using computational analysis, the rate heterogeneity was shown to be caused mainly by the geometry of the sperm structure, even if little or no difference in diffusion rates through the neck region was assumed. Therefore, we concluded that materials such as ATP would generally diffuse freely between the heads and the flagella of sperm cells. We believe these findings regarding the diffusion properties inside spermatozoa provide further insights into material transportation and chemical signaling inside eukaryotic cilia and flagella.

  8. BAKEOUT: A computer program for predicting diffusive outgassing from stainless steel

    SciTech Connect

    Weis, M.P.

    1992-12-01

    The outgassing load from a leak-tight and well-baked vacuum vessel is frequently dominated by the diffusive outgassing of hydrogen gas from the materials of which the vessel is constructed. Stainless steel, in particular, can be a major source of hydrogen. The diffusive transport of gas through materials is governed by the second order partial differential equation, D [partial derivative][sup 2]C/[partial derivative]X[sup 2] = [partial derivative]C/[partial derivative]t, known as Fick's Law. Two alternate solutions to this equation give exact numerical answers of the diffusive outgassing rate versus time. A simplified approximation of each solution allows prediction of both the short-term and the long-term behavior. BAKEOUT, a computer program based on Fick's Law, was developed to predict an elevated temperature step function of time (that is, a bakeout) that will achieve a desired hydrogen diffusive outgassing rate from a stainless steel vessel under vacuum. This paper presents the mathematical development of the computer program and an example case.

  9. BAKEOUT: A computer program for predicting diffusive outgassing from stainless steel

    SciTech Connect

    Weis, M.P.

    1992-12-01

    The outgassing load from a leak-tight and well-baked vacuum vessel is frequently dominated by the diffusive outgassing of hydrogen gas from the materials of which the vessel is constructed. Stainless steel, in particular, can be a major source of hydrogen. The diffusive transport of gas through materials is governed by the second order partial differential equation, D {partial_derivative}{sup 2}C/{partial_derivative}X{sup 2} = {partial_derivative}C/{partial_derivative}t, known as Fick`s Law. Two alternate solutions to this equation give exact numerical answers of the diffusive outgassing rate versus time. A simplified approximation of each solution allows prediction of both the short-term and the long-term behavior. BAKEOUT, a computer program based on Fick`s Law, was developed to predict an elevated temperature step function of time (that is, a bakeout) that will achieve a desired hydrogen diffusive outgassing rate from a stainless steel vessel under vacuum. This paper presents the mathematical development of the computer program and an example case.

  10. Quantification of differential diffusion in nonpremixed systems.

    SciTech Connect

    Smith, Philip J.; Sutherland, James C.; Chen, Jacqueline H.

    2004-06-01

    Most attempts to quantify differential diffusion (DD) are based on the difference between different definitions of the mixture fraction. This paper presents a general method for evaluating differential diffusion in premixed or nonpremixed systems based on conservation equations for the elemental mass fractions. These measures form a basis for analyzing differential diffusion. Casting these in terms of a mixture fraction gives particular insight into differential diffusion for nonpremixed systems, and provides a single DD measure. Furthermore, it allows direct evaluation of the validity of the traditional assumptions involved in writing a mixture fraction transport equation. Results are presented for one-dimensional opposed flow simulations of hydrogen and methane flames as well as direct numerical simulations (DNS) of CH 4 /H 2 -air and CO/H 2 -air flames. For a common definition of the mixture fraction, the DD measure can be approximated well by considering only the contribution of H 2 and CH 4 in methane-air flames. Differential diffusion is largely driven by production of H 2 in the flame zone for hydrocarbon flames. Effects of strain rate and filter width on the relative importance of differential diffusion are examined.

  11. SU-E-T-196: Heat Diffusion Modeling for Digital Holographic Interferometry Dosimetry

    SciTech Connect

    Cavan, A; Meyer, J

    2014-06-01

    Purpose: We have previously demonstrated that with Digital Holographic Interferometry (DHI) 2D spatial calorimetric measurements of high dose rate radiation sources can be obtained. The impact of heat transfer must be considered when undertaking any form of calorimetric measurement, as the radiation induced temperature distributions are subject to degradation due to heat diffusion. Unaccounted for, this limits the accuracy of the approach especially for long delivery times. Methods: 3D modelling of the heat diffusion in water was undertaken, and two different approaches developed to account for this effect. The mathematical framework to describe heat diffusion in 3D was applied, with the differential equations solved numerically using an implicit method. The first approach involved the comparison of the DHI measurements to an independent dose model of the source. The model was forward modeled to account for the heat diffusion during irradiation, allowing a direct comparison to validate the measured results. The second approach involved the correction of the measured data directly, by comparing the temperature distribution of two instances and subtracting the effects of heat diffusion of the first distribution from the second instance. This required the use of the Abel transform to approximate the 3D dose distribution from the 2D DHI results, thus limiting the approach to radiation applications possessing cylindrical symmetry. Results: The first approach resulted in higher accuracy and was more straightforward, but has a major limitation in that the measured results are only able to be utilized in comparison with an independent dose model. The applicability of the second approach is affected by noise in the measurement data and introduces higher uncertainties, but results in higher usability of the final data. Conclusion: Both approaches were implemented, and if used in conjunction would provide the most utility for the interpretation and use of DHI measurements.

  12. Novel bivariate moment-closure approximations.

    PubMed

    Krishnarajah, Isthrinayagy; Marion, Glenn; Gibson, Gavin

    2007-08-01

    Nonlinear stochastic models are typically intractable to analytic solutions and hence, moment-closure schemes are used to provide approximations to these models. Existing closure approximations are often unable to describe transient aspects caused by extinction behaviour in a stochastic process. Recent work has tackled this problem in the univariate case. In this study, we address this problem by introducing novel bivariate moment-closure methods based on mixture distributions. Novel closure approximations are developed, based on the beta-binomial, zero-modified distributions and the log-Normal, designed to capture the behaviour of the stochastic SIS model with varying population size, around the threshold between persistence and extinction of disease. The idea of conditional dependence between variables of interest underlies these mixture approximations. In the first approximation, we assume that the distribution of infectives (I) conditional on population size (N) is governed by the beta-binomial and for the second form, we assume that I is governed by zero-modified beta-binomial distribution where in either case N follows a log-Normal distribution. We analyse the impact of coupling and inter-dependency between population variables on the behaviour of the approximations developed. Thus, the approximations are applied in two situations in the case of the SIS model where: (1) the death rate is independent of disease status; and (2) the death rate is disease-dependent. Comparison with simulation shows that these mixture approximations are able to predict disease extinction behaviour and describe transient aspects of the process.

  13. Quirks of Stirling's Approximation

    ERIC Educational Resources Information Center

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  14. Spline approximations for nonlinear hereditary control systems

    NASA Technical Reports Server (NTRS)

    Daniel, P. L.

    1982-01-01

    A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.

  15. Diagonal Pade approximations for initial value problems

    SciTech Connect

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab.

  16. Rare earth element diffusion in apatite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2000-11-01

    Diffusion of rare earth elements (REEs) in natural and synthetic fluorapatite has been characterized under anhydrous conditions. Three types of experiments were run. In the first set of experiments, Sm was introduced into the apatite by means of ion implantation, with diffusivities extracted through measurement of the "relaxation" of the implanted profile after diffusion anneals. The second group consisted of "in diffusion" experiments, in which apatite was immersed in reservoirs of synthetic REE apatite analogs of various compositions. The final set of experiments was "out-diffusion" experiments run on synthetic Nd-doped apatite immersed in a reservoir of synthetic (undoped) fluorapatite. REE depth profiles in all cases were measured with Rutherford Backscattering Spectrometry. Diffusion rates for the REE vary significantly among these sets of experiments. For the ion-implantation experiments, the following Arrhenius relation was obtained for Sm, over the temperature range 750°C to 1100°C: D imp=6.3×10-7exp(-298±17 kJ/mol/RT) m2/s Diffusion of a series of REE, from light to heavy, was investigated in the "in-diffusion" experiments. Over the temperature range 800°C to 1250°C, the following Arrhenius relations are obtained for La, Nd, Dy, and Yb, for in-diffusion experiments using REE silicate oxyapatite sources: D La=2.6×10-7exp(-324±9 kJ/mol/RT) m2/sD Nd=2.4×10-6exp(-348±13 kJ/mol/RT) m2/sD Dy=9.7×10-7exp(-340±11 kJ/mol/RT) m2/sD Yb=1.3×10-8exp(-292±23 kJ/mol/RT) m2/s Diffusivities of the REE in these "in-diffusion" experiments are all quite similar, suggesting little difference in diffusion rates in apatite with increasing ionic radii of the REEs. The "out-diffusion" experiments on the Nd-doped synthetic apatite, over the temperature range 950°C to 1400°C, yield the Arrhenius law: D out=9.3×10-6exp(-392±31 kJ/mol/RT) m2/s The differences in REE diffusion among these three sets of experiments (i.e., ion implantation, in-diffusion, and out-diffusion

  17. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  18. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  19. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.

  20. An approximate model for pulsar navigation simulation

    NASA Astrophysics Data System (ADS)

    Jovanovic, Ilija; Enright, John

    2016-02-01

    This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.