NASA Astrophysics Data System (ADS)
Vandusschoten, D.; Dejager, P. A.; Vanas, H.
Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.
NASA Astrophysics Data System (ADS)
Nguyen, Mary; Rick, Steven W.
2018-06-01
The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.
NASA Astrophysics Data System (ADS)
Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu
2018-04-01
Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.
Double-spin-echo diffusion weighting with a modified eddy current adjustment.
Finsterbusch, Jürgen
2010-04-01
Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.
Diffusion in Deterministic Interacting Lattice Systems
NASA Astrophysics Data System (ADS)
Medenjak, Marko; Klobas, Katja; Prosen, Tomaž
2017-09-01
We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.
A double medium model for diffusion in fluid-bearing rock
NASA Astrophysics Data System (ADS)
Wang, H. F.
1993-09-01
The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.
NASA Astrophysics Data System (ADS)
Gryaznov, D.; Fleig, J.; Maier, J.
2008-03-01
Whipple's solution of the problem of grain boundary diffusion and Le Claire's relation, which is often used to determine grain boundary diffusion coefficients, are examined for a broad range of ratios of grain boundary to bulk diffusivities Δ and diffusion times t. Different reasons leading to errors in determining the grain boundary diffusivity (DGB) when using Le Claire's relation are discussed. It is shown that nonlinearities of the diffusion profiles in lnCav-y6/5 plots and deviations from "Le Claire's constant" (-0.78) are the major error sources (Cav=averaged concentration, y =coordinate in diffusion direction). An improved relation (replacing Le Claire's constant) is suggested for analyzing diffusion profiles particularly suited for small diffusion lengths (short times) as often required in diffusion experiments on nanocrystalline materials.
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes
1980-01-01
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, R. B.; Carroll, R. M.; Sisman, O.
1971-02-01
A method to measure the thermal diffusivity of reactor fuels during irradiation is developed, based on a time-dependent heat diffusion equation. With this technique the temperature is measured at only one point in the fuel specimen. This method has the advantage that it is not necessary to know the heat generation (a difficult evaluation during irradiation). The theory includes realistic boundary conditions, applicable to actual experimental systems. The parameters are the time constants associated with the first two time modes in the temperature-vs-time curve resulting from a step change in heat input to the specimen. With the time constants andmore » the necessary material properties and dimensions of the specimen and specimen holder, the thermal diffusivity of the specimen can be calculated.« less
Henry, B I; Langlands, T A M; Wearne, S L
2006-09-01
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.
Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
Kumar, Pradeep; Han, Sungho
2012-09-21
We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.
Togunde, Oluranti Paul; Oakes, Ken; Servos, Mark; Pawliszyn, Janusz
2012-09-12
This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01-0.07 ng mL(-1) and 0.07-0.34 ng g(-1), respectively, while the limit quantification was 0.10-0.20 ng mL(-1) in gel samples and 0.40-0.97 ng g(-1) in fish sample. The reproducibility of the method was good (5-15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces, viscosity of the gel will be reduced therefore allowing faster diffusion which invariably affect desorption time constant. Also, desorption time constant of model drugs in the fish muscle and 0.8-0.9% (w/v) gel model are similar based on free diffusion of studied compounds. In addition, in vitro and in vivo desorption time constant comparison shows that desorption time constant in an in vivo system (live fish muscle) is generally higher than an in vitro system (dead fish muscle) except for sertraline and nordiazepam. This study demonstrates SPME as a simple investigative tool to understand kinetics of desorption in an in vivo system with a goal to measure desorption rate of pharmaceuticals in fish. Copyright © 2011 Elsevier B.V. All rights reserved.
Self-diffusion in a system of interacting Langevin particles
NASA Astrophysics Data System (ADS)
Dean, D. S.; Lefèvre, A.
2004-06-01
The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β and the particle density ρ . The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β and ρβ constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.
On the Boundary Condition Between Two Multiplying Media
DOE R&D Accomplishments Database
Friedman, F. L.; Wigner, E. P.
1944-04-19
The transition region between two parts of a pile which have different compositions is investigated. In the case where the moderator is the same in both parts of the pile, it is found that the diffusion constant times thermal neutron density plus diffusion constant times fast neutron density satisfies the usual pile equations everywhere, right to the boundary. More complicated formulae apply in a more general case.
Marchione, Alexander A; McCord, Elizabeth F
2009-11-01
Diffusion-ordered (DOSY) NMR techniques have for the first time been applied to the spectral separation of mixtures of fluorinated gases by diffusion rates. A mixture of linear perfluoroalkanes from methane to hexane was readily separated at 25 degrees C in an ordinary experimental setup with standard DOSY pulse sequences. Partial separation of variously fluorinated ethanes was also achieved. The constants of self-diffusion of a set of pure perfluoroalkanes were obtained at pressures from 0.25 to 1.34 atm and temperatures from 20 to 122 degrees C. Under all conditions there was agreement within 20% of experimental self-diffusion constant D and values calculated by the semiempirical Fuller method.
NASA Astrophysics Data System (ADS)
Saini, R. K.; Varshney, G. K.; Dube, A.; Gupta, P. K.; Das, K.
2014-09-01
The influence of Curcumin and Chlorin-p6 (Cp6) on the real time diffusion kinetics of two organic cations, LDS (LDS-698) and Malachite Green (MG) across a negatively charged phospholipid bilayer is investigated by Second Harmonic (SH) spectroscopy. The diffusion time constant of LDS at neutral pH in liposomes containing either Curcumin or Cp6 is significantly reduced, the effect being more pronounced with Curcumin. At acidic pH, the quantum of reduction in the diffusion time constant of MG by both the drugs was observed to be similar. The relative changes in the average diffusion time constants of the cations with increasing drug concentration at pH 5.0 and 7.4 shows a substantial pH effect for Curcumin induced membrane permeability, while a modest pH effect was observed for Cp6 induced membrane permeability. Based on available evidence this can be attributed to the increased interaction between the drug and the polar head groups of the lipid at pH 7.4 where the drug resides closer to the lipid-water interface.
Relativistic diffusive motion in random electromagnetic fields
NASA Astrophysics Data System (ADS)
Haba, Z.
2011-08-01
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.
2015-10-01
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.
1976-01-01
An experimental method is presented that can be used to interpret the relative roles of bandgap narrowing and recombination processes in the diffused layer. This method involves measuring the device time constant by open-circuit voltage decay and the base region diffusion length by X-ray excitation. A unique illuminated diode method is used to obtain the diode saturation current. These data are interpreted using a simple model to determine individually the minority carrier lifetime and the excess charge. These parameters are then used to infer the relative importance of bandgap narrowing and recombination processes in the diffused layer.
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio
2013-12-01
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...
2015-10-06
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Entropy as a measure of diffusion
NASA Astrophysics Data System (ADS)
Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad
2013-10-01
The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.
NASA Astrophysics Data System (ADS)
Marchenko, I. G.; Marchenko, I. I.; Zhiglo, A. V.
2018-01-01
We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes exceeding a certain value. At any fixed driving frequency Ω normal temperature dependence of the diffusivity is restored at low enough temperatures, T
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J
2012-02-15
The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.
Active motion assisted by correlated stochastic torques.
Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter
2011-07-01
The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.
Spectral Definition of the Characteristic Times for Anomalous Diffusion in a Potential
NASA Astrophysics Data System (ADS)
Kalmykov, Yuri P.; Coffey, William T.; Titov, Serguey V.
Characteristic times of the noninertial fractional diffusion of a particle in a potential are defined in terms of three time constants, viz., the integral, effective, and longest relaxation times. These times are described using the eigenvalues of the corresponding Fokker-Planck operator for the normal diffusion. Knowledge of them is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest. As a particular example, we consider the subdiffusion of a planar rotor in a double-well potential.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Yusuf, Abdullahi; Isa Aliyu, Aliyu; Hashemi, M. S.
2018-05-01
This paper studies the brusselator reaction diffusion model (BRDM) with time- and constant-dependent coefficients. The soliton solutions for BRDM with time-dependent coefficients are obtained via first integral (FIM), ansatz, and sine-Gordon expansion (SGEM) methods. Moreover, it is well known that stability analysis (SA), symmetry analysis and conservation laws (CLs) give several information for modelling a system of differential equations (SDE). This is because they can be used for investigating the internal properties, existence, uniqueness and integrability of different SDE. For this reason, we investigate the SA via linear stability technique, symmetry analysis and CLs for BRDM with constant-dependent coefficients in order to extract more physics and information on the governing equation. The constraint conditions for the existence of the solutions are also examined. The new solutions obtained in this paper can be useful for describing the concentrations of diffusion problems of the BRDM. It is shown that the examined dependent coefficients are some of the factors that are affecting the diffusion rate. So, the present paper provides much motivational information in comparison to the existing results in the literature.
Diffusion and Electric Mobility of KCI within Isolated Cuticles of Citrus aurantium 1
Tyree, Melvin T.; Wescott, Charles R.; Tabor, Christopher A.; Morse, Anne D.
1992-01-01
Fick's second law has been used to predict the time course of electrical conductance change in isolated cuticles following the rapid change in bathing solution (KCI) from concentration C to 0.1 C. The theoretical time course is dependent on the coefficient of diffusion of KCI in the cuticle and the cuticle thickness. Experimental results, obtained from cuticles isolated from sour orange (Citrus aurantium), fit with a diffusion model of an isolated cuticle in which about 90% of the conductance change following a solution change is due to salts diffusing from polar pores in the wax, and 10% of the change is due to salt diffusion from the wax. Short and long time constants for the washout of KCI were found to be 0.11 and 3.8 hours, respectively. These time constants correspond to KCI diffusion coefficients of 1 × 10−15 and 3 × 10−17 square meters per second, respectively. The larger coefficient is close to the diffusion coefficient for water in polar pores of Citrus reported elsewhere (M Becker, G Kerstiens, J Schönherr [1986] Trees 1: 54-60). This supports our interpretation of the washout kinetics of KCI following a change in concentration of bathing solution. PMID:16668971
NASA Astrophysics Data System (ADS)
Guérin, T.; Dean, D. S.
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F >Fc , whereas for F
Scale-invariant Green-Kubo relation for time-averaged diffusivity
NASA Astrophysics Data System (ADS)
Meyer, Philipp; Barkai, Eli; Kantz, Holger
2017-12-01
In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.
Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer PTB7 and a Homopolymer P3HT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Sung; Rolczynski, Brian S.; Xu, Tao
2015-06-18
Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast,more » P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.« less
Cho, Sung; Rolczynski, Brian S; Xu, Tao; Yu, Luping; Chen, Lin X
2015-06-18
Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast, P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.
Kleinnijenhuis, Michiel; Mollink, Jeroen; Lam, Wilfred W; Kinchesh, Paul; Khrapitchev, Alexandre A; Smart, Sean C; Jbabdi, Saad; Miller, Karla L
2018-02-01
To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. For DW-STEAM, reference measurements at long diffusion times have significant b 0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b 0 ) and constant gradient area (fixed-q 0 ). Fixed-b 0 and fixed-q 0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q 0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q 0 versus fixed-b 0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Diffusivity of the interstitial hydrogen shallow donor in In2O3
NASA Astrophysics Data System (ADS)
Qin, Ying; Weiser, Philip; Villalta, Karla; Stavola, Michael; Fowler, W. Beall; Biaggio, Ivan; Boatner, Lynn
2018-04-01
Hydrogen has been found to be an n-type dopant in In2O3 that gives rise to unintentional conductivity. An infrared (IR) absorption line observed at 3306 cm-1 has been assigned to the Hi+ center. Two types of experiments have been performed to determine the diffusivity of Hi+ in In2O3 from its IR absorption spectra. (i) At temperatures near 700 K, the O-H line at 3306 cm-1 has been used to determine the diffusivity of Hi+ from its in-diffusion and out-diffusion behaviors. (ii) At temperatures near 160 K, stress has been used to produce a preferential alignment of the Hi+ center that has been detected in IR absorption experiments made with polarized light. With the help of theory, the kinetics with which a stress-induced alignment can be produced yield the time constant for a single jump of the Hi+ center and also the diffusivity of Hi+ near 160 K. The combination of the diffusivity of Hi+ found near 700 K by mass-transport measurements and that found near 160 K from the time constant for a single Hi+ jump determines the diffusivity for Hi+ over eleven decades!
Guérin, T; Dean, D S
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F. The system is studied in the region where the force is close to the critical value F_{c} at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F>F_{c}, whereas for F
Dynamics of a magnetic active Brownian particle under a uniform magnetic field.
Vidal-Urquiza, Glenn C; Córdova-Figueroa, Ubaldo M
2017-11-01
The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α. In this work, the time-dependent active diffusivity and the crossover time (τ^{cross})-from ballistic to diffusive regimes-are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α, the particle undergoes a directional (or ballistic) propulsive motion at very short times (t≪τ^{cross}). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t≫τ^{cross}), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α=0), the crossover time is equal to the characteristic time scale for rotational diffusion, τ_{rot}. In the presence of a magnetic field (α>0), the correlation function, the active diffusivity, and the crossover time decrease with increasing α. The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τ^{cross}≪τ_{rot}. In the limit of weak fields (α≪1), the crossover time decreases quadratically with α, while in the limit of strong fields (α≫1) it decays asymptotically as α^{-1}. The results are in excellent agreement with those obtained by Brownian dynamics simulations.
Dynamics of a magnetic active Brownian particle under a uniform magnetic field
NASA Astrophysics Data System (ADS)
Vidal-Urquiza, Glenn C.; Córdova-Figueroa, Ubaldo M.
2017-11-01
The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α . In this work, the time-dependent active diffusivity and the crossover time (τcross)—from ballistic to diffusive regimes—are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α , the particle undergoes a directional (or ballistic) propulsive motion at very short times (t ≪τcross ). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t ≫τcross ), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α =0 ), the crossover time is equal to the characteristic time scale for rotational diffusion, τrot. In the presence of a magnetic field (α >0 ), the correlation function, the active diffusivity, and the crossover time decrease with increasing α . The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τcross≪τrot . In the limit of weak fields (α ≪1 ), the crossover time decreases quadratically with α , while in the limit of strong fields (α ≫1 ) it decays asymptotically as α-1. The results are in excellent agreement with those obtained by Brownian dynamics simulations.
Diffusion in biased turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, M.; Spineanu, F.; Misguich, J. H.
2001-06-01
Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.
Theory of diffusion of active particles that move at constant speed in two dimensions.
Sevilla, Francisco J; Gómez Nava, Luis A
2014-08-01
Starting from a Langevin description of active particles that move with constant speed in infinite two-dimensional space and its corresponding Fokker-Planck equation, we develop a systematic method that allows us to obtain the coarse-grained probability density of finding a particle at a given location and at a given time in arbitrary short-time regimes. By going beyond the diffusive limit, we derive a generalization of the telegrapher equation. Such generalization preserves the hyperbolic structure of the equation and incorporates memory effects in the diffusive term. While no difference is observed for the mean-square displacement computed from the two-dimensional telegrapher equation and from our generalization, the kurtosis results in a sensible parameter that discriminates between both approximations. We carry out a comparative analysis in Fourier space that sheds light on why the standard telegrapher equation is not an appropriate model to describe the propagation of particles with constant speed in dispersive media.
The entrance of water into beef and dog red cells.
VILLEGAS, R; BARTON, T C; SOLOMON, A K
1958-11-20
The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.
NASA Astrophysics Data System (ADS)
Maiti, Prabal K.; Bagchi, Biman
2009-12-01
In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (Rg) varies as N1/3, the self-diffusion constant (D ) scales, surprisingly, as N-α, with α =0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.
Diffusivity of the interstitial hydrogen shallow donor in In 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Ying; Weiser, Philip; Villalta, Karla
Hydrogen has been found to be an n-type dopant in In2O3 that gives rise to unintentional conductivity. An infrared (IR) absorption line observed at 3306 cm-1 has been assigned to the Hi+ center. Two types of experiments have been performed to determine the diffusivity of Hi+ in In2O3 from its IR absorption spectra. (i) At temperatures near 700 K, the O-H line at 3306 cm-1 has been used to determine the diffusivity of Hi+ from its in-diffusion and out-diffusion behavior. (ii) At temperatures near 160 K, stress has been used to produce a preferential alignment of the Hi+ center thatmore » has been detected in IR absorption experiments made with polarized light. With the help of theory, the kinetics with which a stress-induced alignment can be produced yield the time constant for a single jump of the Hi+ center and also the diffusivity of Hi+ near 160 K. The combination of the diffusivity of Hi+ found near 700 K by mass-transport measurements along with the diffusivity found near 160 K from the time constant for a single Hi+ jump determines the diffusivity for Hi+ over eleven decades!« less
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Communication: Memory effects and active Brownian diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Pulak K.; Li, Yunyun, E-mail: yunyunli@tongji.edu.cn; Marchegiani, Giampiero
A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer’s diffusivity. To this purpose, we propose and solve two alternative models. In the first one, we simply assume that the environmental fluctuations governing the swimmer’s propulsion are exponentially correlated in time, whereas in the second one, we account for possiblemore » damped fluctuations of the propulsion velocity around the swimmer’s axis. The corresponding swimmer’s diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.« less
Communication: Memory effects and active Brownian diffusion
NASA Astrophysics Data System (ADS)
Ghosh, Pulak K.; Li, Yunyun; Marchegiani, Giampiero; Marchesoni, Fabio
2015-12-01
A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer's diffusivity. To this purpose, we propose and solve two alternative models. In the first one, we simply assume that the environmental fluctuations governing the swimmer's propulsion are exponentially correlated in time, whereas in the second one, we account for possible damped fluctuations of the propulsion velocity around the swimmer's axis. The corresponding swimmer's diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.
NASA Technical Reports Server (NTRS)
Vonroos, O. H.
1982-01-01
When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.
Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn; Ditlevsen, Susanne
2011-11-01
Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein-Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein-Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential.
Slow diffusion by Markov random flights
NASA Astrophysics Data System (ADS)
Kolesnik, Alexander D.
2018-06-01
We present a conception of the slow diffusion processes in the Euclidean spaces Rm , m ≥ 1, based on the theory of random flights with small constant speed that are driven by a homogeneous Poisson process of small rate. The slow diffusion condition that, on long time intervals, leads to the stationary distributions, is given. The stationary distributions of slow diffusion processes in some Euclidean spaces of low dimensions, are presented.
Land, B R; Harris, W V; Salpeter, E E; Salpeter, M M
1984-01-01
In previous papers we studied the rising phase of a miniature endplate current (MEPC) to derive diffusion and forward rate constants controlling acetylcholine (AcCho) in the intact neuromuscular junction. The present study derives similar values (but with smaller error ranges) for these constants by including experimental results from the falling phase of the MEPC. We find diffusion to be 4 X 10(-6) cm2 s-1, slightly slower than free diffusion, forward binding to be 3.3 X 10(7) M-1 s-1, and the distance from an average release site to the nearest exit from the cleft to be 1.6 micron. We also estimate the back reaction rates. From our values we can accurately describe the shape of MEPCs under different conditions of receptor and esterase concentration. Since we suggest that unbinding is slower than isomerization, we further predict that there should be several short "closing flickers" during the total open time for an AcCho-ligated receptor channel. PMID:6584895
Scalar dissipation rates in non-conservative transport systems
Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.
2014-01-01
This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates are investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state. PMID:23584457
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.
1981-01-01
Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.
Analytical results obtained by thermal desorption GC/MS for 24h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive samp...
Adiabatic elimination of inertia of the stochastic microswimmer driven by α -stable noise
NASA Astrophysics Data System (ADS)
Noetel, Joerg; Sokolov, Igor M.; Schimansky-Geier, Lutz
2017-10-01
We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α -stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τϕ, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t ≫τϕ , is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.
Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.
Noetel, Joerg; Sokolov, Igor M; Schimansky-Geier, Lutz
2017-10-01
We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α-stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τ_{ϕ}, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t≫τ_{ϕ}, is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.
The Analytical Solution of the Transient Radial Diffusion Equation with a Nonuniform Loss Term.
NASA Astrophysics Data System (ADS)
Loridan, V.; Ripoll, J. F.; De Vuyst, F.
2017-12-01
Many works have been done during the past 40 years to perform the analytical solution of the radial diffusion equation that models the transport and loss of electrons in the magnetosphere, considering a diffusion coefficient proportional to a power law in shell and a constant loss term. Here, we propose an original analytical method to address this challenge with a nonuniform loss term. The strategy is to match any L-dependent electron losses with a piecewise constant function on M subintervals, i.e., dealing with a constant lifetime on each subinterval. Applying an eigenfunction expansion method, the eigenvalue problem becomes presently a Sturm-Liouville problem with M interfaces. Assuming the continuity of both the distribution function and its first spatial derivatives, we are able to deal with a well-posed problem and to find the full analytical solution. We further show an excellent agreement between both the analytical solutions and the solutions obtained directly from numerical simulations for different loss terms of various shapes and with a diffusion coefficient DLL L6. We also give two expressions for the required number of eigenmodes N to get an accurate snapshot of the analytical solution, highlighting that N is proportional to 1/√t0, where t0 is a time of interest, and that N increases with the diffusion power. Finally, the equilibrium time, defined as the time to nearly reach the steady solution, is estimated by a closed-form expression and discussed. Applications to Earth and also Jupiter and Saturn are discussed.
Effects of Diffusion Time on Short-Range Hyperpolarized 3He Diffusivity Measurements in Emphysema
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gierada, David S.; Woods, Jason C.; Bierhals, Andrew J.
2009-09-28
Purpose: To characterize the effect of diffusion time on short-range hyperpolarized 3He MR diffusion measurements across a wide range of emphysema severity. Materials and Methods: 3He diffusion MR imaging was performed on 19 lungs or lobes resected from 18 subjects with varying degrees of emphysema using 3 diffusion times (1.6 msec, 5 msec, and 10 msec) at constant b value. Emphysema severity was quantified as the mean apparent diffusion coefficient (ADC) and as the percentage of pixels with ADC higher than multiple thresholds from 0.30-0.55 cm2/sec (ADC index). Quantitative histology (mean linear intercept) was obtained in 10 of the lungmore » specimens from 10 of the subjects. Results: The mean ADCs with diffusion times of 1.6, 5.0, and 10.0 msec were 0.46, 0.40, and 0.37 cm2/sec, respectively (P <0.0001, ANOVA). There was no relationship between the ADC magnitude and the effect of diffusion time on ADC values. Mean linear intercept correlated with ADC (r=0.91-0.94, P<0.001) and ADC index (r=0.78-0.92, P<0.01) at all diffusion times.« less
Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; et al.
We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statisticsmore » $$^{39}$$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $$\\pm$$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $$\\pm$$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.« less
Mermigkis, Panagiotis G; Tsalikis, Dimitrios G; Mavrantzas, Vlasis G
2015-10-28
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D(eff), of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D(eff) is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D(eff) as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D(eff) (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
NASA Astrophysics Data System (ADS)
Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.
2015-10-01
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
An efficient approach for treating composition-dependent diffusion within organic particles
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.; ...
2017-09-07
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
An efficient approach for treating composition-dependent diffusion within organic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
Rabani, Eran; Reichman, David R.; Krilov, Goran; Berne, Bruce J.
2002-01-01
We present a method based on augmenting an exact relation between a frequency-dependent diffusion constant and the imaginary time velocity autocorrelation function, combined with the maximum entropy numerical analytic continuation approach to study transport properties in quantum liquids. The method is applied to the case of liquid para-hydrogen at two thermodynamic state points: a liquid near the triple point and a high-temperature liquid. Good agreement for the self-diffusion constant and for the real-time velocity autocorrelation function is obtained in comparison to experimental measurements and other theoretical predictions. Improvement of the methodology and future applications are discussed. PMID:11830656
The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Sjöström, J.; Kargl, F.; Fernandez-Alonso, F.; Swenson, J.
2007-10-01
The dynamics of water in fresh and in rehydrated white bread is studied using quasielastic neutron scattering (QENS). A diffusion constant for water in fresh bread, without temperature gradients and with the use of a non-destructive technique, is presented here for the first time. The self-diffusion constant for fresh bread is estimated to be Ds = 3.8 × 10-10 m2 s-1 and the result agrees well with previous findings for similar systems. It is also suggested that water exhibits a faster dynamics than previously reported in the literature using equilibration of a hydration-level gradient monitored by vibrational spectroscopy. The temperature dependence of the dynamics of low hydration bread is also investigated for T = 280-350 K. The average relaxation time at constant momentum transfer (Q) shows an Arrhenius behavior in the temperature range investigated.
NASA Astrophysics Data System (ADS)
Huveneers, François
2018-04-01
We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.
Chen, Juan; Cui, Baotong; Chen, YangQuan
2018-06-11
This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Indispensable finite time corrections for Fokker-Planck equations from time series data.
Ragwitz, M; Kantz, H
2001-12-17
The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from finite sampling rates. We show that previously published results are degraded considerably by such effects. We present correction terms which yield a robust estimation of the diffusion terms, together with a novel method for one-dimensional problems. We apply these methods to time series data of local surface wind velocities, where the dependence of the diffusion constant on the state variable shows a different behavior than previously suggested.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro
2015-09-01
Electron beam (EB) lithography is a key technology for the fabrication of photomasks for ArF immersion and extreme ultraviolet (EUV) lithography and molds for nanoimprint lithography. In this study, the temporal change in the chemical gradient of line-and-space patterns with a 7 nm quarter-pitch (7 nm space width and 21 nm line width) was calculated until it became constant, independently of postexposure baking (PEB) time, to clarify the feasibility of single nano patterning on quartz substrates using EB lithography with chemically amplified resist processes. When the quencher diffusion constant is the same as the acid diffusion constant, the maximum chemical gradient of the line-and-space pattern with a 7 nm quarter-pitch did not differ much from that with a 14 nm half-pitch under the condition described above. Also, from the viewpoint of process control, a low quencher diffusion constant is considered to be preferable for the fabrication of line-and-space patterns with a 7 nm quarter-pitch on quartz substrates.
Phototransformation Rate Constants of PAHs Associated with Soot Particles
Kim, Daekyun; Young, Thomas M.; Anastasio, Cort
2013-01-01
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292
Comparison and analysis of theoretical models for diffusion-controlled dissolution.
Wang, Yanxing; Abrahamsson, Bertil; Lindfors, Lennart; Brasseur, James G
2012-05-07
Dissolution models require, at their core, an accurate diffusion model. The accuracy of the model for diffusion-dominated dissolution is particularly important with the trend toward micro- and nanoscale drug particles. Often such models are based on the concept of a "diffusion layer." Here a framework is developed for diffusion-dominated dissolution models, and we discuss the inadequacy of classical models that are based on an unphysical constant diffusion layer thickness assumption, or do not correctly modify dissolution rate due to "confinement effects": (1) the increase in bulk concentration from confinement of the dissolution process, (2) the modification of the flux model (the Sherwood number) by confinement. We derive the exact mathematical solution for a spherical particle in a confined fluid with impermeable boundaries. Using this solution, we analyze the accuracy of a time-dependent "infinite domain model" (IDM) and "quasi steady-state model" (QSM), both formally derived for infinite domains but which can be applied in approximate fashion to confined dissolution with proper adjustment of a concentration parameter. We show that dissolution rate is sensitive to the degree of confinement or, equivalently, to the total concentration C(tot). The most practical model, the QSM, is shown to be very accurate for most applications and, consequently, can be used with confidence in design-level dissolution models so long as confinement is accurately treated. The QSM predicts the ratio of diffusion layer thickness to particle radius (the Sherwood number) as a constant plus a correction that depends on the degree of confinement. The QSM also predicts that the time required for complete saturation or dissolution in diffusion-controlled dissolution experiments is singular (i.e., infinite) when total concentration equals the solubility. Using the QSM, we show that measured differences in dissolution rate in a diffusion-controlled dissolution experiment are a result of differences in the degree of confinement on the increase in bulk concentration independent of container geometry and polydisperse vs single particle dissolution. We conclude that the constant diffusion-layer thickness assumption is incorrect in principle and should be replaced by the QSM with accurate treatment of confinement in models of diffusion-controlled dissolution.
Anomalous dielectric relaxation with linear reaction dynamics in space-dependent force fields.
Hong, Tao; Tang, Zhengming; Zhu, Huacheng
2016-12-28
The anomalous dielectric relaxation of disordered reaction with linear reaction dynamics is studied via the continuous time random walk model in the presence of space-dependent electric field. Two kinds of modified reaction-subdiffusion equations are derived for different linear reaction processes by the master equation, including the instantaneous annihilation reaction and the noninstantaneous annihilation reaction. If a constant proportion of walkers is added or removed instantaneously at the end of each step, there will be a modified reaction-subdiffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps, there will be a standard linear reaction kinetics term but a fractional order temporal derivative operating on an anomalous diffusion term. The dielectric polarization is analyzed based on the Legendre polynomials and the dielectric properties of both reactions can be expressed by the effective rotational diffusion function and component concentration function, which is similar to the standard reaction-diffusion process. The results show that the effective permittivity can be used to describe the dielectric properties in these reactions if the chemical reaction time is much longer than the relaxation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrixmore » and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.« less
Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan
2013-01-01
Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).
Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.
Guérin, T; Dean, D S
2015-12-01
We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.
Simulation of gas diffusion and sorption in nanoceramic semiconductors
NASA Astrophysics Data System (ADS)
Skouras, E. D.; Burganos, V. N.; Payatakes, A. C.
1999-05-01
Gas diffusion and sorption in nanoceramic semiconductors are studied using atomistic simulation techniques and numerical results are presented for a variety of sorbate-sorbent systems. SnO2, BaTiO3, CuO, and MgO substrates are built on the computer using lattice constants and atomic parameters that have been either measured or computed by ab initio methods. The Universal force field is employed here for the description of both intramolecular and nonbonded interactions for various gas sorbates, including CH4, CO, CO2, and O2, pure and in binary mixtures. Mean residence times are determined by molecular dynamics computations, whereas the Henry constant and the isosteric heat of adsorption are estimated by a Monte Carlo technique. The effects of surface hydroxylation on the diffusion and sorption characteristics are quantified and discussed in view of their significance in practical gas sensing applications. The importance of fast diffusion on the response time of the sensitive layer and of the sorption efficiency on the overall sensitivity as well as the potential synergy of the two phenomena are discussed.
Translocation of polymers into crowded media with dynamic attractive nanoparticles.
Cao, Wei-Ping; Ren, Qing-Bao; Luo, Meng-Bo
2015-07-01
The translocation of polymers through a small pore into crowded media with dynamic attractive nanoparticles is simulated. Results show that the nanoparticles at the trans side can affect the translocation by influencing the free-energy landscape and the diffusion of polymers. Thus the translocation time τ is dependent on the polymer-nanoparticle attraction strength ɛ and the mobility of nanoparticles V. We observe a power-law relation of τ with V, but the exponent is dependent on ɛ and nanoparticle concentration. In addition, we find that the effect of attractive dynamic nanoparticles on the dynamics of polymers is dependent on the time scale. At a short time scale, subnormal diffusion is observed at strong attraction and the diffusion is slowed down by the dynamic nanoparticles. However, the diffusion of polymers is normal at a long time scale and the diffusion constant increases with the increase in V.
Polymer diffusion in the interphase between surface and solution.
Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin
2018-05-22
Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.
NASA Astrophysics Data System (ADS)
Ball, M. C.; Al-Qudah, O.; Jones, K.
2017-12-01
The Arroyo Colorado, located within the Rio Grande Valley of South Texas, has been on the list for the State of Texas's most impaired rivers since the 1990's. Few models for the watershed discharge and contaminates transport have been developed, but all require specialized understanding of modeling and input data which must either be assumed, estimated or which is difficult, time-consuming and expensive to collect. It makes sense to see if a general, simpler `catchment-scale' lumping model would be feasible to model water discharge along the Arroyo. Due to its simplicity and the hypothesized diffusive nature of the drainage in the alluvial floodplain deposits of the Arroyo watershed, the Criss and Winston model was chosen for this study. Hydrographs were characterized, clearly demonstrating that the discharge to the Arroyo is greatly affected by precipitation, and which provided clear rain events for evaluation: 62 rain events over a ten-year time span (2007 - 2017) were selected. Best fit curves using the Criss and Winston lag time were plotted, but better fitting curves were created by modifying the Criss and Winston lag time which improved the fit for the rising limb portion of the hydrograph but had no effect on the receding limb portion of the graph. This model provided some insights into the nature of water transport along the Arroyo within two separate sub-basins: El Fuste and Harlingen. The value for the apparent diffusivity constant "b", a constant which encompasses all diffusive characteristics of the watershed or sub-basins in the watershed (i.e. the lumping constant), was calculated to be 0.85 and 0.93 for El Fuste and Harlingen, respectively, indicating that each sub-basin within the watershed is somewhat unique. Due to the lumping nature of the "b" constant, no specific factor can be attributed to this difference. More research could provide additional insight. It is suggested that water diffusion takes longer in the Harlingen sub-basin (larger "b") not only because its sub-basin is larger than El Fuste's, but also because Harlingen is a larger city with more impervious surfaces and a more developed stormwater distribution system - all of which likely delay the time it takes rain to percolate into the ground.
A Rayleighian approach for modeling kinetics of ionic transport in polymeric media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev
2017-02-14
Here, we report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes frommore » the broadband dielectric spectroscopy (BDS) measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreements between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.« less
Genipin diffusion and reaction into a gelatin matrix for tissue engineering applications.
Montemurro, Francesca; De Maria, Carmelo; Orsi, Gianni; Ghezzi, Lisa; Tinè, Maria Rosaria; Vozzi, Giovanni
2017-04-01
Genipin is a natural low-toxic cross-linker for molecules with primary amino groups, and its use with collagen and gelatin has shown a great potential in tissue engineering applications. The fabrication of scaffolds with a well-organized micro and macro topology using additive manufacturing systems requires an accurate control of working parameters, such as reaction rate, gelling time, and diffusion constant. A polymeric system of 5% w/v gelatin in PBS with 2 mg/mL collagen solutions in a 1:1 weight ratio was used as template to perform measurements varying genipin concentration in a range of 0.1-1.5% w/w with respect to gelatin. In the first part of this work, the reaction rate of the polymeric system was estimated using a new colorimetric analysis of the reaction. Then its workability time, closely related to the gelling time, was evaluated thanks to rheological analysis: finally, the quantification of static and dynamic diffusion constants of genipin across nonreacting and reacting membranes, made respectively by agarose and gelatin, was performed. It was shown that the colorimetric analysis is a good indicator of the reaction progress. The gelling time depends on the genipin concentration, but a workability window of 40 min guaranteed up to 0.5% w/w genipin. The dynamic diffusion constant of genipin in the proposed polymeric system is in the order of magnitude of 10 -7 . The obtained results indicated the possibility to use the genipin, gelatin, and collagen, in the proposed concentrations, to build well-defined hydrogel scaffolds with both extrusion-based and 3D ink-jet system. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 473-480, 2017. © 2015 Wiley Periodicals, Inc.
Pathways for diffusion in the potential energy landscape of the network glass former SiO2
NASA Astrophysics Data System (ADS)
Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.
2017-10-01
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
Phototransformation rate constants of PAHs associated with soot particles.
Kim, Daekyun; Young, Thomas M; Anastasio, Cort
2013-01-15
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.
A computer program for the simulation of heat and moisture flow in soils
NASA Technical Reports Server (NTRS)
Camillo, P.; Schmugge, T. J.
1981-01-01
A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.
Diffusion constant of slowly rotating black three-brane
NASA Astrophysics Data System (ADS)
Amoozad, Z.; Sadeghi, J.
2018-01-01
In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.
Resonant acoustic measurement of vapor phase transport phenomenon in porous media
NASA Astrophysics Data System (ADS)
Schuhmann, Richard; Garrett, Steven
2002-05-01
Diffusion of gases through porous media is commonly described using Fick's law and is characterized by a gas diffusion coefficient modified by a media-specific tortuosity parameter. A phase-locked-loop resonance frequency tracker [J. Acoust. Soc. Am. 108, 2520 (2000)] has been upgraded with an insulated copper resonator and a bellows-sealed piston instrumented with an accelerometer. Average system stability (temperature divided by frequency squared) is about 180 ppm. Glass-bead-filled cores of different lengths are fitted into an o-ring sealed opening at the top of the resonator. The rate at which the tracer gas is replaced by air within the resonator is controlled by the core's diffusion constant. Mean molecular weight of the gas mixture in the resonator is determined in real time from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Molecular weight of the gas mixture is determined approximately six times per minute. Changes in the gas mixture concentration are exponential in time (within 0.1%) over nearly two decades in concentration. We will report diffusion constants for two different sizes of glass beads, in samples of five different lengths, using two different tracer gases, to establish the validity of this approach. [Work supported by ONR.
2012-01-01
Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B) analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s), a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity by ~40-50%. Conclusions The mobility of sterol-containing vesicles on the short time scale could reflect dynamic rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both, microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local regulation of intracellular sterol transport. PMID:23078907
Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics
NASA Astrophysics Data System (ADS)
Beatrici, Carine P.; de Almeida, Rita M. C.; Brunnet, Leonardo G.
2017-03-01
Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td /d +2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.
The Locomotion of Mouse Fibroblasts in Tissue Culture
Gail, Mitchell H.; Boone, Charles W.
1970-01-01
Time-lapse cinematography was used to investigate the motion of mouse fibroblasts in tissue culture. Observations over successive short time intervals revealed a tendency for the cells to persist in their direction of motion from one 2.5 hr time interval to the next. Over 5.0-hr time intervals, however, the direction of motion appeared random. This fact suggested that D, the diffusion constant of a random walk model, might serve to characterize cellular motility if suitably long observation times were used. We therefore investigated the effect of “persistence” on the pure random walk model, and we found theoretically and confirmed experimentally that the motility of a persisting cell could indeed be characterized by an augmented diffusion constant, D*. A method for determining confidence limits on D* was also developed. Thus a random walk model, modified to comprehend the persistence effect, was found to describe the motion of fibroblasts in tissue culture and to provide a numerical measure of cellular motility. PMID:5531614
Motion of kinesin in a viscoelastic medium
NASA Astrophysics Data System (ADS)
Knoops, Gert; Vanderzande, Carlo
2018-05-01
Kinesin is a molecular motor that transports cargo along microtubules. The results of many in vitro experiments on kinesin-1 are described by kinetic models in which one transition corresponds to the forward motion and subsequent binding of the tethered motor head. We argue that in a viscoelastic medium like the cytosol of a cell this step is not Markov and has to be described by a nonexponential waiting time distribution. We introduce a semi-Markov kinetic model for kinesin that takes this effect into account. We calculate, for arbitrary waiting time distributions, the moment generating function of the number of steps made, and determine from this the average velocity and the diffusion constant of the motor. We illustrate our results for the case of a waiting time distribution that is Weibull. We find that for realistic parameter values, viscoelasticity decreases the velocity and the diffusion constant, but increases the randomness (or Fano factor).
2015-01-01
Bimolecular collision rate constants of a model solute are measured in water at T = 259–303 K, a range encompassing both normal and supercooled water. A stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl, is studied using electron paramagnetic resonance spectroscopy (EPR), taking advantage of the fact that the rotational correlation time, τR, the mean time between successive spin exchanges within a cage, τRE, and the long-time-averaged spin exchange rate constants, Kex, of the same solute molecule may be measured independently. Thus, long- and short-time translational diffusion behavior may be inferred from Kex and τRE, respectively. In order to measure Kex, the effects of dipole–dipole interactions (DD) on the EPR spectra must be separated, yielding as a bonus the DD broadening rate constants that are related to the dephasing rate constant due to DD, Wdd. We find that both Kex and Wdd behave hydrodynamically; that is to say they vary monotonically with T/η or η/T, respectively, where η is the shear viscosity, as predicted by the Stokes–Einstein equation. The same is true of the self-diffusion of water. In contrast, τRE does not follow hydrodynamic behavior, varying rather as a linear function of the density reaching a maximum at 276 ± 2 K near where water displays a maximum density. PMID:24874024
Secomb, Timothy W.
2016-01-01
A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811
NASA Astrophysics Data System (ADS)
Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.
2013-09-01
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.
Williams, R. T.; Grim, Joel Q.; Li, Qi; ...
2013-09-26
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm 3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less
Enhanced heat transport during phase separation of liquid binary mixtures
NASA Astrophysics Data System (ADS)
Molin, Dafne; Mauri, Roberto
2007-07-01
We show that heat transfer in regular binary fluids is enhanced by induced convection during phase separation. The motion of binary mixtures is simulated using the diffuse interface model, where convection and diffusion are coupled via a nonequilibrium, reversible Korteweg body force. Assuming that the mixture is regular, i.e., its components are van der Waals fluids, we show that the two parameters that describe the mixture, namely the Margules constant and the interfacial thickness, depend on temperature as T-1 and T-1/2, respectively. Two quantities are used to measure heat transfer, namely the heat flux at the walls and the characteristic cooling time. Comparing these quantities with those of very viscous mixtures, where diffusion prevails over convection, we saw that the ratio between heat fluxes, which defines the Nusselt number, NNu, equals that between cooling times and remains almost constant in time. The Nusselt number depends on the following: the Peclet number, NPe, expressing the ratio between convective and diffusive mass fluxes; the Lewis number, NLe, expressing the ratio between thermal and mass diffusivities; the specific heat of the mixture, as it determines how the heat generated by mixing can be stored within the system; and the quenching depth, defined as the distance of the temperature at the wall from its critical value. In particular, the following results were obtained: (a) The Nusselt number grows monotonically with the Peclet number until it reaches an asymptotic value at NNu≈2 when NPe≈106; (b) the Nusselt number increases with NLe when NLe<1, remains constant at 1
Medvedeva, Nataly; Papper, Vladislav; Likhtenshtein, Gertz I
2005-09-21
Measurements of active encounters between molecules in native membranes containing ingredients, including proteins, are of prime importance. To estimate rare encounters in a high range of rate constants (rate coefficients) and distances between interacting molecules in membranes, a cascade of photochemical reactions for molecules diffusing in multilamellar liposomes was investigated. The sensitised cascade triplet cis-trans photoisomerisation of the excited stilbene involves the use of a triplet sensitiser (Erythrosin B), a photochrome stilbene-derivative probe (4-dimethylamino-4'-aminostilbene) exhibiting the phenomenon of trans-cis photoisomerisation, and nitroxide radicals (5-doxyl stearic acid) to quench the excited triplet state of the sensitiser. Measurement of the phosphorescence lifetime of Erythrosin B and the fluorescence enhancement of the stilbene-derivative photochrome probe, at various concentrations of the nitroxide probe, made it possible to calculate the quenching rate constant k(q)= 1.1 x 10(15) cm2 M(-1) s(-1) and the rate constant of the triplet-triplet energy transfer between the sensitiser and stilbene probe k(T)= 1.0 x 10(12) cm2 M(-1) s(-1). These values, together with the data on diffusion rate constant, obtained by methods utilising various theoretical characteristic times of about seven orders of magnitude and the experimental rate constants of about five orders of magnitude, were found to be in good agreement with the advanced theory of diffusion-controlled reactions in two dimensions. Because the characteristic time of the proposed cascade method is relatively large (0.1 s), it is possible to follow rare collisions between molecules and free radicals in model and biological membranes with a very sensitive fluorescence spectroscopy technique, using a relatively low concentration of probes.
The dynamics of oceanic fronts. I - The Gulf Stream
NASA Technical Reports Server (NTRS)
Kao, T. W.
1980-01-01
The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.
Repeated-cascade theory of strong turbulence in a magnetized plasma
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1976-01-01
A two-dimensional Navier-Stokes equation of vorticity in fluid turbulence is used to model drift turbulence in a plasma with a strong constant magnetic field and a constant mean density gradient. The nonlinear eddy diffusivity is described by a time-integrated Lagrangian correlation of velocities, and the repeated-cascade method is employed to choose the rank accounting for nearest-neighbor interactions, to calculate the Lagrangian correlation, and to close the correlation hierarchy. As a result, the diffusivity becomes dependent on the plasma's induced diffusion and is represented by a memory chain that is cut off by similarity and inertial randomization. Spectral laws relating the kinetic-energy spectrum to the -5, -5/2, -3, and -11 powers of wavenumber are derived for the velocity subranges of production, approach to inertia, inertia, and dissipation, respectively. It is found that the diffusivity is proportional to some inverse power of the magnetic field, that power being 1, 2/3, 5/6, and 2, respectively, for the four velocity subranges.
Wu, Hao; Noé, Frank
2011-03-01
Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
Time series analysis of particle tracking data for molecular motion on the cell membrane.
Ying, Wenxia; Huerta, Gabriel; Steinberg, Stanly; Zúñiga, Martha
2009-11-01
Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing conclusions about membrane organization, including features like lipid rafts, protein islands, and confinement zones defined by cytoskeletal barriers. Here, we implement time series analysis as a new analytic tool to analyze further the motion of membrane proteins. The experimental data track the motion of 40 nm gold particles bound to Class I major histocompatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells. Our first novel result is that the tracks are significantly autocorrelated. Because of this, we developed linear autoregressive models to elucidate the autocorrelations. Estimates of the signal to noise ratio for the models show that the autocorrelated part of the motion is significant. Next, we fit the probability distributions of jump sizes with four different models. The first model is a general Weibull distribution that shows that the motion is characterized by an excess of short jumps as compared to a normal random walk. We also fit the data with a chi distribution which provides a natural estimate of the dimension d of the space in which a random walk is occurring. For the biological data, the estimates satisfy 1 < d < 2, implying that particle motion is not confined to a line, but also does not occur freely in the plane. The dimension gives a quantitative estimate of the amount of nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution and use the generalized extreme value distribution to show that the biological data also have an excess of long jumps as compared to normal diffusion. These fits provide novel estimates of the microscopic diffusion constant. Previous MSD analyses of SPT data have provided evidence for nanometer-scale confinement zones that restrict lateral diffusion, supporting the notion that plasma membrane organization is highly structured. Our demonstration that membrane protein motion is autocorrelated and is characterized by an excess of both short and long jumps reinforces the concept that the membrane environment is heterogeneous and dynamic. Autocorrelation analysis and modeling of the jump distributions are powerful new techniques for the analysis of SPT data and the development of more refined models of membrane organization. The time series analysis also provides several methods of estimating the diffusion constant in addition to the constant provided by the mean squared displacement. The mean squared displacement for most of the biological data shows a power law behavior rather the linear behavior of Brownian motion. In this case, we introduce the notion of an instantaneous diffusion constant. All of the diffusion constants show a strong consistency for most of the biological data.
The effect of recombination and attachment on meteor radar diffusion coefficient profiles
NASA Astrophysics Data System (ADS)
Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.
2013-04-01
Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.
Local conformational dynamics in alpha-helices measured by fast triplet transfer.
Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas
2009-01-27
Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.
Caputo, Michele; Cametti, Cesare
2017-09-01
In this note, we present a simple mathematical model of drug delivery through transdermal patches by introducing a memory formalism in the classical Fick diffusion equation based on the fractional derivative. This approach is developed in the case of a medicated adhesive patch placed on the skin to deliver a time released dose of medication through the skin towards the bloodstream.The main resistance to drug transport across the skin resides in the diffusion through its outermost layer (the stratum corneum). Due to the complicated architecture of this region, a model based on a constant diffusivity in a steady-state condition results in too simplistic assumptions and more refined models are required.The introduction of a memory formalism in the diffusion process, where diffusion parameters depend at a certain time or position on what happens at preceeding times, meets this requirement and allows a significantly better description of the experimental results.The present model may be useful not only for analyzing the rate of skin permeation but also for predicting the drug concentration after transdermal drug delivery depending on the diffusion characteristics of the patch (its thickness and pseudo-diffusion coefficient). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Forsling, Robin; Sanders, Lloyd P.; Ambjörnsson, Tobias; Lizana, Ludvig
2014-09-01
The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates koff (kon). The tracer particle is restricted to diffuse with rate kD on the lattice and the density of crowders is constant (on average). The unbinding rate koff is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (koff ≫ kD) to the non-Markovian case (koff ≪ kD) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f (t) (t is time), numerically using the Gillespie algorithm, and estimate f (t) analytically. In terms of koff (keeping kD fixed), we study the transition between the two known regimes: (i) when koff ≫ kD the particles may effectively pass each other and we recover the single particle result f (t) ˜ t-3/2, with a reduced diffusion constant; (ii) when koff ≪ kD unbinding is rare and we obtain the single-file result f (t) ˜ t-7/4. The intermediate region displays rich dynamics where both the characteristic f (t) - peak and the long-time power-law slope are sensitive to koff.
Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12-28) Peptides.
Lin, Yi-Chih; Li, Chen; Fakhraai, Zahra
2018-04-17
Surfaces or interfaces are considered to be key factors in facilitating the formation of amyloid fibrils under physiological conditions. In this report, we study the kinetics of the surface-mediated fibrillization (SMF) of an amyloid-β fragment (Aβ 12-28 ) on mica. We employ a spin-coating-based drying procedure to control the exposure time of the substrate to a low-concentration peptide solution and then monitor the fibril growth as a function of time via atomic force microscopy (AFM). The evolution of surface-mediated fibril growth is quantitatively characterized in terms of the length histogram of imaged fibrils and their surface concentration. A two-dimensional (2D) kinetic model is proposed to numerically simulate the length evolution of surface-mediated fibrils by assuming a diffusion-limited aggregation (DLA) process along with size-dependent rate constants. We find that both monomer and fibril diffusion on the surface are required to obtain length histograms as a function of time that resemble those observed in experiments. The best-fit simulated data can accurately describe the key features of experimental length histograms and suggests that the mobility of loosely bound amyloid species is crucial in regulating the kinetics of SMF. We determine that the mobility exponent for the size dependence of the DLA rate constants is α = 0.55 ± 0.05, which suggests that the diffusion of loosely bound surface fibrils roughly depends on the inverse of the square root of their size. These studies elucidate the influence of deposition rate and surface diffusion on the formation of amyloid fibrils through SMF. The method used here can be broadly adopted to study the diffusion and aggregation of peptides or proteins on various surfaces to investigate the role of chemical interactions in two-dimensional fibril formation and diffusion.
Relationship between the anomalous diffusion and the fractal dimension of the environment
NASA Astrophysics Data System (ADS)
Zhokh, Alexey; Trypolskyi, Andrey; Strizhak, Peter
2018-03-01
In this letter, we provide an experimental study highlighting a relation between the anomalous diffusion and the fractal dimension of the environment using the methanol anomalous transport through the porous solid pellets with various pores geometries and different chemical compositions. The anomalous diffusion exponent was derived from the non-integer order of the time-fractional diffusion equation that describes the methanol anomalous transport through the solid media. The surface fractal dimension was estimated from the nitrogen adsorption isotherms using the Frenkel-Halsey-Hill method. Our study shows that decreasing the fractal dimension leads to increasing the anomalous diffusion exponent, whereas the anomalous diffusion constant is independent on the fractal dimension. We show that the obtained results are in a good agreement with the anomalous diffusion model on a fractal mesh.
Dix, James A.; Diamond, Jared M.; Kivelson, Daniel
1974-01-01
The translational diffusion coefficient and the partition coefficient of a spin-labeled solute, di-t-butyl nitroxide, in an aqueous suspension of dipalmitoyl lecithin vesicles have been studied by electron spin resonance spectroscopy. When the lecithin is cooled through its phase transition temperature near 41°C, some solute is “frozen out” of the bilayer, and the standard partial molar enthalpy and entropy of partition go more positive by a factor of 8 and 6, respectively. However, the apparent diffusion constant in the lecithin phase is only slightly smaller than that in water, both above and below the transition temperature. The fraction of bilayer volume within which solute is distributed may increase with temperature, contributing to the positive enthalpy of partition. Comparison of time constants suggests that there is a permeability barrier to this solute in the periphery of the bilayer. PMID:4360944
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
Robust three-body water simulation model
NASA Astrophysics Data System (ADS)
Tainter, C. J.; Pieniazek, P. A.; Lin, Y.-S.; Skinner, J. L.
2011-05-01
The most common potentials used in classical simulations of liquid water assume a pairwise additive form. Although these models have been very successful in reproducing many properties of liquid water at ambient conditions, none is able to describe accurately water throughout its complicated phase diagram. The primary reason for this is the neglect of many-body interactions. To this end, a simulation model with explicit three-body interactions was introduced recently [R. Kumar and J. L. Skinner, J. Phys. Chem. B 112, 8311 (2008), 10.1021/jp8009468]. This model was parameterized to fit the experimental O-O radial distribution function and diffusion constant. Herein we reparameterize the model, fitting to a wider range of experimental properties (diffusion constant, rotational correlation time, density for the liquid, liquid/vapor surface tension, melting point, and the ice Ih density). The robustness of the model is then verified by comparing simulation to experiment for a number of other quantities (enthalpy of vaporization, dielectric constant, Debye relaxation time, temperature of maximum density, and the temperature-dependent second and third virial coefficients), with good agreement.
Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong
2017-10-01
In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.
Cao, Boqiang; Zhang, Qimin; Ye, Ming
2016-11-29
We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. Finally, an example is presented to illustrate our results of the mean-square exponential stability analysis.
Development of Methods for Low Temperature Diffusion Bonding.
1987-09-01
Hazlett, T. H., " High Strength Low Temperature Bonding of Beryllium and Other Metals," Welding Journal, 60(11), pp. 301-s to 310-s, 1970. 12. 1986 Annual...34CIPLU’q *flBQ~ P 0.(4 ".Oq’J 4 Low Temperature , Methods for Diffusion Rl ,’..’S olid deveoped ~’~ ~ ’State Bonding, or Diffusion Welding An apparatus lor...low t’empeaur R~u on’ nding of dissimilar metals has been develped.Experiments varying the bonding temperature at constant pressure and time were
Dynamics and mass transport of solutal convection in a closed porous media system
NASA Astrophysics Data System (ADS)
Wen, Baole; Akhbari, Daria; Hesse, Marc
2016-11-01
Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.
Secomb, Timothy W
2016-12-01
A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Surface transport mechanisms in molecular glasses probed by the exposure of nano-particles
NASA Astrophysics Data System (ADS)
Ruan, Shigang; Musumeci, Daniele; Zhang, Wei; Gujral, Ankit; Ediger, M. D.; Yu, Lian
2017-05-01
For a glass-forming liquid, the mechanism by which its surface contour evolves can change from bulk viscous flow at high temperatures to surface diffusion at low temperatures. We show that this mechanistic change can be conveniently detected by the exposure of nano-particles native in the material. Despite its high chemical purity, the often-studied molecular glass indomethacin contains low-concentration particles approximately 100 nm in size and 0.3% in volume fraction. Similar particles are present in polystyrene, another often-used model. In the surface-diffusion regime, particles are gradually exposed in regions vacated by host molecules, for example, the peak of a surface grating and the depletion zone near a surface crystal. In the viscous-flow regime, particle exposure is not observed. The surface contour around an exposed particle widens over time in a self-similar manner as 3 (Bt)1/4, where B is a surface mobility constant and the same constant obtained by surface grating decay. This work suggests that in a binary system composed of slow- and fast-diffusing molecules, slow-diffusing molecules can be stranded in surface regions vacated by fast-diffusing molecules, effectively leading to phase separation.
On Entropy Production in the Madelung Fluid and the Role of Bohm's Potential in Classical Diffusion
NASA Astrophysics Data System (ADS)
Heifetz, Eyal; Tsekov, Roumen; Cohen, Eliahu; Nussinov, Zohar
2016-07-01
The Madelung equations map the non-relativistic time-dependent Schrödinger equation into hydrodynamic equations of a virtual fluid. While the von Neumann entropy remains constant, we demonstrate that an increase of the Shannon entropy, associated with this Madelung fluid, is proportional to the expectation value of its velocity divergence. Hence, the Shannon entropy may grow (or decrease) due to an expansion (or compression) of the Madelung fluid. These effects result from the interference between solutions of the Schrödinger equation. Growth of the Shannon entropy due to expansion is common in diffusive processes. However, in the latter the process is irreversible while the processes in the Madelung fluid are always reversible. The relations between interference, compressibility and variation of the Shannon entropy are then examined in several simple examples. Furthermore, we demonstrate that for classical diffusive processes, the "force" accelerating diffusion has the form of the positive gradient of the quantum Bohm potential. Expressing then the diffusion coefficient in terms of the Planck constant reveals the lower bound given by the Heisenberg uncertainty principle in terms of the product between the gas mean free path and the Brownian momentum.
Polycomb group protein complexes exchange rapidly in living Drosophila.
Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J
2005-09-01
Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.
First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
Sanders, Lloyd P; Ambjörnsson, Tobias
2012-05-07
We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H < 1/3, which includes homogeneous SFD (H = 1/4), and heterogeneous SFD (H < 1/4), the WFA fails to agree with any temporal scale of the simulations and Molchan's long-time result. SFD systems are compared to their fBm counter parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same universality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plelnevaux, C.
The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)
Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.
Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro
2014-09-01
The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exact diffusion constant in a lattice-gas wind-tree model on a Bethe lattice
NASA Astrophysics Data System (ADS)
Zhang, Guihua; Percus, J. K.
1992-02-01
Kong and Cohen [Phys. Rev. B 40, 4838 (1989)] obtained the diffusion constant of a lattice-gas wind-tree model in the Boltzmann approximation. The result is consistent with computer simulations for low tree concentration. In this Brief Report we find the exact diffusion constant of the model on a Bethe lattice, which turns out to be identical with the Kong-Cohen and Gunn-Ortuño results. Our interpretation is that the Boltzmann approximation is exact for this type of diffusion on a Bethe lattice in the same sense that the Bethe-Peierls approximation is exact for the Ising model on a Bethe lattice.
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
Eddy diffusivity of quasi-neutrally-buoyant inertial particles
NASA Astrophysics Data System (ADS)
Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea
2018-04-01
We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.
Communication: Probing anomalous diffusion in frequency space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachura, Sławomir; Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette; Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecularmore » dynamics simulations of molecular diffusion in a lipid POPC bilayer.« less
Yago, Tomoaki; Tamaki, Yoshiaki; Furube, Akihiro; Katoh, Ryuzi
2008-08-14
Self-trapping and singlet-singlet annihilation of the free excitons in a monomeric (beta) perylene crystal were studied by using femtosecond transient absorption microscopy. The free exciton generated by the photo-excitation of the beta-perylene crystal relaxed to the self-trapped exciton with a rate constant of 7 x 10(10) s(-1). The singlet-singlet annihilation of the free exciton observed under the high excitation density conditions was competed with the self-trapping of the free exciton; we estimated the annihilation rate constant for the free exciton to be 1 x 10(-8) cm(3) s(-1) from the excitation density dependence of the free exciton decay. After self-trapping of the free exciton, no annihilation was observed in the 100 ps time range, suggesting that the diffusion coefficient was reduced drastically by self-trapping. The results show that the major factor limiting the exciton diffusion in the beta-perylene crystal is a relaxation of the free exciton to the self-trapped exciton, and not the lifetime of the exciton. Though the singlet-singlet annihilation rate constants and fluorescence lifetime of the beta-perylene crystal are similar to those of the anthracene crystal, the estimated exciton diffusion length (2 nm) in the beta-perylene crystal is much smaller than that (100 nm) in the anthracene crystal as a result of the exciton self-trapping.
Complex Geometric Models of Diffusion and Relaxation in Healthy and Damaged White Matter
Farrell, Jonathan A.D.; Smith, Seth A.; Reich, Daniel S.; Calabresi, Peter A.; van Zijl, Peter C.M.
2010-01-01
Which aspects of tissue microstructure affect diffusion weighted MRI signals? Prior models, many of which use Monte-Carlo simulations, have focused on relatively simple models of the cellular microenvironment and have not considered important anatomic details. With the advent of higher-order analysis models for diffusion imaging, such as high-angular-resolution diffusion imaging (HARDI), more realistic models are necessary. This paper presents and evaluates the reproducibility of simulations of diffusion in complex geometries. Our framework is quantitative, does not require specialized hardware, is easily implemented with little programming experience, and is freely available as open-source software. Models may include compartments with different diffusivities, permeabilities, and T2 time constants using both parametric (e.g., spheres and cylinders) and arbitrary (e.g., mesh-based) geometries. Three-dimensional diffusion displacement-probability functions are mapped with high reproducibility, and thus can be readily used to assess reproducibility of diffusion-derived contrasts. PMID:19739233
Diffusing diffusivity: Rotational diffusion in two and three dimensions
NASA Astrophysics Data System (ADS)
Jain, Rohit; Sebastian, K. L.
2017-06-01
We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.
On the role of adhesion in single-file dynamics
NASA Astrophysics Data System (ADS)
Fouad, Ahmed M.; Noel, John A.
2017-08-01
For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.
New Quantum Diffusion Monte Carlo Method for strong field time dependent problems
NASA Astrophysics Data System (ADS)
Kalinski, Matt
2017-04-01
We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.
NASA Astrophysics Data System (ADS)
Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.
2011-04-01
The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.
Alves, Alcione Aparecida de Almeida; Ruiz, Giselle Louise de Oliveira; Nonato, Thyara Campos Martins; Müller, Laura Cecilia; Sens, Maurício Luiz
2018-02-26
The application of a fixed bed adsorption column of granular activated carbon (FBAC-GAC), in the removal of carbaryl, methomyl and carbofuran at a concentration of 25 μg L -1 for each carbamate, from the public water supply was investigated. For the determination of the presence of pesticides in the water supply, the analytical technique of high-performance liquid chromatography with post-column derivatization was used. Under conditions of constant diffusivity, the FBAC-GAC was saturated after 196 h of operation on a pilot scale. The exhaust rate of the granular activated carbon (GAC) in the FBAC-GAC until the point of saturation was 0.02 kg GAC m -3 of treated water. By comparing a rapid small-scale column test and FBAC-GAC, it was confirmed that the predominant intraparticle diffusivity in the adsorption column was constant diffusivity. Based on the results obtained on a pilot scale, it was possible to estimate the values to be applied in the FBAC-GAC (full scale) to remove the pesticides, which are particle size with an average diameter of 1.5 mm GAC; relationship between the internal diameter of the column and the average diameter of GAC ≥50 in order to avoid preferential flow near the adsorption column wall; surface application rate 240 m 3 m -2 d -1 and an empty bed contact time of 3 min. BV: bed volume; CD: constant diffusivity; EBCT: empty bed contact time; FBAC-GAC: fixed bed adsorption column of granular activated carbon; GAC: granular activated carbon; MPV: maximum permitted values; NOM: natural organic matter; PD: proportional diffusivity; pH PCZ : pH of the zero charge point; SAR: surface application rate; RSSCT: rapid small-scale column test; WTCS: water treated conventional system.
Defects in ZnO nanorods prepared by a hydrothermal method.
Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K
2006-10-26
ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
Diffusion with resetting inside a circle
NASA Astrophysics Data System (ADS)
Chatterjee, Abhinava; Christou, Christos; Schadschneider, Andreas
2018-06-01
We study the Brownian motion of a particle in a bounded circular two-dimensional domain in search for a stationary target on the boundary of the domain. The process switches between two modes: one where it performs a two-dimensional diffusion inside the circle and one where it diffuses along the one-dimensional boundary. During the process, the Brownian particle resets to its initial position with a constant rate r . The Fokker-Planck formalism allows us to calculate the mean time to absorption (MTA) as well as the optimal resetting rate for which the MTA is minimized. From the derived analytical results the parameter regions where resetting reduces the search time can be specified. We also provide a numerical method for the verification of our results.
Finite-Temperature Behavior of PdH x Elastic Constants Computed by Direct Molecular Dynamics
Zhou, X. W.; Heo, T. W.; Wood, B. C.; ...
2017-05-30
In this paper, robust time-averaged molecular dynamics has been developed to calculate finite-temperature elastic constants of a single crystal. We find that when the averaging time exceeds a certain threshold, the statistical errors in the calculated elastic constants become very small. We applied this method to compare the elastic constants of Pd and PdH 0.6 at representative low (10 K) and high (500 K) temperatures. The values predicted for Pd match reasonably well with ultrasonic experimental data at both temperatures. In contrast, the predicted elastic constants for PdH 0.6 only match well with ultrasonic data at 10 K; whereas, atmore » 500 K, the predicted values are significantly lower. We hypothesize that at 500 K, the facile hydrogen diffusion in PdH 0.6 alters the speed of sound, resulting in significantly reduced values of predicted elastic constants as compared to the ultrasonic experimental data. Finally, literature mechanical testing experiments seem to support this hypothesis.« less
NASA Astrophysics Data System (ADS)
Adams, John E.; Stratt, Richard M.
1990-08-01
For the instantaneous normal mode analysis method to be generally useful in studying the dynamics of clusters of arbitrary size, it ought to yield values of atomic self-diffusion constants which agree with those derived directly from molecular dynamics calculations. The present study proposes that such agreement indeed can be obtained if a sufficiently sophisticated formalism for computing the diffusion constant is adopted, such as the one suggested by Madan, Keyes, and Seeley [J. Chem. Phys. 92, 7565 (1990)]. In order to implement this particular formalism, however, we have found it necessary to pay particular attention to the removal from the computed spectra of spurious rotational contributions. The utility of the formalism is demonstrated via a study of small argon clusters, for which numerous results generated using other approaches are available. We find the same temperature dependence of the Ar13 self-diffusion constant that Beck and Marchioro [J. Chem. Phys. 93, 1347 (1990)] do from their direct calculation of the velocity autocorrelation function: The diffusion constant rises quickly from zero to a liquid-like value as the cluster goes through (the finite-size equivalent of) the melting transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy; Parra, Amanda; Russell, Marion
Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less
High-speed absorption recovery in quantum well diodes by diffusive electrical conduction
NASA Astrophysics Data System (ADS)
Livescu, G.; Miller, D. A. B.; Sizer, T.; Burrows, D. J.; Cunningham, J. E.
1989-02-01
Picosecond time-resolved electroabsorption measurements in GaAs quantum well p-i-n diode structures are presented. While the dynamics of the vertical transport is not completely understood at present, the data reveal the importance of the 'lateral' propagatin of the photoexcited voltage pulse over the area of the doped regions. A two-dimensional 'diffusive conduction' mechanism is proposed which predicts a fast relaxation of the electrical pulse, with time constants ranging from 50 fs to 500 ps, determined by the size of the exciting spot, the resistivity of the doped regions, and the capacitance of the intrinsic region.
Diffusion and scaling during early embryonic pattern formation.
Gregor, Thomas; Bialek, William; de Ruyter van Steveninck, Rob R; Tank, David W; Wieschaus, Eric F
2005-12-20
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime.
Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
Ali, Mohammad A; Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E
2016-11-04
Time-resolved quartz crystal microbalance with in situ fluorescence measurements are used to monitor the sorption of the nitroaromatic (explosive) vapor, 2,4-dinitrotoluene (DNT) into a porous pentiptycene-containing poly(phenyleneethynylene) sensing film. Correlation of the nitroaromatic mass uptake with fluorescence quenching shows that the analyte diffusion follows the Case-II transport model, a film-swelling-limited process, in which a sharp diffusional front propagates at a constant velocity through the film. At a low vapor pressure of DNT of ≈16 ppb, the analyte concentration in the front is sufficiently high to give an average fluorophore-analyte separation of ≈1.5 nm. Hence, a long exciton diffusion length is not required for real-time sensing in the solid state. Rather the diffusion behavior of the analyte and the strength of the binding interaction between the analyte and the polymer play first-order roles in the fluorescence quenching process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffusive transport in the presence of stochastically gated absorption
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Karamched, Bhargav R.; Lawley, Sean D.; Levien, Ethan
2017-08-01
We analyze a population of Brownian particles moving in a spatially uniform environment with stochastically gated absorption. The state of the environment at time t is represented by a discrete stochastic variable k (t )∈{0 ,1 } such that the rate of absorption is γ [1 -k (t )] , with γ a positive constant. The variable k (t ) evolves according to a two-state Markov chain. We focus on how stochastic gating affects the attenuation of particle absorption with distance from a localized source in a one-dimensional domain. In the static case (no gating), the steady-state attenuation is given by an exponential with length constant √{D /γ }, where D is the diffusivity. We show that gating leads to slower, nonexponential attenuation. We also explore statistical correlations between particles due to the fact that they all diffuse in the same switching environment. Such correlations can be determined in terms of moments of the solution to a corresponding stochastic Fokker-Planck equation.
Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.
Irving, M; Maylie, J; Sizto, N L; Chandler, W K
1990-04-01
Junge and McLaughlin (1987) derived an expression for the apparent diffusion constant of protons in the presence of both mobile and immobile buffers. Their derivation applies only to cases in which the values of pH are considerably greater than the largest pK of the individual buffers, a condition that is not expected to hold in skeletal muscle or many other cell types. Here we show that, if the pH gradients are small, the same expression for the apparent diffusion constant of protons can be derived without such constraints on the values of the pK's. The derivation is general and can be used to estimate the apparent diffusion constant of any substance that diffuses in the presence of both mobile and immobile buffers. The apparent diffusion constant of protons is estimated to be 1-2 x 10(-6) cm2/s at 18 degrees C inside intact frog twitch muscle fibers. It may be smaller inside cut fibers, owing to a reduction in the concentration of mobile myoplasmic buffers, so that in this preparation a pH gradient, if established within a sarcomere following action potential stimulation, could last 10 ms or longer after stimulation ceased.
Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens
NASA Astrophysics Data System (ADS)
Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.
2006-11-01
Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.
Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols
NASA Technical Reports Server (NTRS)
Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.
2007-01-01
In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos
1989-01-01
The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.
Renormalization group analysis of anisotropic diffusion in turbulent shear flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Barton, J. Michael
1991-01-01
The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.
NASA Technical Reports Server (NTRS)
Bever, R. S.
1977-01-01
Several dummy tubes imitating the IUE Camera System design were encapsulated with Solithane 2, Conathane EN-11, Green and Black Hysols and SMRD 432. Various flaws were purposefully placed in some of these. Partial discharge testing in vacuum under direct voltage conditions was carried once a week for 12 weeks, 15 kv dc being applied during normal working hours for 40 hours duration per week. None of the units showed much damage during this time judging by the P.D. energy histograms. A more complete mathematical presentation is given on diffusion and permeation than previously. Measurements of diffusion constants for various silicone rubbers are carried out by the Time-Lag method and compared to other determinations in the literature. Calculations of the time required for diffusion through a thick wall are demonstrated in the long time approximation and for dimensions pertaining to void and wall sizes of a delamination problem in the LANDSAT-C vidicon tubes. An actual delaminated LANDSAT-C tube and some facsimiles are immersed in vacuum for long periods and tested for catastrophic breakdown due to diffusion of gas, by application of high voltage.
Study of the measurement for the diffusion coefficient by digital holographic interferometry.
Zhang, Shi; He, Maogang; Zhang, Ying; Peng, Sanguo; He, Xinxin
2015-11-01
In the measurement of the diffusion coefficient by digital holographic interferometry, the conformity between the experiment and the ideal physical model is lacking analysis. Two data processing methods are put forward to overcome this problem. By these methods, it is found that there is obvious asymmetry in the experiment and the asymmetry is becoming smaller with time. Besides, the initial time for diffusion cannot be treated as a constant throughout the whole experiment. This means that there is a difference between the experiment and the physical model. With these methods, the diffusion coefficient of KCl in water at 0.33 mol/L and 25°C is measured. When the asymmetry is ignored, the result is 1.839×10(-9) m2/s, which is in good agreement with the data in the literature. Because the asymmetry is becoming smaller with time, the experimental data in the latter time period conforms to the ideal physical model. With this idea, a more accurate diffusion coefficient is 2.003×10(-9) m2/s, which is about 10% larger than the data in the literature.
Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles
2006-08-01
We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.
Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro
2015-04-16
Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.
Diffusion induced atomic islands on the surface of Ni/Cu nanolayers
NASA Astrophysics Data System (ADS)
Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán
2018-05-01
Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.
Yeung, Joanne Chung Yan; de Lannoy, Inés; Gien, Brad; Vuckovic, Dajana; Yang, Yingbo; Bojko, Barbara; Pawliszyn, Janusz
2012-09-12
In vivo solid-phase microextraction (SPME) can be used to sample the circulating blood of animals without the need to withdraw a representative blood sample. In this study, in vivo SPME in combination with liquid-chromatography tandem mass spectrometry (LC-MS/MS) was used to determine the pharmacokinetics of two drug analytes, R,R-fenoterol and R,R-methoxyfenoterol, administered as 5 mg kg(-1) i.v. bolus doses to groups of 5 rats. This research illustrates, for the first time, the feasibility of the diffusion-based calibration interface model for in vivo SPME studies. To provide a constant sampling rate as required for the diffusion-based interface model, partial automation of the SPME sampling of the analytes from the circulating blood was accomplished using an automated blood sampling system. The use of the blood sampling system allowed automation of all SPME sampling steps in vivo, except for the insertion and removal of the SPME probe from the sampling interface. The results from in vivo SPME were compared to the conventional method based on blood withdrawal and sample clean up by plasma protein precipitation. Both whole blood and plasma concentrations were determined by the conventional method. The concentrations of methoxyfenoterol and fenoterol obtained by SPME generally concur with the whole blood concentrations determined by the conventional method indicating the utility of the proposed method. The proposed diffusion-based interface model has several advantages over other kinetic calibration models for in vivo SPME sampling including (i) it does not require the addition of a standard into the sample matrix during in vivo studies, (ii) it is simple and rapid and eliminates the need to pre-load appropriate standard onto the SPME extraction phase and (iii) the calibration constant for SPME can be calculated based on the diffusion coefficient, extraction time, fiber length and radius, and size of the boundary layer. In the current study, the experimental calibration constants of 338.9±30 mm(-3) and 298.5±25 mm(-3) are in excellent agreement with the theoretical calibration constants of 307.9 mm(-3) and 316.0 mm(-3) for fenoterol and methoxyfenoterol respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Shih-Yuan; Yen, Yi-Ming
2002-02-01
A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.
Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Sin, Sang-Jin; Tian, Yu; Wu, Shao-Feng; Wu, Shang-Yu
2018-01-01
We show that there exists a class of charged BTZ-like black hole solutions in Lifshitz spacetime with a hyperscaling violating factor. The charged BTZ black hole is characterized by a charge-dependent logarithmic term in the metric function. As concrete examples, we give five such charged BTZ-like black hole solutions and the standard charged BTZ metric can be regarded as a special instance of them. In order to check the recent proposed universal relations between diffusivity and the butterfly velocity, we first compute the diffusion constants of the standard charged BTZ black holes and then extend our calculation to arbitrary dimension d, exponents z and θ. Remarkably, the case d = θ and z = 2 is a very special in that the charge diffusion D c is a constant and the energy diffusion D e might be ill-defined, but v B 2 τ diverges. We also compute the diffusion constants for the case that the DC conductivity is finite but in the absence of momentum relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishide, Hiroyuki; Suzuki, Takayuki; Kawakami, Hiroyoshi
1994-05-12
New derivatives of (meso-[alpha],[alpha],[alpha],[alpha]-tetrakis(o-pivalamidophenyl)porphinato)cobalt (CoPs) were characterized by oxygen-binding equilibrium and rate constants of the cobalt centered in the porphyrins. They depended on the structure of the porphyrin; for example, the rate constants of oxygen binding and dissociation (k[sub on] and k[sub off]) for [alpha][sup 3][beta]-CoP[sub 4]P were 3 and 20 times as large as those for [alpha][sup 4]-CoB[sub 4]P, respectively. Oxygen transport through the polymer membranes containing CoPs as the fixed oxygen carriers was facilitated and was affected by the oxygen-binding character or the structure of CoPs. The logarithmically linear correlation of the oxygen-dissociation rate constant of CoPs (k[submore » off] = (3-66) x 10[sup 3] S[sup [minus]1]) with the diffusion constant of oxygen via CoPs fixed in the membranes (D[sub cc] = (3-140) x 10[sup [minus]9] cm[sup 2] s[sup [minus]1]) was given for those six CoP derivatives. 26 refs., 5 figs., 2 tabs.« less
Liu, Xiaohu; Chen, Chang; Qu, Tianliang; Yang, Kaiyong; Luo, Hui
2016-01-01
The presence of a magnetic field gradient in a sample cell containing spin-polarized 129Xe atoms will cause an increased relaxation rate. We measured the transverse spin relaxation time of 129Xe verse the applied magnetic field gradient and the cell temperature. We then compared the different transverse spin relaxation behavior of dual isotopes of xenon (129Xe and 131Xe) due to magnetic field gradient in the same cell. The experiment results show the residual magnetic field gradient can be measured and compensated by applying a negative magnetic gradient in the sample cell. The transverse spin relaxation time of 129Xe could be increased 2–7 times longer when applying an appropriate magnetic field gradient. The experiment results can also be used to determine the diffusion constant of 129Xe in H2 and N2 to be 0.4 ± 0.26 cm2/sec and 0.12 ± 0.02 cm2/sec. The results are close with theoretical calculation. PMID:27049237
Maximum Path Information and Fokker Planck Equation
NASA Astrophysics Data System (ADS)
Li, Wei; Wang A., Q.; LeMehaute, A.
2008-04-01
We present a rigorous method to derive the nonlinear Fokker-Planck (FP) equation of anomalous diffusion directly from a generalization of the principle of least action of Maupertuis proposed by Wang [Chaos, Solitons & Fractals 23 (2005) 1253] for smooth or quasi-smooth irregular dynamics evolving in Markovian process. The FP equation obtained may take two different but equivalent forms. It was also found that the diffusion constant may depend on both q (the index of Tsallis entropy [J. Stat. Phys. 52 (1988) 479] and the time t.
Monte Carlo Study of Cosmic-Ray Propagation in the Galaxy and Diffuse Gamma-Ray Production
NASA Astrophysics Data System (ADS)
Huang, C.-Y.; Pohl, M.
This talk present preliminary results for the time-dependent cosmic-ray propagation in the Galaxy by a fully 3-dimensional Monte Carlo simulation. The distribution of cosmic-rays (both protons and helium nuclei) in the Galaxy is studied on various spatial scales for both constant and variable cosmic-ray sources. The continuous diffuse gamma-ray emission produced by cosmic-rays during the propagation is evaluated. The results will be compared with calculations made with other propagation models.
Yasaka, Yoshiro; Klein, Michael L; Nakahara, Masaru; Matubayasi, Nobuyuki
2012-02-21
The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation of the QCC by a factor of 2-3 as a compensation for the neglect of the Lipari-Szabo factor. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Yasaka, Yoshiro; Klein, Michael L.; Nakahara, Masaru; Matubayasi, Nobuyuki
2012-02-01
The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T1 measurements. MD trajectories based on an effective potential are used to calculate the 2H NMR relaxation time, T1 via Fourier transform of the relevant rotational time correlation function, C2R(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T1 when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C2R(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C2R(t) is most important to understand frequency and temperature dependencies of T1 in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T1 by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T1 analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation of the QCC by a factor of 2-3 as a compensation for the neglect of the Lipari-Szabo factor.
SeaWiFS long-term solar diffuser reflectance trend analysis
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2006-08-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) Team implemented daily solar calibrations of SeaWiFS to look for step-function changes in the instrument response and has used these calibrations to supplement the monthly lunar calibrations in monitoring the radiometric stability of SeaWiFS during its first year of on-orbit operations. The Team has undertaken an analysis of the mission-long solar calibration time series, with the lunar-derived radiometric corrections over time applied, to assess the long-term degradation of the solar diffuser reflectance over nine years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val Team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength-dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The degradation of diffuser reflctance is similar to that observed for SeaWiFS radiometric response itself from lunar calibration time series for bands 1-5 (412-555 nm), though the magnitude of the change is four times larger for the diffuser. Evidently, the same optical degradation process has affected both the telescope optics and the solar diffuser in the blue and green. The Cal/Val Team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series. The on-orbit change in the SNR for each band over the nine-year mission is less than 7%. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as MODIS, VIIRS, and ABI.
Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Plumberg, Christopher
2018-01-01
We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.
Open quantum random walks: Bistability on pure states and ballistically induced diffusion
NASA Astrophysics Data System (ADS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2013-12-01
Open quantum random walks (OQRWs) deal with quantum random motions on a line for systems with internal and orbital degrees of freedom. The internal system behaves as a quantum random gyroscope coding for the direction of the orbital moves. We reveal the existence of a transition, depending on OQRW moduli, in the internal system behaviors from simple oscillations to random flips between two unstable pure states. This induces a transition in the orbital motions from the usual diffusion to ballistically induced diffusion with a large mean free path and large effective diffusion constant at large times. We also show that mixed states of the internal system are converted into random pure states during the process. We touch upon possible experimental realizations.
NASA Astrophysics Data System (ADS)
Meerson, Baruch
2015-05-01
Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.
Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
Donatini, Fabrice; Pernot, Julien
2018-03-09
In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.
Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J
2016-03-15
This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Verma, Vivek; Balasubramanian, K
2014-08-01
Porous composite membrane of polyacrylonitrile (PAN) and Lantana camara essential oil was synthesized by solvent casting method. Stability of oil in PAN solution was measured by XiGo nano tool indicating constant relaxation time of 1487 time/s. Pore size of few microns confirmed by electron microscopy was supported by atomic force microscopy indicating roughness factor of 0.9 nm. Contact angle of 2° inveterates superhydrophilicity of the composite membrane. Membrane showed excellent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 7-10mm zone of inhibition. In vitro release of Lantana oil from the composite membrane was carried out in isotonic phosphate buffer solution (pH=7.4). Lantana oil was released for 9h, lag time of 3h with constant 33% release confirmed PAN membranes as potential system for pulsatile drug delivery applications. Diffusion of E-caryophyllene (antibacterial component of oil) which was studied through molecular simulation using Material Studio software ensued diffusion coefficient value of 1.11∗10(-9) m(2)/s. Biocompatibility of the composite membrane was assessed by mouse embryonic fibroblast cell line (NIH 3T3) through MTT assay indicating more than 91% viable cell even at 200 μg/mL concentration. Such membranes can be efficiently used in biomedical applications as antibacterial and antifungal agent. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamics and Solubility of He and CO 2 in Brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Tenney, Craig M.
2016-09-01
Molecular dynamics simulation was implemented using LAMMPS simulation package (1) to study the diffusivity of He 3 and CO 2 in NaCl aqueous solution. To simulate at infinite dilute gas concentration, we placed one He 3 or CO 2 molecule in an initial simulation box of 24x24x33Å 3 containing 512 water molecules and a certain number of NaCl molecules depending on the concentration. Initial configuration was set up by placing water, NaCl, and gas molecules into different regions in the simulation box. Calculating diffusion coefficient for one He or CO 2 molecule consistently yields poor results. To overcome this, formore » each simulation at specific conditions (i.e., temperature, pressure, and NaCl concentration), we conducted 50 simulations initiated from 50 different configurations. These configurations are obtained by performing the simulation starting from the initial configuration mentioned above in the NVE ensemble (i.e., constant number of particles, volume, and energy). for 100,000 time steps and collecting one configuration every 2,000 times step. The output temperature of this simulation is about 500K. The collected configurations were then equilibrated for 2ns in the NPT ensemble (i.e., constant number of particles, pressure, and temperature) followed by 9ns simulations in the NVT ensemble (i.e., constant number of particles, volume, and temperature). The time step is 1fs for all simulations.« less
A critical examination of the validity of simplified models for radiant heat transfer analysis.
NASA Technical Reports Server (NTRS)
Toor, J. S.; Viskanta, R.
1972-01-01
Examination of the directional effects of the simplified models by comparing the experimental data with the predictions based on simple and more detailed models for the radiation characteristics of surfaces. Analytical results indicate that the constant property diffuse and specular models do not yield the upper and lower bounds on local radiant heat flux. In general, the constant property specular analysis yields higher values of irradiation than the constant property diffuse analysis. A diffuse surface in the enclosure appears to destroy the effect of specularity of the other surfaces. Semigray and gray analyses predict the irradiation reasonably well provided that the directional properties and the specularity of the surfaces are taken into account. The uniform and nonuniform radiosity diffuse models are in satisfactory agreement with each other.
NASA Technical Reports Server (NTRS)
Shakib, Farzin; Hughes, Thomas J. R.
1991-01-01
A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demanins, F.; Rado, V.; Vinci, F.
1963-04-01
The macroscopic absorption cross section, diffusion constant, diffusion cooling constant, transport mean free patu, extrapolated distance, diffusion length, and mean life for thermal neutrons were determined for Dowtherm A at 20 deg C, using a pulsed neutron source. The experimental assembly and data analysis method are described, and the results are compared with other determinations. (auth)
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
Duffy, G J; Parkins, S; Müller, T; Sadgrove, M; Leonhardt, R; Wilson, A C
2004-11-01
We report measurements of the early-time momentum diffusion for the atom-optical delta-kicked rotor. In this experiment a Bose-Einstein condensate provides a source of ultracold atoms with an ultranarrow initial momentum distribution, which is then subjected to periodic pulses (or "kicks") using an intense far-detuned optical standing wave. We characterize the effect of varying the effective Planck's constant for the system, while keeping all other parameters fixed. The observed behavior includes both quantum resonances (ballistic energy growth) and antiresonances (re-establishment of the initial state). Our experimental results are compared with theoretical predictions.
NASA Astrophysics Data System (ADS)
Aubry, Alexandre; Derode, Arnaud; Padilla, Frédéric
2008-03-01
We present local measurements of the diffusion constant for ultrasonic waves undergoing multiple scattering. The experimental setup uses a coherent array of programmable transducers. By achieving Gaussian beamforming at emission and reception, an array of virtual sources and receivers located in the near field is constructed. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscattering peak. Local measurements of the diffusion constant D are then achieved. This technique is applied to a real case: a sample of human trabecular bone for which the ultrasonic characterization of multiple scattering is an issue.
Diffusion and scaling during early embryonic pattern formation
Gregor, Thomas; Bialek, William; van Steveninck, Rob R. de Ruyter; Tank, David W.; Wieschaus, Eric F.
2005-01-01
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime. PMID:16352710
Delay-induced wave instabilities in single-species reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Otto, Andereas; Wang, Jian; Radons, Günter
2017-11-01
The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.
Diffusional falsification of kinetic constants on Lineweaver-Burk plots.
Ghim, Y S; Chang, H N
1983-11-07
The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.
Larson-Miller Constant of Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu
2013-06-01
Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.
Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy
Fu, Xuewen; Chen, Bin; Tang, Jau; Zewail, Ahmed H.
2017-01-01
Dynamics of active or propulsive Brownian particles in nonequilibrium status have recently attracted great interest in many fields including artificial micro/nanoscopic motors and biological entities. Understanding of their dynamics can provide insight into the statistical properties of physical and biological systems far from equilibrium. We report the translational dynamics of photon-activated gold nanoparticles (NPs) in water imaged by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. Under excitation of femtosecond laser pulses, we observed that those NPs exhibit superfast diffusive translation with a diffusion constant four to five orders of magnitude greater than that in the absence of laser excitation. The measured diffusion constant follows a power-law dependence on the laser fluence and a linear increase with the laser repetition rate, respectively. This superfast diffusion of the NPs is induced by a strong random driving force arising from the photoinduced steam nanobubbles (NBs) near the NP surface. In contrast, the NPs exhibit a superfast ballistic translation at a short time scale down to nanoseconds. Combining with a physical model simulation, this study reveals a photoinduced NB propulsion mechanism for propulsive motion, providing physical insights into better design of light-activated artificial micro/nanomotors. The liquid-cell 4D-EM also provides the potential of studying other numerical dynamical behaviors in their native environments. PMID:28875170
Needlelike motion of prolate ellipsoids in the sea of spheres
NASA Astrophysics Data System (ADS)
Vasanthi, R.; Ravichandran, S.; Bagchi, Biman
2001-05-01
Molecular dynamics simulations of translational motion of isolated prolate ellipsoids in the sea of spheres have been carried out for several different values of the aspect ratio (κ), obtained by changing either the length or the diameter of the ellipsoids, at several different solvent densities. The interaction among the spheres is given by the Lennard-Jones pair potential while that between spheres and ellipsoids is given by a modified Gay-Berne potential. Both the mean-square displacements of the center of mass of the ellipsoids and their orientational time correlation function have been calculated. It is found that at short to intermediate times, the motion of ellipsoids is anisotropic and primarily needlelike—the molecules prefer to move parallel to their long axis. The ratio of these two diffusion constants (D∥ and D⊥) approaches κ, suggesting a decoupling of D∥ from the length of the ellipsoid. The diffusion becomes isotropic in the long time with the total diffusion coefficient given by D∥+2D⊥. The crossover from the anisotropic to the isotropic diffusion is surprisingly sharp and clear in most cases.
Simulations of eddy kinetic energy transport in barotropic turbulence
NASA Astrophysics Data System (ADS)
Grooms, Ian
2017-11-01
Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.
NASA Astrophysics Data System (ADS)
Yang, De-zheng; Wang, Wen-chun; Jia, Li; Nie, Dong-xia; Shi, Heng-chao
2011-04-01
In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.
Many Body Effects on Particle Diffusion in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Dell, Zachary E.; Schweizer, Kenneth S.
2014-03-01
Recent statistical mechanical theories of nanoparticle motion in polymer melts and networks have focused on the dilute particle limit. By combining PRISM theory predictions for microscopic structural correlations, and a new formulation of self-consistent dynamical mode coupling theory, we extend dilute theories to finite filler loading. As a minimalist model, the polymer dynamics are first assumed to be unperturbed by the presence of the nanoparticles. The long time particle diffusivity in unentangled and entangled melts is determined as a function of polymer tube diameter and radius of gyration, nanoparticle diameter, and polymer-filler attraction strength under both constant volume and constant pressure situations. The influence of nanocomposite statistical structure (depletion, steric stabilization, bridging) on dynamics is also investigated. Using recent theoretical developments for predicting tube diameters in nanocomposites, the consequences of filler-induced tube dilation on nanoparticle motion is established. In entangled melts, increasing filler loading first modestly speeds up diffusion, and then dramatically when the inter-filler separation becomes smaller than the tube diameter. At very high loadings, a filler glass transition is generically predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Han Lin
1988-03-01
The objectives of this research are to: (1) conduct experimental investigations of the removal of chlorine from coal by high- temperature leaching; (2) identify important factors affecting the chlorine removal process; (3) understand the mechanisms involved; and (4) develop a mathematical model to describe the process. A generalized mathematical model based on diffusion and relaxation has been developed for water leaching of chlorine from coal. The model has been fitted to four different samples of Illinois No. 6 coal: C22175, C22651, C8601, and C8602. The weight percent of chlorine ranged from 0.42 to 0.82. The experimental data on these samplesmore » covered a temperature range of 297 to 370K and a particle size range of 60 to 325 mesh. Based on the type of coal and the conditions of leaching, it was found that 40 to 80% of the original chlorine could be leached from the coal matrix. The model based on diffusion-relaxation concept predicted the leaching data within +-5% average absolute deviation. The diffusion rate constants at different temperatures were correlated to Arrhenius type relations. Attempts made to correlate the constants in the Arrhenius equations with the chlorine content in coal and with particle size have been discussed. The water leaching data were used to extract Fickian diffusivities based on the time required for 50% desorption. The calculated diffusivity values ranged from 0.6 to 3 /times/ 10/sup /minus/11/ cm/sup 2//sec. The effect of chemical additives on the rate of leaching has also been studied. Both HNO/sub 3/ and NH/sub 4/OH were used as additives. 28 refs., 3 figs., 7 tabs.« less
Ducrot, Arnaud; Giletti, Thomas
2014-09-01
In this work we study the asymptotic behaviour of the Kermack-McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile's shape is periodic in time.
Perforated cenosphere-supported pH-sensitive spin probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomenko, E.V.; Bobko, A.A.; Salanov, A.N.
2008-03-15
Porous supports with an accessible internal volume and a shell providing the diffusive migration of pH-sensitive spin probes were obtained for the first time from hollow aluminosilicate cenospheres isolated from the coal fly ash. Using the methods of scanning electron microscopy and electron spin resonance, the morphology of different porous cenosphere modifications and its influence on the diffusion of spin probes from the internal volume were studied. When supporting aqueous solutions of a radical, the characteristic diffusion time for the mesoporous structure of the support is longer by a factor of 3-5 than that for the macroporous structure. Ferrospinel inmore » a content of 6 wt.% do not virtually affect the diffusion rate of spin probes. A constant rate of radical migration of similar to 1 {mu} mol min{sup -1}, determined by radical solubility in water, is achieved when a radical in the solid aggregate state is supported on the magnetic cenospheres.« less
A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Scott
A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less
Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera
We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less
Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts
Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera; ...
2018-03-06
We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less
Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x
Levenson-Falk, Eli M.; Ramshaw, B. J.; Bonn, D. A.; Liang, Ruixing; Hardy, W. N.; Hartnoll, Sean A.; Kapitulnik, Aharon
2017-01-01
The thermal diffusivity in the ab plane of underdoped YBCO crystals is measured by means of a local optical technique in the temperature range of 25–300 K. The phase delay between a point heat source and a set of detection points around it allows for high-resolution measurement of the thermal diffusivity and its in-plane anisotropy. Although the magnitude of the diffusivity may suggest that it originates from phonons, its anisotropy is comparable with reported values of the electrical resistivity anisotropy. Furthermore, the anisotropy drops sharply below the charge order transition, again similar to the electrical resistivity anisotropy. Both of these observations suggest that the thermal diffusivity has pronounced electronic as well as phononic character. At the same time, the small electrical and thermal conductivities at high temperatures imply that neither well-defined electron nor phonon quasiparticles are present in this material. We interpret our results through a strongly interacting incoherent electron–phonon “soup” picture characterized by a diffusion constant D∼vB2τ, where vB is the soup velocity, and scattering of both electrons and phonons saturates a quantum thermal relaxation time τ∼ℏ/kBT. PMID:28484003
A study of a diffusive model of asset returns and an empirical analysis of financial markets
NASA Astrophysics Data System (ADS)
Alejandro Quinones, Angel Luis
A diffusive model for market dynamics is studied and the predictions of the model are compared to real financial markets. The model has a non-constant diffusion coefficient which depends both on the asset value and the time. A general solution for the distribution of returns is obtained and shown to match the results of computer simulations for two simple cases, piecewise linear and quadratic diffusion. The effects of discreteness in the market dynamics on the model are also studied. For the quadratic diffusion case, a type of phase transition leading to fat tails is observed as the discrete distribution approaches the continuum limit. It is also found that the model captures some of the empirical stylized facts observed in real markets, including fat-tails and scaling behavior in the distribution of returns. An analysis of empirical data for the EUR/USD currency exchange rate and the S&P 500 index is performed. Both markets show time scaling behavior consistent with a value of 1/2 for the Hurst exponent. Finally, the results show that the distribution of returns for the two markets is well fitted by the model, and the corresponding empirical diffusion coefficients are determined.
Tomassini, L; Michailova, D; Naplatanova, D; Slavtschev, P
1979-12-01
The authors investigated the release of isoniazid from repository tablets as related to form, processing technology, strength constant and storage for 5 years. On determining the diffusion coefficient (D), the initial dissolution rate (Vo) and the time required for the diffusion of the releasing medium to the middle of the tablet (t1/2), it was found that the difference in release rate between the flat and the biconvex tablets is small. Furthermore, it was stated that the three-layer tablets have very high D and Vo values and very low t1/2 values, for what reason they are unsuited for repository tablets of the composition under investigation. Moreover, it was found that an increase of the strength constant does not affect the D, t1/2 and Vo values, and that the release of isoniazid is retarded only in flat tablets with the highest strength constant. Storage exerts no effect on the drug release from these tablets. The industrial production of these tablets is under way.
NASA Astrophysics Data System (ADS)
Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark
2004-07-01
Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.
Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.
Kapitza, H G; McGregor, G; Jacobson, K A
1985-01-01
Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated. PMID:3858869
Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.
Kapitza, H G; McGregor, G; Jacobson, K A
1985-06-01
Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated.
Ziemba, Brian P.; Falke, Joseph J.
2013-01-01
Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2-D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1 to 3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2-D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both 1) individual bound lipids and 2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2-D diffusion constant. An empirical formula is developed that accurately estimates the diffusion constant and bilayer friction of a peripheral protein in terms of its number of bound lipids and its geometry of penetration into the bilayer hydrocarbon core, yielding an excellent global best fit (R2 of 0.97) to the experimental diffusion constants. Finally, the observed additivity of the frictional contributions suggests that further development of current theory describing bilayer dynamics may be needed. The present findings provide constraints that will be useful in such theory development. PMID:23701821
Ziemba, Brian P; Falke, Joseph J
2013-01-01
Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1-3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both (1) individual bound lipids and (2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2D diffusion constant. An empirical formula is developed that accurately estimates the diffusion constant and bilayer friction of a peripheral protein in terms of its number of bound lipids and its geometry of penetration into the bilayer hydrocarbon core, yielding an excellent global best fit (R(2) of 0.97) to the experimental diffusion constants. Finally, the observed additivity of the frictional contributions suggests that further development of current theory describing bilayer dynamics may be needed. The present findings provide constraints that will be useful in such theory development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Relaxation and Self-Diffusion of a Polymer Chain in a Melt
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Takano, Hiroshi
2004-04-01
Relaxation and self-diffusion of a polymer chain in a melt are discussed on the basis of the results of our recent Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is considered. Polymer chains are located on an L × L × L simple cubic lattice under periodic boundary conditions. Each chain consists of N segments, each of which occupies 2 × 2 × 2 unit cells. The results for N = 32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction φ ≃ 0.5 are examined, where L = 128 for N ⩽ 256 and L = 192 for N ⩾ 384. The longest relaxation time τ is estimated by solving generalized eigenvalue problems for the equilibrium time correlation matrices of the positions of segments of a polymer chain. The self-diffusion constant D is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than τ. From the data for N = 256, 384 and 512, the apparent exponents x r and xd, which describe the power law dependences of τ and D on N as τ ∝ N xr and D ∝ N-xd, are estimated to be xr ≃ 3.5 and xd ≃ 2.4, respectively. For N = 192, 256, 384 and 512, Dτ/
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.
2015-01-01
Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066
Diffusion of neon in white dwarf stars.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2010-12-01
Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.
Physical properties and application in the confined geometrical systems
NASA Astrophysics Data System (ADS)
Pak, Hunkyun
Surface viscoelasticity of a vitamin E modified polyethylene glycol (vitamin E-TPGS) monolayers at the air/water interface is deduced by the surface light scattering method and Wilhelmy plate method. It was found that the viscoelasticity of vitamin E-TPGS monolayer is similar to that of PEO monolayer at the surface pressure lower than the collapse pressure of the polyethylene oxide (PEO). However, at higher surface pressure than the collapse pressure of PEO, it deviates from the viscoelastic behavior of PEO. Lateral diffusion constants of a probe lipid (NBD-PC) in a binary monolayer of L-a-dilauroylphosphatidylcholine (DLPC) and poly-(di-isobutylene-alt-maleic acid) (PDIBMA) were determined by the fluorescence recovery after photobleaching (FRAP) method at the air/pH 7 buffer interface as a function of composition. The diffusion constant is found to retard down to less than one hundredth to that at pure DLPC monolayers as the mole fraction of PDIBMA increased. The free area model was used to interpret the probe diffusion retardation. Translational diffusion constants of a probe molecule, 4-octadecylamino-7-nitrobenzo-2-oxa-1,3-diazole (C18-NBD), in thin polyisoprene (PI) and polydimethyl siloxane (PDMS) films, spin coated on methylated and propylyaminated silicon wafers, are studied by the FRAP method as a function of film thickness. Reduction of the diffusion constant is observed as thickness of the films is decreased. Two empirical models, the two-layer model and the continuous layer model are proposed to account for the diffusion constant dependence on the film thickness vs. thickness. It was observed that the diffusion profiles in the films are dependet on the nature of the substrate surfaces. Self-assembled patterns of magnetic particles were made and fixed by applying magnetic field on the particles dispersed at the air/liquid interface, followed by gelling of the liquid subphase. With this method, the large patterns with controllable lattice constant can be made. The fixation of the subphase enhances the stability of the patterns. Further, three-dimensional self-assembled patterns can be made by this method when the fixation process is incorporated.
Developing a polymeric sensor to monitor intracellular conditions
NASA Astrophysics Data System (ADS)
Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.
2004-07-01
Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.
NASA Astrophysics Data System (ADS)
Heinlein, S. N.
2013-12-01
Remote sensing data sets are widely used for evaluation of surface manifestations of active tectonics. This study utilizes ASTER GDEM and Landsat ETM+ data sets with Google Earth images draped over terrain models. This study evaluates 1) the surrounding surface geomorphology of the study area with these data sets and 2) the morphology of the Kumroch Fault using diffusion modeling to estimate constant diffusivity (κ) and estimate slip rates by means of real ground data measured across fault scarps by Kozhurin et al. (2006). Models of the evolution of fault scarp morphology provide time elapsed since slip initiated on a faults surface and may therefore provide more accurate estimates of slip rate than the rate calculated by dividing scarp offset by the age of the ruptured surface. Profile modeling of scarps collected by Kozhurin et al. (2006) formed by several events distributed through time and were evaluated using a constant slip rate (CSR) solution which yields a value A/κ (1/2 slip rate/diffusivity). Time elapsed since slip initiated on the fault is determined by establishing a value for κ and measuring total scarp offset. CSR nonlinear modeling estimated of κ range from 8m2/ka - 14m2/ka on the Kumroch Fault which indicates a slip rates of 0.6 mm/yr - 1.0 mm/yr since 3.4 ka -3.7 ka. This method provides a quick and inexpensive way to gather data for a regional tectonic study and establish estimated rates of tectonic activity. Analyses of the remote sensing data are providing new insight into the role of active tectonics within the region. Results from fault scarp diffusion models of Mattson and Bruhn (2001) and DuRoss and Bruhn (2004) and Kozhurin et al. (2006), Kozhurin (2007), Kozhurin et al. (2008) and Pinegina et al. 2012 trench profiles of the KF as calibrated age fault scarp diffusion rates were estimated. (-) mean that no data could be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundqvist, A.; Lindbergh, G.
1998-11-01
A potential-step method for determining the diffusion coefficient and phase-transfer parameter in metal hydrides by using microelectrodes was investigated. It was shown that a large potential step is not enough to ensure a completely diffusion-limited mass transfer if a surface-phase transfer reaction takes place at a finite rate. It was shown, using a kinetic expression for the surface phase-transfer reaction, that the slope of the logarithm of the current vs. time curve will be constant both in the case of the mass-transfer limited by diffusion or by diffusion and a surface-phase transfer. The diffusion coefficient and phase-transfer rate parameter weremore » accurately determined for MmNi{sub 3.6}Co{sub 0.8}Mn{sub 0.4}Al{sub 0.3} using a fit to the whole transient. The diffusion coefficient was found to be (1.3 {+-} 0.3) {times} 10{sup {minus}13} m{sup 2}/s. The fit was good and showed that a pure diffusion model was not enough to explain the observed transient. The diffusion coefficient and phase-transfer rate parameter were also estimated for pure LaNi{sub 5}. A fit of the whole curve showed that neither a pure diffusion model nor a model including phase transfer could explain the whole transient.« less
Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir
2017-01-01
In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566
A first-principles study of elastic and diffusion properties of magnesium based alloys
NASA Astrophysics Data System (ADS)
Ganeshan, Swetha
2011-12-01
In this thesis, the influence of alloying elements on the elastic and diffusion properties of Magnesium (Mg) has been studied based on first-principles density functional theory. The stress-strain method has been used to predict the elastic constants of the Mg based alloys studied herein. This method involves calculating the resultant change in stress due to application of strain. The validity of this method has been successfully tested for both 0K as well as at finite temperatures. The elastic constants predicted in this work have been correlated to ductility, fracture toughness, stiffness, elastic anisotropy and bond directionality, thus providing a better understanding of the influence of alloying elements on the mechanical and physical properties of Mg. Elastic constants, as a function of temperature have been predicted using first-principles quasi-static approximation. In this approach elastic stiffness coefficients calculated with respect to volume (cij( V)) have been correlated to the equilibrium volume as a function of temperature V(T) from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). To compare our calculated temperature dependent elastic constants with that of experiments an isentropic correction term has been introduced. It is seen that the influence of this isentropic correction term on the elastic constants becomes significant at high temperatures. The quasi-static approximation has been primarily applied to calculate temperature dependent elastic constants of Mg2Ge, Mg2Si, Mg 2Sn and Mg2Pb. In the case of dilute Mg alloys, a 36 atom supercell with 35 atoms of Mg and one atom of the alloying impurity has been used for calculating the corresponding elastic constants. It is seen that there is a direct correspondence between the trends in the elastic constants and the lattice parameters of all the Mg based alloys studied herein. Elements that cause a decrease (increase) in the lattice constants result in an increase (decrease) in the bulk modulus. Self-diffusion calculations of Mg have been performed within both LDA and GGA. It is seen that, in the absence of surface corrections, while results of the two approximations (i.e. LDA and GGA) bound experimental data, better agreement is seen with respect to results from LDA, in comparison with experimental measurements. The effect of thermal expansion on the diffusivity of Mg has been studied using both HA and QHA. It is seen that the influence of anharmonicity on the diffusivity of Mg is negligible. Self-diffusion of Mg is faster in the basal plane than between adjacent basal planes. Partial correlation factors corresponding to the diffusion of a Mg atom from one basal plane to the adjacent basal plane, i.e. fBx and fBz, decrease with temperature whereas the partial correlation factor corresponding to the diffusion of Mg atom within the basal plane, i.e. fAx , increases with temperature. The ratio of jump frequencies w⊥/w∥ for self-diffusion of Mg increase with increase in temperature. The method used to calculate self-diffusion coefficients has been extended to compute impurity diffusion coefficients of Al, Ca, Sn and Zn in Mg. For these calculations, a 36 atom supercell with 1 vacant site and 1 impurity has been used. The 8-frequencey model has been implemented to obtain the different atom jump frequencies in order to calculate impurity diffusion coefficients in Mg. The trend in the impurity diffusion coefficients, with the exception of DZn-Mg is as follows: D Mg-Ca>DMg>DMg-Sn> DMg-Al. For impurity diffusion of Zn in Mg, at high temperatures DMg-Zn overlaps with that of DMg-Al , while at low temperatures it overlaps with that of D Mg-Sn. The different atom jump frequencies computed during the diffusion calculations are seen to be temperature dependent, increasing with increase in temperature. The correlation factors for all the alloy systems considered herein, is close to 1. This is expected to be due to the close packing of Mg lattice. (Abstract shortened by UMI.)
Reaction diffusion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems
NASA Technical Reports Server (NTRS)
Levine, S. R.
1977-01-01
The effects of MCrAl coating-substrate interdiffusion on oxidation life and the general mutliphase, multicomponent diffusion problem were examined. Semi-infinite diffusion couples that had sources representing coatings and sinks representing gas turbine alloys were annealed at 1,000, 1,095, 1,150, or 1,205 C for as long as 500 hours. The source and sink aluminum and chromium contents and the base metal (cobalt or nickel) determined the parabolic diffusion rate constants of the couples and predicted finite coating lives. The beta source strength concept provided a method (1) for correlating beta recession rate constants with composition; (2) for determining reliable average total, diffusion, and constitutional activation energies; and (3) for calculating interdiffusion coefficients.
D'Angelo, E; Starnes, D
2016-12-01
Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9 cm 2 s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Dynamical Evolution of a Tubular Leonid Persistent Train
NASA Astrophysics Data System (ADS)
Jenniskens, Peter; Nugent, David; Plane, John M. C.
The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 ms^-1, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high altitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O (^1S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O_3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O_3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot casily be resolved.
The Dynamical Evolution of A Tubular Leonid Persistent Train
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Nugent, David; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 m/s, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high attitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O ((sup 1)S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot easily be resolved.
Hayamizu, Kikuko; Seki, Shiro; Haishi, Tomoyuki
2018-06-21
The migration behaviours of Li+ in three garnet- and one NASICON-type solid oxide electrolytes were studied on the micrometre scale by pulsed-gradient spin-echo (PGSE) 7Li NMR diffusion spectroscopy to clarify common and specific characteristics of each electrolyte. In these solid electrolytes, clear evidences of grain boundary effects in the diffusion of Li+ were not observed. The Li+ diffusion constants were dependent on parameters such as observation time (Δ) and pulsed field gradient (PFG) strength (g) for all the studied inorganic solid electrolytes. For low Δ values, Li+ ions underwent collisions and diffractions with diffraction distance Rdiffraction [μm]. The apparent Li+ diffusion constants (Dapparent [m2 s-1]) exhibited distributions in a wide range. In this paper, we introduced the apparent diffusion radius, rradius [μm], and compared it with Rdiffraction and mean square displacement (MSD) [μm]; the lengths of these distances were of the micrometre order (10-6 m). The relations between the values of rradius, Rdiffraction and MSD suggested that the migration behaviours of Li+ on the micrometre scale were complicated. Using high Δ and high g values, we obtained an equilibrated value of DLi. The temperature dependences of the number of carrier ions were estimated from the DLi values and ionic conductivities in the four solid oxide electrolytes. For simple comparison and reference, the data of DLi and ionic conductivity of LiPF6 in 1 M solution of propylene carbonate were added.
Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee
2017-06-01
High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Roeser, H. P.; Bohr, A.; Haslam, D. T.; López, J. S.; Stepper, M.; Nikoghosyan, A. S.
2012-07-01
Optimum doping of high-temperature superconductors (HTSC) defines a superconducting unit volume for each HTSC. For a single-mode HTSC, e.g., a cuprate with one CuO2 plane, the volume is given by Vsc=cx2, where c is the unit cell height and x the doping distance. The experimental resistivity at Tc is connected to the structure by ρ(exp)≈c×h/(2e2). Combining this result with the classical definition of resistivity leads to an equation similar to Einstein's diffusion law x2/(2τ)=h/(2Meff)=D, where τ is the relaxation time, Meff=2me and D the diffusion constant. It has also been shown that the mean free path d=x. The Einstein-Smoluchowski diffusion relation D=μkBTc provides a connection to Tc.
Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.
1999-01-01
Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.
Coronal propagation of flare associated electrons and protons
NASA Technical Reports Server (NTRS)
Schellert, G.; Wibberenz, G.; Kunow, H.
1985-01-01
A statistical study of characteristic times and intensities of 36 solar particle events observed between 1977 and 1979 by the Kiel Cosmic Ray Experiment on board HELIOS-1 and -2 has been carried out. For approx. 0.5 MeV electrons we order the times of maximum and the absolute intensities with respect to angular distance from the parent flare. Discussion of coronal parameters in terms of Reid's model leads to typical time constants for coronal diffusion and escape.
Sperlich, Alexander; Werner, Arne; Genz, Arne; Amy, Gary; Worch, Eckhard; Jekel, Martin
2005-03-01
Breakthrough curves (BTC) for the adsorption of arsenate and salicylic acid onto granulated ferric hydroxide (GFH) in fixed-bed adsorbers were experimentally determined and modeled using the homogeneous surface diffusion model (HSDM). The input parameters for the HSDM, the Freundlich isotherm constants and mass transfer coefficients for film and surface diffusion, were experimentally determined. The BTC for salicylic acid revealed a shape typical for trace organic compound adsorption onto activated carbon, and model results agreed well with the experimental curves. Unlike salicylic acid, arsenate BTCs showed a non-ideal shape with a leveling off at c/c0 approximately 0.6. Model results based on the experimentally derived parameters over-predicted the point of arsenic breakthrough for all simulated curves, lab-scale or full-scale, and were unable to catch the shape of the curve. The use of a much lower surface diffusion coefficient D(S) for modeling led to an improved fit of the later stages of the BTC shape, pointing on a time-dependent D(S). The mechanism for this time dependence is still unknown. Surface precipitation was discussed as one possible removal mechanism for arsenate besides pure adsorption interfering the determination of Freundlich constants and D(S). Rapid small-scale column tests (RSSCT) proved to be a powerful experimental alternative to the modeling procedure for arsenic.
NASA Astrophysics Data System (ADS)
Bauer, Daniel R.; Stevens, Benjamin; Taft, Jefferson; Chafin, David; Petre, Vinnie; Theiss, Abbey P.; Otter, Michael
2014-03-01
Recently, it has been demonstrated that the preservation of cancer biomarkers, such as phosphorylated protein epitopes, in formalin-fixed paraffin-embedded tissue is highly dependent on the localized concentration of the crosslinking agent. This study details a real-time diffusion monitoring system based on the acoustic time-of-flight (TOF) between pairs of 4 MHz focused transducers. Diffusion affects TOF because of the distinct acoustic velocities of formalin and interstitial fluid. Tissue is placed between the transducers and vertically translated to obtain TOF values at multiple locations with a spatial resolution of approximately 1 mm. Imaging is repeated for several hours until osmotic equilibrium is reached. A post-processing technique, analogous to digital acoustic interferometry, enables detection of subnanosecond TOF differences. Reference subtraction is used to compensate for environmental effects. Diffusion measurements with TOF monitoring ex vivo human tonsil tissue are well-correlated with a single exponential curve (R2>0.98) with a magnitude of up to 50 ns, depending on the tissue size (2-6 mm). The average exponential decay constant of 2 and 6 mm diameter samples are 20 and 315 minutes, respectively, although times varied significantly throughout the tissue (σmax=174 min). This technique can precisely monitor diffusion progression and could be used to mitigate effects from tissue heterogeneity and intersample variability, enabling improved preservation of cancer biomarkers distinctly sensitive to degradation during preanalytical tissue processing.
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses.
Eplee, Robert E; Patt, Frederick S; Barnes, Robert A; McClain, Charles R
2007-02-10
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eplee, Robert E. Jr.; Patt, Frederick S.; Barnes, Robert A.
The NASA Ocean Biology Processing Group's Calibration and Validation(Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch,so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. Anmore » exponential function with a time constant of 200 days yields the best fit to the diffuser time series.The decrease in diffuser reflectance over the mission is wavelength dependent,ranging from 9% in the blue(412 nm) to 5% in the red and near infrared(670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].« less
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2007-02-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
Influence of post exposure bake time on EUV photoresist RLS trade-off
NASA Astrophysics Data System (ADS)
Vesters, Yannick; De Simone, Danilo; De Gendt, Stefan
2017-03-01
To achieve high volume manufacturing, EUV photoresists need to push back the "RLS trade-off" by simultaneously improving Resolution, Line-Width Roughness and Sensitivity (exposure dose). Acid diffusion in chemically amplified resist is known to impact these performances. This work studies the diffusion of acid in chemically amplified resist by varying the post exposure bake duration while monitoring the evolution of CD and LWR for 6 chemically amplified EUV photoresists (CAR). We observed a first regime where both CD and LWR quickly decrease during the first 30s of post exposure bake (PEB). This can be related to the deprotection reaction taking place in the exposed part of the resist. After 60s the decrease in CD and LWR slows down significantly, likely related to a regime of acid diffusion from exposed to unexposed region, and acid-quencher neutralization at the interface of these two regions. We tested two resists with different protecting group and the one having lower activation energy shows a faster CD change in the second regime, resulting in a worsening of LWR for longer PEB time. On the contrary, a resist with a high quencher loading shows reduced net diffusion of acid towards the unexposed region and controls the resist edge profile. In other words longer PEB does not degrade LWR, but as it reduces the line CD, sensitivity is impacted. With an appropriate ratio selection of quencher to PAG, an EUV dose reduction of up to 12% can be achieved with a change from a standard 60 second to a 240 second PEB time, while keeping LWR and resolution constant and therefore pushing the RLS performances. Finally, we confirmed that the observations on positive tone development (PTD) resist could be applied to negative tone development (NTD) resist: with a high quencher NTD resist we observed a dose reduction of 8% for longer PEB time, keeping LWR and resolution constant.
Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel
2013-01-01
Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli. PMID:23633942
Albert, J. B.; Barbeau, P. S.; Beck, D.; ...
2017-02-14
The EXO-200 Collaboration is searching for neutrinoless double β decay using a liquid xenon (LXe) time projection chamber. This measurement relies on modeling the transport of charge deposits produced by interactions in the LXe to allow discrimination between signal and background events. In this paper, we present measurements of the transverse diffusion constant and drift velocity of electrons at drift fields between 20 V/cm and 615 V/cm using EXO-200 data. Finally, at the operating field of 380 V/cm EXO-200 measures a drift velocity of 1.705 +0.014 –0.010 mm/μs and a transverse diffusion coefficient of 55 ± 4 cm 2/s.
The effect of shear flow on the rotational diffusivity of a single axisymmetric particle
NASA Astrophysics Data System (ADS)
Leahy, Brian; Koch, Donald; Cohen, Itai
2014-11-01
Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.
Numerical simulation of conservation laws
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; To, Wai-Ming
1992-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.
Simpson, Matthew J; Baker, Ruth E
2015-09-07
Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard non-growing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.
Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man's land
NASA Astrophysics Data System (ADS)
Ni, Yicun; Hestand, Nicholas J.; Skinner, J. L.
2018-05-01
According to the liquid-liquid critical point (LLCP) hypothesis, there are two distinct phases of supercooled liquid water, namely, high-density liquid and low-density liquid, separated by a coexistence line that terminates in an LLCP. If the LLCP is real, it is located within No Man's Land (NML), the region of the metastable phase diagram that is difficult to access using conventional experimental techniques due to rapid homogeneous nucleation to the crystal. However, a recent ingenious experiment has enabled measurement of the diffusion constant deep inside NML. In the current communication, these recent measurements are compared, with good agreement, to the diffusion constant of E3B3 water, a classical water model that explicitly includes three-body interactions. The behavior of the diffusion constant as the system crosses the Widom line (the extension of the liquid-liquid coexistence line into the one-phase region) is analyzed to derive information about the presence and location of the LLCP. Calculations over a wide range of temperatures and pressures show that the new experimental measurements are consistent with an LLCP having a critical pressure of over 0.6 kbar.
The closure problem for turbulence in meteorology and oceanography
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.
1985-01-01
The dependent variables used for computer based meteorological predictions and in plans for oceanographic predictions are wave number and frequency filtered values that retain only scales resolvable by the model. Scales unresolvable by the grid in use become 'turbulence'. Whether or not properly processed data are used for initial values is important, especially for sparce data. Fickian diffusion with a constant eddy diffusion is used as a closure for many of the present models. A physically realistic closure based on more modern turbulence concepts, especially one with a reverse cascade at the right times and places, could help improve predictions.
NASA Astrophysics Data System (ADS)
Spielvogel, Juergen; Reuter, Susanne; Hibst, Raimund; Katzir, Abraham
1999-04-01
The objective of this study was to examine if the diffusion process of topically applied drugs can reliably be monitored using FEWS in respect to timely distribution of the drug and chemical alterations of the drug during the diffusion process. In order to do this, recently excised human and pig skin was cut into slices of different thickness while also taking into account the different layers skin is composed of (e.g. Dermis, Stratum Corneum). These layers were first characterized spectroscopically and optically using a microscope before the drug itself was applied topically. The diffusion process was monitored by placing the sample on an ATR (attenuated total reflection) element. Time series from 1 - 4 hours were taken and the characteristic absorption bands of the drug were analyzed in the mid-infrared. By using a first order approach on Fick's diffusion equations (skin assumed to be homogeneous) we were able to fit these experimental values and to obtain diffusion constants, e.g. for water at 3376 cm-1 in the order of 10-5 cm2/s, which compare well with previously published values. The results indicate that this technique can be applied to the prediction of transdermal drug delivery.
Yogurtcu, Osman N.; Johnson, Margaret E.
2015-01-01
The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute to dense systems. PMID:26328828
Role of constant value of surface diffuseness in alpha decay half-lives of superheavy nuclei
NASA Astrophysics Data System (ADS)
Dehghani, V.; Alavi, S. A.; Benam, Kh.
2018-05-01
By using WKB method and considering deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential, the alpha decay half-lives of 68 superheavy alpha emitters have been calculated. The effect of the constant value of surface diffuseness parameter in the range of 0.1 ≤ a ≤ 0.9 (fm) on the potential barrier, tunneling probability, assault frequency, and alpha decay half-lives has been investigated. Significant differences were observed for alpha decay half-lives and decay quantities in this range of surface diffuseness. Good agreement between calculated half-lives with fitted surface diffuseness parameter a = 0.54 (fm) and experiment was observed.
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azhar, Mueed; Greiner, Andreas; Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de
We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. Aftermore » a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.« less
Diapycnal Transport and Pattern Formation in Double-Diffusive Convection
2015-12-01
of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual turbulent/double-diffusive systems and...is presented to remedy this dearth of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual...8 2. Double-Diffusion: The Constant Flux Ratio Model ..........................9 3. The Combined Effects of
NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake.
Baille, Wilms E; Malveau, Cédric; Zhu, Xiao Xia; Marchessault, Robert H
2002-01-01
Pharmaceutical tablets made of modified high-amylose starch have a hydrophilic polymer matrix into which water can penetrate with time to form a hydrogel. Nuclear magnetic resonance imaging was used to study the water penetration and the swelling of the matrix of these tablets. The tablets immersed in water were imaged at different time intervals on a 300 MHz NMR spectrometer. Radial images show clearly the swelling of the tablets and the water concentration profile. The rate constants for water diffusion and the tablet swelling were extracted from the experimental data. The water diffusion process was found to follow case II kinetics at 25 degrees C. NMR imaging also provided spin density profiles of the water penetrating inside the tablets.
Surface diffusion of Sb on Ge(111) investigated by second harmonic microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, K.A.
Surface diffusion of Sb on Ge(111) has been measured with the newly-developed technique of second harmonic microscopy. In this method, concentration profiles at submonolayer coverage are imaged directly by second harmonic generation with 5 [mu]m spatial resolution. A Boltzmann-Matano analysis of the concentration profiles yields the coverage dependence of the diffusivity D without parameterization. Experiments were performed at roughly 70% of the bulk melting temperature T[sub m]. In the coverage range of 0 < [theta] < 0.6, the activation energy E[sub diff] remains constant at 47.5 [+-] 1.5 kcal/mol. The corresponding pre-exponential factor decreases from 8.7 [times] 10[sup 3[+-]0.4] tomore » 1.6 [times] 10[sup 2[+-]0.4] cm[sup 2]/sec. The results are explained in terms of a new vacancy model for surface diffusion at high-temperatures. The model accounts semiquantitatively for the large values of E[sub diff] and D[sub o], and suggest that these quantities may be manipulated by bulk doping levels and photon illumination of the surface.« less
Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H
2015-10-06
The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.
Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...
Modeling the reversible, diffusive sink effect in response to transient contaminant sources.
Zhao, D; Little, J C; Hodgson, A T
2002-09-01
A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gasphase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilot, P.; Bonnefoy, F.; Marcuccilli, F.
1993-10-01
Kinetic data concerning carbon black oxidation in the temperature range between 600 and 900 C have been obtained using thermogravimetric analysis. Modeling of diffusion in a boundary layer above the pan and inside the porous medium coupled to oxygen reaction with carbon black is necessary to obtain kinetic constants as a function of temperature. These calculations require the knowledge of the oxidation rate at a given constant temperature as a function of the initial mass loading m[sub o]. This oxidation rate, expressed in milligrams of soot consumed per second and per milligram of initial soot loading, decreases when m[sub o]more » increases, in agreement with a reaction in an intermediary regime where the kinetics and the oxygen diffusion operate. The equivalent diffusivity of oxygen inside the porous medium is evaluated assuming two degrees of porosity: between soot aggregates and inside each aggregate. Below 700 C an activation energy of about 103 kJ/mol can be related to a combustion reaction probably kinetically controlled. Beyond 700 C the activation energy of about 20 kJ/ mol corresponds to a reaction essentially controlled by oxygen diffusion leading to a constant density oxidation with oxygen consumption at or near the particle surface. To validate these data, they are used in the modeling of a Diesel particulate trap regeneration. In this particular case, the oxidizing flux is forced across the carbon black deposit, oxygen diffusion being insignificant. A good agreement between experimental results and model predictions is obtained, proving the rate constants validity.« less
Kinetic model for the short-term dissolution of a rhyolitic glass
White, A.F.; Claassen, H.C.
1980-01-01
Aqueous dissolution experiments with the vitric phase of a rhyolitic tuff were performed at 25??C and constant pH in the range 4.5-7.5. Results suggest interchange of aqueous hydrogen ions for cations situated both on the surface and within the glass. At time intervals from 24 to 900 hr., dissolution kinetics are controlled by ion transport to and from sites within the glass. Experimental data indicate that parabolic diffusion rate of a chemical species from the solid is a nonlinear function of its aqueous concentration. A numerical solution to Fick's second law is presented for diffusion of sodium, which relates it's aqueous concentration to it's concentration on glass surface, by a Freundlich adsorption isotherm. The pH influence on sodium diffusion in the model can be accounted for by use of a pH-dependent diffusion coefficient and a pH-independent adsorption isotherm. ?? 1980.
Diffusivity anomaly in modified Stillinger-Weber liquids
NASA Astrophysics Data System (ADS)
Sengupta, Shiladitya; Vasisht, Vishwas V.; Sastry, Srikanth
2014-01-01
By modifying the tetrahedrality (the strength of the three body interactions) in the well-known Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a function of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pressure at constant temperature. We explore to what extent the structural and thermodynamic changes accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas reference value), and the pair correlation entropy, which provides an approximation to the excess entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liquids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below, with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess entropy and the pair correlation entropy at constant temperature go through maxima as a function of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic, and dynamical anomalies in the modified Stillinger-Weber liquids.
Self-similar space-time evolution of an initial density discontinuity
NASA Astrophysics Data System (ADS)
Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.
2013-07-01
The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.
Kile, D.E.; Eberl, D.D.
2003-01-01
Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.
Pandey, Sachin; Rajaram, Harihar
2016-12-05
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Sachin; Rajaram, Harihar
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
On two diffusion neuronal models with multiplicative noise: The mean first-passage time properties
NASA Astrophysics Data System (ADS)
D'Onofrio, G.; Lansky, P.; Pirozzi, E.
2018-04-01
Two diffusion processes with multiplicative noise, able to model the changes in the neuronal membrane depolarization between two consecutive spikes of a single neuron, are considered and compared. The processes have the same deterministic part but different stochastic components. The differences in the state-dependent variabilities, their asymptotic distributions, and the properties of the first-passage time across a constant threshold are investigated. Closed form expressions for the mean of the first-passage time of both processes are derived and applied to determine the role played by the parameters involved in the model. It is shown that for some values of the input parameters, the higher variability, given by the second moment, does not imply shorter mean first-passage time. The reason for that can be found in the complete shape of the stationary distribution of the two processes. Applications outside neuroscience are also mentioned.
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics
Veshtort, Mikhail; Griffin, Robert G.
2011-01-01
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method are in excellent agreement with the spin diffusion constants obtained through equations given by the relaxation theory of PDSD. The constants resulting from these two approaches were also in excellent agreement with the results of 2D rotary resonance recoupling proton-driven spin diffusion (R3-PDSD) experiments performed in three model compounds, where magnetization exchange occurred over distances up to 4.9 Å. With the methodology presented, highly accurate internuclear distances can be extracted from such data. Relayed transfer of magnetization between distant nuclei appears to be the main (and apparently resolvable) source of uncertainty in such measurements. The non-Markovian kinetic equation was applied to the analysis of the R2 spin dynamics. The conventional semi-phenomenological treatment of relxation in R2 has been shown to be equivalent to the assumption of the Lorentzian spectral density function in the relaxatoin theory of PDSD. As this assumption is a poor approximation in real physical systems, the conventional R2 treatment is likely to carry a significant model error that has not been recognized previously. The relaxation theory of PDSD appears to provide an accurate, parameter-free alternative. Predictions of this theory agreed well with the full quantum mechanical simulations of the R2 dynamics in the few simple model systems we considered. PMID:21992326
Shih, H C; Tsai, S W; Kuo, C H
2012-01-01
A solid-phase microextraction (SPME) device was used as a diffusive sampler for airborne propylene glycol ethers (PGEs), including propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), and dipropylene glycol monomethyl ether (DPGME). Carboxen-polydimethylsiloxane (CAR/PDMS) SPME fiber was selected for this study. A polytetrafluoroethylene (PTFE) tubing was used as the holder, and the SPME fiber assembly was inserted into the tubing as a diffusive sampler. The diffusion path length and area of the sampler were 0.3 cm and 0.00086 cm(2), respectively. The theoretical sampling constants at 30°C and 1 atm for PGME, PGMEA, and DPGME were 1.50 × 10(-2), 1.23 × 10(-2) and 1.14 × 10(-2) cm(3) min(-1), respectively. For evaluations, known concentrations of PGEs around the threshold limit values/time-weighted average with specific relative humidities (10% and 80%) were generated both by the air bag method and the dynamic generation system, while 15, 30, 60, 120, and 240 min were selected as the time periods for vapor exposures. Comparisons of the SPME diffusive sampling method to Occupational Safety and Health Administration (OSHA) organic Method 99 were performed side-by-side in an exposure chamber at 30°C for PGME. A gas chromatography/flame ionization detector (GC/FID) was used for sample analysis. The experimental sampling constants of the sampler at 30°C were (6.93 ± 0.12) × 10(-1), (4.72 ± 0.03) × 10(-1), and (3.29 ± 0.20) × 10(-1) cm(3) min(-1) for PGME, PGMEA, and DPGME, respectively. The adsorption of chemicals on the stainless steel needle of the SPME fiber was suspected to be one of the reasons why significant differences between theoretical and experimental sampling rates were observed. Correlations between the results for PGME from both SPME device and OSHA organic Method 99 were linear (r = 0.9984) and consistent (slope = 0.97 ± 0.03). Face velocity (0-0.18 m/s) also proved to have no effects on the sampler. However, the effects of temperature and humidity have been observed. Therefore, adjustments of experimental sampling constants at different environmental conditions will be necessary.
NASA Astrophysics Data System (ADS)
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-05-01
In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.
A New View of the Bacterial Cytosol Environment
Cossins, Benjamin P.; Jacobson, Matthew P.; Guallar, Victor
2011-01-01
The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg2+ ions were prominent in NIMS and almost absent free in solution. Κ+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution. PMID:21695225
Transient diffraction grating measurements of molecular diffusion in the undergraduate laboratory
NASA Astrophysics Data System (ADS)
Spiegel, Daniel R.; Tuli, Santona
2011-07-01
Diffusion is a central process in many biological, chemical, and physical systems. We describe an experiment that employs the interference of laser beams to allow the measurement of molecular diffusion on submillimeter length scales. The interference fringes of two intersecting pump beams within a dye solution create a sinusoidal distribution of long-lived molecular excited states. A third probe beam is incident at a wavelength at which the indices of refraction of the ground and excited states are different, so the probe beam diffracts from the spatially periodic excited-state pattern. After the pump beams are switched off, the excited-state periodicity washes out as the system diffuses back to equilibrium. The molecular diffusion constant is obtained from the rate constant of the exponential decay of the diffracted beam. It is also possible to measure the excited-state lifetime.
NASA Technical Reports Server (NTRS)
Snow, W. L.
1974-01-01
The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.
NASA Astrophysics Data System (ADS)
Phillips, Philip W.; Setty, Chandan; Zhang, Shuyi
2018-05-01
Motivated by recent bounds for charge diffusion in critical matter, we investigate the following question: What sets the scale for the velocity for diffusing degrees of freedom in a scale-invariant system? To make our statements precise, we analyze the diffusion pole in an exactly solvable model for a Mott transition in the presence of a long-range interaction term. To achieve scale invariance, we limit our discussion to the flat-band regime. We find in this limit that the diffusion pole, which would normally obtain at finite energy, is pushed to zero energy, resulting in a vanishing of the diffusion constant. This occurs even in the presence of interactions in certain limits, indicating the robustness of this result to the inclusion of a scale in the problem. Consequently, scale invariance precludes any reasonable definition of the diffusion constant. Nonetheless, we do find that a scale can be defined, albeit irrelevant to diffusion, which is the product of the squared band velocity and the density of states.
Fuel cell membranes and crossover prevention
Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL
2009-08-04
A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.
NASA Astrophysics Data System (ADS)
Todoran, R.; Todoran, D.; Anitas, E. M.; Szakács, Zs
2016-08-01
We propose reflectance measurements as a method for the evaluation of the kinetics of adsorption processes, to compute the diffusion times of the adsorption products at the thin layers formed at the sphalerite natural mineral-potassium ethyl xanthate solution interface. The method is based on the intensity measurement of the reflected monochromatic radiation obtained from the mineral-xanthate thin layer as a function of time. These determinations were made at the thin layer formed between the sphalerite or activated sphalerite natural minerals with potassium ethyl xanthate, for different solutions concentrations and pH values at constant temperature. Diffusion times of desorbed molecular species into the liquid bring important information about the global kinetics of the ions in this phase during adsorption processes at interfaces. Analysing the time dependence of this parameter one concluded on the diffusion properties of the xanthate molecule in the solution depending on its concentration and pH, knowing that at the initial time these molecules had a uniform spread. This method enabled us to determine that, in time interval of approximately 35 minutes to achieve dynamic equilibrium in the formation of the interface layer, one had three different kinetic behaviours of our systems. In the first 5-8 min one had highly adsorbent character, the state of equilibrium is followed by low adsorbent properties. Gaining information on the adsorption kinetics in the case of xanthate on mineral surface leads to the optimization of the industrial froth flotation process.
Radio emission of sea surface at centimeter wavelengths and is fluctuations
NASA Technical Reports Server (NTRS)
Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.
1981-01-01
The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.
Effect of surface curvature on diffusion-limited reactions on a curved surface
NASA Astrophysics Data System (ADS)
Eun, Changsun
2017-11-01
To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.
Probing fast heating in magnetic tunnel junction structures with exchange bias
NASA Astrophysics Data System (ADS)
Papusoi, C.; Sousa, R.; Herault, J.; Prejbeanu, I. L.; Dieny, B.
2008-10-01
Heat diffusion in a magnetic tunnel junction (MTJ) having a ferromagnetic/antiferromagnetic free layer is investigated. The MTJ is heated by an electric current pulse of power PHP, flowing through the junction in current perpendicular to the plane (CPP) geometry, via Joule heat dissipation in the tunnel barrier. According to a proposed one-dimensional (1D) model of heat diffusion, when an electric voltage is applied to the MTJ, the free layer experiences a transient temperature regime, characterized by an exponential increase of its temperature TAF with a time constant τTR, followed by a steady temperature regime characterized by TAF=TRT+αPHP, where TRT is the room temperature and α is a constant. Magnetic transport measurements of exchange bias HEX acting on the free layer allow the determination of α and τTR. The experimental values of α and τTR are in agreement with those calculated using the 1D model and an estimation of the MTJ thermodynamic parameters based on the Dulong-Petit and Widemann-Franz laws.
Persistence of aldicarb residues in the sandstone aquifer of Prince Edward Island, Canada
NASA Astrophysics Data System (ADS)
Jackson, R. E.; Mutch, J. P.; Priddle, M. W.
1990-07-01
Aldicarb residues were found in theshallow groundwaters of the fractured, aquifer of Prince Edward Island, Canada more than two years after the last application of this pesticide. Furthermore, the concentrations of aldicarb measured were relatively constant with time. The chemical and hydrogeological mechanisms by which such persistence occurs are discussed. It is deduced that the detoxifying abiotic transformation (hydrolysis) of aldicarb is inhibited by the low pH and temperature of the soil and groundwater, the former being partly due to the pH-buffering effects of ammonium fertilizer oxidation. Aldicarb residues remain constant and relatively high because of their storage within the sandstone matrix subsequent diffusion back into the fractures of this dual porosity system. Attempts to stimulate the observed persistence of aldicarb in this hydrogeologic environment using a one-dimensional, solute transport simulation code were unsuccessful, probably because of the three-dimensional nature of the matrix diffusion process. The simulations suggested that the overall half-life for aldicarb in the till-sandstone system approaches 150 days.
NASA Technical Reports Server (NTRS)
Baird, James K.
1987-01-01
For the purpose of determining diffusion coefficients as required for electrodeposition studies and other applications, a diaphragm cell and an isothermal water bath were constructed. the calibration of the system is discussed. On the basis of three calibration runs on the diaphram cell, researchers concluded that the cell constant beta equals 0.12 cm -2 . Other calibration runs in progress should permit the cell constant to be determined with an accuracy of one percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prates, P. B.; Maliska, A. M.; Ferreira, A. S.
A thermodynamic analysis of the Cr-Ge system suggested that it was possible to produce a nanostructured Cr{sub 3}Ge phase by mechanical alloying. The same analysis showed that, due to low activation energies, Cr-poor crystalline and/or amorphous alloy could also be formed. In fact, when the experiment was performed, Cr{sub 11}Ge{sub 19} and amorphous phases were present for small milling times. For milling times larger than 15 h these additional phases decomposed and only the nanostructured Cr{sub 3}Ge phase remained up to the highest milling time used (32 h). From the differential scanning calorimetry measurements, the Avrami exponent n was obtained, indicating thatmore » the nucleation and growth of the nanostructured Cr{sub 3}Ge phase may be restricted to one or two dimensions, where the Cr and Ge atoms diffuse along the surface and grain boundaries. In addition, contributions from three-dimensional diffusion with a constant nucleation rate may be present. The thermal diffusivity of the nanostructured Cr{sub 3}Ge phase was determined by photoacoustic absorption spectroscopy measurements.« less
Fermi-Compton scattering due to magnetopause surface fluctuations in Jupiter's magnetospheric cavity
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1981-01-01
The effects of boundary surface fluctuations on a spectrum of electromagnetic radiation trapped in a high Q (quality) cavity are considered. Undulating walls introduce small frequency shifts at reflection to the radiation, and it is argued that the process is entirely analogous to both Fermi (particle) acceleration and inverse Compton scattering. A Fokker-Planck formalism is pursued; it yields a diffusion equation in frequency for which the Green's function and steady-state solutions are found. Applying this analysis to the Jovian continuum radiation discovered by Voyager spacecraft, it is suggested that characteristic diffusion times are greater than 1 year, and that in order to account for the steep frequency spectra observed, an unidentified loss mechanism must operate in the cavity with a decay time constant approximately equal to the characteristic diffusion time divided by 28. A radiator-reactor model of the cavity is investigated to provide an estimate for the intrinsic luminosity of the low frequency (approximately 100 Hz) continuum source whose power is approximately 7 x 10 to the 6th W.
Mass Transport of Macromolecules within an In Vitro Model of Supragingival Plaque
Thurnheer, Thomas; Gmür, Rudolf; Shapiro, Stuart; Guggenheim, Bernhard
2003-01-01
The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions. PMID:12620862
Monte Carlo Simulations of the Photospheric Emission in Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Bégué, D.; Siutsou, I. A.; Vereshchagin, G. V.
2013-04-01
We studied the decoupling of photons from ultra-relativistic spherically symmetric outflows expanding with constant velocity by means of Monte Carlo simulations. For outflows with finite widths we confirm the existence of two regimes: photon-thick and photon-thin, introduced recently by Ruffini et al. (RSV). The probability density function of the last scattering of photons is shown to be very different in these two cases. We also obtained spectra as well as light curves. In the photon-thick case, the time-integrated spectrum is much broader than the Planck function and its shape is well described by the fuzzy photosphere approximation introduced by RSV. In the photon-thin case, we confirm the crucial role of photon diffusion, hence the probability density of decoupling has a maximum near the diffusion radius well below the photosphere. The time-integrated spectrum of the photon-thin case has a Band shape that is produced when the outflow is optically thick and its peak is formed at the diffusion radius.
MONTE CARLO SIMULATIONS OF THE PHOTOSPHERIC EMISSION IN GAMMA-RAY BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begue, D.; Siutsou, I. A.; Vereshchagin, G. V.
2013-04-20
We studied the decoupling of photons from ultra-relativistic spherically symmetric outflows expanding with constant velocity by means of Monte Carlo simulations. For outflows with finite widths we confirm the existence of two regimes: photon-thick and photon-thin, introduced recently by Ruffini et al. (RSV). The probability density function of the last scattering of photons is shown to be very different in these two cases. We also obtained spectra as well as light curves. In the photon-thick case, the time-integrated spectrum is much broader than the Planck function and its shape is well described by the fuzzy photosphere approximation introduced by RSV.more » In the photon-thin case, we confirm the crucial role of photon diffusion, hence the probability density of decoupling has a maximum near the diffusion radius well below the photosphere. The time-integrated spectrum of the photon-thin case has a Band shape that is produced when the outflow is optically thick and its peak is formed at the diffusion radius.« less
Interactions and diffusion in fine-stranded β-lactoglobulin gels determined via FRAP and binding.
Schuster, Erich; Hermansson, Anne-Marie; Ohgren, Camilla; Rudemo, Mats; Lorén, Niklas
2014-01-07
The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian
2008-12-01
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.
NASA Astrophysics Data System (ADS)
Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian
2008-12-01
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.
NASA Astrophysics Data System (ADS)
Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio
2018-03-01
Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.
Bounded diffusion impedance characterization of battery electrodes using fractional modeling
NASA Astrophysics Data System (ADS)
Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît
2017-06-01
This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.
Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.
Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn
2016-04-01
In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.
Duc, M; Adekola, F; Lefèvre, G; Fédoroff, M
2006-11-01
The effect of acid-base titration protocol and speed on pH measurement and surface charge calculation was studied on suspensions of gamma-alumina, hematite, goethite, and silica, whose size and porosity have been well characterized. The titration protocol has an important effect on surface charge calculation as well as on acid-base constants obtained by fitting of the titration curves. Variations of pH versus time after addition of acid or base to the suspension were interpreted as diffusion processes. Resulting apparent diffusion coefficients depend on the nature of the oxide and on its porosity.
Posterior quantum dynamics for a continuous diffusion observation of a coherent channel
NASA Astrophysics Data System (ADS)
Dąbrowska, Anita; Staszewski, Przemysław
2012-11-01
We present the Belavkin filtering equation for the intense balanced heterodyne detection in a unitary model of an indirect observation. The measuring apparatus modelled by a Bose field is initially prepared in a coherent state and the observed process is a diffusion one. We prove that this filtering equation is relaxing: any initial square-integrable function tends asymptotically to a coherent state with an amplitude depending on the coupling constant and the initial state of the apparatus. The time-development of a squeezed coherent state is studied and compared with the previous results obtained for the measuring apparatus prepared initially in the vacuum state.
Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I
2014-04-01
We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.
Self-assembly of actin monomers into long filaments: Brownian dynamics simulations
NASA Astrophysics Data System (ADS)
Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard
2009-07-01
Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the free monomers and the relatively slow attachment and detachment processes at the two ends of the filaments, we introduce a novel rescaling procedure by which we speed all dynamical processes related to actin polymerization and depolymerization up by the same factor. In general, the actin protomers within a filament can attain three different states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP/P), and ADP molecule. The simplest situation that has been studied experimentally is provided by the polymerization of ADP-actin, for which all protomers are identical. This case is used to unravel certain relations between the filament's physical properties and the model parameters such as the attachment rate constant and the size of the capture zone, the detachment rate and the probability of the detached event, as well as the growth rate and waiting times between two successive attachment/detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. The results also show that the waiting time is governed by exponential distributions and that the two ends of a filament undergo biased random walks. The filament length fluctuations are described by a length diffusion constant that is found to attain a constant value at low ADP-actin concentration and to increase linearly with this concentration. It is straightforward to apply our simulation code to more complex processes such as polymerization of ATP-actin coupled to ATP hydrolysis, force generation by filaments, formation of filament bundles, and filament-membrane interactions.
A Unified Theory for the Great Plains Nocturnal Low-Level Jet
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Rahimi, S.
2014-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing predictions that peak jet strength increases with attenuation of the minimum surface buoyancy, and that the single most important parameter determining jet height is the nighttime diffusivity, with weaker nightime diffusion associated with smaller jet heights. These and other highlights will be discussed in the presentation.
Enhanced Diffusion of Chlorinated Organic Compounds into Aquitards due to Cracking
NASA Astrophysics Data System (ADS)
Ayral, D.; Otero, M.; Chung, S.; Goltz, M. N.; Huang, J.; Demond, A. H.
2012-12-01
Despite great efforts, remediation of sites contaminated with dense non-aqueous phase liquids (DNAPLs) is very challenging because, even at residual saturations, DNAPLs can act as a long-term source for a dissolved phase contaminant plume. Current models consider the possibility of diffusion and storage of these compounds in unfractured low permeability layers. However, there is a need to consider the impact of cracks, whether naturally occurring or induced by the interaction between low permeable layers and DNAPLs. To evaluate the impact on diffusive fluxes, diffusion coefficients were measured in low permeability materials representative of aquitards at steady-state using the time-lag method. The experimental setup comprised silty soil, packed into a retaining ring, sandwiched in between two reservoirs. The analytical solution for the time-lag method requires constant conditions in the upper and lower reservoirs. The lower reservoir contained pure trichloroethylene (TCE), while the upper reservoir was maintained at a concentration of zero by bubbling air through it, sweeping TCE into toluene trap. In order to predict the flux, the experimental effective diffusion coefficients were used to calculate the flux through uncracked matrix whereas bulk diffusion coefficient was used to calculate flux through the cracks. By using the experimentally-obtained diffusion coefficients and experimentally-measured crack intensity factors (the ratio of the area of cracks to the uncracked area), the total flux was estimated over extended time periods. These calculations, based on experimental data, were used to evaluate if diffusive-based fluxes in the presence of cracks were significantly greater than in the case of diffusion into an uncracked matrix. The enhanced diffusive fluxes were evaluated to determine whether there is the potential for significantly greater storage in the low permeable layers in the case of cracks, or whether the possibility of advective fluxes into the cracks needs to be considered as well.
A feasibility study for measuring stratospheric turbulence using metrac positioning system
NASA Technical Reports Server (NTRS)
Gage, K. S.; Jasperson, W. H.
1975-01-01
The feasibility of obtaining measurements of Lagrangian turbulence at stratospheric altitudes is demonstrated by using the METRAC System to track constant-level balloons. The basis for current estimates of diffusion coefficients are reviewed and it is pointed out that insufficient data is available upon which to base reliable estimates of vertical diffusion coefficients. It is concluded that diffusion coefficients could be directly obtained from Lagrangian turbulence measurements. The METRAC balloon tracking system is shown to possess the necessary precision in order to resolve the response of constant-level balloons to turbulence at stratospheric altitudes. A small sample of data recorded from a tropospheric tetroon flight tracked by the METRAC System is analyzed to obtain estimates of small-scale three-dimensional diffusion coefficients. It is recommended that this technique be employed to establish a climatology of diffusion coefficients and to ascertain the variation of these coefficients with altitude, season, and latitude.
NASA Astrophysics Data System (ADS)
de Farias Aires, Juarez Everton; da Silva, Wilton Pereira; de Almeida Farias Aires, Kalina Lígia Cavalcante; da Silva Júnior, Aluízio Freire; da Silva e Silva, Cleide Maria Diniz Pereira
2018-04-01
The main objective of this study is the presentation of a numerical model of liquid diffusion for the description of the convective drying of apple slices submitted to pretreatment of osmotic dehydration able of predicting the spatial distribution of effective mass diffusivity values in apple slabs. Two models that use numerical solutions of the two-dimensional diffusion equation in Cartesian coordinates with the boundary condition of third kind were proposed to describe drying. The first one does not consider the shrinkage of the product and assumes that the process parameters remain constant along the convective drying. The second one considers the shrinkage of the product and assumes that the effective mass diffusivity of water varies according to the local value of the water content in the apple samples. Process parameters were estimated from experimental data through an optimizer coupled to the numerical solutions. The osmotic pretreatment did not reduce the drying time in relation to the fresh fruits when the drying temperature was equal to 40 °C. The use of the temperature of 60 °C led to a reduction in the drying time. The model that considers the variations in the dimensions of the product and the variation in the effective mass diffusivity proved to be more adequate to describe the process.
Heat Diffusion in Gases, Including Effects of Chemical Reaction
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1960-01-01
The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.
NASA Astrophysics Data System (ADS)
Marin, Ana; Milanič, Matija; Verdel, Nina; Vidovič, Luka; Majaron, Boris
2018-02-01
Combination of diffuse reflectance spectroscopy (DRS) and pulsed photothermal radiometry (PPTR) was recently successfully used to study evolution of accidental traumatic bruises. Yet, accidental bruises introduce many unknowns into the evolution analysis and thus a more controllable and repeatable approach for bruising is desired. In this study, evolution of bruises induced by aluminum projectiles of known mass and velocity were studied by DRS and PPTR. Bruises were induced on volar forearm skin of two healthy volunteers. Inverse Monte Carlo including four-layer skin model, was used to analyze the DRS and PPTR data to determine skin chromophores, their concentrations and depths. For bruise analysis, a bruise model was constructed and evolved according to hemoglobin diffusion kinetics. Bruise analysis of PPTR signals yielded bruise evolution parameters, most importantly hemoglobin diffusion constant, hemoglobin decomposition time and blood pool depth. The study results show that chronological tracking of hemoglobin decomposition can be assessed by the combined DRS and PPTR technique on induced bruise. Parameters of individual bruises were compared and two trends in chronological behavior of hemoglobin decomposition time discerned. Changes in bruise diffuse reflectance spectra were noted. Induced bruise parameters, however, still showed some scatter and thus further research is needed to reduce bruise variability.
Diffusion in liquid Germanium using ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.
1996-03-01
We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.
Diffusive growth of a single droplet with three different boundary conditions
NASA Astrophysics Data System (ADS)
Tavassoli, Z.; Rodgers, G. J.
2000-02-01
We study a single, motionless three-dimensional droplet growing by adsorption of diffusing monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the droplet with different boundary conditions. Models with both an adsorption boundary condition and a radiation boundary condition, as well as a phenomenological model, are considered and solved in a quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a universal growth rate as $[t/\\ln(t)]^{1/3}$ is observed for the radius of the droplet for all models independent of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky \\cite{krapquasi} where a similarity variable approach was used to treat the growth of a droplet with an adsorption boundary condition based on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of 1/3 for all times.
Improved estimation of anomalous diffusion exponents in single-particle tracking experiments
NASA Astrophysics Data System (ADS)
Kepten, Eldad; Bronshtein, Irena; Garini, Yuval
2013-05-01
The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.
Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert
2016-10-04
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
Cyclically optimized electrochemical processes
NASA Astrophysics Data System (ADS)
Ruedisueli, Robert Louis
It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.
Danel, J-F; Kazandjian, L; Zérah, G
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.
NASA Astrophysics Data System (ADS)
Danel, J.-F.; Kazandjian, L.; Zérah, G.
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.
NASA Astrophysics Data System (ADS)
Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio
2014-02-01
Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.
NASA Astrophysics Data System (ADS)
Weinketz, Sieghard
1998-07-01
The reordering kinetics of a diffusion lattice-gas system of adsorbates with nearest- and next-nearest-neighbor interactions on a square lattice is studied within a dynamic Monte Carlo simulation, as it evolves towards the equilibrium from a given initial configuration, at a constant temperature. The diffusion kinetics proceeds through adsorbate hoppings to empty nearest-neighboring sites (Kawasaki dynamics). The Monte Carlo procedure allows a ``real'' time definition from the local transition rates, and the configurational entropy and internal energy can be obtained from the lattice configuration at any instant t by counting the local clusters and using the C2 approximation of the cluster variation method. These state functions are then used in their nonequilibrium form as a direct measure of reordering along the time. Different reordering processes are analyzed within this approach, presenting a rich variety of behaviors. It can also be shown that the time derivative of entropy (times temperature) is always equal to or lower than the time derivative of energy, and that the reordering path is always strongly dependent on the initial order, presenting in some cases an ``invariance'' of the entropy function to the magnitude of the interactions as far as the final order is unaltered.
Metamaterial devices for molding the flow of diffuse light (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wegener, Martin
2016-09-01
Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.
A case of Alzheimer's disease in magmatic crystals
NASA Astrophysics Data System (ADS)
Costa Rodriguez, F.; Bouvet de Maisonneuve, C.
2012-12-01
The reequilibration of chemical zoning in crystals from volcanic rocks is increasingly used to determine the duration of the processes involved in their origin, residence and transport. There now exist a good number of determinations of diffusion coefficients in olivine (Fe-Mg, Mn, Ca, Ni, Cr), plagioclase (CaAl-NaSi, Mg, Sr, Ba, REE), pyroxenes (Fe-Mg, Mn, Ca, REE) and quartz (Ti), but most studies have used a single element or component in a single mineral group. Although this is a good approach, it can only access a limited range of time scales, typically the short-term memory of the crystal. In other words, for process durations that are longer than the combination of the diffusivity and diffusion distance (and for a constant boundary), the long-term memory of the crystal might have been lost. This could explain why most time determinations of magmatic processes from volcanic rocks give times of about < 100 years, and why these are shorter than the thousands of years obtained from U-Th series disequilibrium isotopes. We have done a series of numerical calculations and natural observation to determine the time windows that can be accessed with different elements and minerals, and how they may affect the time scales and interpretations of processes that the crystals might be recording. We have looked at two end-members representative of mafic and silicic magmas by changing the temperature and mineral compositions. 3 dimensional calculations of diffusion reequilibration at the center of a 1 x 0.5 x 0.5 mm crystal and using a constant boundary as first case. We find that for mafic magma and olivine, 90 % of equilibration of Fe-Mg, Mn, and Ni occurs in a few decades, but gradients in Ca and Cr persist for a few thousand years. These results can for example explain the large ranges of Ca and Cr contents at a given Fe/Mg of olivine, and why apparently contradictory times can be obtained from elements with different diffusivities in the same crystal. At the same time these findings also highlight that there is a long-term memory of the crystal that is typically not accessed by current studies. However, unraveling this memory is more complex because it seems unrealistic to assume a constant composition at the boundary for hundreds or thousands of years, and because crystals can be growing and dissolving multiple times. Additional models considering growth and a variable boundary show that a significant part of the memory is lost by multiple changes in concentration being superimposed at the crystal rim. Here we also report a case where accessing the older history of the crystals might be possible by a combination of X-Ray element maps plus multiple element zoning traverses (Fe-Mg, Ca, Mn, Ni, Al, P, Cr) in olivine from Llaima volcano (Chile). Element distributions reveal that the crystals had an early history of fast growth. The delicate structures of P zoning have been used to recognize any crystal dissolution. Cr, Fe-Mg, Ni, Mn are zoned but the times obtained from Cr are 4 x longer than those of the other elements. Our interpretation is that the Cr zoning records the older memory of the crystal since eruption but that of Fe-Mg has lost part of the memory due to multiple changes at the rim or complete homogenization of the crystal. Thus using multiple elements and minerals allow accessing the long and short term memory of the crystals and associated magma.
Efficient estimation of diffusion during dendritic solidification
NASA Technical Reports Server (NTRS)
Yeum, K. S.; Poirier, D. R.; Laxmanan, V.
1989-01-01
A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos; Vlahos, L.; Polymilis, C.
1989-01-01
The relativistic motion of an ensemble of electrons in an intense monochromatic electromagnetic wave propagating obliquely in a uniform external magnetic field is studied. The problem is formulated from the viewpoint of Hamiltonian theory and the Fokker-Planck-Kolmogorov approach analyzed by Hizanidis (1989), leading to a one-dimensional diffusive acceleration along paths of constant zeroth-order generalized Hamiltonian. For values of the wave amplitude and the propagating angle inside the analytically predicted stochastic region, the numerical results suggest that the diffusion probes proceeds in stages. In the first stage, the electrons are accelerated to relatively high energies by sampling the first few overlapping resonances one by one. During that stage, the ensemble-average square deviation of the variable involved scales quadratically with time. During the second stage, they scale linearly with time. For much longer times, deviation from linear scaling slowly sets in.
Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Davidson, Scott; Mani, Ali
2017-11-01
Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.
NASA Astrophysics Data System (ADS)
Pilli, Siva P.
Moisture plays a significant role in influencing the mechanical behavior and long-term durability of composites. The objective of this dissertation was to understand the basic concepts of moisture transport in polymeric composites. Humidity test chambers were used in combination with D2O water to characterize the diffusion of D2O using Nuclear Reaction Analysis (NRA). Moisture content was measured as a function of through-thickness depth using NRA. In this study a novel method to measure the orthotropic diffusivities of polymer matrix composites has been demonstrated. This was achieved by soaking the samples in D2O vapor and subsequently characterizing the diffusion of D2O at all edges of the coupon using NRA. The diffusivity through the surface was 3½ times higher than the diffusivity through the edges. A direct comparison of experimental data with models using orthotropic diffusivities was in relatively good agreement. Surface moisture content was also measured as a function of time using NRA. It was shown that the surface concentration reaches an intermediate value of 79% Mm very rapidly and is followed by a slow linear increase to the saturation level (Mm). This research also interrogates the effect of pressure on diffusion. Test chambers were built to maintain a constant relative humidity of 80% at 60°C at three different pressures (0.101 MPa, 0.517 MPa and 1.034 MPa) including a liquid water immersion test chamber at 60°C. In this study it was observed that the time to saturation increased with increasing chamber pressure. This was primarily due to the increased maximum moisture content at higher pressures. Liquid immersion of the test samples provided the upper bound for maximum moisture content and a lower bound for time to saturation. The effects of material systems and layups on humidity measurements were also studied using two different polymer composite material systems, Cycom and Toray. Diffusivity results were identical for different layups whereas differences were observed for different material systems. Finally three-dimensional numeric models were developed, using ANSYS, to compare with the measured moisture content. Models incorporating the time-dependent and 3-D diffusion have shown an improved correlation with experiments.
Einstein's equations and a cosmology with finite matter
NASA Astrophysics Data System (ADS)
Clavelli, L.; Goldstein, Gary R.
2015-05-01
We discuss various space-time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.
Can Disorder Enhance Incoherent Exciton Diffusion?
Lee, Elizabeth M Y; Tisdale, William A; Willard, Adam P
2015-07-30
Recent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point. Specifically, we introduce a general model, based upon Förster theory, for incoherent exciton diffusion in a material composed of independent molecular subunits with static energetic disorder. Energetic disorder leads to heterogeneity in molecule-to-molecule transition rates, which we demonstrate has two important consequences related to exciton transport. First, the distribution of local site-specific hopping rates is broadened in a manner that results in a decrease in average exciton diffusivity relative to that in a perfectly ordered film. Second, since excitons prefer to make transitions that are downhill in energy, the steady state distribution of exciton energies is biased toward low-energy molecular subunits, those that exhibit reduced diffusivity relative to a perfectly ordered film. These effects combine to reduce the net diffusivity in a manner that is time dependent and grows more pronounced as disorder is increased. Notably, however, we demonstrate that the presence of energetic disorder can give rise to a population of molecular subunits with exciton transfer rates exceeding those of subunits in an energetically uniform material. Such enhancements may play an important role in processes that are sensitive to molecular-scale fluctuations in exciton density field.
Sell, Andrew; Fadaei, Hossein; Kim, Myeongsub; Sinton, David
2013-01-02
Predicting carbon dioxide (CO(2)) security and capacity in sequestration requires knowledge of CO(2) diffusion into reservoir fluids. In this paper we demonstrate a microfluidic based approach to measuring the mutual diffusion coefficient of carbon dioxide in water and brine. The approach enables formation of fresh CO(2)-liquid interfaces; the resulting diffusion is quantified by imaging fluorescence quenching of a pH-dependent dye, and subsequent analyses. This method was applied to study the effects of site-specific variables--CO(2) pressure and salinity levels--on the diffusion coefficient. In contrast to established, macro-scale pressure-volume-temperature cell methods that require large sample volumes and testing periods of hours/days, this approach requires only microliters of sample, provides results within minutes, and isolates diffusive mass transport from convective effects. The measured diffusion coefficient of CO(2) in water was constant (1.86 [± 0.26] × 10(-9) m(2)/s) over the range of pressures (5-50 bar) tested at 26 °C, in agreement with existing models. The effects of salinity were measured with solutions of 0-5 M NaCl, where the diffusion coefficient varied up to 3 times. These experimental data support existing theory and demonstrate the applicability of this method for reservoir-specific testing.
Welberry, T R; Goossens, D J; Edwards, A J; David, W I
2001-01-01
A recently developed method for fitting a Monte Carlo computer-simulation model to observed single-crystal diffuse X-ray scattering has been used to study the diffuse scattering in benzil, diphenylethanedione, C(6)H(5)-CO-CO-C(6)H(5). A model involving 13 parameters consisting of 11 intermolecular force constants, a single intramolecular torsional force constant and a local Debye-Waller factor was refined to give an agreement factor, R = [summation operator omega(Delta I)(2)/summation operator omega I(obs)(2)](1/2), of 14.5% for 101,324 data points. The model was purely thermal in nature. The analysis has shown that the diffuse lines, which feature so prominently in the observed diffraction patterns, are due to strong longitudinal displacement correlations. These are transmitted from molecule to molecule via a network of contacts involving hydrogen bonding of an O atom on one molecule and the para H atom of the phenyl ring of a neighbouring molecule. The analysis also allowed the determination of a torsional force constant for rotations about the single bonds in the molecule. This is the first diffuse scattering study in which measurement of such internal molecular torsion forces has been attempted.
Diffusion, subdiffusion, and localization of active colloids in random post lattices
NASA Astrophysics Data System (ADS)
Morin, Alexandre; Lopes Cardozo, David; Chikkadi, Vijayakumar; Bartolo, Denis
2017-10-01
Combining experiments and theory, we address the dynamics of self-propelled particles in crowded environments. We first demonstrate that motile colloids cruising at constant speed through random lattices undergo a smooth transition from diffusive to subdiffusive to localized dynamics upon increasing the obstacle density. We then elucidate the nature of these transitions by performing extensive simulations constructed from a detailed analysis of the colloid-obstacle interactions. We evidence that repulsion at a distance and hard-core interactions both contribute to slowing down the long-time diffusion of the colloids. In contrast, the localization transition stems solely from excluded-volume interactions and occurs at the void-percolation threshold. Within this critical scenario, equivalent to that of the random Lorentz gas, genuine asymptotic subdiffusion is found only at the critical density where the motile particles explore a fractal maze.
Random-walk diffusion and drying of porous materials
NASA Astrophysics Data System (ADS)
Mehrafarin, M.; Faghihi, M.
2001-12-01
Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2018-03-01
To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.
Temperature dependent relaxation of interface-states in graphene on SiO2
NASA Astrophysics Data System (ADS)
Singh, Anil Kumar; Gupta, Anjan Kumar
2018-04-01
We have studied the evolution of resistance relaxation with temperature in graphene field effect transistor on SiO2. At room temperature, piranha-cleaned-SiO2 devices show slow resistance relaxation while IPA-cleaned-SiO2 devices do not. With cooling the former devices show a decrease in magnitude and time constant of the slow relaxation and it becomes negligible at 250K. Relaxation study at elevated temperature of the IPA-cleaned devices show a gate voltage polarity dependent time constant with respect to the charge neutrality point but it remains almost independent of temperature. The magnitude of relaxation increases with temperature. Further, after annealing at elevated temperature, we found that the relaxation times become independent of gate voltage polarity and its magnitude becomes very small. These observations are discussed using increase in diffusion of interface-species with temperature.
On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces
NASA Astrophysics Data System (ADS)
Goldobin, D. S.
2017-12-01
We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.
Dynamic cross-correlations between entangled biofilaments as they diffuse
Tsang, Boyce; Dell, Zachary E.; Jiang, Lingxiang; Schweizer, Kenneth S.; Granick, Steve
2017-01-01
Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 104 times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales. PMID:28283664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roots, R; Okada, S
1975-11-01
We have used a mammalian tissue culture system to calculate the life times and diffusion distances in DNA scissions as well as cell killing for the three main products of water radiolysis: OH, H, and e$sup -$/sub aq/. Using various alcohols as radical scavengers, the average life time for OH in DNA single-strand breaks was calculated to be about 4 x 10$sup -9$ sec. Using the same data and published rate constants, the apparent life time of H atoms was calculated to vary from about 2 x 10$sup -7$ to 4 x 10$sup -6$ sec and, similarly, the calculated lifemore » time of the hydrated electron was found to vary more than was the case for OH. From these life times, the radical diffusion distances were estimated to be approximately 60 A for OH, which is reasonable, but the values for both H and e$sup -$/sub aq/ were unrealistically large, i.e., 880 to 4040 A for H and 9590 to 19,810 A for e$sup -$/sub aq/. In cell killing, the OH radical life time was estimated to be about 8.7 x 10$sup -9$ sec which gives an average diffusion distance for this radical of about 93 A. Our data support the idea that OH is the radical species primarily responsible for the indirect effect in radiation injury measured as DNA single-strand breaks or cell killing, and that H and e$sup -$/sub aq/ are not significantly involved. (auth)« less
Spike solutions in Gierer#x2013;Meinhardt model with a time dependent anomaly exponent
NASA Astrophysics Data System (ADS)
Nec, Yana
2018-01-01
Experimental evidence of complex dispersion regimes in natural systems, where the growth of the mean square displacement in time cannot be characterised by a single power, has been accruing for the past two decades. In such processes the exponent γ(t) in ⟨r2⟩ ∼ tγ(t) at times might be approximated by a piecewise constant function, or it can be a continuous function. Variable order differential equations are an emerging mathematical tool with a strong potential to model these systems. However, variable order differential equations are not tractable by the classic differential equations theory. This contribution illustrates how a classic method can be adapted to gain insight into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic reaction- diffusion system of a chemical origin. With a fixed order this system possesses a solution in the form of a constellation of arbitrarily situated localised pulses, when the components' diffusivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration and non-monotonic excursions before attainment of equilibrium. The method is general and allows for an approximate numerical solution with any reasonably behaved γ(t).
NASA Astrophysics Data System (ADS)
Whitelam, Stephen
Colloidal particles of two types, driven in opposite directions, can segregate into lanes. I will describe some results on this phenomenon obtained by simple physical arguments and computer simulations. Laning results from rectification of diffusion on the scale of a particle diameter: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with Peclet number, a prediction confirmed by our numerics. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely-driven colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Proposed uses of laser light scattering instruments for polymerization studies
NASA Technical Reports Server (NTRS)
Mathias, Lon J.; Hoyle, Charles E.; Mclaughlin, Kevin; Mcmanus, Samuel P.; Caruthers, James M.; Runge, Michael L.
1989-01-01
Microgravity offers a unique environment for studying polymer diffusion and polymer polymerization reactions. The absence of convection currents, which are the major mode of mixing at the molecular level on Earth, are eliminated or reduced in the microgravity environment. More importantly, the prediction of unique copolymer composition development in microgravity allows controlled formation of new compositions of matter. The absence of mixing at the molecular level should produce unique short block copolymers available for the first time for comonomer compositions which normally lead to random or long block copolymer under good mixing. The investigation of fundamental polymer diffusion and polymer polymerization processes in microgravity is proposed. This effort will involve fundamental studies of monomer and polymer diffusion; their effects on initiation, propagation, and especially termination kinetics rate constant; and the accurate evaluation of copolymerization reactivity ratios in microgravity. The experimental design is presented for these studies along with an evaluation technique for in situ monitoring of polymer diffusion and polymerization kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torquato, S.; Kim, I.C.; Cule, D.
1999-02-01
We generalize the Brownian motion simulation method of Kim and Torquato [J. Appl. Phys. {bold 68}, 3892 (1990)] to compute the effective conductivity, dielectric constant and diffusion coefficient of digitized composite media. This is accomplished by first generalizing the {ital first-passage-time equations} to treat first-passage regions of arbitrary shape. We then develop the appropriate first-passage-time equations for digitized media: first-passage squares in two dimensions and first-passage cubes in three dimensions. A severe test case to prove the accuracy of the method is the two-phase periodic checkerboard in which conduction, for sufficiently large phase contrasts, is dominated by corners that joinmore » two conducting-phase pixels. Conventional numerical techniques (such as finite differences or elements) do not accurately capture the local fields here for reasonable grid resolution and hence lead to inaccurate estimates of the effective conductivity. By contrast, we show that our algorithm yields accurate estimates of the effective conductivity of the periodic checkerboard for widely different phase conductivities. Finally, we illustrate our method by computing the effective conductivity of the random checkerboard for a wide range of volume fractions and several phase contrast ratios. These results always lie within rigorous four-point bounds on the effective conductivity. {copyright} {ital 1999 American Institute of Physics.}« less
Stock market context of the Lévy walks with varying velocity
NASA Astrophysics Data System (ADS)
Kutner, Ryszard
2002-11-01
We developed the most general Lévy walks with varying velocity, shorter called the Weierstrass walks (WW) model, by which one can describe both stationary and non-stationary stochastic time series. We considered a non-Brownian random walk where the walker moves, in general, with a velocity that assumes a different constant value between the successive turning points, i.e., the velocity is a piecewise constant function. This model is a kind of Lévy walks where we assume a hierarchical, self-similar in a stochastic sense, spatio-temporal representation of the main quantities such as waiting-time distribution and sojourn probability density (which are principal quantities in the continuous-time random walk formalism). The WW model makes possible to analyze both the structure of the Hurst exponent and the power-law behavior of kurtosis. This structure results from the hierarchical, spatio-temporal coupling between the walker displacement and the corresponding time of the walks. The analysis uses both the fractional diffusion and the super Burnett coefficients. We constructed the diffusion phase diagram which distinguishes regions occupied by classes of different universality. We study only such classes which are characteristic for stationary situations. We thus have a model ready for describing the data presented, e.g., in the form of moving averages; the operation is often used for stochastic time series, especially financial ones. The model was inspired by properties of financial time series and tested for empirical data extracted from the Warsaw stock exchange since it offers an opportunity to study in an unbiased way several features of stock exchange in its early stage.
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.
Caram, Justin R; Doria, Sandra; Eisele, Dörthe M; Freyria, Francesca S; Sinclair, Timothy S; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G
2016-11-09
We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm 2 /s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm 2 /s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.
Mohoric; Stepisnik
2000-11-01
This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant of fluid in the earth's magnetic field. To get an estimation of the effect, the Lorenz model of natural convection in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convection is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary condition. We point out that even a slight temperature gradient can cause significant misinterpretation of measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.
Energy transport velocity in bidispersed magnetic colloids.
Bhatt, Hem; Patel, Rajesh; Mehta, R V
2012-07-01
Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.
Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core
NASA Technical Reports Server (NTRS)
Ko, W. L.
1980-01-01
Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.
PSO-Assisted Development of New Transferable Coarse-Grained Water Models.
Bejagam, Karteek K; Singh, Samrendra; An, Yaxin; Berry, Carter; Deshmukh, Sanket A
2018-02-15
We have employed two-to-one mapping scheme to develop three coarse-grained (CG) water models, namely, 1-, 2-, and 3-site CG models. Here, for the first time, particle swarm optimization (PSO) and gradient descent methods were coupled to optimize the force-field parameters of the CG models to reproduce the density, self-diffusion coefficient, and dielectric constant of real water at 300 K. The CG MD simulations of these new models conducted with various timesteps, for different system sizes, and at a range of different temperatures are able to predict the density, self-diffusion coefficient, dielectric constant, surface tension, heat of vaporization, hydration free energy, and isothermal compressibility of real water with excellent accuracy. The 1-site model is ∼3 and ∼4.5 times computationally more efficient than 2- and 3-site models, respectively. To utilize the speed of 1-site model and electrostatic interactions offered by 2- and 3-site models, CG MD simulations of 1:1 combination of 1- and 2-/3-site models were performed at 300 K. These mixture simulations could also predict the properties of real water with good accuracy. Two new CG models of benzene, consisting of beads with and without partial charges, were developed. All three water models showed good capacity to solvate these benzene models.
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Agrawal, Sanjay; Sacksteder, Kurt; Baum, Howard R.
1994-01-01
This paper presents the experimental and theoretical results for expanding methane and ethylene diffusion flames in microgravity. A small porous sphere made from a low-density and low-heat-capacity insulating material was used to uniformly supply fuel at a constant rate to the expanding diffusion flame. A theoretical model which includes soot and gas radiation is formulated but only the problem pertaining to the transient expansion of the flame is solved by assuming constant pressure infinitely fast one-step ideal gas reaction and unity Lewis number. This is a first step toward quantifying the effect of soot and gas radiation on these flames. The theoretically calculated expansion rate is in good agreement with the experimental results. Both experimental and theoretical results show that as the flame radius increases, the flame expansion process becomes diffusion controlled and the flame radius grows as gamma t. Theoretical calculations also show that for a constant fuel mass injection rate a quasi-steady state is developed in the region surrounded by the flame and the mass flow rate at any location inside this region equals the mass injection rate.
Zessin, Patrick J M; Sporbert, Anje; Heilemann, Mike
2016-01-13
DNA replication is a fundamental cellular process that precedes cell division. Proliferating cell nuclear antigen (PCNA) is a central scaffold protein that orchestrates DNA replication by recruiting many factors essential for the replication machinery. We studied the mobility of PCNA in live mammalian cells using single-particle tracking in combination with photoactivated-localization microscopy (sptPALM) and found two populations. The first population which is only present in cells with active DNA replication, showed slow diffusion and was found to be located in replication foci. The second population showed fast diffusion, and represents the nucleoplasmic pool of unbound PCNA not involved in DNA replication. The ratio of these two populations remained constant throughout different stages of S-phase. A fraction of molecules in both populations showed spatially constrained mobility. We determined an exploration radius of ~100 nm for 13% of the slow-diffusing PCNA molecules, and of ~600 nm for 46% of the fast-diffusing PCNA molecules.
Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger
2016-09-22
The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.
Frequency-constant Q, unity and disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargreaves, N.D.
1995-12-31
In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Qmore » = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.« less
The Cost of Accumulating Evidence in Perceptual Decision Making
Drugowitsch, Jan; Moreno-Bote, Rubén; Churchland, Anne K.; Shadlen, Michael N.; Pouget, Alexandre
2012-01-01
Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables, due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic programming, we were able to estimate the cost of making additional observations per unit of time from two monkeys and six humans in a reaction time random dot motion discrimination task. Surprisingly, we find that, the cost is neither zero nor constant over time, but for the animals and humans features a brief period in which it is constant but increases thereafter. In addition, we show that our theory accurately matches the observed reaction time distributions for each stimulus condition, the time-dependent choice accuracy both conditional on stimulus strength and independent of it, and choice accuracy and mean reaction times as a function of stimulus strength. The theory also correctly predicts that urgency signals in the brain should be independent of the difficulty, or stimulus strength, at each trial. PMID:22423085
Heating rate effects in simulated liquid Al2O_3
NASA Astrophysics Data System (ADS)
van Hoang, Vo
2006-01-01
The heating rate effects in simulated liquid Al{2}O{3} have been investigated by Molecular Dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with Born-Mayer type pair potentials. The temperature of the system was increasing linearly in time from the zero temperature as T(t)=T0 +γ t, where γ is the heating rate. The heating rate dependence of density and enthalpy of the system was found. Calculations show that static properties of the system such as the coordination number distributions and bond-angle distributions slightly depend on γ . Structure of simulated amorphous Al{2}O{3} model with the real density at the ambient pressure is in good agreement with Lamparter's experimental data. The heating rate dependence of dynamics of the system has been studied through the diffusion constant, mean-squared atomic displacement and comparison of partial radial distribution functions (PRDFs) for 10% most mobile and immobile particles with the corresponding mean ones. Finally, the evolution of diffusion constant of Al and O particles and structure of the system upon heating for the smallest heating rate was studied and presented. And we find that the temperature dependence of self-diffusion constant in the high temperature region shows a crossover to one which can be described well by a power law, D∝ (T-Tc )^γ . The critical temperature Tc is about 3500 K and the exponent γ is close to 0.941 for Al and to 0.925 for O particles. The glass phase transition temperature Tg for the Al{2}O{3} system is at anywhere around 2000 K.
Lateral diffusion of rhodopsin in photoreceptor membrane: a reappraisal.
Govardovskii, Victor I; Korenyak, Darya A; Shukolyukov, Sergei A; Zueva, Lidia V
2009-08-28
In a series of works between 1972 and 1984, it was established that rhodopsin undergoes rotational and lateral Brownian motion in the plane of photoreceptor membrane. The concept of free movement of proteins of phototransduction cascade is an essential principle of the present scheme of vertebrate phototransduction. This has recently been challenged by findings that show that in certain conditions rhodopsin in the membrane may be dimeric and form extended areas of paracrystalline organization. Such organization seems incompatible with earlier data on free rhodopsin diffusion. Thus we decided to reinvestigate lateral diffusion of rhodopsin and products of its photolysis in photoreceptor membrane specifically looking for indications of possible oligomeric organization. Diffusion exchange by rhodopsin and its photoproducts between bleached and unbleached halves of rod outer segment was traced using high-speed dichroic microspectrophotometer. Measurements were conducted on amphibian (frog, toad, and salamander) and gecko rods. We found that the curves that are supposed to reflect the process of diffusion equilibration of rhodopsin in nonuniformly bleached outer segment largely show production of long-lived bleaching intermediate, metarhodopsin III (Meta III). After experimental elimination of Meta III contribution, we observed rhodopsin equilibration time constant was threefold to tenfold longer than estimated previously. However, after proper correction for the geometry of rod discs, it translates into generally accepted value of diffusion constant of approximately 5 x 10(-9) cm(2) s(-1). Yet, we found that there exists an immobile rhodopsin fraction whose size can vary from virtually zero to 100%, depending on poorly defined factors. Controls suggest that the formation of the immobile fraction is not due to fragmentation of rod outer segment discs but supposedly reflects oligomerization of rhodopsin. Implications of the new findings for the present model of phototransduction are discussed. We hypothesize that formation of paracrystalline areas, if controlled physiologically, could be an extra mechanism of cascade regulation.
NASA Astrophysics Data System (ADS)
Ganesan, Goutham; Cotter, Joshua; Reuland, Warren; Warren, Robert V.; Mirzaei Zarandi, Soroush M.; Cerussi, Albert E.; Tromberg, Bruce J.; Galassetti, Pietro
2013-03-01
The use of near-infrared time-resolved spectroscopy (TRS-20, Hamamatsu Corporation) in two resistance type exercise applications in human subjects is described. First, using isometric flexion of the biceps, we compared the magnitude and relevance of tissue hemoglobin concentration and oxygen saturation (stO2) changes when assuming constant scattering versus continuous measurement of reduced scattering coefficients at three wavelengths. It was found that the assumption of constant scattering resulted in significant errors in hemoglobin concentration assessment during sustained isometric contractions. Secondly, we tested the effect of blood flow restriction (BFR) on oxygenation in a muscle (vastus medialis oblique, VMO) and in the prefrontal cortex (PFC) of the brain. The BFR training technique resulted in considerably more fatigability in subjects, and correlated with reduced muscle stO2 between sets of exertion. Additionally, exercise with BFR resulted in greater PFC deoxygenation than a condition with equivalent work performance but no BFR. These experiments demonstrate novel applications for diffuse optical spectroscopy in strength testing and targeted muscle rehabilitation.
Molecular motion in cell membranes: Analytic study of fence-hindered random walks
NASA Astrophysics Data System (ADS)
Kenkre, V. M.; Giuggioli, L.; Kalay, Z.
2008-05-01
A theoretical calculation is presented to describe the confined motion of transmembrane molecules in cell membranes. The study is analytic, based on Master equations for the probability of the molecules moving as random walkers, and leads to explicit usable solutions including expressions for the molecular mean square displacement and effective diffusion constants. One outcome is a detailed understanding of the dependence of the time variation of the mean square displacement on the initial placement of the molecule within the confined region. How to use the calculations is illustrated by extracting (confinement) compartment sizes from experimentally reported published observations from single particle tracking experiments on the diffusion of gold-tagged G -protein coupled μ -opioid receptors in the normal rat kidney cell membrane, and by further comparing the analytical results to observations on the diffusion of phospholipids, also in normal rat kidney cells.
Small-Scale Features in Pulsating Aurora
NASA Technical Reports Server (NTRS)
Jones, Sarah; Jaynes, Allison N.; Knudsen, David J.; Trondsen, Trond; Lessard, Marc
2011-01-01
A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the offphase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.
Dynamics of a molecular glass former: Energy landscapes for diffusion in ortho-terphenyl
NASA Astrophysics Data System (ADS)
Niblett, S. P.; de Souza, V. K.; Stevenson, J. D.; Wales, D. J.
2016-07-01
Relaxation times and transport processes of many glass-forming supercooled liquids exhibit a super-Arrhenius temperature dependence. We examine this phenomenon by computer simulation of the Lewis-Wahnström model for ortho-terphenyl. We propose a microscopic definition for a single-molecule cage-breaking transition and show that, when correlation behaviour is taken into account, these rearrangements are sufficient to reproduce the correct translational diffusion constants over an intermediate temperature range in the supercooled regime. We show that super-Arrhenius behaviour can be attributed to increasing negative correlation in particle movement at lower temperatures and relate this to the cage-breaking description. Finally, we sample the potential energy landscape of the model and show that it displays hierarchical ordering. Substructures in the landscape, which may correspond to metabasins, have boundaries defined by cage-breaking transitions. The cage-breaking formulation provides a direct link between the potential energy landscape and macroscopic diffusion behaviour.
Reaction diffusion in the NiCrAl and CoCrAl systems
NASA Technical Reports Server (NTRS)
Levine, S. R.
1978-01-01
The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.
NASA Astrophysics Data System (ADS)
Henriksen, Dan; Tifrea, Ionel
2012-02-01
We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).
Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M
1997-01-01
The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232
Effect of diffuser vane shape on the performance of a centrifugal compressor stage
NASA Astrophysics Data System (ADS)
Reddy, T. Ch Siva; Ramana Murty, G. V.; Prasad, M. V. S. S. S. M.
2014-04-01
The present paper reports the results of experimental investigations on the effect of diffuser vane shape on the performance of a centrifugal compressor stage. These studies were conducted on the chosen stage having a backward curved impeller of 500 mm tip diameter and 24.5 mm width and its design flow coefficient is ϕd=0.0535. Three different low solidity diffuser vane shapes namely uncambered aerofoil, constant thickness flat plate and circular arc cambered constant thickness plate were chosen as the variants for diffuser vane shape and all the three shapes have the same thickness to chord ratio (t/c=0.1). Flow coefficient, polytropic efficiency, total head coefficient, power coefficient and static pressure recovery coefficient were chosen as the parameters for evaluating the effect of diffuser vane shape on the stage performance. The results show that there is reasonable improvement in stage efficiency and total head coefficient with the use of the chosen diffuser vane shapes as compared to conventional vaneless diffuser. It is also noticed that the aero foil shaped LSD has shown better performance when compared to flat plate and circular arc profiles. The aerofoil vane shape of the diffuser blade is seen to be tolerant over a considerable range of incidence.
Wu, Wen; Wu, Zhouhu; Song, Zhiwen
2017-07-01
Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.
Shizgal, Bernie D
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].
NASA Astrophysics Data System (ADS)
Shizgal, Bernie D.
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].
Dillon, C R; Borasi, G; Payne, A
2016-01-01
For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one. PMID:26741344
Ion Exchange Method - Diffusion Barrier Investigations
NASA Astrophysics Data System (ADS)
Pielak, G.; Szustakowski, M.; Kiezun, A.
1990-01-01
Ion exchange method is used to GRIN-rod lenses manufacturing. In this process the ion exchange occurs between bulk glass (rod) and a molten salt. It was find that diffusion barrier exists on a border of glass surface and molten salt. The investigations of this barrier show that it value varies with ion exchange time and process temperature. It was find that in the case when thalium glass rod was treated in KNO3, bath, the minimum of the potential after 24 h was in temperature of 407°C, after 48 h in 422°C, after 72 h in 438°C and so on. So there are the possibility to keep the minimum of diffusion barrier by changing the temperature of the process and then the effectiveness of ion exchange process is the most effective. The time needed to obtain suitable refractive index distribution in a process when temperature was linearly changed from 400°C to 460°C was shorter of about 30% compare with the process in which temperature was constant and equal 450°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, C. T.; Shaw, J. M.; Nembach, H. T.
2015-06-14
We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less
Ng, Yee-Hong; Bettens, Ryan P A
2016-03-03
Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.
Dynamical transition for a particle in a squared Gaussian potential
NASA Astrophysics Data System (ADS)
Touya, C.; Dean, D. S.
2007-02-01
We study the problem of a Brownian particle diffusing in finite dimensions in a potential given by ψ = phi2/2 where phi is Gaussian random field. Exact results for the diffusion constant in the high temperature phase are given in one and two dimensions and it is shown to vanish in a power-law fashion at the dynamical transition temperature. Our results are confronted with numerical simulations where the Gaussian field is constructed, in a standard way, as a sum over random Fourier modes. We show that when the number of Fourier modes is finite the low temperature diffusion constant becomes non-zero and has an Arrhenius form. Thus we have a simple model with a fully understood finite size scaling theory for the dynamical transition. In addition we analyse the nature of the anomalous diffusion in the low temperature regime and show that the anomalous exponent agrees with that predicted by a trap model.
NASA Astrophysics Data System (ADS)
Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.
2014-05-01
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded cellular environments.
Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales
NASA Technical Reports Server (NTRS)
Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.
2013-01-01
High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.
2011-12-01
We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.
Time dependence of 222Rn, 220Rn and their progenies' distributions in a diffusion chamber
NASA Astrophysics Data System (ADS)
Stevanovic, N.; Markovic, V. M.; Nikezic, D.
2017-11-01
Diffusion chamber with SSNTD (Solid State Nuclear Track Detector) placed inside is a passive detector for measuring the activity of 222Rn and 220Rn (radon and thoron) and their progenies. Calibration from detected alpha particle tracks to progeny activity is often acquired from theoretical models. One common assumption related to these models found in literature is that concentrations of 222Rn and 220Rn at the entrance of a chamber are constant during the exposure. In this paper, concentrations of 222Rn and 220Rn at the entrance of the chamber are taken to be variable with time, which is actually the case in reality. Therefore, spatial distributions of 222Rn and 220Rn and their progenies inside the diffusion chamber should be time dependent. Variation of 222Rn and 220Rn concentrations on the entrance of the chamber was modeled on the basis of true measurements. Diffusion equations in cylindrical coordinates were solved using FDM (Finite Difference Method) to obtain spatial distributions as functions of time. It was shown that concentrations of 222Rn, 220Rn and their progenies were not homogeneously distributed in the chamber. Due to variable 222Rn and 220Rn concentrations at the entrance of the chamber, steady state (the case when concentration of 222Rn, 220Rn and their progenies inside the chamber remains unchanged with time) could not be reached. Deposition of progenies on the chamber walls was considered and it was shown that distributions of deposited progenies were not uniform over walls' surface.
NASA Technical Reports Server (NTRS)
Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.
1986-01-01
The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.
Dynamical spike solutions in a nonlocal model of pattern formation
NASA Astrophysics Data System (ADS)
Marciniak-Czochra, Anna; Härting, Steffen; Karch, Grzegorz; Suzuki, Kanako
2018-05-01
Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a reaction-diffusion-ODE model, we show that in such cases the instability driven by nonlocal terms (a counterpart of DDI) may lead to formation of unbounded spike patterns.
A 3-Component System of Competition and Diffusion.
1983-08-01
assume * that the distribution of the populations are determined by competition of’ Lotka - Volterra - * Gause type and simple diffusion. Suppose ui(t,x...diffusive Lotka - Volterra system with three species can have a stable non-constant equilibrium solutions. J. Math. Biol., (in press). [7] Kishimoto, K., Mimura...M. and Yoshida, K., Stable spatlo-temporal oscillations of diffusive Lotka - Volterra systems with three or more species, to appear in J. Math. Biol
Keyes, Joseph T.; Simon, Bruce R.; Vande Geest, Jonathan P.
2013-01-01
Purpose Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. Methods We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Results Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. Conclusions This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease. PMID:23224981
NASA Astrophysics Data System (ADS)
DSouza, Alisha V.; Marra, Kayla; Gunn, Jason R.; Samkoe, Kimberley S.; Pogue, Brian W.
2016-10-01
Lymphatic uptake of interstitially administered agents occurs by passive convective-diffusive inflow driven by interstitial concentration and pressure, while the downstream lymphatic transport is facilitated by active propulsive contractions of lymphatic vessel walls. Near-infrared fluorescence imaging in mice was used to measure these central components of lymphatic transport for the first time, using two different-sized molecules-methylene blue (MB) and fluorescence-labeled antibody immunoglobulin G (IgG)-IRDye 680RD. This work confirms the hypothesis that lymphatic passive inflow and active propulsion rates can be separated based upon the relative differences in Stokes-Einstein diffusion coefficient. This coefficient specifically affects the passive-diffusive uptake when the interstitial volume and pressure are constant. Parameters such as mean time-to-peak signal, overall fluorescence signal intensities, and number of active peristaltic pulses, were estimated from temporal imaging data. While the mean time to attain peak signal representative of diffusion-dominated flow in the lymph vessels was 0.6±0.2 min for MB and 8±6 min for IgG, showing a size dependence, the active propulsion rates were 3.4±0.8 pulses/min and 3.3±0.5 pulses/min, respectively, appearing size independent. The propulsion rates for both dyes decreased with clearance from the interstitial injection-site, indicating intrinsic control of the smooth muscles in response to interstitial pressure. This approach to size-comparative agent flow imaging of lymphatic function can enable noninvasive characterization of diseases related to uptake and flow in lymph networks.
NASA Astrophysics Data System (ADS)
Olajuwon, B. I.; Oyelakin, I. S.
2012-12-01
The paper investigates convection heat and mass transfer in power law fluid flow with non relaxation time past a vertical porous plate in presence of a chemical reaction, heat generation, thermo diffu- sion and thermal diffusion. The non - linear partial differential equations governing the flow are transformed into ordinary differential equations using the usual similarity method. The resulting similarity equations are solved numerically using Runge-Kutta shooting method. The results are presented as velocity, temperature and concentration profiles for pseudo plastic fluids and for different values of parameters governing the prob- lem. The skin friction, heat transfer and mass transfer rates are presented numerically in tabular form. The results show that these parameters have significant effects on the flow, heat transfer and mass transfer.
An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows
NASA Technical Reports Server (NTRS)
Felici, Helene M.; Drela, Mark
1993-01-01
A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.
Classification Order of Surface-Confined Intermixing at Epitaxial Interface
NASA Astrophysics Data System (ADS)
Michailov, M.
The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.
Monte Carlo Simulations of the Kinetics of Protein Adsorption
NASA Astrophysics Data System (ADS)
Zhdanov, V. P.; Kasemo, B.
The past decade has been characterized by rapid progress in Monte Carlo simulations of protein folding in a solution. This review summarizes the main results obtained in the field, as a background to the major topic, namely corresponding advances in simulations of protein adsorption kinetics at solid-liquid interfaces. The latter occur via diffusion in the liquid towards the interface followed by actual adsorption, and subsequent irreversible conformational changes, resulting in more or less pronounced denaturation of the native protein structure. The conventional kinetic models describing these steps are based on the assumption that the denaturation transitions obey the first-order law with a single value of the denaturation rate constant kr. The validity of this assumption has been studied in recent lattice Monte Carlo simulations of denaturation of model protein-like molecules with different types of the monomer-monomer interactions. The results obtained indicate that, due to trapping in metastable states, (i) the transition of a molecule to the denatured state is usually nonexponential in time, i.e. it does not obey the first-order law, and (ii) the denaturation transitions of an ensemble of different molecules are characterized by different time scales, i.e. the denaturation process cannot be described by a single rate constant kr. One should, rather, introduce a distribution of values of this rate constant (physically, different values of kr reflect the fact that the transitions to the altered state occurs via different metastable states). The phenomenological kinetics of irreversible adsorption of proteins with and without a distribution of the denaturation rate constant values have been calculated in the limits where protein diffusion in the solution is, respectively, rapid or slow. In both cases, the adsorption kinetics with a distribution of kr are found to be close to those with a single-valued rate constant kr, provided that the average value of kr in the former case is equal to kr in the latter case. This conclusion holds even for wide distributions of kr. The consequences of this finding for the fitting of global experimental kinetics on the basis of phenomenological equations are briefly discussed.
Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO.
Vester, Michael; Grueter, Andreas; Finkler, Björn; Becker, Robert; Jung, Gregor
2016-04-21
Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods.
Avalanches and diffusion in bubble rafts
NASA Astrophysics Data System (ADS)
Maloney, C. E.
2015-07-01
Energy dissipation distributions and particle displacement statistics are studied in the mean-field version of Durian's bubble model. A two-dimensional (2D) bi-disperse mixture is simulated at various strain rates, \\dotγ , and packing ratios, ϕ, above the rigidity onset at φ=φc . Well above φc , and at sufficiently low \\dotγ , the system responds in a highly bursty way, reminiscent of other dynamically critical systems with a power-law distribution of energy dissipation. As one increases \\dotγ at fixed ϕ or tunes φ→ φc at fixed \\dotγ , the bursty behavior vanishes. Displacement distributions are non-Fickian at short times but cross to a Fickian regime at a universal strain, Δγ* , independent of \\dotγ and ϕ. Despite the profound differences in short-time dynamics, at intermediate Δγ the systems exhibit qualitatively similar spatial patterns of deformation with lines of slip extending across large fractions of the simulation cell. These deformation patterns explain the observed diffusion constants and the universal crossover time to Fickian behavior.
Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels.
Hameed, B H; El-Khaiary, M I
2008-06-15
In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very well the pseudo-first-order kinetic model. Analysis of the temportal change of q indicates that at the beginning of the process the overall rate of adsorption is controlled by film-diffusion, then at later stage intraparticle-diffusion controls the rate. Diffusion coefficients and times of transition from film to pore-diffusion control were estimated by piecewise linear regression. The experimental data were analyzed by the Langmuir and Freundlich models. The sorption isotherm data fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 192.7 mg/g and the equilibrium adsorption constant Ka is 0.07145 l/mg at 30 degrees C. The results revealed that BBP was a promising sorbent for the removal of methylene blue from aqueous solutions.
NASA Astrophysics Data System (ADS)
Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.
2010-05-01
Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.
NASA Astrophysics Data System (ADS)
Poulsen, H. F.; Andersen, N. H.; Lebech, B.
1991-02-01
We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.
Optimization and universality of Brownian search in a basic model of quenched heterogeneous media
NASA Astrophysics Data System (ADS)
Godec, Aljaž; Metzler, Ralf
2015-05-01
The kinetics of a variety of transport-controlled processes can be reduced to the problem of determining the mean time needed to arrive at a given location for the first time, the so-called mean first-passage time (MFPT) problem. The occurrence of occasional large jumps or intermittent patterns combining various types of motion are known to outperform the standard random walk with respect to the MFPT, by reducing oversampling of space. Here we show that a regular but spatially heterogeneous random walk can significantly and universally enhance the search in any spatial dimension. In a generic minimal model we consider a spherically symmetric system comprising two concentric regions with piecewise constant diffusivity. The MFPT is analyzed under the constraint of conserved average dynamics, that is, the spatially averaged diffusivity is kept constant. Our analytical calculations and extensive numerical simulations demonstrate the existence of an optimal heterogeneity minimizing the MFPT to the target. We prove that the MFPT for a random walk is completely dominated by what we term direct trajectories towards the target and reveal a remarkable universality of the spatially heterogeneous search with respect to target size and system dimensionality. In contrast to intermittent strategies, which are most profitable in low spatial dimensions, the spatially inhomogeneous search performs best in higher dimensions. Discussing our results alongside recent experiments on single-particle tracking in living cells, we argue that the observed spatial heterogeneity may be beneficial for cellular signaling processes.
Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study
NASA Astrophysics Data System (ADS)
Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.
2018-05-01
The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.
Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.
Yoon, Seog Joon; Guo, Zhi; Dos Santos Claro, Paula C; Shevchenko, Elena V; Huang, Libai
2016-07-26
Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of ∼200 fs and a spatial precision of ∼50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids. An exciton diffusion length of ∼125 nm has been visualized in the 3 ns experimental time window and an exciton diffusion coefficient of (2.5 ± 0.2) × 10(-2) cm(2) s(-1) has been measured for superlattices constructed from 3.6 nm CdSe QDs with center-to-center distance of 6.7 nm. The measured exciton diffusion constant is in good agreement with Förster resonance energy transfer theory. We have found that exciton diffusion is greatly enhanced in the superlattices over the disordered films with an order of magnitude higher diffusion coefficient, pointing toward the role of disorder in limiting transport. This study provides important understandings on energy transport mechanisms in both the spatial and temporal domains in QD solids.
Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard
2017-06-13
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
NASA Astrophysics Data System (ADS)
Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko
2016-08-01
We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.
Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes
NASA Astrophysics Data System (ADS)
Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.
2018-03-01
A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro
2018-05-01
Extreme-ultraviolet (EUV) lithography will be applied to the high-volume production of semiconductor devices with 16 nm half-pitch resolution and is expected to be extended to that of devices with 11 nm half-pitch resolution. With the reduction in the feature sizes, the control of acid diffusion becomes a significant concern. In this study, the dependence of resist image quality on T PEB D acid and photodecomposable quencher concentration was investigated by the Monte Carlo method on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. Here, T PEB and D acid are the postexposure baking (PEB) time and the acid diffusion constant, respectively. The resist image quality of 11 nm line-and-space patterns is discussed in terms of line edge roughness (LER) and stochastic defect generation. For the minimization of LER, it is necessary to design and control not only the photodecomposable quencher concentration but also T PEB D acid. In this case, D acid should be adjusted to be 0.3–1.5 nm2 s‑1 for a PEB time of 60 s with optimization of the balance among LER and stochastic pinching and bridging. Even if it is difficult to decrease D acid to the range of 0.3–1.5 nm2 s‑1, the image quality can still be controlled via only the photodecomposable quencher concentration, although LER and stochastic pinching and bridging are slightly increased. In this case, accurate control of the photodecomposable quencher concentration and the reduction in the initial standard deviation of the number of protected units are required.
Convective mass transfer around a dissolving bubble
NASA Astrophysics Data System (ADS)
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S.; Kim, Sungheon Gene
2016-01-01
Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and drug delivery pathways that are closely associated with treatment response, metastatic spread and prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, Pulsed and Oscillating gradient MRI for Assessment of Cell size and Extracellular space (POMACE), and demonstrate its feasibility in a mouse tumor model. In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine glioma model (n=8). Since the complete diffusion time-dependence is in general non-analytical, the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable spheres (radius Rcell, intracellular diffusivity Dics) surrounded by extracellular space (approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE parametric maps (ECS, Rcell, Dics, Decs) were compared with conventional diffusion weighted imaging metrics, electron microscopy (EM), alternative ECS determination based on effective medium theory (EMT), and optical microscopy performed on the same samples. It was shown that Decs can be approximated by its long-time tortuosity limit in the range [1/(88 Hz) - 31 ms]. ECS estimations (44±7% in vivo and 54±11% ex vivo) were in agreement with EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical microscopy. Cell sizes (Rcell=4.8±1.3 in vivo and 4.3±1.4 μm ex vivo) were consistent with EM measurements (4.7±1.8 μm). In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors using the proposed POMACE method. Our experimental results support that POMACE provides a way to interpret the frequency- or time-dependence of the diffusion coefficient in tumors in terms of objective biophysical parameters of neuronal tissue, which can be used for non-invasive monitoring of preclinical cancer studies and treatment efficacy. PMID:27448059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paduano, L.; Sartorio, R.; Vitagliano, V.
Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.
Notes on hyperscaling violating Lifshitz and shear diffusion
NASA Astrophysics Data System (ADS)
Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.
2017-07-01
We explore in greater detail our investigations of shear diffusion in hyperscaling violating Lifshitz theories in Phys. Lett. B 760, 86 (2016), 10.1016/j.physletb.2016.06.046. This adapts and generalizes the membrane-paradigm-like analysis of Kovtun, Son, and Starinets for shear gravitational perturbations in the near horizon region given certain self-consistent approximations, leading to the shear diffusion constant on an appropriately defined stretched horizon. In theories containing a gauge field, some of the metric perturbations mix with some of the gauge field perturbations and the above analysis is somewhat more complicated. We find a similar near-horizon analysis can be obtained in terms of new field variables involving a linear combination of the metric and the gauge field perturbation resulting in a corresponding diffusion equation. Thereby as before, for theories with Lifshitz and hyperscaling violating exponents z , θ satisfying z <4 -θ in four bulk dimensions, our analysis here results in a similar expression for the shear diffusion constant with power-law scaling with temperature suggesting universal behavior in relation to the viscosity bound. For z =4 -θ , we find logarithmic behavior.
Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release
Pimenta, Andreia F. R.; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde
2016-01-01
The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses. PMID:27936138
Binary Mixtures of Particles with Different Diffusivities Demix.
Weber, Simon N; Weber, Christoph A; Frey, Erwin
2016-02-05
The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Mandal, A.; Mukherjee, S.
2003-01-01
Fluorescence quenching of some important aromatic bio-molecules (ABM) such as 3-aminophthalhydrazide (luminol), tryptophan (Try), phenylalanine and tyrosine (Tyr) by methyl glyoxal (MG) has been studied employing different spectroscopic techniques. The interaction of MG with ABM in the excited state has been analysed using Stern-Volmer (S-V) mechanism. In the case of MG-luminol system time correlated single photon counting (TCSPC) technique has also been applied to explain the S-V mechanism. The bimolecular rate constants obtained are found to be higher than the rate constant for diffusion controlled process. A plausible explanation of the quenching mechanism has been discussed on the basis of hydrogen bonding, charge transfer and energy transfer interaction between the colliding species.
NASA Astrophysics Data System (ADS)
Solomon, J. S.
1981-05-01
The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.
Lee, Jungpyo; Bonoli, Paul; Wright, John
2011-01-01
The quasilinear diffusion coefficient assuming a constant magnetic field along the electron orbit is widely used to describe electron Landau damping of waves in a tokamak where the magnitude of the magnetic field varies on a flux surface. To understand the impact of violating the constant magnetic field assumption, we introduce the effect of a broad-bandwidth wave spectrum which has been used in the past to validate quasilinear theory for the fast decorrelation process between resonances. By the reevaluation of the diffusion coefficient through the level of the phase integral for the tokamak geometry with the broad-band wave effect included,more » we identify the three acceptable errors for the use of the quasilinear diffusion coefficient.« less
Optimal estimates of the diffusion coefficient of a single Brownian trajectory.
Boyer, Denis; Dean, David S; Mejía-Monasterio, Carlos; Oshanin, Gleb
2012-03-01
Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry, and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single-particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way to extract diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least-squares estimate. Furthermore, we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hong-Ming; Ho, Hao-I; Tsai, Shi-Jane
2016-03-21
We report on the Ge auto-doping and out-diffusion in InGaP epilayer with Cu-Pt ordering grown on 4-in. Ge substrate. Ge profiles determined from secondary ion mass spectrometry indicate that the Ge out-diffusion depth is within 100 nm. However, the edge of the wafer suffers from stronger Ge gas-phase auto-doping than the center, leading to ordering deterioration in the InGaP epilayer. In the edge, we observed a residual Cu-Pt ordering layer left beneath the surface, suggesting that the ordering deterioration takes place after the deposition rather than during the deposition and In/Ga inter-diffusion enhanced by Ge vapor-phase auto-doping is responsible for themore » deterioration. We thus propose a di-vacancy diffusion model, in which the amphoteric Ge increases the di-vacancy density, resulting in a Ge density dependent diffusion. In the model, the In/Ga inter-diffusion and Ge out-diffusion are realized by the random hopping of In/Ga host atoms and Ge atoms to di-vacancies, respectively. Simulation based on this model well fits the Ge out-diffusion profiles, suggesting its validity. By comparing the Ge diffusion coefficient obtained from the fitting and the characteristic time constant of ordering deterioration estimated from the residual ordering layer, we found that the hopping rates of Ge and the host atoms are in the same order of magnitude, indicating that di-vacancies are bound in the vicinity of Ge atoms.« less
On the meaning of the diffusion layer thickness for slow electrode reactions.
Molina, A; González, J; Laborda, E; Compton, R G
2013-02-21
A key concept underpinning electrochemical science is that of the diffusion layer - the zone of depletion around an electrode accompanying electrolysis. The size of this zone can be found either from the simulated or measured concentration profiles (yielding the 'true' diffusion layer thickness) or, in the case of the Nernst ('linear') diffusion layer by extrapolating the concentration gradient at the electrode surface to the distance at which the concentration takes its bulk value. The latter concept is very well developed in the case of fast (so-called reversible) electrode processes, however the study of the linear diffusion layer has received scant attention in the case of slow charge transfer processes, despite its study being of great interest in the analysis of the influence of different experimental variables which determine the electrochemical response. Analytical explicit solutions for the concentration profiles, surface concentrations and real and linear diffusion layers corresponding to the application of a potential step to a slow charge transfer process are presented. From these expressions the dependence of the diffusion layer thickness on the potential, pulse time, heterogeneous rate constant and ratio of bulk concentrations of electroactive species and of diffusion coefficients is quantified. A profound influence of the reversibility degree of the charge transfer on the diffusion layer thickness is clear, showing that for non-reversible processes the real and linear diffusion layers reveal a minimum thickness which coincides with the equilibrium potential of the redox couple in the former case and with the reversible half-wave potential in the latter one.
Diffusion mechanism of non-interacting Brownian particles through a deformed substrate
NASA Astrophysics Data System (ADS)
Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen
2018-02-01
We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.
NASA Astrophysics Data System (ADS)
Kopytko, M.; Kębłowski, A.; Madejczyk, P.; Martyniuk, P.; Piotrowski, J.; Gawron, W.; Grodecki, K.; Jóźwikowski, K.; Rutkowski, J.
2017-10-01
Fast response is an important property of infrared detectors for many applications. Currently, high-temperature long-wavelength infrared HgCdTe heterostructure photodiodes exhibit subnanosecond time constants while operating under reverse bias. However, nonequilibrium devices exhibit excessive low-frequency 1/ f noise that extends up to MHz range, representing a severe obstacle to their widespread application. Present efforts are focused on zero-bias operation of photodiodes. Unfortunately, the time constant of unbiased photodiodes is still at the level of several nanoseconds. We present herein a theoretical investigation of device design for improved response time and detectivity of long-wavelength infrared HgCdTe photodiodes operating at 230 K in zero-bias mode. The calculation results show that highly doped p-type HgCdTe is the absorber material of choice for fast photodiodes due to its high electron diffusion coefficient. The detectivity of such a device can also be optimized by using absorber doping of N A = 1 × 1017 cm-3. Reduction of the thickness is yet another approach to improve the device response. Time constant below 1 ns is achieved for an unbiased photodiode with absorber thickness below 4 μm. A tradeoff between the contradictory requirements of achieving high detectivity and fast response time is expected in an optically immersed photodiode with very small active area.
Surface diffusion of Sb on Ge(111) monitored quantitatively with optical second harmonic microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, K.A.; Seebauer, E.G.
Surface diffusion of Sb on Ge(111) has been measured with the newly developed technique of optical second harmonic microscopy. In this method, concentration profiles at submonolayer coverage are imaged directly by surface second harmonic generation with 5 {mu} spatial resolution. A Boltzmann--Matano analysis yields the coverage dependence of the diffusivity {ital D} without parametrization. Experiments were performed at roughly 70% of the bulk melting temperature {ital T}{sub {ital m}}. In the coverage range 0{le}{theta}{le}0.6, the activation energy {ital E}{sub diff} remains constant at 47.5{plus minus}1.5 kcal/mol, but the pre-exponential factor {ital D}{sub 0} decreases from 8.7{times}10{sup 3{plus minus}0.4} to 1.6{times}10{supmore » 2{plus minus}0.4} cm{sup 2}/s. Both {ital E}{sub diff} and {ital D}{sub 0} are quite large, which is consistent with high-temperature measurements in other systems. The inadequacies of current theories for high-temperature surface diffusion are outlined, and a new vacancy model is proposed for low-coverage diffusion. The model accounts semiquantitatively for the large values of {ital E}{sub diff} and {ital D}{sub 0}, and suggests that these quantities may be manipulated using doping levels and photon illumination. An islanding mechanism is proposed to explain the decrease in {ital D}{sub 0} with {theta}.« less
A molecular dynamics simulation study of chloroform
NASA Astrophysics Data System (ADS)
Tironi, Ilario G.; van Gunsteren, Wilfred F.
Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boffi, V.C.; Molinari, V.G.; Parks, D.E.
1962-05-01
Features of the pulsed neution source theory connected with the measurement of diffusion parameters are discussed. Various analytical procedures for determining the decay constant of the fully thermalized neutron flux are compared. The problem of the diffusion coefficient definition is also considered in some detail. (auth)
Diffusive sampling of methylene chloride with solid phase microextraction.
Chen, Cheng-Yao; Hsiech, Chunming; Lin, Jia-Ming
2006-12-29
This study examined the characteristics of a solid phase microextraction (SPME) assembly as a passive sampler to determine the short-term exposure level (STEL) of methylene chloride. Two types of SPME fibers and six sampling-related factors were chosen and nested in an L(18) Taguchi's orthogonal array. Samples were thermally desorpted and analyzed by gas chromatograph equipped with an electron capture detector (GC/ECD). The use of 85-mum Carboxen/polydimethylsiloxane (Car/PDMS) fibers resulted in greater adsorbed mass, which was highly correlated with the product of concentration and sampling time (r>0.99, p<0.0001), than 85-microm polyacrylate fibers. The sampling rate (SR) of the 85-microm Carboxen/polydimethylsiloxane fibers was not significantly affected by variations in relative humidity (0-80%) and coexistent toluene (none to 100 ppm). Variance of sampling rate was predominantly attributed to the diffusive path length (86.4%) and sampling time (5.7%). With diffusive paths of 3, 10 and 15 mm, the sampling rates of 85-microm Carboxen/polydimethylsiloxane fibers for methylene chloride were 1.4 x 10(-2), 7.7 x 10(-3) and 5.1 x1 0(-3)mL min(-1), respectively. The measured sampling rates were greater than the theoretical values, and decreased with increment of sampling time until they came to constant.
Managed care and the diffusion of endoscopy in fee-for-service Medicare.
Mobley, Lee Rivers; Subramanian, Sujha; Koschinsky, Julia; Frech, H E; Trantham, Laurel Clayton; Anselin, Luc
2011-12-01
To determine whether Medicare managed care penetration impacted the diffusion of endoscopy services (sigmoidoscopy, colonoscopy) among the fee-for-service (FFS) Medicare population during 2001-2006. We model utilization rates for colonoscopy or sigmoidoscopy as impacted by both market supply and demand factors. We use spatial regression to perform ecological analysis of county-area utilization rates over two time intervals (2001-2003, 2004-2006) following Medicare benefits expansion in 2001 to cover colonoscopy for persons of average risk. We examine each technology in separate cross-sectional regressions estimated over early and later periods to assess differential effects on diffusion over time. We discuss selection factors in managed care markets and how failure to control perfectly for market selection might impact our managed care spillover estimates. Areas with worse socioeconomic conditions have lower utilization rates, especially for colonoscopy. Holding constant statistically the socioeconomic factors, we find that managed care spillover effects onto FFS Medicare utilization rates are negative for colonoscopy and positive for sigmoidoscopy. The spatial lag estimates are conservative and interpreted as a lower bound on true effects. Our findings suggest that managed care presence fostered persistence of the older technology during a time when it was rapidly being replaced by the newer technology. © Health Research and Educational Trust.
Chevalier, Michael W.; El-Samad, Hana
2014-01-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130
NASA Astrophysics Data System (ADS)
Chevalier, Michael W.; El-Samad, Hana
2014-12-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.
Multilevel Preconditioners for Reaction-Diffusion Problems with Discontinuous Coefficients
Kolev, Tzanio V.; Xu, Jinchao; Zhu, Yunrong
2015-08-23
In this study, we extend some of the multilevel convergence results obtained by Xu and Zhu, to the case of second order linear reaction-diffusion equations. Specifically, we consider the multilevel preconditioners for solving the linear systems arising from the linear finite element approximation of the problem, where both diffusion and reaction coefficients are piecewise-constant functions. We discuss in detail the influence of both the discontinuous reaction and diffusion coefficients to the performance of the classical BPX and multigrid V-cycle preconditioner.
Diffusion of Chromium in Alpha Cobalt-Chromium Solid Solutions
NASA Technical Reports Server (NTRS)
Weeton, John W
1951-01-01
Diffusion of chromium in cobalt-chromium solid solutions was investigated in the range 0 to 40 atomic percent at temperatures of 1360 degrees, 1300 degrees, 1150 degrees, and 10000 degrees c. The diffusion coefficients were found to be relatively constant within the composition range covered by each specimen. The activation heat of diffusion was determined to be 63,000 calories per mole. This value agrees closely with the value of 63,400 calories per mole calculated by means of the Dushman-Langmuir equation.
NASA Astrophysics Data System (ADS)
Naik, Lohit; Deshapande, Narahari; Khazi, Imtiyaz Ahamed M.; Malimath, G. H.
2018-02-01
In the present work, we have carried out energy transfer studies using newly synthesised derivatives of thiophene substituted 1,3,4-oxadiazoles namely, 2-(-4-(thiophene-3-yl)phenyl)-5-(5-(thiophene-3-yl)thiophene-2-yl)-1,3,4-oxadiazole [TTO], 2-(-4-(benzo[b]thiophene-2-yl)phenyl)-5-(5-(benzo[b]thiophene-2-yl)-1,3,4-oxadiozole [TBO] and 2-(4-(4-(trifluoromethyl)phenyl)phenyl)-5-(5-(4-(trifluoromethyl)phenyl)thiophen-2-yl)-1,3,4-oxadiazole [TMO] as donors and laser dye coumarin-334 as acceptor in ethanol and dye-doped polymer (poly(methyl methacrylate) (PMMA)) media following steady-state and time-resolved fluorescence methods. Bimolecular quenching constant ( k q), translation diffusion rate parameter ( k d), diffusion length ( D l), critical transfer distance ( R 0), donor- acceptor distance ( r) and energy transfer efficiency ( E T) are calculated. It is observed that, critical transfer distance is more than the diffusion length for all the pairs. Further, bimolecular quenching constant is also more than the translation diffusion rate parameter. Hence, our experimental findings suggest that overall energy transfer is due to Förster resonance energy transfer (FRET) between donor and acceptor in both the media and for all the pairs. In addition, considerable increase in fluorescence intensity and energy transfer efficiency is observed in dye-doped polymer matrix systems as compared to liquid media. This suggests that, these donor-acceptor pairs doped in PMMA matrix may be used for applications such as energy transfer dye lasers (ETDL) to improve the efficiency and photostability, to enhance tunability and for plastic scintillation detectors.
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.
Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi
2007-03-22
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.
NASA Astrophysics Data System (ADS)
Fennel, Franziska; Lochbrunner, Stefan
2015-10-01
Exciton annihilation dynamics in a disordered organic model system is investigated by ultrafast absorption spectroscopy. We show that the temporal evolution of the exciton density can be quantitatively understood by applying Förster energy transfer theory to describe the diffusion of the excitons as well as the annihilation step itself. To this end, previous formulations of Förster theory are extended to account for the inhomogeneous distribution of the S0-S1 transition energies resulting in an effective exciton diffusion constant. Two annihilation pathways are considered, the direct transfer of an exciton between two excited molecules and diffusive motion by multiple transfer steps towards a second exciton preceding the annihilation event. One pathway can be emphasized with respect to the other by tuning the exciton diffusion constant via the chromophore concentration. The investigated system allows one to extract all relevant parameters for the description and provides in this way a proof that the annihilation dynamics can be entirely understood and modeled by Förster energy transfer.
Method and apparatus for determining minority carrier diffusion length in semiconductors
Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.
1983-07-12
Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.
van Beek, J H; Westerhof, N
1990-01-01
We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.
Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.
Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H
2017-07-28
Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.
Mass transfer equation for proteins in very high-pressure liquid chromatography.
Gritti, Fabrice; Guiochon, Georges
2009-04-01
The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.
Model of bidirectional reflectance distribution function for metallic materials
NASA Astrophysics Data System (ADS)
Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun
2016-09-01
Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium
NASA Technical Reports Server (NTRS)
Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.; Franklin, J. E.
1992-01-01
Radiation-cooled rocket thruster chambers have been developed which use CVD Re coated with CVD Ir on the interior surface that is exposed to hot combustion gases. The Ir serves as an oxidation barrier which protects the structural integrity-maintaining Re at elevated temperatures. The diffusion kinetics of CVD materials at elevated temperatures is presently studied with a view to the prediction and extension of these thrusters' performance limits. Line scans for Ir and Re were fit on the basis of a diffusion model, in order to extract relevant diffusion constants; the fastest diffusion process is grain-boundary diffusion, where Re diffuses down grain boundaries in the Ir overlayer.
Simon, Laurent; Ospina, Juan
2016-07-25
Three-dimensional solute transport was investigated for a spherical device with a release hole. The governing equation was derived using the Fick's second law. A mixed Neumann-Dirichlet condition was imposed at the boundary to represent diffusion through a small region on the surface of the device. The cumulative percentage of drug released was calculated in the Laplace domain and represented by the first term of an infinite series of Legendre and modified Bessel functions of the first kind. Application of the Zakian algorithm yielded the time-domain closed-form expression. The first-order solution closely matched a numerical solution generated by Mathematica(®). The proposed method allowed computation of the characteristic time. A larger surface pore resulted in a smaller effective time constant. The agreement between the numerical solution and the semi-analytical method improved noticeably as the size of the orifice increased. It took four time constants for the device to release approximately ninety-eight of its drug content. Copyright © 2016 Elsevier B.V. All rights reserved.
A kinetic Monte Carlo approach to diffusion-controlled thermal desorption spectroscopy
NASA Astrophysics Data System (ADS)
Schablitzki, T.; Rogal, J.; Drautz, R.
2017-06-01
Atomistic simulations of thermal desorption spectra for effusion from bulk materials to characterize binding or trapping sites are a challenging task as large system sizes as well as extended time scales are required. Here, we introduce an approach where we combine kinetic Monte Carlo with an analytic approximation of the superbasins within the framework of absorbing Markov chains. We apply our approach to the effusion of hydrogen from BCC iron, where the diffusion within bulk grains is coarse grained using absorbing Markov chains, which provide an exact solution of the dynamics within a superbasin. Our analytic approximation to the superbasin is transferable with respect to grain size and elliptical shapes and can be applied in simulations with constant temperature as well as constant heating rate. The resulting thermal desorption spectra are in close agreement with direct kinetic Monte Carlo simulations, but the calculations are computationally much more efficient. Our approach is thus applicable to much larger system sizes and provides a first step towards an atomistic understanding of the influence of structural features on the position and shape of peaks in thermal desorption spectra. This article is part of the themed issue 'The challenges of hydrogen and metals'.
Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Fradkov, V. E.
1996-01-01
We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.
On the factors affecting porosity dissolution in selective laser sintering process
NASA Astrophysics Data System (ADS)
Ly, H.-B.; Monteiro, E.; Dal, M.; Regnier, G.
2018-05-01
Selective Laser Sintering process is one of the additive manufacturing techniques in which parts are manufactured layer by layer. During such process, gas bubbles are formed in the melted polymer due to faster polymer grains coalescence at surface than deeper in the powder bed. Although gas diffusion is possible through the polymer melt, it's usual that some porosities remain in the final part if their initial sizes are too big and solidification time too short. In this contribution, a bubble dissolution model involving fluid dynamics and mass transport has been developed to study factors affecting porosity resorption kinetic. In this model, gas diffusion follows Fick's laws and the melted polymer is supposed Newtonian. At the polymer/gas interface, surface tension is considered and Henry's law is used to relate the partial pressure of gas with its concentration in the fluid. This problem is solved numerically by means of the finite element method in 1D. After validation of the numerical tool, the influence on dissolution time of several parameters (e.g. the initial size and form of gas porosities, the viscosity, the diffusion coefficient, the surface tension constant or the ambient pressure) has been examined.
The Bass diffusion model on networks with correlations and inhomogeneous advertising
NASA Astrophysics Data System (ADS)
Bertotti, M. L.; Brunner, J.; Modanese, G.
2016-09-01
The Bass model, which is an effective forecasting tool for innovation diffusion based on large collections of empirical data, assumes an homogeneous diffusion process. We introduce a network structure into this model and we investigate numerically the dynamics in the case of networks with link density $P(k)=c/k^\\gamma$, where $k=1, \\ldots , N$. The resulting curve of the total adoptions in time is qualitatively similar to the homogeneous Bass curve corresponding to a case with the same average number of connections. The peak of the adoptions, however, tends to occur earlier, particularly when $\\gamma$ and $N$ are large (i.e., when there are few hubs with a large maximum number of connections). Most interestingly, the adoption curve of the hubs anticipates the total adoption curve in a predictable way, with peak times which can be, for instance when $N=100$, between 10% and 60% of the total adoptions peak. This may allow to monitor the hubs for forecasting purposes. We also consider the case of networks with assortative and disassortative correlations and a case of inhomogeneous advertising where the publicity terms are "targeted" on the hubs while maintaining their total cost constant.
Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.
Takahashi, Kentaro; Kimura, Yasuyuki
2014-07-01
We have studied the dynamics of micrometer-sized colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Above the onset voltage of electroconvection, the parallel array of convection rolls appears to be perpendicular to the nematic field at first. The particles are forced to rotate by convection flow and are trapped within a single roll in this voltage regime. A slow glide motion along the roll axis is also observed. The frequency of rotational motion and the glide velocity increase with the applied voltage. Under a much larger voltage where the roll axis temporally fluctuates, the particles occasionally hop to the neighbor rolls. In this voltage regime, the motion of the particles becomes two-dimensional. The motion perpendicular to the roll axis exhibits diffusion behavior at a long time period. The effective diffusion constant is 10(3)-10(4) times larger than the molecular one. The observed behavior is compared with the result obtained by a simple stochastic model for the transport of the particles in convection. The enhancement of diffusion can be quantitatively described well by the rotation frequency in a roll, the width of the roll, and the hopping probability to the neighbor rolls.
NASA Astrophysics Data System (ADS)
Thiele, Michael
1998-04-01
Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
NASA Technical Reports Server (NTRS)
Hilst, G. R.; Contiliano, R. M.
1973-01-01
The sensitivity of the coupled chemistry/diffusion model's outputs to a wide range of variation of the model's independent variables has been investigated. It is shown that the efficiency with which the now catalytic cycle destroys ambient O3 is extremely sensitive to the amount of NO emitted and to the relative rates of turbulent diffusion and chemical reactions. For representative conditions in the stratosphere, a tenfold variation of either the turbulence intensity or the reaction rate constant or the source strength can vary the efficiency from 1% to 50%. If the duration of Phase 3 is a significant fraction of the total residence time of the plume, then these efficiency variations can alter O3 depletion rates by more than a factor of two. These results, therefore, point toward those variables which must be accurately defined or measured if one is to adequately predict the effect of SST operations on the ambient inventory of O3 in the lower stratosphere.
DIBS independent of accretion in T Tauri stars
NASA Technical Reports Server (NTRS)
Ghandour, Louma; Jenniskens, Peter; Hartigan, P.
1994-01-01
The examination of high resolution spectra (5200 - 7000 Angstroms) of 36 T Tauri stars ranging in accretion rates was performed. Only the lambda lambda 5780, 5797, and 6613 bands were found detectable to within an equivalent width of 10 micro Angstroms. They are strongest in DG Tau, DR Tau, Dl Tau, and AS 353A. DR Tau was monitored over the course of four years; during this time, the accretion rate varied by a factor of five, but the equivalent widths of the DIB's (Diffuse Interstellar Bands) remained constant. The lack of correlation of the strength of the bands with the accretion rates implies that the bands are not directly produced by UV radiation from the accretion process. The bands have line strengths and ratios characteristic of the diffuse interstellar medium, from which we conclude that the diffuse interstellar bands seen in the spectra of T Tauri stars do not originate in the stars' immediate environment. Instead, they are part of a foreground extinction, probably due to the parent molecular cloud.
Room-temperature ballistic energy transport in molecules with repeating units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong
2015-06-07
In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport inmore » molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.« less
Cadmium biosorption rate in protonated Sargassum biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Volesky, B.
1999-03-01
Biosorption of the heavy metal ion Cd{sup 2+} by protonated nonliving brown alga Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake of cadmium and the release of proton matched each other throughout the biosorption process. The end-point titration methodology was used to maintain the constant pH 4.0 for developing the dynamic sorption rate. The sorption isotherm could be well represented by the Langmuir sorption model. A mass transfer model assuming the intraparticle diffusion in a one-dimensional thin plate as a controlling step was developed to describe the overall biosorption rate of cadmiummore » ions in flat seaweed biomass particles. The overall biosorption mathematical model equations were solved numerically yielding the effective diffusion coefficient D{sub e} about 3.5 {times} 10{sup {minus}6} cm{sup 2}/s. This value matches that obtained for the desorption process and is approximately half of that of the molecular diffusion coefficient for cadmium ions in aqueous solution.« less
Pressure Characteristics of a Diffuser in a Ram RDE Propulsive Device
2017-07-21
Continuous detonation Rotating-detonation- engine Ethylene-air Diffuser Pressure feedback Modeling and simulation Office of Naval Research 875 N. Randolph...RDE PROPULSIVE DEVICE INTRODUCTION This report focuses on the diffuser of a ram Rotating Detonation Engine (RDE) device. A ram RDE is a ramjet with...the constant pressure combustion chamber replaced with a Rotating Detonation Engine combustor to accomplish pressure gain combustion. A ram engine
Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane
NASA Technical Reports Server (NTRS)
Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.
2011-01-01
Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.
Sb lattice diffusion in Si1-xGex/Si(001) heterostructures: Chemical and stress effects
NASA Astrophysics Data System (ADS)
Portavoce, A.; Gas, P.; Berbezier, I.; Ronda, A.; Christensen, J. S.; Kuznetsov, A. Yu.; Svensson, B. G.
2004-04-01
The Sb diffusion coefficient in Si1-xGex/Si1-yGey(001) heterostructures grown by molecular beam epitaxy (MBE) was measured for temperatures ranging from 700 to 850 °C, Ge composition from 0 to 20 % and biaxial pressure from -0.8 (tension) to 1.4 GPa (compression). A quantitative separation of composition and biaxial stress effects is made. We show that the Sb lattice diffusion coefficient: (i) increases with Ge concentration in relaxed layers or at constant biaxial pressure and (ii) increases with compressive biaxial stress and decreases with tensile biaxial stress at constant Ge composition. The enhancement of Sb lattice diffusion in Si1-xGex layers in epitaxy on Si(001) is thus due to the cooperative effect of Ge composition and induced compressive biaxial stress. However, the first effect (composition) is predominant. The activation volume of Sb diffusion in Si1-xGex layers is deduced from the variation of the Sb diffusion coefficients with biaxial pressure. This volume is negative. The sign of the activation volume, its absolute value and its variation with temperature confirm the prediction of the thermodynamic model proposed by Aziz, namely, that under a biaxial stress the activation volume is reduced to the relaxation volume.
Complete Numerical Solution of the Diffusion Equation of Random Genetic Drift
Zhao, Lei; Yue, Xingye; Waxman, David
2013-01-01
A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size. PMID:23749318
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
Atomistic simulations of materials: Methods for accurate potentials and realistic time scales
NASA Astrophysics Data System (ADS)
Tiwary, Pratyush
This thesis deals with achieving more realistic atomistic simulations of materials, by developing accurate and robust force-fields, and algorithms for practical time scales. I develop a formalism for generating interatomic potentials for simulating atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. This is done by fitting against an extensive database of ab initio results, as well as to experimental measurements for mixed oxide nuclear fuels. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies. A hybrid stochastic and deterministic algorithm is proposed that while maintaining fully atomistic resolution, allows one to achieve milliseconds and longer time scales for several thousands of atoms. The method exploits the rare event nature of the dynamics like other such methods, but goes beyond them by (i) not having to pick a scheme for biasing the energy landscape, (ii) providing control on the accuracy of the boosted time scale, (iii) not assuming any harmonic transition state theory (HTST), and (iv) not having to identify collective coordinates or interesting degrees of freedom. The method is validated by calculating diffusion constants for vacancy-mediated diffusion in iron metal at low temperatures, and comparing against brute-force high temperature molecular dynamics. We also calculate diffusion constants for vacancy diffusion in tantalum metal, where we compare against low-temperature HTST as well. The robustness of the algorithm with respect to the only free parameter it involves is ascertained. The method is then applied to perform tensile tests on gold nanopillars on strain rates as low as 100/s, bringing out the perils of high strain-rate molecular dynamics calculations. We also calculate temperature and stress dependence of activation free energy for surface nucleation of dislocations in pristine gold nanopillars under realistic loads. While maintaining fully atomistic resolution, we reach the fraction-of-a-second time scale regime. It is found that the activation free energy depends significantly and nonlinearly on the driving force (stress or strain) and temperature, leading to very high activation entropies for surface dislocation nucleation.
Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F; Bowman, Beth M; Miller, Scott C; Shah, Lubdha M; Rose, John W; Jeong, Eun-Kee
2016-11-01
Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000s/mm 2 . The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000s/mm 2 is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (b max ∼30,000s/mm 2 ) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32±0.05 and (0.16±0.01)×10 -3 mm 2 /s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b>20,000s/mm 2 ) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons can be evaluated by assessing the remaining signal in the ultrahigh-b region. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
NASA Astrophysics Data System (ADS)
Enders, P.; Galley, J.
1988-11-01
The dynamics of heat transfer in stripe GaAlAs laser diodes is investigated by solving the linear diffusion equation for a quasitwo-dimensional multilayer structure. The calculations are rationalized drastically by the transfer matrix method and also using for the first time the asymptotes of the decay constants. Special attention is given to the convergence of the Fourier series. A comparison with experimental results reveals however that this is essentially the Stefan problem (with moving boundary conditions).
FLUX-TRAP REACTOR WITH ABSORBER IN THE CENTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergen, W.K.
1958-03-01
An idealized flux-trap reactor is modified by the insertion of absorber. It is shown that, for appreciable absorption, a flux depression results, and the remaining flux is proportional to the diffusion constant D times the center flux in the nonabsorption case. This factor D just cancels the factor 1/D in the expression for this center flux so that the flux in the case with absorber is independent of D. In the case with absorber the advantage of Be and BeO largely disappears. (auth)
NASA Astrophysics Data System (ADS)
Gotoh, Toshiyuki
2012-11-01
Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.
Excited state proton transfer in the lysosome of live lung cells: normal and cancer cells.
Chowdhury, Rajdeep; Saha, Abhijit; Mandal, Amit Kumar; Jana, Batakrishna; Ghosh, Surajit; Bhattacharyya, Kankan
2015-02-12
Dynamics of excited state proton transfer (ESPT) in the lysosome region of live lung cells (normal and cancer) is studied by picosecond time-resolved confocal microscopy. For this, we used a fluorescent probe, pyranine (8-hydroxy-pyrene-1,3,6-trisulfonate, HPTS). From the colocalization of HPTS with a lysotracker dye (lysotracker yellow), we confirmed that HPTS resides in the lysosome for both of the cells. The diffusion coefficient (Dt) in the lysosome region was obtained from fluorescence correlation spectroscopy (FCS). From Dt, the viscosity of lysosome is estimated to be ∼40 and ∼30 cP in the cancer and normal cells, respectively. The rate constants of the elementary steps of ESPT in a normal lung cell (WI38) are compared with those in a lung cancer cell (A549). It is observed that the time constant of the initial proton transfer process in a normal cell (τ(PT) = 40 ps) is similar to that in a cancer cell. The recombination of the geminate ion pair is slightly faster (τ(rec) = 25 ps) in the normal cell than that (τ(rec) = 30 ps) in a cancer cell. The time constant of the dissociation (τ(diss)) of the geminate ion pair for the cancer cell (τ(diss) = 80 ps) is 1.5 times faster compared to that (τ(diss) = 120 ps) in a normal cell.
Liu, Jinyu; Tyree, Melvin T.
2015-01-01
Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry’s law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. PMID:26468516
Wang, Yujie; Liu, Jinyu; Tyree, Melvin T
2015-12-01
Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry's law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. © 2015 American Society of Plant Biologists. All Rights Reserved.
Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert
2016-10-01
The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.
Enhanced diffusion weighting generated by selective adiabatic pulse trains
NASA Astrophysics Data System (ADS)
Sun, Ziqi; Bartha, Robert
2007-09-01
A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.
López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.; ...
2016-11-15
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
NASA Astrophysics Data System (ADS)
López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
Scaling laws of passive-scalar diffusion in the interstellar medium
NASA Astrophysics Data System (ADS)
Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan
2017-05-01
Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.
Xu, Dan; Maier, Joseph K; King, Kevin F; Collick, Bruce D; Wu, Gaohong; Peters, Robert D; Hinks, R Scott
2013-11-01
The proposed method is aimed at reducing eddy current (EC) induced distortion in diffusion weighted echo planar imaging, without the need to perform further image coregistration between diffusion weighted and T2 images. These ECs typically have significant high order spatial components that cannot be compensated by preemphasis. High order ECs are first calibrated at the system level in a protocol independent fashion. The resulting amplitudes and time constants of high order ECs can then be used to calculate imaging protocol specific corrections. A combined prospective and retrospective approach is proposed to apply correction during data acquisition and image reconstruction. Various phantom, brain, body, and whole body diffusion weighted images with and without the proposed method are acquired. Significantly reduced image distortion and misregistration are consistently seen in images with the proposed method compared with images without. The proposed method is a powerful (e.g., effective at 48 cm field of view and 30 cm slice coverage) and flexible (e.g., compatible with other image enhancements and arbitrary scan plane) technique to correct high order ECs induced distortion and misregistration for various diffusion weighted echo planar imaging applications, without the need for further image post processing, protocol dependent prescan, or sacrifice in signal-to-noise ratio. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.
2017-02-01
A robust method to measure viscosity of microquantities of biological samples, such as blood and mucus, could lead to a better understanding and diagnosis of diseases. Microsamples have presented persistent challenges to conventional rheology, which requires bulk quantities of a sample. Alternatively, fluid viscosity can be probed by monitoring microscale motion of particles. Here, we present a decorrelation-based method using M-mode phase-sensitive optical coherence tomography (OCT) to measure particle Brownian motion. This is similar to previous methods using laser speckle decorrelation but with sensitivity to nanometer-scale displacement. This allows for the measurement of decorrelation in less than 1 millisecond and significantly decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. From first principles, an analytical method is established using M-mode images obtained from a 47 kHz spectral-domain OCT system. A g(1) first-order autocorrelation is calculated from windows containing several pixels over a time frame of 200-1000 microseconds. Total imaging time is 500 milliseconds for averaging purposes. The autocorrelation coefficient over this short time frame decreases linearly and at a rate proportional to the diffusion constant of the particles, allowing viscosity to be calculated. In verification experiments using phantoms of microbeads in 200 µL glycerol-water mixtures, this method showed insensitivity to 2 mm/s lateral bulk motion and accurate viscosity measurements over a depth of 400 µm. In addition, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential applications in mapping tissue stiffness.
Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L
2007-01-01
We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)
Behmand, B; Marignier, J-L; Mostafavi, M; Wagner, J R; Hunting, D J; Sanche, L
2015-07-30
Pulse radiolysis measurements of the decay of hydrated electrons in solutions containing different concentrations of the oligonucleotide GTG with and without a cisplatin adduct show that the presence of a cisplatin moiety accelerates the reaction between hydrated electrons and the oligonucleotide. The rate constant of the reaction is found to be 2.23 × 10(10) mol(-1) L s(-1), which indicates that it is diffusion controlled. In addition, we show for the first time the formation of a Pt(I) intermediate as a result of the reaction of hydrated electrons with GTG-cisplatin. A putative reaction mechanism is proposed, which may form the basis of the radiosensitization of cancer cells in concomitant chemoradiation therapy with cisplatin.
Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G
2016-02-28
We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. Copyright © 2016 Elsevier B.V. All rights reserved.
Zabusky, N J; Deem, G S
1979-01-01
We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570
NASA Astrophysics Data System (ADS)
Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi
2017-04-01
Oxygen potential of (U,Pu)O2±x was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O2±x was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.
The Effect of Bioturbation on Relative Paleointenstiy Records
NASA Astrophysics Data System (ADS)
Egli, R.; Zhao, X.; Gilder, S. A.
2015-12-01
Bioturbation is one of the key factors affecting the acquisition of a natural remanent magnetization (NRM) in sediments featuring a top mixed layer. In this case, a rotational diffusion process controls the acquisition timing, which is described in terms of a lock-in function, and NRM intensity. In general terms, NRM acquisition by rotational diffusion is described by a Smoluchowski-Debye differential equation, which yields analytical solutions describing how an initially acquired depositional remanent magnetization (DRM) is progressively replaced by a post-depositional remanent magnetization (PDRM) [Egli and Mao, Geochem. Geophys. Geosyst. 16, 995-1016, 2015]. These solutions in turn support the calculation of lock-in functions. Results are controlled by the following parameters: (1) a rotation diffusivity constant γ = 2DrL/ω, where Dr is the rotational diffusion coefficient, L the thickness of the mixed layer, and ω the sedimentation rate, and (2) the ratio between magnetic aligning torques τm = mB and the torques τp associated with mechanical interactions between sediment particles and with the action of perturbing forces. The PDRM acquisition rate and the extent of DRM replacement is controlled by γ, while PDRM intensity is a Langevin function of τm/ τp. Associated lock-in functions range from a constant (NRM is acquired only at the sediment surface) to the classical lock-in function starting below the mixed layer, though intermediate situations where PDRM is partially acquired in the mixed layer. This model has been confirmed by redeposition experiments performed with fresh sediment containing living microorganisms. Redeposition experiments show that the intensity of bioturbation-driven PDRMs can reach ~50% of the originally acquired DRM. Our model has profound consequences for the evaluation of relative paleointensity records, where variations can be driven by changes of the depositional environment. While this knowledge is not new, we provide for the first time a key for understanding, in a quantitative manner, how the NRM acquisition efficiency is controlled by bioturbation. A combination of proxies leading to estimates of the bioturbation activity might provide a new path for improving the reliability of relative paleointensity records.
NASA Astrophysics Data System (ADS)
Yang, Pu
Since the application of nanowires may lead to a new generation of electronic, optoelectronic and magnetic devices, there is much research on understanding the growth mechanism of various "self assembled" nanowires on semiconductor surfaces. The motivation of the present work is to use theoretical modeling to study the conditions required to form and grow elongated islands and nanowires. In this work, a modeling method is developed to study the time-dependent anisotropic diffusion and growth in two dimensions for an array of rectangular islands. This method uses discrete Fast Fourier Transformation (FFT) to solve the time-dependent diffusion equation on the surface. The ad-particles are captured and incorporated to the island edge to simulate island growth. Implemented in MATLABRTM programs, this model produces expected faceted shapes; the calculation runs very fast on a common personal computer. Time-dependent island growth and the evolving diffusion field have been visualized using simple MATLABRTM functions and can be made into MATLABRTM movies. This modeling method is applied to simulate elongated island and nanowire growth by incorporating anisotropic bonding at the island edge. When there is a full sink in one direction and partial sink in the other direction at the island edge, the model results in the growth of an elongated island with an aspect ratio that stabilizes after it reaches a certain value. This result agrees with experimental data on "endotaxial" nanowire growth. For the island edge with a full sink in one direction and no sink in the other direction, the island grows in length with constant width, which is comparable to experimental data on Bi nanoline and rare-earth metal nanowire growth.
Transport and Lagrangian Statistics in Rotating Stratified Turbulence
NASA Astrophysics Data System (ADS)
Rosenberg, D. L.
2015-12-01
Transport plays a crucial role in geophysical flows, both in theatmosphere and in the ocean. Transport in such flows is ultimatelycontrolled by small-scale turbulence, although the large scales arein geostrophic balance between pressure gradient, gravity and Coriolisforces. As a result of the seemingly random nature of the flow, singleparticles are dispersed by the flow and on time scales significantlylonger than the eddy turn-over time, they undergo a diffusive motionwhose diffusion coefficient is the integral of the velocity correlationfunction. On intermediate time scales, in homogeneous, isotropic turbuilence(HIT) the separation between particle pairs has been argued to grow withtime according to the Richardson law: <(Δ x)2(t)> ~ t3, with aproportionality constant that depends on the initial particleseparation. The description of the phenomena associated withthe dispersion of single particles, or of particle pairs, ultimatelyrests on relatively simple statistical properties of the flowvelocity transporting the particles, in particular on its temporalcorrelation function. In this work, we investigate particle dispersionin the anisotropic case of rotating stratified turbulence examining whetherthe dependence on initial particle separation differs from HIT,particularly in the presence of an inverse cascade.
Direct Imaging of Exciton Transport in Tubular Porphyrin Aggregates by Ultrafast Microscopy.
Wan, Yan; Stradomska, Anna; Knoester, Jasper; Huang, Libai
2017-05-31
Long-range exciton transport is a key challenge in achieving efficient solar energy harvesting in both organic solar cells and photosynthetic systems. Self-assembled molecular aggregates provide the potential for attaining long-range exciton transport through strong intermolecular coupling. However, there currently lacks an experimental tool to directly characterize exciton transport in space and in time to elucidate mechanisms. Here we report a direct visualization of exciton diffusion in tubular molecular aggregates by transient absorption microscopy with ∼200 fs time resolution and ∼50 nm spatial precision. These direct measurements provide exciton diffusion constants of 3-6 cm 2 s -1 for the tubular molecular aggregates, which are 3-5 times higher than a theoretical lower bound obtained by assuming incoherent hopping. These results suggest that coherent effects play a role, despite the fact that exciton states near the band bottom crucial for transport are only weakly delocalized (over <10 molecules). The methods presented here establish a direct approach for unraveling the mechanisms and main parameters underlying exciton transport in large molecular assemblies.
Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations.
Ollila, O H Samuli; Heikkinen, Harri A; Iwaï, Hideo
2018-06-14
Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.
2012-01-01
This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.
Anomalous transport in the crowded world of biological cells
NASA Astrophysics Data System (ADS)
Höfling, Felix; Franosch, Thomas
2013-04-01
A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.
Modeling the Gas Nitriding Process of Low Alloy Steels
NASA Astrophysics Data System (ADS)
Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.
2013-07-01
The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.
Drying kinetics of apricot halves in a microwave-hot air hybrid oven
NASA Astrophysics Data System (ADS)
Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni
2017-06-01
Drying behavior and kinetics of apricot halves were investigated in a microwave-hot air domestic hybrid oven at 120, 150 and 180 W microwave power and 50, 60 and 70 °C air temperature. Drying operation was finished when the moisture content reached to 25% (wet basis) from 77% (w.b). Increase in microwave power and air temperature increased drying rates and reduced drying time. Only falling rate period was observed in drying of apricot halves in hybrid oven. Eleven mathematical models were used for describing the drying kinetics of apricots. Modified logistic model gave the best fitting to the experimental data. The model has never been used to explain drying behavior of any kind of food materials up to now. Fick's second law was used for determination of both effective moisture diffusivity and thermal diffusivity values. Activation energy values of dried apricots were calculated from Arrhenius equation. Those that obtained from effective moisture diffusivity, thermal diffusivity and drying rate constant values ranged from 31.10 to 39.4 kJ/mol, 29.56 to 35.19 kJ/mol, and 26.02 to 32.36 kJ/mol, respectively.
Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin
2012-09-01
The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cloaking through cancellation of diffusive wave scattering
Chen, P. Y.; Guenneau, S.; Bağcı, H.; Salama, K. N.; Alù, A.
2016-01-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core–shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. PMID:27616925
Kinetics of Ta ions penetration into porous low-k dielectrics under bias-temperature stress
NASA Astrophysics Data System (ADS)
He, Ming; Ou, Ya; Wang, Pei-I.; Lu, Toh-Ming
2010-05-01
It is known that Ta, a popular diffusion barrier material, can itself penetrate into low-k dielectrics under bias-temperature stress. In this work, we derived a model which directly correlates the diffusivity of Ta ions to the rate of flatband voltage shift (FBS) of the Ta/methyl silsesquixane (MSQ)/Si capacitors. From our experimentally measured constant FBS rate, the Ta diffusivity and activation energy were determined. It appears that an increase in the porosity of MSQ film enhances the Ta diffusivity but does not affect the associated activation energy. This suggests the Ta ion diffusion is mainly through interconnected pore surfaces.
Cloaking through cancellation of diffusive wave scattering
NASA Astrophysics Data System (ADS)
Farhat, M.; Chen, P. Y.; Guenneau, S.; Bağc, H.; Salama, K. N.; Alù, A.
2016-08-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging.
Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions
NASA Astrophysics Data System (ADS)
Lombardo, S.; Mulone, G.; Trovato, M.
2008-06-01
We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction-diffusion systems. A computable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model and a three-species model for the spatial spread of rabies among foxes.
Numerical Simulation of the Perrin-Like Experiments
ERIC Educational Resources Information Center
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…
Observational analysis of the well-correlated diffuse bands: 6196 and 6614 Å
NASA Astrophysics Data System (ADS)
Krełowski, J.; Galazutdinov, G. A.; Bondar, A.; Beletsky, Y.
2016-08-01
We confirm, using spectra from seven observatories, that the diffuse bands 6196 and 6614 are very tightly correlated. However, their strength ratio is not constant as well as profile shapes. Apparently, the two interstellar features do not react in unison to the varying physical conditions of different interstellar clouds.
Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku
2015-01-14
In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.
Constraints on oxygen fugacity within metal capsules
NASA Astrophysics Data System (ADS)
Faul, Ulrich H.; Cline, Christopher J., II; Berry, Andrew; Jackson, Ian; Garapić, Gordana
2018-06-01
Experiments were conducted with olivine encapsulated or wrapped in five different metals (Pt, Ni, Ni_{70}Fe_{30}, Fe, and Re) to determine the oxygen fugacity in the interior of large capsules used for deformation and seismic property experiments. Temperature (1200°C), pressure (300 MPa), and duration (24 h) were chosen to represent the most common conditions in these experiments. The oxygen fugacity was determined by analysing the Fe content of initially pure Pt particles that were mixed with the olivine powder prior to the experiments. Oxygen fugacities in the more oxidizing metal containers are substantially below their respective metal-oxide buffers, with the fO_2 of sol-gel olivine in Ni about 2.5 orders of magnitude below Ni-NiO. Analysis of olivine and metal blebs reveals three different length-, and hence diffusive time scales: (1) Fe loss to the capsule over ˜ 100 μ m, (2) fO_2 gradients at the sample-capsule interface up to 2 mm into the sample, and (3) constant interior fO_2 values with an ordering corresponding to the capsule material. The inferred diffusive processes are: Fe diffusion in olivine with a diffusivity ˜ 10^{-14} m^2/s, diffusion possibly of oxygen along grain boundaries with a diffusivity ˜ 10^{-12} m^2/s, and diffusion possibly involving pre-existing defects with a diffusivity ˜ 10^{-10} m^2/s. The latter, fast adjustment to changing fO_2 may consist of a rearrangement of pre-existing defects, representing a metastable equilibrium, analogous to decoration of pre-existing defects by hydrogen. Full adjustment to the external fO_2 requires atomic diffusion.
Effects of off-resonance spins on the performance of the modulated gradient spin echo sequence.
Serša, Igor; Bajd, Franci; Mohorič, Aleš
2016-09-01
Translational molecular dynamics in various materials can also be studied by diffusion spectra. These can be measured by a constant gradient variant of the modulated gradient spin echo (MGSE) sequence which is composed of a CPMG RF pulse train superimposed to a constant magnetic field gradient. The application of the RF train makes the effective gradient oscillating thus enabling measurements of diffusion spectra in a wide range of frequencies. However, seemingly straightforward implementation of the MGSE sequence proved to be complicated and can give overestimated results for diffusion if not interpreted correctly. In this study, unrestricted diffusion in water and other characteristic materials was analyzed by the MGSE sequence in the frequency range 50-3000Hz using a 6T/m diffusion probe. First, it was shown that the MGSE echo train acquired from the entire sample decays faster than the train acquired only from a narrow band at zero frequency of the sample. Then, it was shown that the decay rate is dependent on the band's off-resonance characterized by the ratio Δω0/ω1 and that with higher off-resonances the decay is faster. The faster decay therefore corresponds to a higher diffusion coefficient if the diffusion is calculated using standard Stejskal-Tanner formula. The result can be explained by complex coherence pathways contributing to the MGSE echo signals when |Δω0|/ω1>0. In a magnetic field gradient, all the pathways are more diffusion attenuated than the direct coherence pathway and therefore decay faster, which leads to an overestimation of the diffusion coefficient. A solution to this problem was found in an efficient off-resonance signal reduction by using only zero frequency filtered MGSE echo train signals. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2016-02-01
Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1- 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2015-12-01
Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1- 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.
Lee, Kyu Il; Jo, Sunhwan; Rui, Huan; Egwolf, Bernhard; Roux, Benoît; Pastor, Richard W; Im, Wonpil
2012-01-30
Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web-based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm-gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α-Hemolysin (α-HL), and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate the system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all-atom molecular dynamics simulations of VDAC, and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α-HL, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10-20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5-7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. Copyright © 2011 Wiley Periodicals, Inc.
Lee, Kyu Il; Jo, Sunhwan; Rui, Huan; Egwolf, Bernhard; Roux, Benoît; Pastor, Richard W.; Im, Wonpil
2011-01-01
Brownian dynamics (BD) in a suitably constructed potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web-based graphical user interface (GUI) is presented for grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm-gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α-Hemolysin, and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all-atom molecular dynamics simulations of VDAC; and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α-Hemolysin, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10–20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5 to 7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. PMID:22102176
Variable order fractional Fokker-Planck equations derived from Continuous Time Random Walks
NASA Astrophysics Data System (ADS)
Straka, Peter
2018-08-01
Continuous Time Random Walk models (CTRW) of anomalous diffusion are studied, where the anomalous exponent β(x) ∈(0 , 1) varies in space. This type of situation occurs e.g. in biophysics, where the density of the intracellular matrix varies throughout a cell. Scaling limits of CTRWs are known to have probability distributions which solve fractional Fokker-Planck type equations (FFPE). This correspondence between stochastic processes and FFPE solutions has many useful extensions e.g. to nonlinear particle interactions and reactions, but has not yet been sufficiently developed for FFPEs of the "variable order" type with non-constant β(x) . In this article, variable order FFPEs (VOFFPE) are derived from scaling limits of CTRWs. The key mathematical tool is the 1-1 correspondence of a CTRW scaling limit to a bivariate Langevin process, which tracks the cumulative sum of jumps in one component and the cumulative sum of waiting times in the other. The spatially varying anomalous exponent is modelled by spatially varying β(x) -stable Lévy noise in the waiting time component. The VOFFPE displays a spatially heterogeneous temporal scaling behaviour, with generalized diffusivity and drift coefficients whose units are length2/timeβ(x) resp. length/timeβ(x). A global change of the time scale results in a spatially varying change in diffusivity and drift. A consequence of the mathematical derivation of a VOFFPE from CTRW limits in this article is that a solution of a VOFFPE can be approximated via Monte Carlo simulations. Based on such simulations, we are able to confirm that the VOFFPE is consistent under a change of the global time scale.
Langlands, T A M; Henry, B I; Wearne, S L
2009-12-01
We introduce fractional Nernst-Planck equations and derive fractional cable equations as macroscopic models for electrodiffusion of ions in nerve cells when molecular diffusion is anomalous subdiffusion due to binding, crowding or trapping. The anomalous subdiffusion is modelled by replacing diffusion constants with time dependent operators parameterized by fractional order exponents. Solutions are obtained as functions of the scaling parameters for infinite cables and semi-infinite cables with instantaneous current injections. Voltage attenuation along dendrites in response to alpha function synaptic inputs is computed. Action potential firing rates are also derived based on simple integrate and fire versions of the models. Our results show that electrotonic properties and firing rates of nerve cells are altered by anomalous subdiffusion in these models. We have suggested electrophysiological experiments to calibrate and validate the models.
Fractional calculus and morphogen gradient formation
NASA Astrophysics Data System (ADS)
Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja
2012-12-01
Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.
Experimental measurement of self-diffusion in a strongly coupled plasma
Strickler, Trevor S.; Langin, Thomas K.; McQuillen, Paul; ...
2016-05-17
Here, we present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short time scales compared to the inverse collision rate. The measured average velocity of a tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus gain access to fundamental aspects of the single-particle dynamics in strongly coupled plasmas and to the ion self-diffusion constant under conditions where experimental measurements have been lacking. Nonexponential decay towards equilibrium of the average velocity heralds non-Markovian dynamics that are not predicted by traditional descriptions of weakly coupled plasmas.more » This demonstrates the utility of ultracold neutral plasmas for studying the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.« less
Spatiotemporal dynamics of charged species in the afterglow of plasmas containing negative ions.
Kaganovich, I D; Ramamurthi, B N; Economou, D J
2001-09-01
The spatiotemporal evolution of charged species densities and wall fluxes during the afterglow of an electronegative discharge has been investigated. The decay of a plasma with negative ions consists of two stages. During the first stage of the afterglow, electrons dominate plasma diffusion and negative ions are trapped inside the vessel by the static electric field; the flux of negative ions to the walls is nearly zero. During this stage, the electron escape frequency increases considerably in the presence of negative ions, and can eventually approach free electron diffusion. During the second stage of the afterglow, electrons have disappeared, and positive and negative ions diffuse to the walls with the ion-ion ambipolar diffusion coefficient. Theories for plasma decay have been developed for equal and strongly different ion (T(i)) and electron (T(e)) temperatures. In the case T(i)=T(e), the species spatial profiles are similar and an analytic solution exists. When detachment is important in the afterglow (weakly electronegative gases, e.g., oxygen) the plasma decay crucially depends on the product of negative ion detachment frequency (gamma(d)) and diffusion time (tau(d)). If gamma(d)tau(d)>2, negative ions convert to electrons during their diffusion towards the walls. The presence of detached electrons results in "self-trapping" of the negative ions, due to emerging electric fields, and the negative ion flux to the walls is extremely small. In the case T(i)
NASA Astrophysics Data System (ADS)
Batistić, Benjamin; Robnik, Marko
2011-09-01
We study aspects of the Fermi acceleration (the unbounded growth of the energy) in a certain class of time-dependent 2D billiards. Specifically, we look at the conformally breathing billiards (periodic oscillation of the boundary which preserves the shape of the billiard at all times), which are fully chaotic as static (frozen) billiards, and we show that for large velocities around v0 and for not too long times, we observe just normal diffusion of the velocity as a function of the physical (continuous) time, around v0. However, the diffusion is not homogeneous, as the diffusion constant D depends on v0 as a power law D∝1/v30. Taking this into account, we show that to the leading order the average velocity v(n) as a function of the number of collisions n obeys a power law v∝n1/6 thus, the Fermi acceleration exponent is β = 1/6, which is in excellent agreement with the numerical calculations of the fully chaotic oval billiard, the Sinai billiard and the cardioid billiard. The error of the velocity estimates is of the order 1/v2. Thus, the higher the velocity, the better our analytic approximation. Moreover, we derive the underlying universal equation of the velocity dynamics of the time-dependent conformally breathing billiards, correct up to and including the order 1/v in the regime of the large velocity of the particle v. This universal equation does not depend on the dynamical properties of the system (integrability, ergodicity, chaoticity). We present the results of the numerical simulations for three billiards in complete agreement with the theory. We believe that this is a first step towards theoretical understanding of the power law growth and the Fermi acceleration exponents in 2D billiards, although our theory is so far specialized to the conformally breathing fully chaotic billiards.
Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian
Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.
2011-01-01
We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.
Lizana, L; Ambjörnsson, T
2009-11-01
We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time t
NASA Astrophysics Data System (ADS)
Wen, Zijuan; Fu, Shengmao
2009-08-01
In this paper, an n-species strongly coupled cooperating diffusive system is considered in a bounded smooth domain, subject to homogeneous Neumann boundary conditions. Employing the method of energy estimates, we obtain some conditions on the diffusion matrix and inter-specific cooperatives to ensure the global existence and uniform boundedness of a nonnegative solution. The globally asymptotical stability of the constant positive steady state is also discussed. As a consequence, all the results hold true for multi-species Lotka-Volterra type competition model and prey-predator model.
Thermal diffusivity of UO2 up to the melting point
NASA Astrophysics Data System (ADS)
Vlahovic, L.; Staicu, D.; Küst, A.; Konings, R. J. M.
2018-02-01
The thermal diffusivity of uranium dioxide was measured from 500 to 3060 K with two different set-ups, both based on the laser-flash technique. Above 1600 K the measurements were performed with an advanced laser-flash technique, which was slightly improved in comparison with a former work. In the temperature range 500-2000 K the thermal diffusivity is decreasing, then relatively constant up to 2700 K, and tends to increase by approaching the melting point. The measurements of the thermal diffusivity in the vicinity of the melting point are possible under certain conditions, and are discussed in this paper.
Kramers turnover: From energy diffusion to spatial diffusion using metadynamics
Tiwary, Pratyush; Berne, B. J.
2016-01-01
We consider the rate of transition for a particle between two metastable states coupled to a thermal environment for various magnitudes of the coupling strength using the recently proposed infrequent metadynamics approach [P. Tiwary and M. Parrinello, Phys. Rev. Lett. 111, 230602 (2013)]. We are interested in understanding how this approach for obtaining rate constants performs as the dynamics regime changes from energy diffusion to spatial diffusion. Reassuringly, we find that the approach works remarkably well for various coupling strengths in the strong coupling regime, and to some extent even in the weak coupling regime. PMID:27059558
Koren, Hila; Kaminer, Ido
2016-01-01
Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and practical implications for designing networks aimed at accelerating the creation and diffusion of information. PMID:27798636
Koren, Hila; Kaminer, Ido; Raban, Daphne Ruth
2016-01-01
Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and practical implications for designing networks aimed at accelerating the creation and diffusion of information.
Zonal flow evolution and overstability in accretion discs
NASA Astrophysics Data System (ADS)
Vanon, R.; Ogilvie, G. I.
2017-04-01
This work presents a linear analytical calculation on the stability and evolution of a compressible, viscous self-gravitating (SG) Keplerian disc with both horizontal thermal diffusion and a constant cooling time-scale when an axisymmetric structure is present and freely evolving. The calculation makes use of the shearing sheet model and is carried out for a range of cooling times. Although the solutions to the inviscid problem with no cooling or diffusion are well known, it is non-trivial to predict the effect caused by the introduction of cooling and of small diffusivities; this work focuses on perturbations of intermediate wavelengths, therefore representing an extension to the classical stability analysis on thermal and viscous instabilities. For density wave modes, the analysis can be simplified by means of a regular perturbation analysis; considering both shear and thermal diffusivities, the system is found to be overstable for intermediate and long wavelengths for values of the Toomre parameter Q ≲ 2; a non-SG instability is also detected for wavelengths ≳18H, where H is the disc scale-height, as long as γ ≲ 1.305. The regular perturbation analysis does not, however, hold for the entropy and potential vorticity slow modes as their ideal growth rates are degenerate. To understand their evolution, equations for the axisymmetric structure's amplitudes in these two quantities are analytically derived and their instability regions obtained. The instability appears boosted by increasing the value of the adiabatic index and of the Prandtl number, while it is quenched by efficient cooling.
Molecular dynamics study on glycolic acid in the physiological salt solution
NASA Astrophysics Data System (ADS)
Matsunaga, S.
2018-05-01
Molecular dynamics (MD) study on glycolic acid in the physiological salt solution has been performed, which is a model of a biofuel cell. The structure and charge distribution of glycolic acid in aqueous solution used in MD is beforehand optimized by Gaussian09 utilizing the density functional theory. MD is performed in the NTV constant condition, i.e. the number of particles, temperature, and volume of MD cell are definite. The structure difference of the glycolic acid and oxalic acid is detected by the water distribution around the molecules using the pair distribution functions, gij(r), and the frequency dependent diffusion coefficients, Di(ν). The anomalous dielectric constant of the solution, i.e. about 12 times larger than that of water, has been obtained, which may be attributed to the ion pair formation in the solution.
Behmand, B.; Marignier, J.-L.; Mostafavi, M.; Wagner, J. R.; Hunting, D. J.; Sanche, L.
2015-01-01
Pulse radiolysis measurements of the decay of hydrated electrons in solutions containing different concentrations of the oligonucleotide GTG with and without a cisplatin adduct show that the presence of a cisplatin moiety accelerates the reaction between hydrated electrons and the oligonucleotide. The rate constant of the reaction is found to be 2.23 × 1010 mol−1 L s−1, which indicates that it is diffusion controlled. In addition, we show for the first time the formation of a PtI intermediate as a result of the reaction of hydrated electrons with GTG-cisplatin. A putative reaction mechanism is proposed, which may form the basis of the radiosensitization of cancer cells in concomitant chemoradiation therapy with cisplatin. PMID:26098937
Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.
Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel
2018-01-08
Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.
Observations of sound-speed fluctuations in the western Philippine Sea in the spring of 2009.
Colosi, John A; Van Uffelen, Lora J; Cornuelle, Bruce D; Dzieciuch, Matthew A; Worcester, Peter F; Dushaw, Brian D; Ramp, Steven R
2013-10-01
As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120-2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett-Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.
Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel
2018-01-01
Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722
NASA Astrophysics Data System (ADS)
Malek, Kourosh; Odijk, Theo; Coppens, Marc-Olivier
2005-07-01
The dynamics of water and sodium counter-ions (Na+) in a C2221 orthorhombic β-lactoglobulin crystal is investigated by means of 5 ns molecular dynamics simulations. The effect of the fluctuation of the protein atoms on the motion of water and sodium ions is studied by comparing simulations in a rigid and in a flexible lattice. The electrostatic interactions of sodium ions with the positively charged LYS residues inside the crystal channels significantly influence the ionic motion. According to our results, water molecules close to the protein surface undergo an anomalous diffusive motion. On the other hand, the motion of water molecules further away from the protein surface is normal diffusive. Protein fluctuations affect the diffusion constant of water, which increases from 0.646 ± 0.108 to 0.887 ± 0.41 nm2 ns-1, when protein fluctuations are taken into account. The pore size (0.63-1.05 nm) and the water diffusivities are in good agreement with previous experimental results. The dynamics of sodium ions is disordered. LYS residues inside the pore are the main obstacles to the motion of sodium ions. However, the simulation time is still too short for providing a precise description of anomalous diffusion of sodium ions. The results are not only of interest for studying ion and water transport through biological nanopores, but may also elucidate water-protein and ion-protein interactions in protein crystals.
Time scales of transient enhanced diffusion: Free and clustered interstitials
NASA Astrophysics Data System (ADS)
Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.
1996-12-01
Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.
A New Numerical Scheme for Cosmic-Ray Transport
NASA Astrophysics Data System (ADS)
Jiang, Yan-Fei; Oh, S. Peng
2018-02-01
Numerical solutions of the cosmic-ray (CR) magnetohydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding artificial diffusion. Besides introducing ad hoc smoothing, this has a significant negative impact on either computational cost or complexity and parallel scalings. We describe a new numerical algorithm for CR transport, with close parallels to two-moment methods for radiative transfer under the reduced speed of light approximation. It stably and robustly handles CR streaming without any artificial diffusion. It allows for both isotropic and field-aligned CR streaming and diffusion, with arbitrary streaming and diffusion coefficients. CR transport is handled explicitly, while source terms are handled implicitly. The overall time step scales linearly with resolution (even when computing CR diffusion) and has a perfect parallel scaling. It is given by the standard Courant condition with respect to a constant maximum velocity over the entire simulation domain. The computational cost is comparable to that of solving the ideal MHD equation. We demonstrate the accuracy and stability of this new scheme with a wide variety of tests, including anisotropic streaming and diffusion tests, CR-modified shocks, CR-driven blast waves, and CR transport in multiphase media. The new algorithm opens doors to much more ambitious and hitherto intractable calculations of CR physics in galaxies and galaxy clusters. It can also be applied to other physical processes with similar mathematical structure, such as saturated, anisotropic heat conduction.
Vázquez, J. L.
2010-01-01
The goal of this paper is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy–Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities, and rates for nonlinear diffusion equations. PMID:20823259
Simulations of singlet exciton diffusion in organic semiconductors: a review
Bjorgaard, Josiah A.; Kose, Muhammet Erkan
2014-12-22
Our review describes the various aspects of simulation strategies for exciton diffusion in condensed phase thin films of organic semiconductors. Several methods for calculating energy transfer rate constants are discussed along with procedures for how to account for energetic disorder. Exciton diffusion can be modelled by using kinetic Monte-Carlo methods or master equations. Recent literature on simulation efforts for estimating exciton diffusion lengths of various conjugated polymers and small molecules are introduced. Moreover, these studies are discussed in the context of the effects of morphology on exciton diffusion and the necessity of accurate treatment of disorder for comparison of simulationmore » results with those of experiment.« less
Corrosion of Metal Films with Defective Surface Protection Layers.
1980-07-01
ranged from 1 x 10- 10 to I x 10-9 A and were fairly constant (within a factor of 2) throughout the test, except for one line pair which intermit ...SCE) OOV (SCE) ( I -0.5V (b.) -0.5V FAST SCAN SLOW SCAN 0.05 Hz 0.01 Hz Figure 39. E-vs-I curves for gold-trimetal substrate. and Au 3+ *.dation states...an additional complication because the fast scan time may not provide for the diffusion of constituents for the electrochemical process. However, the
On the force-velocity relationship of a bundle of rigid bio-filaments
NASA Astrophysics Data System (ADS)
Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul
2018-03-01
In various cellular processes, bio-filaments like F-actin and F-tubulin are able to exploit chemical energy associated with polymerization to perform mechanical work against an obstacle loaded with an external force. The force-velocity relationship quantitatively summarizes the nature of this process. By a stochastic dynamical model, we give, together with the evolution of a staggered bundle of Nf rigid living filaments facing a loaded wall, the corresponding force-velocity relationship. We compute the evolution of the model in the infinite wall diffusion limit and in supercritical conditions (monomer density reduced by critical density ρ^ 1>1 ), and we show that this solution remains valid for moderate non-zero values of the ratio between the wall diffusion and the chemical time scales. We consider two classical protocols: the bundle is opposed either to a constant load or to an optical trap setup, characterized by a harmonic restoring force. The constant load case leads, for each F value, to a stationary velocity Vs t a t(F ;Nf,ρ^ 1 ) after a relaxation with characteristic time τmicro(F). When the bundle (initially taken as an assembly of filament seeds) is subjected to a harmonic restoring force (optical trap load), the bundle elongates and the load increases up to stalling over a characteristic time τOT. Extracted from this single experiment, the force-velocity VO T(F ;Nf,ρ^ 1 ) curve is found to coincide with Vs t a t(F ;Nf,ρ^ 1 ) , except at low loads. We show that this result follows from the adiabatic separation between τmicro and τOT, i.e., τmicro ≪ τOT.
NASA Astrophysics Data System (ADS)
Mahmoodlu, Mojtaba G.; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Majid Hassanizadeh, S.; van Genuchten, Martinus Th.
2017-01-01
In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass cylinder filled with pure volatile organic compound (VOC). Results showed that air phase concentrations of both TCE and toluene increased relatively quickly to their maximum values and then became constant. We considered subsequent dissolution into both stirred and unstirred water reservoirs. Results of the stirred experiments showed a quick increase in the VOC concentrations with time up to their solubility limit in water. VOC vapor dissolution was found to be independent of pH. In contrast, salinity had a significant effect on the solubility of TCE and toluene vapors. VOC evaporation and vapor dissolution in the stirred water reservoirs followed first-order rate processes. Observed data could be described well using both simplified analytical solutions, which decoupled the VOC dynamics in the air and water phases, as well as using more complete coupled solutions. However, the estimated evaporation (ke) and dissolution (kd) rate constants differed by up to 70% between the coupled and uncoupled formulations. We also numerically investigated the effects of fluid withdrawal from the small water reservoir due to sampling. While decoupling the VOC air and water phase mass transfer processes produced unreliable estimates of kd, the effects of fluid withdrawal on the estimated rate constants were found to be less important. The unstirred experiments showed a much slower increase in the dissolved VOC concentrations versus time. Molecular diffusion of the VOCs within the aqueous phase became then the limiting factor for mass transfer from air to water. Fluid withdrawal during sampling likely caused some minor convection within the reservoir, which was simulated by increasing the apparent liquid diffusion coefficient.
NASA Astrophysics Data System (ADS)
Kostic, Danijela; Vidovic, Srđan; Obradovic, Bojana
2016-03-01
A stepwise experimental and mathematical modeling approach was used to assess silver release from nanocomposite Ag/alginate microbeads in wet and dried forms into water and into normal saline solution chosen as a simplified model for certain biological fluids (e.g., blood plasma, wound exudates, sweat, etc). Three phenomena were connected and mathematically described: diffusion of silver nanoparticles (AgNPs) within the alginate hydrogel, AgNP oxidation/dissolution and reaction with chloride ions, and diffusion of the resultant silver-chloride species. Mathematical modeling results agreed well with the experimental data with the AgNP diffusion coefficient estimated as 1.3 × 10-18 m2 s-1, while the first-order kinetic rate constant of AgNP oxidation/dissolution and diffusivity of silver-chloride species were shown to be inversely related. In specific, rapid rehydration and swelling of dry Ag/alginate microbeads induced fast AgNP oxidation/dissolution reaction with Cl- and AgCl precipitation within the microbeads with the lowest diffusivity of silver-chloride species compared to wet microbeads in normal saline. The proposed mathematical model provided an insight into the phenomena related to silver release from nanocomposite Ca-alginate hydrogels relevant for use of antimicrobial devices and established, at the same time, a basis for further in-depth studies of AgNP interactions in hydrogels in the presence of chloride ions.
Theoretical modeling of PEB procedure on EUV resist using FDM formulation
NASA Astrophysics Data System (ADS)
Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo
2018-03-01
Semiconductor manufacturing industry has reduced the size of wafer for enhanced productivity and performance, and Extreme Ultraviolet (EUV) light source is considered as a promising solution for downsizing. A series of EUV lithography procedures contain complex photo-chemical reaction on photoresist, and it causes technical difficulties on constructing theoretical framework which facilitates rigorous investigation of underlying mechanism. Thus, we formulated finite difference method (FDM) model of post exposure bake (PEB) process on positive chemically amplified resist (CAR), and it involved acid diffusion coupled-deprotection reaction. The model is based on Fick's second law and first-order chemical reaction rate law for diffusion and deprotection, respectively. Two kinetic parameters, diffusion coefficient of acid and rate constant of deprotection, which were obtained by experiment and atomic scale simulation were applied to the model. As a result, we obtained time evolutional protecting ratio of each functional group in resist monomer which can be used to predict resulting polymer morphology after overall chemical reactions. This achievement will be the cornerstone of multiscale modeling which provides fundamental understanding on important factors for EUV performance and rational design of the next-generation photoresist.
Mean-flow measurements of the flow field diffusing bend
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.
1982-01-01
Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2001-01-01
Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.
Monte Carlo analysis of neutron diffuse scattering data
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Heerdegen, A. P.; Welberry, T. R.; Gutmann, M. J.
2006-11-01
This paper presents a discussion of a technique developed for the analysis of neutron diffuse scattering data. The technique involves processing the data into reciprocal space sections and modelling the diffuse scattering in these sections. A Monte Carlo modelling approach is used in which the crystal energy is a function of interatomic distances between molecules and torsional rotations within molecules. The parameters of the model are the spring constants governing the interactions, as they determine the correlations which evolve when the model crystal structure is relaxed at finite temperature. When the model crystal has reached equilibrium its diffraction pattern is calculated and a χ2 goodness-of-fit test between observed and calculated data slices is performed. This allows a least-squares refinement of the fit parameters and so automated refinement can proceed. The first application of this methodology to neutron, rather than X-ray, data is outlined. The sample studied was deuterated benzil, d-benzil, C14D10O2, for which data was collected using time-of-flight Laue diffraction on SXD at ISIS.
Synthesis of metal-organic framework films by pore diffusion method
NASA Astrophysics Data System (ADS)
Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration
Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.
Isotopic fractionation of volatile species during bubble growth in magmas
NASA Astrophysics Data System (ADS)
Watson, E. B.
2016-12-01
Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth S.
2015-10-01
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment
NASA Astrophysics Data System (ADS)
Kramer, Andrew R.
This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.