Sample records for diffusion wave equation

  1. Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps

    NASA Astrophysics Data System (ADS)

    Yi, Taishan; Chen, Yuming

    2017-12-01

    In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.

  2. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  3. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  4. Diffusion phenomenon for linear dissipative wave equations in an exterior domain

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.

  5. Boundary value problems for multi-term fractional differential equations

    NASA Astrophysics Data System (ADS)

    Daftardar-Gejji, Varsha; Bhalekar, Sachin

    2008-09-01

    Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.

  6. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.

    PubMed

    Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q

    2013-03-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

  7. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION

    PubMed Central

    Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.

    2013-01-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian. PMID:23772179

  8. Analysis of pulse thermography using similarities between wave and diffusion propagation

    NASA Astrophysics Data System (ADS)

    Gershenson, M.

    2017-05-01

    Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.

  9. Traveling wave solutions to a reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.

    2009-07-01

    In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.

  10. Drift-wave turbulence and zonal flow generation.

    PubMed

    Balescu, R

    2003-10-01

    Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.

  11. Exact travelling wave solutions for a diffusion-convection equation in two and three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Elwakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R.

    2004-04-01

    The modified extended tanh-function method were applied to the general class of nonlinear diffusion-convection equations where the concentration-dependent diffusivity, D( u), was taken to be a constant while the concentration-dependent hydraulic conductivity, K( u) were taken to be in a power law. The obtained solutions include rational-type, triangular-type, singular-type, and solitary wave solutions. In fact, the profile of the obtained solitary wave solutions resemble the characteristics of a shock-wave like structure for an arbitrary m (where m>1 is the power of the nonlinear convection term).

  12. Using Global Invariant Manifolds to Understand Metastability in the Burgers Equation With Small Viscosity

    NASA Astrophysics Data System (ADS)

    Beck, Margaret; Wayne, C. Eugene

    2009-01-01

    The large-time behavior of solutions to the Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave. More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted L^2 space, the self-similar diffusion waves correspond to a one-dimensional global center manifold of stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast transient in which solutions approach this metastable manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave.

  13. Wave and pseudo-diffusion equations from squeezed states

    NASA Technical Reports Server (NTRS)

    Daboul, Jamil

    1993-01-01

    We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.

  14. The effects of the Asselin time filter on numerical solutions to the linearized shallow-water wave equations

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.

  15. Generalized thermoelastic diffusive waves in heat conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.

    2007-04-01

    Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

  16. Accelerated ions and self-excited Alfvén waves at the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.

    2011-07-01

    The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.

  17. Asymptotic analysis of dissipative waves with applications to their numerical simulation

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.

  18. Delay-induced wave instabilities in single-species reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  19. Mathematical analysis of thermal diffusion shock waves

    NASA Astrophysics Data System (ADS)

    Gusev, Vitalyi; Craig, Walter; Livoti, Roberto; Danworaphong, Sorasak; Diebold, Gerald J.

    2005-10-01

    Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a temperature gradient. For a binary mixture the time dependence of the change in concentration of each species is governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the development of the concentration profile in time and space are found by numerical integration of the nonlinear differential equation.

  20. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations.

    PubMed

    Sánchez-Garduño, Faustino; Pérez-Velázquez, Judith

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D (0) = 0) and advection-degenerate (at h '(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h ( u ): (1)   h '( u ) is constant k , (2)   h '( u ) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.

  1. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations

    PubMed Central

    Sánchez-Garduño, Faustino

    2016-01-01

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1)  h′(u) is constant k, (2)  h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131

  2. A new nonlinear diffusion formalism in a magnetized plasma - Application to space physics and astrophysics

    NASA Technical Reports Server (NTRS)

    Karimbadi, H.; Krauss-Varban, D.

    1992-01-01

    A novel diffusion formalism that takes into account the finite width of resonances is presented. The resonance diagram technique is shown to reproduce the details of the particle orbits very accurately, and can be used to determine the acceleration/scattering in the presence of a given wave spectrum. Ways in which the nonlinear orbits can be incorporated into the diffusion equation are shown. The resulting diffusion equation is an extension of the Q-L theory to cases where the waves have large amplitudes and/or are coherent. This new equation does not have a gap at 90 deg in cases where the individual orbits can cross the gap. The conditions under which the resonance gap at 90-deg pitch angle exits are also examined.

  3. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment.

  4. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  5. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  6. Investigating Whistler Mode Wave Diffusion Coefficients at Mars

    NASA Astrophysics Data System (ADS)

    Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.

    2017-12-01

    Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.

  7. Spectrum of spin waves in cold polarized gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  8. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.

    PubMed

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-14

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment. © 2011 American Institute of Physics

  9. The first boundary-value problem for a fractional diffusion-wave equation in a non-cylindrical domain

    NASA Astrophysics Data System (ADS)

    Pskhu, A. V.

    2017-12-01

    We solve the first boundary-value problem in a non-cylindrical domain for a diffusion-wave equation with the Dzhrbashyan- Nersesyan operator of fractional differentiation with respect to the time variable. We prove an existence and uniqueness theorem for this problem, and construct a representation of the solution. We show that a sufficient condition for unique solubility is the condition of Hölder smoothness for the lateral boundary of the domain. The corresponding results for equations with Riemann- Liouville and Caputo derivatives are particular cases of results obtained here.

  10. Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Collier, N.; Knepley, M.

    2015-12-01

    The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).

  11. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    NASA Astrophysics Data System (ADS)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  12. Dynamic Theory of Relativistic Electrons Stochastic Heating by Whistler Mode Waves with Application to the Earth Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.

    2007-01-01

    In the Hamiltonian approach an electron motion in a coherent packet of the whistler mode waves propagating along the direction of an ambient magnetic field is studied. The physical processes by which these particles are accelerated to high energy are established. Equations governing a particle motion were transformed in to a closed pair of nonlinear difference equations. The solutions of these equations have shown there exists the energetic threshold below that the electron motion is regular, and when the initial energy is above the threshold an electron moves stochastically. Particle energy spectra and pitch angle electron scattering are described by the Fokker-Planck-Kolmogorov equations. Calculating the stochastic diffusion of electrons due to a spectrum of whistler modes is presented. The parametric dependence of the diffusion coefficients on the plasma particle density, magnitude of wave field, and the strength of magnetic field is studies. It is shown that significant pitch angle diffusion occurs for the Earth radiation belt electrons with energies from a few keV up to a few MeV.

  13. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenneau, S.; Petiteau, D.; Zerrad, M.

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less

  14. Excitation of turbulence by density waves

    NASA Technical Reports Server (NTRS)

    Tichen, C. M.

    1985-01-01

    A nonlinear system describes the microdynamical state of turbulence that is excited by density waves. It consists of an equation of propagation and a master equation. A group-scaling generates the scaled equations of many interacting groups of distribution functions. The two leading groups govern the transport processes of evolution and eddy diffusivity. The remaining sub-groups represent the relaxation for the approach of diffusivity to equilibrium. In strong turbulence, the sub-groups disperse themselves and the ensemble acts like a medium that offers an effective damping to close the hierarchy. The kinetic equation of turbulence is derived. It calculates the eddy viscosity and identifies the effective damping of the assumed medium self-consistently. It formulates the coupling mechanism for the intensification of the turbulent energy at the expense of the wave energy, and the transfer mechanism for the cascade. The spectra of velocity and density fluctuations find the power law k sup-2 and k sup-4, respectively.

  15. Some Fundamental Issues of Mathematical Simulation in Biology

    NASA Astrophysics Data System (ADS)

    Razzhevaikin, V. N.

    2018-02-01

    Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.

  16. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  17. A Simple Mathematical Model Inspired by the Purkinje Cells: From Delayed Travelling Waves to Fractional Diffusion.

    PubMed

    Dipierro, Serena; Valdinoci, Enrico

    2018-07-01

    Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.

  18. Chaotic ion motion in magnetosonic plasma waves

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  19. Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert

    2016-10-01

    The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.

  20. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  1. Frequency-constant Q, unity and disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, N.D.

    1995-12-31

    In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Qmore » = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.« less

  2. Analytical solution of reaction-diffusion equations for calcium wave propagation in a starburst amacrine cell.

    PubMed

    Poznanski, R R

    2010-09-01

    A reaction-diffusion model is presented to encapsulate calcium-induced calcium release (CICR) as a potential mechanism for somatofugal bias of dendritic calcium movement in starburst amacrine cells. Calcium dynamics involves a simple calcium extrusion (pump) and a buffering mechanism of calcium binding proteins homogeneously distributed over the plasma membrane of the endoplasmic reticulum within starburst amacrine cells. The system of reaction-diffusion equations in the excess buffer (or low calcium concentration) approximation are reformulated as a nonlinear Volterra integral equation which is solved analytically via a regular perturbation series expansion in response to calcium feedback from a continuously and uniformly distributed calcium sources. Calculation of luminal calcium diffusion in the absence of buffering enables a wave to travel at distances of 120 μm from the soma to distal tips of a starburst amacrine cell dendrite in 100 msec, yet in the presence of discretely distributed calcium-binding proteins it is unknown whether the propagating calcium wave-front in the somatofugal direction is further impeded by endogenous buffers. If so, this would indicate CICR to be an unlikely mechanism of retinal direction selectivity in starburst amacrine cells.

  3. Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Catto, P. J.; Lee, J.; Ram, A. K.

    2017-10-01

    The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.

  4. Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves

    NASA Astrophysics Data System (ADS)

    Yi, Taishan; Chen, Yuming; Wu, Jianhong

    Reaction diffusion equations with delayed nonlinear reaction terms are used as prototypes to motivate an appropriate abstract formulation of dynamical systems with unimodal nonlinearity. For such non-monotone dynamical systems, we develop a general comparison principle and show how this general comparison principle, coupled with some existing results for monotone dynamical systems, can be used to establish results on the asymptotic speeds of spread and travelling waves. We illustrate our main results by an integral equation which includes a nonlocal delayed reaction diffusion equation and a nonlocal delayed lattice differential system in an unbounded domain, with the non-monotone nonlinearities including the Ricker birth function and the Mackey-Glass hematopoiesis feedback.

  5. Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.; Crawford, F. W.

    1977-01-01

    The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.

  6. Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry; Mizev, Alexey; Mosheva, Elena; Kostarev, Konstantin

    2017-11-01

    We report shock-wave-like structures that are strikingly different from previously observed fingering instabilities, which occur in a two-layer system of miscible fluids reacting by a second-order reaction A +B →S in a vertical Hele-Shaw cell. While the traditional analysis expects the occurrence of a diffusion-controlled convection, we show both experimentally and theoretically that the exothermic neutralization reaction can also trigger a wave with a perfectly planar front and nearly discontinuous change in density across the front. This wave propagates fast compared with the characteristic diffusion times and separates the motionless fluid and the area with anomalously intense convective mixing. We explain its mechanism and introduce a new dimensionless parameter, which allows to predict the appearance of such a pattern in other systems. Moreover, we show that our governing equations, taken in the inviscid limit, are formally analogous to well-known shallow-water equations and adiabatic gas flow equations. Based on this analogy, we define the critical velocity for the onset of the shock wave which is found to be in the perfect agreement with the experiments.

  7. Applications of Random Differential Equations to Engineering Science. Wave Propagation in Turbulent Media and Random Linear Hyperbolic Systems.

    DTIC Science & Technology

    1981-11-10

    1976), 745-754. 4. (with W. C. Tam) Periodic and traveling wave solutions to Volterra - Lotka equation with diffusion. Bull. Math. Biol. 38 (1976), 643...with applications [17,19,20). (5) A general method for reconstructing the mutual coherent function of a static or moving source from the random

  8. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  9. Sound Beams with Shockwave Pulses

    NASA Astrophysics Data System (ADS)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  10. A computationally efficient scheme for the non-linear diffusion equation

    NASA Astrophysics Data System (ADS)

    Termonia, P.; Van de Vyver, H.

    2009-04-01

    This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.

  11. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  12. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungpyo; Wright, John; Bertelli, Nicola

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  13. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE PAGES

    Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...

    2017-04-24

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  14. Modeling boundary measurements of scattered light using the corrected diffusion approximation

    PubMed Central

    Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.

    2012-01-01

    We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102

  15. Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain

    NASA Astrophysics Data System (ADS)

    Chae, Myeongju; Choi, Kyudong; Kang, Kyungkeun; Lee, Jihoon

    2018-07-01

    We consider a simplified model of tumor angiogenesis, described by a Keller-Segel equation on the two dimensional domain (x , y) ∈ R ×Sλ where Sλ is the circle of perimeter λ. It is known that the system allows planar traveling wave solutions of an invading type. In case that λ is sufficiently small, we establish the nonlinear stability of traveling wave solutions in the absence of chemical diffusion if the initial perturbation is sufficiently small in some weighted Sobolev space. When chemical diffusion is present, it can be shown that the system is linearly stable. Lastly, we prove that any solution with our front condition eventually becomes planar under certain regularity conditions.

  16. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  17. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  18. Parameterization of planetary wave breaking in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.

    1991-01-01

    A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.

  19. Relativistic Electron Precipitation: An Observational Study.

    DTIC Science & Technology

    1980-01-01

    al., 1970). These so-called "n + 1/2" waves (- n + 1/2) are found throughout the magnetosphere outside the plasmapause (Kennel et al., 1970; Shaw and...diffusion scattering one requires 2 L D~ . LSD - z ~.(21) 73 where aL = loss cone pitch angle D SD = coefficient for strong diffusion. Equation (20) can be...with substitutions yields a fluctuating field wave amplitude for strong electron diffusion: a." 0- x(23) and 00for f= LSD (24) LRo LRo + For ions

  20. Multiple and exact soliton solutions of the perturbed Korteweg-de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods.

    PubMed

    Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid

    2017-06-01

    In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.

  1. A Note on the Wave Action Density of a Viscous Instability Mode on a Laminar Free-shear Flow

    NASA Technical Reports Server (NTRS)

    Balsa, Thomas F.

    1994-01-01

    Using the assumptions of an incompressible and viscous flow at large Reynolds number, we derive the evolution equation for the wave action density of an instability wave traveling on top of a laminar free-shear flow. The instability is considered to be viscous; the purpose of the present work is to include the cumulative effect of the (locally) small viscous correction to the wave, over length and time scales on which the underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, we generalize our previous work for inviscid waves. This generalization appears as an additional (but usually non-negligible) term in the equation for the wave action. The basic structure of the equation remains unaltered.

  2. Marangoni effect on small-amplitude capillary waves in viscous fluids

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    We derive a general integro-differential equation for the transient behavior of small-amplitude capillary waves on the planar surface of a viscous fluid in the presence of the Marangoni effect. The equation is solved for an insoluble surfactant solution in concentration below the critical micelle concentration undergoing convective-diffusive surface transport. The special case of a diffusion-driven surfactant is considered near the the critical damping wavelength. The Marangoni effect is shown to contribute to the overall damping mechanism, and a first-order term correction to the critical wavelength with respect to the surfactant concentration difference and the Schmidt number is proposed.

  3. Cookbook asymptotics for spiral and scroll waves in excitable media.

    PubMed

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.

  4. Cookbook asymptotics for spiral and scroll waves in excitable media

    NASA Astrophysics Data System (ADS)

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion.

  5. A diffusion approximation for ocean wave scatterings by randomly distributed ice floes

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley

    2016-11-01

    This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.

  6. Diffusion of strongly magnetized cosmic ray particles in a turbulent medium

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.

    1985-01-01

    Cosmic ray (CR) propagation in a turbulent medium is usually considered in the diffusion approximation. Here, the diffusion equation is obtained for strongly magnetized particles in the general form. The influence of a large-scale random magnetic field on CR propagation in interstellar medium is discussed. Cosmic rays are assumed to propagate in a medium with a regular field H and an ensemble of random MHD waves. The energy density of waves on scales smaller than the free path 1 of CR particles is small. The collision integral of the general form which describes interaction between relativistic particles and waves in the quasilinear approximation is used.

  7. Grating formation by a high power radio wave in near-equator ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Suchmore » a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.« less

  8. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  9. Chaotic Motion of Relativistic Electrons Driven by Whistler Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.

    2007-01-01

    Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.

  10. Influence of heat conducting substrates on explosive crystallization in thin layers

    NASA Astrophysics Data System (ADS)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  11. Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.

    2014-12-14

    We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation ofmore » the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less

  12. DREAM3D simulations of inner-belt dynamics

    NASA Astrophysics Data System (ADS)

    Cunningham, G.

    2015-12-01

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.

  13. Unmagnetized diffusion for azimuthally symmetric wave and particle distributions

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Lyons, L. R.

    1988-01-01

    The quasi-linear diffusion of particles from resonant interactions with a spectrum of electrostatic waves is investigated theoretically, extending results obtained for no magnetic field and for strong magnetic fields to cases where the ambient magnetic field which organizes azimuthally symmetric wave and particle distributions does not have to be taken into consideration in evaluating the local interaction. The derivation of the governing equations is explained, and numerical results are presented in extensive graphs and characterized in detail. Slow-mode ion-acoustic waves are shown to be unstable under the plasma conditions studied, and the dependence of resonant-ion diffusion rates with pitch angle, speed, and the distribution of wave energy in wavenumber space is explored. The implications of the present findings for theoretical models of the earth bow shock and plasma-sheet boundary layer are indicated.

  14. Wave theory of turbulence in compressible media

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.

  15. Fisher equation for anisotropic diffusion: simulating South American human dispersals.

    PubMed

    Martino, Luis A; Osella, Ana; Dorso, Claudio; Lanata, José L

    2007-09-01

    The Fisher equation is commonly used to model population dynamics. This equation allows describing reaction-diffusion processes, considering both population growth and diffusion mechanism. Some results have been reported about modeling human dispersion, always assuming isotropic diffusion. Nevertheless, it is well-known that dispersion depends not only on the characteristics of the habitats where individuals are but also on the properties of the places where they intend to move, then isotropic approaches cannot adequately reproduce the evolution of the wave of advance of populations. Solutions to a Fisher equation are difficult to obtain for complex geometries, moreover, when anisotropy has to be considered and so few studies have been conducted in this direction. With this scope in mind, we present in this paper a solution for a Fisher equation, introducing anisotropy. We apply a finite difference method using the Crank-Nicholson approximation and analyze the results as a function of the characteristic parameters. Finally, this methodology is applied to model South American human dispersal.

  16. Beam-plasma instability in the presence of low-frequency turbulence. [during type 3 solar emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Dubois, D. F.

    1982-01-01

    General equations are derived for a linear beam-plasma instability in the presence of low-frequency turbulence. Within a 'quasi-linear' statistical approximation, these equations contain Langmuir wave scattering, diffusion, resonant and nonresonant anomalous absorption, and a 'plasma laser' effect. It is proposed that naturally occurring density irregularities in the solar wind may stabilize the beam-unstable Langmuir waves which occur during type III solar emissions.

  17. Plasma diffusion at the magnetopause? The case of lower hybrid drift waves

    NASA Technical Reports Server (NTRS)

    Treumann, R. A.; Labelle, J.; Pottelette, R.; Gary, S. P.

    1990-01-01

    The diffusion expected from the quasilinear theory of the lower hybrid drift instability at the Earth's magnetopause is recalculated. The resulting diffusion coefficient is in principle just marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various low processes. However, some recent data and simulations seems to indicate that the magnetopause is not consistent with such a soft diffusive equilibrium model. Furthermore, investigation of the nonlinear equations for the lower hybrid waves for magnetopause parameters indicates that the quasilinear state may never arise because coalescence to large wavelengths, followed by collapse once a critical wavelengths is reached, occur on a time scale faster than the quasilinear diffusion. In this case, an inhomogeneous boundary layer is to be expected. More simulations are required over longer time periods to explore whether this nonlinear evolution really takes place at the magnetopause.

  18. Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations

    USDA-ARS?s Scientific Manuscript database

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil sur...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, M.J.; Bourke, W.; Browning, G.L.

    The convergence of spectral model numerical solutions of the global shallow-water equations is examined as a function of the time step and the spectral truncation. The contributions to the errors due to the spatial and temporal discretizations are separately identified and compared. Numerical convergence experiments are performed with the inviscid equations from smooth (Rossby-Haurwitz wave) and observed (R45 atmospheric analysis) initial conditions, and also with the diffusive shallow-water equations. Results are compared with the forced inviscid shallow-water equations case studied by Browning et al. Reduction of the time discretization error by the removal of fast waves from the solution usingmore » initialization is shown. The effects of forcing and diffusion on the convergence are discussed. Time truncation errors are found to dominate when a feature is large scale and well resolved; spatial truncation errors dominate for small-scale features and also for large scale after the small scales have affected them. Possible implications of these results for global atmospheric modeling are discussed. 31 refs., 14 figs., 4 tabs.« less

  20. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  1. Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran

    2017-05-01

    In this paper, we study the traveling wave solutions and minimal wave speed for a class of non-cooperative reaction-diffusion systems consisting of three equations. Based on the eigenvalues, a pair of upper-lower solutions connecting only the invasion-free equilibrium are constructed and the Schauder's fixed-point theorem is applied to show the existence of traveling semi-fronts for an auxiliary system. Then the existence of traveling semi-fronts of original system is obtained by limit arguments. The traveling semi-fronts are proved to connect another equilibrium if natural birth and death rates are not considered and to be persistent if these rates are incorporated. Then non-existence of bounded traveling semi-fronts is obtained by two-sided Laplace transform. Then the above results are applied to some disease-transmission models and a predator-prey model.

  2. Quasi-linear diffusion coefficients for highly oblique whistler mode waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2017-05-01

    Quasi-linear diffusion coefficients are considered for highly oblique whistler mode waves, which exhibit a singular "resonance cone" in cold plasma theory. The refractive index becomes both very large and rapidly varying as a function of wave parameters, making the diffusion coefficients difficult to calculate and to characterize. Since such waves have been repeatedly observed both outside and inside the plasmasphere, this problem has received renewed attention. Here the diffusion equations are analytically treated in the limit of large refractive index μ. It is shown that a common approximation to the refractive index allows the associated "normalization integral" to be evaluated in closed form and that this can be exploited in the numerical evaluation of the exact expression. The overall diffusion coefficient formulas for large μ are then reduced to a very simple form, and the remaining integral and sum over resonances are approximated analytically. These formulas are typically written for a modeled distribution of wave magnetic field intensity, but this may not be appropriate for highly oblique whistlers, which become quasi-electrostatic. Thus, the analysis is also presented in terms of wave electric field intensity. The final results depend strongly on the maximum μ (or μ∥) used to model the wave distribution, so realistic determination of these limiting values becomes paramount.

  3. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  4. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  5. Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.; Liu Kaijun; Winske, Dan

    2009-11-15

    This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less

  6. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  7. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2003-03-01

    A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.

  8. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  9. A Three-Wave Model of the Stratosphere with Coupled Dynamics, Radiation and Photochemistry. Appendix M

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Zhou, Shuntai; Ko, Malcolm K. W.; Sze, Nien-Dak; Salstein, David; Cady-Pereira, Karen

    1997-01-01

    A zonal mean chemistry transport model (2-D CTM) coupled with a semi-spectral dynamical model is used to simulate the distributions of trace gases in the present day atmosphere. The zonal-mean and eddy equations for the velocity and the geopotential height are solved in the semi-spectral dynamical model. The residual mean circulation is derived from these dynamical variables and used to advect the chemical species in the 2- D CTM. Based on a linearized wave transport equation, the eddy diffusion coefficients for chemical tracers are expressed in terms of the amplitude, frequency and growth rate of dynamical waves; local chemical loss rates; and a time constant parameterizing small scale mixing. The contributions to eddy flux are from the time varying wave amplitude (transient eddy), chemical reactions (chemical eddy) and small scale mixing. In spite of the high truncation in the dynamical module (only three longest waves are resolved), the model has simulated many observed characteristics of stratospheric dynamics and distribution of chemical species including ozone. Compared with the values commonly used in 2-D CTMs, the eddy diffusion coefficients for chemical species calculated in this model are smaller, especially in the subtropics. It is also found that the chemical eddy diffusion has only a small effects in determining the distribution of most slow species, including ozone in the stratosphere.

  10. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-08-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  11. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  12. Comparison between results of solution of Burgers' equation and Laplace's equation by Galerkin and least-square finite element methods

    NASA Astrophysics Data System (ADS)

    Adib, Arash; Poorveis, Davood; Mehraban, Farid

    2018-03-01

    In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.

  13. A three-dimensional, finite element model for coastal and estuarine circulation

    USGS Publications Warehouse

    Walters, R.A.

    1992-01-01

    This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.

  14. Birth-jump processes and application to forest fire spotting.

    PubMed

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  15. Stability of wave processes in a rotating electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Peregudin, S. I.; Peregudina, E. S.; Kholodova, S. E.

    2018-05-01

    The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.

  16. Some new solutions for the Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    Ramírez, J.; Romero, J. L.; Tracinà, R.

    2013-09-01

    The well-known Derrida-Lebowitz-Speer-Spohn equation is investigated. By using specific ansätze and the classical symmetries of the equation, several families of new exact solutions have been found. In particular, there appear traveling waves that include compactons and soliton-compactons. Some other solutions conserve the mass and exhibit diffusion and convection processes from an instantaneous source and localized peakons.

  17. DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earliermore » works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.« less

  18. Traveling-Wave Solutions of the Kolmogorov-Petrovskii-Piskunov Equation

    NASA Astrophysics Data System (ADS)

    Pikulin, S. V.

    2018-02-01

    We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov-Petrovskii-Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction-diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.

  19. Simulation of propagation of the HPM in the low-pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Zhigang, LI; Zhongcai, YUAN; Jiachun, WANG; Jiaming, SHI

    2018-02-01

    The propagation of the high-power microwave (HPM) with a frequency of 6 GHz in the low-pressure argon plasma was studied by the method of fluid approximation. The two-dimensional transmission model was built based on the wave equation, the electron drift-diffusion equations and the heavy species transport equations, which were solved by means of COMSOL Multiphysics software. The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma. The attenuation of the transmitted wave increased nonlinearly with the electron density. Specifically, the growth of the attenuation slowed down as the electron density increased uniformly. In addition, the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.

  20. Computation and visualization of spreading depression based on reaction-diffusion equation with recovery

    NASA Astrophysics Data System (ADS)

    Ding, Hongxia; Chen, Shangbin; Zeng, Shuai; Zeng, Shaoqun; Liu, Qian; Luo, Qingming

    2008-12-01

    Spreading depression (SD) shows as propagating suppression of electrical activity, which relates with migraine and focal cerebral ischaemia. The putative mechanism of SD is the reaction-diffusion hypothesis involving potassium ions. In part inspired by optical imaging of two SD waves collision, we aimed to show the merged and large wavefront but not annihilation during collision by experimental and computational study. This paper modified Reggia et al established bistable equation with recovery to compute and visualize SD. Firstly, the media tissue of SD was assumed as one-dimensional continuum. The Crank-Nicholson method was used to solve the modified equations with recovery term. Then, the computation results were extended to two-dimensional space by symmetry. One individual SD was visualized as a concentric wave initiating from the stimulation point. The mergence but not annihilation of two colliding waves of SD was demonstrated. In addition, the dynamics of SD depending on the parameters was studied and presented. The results allied SD with the emerging concepts of volume transmission. This work not only supplied a paradigm to compute and visualize SD but also became a tool to explore the mechanisms of SD.

  1. Wave theory of turbulence in compressible media (acoustic theory of turbulence)

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.

  2. Cusping, transport and variance of solutions to generalized Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Carnaffan, Sean; Kawai, Reiichiro

    2017-06-01

    We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.

  3. Analytical approach for the fractional differential equations by using the extended tanh method

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Yildirim, Ayse

    2018-07-01

    In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.

  4. Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory.

    PubMed

    Contini, D; Martelli, F; Zaccanti, G

    1997-07-01

    The diffusion approximation of the radiative transfer equation is a model used widely to describe photon migration in highly diffusing media and is an important matter in biological tissue optics. An analysis of the time-dependent diffusion equation together with its solutions for the slab geometry and for a semi-infinite diffusing medium are reported. These solutions, presented for both the time-dependent and the continuous wave source, account for the refractive index mismatch between the turbid medium and the surrounding medium. The results have been compared with those obtained when different boundary conditions were assumed. The comparison has shown that the effect of the refractive index mismatch cannot be disregarded. This effect is particularly important for the transmittance. The discussion of results also provides an analysis of the role of the absorption coefficient in the expression of the diffusion coefficient.

  5. Delay-induced Turing-like waves for one-species reaction-diffusion model on a network

    NASA Astrophysics Data System (ADS)

    Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio

    2015-09-01

    A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrida, B.; Spohn, H.

    We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.

  7. 1D Resonance line Broadened Quasilinear (RBQ1D) code for fast ion Alfvenic relaxations and its validations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Duarte, Vinicius; Podesta, Mario

    2017-10-01

    The performance of the burning plasma can be limited by the requirements to confine the superalfvenic fusion products which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using the quasi-linear approach [Berk et al., Ph.Plasmas'96] generalized for this problem recently [Duarte et al., Ph.D.'17]. The generalization involves the resonance line broadened interaction regions with the diffusion coefficient prescribed to find the evolution of the velocity distribution function. The baseline eigenmode structures are found using the NOVA-K code perturbatively [Gorelenkov et al., Ph.Plasmas'99]. A RBQ1D code allowing the diffusion in radial direction is presented here. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The RBQ1D is validated against recent DIIID results [Collins et al., PRL'16]. Supported by the US Department of Energy under DE-AC02-09CH11466.

  8. 3D transient electromagnetic simulation using a modified correspondence principle for wave and diffusion fields

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Ji, Y.; Egbert, G. D.

    2015-12-01

    The fictitious time domain method (FTD), based on the correspondence principle for wave and diffusion fields, has been developed and used over the past few years primarily for marine electromagnetic (EM) modeling. Here we present results of our efforts to apply the FTD approach to land and airborne TEM problems which can reduce the computer time several orders of magnitude and preserve high accuracy. In contrast to the marine case, where sources are in the conductive sea water, we must model the EM fields in the air; to allow for topography air layers must be explicitly included in the computational domain. Furthermore, because sources for most TEM applications generally must be modeled as finite loops, it is useful to solve directly for the impulse response appropriate to the problem geometry, instead of the point-source Green functions typically used for marine problems. Our approach can be summarized as follows: (1) The EM diffusion equation is transformed to a fictitious wave equation. (2) The FTD wave equation is solved with an explicit finite difference time-stepping scheme, with CPML (Convolutional PML) boundary conditions for the whole computational domain including the air and earth , with FTD domain source corresponding to the actual transmitter geometry. Resistivity of the air layers is kept as low as possible, to compromise between efficiency (longer fictitious time step) and accuracy. We have generally found a host/air resistivity contrast of 10-3 is sufficient. (3)A "Modified" Fourier Transform (MFT) allow us recover system's impulse response from the fictitious time domain to the diffusion (frequency) domain. (4) The result is multiplied by the Fourier transformation (FT) of the real source current avoiding time consuming convolutions in the time domain. (5) The inverse FT is employed to get the final full waveform and full time response of the system in the time domain. In general, this method can be used to efficiently solve most time-domain EM simulation problems for non-point sources.

  9. Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium

    NASA Astrophysics Data System (ADS)

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-10-01

    In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].

  10. The Onset of Double Diffusive Convection in a Viscoelastic Fluid-Saturated Porous Layer with Non-Equilibrium Model

    PubMed Central

    Yang, Zhixin; Wang, Shaowei; Zhao, Moli; Li, Shucai; Zhang, Qiangyong

    2013-01-01

    The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically. PMID:24312193

  11. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    PubMed

    Yang, Zhixin; Wang, Shaowei; Zhao, Moli; Li, Shucai; Zhang, Qiangyong

    2013-01-01

    The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  12. Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold.

    PubMed

    Yamada, H; Nakagaki, T; Baker, R E; Maini, P K

    2007-06-01

    In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasm which accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.

  13. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    NASA Astrophysics Data System (ADS)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  14. Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, George I.; Hameiri, Eliezer

    Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less

  15. Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Pantano, Carlos

    2018-01-01

    Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.

  16. Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains

    NASA Astrophysics Data System (ADS)

    Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.

    2004-07-01

    Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.

  17. Spatial pattern dynamics due to the fitness gradient flux in evolutionary games.

    PubMed

    deForest, Russ; Belmonte, Andrew

    2013-06-01

    We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.

  18. Spatial pattern dynamics due to the fitness gradient flux in evolutionary games

    NASA Astrophysics Data System (ADS)

    deForest, Russ; Belmonte, Andrew

    2013-06-01

    We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.

  19. Electron distribution function in a laser plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalal, M.; Stoll, I.

    1983-01-01

    An accurate analytic solution of the Vlasov equation in the one-dimensional case is given for plasma electrons in the potential electric field of a monochromatic high-frequency wave of arbitrary amplitude and spatial modulation allowing for a self-consistent field. The phase velocity of the plasma waves is assumed to be appreciably higher than the electron thermal velocity (the case of nonresonant diffusion).

  20. A new diffusion matrix for whistler mode chorus waves

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard-Piet, Angelica; Thorne, Richard M.; Li, Wen

    2013-10-01

    Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3536 power spectra for upper and lower band chorus for 1.5≤L∗≤10 MLT, magnetic latitude 0°≤|λm|≤60° and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 12:00 MLT. Energy diffusion extends to a few megaelectron volts at large pitch angles >60° and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (<12°). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗=8 even for low levels of geomagnetic activity, while upper band chorus is restricted to mainly L∗<6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few kiloelectron volts near the loss cone up to several megaelectron volts at large pitch angles indicating loss at low energies and net acceleration at high energies.

  1. A space-time discretization procedure for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1989-01-01

    Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.

  2. Quantum dark soliton: Nonperturbative diffusion of phase and position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziarmaga, J.

    2004-12-01

    The dark soliton solution of the Gross-Pitaevskii equation in one dimension has two parameters that do not change the energy of the solution: the global phase of the condensate wave function and the position of the soliton. These degeneracies appear in the Bogoliubov theory as Bogoliubov modes with zero frequencies and zero norms. These 'zero modes' cannot be quantized as the usual Bogoliubov quasiparticle harmonic oscillators. They must be treated in a nonperturbative way. In this paper I develop a nonperturbative theory of zero modes. This theory provides a nonperturbative description of quantum phase diffusion and quantum diffusion of solitonmore » position. An initially well localized wave packet for soliton position is predicted to disperse beyond the width of the soliton.« less

  3. Numerical simulation of electromagnetic wave attenuation in a nonequilibrium chemically reacting hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Nusca, Michael Joseph, Jr.

    The effects of various gasdynamic phenomena on the attenuation of an electromagnetic wave propagating through the nonequilibrium chemically reacting air flow field generated by an aerodynamic body travelling at high velocity is investigated. The nonequilibrium flow field is assumed to consist of seven species including nitric oxide ions and free electrons. The ionization of oxygen and nitrogen atoms is ignored. The aerodynamic body considered is a blunt wedge. The nonequilibrium chemically reacting flow field around this body is numerically simulated using a computer code based on computational fluid dynamics. The computer code solves the Navier-Stokes equations including mass diffusion and heat transfer, using a time-marching, explicit Runge-Kutta scheme. A nonequilibrium air kinetics model consisting of seven species and twenty-eight reactions as well as an equilibrium air model consisting of the same seven species are used. The body surface boundaries are considered as adiabatic or isothermal walls, as well as fully-catalytic and non-catalytic surfaces. Both laminar and turbulent flows are considered; wall generated flow turbulence is simulated using an algebraic mixing length model. An electromagnetic wave is considered as originating from an antenna within the body and is effected by the free electrons in the chemically reacting flow. Analysis of the electromagnetics is performed separately from the fluid dynamic analysis using a series solution of Maxwell's equations valid for the propagation of a long-wavelength plane electromagnetic wave through a thin (i.e., in comparison to wavelength) inhomogeneous plasma layer. The plasma layer is the chemically reacting shock layer around the body. The Navier-Stokes equations are uncoupled from Maxwell's equations. The results of this computational study demonstrate for the first time and in a systematic fashion, the importance of several parameters including equilibrium chemistry, nonequilibrium chemical kinetics, the reaction mechanism, flow viscosity, mass diffusion, and wall boundary conditions on modeling wave attenuation resulting from the interaction of an electromagnetic wave with an aerodynamic plasma. Comparison is made with experimental data.

  4. Rossby wave activity in a two-dimensional model - Closure for wave driving and meridional eddy diffusivity

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Brasseur, Guy

    1988-01-01

    A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.

  5. Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction term and Burgers nonlinear convection.

    PubMed

    Sabelnikov, V A; Lipatnikov, A N

    2014-09-01

    The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear diffusion-reaction equation that is widely used to model premixed turbulent combustion.

  6. Boundary mediated position control of traveling waves

    NASA Astrophysics Data System (ADS)

    Martens, Steffen; Ziepke, Alexander; Engel, Harald

    Reaction control is an essential task in biological systems and chemical process industry. Often, the excitable medium supporting wave propagation exhibits an irregular shape and/or is limited in size. In particular, the analytic treatment of wave phenomena is notoriously difficult due to the spatial modulation of the domain's. Recently, we have provided a first systematic treatment by applying asymptotic perturbation analysis leading to an approximate description that involves a reduction of dimensionality; the 3D RD equation with spatially dependent NFBCs on the reactants reduces to a 1D reaction-diffusion-advection equation. Here, we present a novel method to control the position ϕ (t) of traveling waves in modulated domains according to a prespecified protocol of motion. Given this protocol, the ``optimal'' geometry of reactive domains Q (x) is found as the solution of the perturbatively derived equation of motion. Noteworthy, such a boundary control can be expressed in terms of the uncontrolled wave profile and its propagation velocity, rendering detailed knowledge of the reaction kinetics unnecessary. German Science Foundation DFG through the SFB 910 ''Control of Self-Organizing Nonlinear Systems''.

  7. The {sech}( {\\hat{ξ }} ) -Type Profiles: A Swiss-Army Knife for Exact Analytical Modeling of Thermal Diffusion and Wave Propagation in Graded Media

    NASA Astrophysics Data System (ADS)

    Krapez, J.-C.

    2018-07-01

    This work deals with the exact analytical modeling of transfer phenomena in heterogeneous materials exhibiting one-dimensional continuous variations of their properties. Regarding heat transfer, it has recently been shown that by applying a Liouville transformation and multiple Darboux transformations, infinite sequences of solvable profiles of thermal effusivity can be constructed together with the associated temperature (exact) solutions, all in closed-form expressions (vs. the diffusion-time variable and with a growing number of parameters). In addition, a particular class of profiles, the so-called {sech}( {\\hat{ξ }} ) -type profiles, exhibit high agility and at the same time parsimony. In this paper we delve further into the description of these solvable profiles and their properties. Most importantly, their quadrupole formulation is provided, enabling smooth synthetic profiles of effusivity of arbitrary complexity to be built, and allowing the corresponding temperature dynamic response to be obtained very easily thereafter. Examples are given with increasing variability of the effusivity and an increasing number of elementary profiles. These highly flexible profiles are equally relevant to providing an exact analytical solution to wave propagation problems in 1D graded media (i.e., Maxwell's equations, the acoustic equation, the telegraph equation, etc.). From now on, whether it be for diffusion-like or wave-like problems, when the leading properties present (possibly piecewise-) continuously heterogeneous profiles, the classical staircase model can be advantageously replaced by a "high-level" quadrupole model consisting of one or more {sech}( {\\hat{ξ }} ) -type profiles, which makes the latter a true Swiss-Army knife for analytical modeling.

  8. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion.

    PubMed

    Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E

    2017-09-13

    Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.

  9. Boundary Waves on the Ice Surface Created by Currents

    NASA Astrophysics Data System (ADS)

    Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.

    2013-12-01

    The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance equation at the flow-ice interface. It is assumed that the interfacial heat fluxes of the liquid and ice are determined by the temperature profile, and the Reynolds stress and the turbulent heat flux are expressed by the eddy diffusivity of momentum and the eddy diffusivity of heat, respectively. In addition, the liquid can be divided into two layers; viscous sublayer and turbulent layer. In order to determine the velocity and temperature profile in the liquid, we employ the Prandtl-Taylor analogy which assumes that the velocity profile follows a linear law in the viscous sublayer and a logarithmic law in the turbulent layer, and the eddy diffusivity of heat is described by the eddy diffusivity of momentum and Prandtl number of the liquid. Finally, we obtain the temperature profiles (because the heat transfer equation for the ice reduces to the Laplace equation, the temperature profile in the ice can be easily estimated) and interfacial heat fluxes.

  10. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  11. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  12. Diffusion approximation with polarization and resonance effects for the modelling of seismic waves in strongly scattering small-scale media

    NASA Astrophysics Data System (ADS)

    Margerin, Ludovic

    2013-01-01

    This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.

  13. Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.

    NASA Astrophysics Data System (ADS)

    Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.

    2016-12-01

    The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.

  14. Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior

    NASA Astrophysics Data System (ADS)

    Girardin, Léo

    2018-01-01

    This paper is concerned with non-cooperative parabolic reaction-diffusion systems which share structural similarities with the scalar Fisher-KPP equation. These similarities make it possible to prove, among other results, an extinction and persistence dichotomy and, when persistence occurs, the existence of a positive steady state, the existence of traveling waves with a half-line of possible speeds and a positive minimal speed and the equality between this minimal speed and the spreading speed for the Cauchy problem. Non-cooperative KPP systems can model various phenomena where the following three mechanisms occur: local diffusion in space, linear cooperation and superlinear competition.

  15. Rigorous results for the minimal speed of Kolmogorov-Petrovskii-Piscounov monotonic fronts with a cutoffa)

    NASA Astrophysics Data System (ADS)

    Benguria, Rafael D.; Depassier, M. Cristina; Loss, Michael

    2012-12-01

    We study the effect of a cutoff on the speed of pulled fronts of the one-dimensional reaction diffusion equation. To accomplish this, we first use variational techniques to prove the existence of a heteroclinic orbit in phase space for traveling wave solutions of the corresponding reaction diffusion equation under conditions that include discontinuous reaction profiles. This existence result allows us to prove rigorous upper and lower bounds on the minimal speed of monotonic fronts in terms of the cut-off parameter ɛ. From these bounds we estimate the range of validity of the Brunet-Derrida formula for a general class of reaction terms.

  16. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  17. DREAM3D simulations of inner-belt dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less

  18. Boundary-induced pattern formation from uniform temporal oscillation

    NASA Astrophysics Data System (ADS)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  19. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  20. Stochastic fire-diffuse-fire model with realistic cluster dynamics.

    PubMed

    Calabrese, Ana; Fraiman, Daniel; Zysman, Daniel; Ponce Dawson, Silvina

    2010-09-01

    Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R 's that replicates the experimental observations reported in [D. Fraiman, Biophys. J. 90, 3897 (2006)]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.

  1. Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves.

    PubMed

    Trujillo, Francisco J; Eberhardt, Sebastian; Möller, Dirk; Dual, Jurg; Knoerzer, Kai

    2013-03-01

    A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  2. The cosmic-ray shock structure problem for relativistic shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  3. Millimeter wave generation by relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Kuo, S. S.; Cheo, B. R.; Tiong, K. K.; Whang, M. H.

    1985-11-01

    The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effects of resonance broadening and perturbation expansion are treated simultaneously without time securities. The renormalization procedure is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to imhomogeneous plasma and the relationship between the transformation and ponderomotive force is obtained.

  4. High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations

    NASA Astrophysics Data System (ADS)

    Khawaja, U. Al; Al-Refai, M.; Shchedrin, Gavriil; Carr, Lincoln D.

    2018-06-01

    Fractional nonlinear differential equations present an interplay between two common and important effective descriptions used to simplify high dimensional or more complicated theories: nonlinearity and fractional derivatives. These effective descriptions thus appear commonly in physical and mathematical modeling. We present a new series method providing systematic controlled accuracy for solutions of fractional nonlinear differential equations, including the fractional nonlinear Schrödinger equation and the fractional nonlinear diffusion equation. The method relies on spatially iterative use of power series expansions. Our approach permits an arbitrarily large radius of convergence and thus solves the typical divergence problem endemic to power series approaches. In the specific case of the fractional nonlinear Schrödinger equation we find fractional generalizations of cnoidal waves of Jacobi elliptic functions as well as a fractional bright soliton. For the fractional nonlinear diffusion equation we find the combination of fractional and nonlinear effects results in a more strongly localized solution which nevertheless still exhibits power law tails, albeit at a much lower density.

  5. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    NASA Astrophysics Data System (ADS)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  6. Development and Application of Compatible Discretizations of Maxwell's Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Koning, J; Rieben, R

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less

  7. Traveling waves in a coupled reaction-diffusion and difference model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Adimy, M.; Chekroun, A.; Kazmierczak, B.

    2017-04-01

    The formation and development of blood cells is a very complex process, called hematopoiesis. This process involves a small population of cells called hematopoietic stem cells (HSCs). The HSCs are undifferentiated cells, located in the bone marrow before they become mature blood cells and enter the blood stream. They have a unique ability to produce either similar cells (self-renewal), or cells engaged in one of different lineages of blood cells: red blood cells, white cells and platelets (differentiation). The HSCs can be either in a proliferating or in a quiescent phase. In this paper, we distinguish between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. We propose a mathematical model describing the dynamics of HSC population, taking into account their spatial distribution. The resulting model is a coupled reaction-diffusion equation and difference equation with delay. We study the existence of monotone traveling wave fronts and the asymptotic speed of spread.

  8. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    de Brito, P. E.; Nazareno, H. N.

    2012-09-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  9. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions, for both the physical and phenomenological models.

  10. New technique for excitation of bulk and surface spin waves in ferromagnets

    NASA Astrophysics Data System (ADS)

    Bogacz, S. A.; Ketterson, J. B.

    1985-09-01

    A meander-line magnetic transducer is discussed in the context of bulk and surface spin-wave generation in ferromagnets. The magnetic field created by the transducer was calculated in closed analytic form for this model. The linear response of the ferromagnet to the inhomogenous surface disturbance of arbitrary ω and k was obtained as a self-consistent solution to the Bloch equation of motion and the Maxwell equations, subject to appropriate boundary condition. In particular, the energy flux through the boundary displays a sharp resonantlike absorption maximum concentrated at the frequency of the magnetostatic Damon-Eshbach (DE) surface mode; furthermore, the energy transfer spectrum is cut off abruptly below the threshold frequency of the bulk spin waves. The application of the meander line to the spin diffusion problem in NMR is also discussed.

  11. On the solutions of fractional order of evolution equations

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, V. F.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-01-01

    In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.

  12. Data-driven discovery of partial differential equations.

    PubMed

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  13. Modeling of sedimentation and resuspension processes induced by intensive internal gravity waves in the coastal water systems with the use of the advection-diffusion equation for sediment concentration

    NASA Astrophysics Data System (ADS)

    Rouvinskaya, Ekaterina; Kurkin, Andrey; Kurkina, Oxana

    2017-04-01

    Intensive internal gravity waves influence bottom topography in the coastal zone. They induce substantial flows in the bottom layer that are essential for the formation of suspension and for the sediment transport. It is necessary to develop a mathematical model to predict the state of the seabed near the coastline to assess and ensure safety during the building and operation of the hydraulic engineering constructions. There are many models which are used to predict the impact of storm waves on the sediment transport processes. Such models for the impact of the tsunami waves are also actively developing. In recent years, the influence of intense internal waves on the sedimentation processes is also of a special interest. In this study we adapt one of such models, that is based on the advection-diffusion equation and allows to study processes of resuspension under the influence of internal gravity waves in the coastal zone, for solving the specific practical problems. During the numerical simulation precomputed velocity values are substituted in the advection - diffusion equation for sediment concentration at each time step and each node of the computational grid. Velocity values are obtained by the simulation of the internal waves' dynamics by using the IGW Research software package for numerical integration of fully nonlinear two-dimensional (vertical plane) system of equations of hydrodynamics of inviscid incompressible stratified fluid in the Boussinesq approximation bearing in mind the impact of barotropic tide. It is necessary to set the initial velocity and density distribution in the computational domain, bottom topography, as well as the value of the Coriolis parameter and, if necessary, the parameters of the tidal wave to carry out numerical calculations in the software package IGW Research. To initialize the background conditions of the numerical model we used data records obtained in the summer in the southern part of the shelf zone of Sakhalin Island from 1999 to 2003, provided by SakhNIRO, Russia. The process of assimilation of field data with numerical model is described in detail in our previous studies. It has been shown that process of suspension formation is quite intense for the investigated condition. Concentration of suspended particles significantly increases during the tide, especially on naturally uneven bottom relief as well as on the right boundary of the computational domain (near shoreline). Pronounced nepheloid layer is produced. Its thickness is about 5.6 m. At the phase of low tide, the process of suspension sediment production stops, and suspended particles are beginning to settle because of the small vertical velocities. Thickness of nepheloid layer is actively reduced. Obviously, this should lead to a change in the bottom relief. The presented results of research were obtained with the support of the Russian President's scholarship for young scientists and graduate students SP-2311.2016.5.

  14. Theory of finite disturbances in a centrifugal compression system with a vaneless radial diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1990-01-01

    A previous small perturbation analysis of circumferential waves in circumferential compression systems, assuming inviscid flow, is shown to be consistent with observations that narrow diffusers are more stable than wide ones, when boundary layer displacement effect is included. The Moore-Greitzer analysis for finite strength transients containing both surge and rotating stall in axial machines is adapted for a centrifugal compression system. Under certain assumptions, and except for a new second order swirl, the diffuser velocity field, including resonant singularities, can be carried over from the previous inviscid linear analysis. Nonlinear transient equations are derived and applied in a simple example to show that throttling through a resonant value of flow coefficient must occur in a sudden surge-like drop, accompanied by a transient rotating wave. This inner solution is superseded by an outer surge response on a longer time scale. Surge may occur purely as result of circumferential wave resonance. Numerical results are shown for various parametric choices relating to throttle schedule and the characteristic slope. A number of circumferential modes considered simultaneously is briefly discussed.

  15. Multivariate space - time analysis of PRE-STORM precipitation

    NASA Technical Reports Server (NTRS)

    Polyak, Ilya; North, Gerald R.; Valdes, Juan B.

    1994-01-01

    This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.

  16. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guymer, T. M., E-mail: Thomas.Guymer@awe.co.uk; Moore, A. S.; Morton, J.

    A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C{sub 8}H{sub 7}Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets inmore » both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.« less

  17. Correspondence between discrete and continuous models of excitable media: trigger waves

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.

    1997-01-01

    We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.

  18. Analysis of sound propagation in ducts using the wave envelope concept

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1974-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.

  19. Eckhaus-Benjamin-Feir Instability in Rotating Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Ecke, R.E.

    1997-06-01

    We report experimental measurements of a traveling-wave state in rotating Rayleigh-B{acute e}nard convection. The fluid was water with a Prandtl number of 6.3 and a dimensionless rotation rate of 274. The marginal and Eckhaus-Benjamin-Feir stability boundaries were determined and the local amplitude and wave number were obtained from demodulation of shadowgraph images. The phase-diffusion coefficient and group velocity were measured in the stable wave number band. This system was found to be well described by the one-dimensional complex Ginzburg-Landau equation. {copyright} {ital 1997} {ital The American Physical Society}

  20. Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein-Gordon potentials

    DOE PAGES

    Baczewski, Andrew David; Vikram, Melapudi; Shanker, Balasubramaniam; ...

    2010-08-27

    Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O(N s 2N t 2), where N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The firstmore » scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O(N sN tlog 2N t). Furthermore, several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.« less

  1. New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.

  2. On the propagation of elasto-thermodiffusive surface waves in heat-conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.; Sharma, Y. D.; Sharma, P. K.

    2008-09-01

    The present paper deals with the study of the propagation of Rayleigh surface waves in homogeneous isotropic, thermodiffusive elastic half-space. After developing the formal solution of the model, the secular equations for stress free, thermally insulated or isothermal, and isoconcentrated boundary conditions of the half-space have been obtained. The secular equations have been solved by using irreducible Cardano's method with the help of DeMoivre's theorem in order to obtain phase velocity and attenuation coefficient of waves under consideration. The motion of the surface particles during the Rayleigh surface wave propagation is also discussed and found to be elliptical in general. The inclinations of wave normal with the major axis of the elliptical path of a typical particle have also been computed. Finally, the numerically simulated results regarding phase velocity, attenuation coefficient, specific loss and thermo-mechanical coupling factors of thermoelastic diffusive waves have been obtained and presented graphically. Some very interesting and useful characteristics of surface acoustic waves have been obtained, which may help in improving the fabrication quality of optical and electronic devices in addition to construction and design of materials such as semiconductors and composite structures. Therefore, this work finds applications in the geophysics and electronics industry.

  3. Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations

    NASA Astrophysics Data System (ADS)

    Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.

    2017-12-01

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by comparing with other soil erosion models. The model performed well when the average soil particle size is relatively large. The performance of the soil erosion model has been further validated by comparing with selected experimental datasets from the literature.

  4. Regular Wave Propagation Out of Noise in Chemical Active Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, S.; Sendina-Nadal, I.; Perez-Munuzuri, V.

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  5. Lee wave breaking region: the map of instability development scenarios

    NASA Astrophysics Data System (ADS)

    Yakovenko, S. N.

    2017-10-01

    Numerical study of a stably stratified flow above the two-dimensional cosine-shaped obstacle has been performed by DNS and LES. These methods were implemented to solve the three-dimensional Navier-Stokes equations in the Boussinesq approximation, together with by the scalar diffusion equation. The results of scanning in the wide ranges of physical parameters (Reynolds and Prandtl/Schmidt numbers relating to laboratory experiment cases and atmospheric or oceanic situations) are presented for instability and turbulence development scenarios in the overturning internal lee waves. The latter is generated by the obstacle in a flow with the constant inflow values of velocity and stable density gradient. Evolution of lee-wave breaking is explored by visualization of velocity and scalar (density) fields, and the analysis of spectra. Based on the numerical simulation results, the power-law dependence on Reynolds number is demonstrated for the wavelength of the most unstable perturbation.

  6. Hot Electrons from Two-Plasmon Decay

    NASA Astrophysics Data System (ADS)

    Russell, D. A.; Dubois, D. F.

    2000-10-01

    We solve, self-consistently, the relativistic quasilinear diffusion equation and Zakharov's model equations of Langmuir wave (LW) and ion acoustic wave (IAW) turbulence, in two dimensions, for saturated states of the Two-Plasmon Decay instability. Parameters are those of the shorter gradient scale-length (50 microns) high temperature (4 keV) inhomogeneous plasmas anticipated at LLE’s Omega laser facility. We calculate the fraction of incident laser power absorbed in hot electron production as a function of laser intensity for a plane-wave laser field propagating parallel to the background density gradient. Two distinct regimes are identified: In the strong-turbulent regime, hot electron bursts occur intermittently in time, well correlated with collapse in the LW and IAW fields. A significant fraction of the incident laser power ( ~10%) is absorbed by hot electrons during a single burst. In the weak or convective regime, relatively constant rates of hot electron production are observed at much reduced intensities.

  7. Langevin approach to a chemical wave front: Selection of the propagation velocity in the presence of internal noise

    NASA Astrophysics Data System (ADS)

    Lemarchand, A.; Lesne, A.; Mareschal, M.

    1995-05-01

    The reaction-diffusion equation associated with the Fisher chemical model A+B-->2A admits wave-front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity vmin, as predicted by the marginal stability criterion. In order to test the relevance of this deterministic description we investigate the macroscopic consequences, on the velocity and the width of the front, of the intrinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin equations, deduced analytically from the master equation within a system size expansion procedure. We show that the mean profile associated with the stochastic solution propagates faster than the deterministic solution at a velocity up to 25% greater than vmin.

  8. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    NASA Astrophysics Data System (ADS)

    Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-01

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  9. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  10. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density,more » particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.« less

  11. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  12. Theoretical aspects of tidal and planetary wave propagation at thermospheric heights

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1977-01-01

    A simple semiquantitative model is presented which allows analytic solutions of tidal and planetary wave propagation at thermospheric heights. This model is based on perturbation approximation and mode separation. The effects of viscosity and heat conduction are parameterized by Rayleigh friction and Newtonian cooling. Because of this simplicity, one gains a clear physical insight into basic features of atmospheric wave propagation. In particular, we discuss the meridional structures of pressure and horizontal wind (the solutions of Laplace's equation) and their modification due to dissipative effects at thermospheric heights. Furthermore, we solve the equations governing the height structure of the wave modes and arrive at a very simple asymptotic solution valid in the upper part of the thermosphere. That 'system transfer function' of the thermosphere allows one to estimate immediately the reaction of the thermospheric wave mode parameters such as pressure, temperature, and winds to an external heat source of arbitrary temporal and spatial distribution. Finally, the diffusion effects of the minor constituents due to the global wind circulation are discussed, and some results of numerical calculations are presented.

  13. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    PubMed

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  14. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    NASA Astrophysics Data System (ADS)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  15. Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies

    DOE PAGES

    Camelio, Giovanni; Lovato, Alessandro; Gualtieri, Leonardo; ...

    2017-08-30

    In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos. Most of this energy is emitted through neutrinos, but a fraction of it can be released through gravitational waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase using a general relativistic numerical code, and a recently proposed finite temperature, many-body equation of state; from this we consistently compute the diffusion coefficients driving the evolution. To include the many-body equation of state, we develop a new fittingmore » formula for the high density baryon free energy at finite temperature and intermediate proton fraction. Here, we estimate the emitted neutrino signal, assessing its detectability by present terrestrial detectors, and we determine the frequencies and damping times of the quasinormal modes which would characterize the gravitational wave signal emitted in this stage.« less

  16. Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camelio, Giovanni; Lovato, Alessandro; Gualtieri, Leonardo

    In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos. Most of this energy is emitted through neutrinos, but a fraction of it can be released through gravitational waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase using a general relativistic numerical code, and a recently proposed finite temperature, many-body equation of state; from this we consistently compute the diffusion coefficients driving the evolution. To include the many-body equation of state, we develop a new fittingmore » formula for the high density baryon free energy at finite temperature and intermediate proton fraction. Here, we estimate the emitted neutrino signal, assessing its detectability by present terrestrial detectors, and we determine the frequencies and damping times of the quasinormal modes which would characterize the gravitational wave signal emitted in this stage.« less

  17. Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2011-05-01

    A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate.

  18. Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.

    NASA Astrophysics Data System (ADS)

    Carlen, Eric Anders

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.

  19. A quasilinear operator retaining magnetic drift effects in tokamak geometry

    NASA Astrophysics Data System (ADS)

    Catto, Peter J.; Lee, Jungpyo; Ram, Abhay K.

    2017-12-01

    The interaction of radio frequency waves with charged particles in a magnetized plasma is usually described by the quasilinear operator that was originally formulated by Kennel & Engelmann (Phys. Fluids, vol. 9, 1966, pp. 2377-2388). In their formulation the plasma is assumed to be homogenous and embedded in a uniform magnetic field. In tokamak plasmas the Kennel-Engelmann operator does not capture the magnetic drifts of the particles that are inherent to the non-uniform magnetic field. To overcome this deficiency a combined drift and gyrokinetic derivation is employed to derive the quasilinear operator for radio frequency heating and current drive in a tokamak with magnetic drifts retained. The derivation requires retaining the magnetic moment to higher order in both the unperturbed and perturbed kinetic equations. The formal prescription for determining the perturbed distribution function then follows a novel procedure in which two non-resonant terms must be evaluated explicitly. The systematic analysis leads to a diffusion equation that is compact and completely expressed in terms of the drift kinetic variables. The equation is not transit averaged, and satisfies the entropy principle, while retaining the full poloidal angle variation without resorting to Fourier decomposition. As the diffusion equation is in physical variables, it can be implemented in any computational code. In the Kennel-Engelmann formalism, the wave-particle resonant delta function is either for the Landau resonance or the Doppler shifted cyclotron resonance. In the combined gyro and drift kinetic approach, a term related to the magnetic drift modifies the resonance condition.

  20. Data-driven discovery of partial differential equations

    PubMed Central

    Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2017-01-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044

  1. Modified Chapman-Enskog moment approach to diffusive phonon heat transport.

    PubMed

    Banach, Zbigniew; Larecki, Wieslaw

    2008-12-01

    A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.

  2. New Quantum Diffusion Monte Carlo Method for strong field time dependent problems

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2017-04-01

    We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.

  3. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.

  4. Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatyana A.

    2004-07-01

    From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.

  5. Theory and simulation of time-fractional fluid diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Sanchez-Sesma, Francisco J.; Luzón, Francisco; Perez Gavilán, Juan J.

    2013-08-01

    We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald-Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’.

  6. Revisited Fisher's equation in a new outlook: A fractional derivative approach

    NASA Astrophysics Data System (ADS)

    Alquran, Marwan; Al-Khaled, Kamel; Sardar, Tridip; Chattopadhyay, Joydev

    2015-11-01

    The well-known Fisher equation with fractional derivative is considered to provide some characteristics of memory embedded into the system. The modified model is analyzed both analytically and numerically. A comparatively new technique residual power series method is used for finding approximate solutions of the modified Fisher model. A new technique combining Sinc-collocation and finite difference method is used for numerical study. The abundance of the bird species Phalacrocorax carbois considered as a test bed to validate the model outcome using estimated parameters. We conjecture non-diffusive and diffusive fractional Fisher equation represents the same dynamics in the interval (memory index, α ∈(0.8384 , 0.9986)). We also observe that when the value of memory index is close to zero, the solutions bifurcate and produce a wave-like pattern. We conclude that the survivability of the species increases for long range memory index. These findings are similar to Fisher observation and act in a similar fashion that advantageous genes do.

  7. Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.; Oskolkov, D.

    2018-03-01

    A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

  8. Origin of Diffusion in Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Benisti, Didier

    1996-11-01

    Without making any kind of ``loss of memory'' hypothesis, a diffusion equation is derived for the Hamiltonian dynamics defined by H = p^2 / 2 + A summ = -M^M \\cos (q - mt + \\varphi_m), where the \\varphi_m's are fixed random phases. The key point of the derivation is a property of locality for the waves inducing transport. Using perturbation theory, it is shown that only waves whose phase velocities meet the condition mid v_\\varphi - p (t) mid <= α A^2/3, where α is a constant close to 5, play a relevant role for the statistical properties of the dynamics. This implies that, at each time, a particle can be considered as being acted upon only by these nearby waves. Thus, after a shift of momentum of 2 α A^2/3, a particle feels the influence of different waves, with different phases \\varphi_m's, from the ones it initially experienced. Because the phases \\varphi_m's are random, a shift of momentum of 2 α A^2/3 then corresponds to the visit of a dynamical system independent from the previous one. This is what is regarded as being the cause of diffusion. Following this idea, one can predict that the force decorrelation, respectively the Gaussianity of the momentum distribution function, is well established after an average change of momentum close to 2 α A^2/3, respectively 4 α A^2/3. These predictions are in total agreement with the results of the numerical computations. Finally, a careful investigation of the initial behavior of < Δ p^2 (t) > enables one to prove the convergence of the diffusion coefficient to its quasilinear value when the amplitude A of the waves goes to infinity. The author gratefully acknowledges the collaboration of Dominique Escande, under whose supervision this work was carried out.

  9. Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation

    NASA Astrophysics Data System (ADS)

    Irisov, V.

    2012-12-01

    Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we consider modifications of the model equation, which can be done to describe gravity-capillary and capillary waves. An obvious correction is to add viscous dissipation. A little less obvious is a transition from 4-wave to 3-wave interaction. The model allows one to include easily generation of parasitic capillary waves as it was proposed by Kudryavtsev et al. [2003]. A modification of dissipation term can explain an "overshoot" phenomenon observed in JONSWAP spectrum. These examples demonstrate that the proposed model is quite flexible and can be used to account for various physical phenomena. The resulting balance equation is easy to integrate using a personal computer and necessity of its numerical solution is paid by the model flexibility and better physical background compared with empirical spectra. References Hasselmann, K., J. Fluid Mech., 12, pp.481-500, 1962. Hwang, P., and M. Sletten, J. Geophys. Res., 113, doi:10.1029/2007JC004277, 2008. Kudryavtsev, V., et al., J. Geophys. Res., 108 (C3), doi:10.1029/2001JC001003, 2003. Plant, W. J., J. Geophys. Res., vol. 87, pp. 1961-1967, 1982. Zakharov, V., and A. Pushkarev, Nonlinear Processes in Geophysics, 6, pp.1-10, 1999. Zakharov, V., Eur. J. Mech. B/Fluids, 18, pp.327-344, 1999.

  10. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  11. On long-time instabilities in staggered finite difference simulations of the seismic acoustic wave equations on discontinuous grids

    NASA Astrophysics Data System (ADS)

    Gao, Longfei; Ketcheson, David; Keyes, David

    2018-02-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.

  12. An Investigation of Wave Propagations in Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    2004-01-01

    Analysis of the discontinuous Galerkin method has been carried out for one- and two-dimensional system of hyperbolic equations. Analytical, as well as numerical, properties of wave propagation in a DGM scheme are derived and verified with direct numerical simulations. In addition to a systematic examination of the dissipation and dispersion errors, behaviours of a DG scheme at an interface of two different grid topologies are also studied. Under the same framework, a quantitative discrete analysis of various artificial boundary conditions is also conducted. Progress has been made in numerical boundary condition treatment that is closely related to the application of DGM in aeroacoustics problems. Finally, Fourier analysis of DGM for the Convective diffusion equation has also be studied in connection with the application of DG schemes for the Navier-Stokes equations. This research has resulted in five(5) publications, plus one additional manuscript in preparation, four(4) conference presentations, and three(3) departmental seminars, as summarized in part II. Abstracts of papers are given in part 111 of this report.

  13. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

    PubMed

    Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F

    2010-07-01

    Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

  14. Modeling of Nonlinear Hydrodynamics of the Coastal Areas of the Black Sea by the Chain of the Proprietary and Open Source Models

    NASA Astrophysics Data System (ADS)

    Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim

    2014-05-01

    The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.

  15. Quasilinear analysis of ion Bernstein and lower hybrid waves synergy

    NASA Astrophysics Data System (ADS)

    Paoletti, F.; Cardinali, A.; Shoucri, M.; Shkarofsky, A.; Bernabei, S.; Ono, M.

    1996-02-01

    A quasilinear analysis of the absorption of Ion Bernstein Wave (IBW) by the electron population of the plasma is performed. It uses an analytical calculation of the amplitude of the electric field along the trajectory to obtain the quasilinear diffusion coefficient. A numerical integration of the Fokker-Planck equation is performed together with the dynamical evolution of the IBW and Lower Hybrid Wave (LHW) ray trajectories. The damping of IBW is calculated on the distorted distribution function generated by the previous application of Lower Hybrid Current Drive (LHCD) which has bridged the n∥-gap. This calculation is particularly relevant because of the IBW/LHW experiments on the Princeton Beta Experiment-Modified (PBX-M).

  16. Spectra of turbulently advected scalars that have small Schmidt number

    NASA Astrophysics Data System (ADS)

    Hill, Reginald J.

    2017-09-01

    Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.

  17. Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, M.

    1992-01-01

    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.

  18. A boundary integral approach in primitive variables for free surface flows

    NASA Astrophysics Data System (ADS)

    Casciola, C.; Piva, R.

    The boundary integral formulation, very efficient for free surface potential flows, was considered for its possible extension to rotational flows either inviscid or viscous. We first analyze a general formulation for unsteady Navier-Stokes equations in primitive variables, which reduces to a representation for the Euler equations in the limiting case of Reynolds infinity. A first simplified model for rotational flows, obtained by decoupling kinematics and dynamics, reduces the integral equations to a known kinematical form whose mathematical and numerical properties have been studied. The dynamics equations to complete the model are obtained for the free surface and the wake. A simple and efficient scheme for the study of the non linear evolution of the wave system and its interaction with the body wake is presented. A steady state version for the calculation of the wave resistance is also reported. A second model was proposed for the simulation of rotational separated regions, by coupling the integral equations in velocity with an integral equation for the vorticity at the body boundary. The same procedure may be extended to include the diffusion of the vorticity in the flowfield. The vortex shedding from a cylindrical body in unsteady motion is discussed, as a first application of the model.

  19. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    NASA Astrophysics Data System (ADS)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  20. Mid-infrared rogue wave generation in chalcogenide fibers

    NASA Astrophysics Data System (ADS)

    Liu, Lai; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2017-02-01

    The supercontinuum generation and rogue wave generation in a step-index chalcogenide fiber are numerically investigated by solving the generalized nonlinear Schrödinger equation. Two noise models have been used to model the noise of the pump laser pulses to investigate the consistency of the noise modeling in rogue wave generation. First noise model is 0.1% amplitude noise which has been used in the report of rogue wave generation. Second noise model is the widely used one-photon-per-mode-noise and phase diffusion-noise. The results show that these two commonly used noise models have a good consistency in the simulations of rogue wave generation. The results also show that if the pump laser pulses carry more noise, the chance of a rogue wave with a high peak power becomes higher. This is harmful to the SC generation by using picosecond lasers in the chalcogenide fibers.

  1. Model of electron lifetimes inside the plasmasphere calculated using a CRRES derived hiss wave amplitude model

    NASA Astrophysics Data System (ADS)

    Orlova, Ksenia; Spasojevic, Maria; Shprits, Yuri

    Particle populations in the inner magnetosphere can change by orders of magnitude on very short time scales. For the last decade observations and theoretical computations showed that resonant interaction of electrons with various plasma waves plays an important role in acceleration and loss mechanisms. Using data from the CRRES plasma wave experiment, we develop quadratic fits to the mean of the wave amplitude squared for plasmaspheric hiss as a function of geomagnetic activity (Kp) and magnetic latitude (lambda) for the dayside (6

  2. The effects of noise on binocular rivalry waves: a stochastic neural field model

    NASA Astrophysics Data System (ADS)

    Webber, Matthew A.; Bressloff, Paul C.

    2013-03-01

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave.

  3. Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves

    NASA Astrophysics Data System (ADS)

    Ni, Binbin; Zou, Zhengyang; Fu, Song; Cao, Xing; Gu, Xudong; Xiang, Zheng

    2018-02-01

    Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within ±3° of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5°-9.2° both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of—(15.7°-17.5°) outside the plasmasphere with a smaller amplitude about 81 pT. Detailed test particle simulations quantify the electron resonant scattering rates by the off-equatorial MS waves to find that they can cause the pitch angle scattering and momentum diffusion of radiation belt electrons with equatorial pitch angles < 75° or < 58° (depending on the wave latitudinal coverage) on timescales of a day. Subsequent two-dimensional Fokker-Planck diffusion simulations indicate that the strong off-equatorial MS waves are capable of efficiently transporting high pitch angle electrons to lower pitch angles to facilitate the formation of radiation belt electron butterfly distributions for a broad energy range from 100 keV to >1 MeV within an hour. Our study clearly demonstrates that the presence of off-equatorial MS waves, in addition to equatorial MS waves, can contribute importantly to the dynamical variations of radiation belt electron fluxes and their pitch angle distribution.

  4. Statistical analysis of vibration in tyres

    NASA Astrophysics Data System (ADS)

    Le Bot, Alain; Bazari, Zakia; Klein, Philippe; Lelong, Joël

    2017-03-01

    The vibration in tyres submitted to random forces in the contact zone is investigated with the model of prestressed orthotropic plate on visco-elastic foundation. It is shown that beyond a cut-on frequency a single wave propagates whose speed is directional-dependent. A systematic numerical exploration of the governing equation solutions shows that three regimes may exist in such plates. These are modal field, diffuse field and free field. For actual tyres which present a high level of damping, the passage from low to high frequencies generally explores the modal and free field regimes but not the diffuse field regime.

  5. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  6. Fractional Diffusion Equations and Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  7. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    NASA Astrophysics Data System (ADS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-09-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  8. Role of Multiple Atmospheric Reflections in Formation of Electron Distribution Function in the Diffuse Aurora Region. Chapter 9

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Himwich, Elizabeth W.; Glocer, Alex; Sibeck, David G.

    2015-01-01

    The precipitation of high-energy magnetospheric electrons (E greater than 500-600 electronvolts) in the diffuse aurora contributes significant energy flux into Earth's ionosphere. In the diffuse aurora, precipitating electrons initially injected from the plasmasheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can be additionally reflected back into the magnetosphere by the two magnetically conjugated atmospheres, leading to a series of multiple reflections that can greatly influence the initially precipitating flux at the upper ionospheric boundary (700-800 kilometers) and the resultant population of secondary electrons and electrons cascading toward lower energies. We present the solution of the Boltzmann.Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E is less than or equal to 600 electronvolts) and their energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account the role of multiple atmospheric reflections of the precipitated electrons that were initially moved into the loss cone via wave.particle interaction processes in Earth's plasmasheet.

  9. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulationmore » results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.« less

  10. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  11. Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels

    2016-04-01

    Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.

  12. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.

    PubMed

    Louisnard, O

    2012-01-01

    The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bubbles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a 1D standing wave configuration. The expected strong attenuation is not only observed but furthermore, the examination of the phase between the pressure field and its gradient clearly demonstrates that a traveling wave appears in the medium. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Effects of whistler mode hiss waves on the radiation belts structure during quiet times

    NASA Astrophysics Data System (ADS)

    Ripoll, J. F.; Santolik, O.; Reeves, G. D.; Kurth, W. S.; Denton, M.; Loridan, V.; Thaller, S. A.; Cunningham, G.; Kletzing, C.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, S.; Drozdov, A.; Cervantes Villa, J. S.; Shprits, Y.

    2017-12-01

    We present dynamic Fokker-Planck simulations of the electron radiation belts and slot formation during the quiet days that can follow a storm. Simulations are made for all energies and L-shells between 2 and 6 in the view of recovering the observations of two particular events. Pitch angle diffusion is essential to energy structure of the belts and slot region. Pitch angle diffusion is computed from data-driven spatially and temporally-resolved whistler mode hiss wave and ambient plasma observations from the Van Allen Probes satellites. The simulations are performed either with a 3D formulation that uses pitch angle diffusion coefficients or with a simpler 1D Fokker-Planck equation based on losses computed from a lifetime. Validation is carried out globally against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion coefficients, electron lifetimes, and pitch angle diffusion coefficients. We discuss which models allow to recover the observed "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. Periods when the plasmasphere extends beyond L 5 favor long-lasting hiss losses from the outer belt. Through these simulations, we explain the full structure in energy and L-shell of the belts and the slot formation by hiss scattering during quiet storm recovery.

  14. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  15. Effective Algorithm for Detection and Correction of the Wave Reconstruction Errors Caused by the Tilt of Reference Wave in Phase-shifting Interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying

    2010-04-01

    In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.

  16. Solution Methods for Certain Evolution Equations

    NASA Astrophysics Data System (ADS)

    Vega-Guzman, Jose Manuel

    Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.

  17. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  18. Scattering of Gaussian Beams by Disordered Particulate Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.

    2016-01-01

    A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.

  19. Viscoelastic representation of surface waves in patchy saturated poroelastic media

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi

    2014-08-01

    Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.

  20. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    PubMed

    Weise, Louis D; Panfilov, Alexander V

    2011-01-01

    Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  1. Diffuse Optical Tomography for Brain Imaging: Continuous Wave Instrumentation and Linear Analysis Methods

    NASA Astrophysics Data System (ADS)

    Giacometti, Paolo; Diamond, Solomon G.

    Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.

  2. Manipulating Traveling Brain Waves with Electric Fields: From Theory to Experiment.

    NASA Astrophysics Data System (ADS)

    Gluckman, Bruce J.

    2004-03-01

    Activity waves in disinhibited neocortical slices have been used as a biological model for epileptic seizure propagation [1]. Such waves have been mathematically modeled with integro-differential equations [2] representing non-local reaction diffusion dynamics of an excitable medium with an excitability threshold. Stability and propagation speed of traveling pulse solutions depend strongly on the threshold in the following manner: propagation speed should decrease with increased threshold over a finite range, beyond which the waves become unstable. Because populations of neurons can be polarized with an applied electric field that effectively shifts their threshold for action potential initiation [3], we predicted, and have experimentally verified, that electric fields could be used globally or locally to speed up, slow down and even block wave propagation. [1] Telfeian and Conners, Epilepsia, 40, 1499-1506, 1999. [2] Pinto and Ermentrout, SIAM J. App. Math, 62, 206-225, 2001. [3] Gluckman, et. al. J Neurophysiol. 76, 4202-5, 1996.

  3. A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation

    USGS Publications Warehouse

    Smith, Peter E.

    2006-01-01

    A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.

  4. Long-range intercellular Ca2+ wave patterns

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.

    2015-10-01

    Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.

  5. Classical electromagnetic fields from quantum sources in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill

    2017-01-01

    Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.

  6. The pointwise estimates of diffusion wave of the compressible micropolar fluids

    NASA Astrophysics Data System (ADS)

    Wu, Zhigang; Wang, Weike

    2018-09-01

    The pointwise estimates for the compressible micropolar fluids in dimension three are given, which exhibit generalized Huygens' principle for the fluid density and fluid momentum as the compressible Navier-Stokes equation, while the micro-rational momentum behaves like the fluid momentum of the Euler equation with damping. To circumvent the complexity from 7 × 7 Green's matrix, we use the decomposition of fluid part and electromagnetic part for the momentums to study three smaller Green's matrices. The following from this decomposition is that we have to deal with the new problem that the nonlinear terms contain nonlocal operators. We solve it by using the natural match of these new Green's functions and the nonlinear terms. Moreover, to derive the different pointwise estimates for different unknown variables such that the estimate of each unknown variable is in agreement with its Green's function, we develop some new estimates on the nonlinear interplay between different waves.

  7. A model of recovering the parameters of fast nonlocal heat transport in magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Kulichenko, A. A.; Sdvizhenskii, P. A.; Sokolov, A. V.; Voloshinov, V. V.

    2017-12-01

    A model is elaborated for interpreting the initial stage of the fast nonlocal transport events, which exhibit immediate response, in the diffusion time scale, of the spatial profile of electron temperature to its local perturbation, while the net heat flux is directed opposite to ordinary diffusion (i.e. along the temperature gradient). We solve the inverse problem of recovering the kernel of the integral equation, which describes nonlocal (superdiffusive) transport of energy due to emission and absorption of electromagnetic (EM) waves with long free path and strong reflection from the vacuum vessel’s wall. To allow for the errors of experimental data, we use the method based on the regularized (in the framework of an ill-posed problem, using the parametric models) approximation of available experimental data. The model is applied to interpreting the data from stellarator LHD and tokamak TFTR. The EM wave transport is considered here in the single-group approximation, however the limitations of the physics model enable us to identify the spectral range of the EM waves which might be responsible for the observed phenomenon.

  8. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  9. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    NASA Astrophysics Data System (ADS)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  10. Study of Parameters And Methods of LL-Ⅳ Distributed Hydrological Model in DMIP2

    NASA Astrophysics Data System (ADS)

    Li, L.; Wu, J.; Wang, X.; Yang, C.; Zhao, Y.; Zhou, H.

    2008-05-01

    : The Physics-based distributed hydrological model is considered as an important developing period from the traditional experience-hydrology to the physical hydrology. The Hydrology Laboratory of the NOAA National Weather Service proposes the first and second phase of the Distributed Model Intercomparison Project (DMIP),that it is a great epoch-making work. LL distributed hydrological model has been developed to the fourth generation since it was established in 1997 on the Fengman-I district reservoir area (11000 km2).The LL-I distributed hydrological model was born with the applications of flood control system in the Fengman-I in China. LL-II was developed under the DMIP-I support, it is combined with GIS, RS, GPS, radar rainfall measurement.LL-III was established along with Applications of LL Distributed Model on Water Resources which was supported by the 973-projects of The Ministry of Science and Technology of the People's Republic of China. LL-Ⅳ was developed to face China's water problem. Combined with Blue River and the Baron Fork River basin of DMIP-II, the convection-diffusion equation of non-saturated and saturated seepage was derived from the soil water dynamics and continuous equation. In view of the technical characteristics of the model, the advantage of using convection-diffusion equation to compute confluence overall is longer period of predictable, saving memory space, fast budgeting, clear physical concepts, etc. The determination of parameters of hydrological model is the key, including experience coefficients and parameters of physical parameters. There are methods of experience, inversion, and the optimization to determine the model parameters, and each has advantages and disadvantages. This paper briefly introduces the LL-Ⅳ distribution hydrological model equations, and particularly introduces methods of parameters determination and simulation results on Blue River and Baron Fork River basin for DMIP-II. The soil moisture diffusion coefficient and coefficient of hydraulic conductivity are involved all through the LL-Ⅳ distribution of runoff and slope convergence model, used mainly empirical formula to determine. It's used optimization methods to calculate the two parameters of evaporation capacity (coefficient of bare land and vegetation land), two parameters of interception and wave velocity of Overland Flow, interflow and groundwater. The approach of determining wave velocity of River Network confluence and diffusion coefficient is: 1. Estimate roughness based mainly on digital information such as land use, soil texture, etc. 2.Establish the empirical formula. Another method is called convection-diffusion numerical inversion.

  11. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  12. Simulations of the stratocumulus-topped boundary layer with a third-order closure model

    NASA Technical Reports Server (NTRS)

    Moeng, C. H.; Randall, D. A.

    1984-01-01

    A third order closure model is proposed by Andre et al. (1982), in which the time rate of change terms, the relaxation and rapid effects for the pressure related terms, and the clipping approximation are included along with the quasi-normal closure, to study turbulence in a cloudy layer which is cooled radiatively from above. A spurious oscillation which is strongest near the inversion occurs. An analysis of the problem shows that the oscillation arises from the mean gradient and buoyancy terms of the triple moment equations; these terms are largest near the cloud top. The oscillation is physical, rather than computational. In nature the oscillation is effectively damped, by a mechanism which apparently is not included in our model. In the stably stratified layer just above the mixed layer top, turbulence can excite gravity waves, whose energy is radiated away. Because the closure assumption for the pressure terms does not take into account the transport of wave energy, the model generates spurious oscillations. Damping of the oscillations is possible by introducing diffusion terms into the triple moment equations. With a large enough choice for the diffusion coefficient, the oscillation is effectively eliminated. The results are quite sensitive to the ad hoc eddy coefficient.

  13. Semi-Analytic Reconstruction of Flux in Finite Volume Formulations

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2006-01-01

    Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.

  14. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  15. Diffusing wave spectroscopy studies of gelling systems

    NASA Astrophysics Data System (ADS)

    Horne, David S.

    1991-06-01

    The recognition that the transmission of light through a concentrated, opaque system can be treated as a diffusion process has extended the application of photon correlation techniques to the study of particle size, mobility and interactions in such systems. Solutions of the photon diffusion equation are sensitive to the boundary conditions imposed by the geometry of the scattering apparatus. The apparatus, incorporating a bifurcated fiber optic bundle for light transmission between source, sample and detector, takes advantage of the particularly simple solution for a back-scattering configuration. Its ability to measure particle size using monodisperse polystyrene latices and to respond to concentration dependent particle interactions in a study of casein micelle mobility in skim and concentrated milks is demonstrated. Finally, the changes in dynamic light scattering behavior occurring during colloidal gel formation are described and discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kai; Song, Linze; Shi, Qiang, E-mail: qshi@iccas.ac.cn

    Based on the path integral approach, we derive a new realization of the exact non-Markovian stochastic Schrödinger equation (SSE). The main difference from the previous non-Markovian quantum state diffusion (NMQSD) method is that the complex Gaussian stochastic process used for the forward propagation of the wave function is correlated, which may be used to reduce the amplitude of the non-Markovian memory term at high temperatures. The new SSE is then written into the recently developed hierarchy of pure states scheme, in a form that is more closely related to the hierarchical equation of motion approach. Numerical simulations are then performedmore » to demonstrate the efficiency of the new method.« less

  17. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-04-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.

  18. A New Numerical Scheme for Cosmic-Ray Transport

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Oh, S. Peng

    2018-02-01

    Numerical solutions of the cosmic-ray (CR) magnetohydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding artificial diffusion. Besides introducing ad hoc smoothing, this has a significant negative impact on either computational cost or complexity and parallel scalings. We describe a new numerical algorithm for CR transport, with close parallels to two-moment methods for radiative transfer under the reduced speed of light approximation. It stably and robustly handles CR streaming without any artificial diffusion. It allows for both isotropic and field-aligned CR streaming and diffusion, with arbitrary streaming and diffusion coefficients. CR transport is handled explicitly, while source terms are handled implicitly. The overall time step scales linearly with resolution (even when computing CR diffusion) and has a perfect parallel scaling. It is given by the standard Courant condition with respect to a constant maximum velocity over the entire simulation domain. The computational cost is comparable to that of solving the ideal MHD equation. We demonstrate the accuracy and stability of this new scheme with a wide variety of tests, including anisotropic streaming and diffusion tests, CR-modified shocks, CR-driven blast waves, and CR transport in multiphase media. The new algorithm opens doors to much more ambitious and hitherto intractable calculations of CR physics in galaxies and galaxy clusters. It can also be applied to other physical processes with similar mathematical structure, such as saturated, anisotropic heat conduction.

  19. Etude de la physico-chime d'un magnetoplasma de chlore pour la gravure sous-micrometrique

    NASA Astrophysics Data System (ADS)

    Pauna, Olivier Daniel

    The aim of this thesis is to achieve a better understanding of physical and chemical phenomena occurring in a high-density plasma designed for sub-micron etching of thin films. The plasma is produced in chlorine by means of an electromagnetic surface wave and it can be confined by a uniform static magnetic field. The flexibility offered by the reactor in terms of operating conditions makes possible a parametric study of the influence of the magnetic confinement on the plasma characteristics. Thus, we have examined the plasma properties by means of several diagnostics techniques, including electrostatic probes, laser photodetachment of negative ions, ion acoustic wave propagation and optical emission spectroscopy. First, we investigated the influence of the operating conditions on the spatial properties of the plasma; this includes electric characteristics (electrons, positive and negative ions) as well as chemical characteristics (reactive neutrals). Second, we studied the impact of the reactor aspect ratio (i.e. reactor length/radius ratio) on both electrical and chemical characteristics. Together with these experimental studies, we have developed a bidimensional fluid model, by solving self-consistently the first two moments of Bolzmann equation and Poisson's equation. Using a semi-implicit scheme, it was possible to maintain a short computation time and to use this model to investigate a diffusion plasma in an electropositive gas. We were thus able to estimate the value of the diffusion coefficient in the direction perpendicular to the magnetic field. The results thus obtained are in good qualitative agreement with the diffusion coefficient proposed by Liebermann and Lichtenberg.

  20. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    PubMed

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  1. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  2. Accurate Drift Time Determination by Traveling Wave Ion Mobility Spectrometry: The Concept of the Diffusion Calibration.

    PubMed

    Kune, Christopher; Far, Johann; De Pauw, Edwin

    2016-12-06

    Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (μ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between μ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.

  3. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities

    NASA Astrophysics Data System (ADS)

    Hutt, Axel; Atay, Fatihcan M.

    2005-04-01

    This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.

  4. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are promising tools for today’s aerospace technology challenges. This paper examines two such models for computing challenging turbulent flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and were evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results computed using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.

  5. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.

  6. Dynamic generation of spin-wave currents in hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com

    2016-11-15

    Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less

  7. Alfvén wave interactions in the solar wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.

    2012-11-01

    Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.

  8. Optimization of one-way wave equations.

    USGS Publications Warehouse

    Lee, M.W.; Suh, S.Y.

    1985-01-01

    The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors

  9. Expression for time travel based on diffusive wave theory: applicability and considerations

    NASA Astrophysics Data System (ADS)

    Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.

    2017-12-01

    Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the expression is no longer valid, and one must fall back to kinematic wave theory, for lack of a better option. This expression could be used for improving currently published spatially distributed time travel models, since they would become applicable in many new cases.

  10. Fokker-Planck description of electron and photon transport in homogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcasu, A.Z.; Holloway, J.P.

    1997-06-01

    Starting from a Fokker-Planck description of particle transport, which is valid when the scattering is forwardly peaked and the energy change in scattering is small, we systematically obtain an approximate diffusionlike equation for the particle density by eliminating the direction variable {bold {cflx {Omega}}} with an elimination scheme based on Zwanzig{close_quote}s projection operator formalism in the interaction representation. The elimination procedure closely follows one described by Grigolini and Marchesoni [in {ital Memory Function Approaches to Stochastic Problems in Condensed Matter}, edited by Myron W. Evans, Paolo Grigolini, and Guiseppe P. Parravicini, Advances in Physical Chemistry, Vol. 62 (Wiley-Interscience, New York,more » 1985), Chap. II, p. 29], but with a different projection operator. The resulting diffusion equation is correct up to the second order in the coupling operator between the particle direction and position variable. The diffusion coefficients and mobility in the resulting diffusion equation depend on the initial distribution of the particles in direction and on the path length traveled by the particles. The full solution is obtained for a monoenergetic and monodirectional pulsed point source of particles in an infinite homogeneous medium. This solution is used to study the penetration and the transverse and longitudinal spread of the particles as they are transported through the medium. Application to diffusive wave spectroscopy in calculating the path-length distribution of photons, as well as application to dose calculations in tissue due to an electron beam are mentioned. {copyright} {ital 1997} {ital The American Physical Society}« less

  11. Development and testing of a simple inertial formulation of the shallow water equations for flood inundation modelling

    NASA Astrophysics Data System (ADS)

    Fewtrell, Timothy; Bates, Paul; Horritt, Matthew

    2010-05-01

    This abstract describes the development of a new set of equations derived from 1D shallow water theory for use in 2D storage cell inundation models. The new equation set is designed to be solved explicitly at very low computational cost, and is here tested against a suite of four analytical and numerical test cases of increasing complexity. In each case the predicted water depths compare favourably to analytical solutions or to benchmark results from the optimally stable diffusive storage cell code of Hunter et al. (2005). For the most complex test involving the fine spatial resolution simulation of flow in a topographically complex urban area the Root Mean Squared Difference between the new formulation and the model of Hunter et al. is ~1 cm. However, unlike diffusive storage cell codes where the stable time step scales with (1-?x)2 the new equation set developed here represents shallow water wave propagation and so the stability is controlled by the Courant-Freidrichs-Lewy condition such that the stable time step instead scales with 1-?x. This allows use of a stable time step that is 1-3 orders of magnitude greater for typical cell sizes than that possible with diffusive storage cell models and results in commensurate reductions in model run times. The maximum speed up achieved over a diffusive storage cell model was 1120x in these tests, although the actual value seen will depend on model resolution and water depth and surface gradient. Solutions using the new equation set are shown to be relatively grid-independent for the conditions considered given the numerical diffusion likely at coarse model resolution. In addition, the inertial formulation appears to have an intuitively correct sensitivity to friction, however small instabilities and increased errors on predicted depth were noted when Manning's n = 0.01. These small instabilities are likely to be a result of the numerical scheme employed, whereby friction is acting to stabilise the solution although this scheme is still widely used in practice. The new equations are likely to find widespread application in many types of flood inundation modelling and should provide a useful additional tool, alongside more established model formulations, for a variety of flood risk management studies.

  12. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  13. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling

    NASA Astrophysics Data System (ADS)

    Bates, Paul D.; Horritt, Matthew S.; Fewtrell, Timothy J.

    2010-06-01

    SummaryThis paper describes the development of a new set of equations derived from 1D shallow water theory for use in 2D storage cell inundation models where flows in the x and y Cartesian directions are decoupled. The new equation set is designed to be solved explicitly at very low computational cost, and is here tested against a suite of four test cases of increasing complexity. In each case the predicted water depths compare favourably to analytical solutions or to simulation results from the diffusive storage cell code of Hunter et al. (2005). For the most complex test involving the fine spatial resolution simulation of flow in a topographically complex urban area the Root Mean Squared Difference between the new formulation and the model of Hunter et al. is ˜1 cm. However, unlike diffusive storage cell codes where the stable time step scales with (1/Δ x) 2, the new equation set developed here represents shallow water wave propagation and so the stability is controlled by the Courant-Freidrichs-Lewy condition such that the stable time step instead scales with 1/Δ x. This allows use of a stable time step that is 1-3 orders of magnitude greater for typical cell sizes than that possible with diffusive storage cell models and results in commensurate reductions in model run times. For the tests reported in this paper the maximum speed up achieved over a diffusive storage cell model was 1120×, although the actual value seen will depend on model resolution and water surface gradient. Solutions using the new equation set are shown to be grid-independent for the conditions considered and to have an intuitively correct sensitivity to friction, however small instabilities and increased errors on predicted depth were noted when Manning's n = 0.01. The new equations are likely to find widespread application in many types of flood inundation modelling and should provide a useful additional tool, alongside more established model formulations, for a variety of flood risk management studies.

  14. Analysis and design of numerical schemes for gas dynamics 1: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    The theory of non-oscillatory scalar schemes is developed in this paper in terms of the local extremum diminishing (LED) principle that maxima should not increase and minima should not decrease. This principle can be used for multi-dimensional problems on both structured and unstructured meshes, while it is equivalent to the total variation diminishing (TVD) principle for one-dimensional problems. A new formulation of symmetric limited positive (SLIP) schemes is presented, which can be generalized to produce schemes with arbitrary high order of accuracy in regions where the solution contains no extrema, and which can also be implemented on multi-dimensional unstructured meshes. Systems of equations lead to waves traveling with distinct speeds and possibly in opposite directions. Alternative treatments using characteristic splitting and scalar diffusive fluxes are examined, together with modification of the scalar diffusion through the addition of pressure differences to the momentum equations to produce full upwinding in supersonic flow. This convective upwind and split pressure (CUSP) scheme exhibits very rapid convergence in multigrid calculations of transonic flow, and provides excellent shock resolution at very high Mach numbers.

  15. Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases

    DOE PAGES

    Galea, Alexander; Dawkins, Hillary; Gandolfi, Stefano; ...

    2016-02-01

    Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T=0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to producemore » an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Lastly, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions.« less

  16. Middle atmosphere dynamical sources of the semiannual oscillation in the thermosphere and ionosphere

    NASA Astrophysics Data System (ADS)

    Jones, M.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.

    2017-01-01

    The strong global semiannual oscillation (SAO) in thermospheric density has been observed for five decades, but definitive knowledge of its source has been elusive. We use the National Center of Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) to study how middle atmospheric dynamics generate the SAO in the thermosphere-ionosphere (T-I). The "standard" TIME-GCM simulates, from first principles, SAOs in thermospheric mass density and ionospheric total electron content that agree well with observed climatological variations. Diagnosis of the globally averaged continuity equation for atomic oxygen ([O]) shows that the T-I SAO originates in the upper mesosphere, where an SAO in [O] is forced by nonlinear, resolved-scale variations in the advective, net tidal, and diffusive transport of O. Contrary to earlier hypotheses, TIME-GCM simulations demonstrate that intra-annually varying eddy diffusion by breaking gravity waves may not be the primary driver of the T-I SAO: A pronounced SAO is produced without parameterized gravity waves.

  17. Thermal Characterization of Edible Oils by Using Photopyroelectric Technique

    NASA Astrophysics Data System (ADS)

    Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.

    2013-05-01

    Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.

  18. Modification of wave-cut and faulting-controlled landforms.

    USGS Publications Warehouse

    Hanks, T.C.; Bucknam, R.C.; Lajoie, K.R.; Wallace, R.E.

    1984-01-01

    From a casual observation that the form of degraded fault scarps resembles the error function, this investigation proceeds through an elementary diffusion equation representation of landform evolution to the application of the resulting equations to the modern topography of scarplike landforms. The value of K = 1 GKG (K = 'mass diffusivity'; 1 GKG = 1m2/ka) may be generally applicable as a good first approximation, to the modification of alluvial terranes within the semiarid regions of the western United States. The Lake Bonneville shoreline K is the basis for dating four sets of fault scarps in west-central Utah. The Drum Mountains fault scarps date at 3.6 to 5.7 ka BP. Fault scarps along the eastern base of the Fish Springs Range are very young, 3 ka BP. We estimate the age of fault scarps along the western flank of the Oquirrh Mountains to be 32 ka B.P. Fault scarps along the NE margin of the Sheeprock Mountains are even older, 53 ka BP. -from Authors

  19. High-order rogue waves of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    2017-10-01

    High-order rogue wave solutions of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation are derived by employing the bilinear method, which are expressed by simple polynomials. Typical dynamics of these high-order rogue waves are studied by analytical and graphical ways. For the Benjamin-Ono equation, there are two types of rogue waves, namely, bright rogue waves and dark rogue waves. In particular, the fundamental rogue wave pattern is different from the usual fundamental rogue wave patterns in other soliton equations. For the nonlocal nonlinear Schrödinger equation, the exact explicit rogue wave solutions up to the second order are presented. Typical rogue wave patterns such as Peregrine-type, triple and fundamental rogue waves are put forward. These high-order rogue wave patterns have not been shown before in the nonlocal Schrödinger equation.

  20. Stochastic mechanics of reciprocal diffusions

    NASA Astrophysics Data System (ADS)

    Levy, Bernard C.; Krener, Arthur J.

    1996-02-01

    The dynamics and kinematics of reciprocal diffusions were examined in a previous paper [J. Math. Phys. 34, 1846 (1993)], where it was shown that reciprocal diffusions admit a chain of conservation laws, which close after the first two laws for two disjoint subclasses of reciprocal diffusions, the Markov and quantum diffusions. For the case of quantum diffusions, the conservation laws are equivalent to Schrödinger's equation. The Markov diffusions were employed by Schrödinger [Sitzungsber. Preuss. Akad. Wiss. Phys. Math Kl. 144 (1931); Ann. Inst. H. Poincaré 2, 269 (1932)], Nelson [Dynamical Theories of Brownian Motion (Princeton University, Princeton, NJ, 1967); Quantum Fluctuations (Princeton University, Princeton, NJ, 1985)], and other researchers to develop stochastic formulations of quantum mechanics, called stochastic mechanics. We propose here an alternative version of stochastic mechanics based on quantum diffusions. A procedure is presented for constructing the quantum diffusion associated to a given wave function. It is shown that quantum diffusions satisfy the uncertainty principle, and have a locality property, whereby given two dynamically uncoupled but statistically correlated particles, the marginal statistics of each particle depend only on the local fields to which the particle is subjected. However, like Wigner's joint probability distribution for the position and momentum of a particle, the finite joint probability densities of quantum diffusions may take negative values.

  1. Describing the geographic spread of dengue disease by traveling waves.

    PubMed

    Maidana, Norberto Aníbal; Yang, Hyun Mo

    2008-09-01

    Dengue is a human disease transmitted by the mosquito Aedes aegypti. For this reason geographical regions infested by this mosquito species are under the risk of dengue outbreaks. In this work, we propose a mathematical model to study the spatial dissemination of dengue using a system of partial differential reaction-diffusion equations. With respect to the human and mosquito populations, we take into account their respective subclasses of infected and uninfected individuals. The dynamics of the mosquito population considers only two subpopulations: the winged form (mature female mosquitoes), and an aquatic population (comprising eggs, larvae and pupae). We disregard the long-distance movement by transportation facilities, for which reason the diffusion is considered restricted only to the winged form. The human population is considered homogeneously distributed in space, in order to describe localized dengue dissemination during a short period of epidemics. The cross-infection is modeled by the law of mass action. A threshold value as a function of the model's parameters is obtained, which determines the rate of dengue dissemination and the risk of dengue outbreaks. Assuming that an area was previously colonized by the mosquitoes, the rate of disease dissemination is determined as a function of the model's parameters. This rate of dissemination of dengue disease is determined by applying the traveling wave solutions to the corresponding system of partial differential equations.

  2. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    DOE PAGES

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; ...

    2016-08-11

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less

  3. Evolution of basic equations for nearshore wave field

    PubMed Central

    ISOBE, Masahiko

    2013-01-01

    In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680

  4. Electronic transport in disordered chains with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    dos Santos, J. L. L.; Nguyen, Ba Phi; de Moura, F. A. B. F.

    2015-10-01

    In this work we study numerically the dynamics of an initially localized wave packet in one-dimensional disordered chains with saturable nonlinearity. By using the generalized discrete nonlinear Schrödinger equation, we calculate two different physical quantities as a function of time, which are the participation number and the mean square displacement from the excitation site. From detailed numerical analysis, we find that the saturable nonlinearity can promote a sub-diffusive spreading of the wave packet even in the presence of diagonal disorder for a long time. In addition, we also investigate the effect of the saturated nonlinearity for initial times of the electronic evolution thus showing the possibility of mobile breather-like modes.

  5. a Bounded Finite-Difference Discretization of a Two-Dimensional Diffusion Equation with Logistic Nonlinear Reaction

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    In the present manuscript, we introduce a finite-difference scheme to approximate solutions of the two-dimensional version of Fisher's equation from population dynamics, which is a model for which the existence of traveling-wave fronts bounded within (0,1) is a well-known fact. The method presented here is a nonstandard technique which, in the linear regime, approximates the solutions of the original model with a consistency of second order in space and first order in time. The theory of M-matrices is employed here in order to elucidate conditions under which the method is able to preserve the positivity and the boundedness of solutions. In fact, our main result establishes relatively flexible conditions under which the preservation of the positivity and the boundedness of new approximations is guaranteed. Some simulations of the propagation of a traveling-wave solution confirm the analytical results derived in this work; moreover, the experiments evince a good agreement between the numerical result and the analytical solutions.

  6. The existence of minimum speed of traveling wave solutions to a non-KPP isothermal diffusion system

    NASA Astrophysics Data System (ADS)

    Chen, Xinfu; Liu, Guirong; Qi, Yuanwei

    2017-08-01

    The reaction-diffusion system at =axx - abn ,bt = Dbxx + abn, where n ≥ 1 and D > 0, arises from many real-world chemical reactions. Whereas n = 1 is the KPP type nonlinearity, which is much studied and very important results obtained in literature not only in one dimensional spatial domains, but also multi-dimensional spaces, but n > 1 proves to be much harder. One of the interesting features of the system is the existence of traveling wave solutions. In particular, for the traveling wave solution a (x , t) = a (x - vt), b (x , t) = b (x - vt), where v > 0, if we fix lim x → - ∞ ⁡ (a , b) = (0 , 1) it was proved by many authors with different bounds v* (n , D) > 0 such that a traveling wave solution exists for any v ≥v* when n > 1. For the latest progress, see [7]. That is, the traveling wave problem exhibits the mono-stable phenomenon for traveling wave of scalar equation ut =uxx + f (u) with f (0) = f (1) = 0, f (u) > 0 in (0 , 1) and, u = 0 is unstable and u = 1 is stable. A natural and significant question is whether, like the scalar case, there exists a minimum speed. That is, whether there exists a minimum speed vmin > 0 such that traveling wave solution of speed v exists iff v ≥vmin? This is an open question, in spite of many works on traveling wave of the system in last thirty years. This is duo to the reason, unlike the KPP case, the minimum speed cannot be obtained through linear analysis at equilibrium points (a , b) = (0 , 1) and (a , b) = (1 , 0). In this work, we give an affirmative answer to this question.

  7. Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.

  8. Causal implications of viscous damping in compressible fluid flows

    PubMed

    Jordan; Meyer; Puri

    2000-12-01

    Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special and limiting cases, are found and compared for the two models. The effects of the physical parameters on the solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations. In addition, discontinuities and shock waves are noted and a physical system is modeled under both formulations. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic fluids are noted. In particular, the research presented here supports the notion that linear compressible, isothermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.

  9. The photoacoustic effect generated by an incompressible sphere.

    PubMed

    Diebold, Gerald J; Beveridge, Andrew C; Hamilton, Theron J

    2002-11-01

    An incompressible sphere with a vanishing thermal expansivity suspended in a fluid can generate a photoacoustic effect when the heat deposited in the sphere by a light beam diffuses into the surrounding liquid causing it to expand and launch a sound wave. The properties of the photoacoustic effect for the sphere are found using a Green's function solution to the wave equation for pressure with Neumann boundary conditions. The results of the calculation show that the acoustic wave for fast heat liberation is an outgoing compressive pulse followed by a reflected pulse whose time profile is modified as a result of frequency dependent reflection from the sphere. For slow heat release by the sphere, the photoacoustic effect is shown to be proportional to the first time derivative of the heat flux at the particle-fluid interface.

  10. Notes from 1999 on computational algorithm of the Local Wave-Vector (LWV) model for the dynamical evolution of the second-rank velocity correlation tensor starting from the mean-flow-coupled Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemach, Charles; Kurien, Susan

    These notes present an account of the Local Wave Vector (LWV) model of a turbulent flow defined throughout physical space. The previously-developed Local Wave Number (LWN) model is taken as a point of departure. Some general properties of turbulent fields and appropriate notation are given first. The LWV model is presently restricted to incompressible flows and the incompressibility assumption is introduced at an early point in the discussion. The assumption that the turbulence is homogeneous is also introduced early on. This assumption can be relaxed by generalizing the space diffusion terms of LWN, but the present discussion is focused onmore » a modeling of homogeneous turbulence.« less

  11. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  12. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

    NASA Astrophysics Data System (ADS)

    Gorenflo, R.; Mainardi, F.

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

  13. Role of short-range correlation in facilitation of wave propagation in a long-range ladder chain

    NASA Astrophysics Data System (ADS)

    Farzadian, O.; Niry, M. D.

    2018-09-01

    We extend a new method for generating a random chain, which has a kind of short-range correlation induced by a repeated sequence while retaining long-range correlation. Three distinct methods are considered to study the localization-delocalization transition of mechanical waves in one-dimensional disordered media with simultaneous existence of short and long-range correlation. First, a transfer-matrix method was used to calculate numerically the localization length of a wave in a binary chain. We found that the existence of short-range correlation in a long-range correlated chain can increase the localization length at the resonance frequency Ωc. Then, we carried out an analytical study of the delocalization properties of the waves in correlated disordered media around Ωc. Finally, we apply a dynamical method based on the direct numerical simulation of the wave equation to study the propagation of waves in the correlated chain. Imposing short-range correlation on the long-range background will lead the propagation to super-diffusive transport. The results obtained with all three methods are in agreement with each other.

  14. Travelling-wave amplitudes as solutions of the phase-field crystal equation

    NASA Astrophysics Data System (ADS)

    Nizovtseva, I. G.; Galenko, P. K.

    2018-01-01

    The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the method (Malfliet & Hereman 1996 Phys. Scr. 15, 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  15. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1987-01-01

    An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.

  16. Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.

    2018-05-01

    In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.

  17. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  18. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.

    PubMed

    Shizgal, Bernie D

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].

  19. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].

  20. Some Properties of the Fractional Equation of Continuity and the Fractional Diffusion Equation

    NASA Astrophysics Data System (ADS)

    Fukunaga, Masataka

    2006-05-01

    The fractional equation of continuity (FEC) and the fractional diffusion equation (FDE) show peculiar behaviors that are in the opposite sense to those expected from the equation of continuity and the diffusion equation, respectively. The behaviors are interpreted in terms of the memory effect of the fractional time derivatives included in the equations. Some examples are given by solutions of the FDE.

  1. The effect of dissipative inhomogeneous medium on the statistics of the wave intensity

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1993-01-01

    One of the main theoretical points in the theory of wave propagation in random medium is the derivation of closed form equations to describe the statistics of the propagating waves. In particular, in one dimensional problems, the closed form representation of the multiple scattering effects is important since it contributes in understanding such problems like wave localization, backscattering enhancement, and intensity fluctuations. In this the propagation of plane waves in a layer of one-dimensional dissipative random medium is considered. The medium is modeled by a complex permittivity whose real part is a constant representing the absorption. The one dimensional problem is mathematically equivalent to the analysis of a transmission line with randomly perturbed distributed parameters and a single mode lossy waveguide and the results can be used to study the propagation of radio waves through atmosphere and the remote sensing of geophysical media. It is assumed the scattering medium consists of an ensemble of one-dimensional point scatterers randomly positioned in a layer of thickness L with diffuse boundaries. A Poisson impulse process with density lambda is used to model the position of scatterers in the medium. By employing the Markov properties of this process an exact closed form equation of Kolmogorov-Feller type was obtained for the probability density of the reflection coefficient. This equation was solved by combining two limiting cases: (1) when the density of scatterers is small; and (2) when the medium is weakly dissipative. A two variable perturbation method for small lambda was used to obtain solutions valid for thick layers. These solutions are then asymptotically evaluated for small dissipation. To show the effect of dissipation, the mean and fluctuations of the reflected power are obtained. The results were compared with a lossy homogeneous medium and with a lossless inhomogeneous medium and the regions where the effect of absorption is not essential were discussed.

  2. Solution of a modified fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Langlands, T. A. M.

    2006-07-01

    Recently, a modified fractional diffusion equation has been proposed [I. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein's brownian motion, Chaos 15 (2005) 026103; A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu. Gonchar, Distributed order time fractional diffusion equation, Frac. Calc. Appl. Anal. 6 (3) (2003) 259279; I.M. Sokolov, A.V. Checkin, J. Klafter, Distributed-order fractional kinetics, Acta. Phys. Pol. B 35 (2004) 1323.] for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. In this letter we give the solution of the modified equation on an infinite domain. In contrast to the solution of the traditional fractional diffusion equation, the solution of the modified equation requires an infinite series of Fox functions instead of a single Fox function.

  3. The origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1986-01-01

    Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, George J.; Maggs, James E.

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events,more » i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.« less

  5. Internal Wave Generation by Convection

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water-like fluid. We test two models of wave generation: bulk excitation (equivalent to the Lighthill theory described in Chapter 2), and surface excitation. We find the bulk excitation model accurately reproduces the waves generated in the simulations, validating the calculations of Chapter 2.

  6. Integro-differential modeling of ICRH wave propagation and damping at arbitrary cyclotron harmonics and wavelengths in tokamaks

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.

    2014-02-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester & R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester & E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.

  7. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    PubMed

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it possible to distinguish cancerous cells from normal cells. A typical example of liver distinguished from gray matter, white matter and kidney is demonstrated. Bessel functions and properties are specifically needed to show the direct effect of the instantaneous velocity on the NMR signal originating from normal and abnormal tissues.

  8. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    NASA Technical Reports Server (NTRS)

    Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.

  9. Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.

    2013-07-01

    Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.

  10. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.

    PubMed

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  11. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  12. Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang, E-mail: lyang13@mails.tsinghua.edu.cn; Southwestern Institute of Physics, Chengdu 610041; Gao, Zhe

    A second order kinetic model for turbulent ion parallel momentum transport is presented. A new nonresonant second order parallel momentum flux term is calculated. The resonant component of the ion parallel electrostatic force is the momentum source, while the nonresonant component of the ion parallel electrostatic force compensates for that of the nonresonant second order parallel momentum flux. The resonant component of the kinetic momentum flux can be divided into three parts, including the pinch term, the diffusive term, and the residual stress. By reassembling the pinch term and the residual stress, the residual stress can be considered as amore » pinch term of parallel wave-particle resonant velocity, and, therefore, may be called as “resonant velocity pinch” term. Considering the resonant component of the ion parallel electrostatic force is the transfer rate between resonant ions and waves (or, equivalently, nonresonant ions), a conservation equation of the parallel momentum of resonant ions and waves is obtained.« less

  13. Electron heating in quasi-perpendicular shocks - A Monte Carlo simulation

    NASA Technical Reports Server (NTRS)

    Veltri, Pierluigi; Mangeney, Andre; Scudder, Jack D.

    1990-01-01

    To study the problem of electron heating in quasi-perpendicular shocks, under the combined effects of 'reversible' motion, in the shock electric potential and magnetic field, and wave-particle interactions a diffusion equation was derived, in the drift (adiabatic) approximation and it was solved by using a Monte Carlo method. The results show that most of the observations can be explained within this framework. The simulation has also definitively shown that the electron parallel temperature is determined by the dc electromagnetic field and not by any wave particle induced heating. Wave-particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons. Some constraints on the wave-particle interaction process may be obtained from a detailed comparison between the simulation and observations. In particular, it appears that the adiabatic approximation must be violated in order to explain the observed evolution of the perpendicular temperature.

  14. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  15. The role of fractional time-derivative operators on anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Tateishi, Angel A.; Ribeiro, Haroldo V.; Lenzi, Ervin K.

    2017-10-01

    The generalized diffusion equations with fractional order derivatives have shown be quite efficient to describe the diffusion in complex systems, with the advantage of producing exact expressions for the underlying diffusive properties. Recently, researchers have proposed different fractional-time operators (namely: the Caputo-Fabrizio and Atangana-Baleanu) which, differently from the well-known Riemann-Liouville operator, are defined by non-singular memory kernels. Here we proposed to use these new operators to generalize the usual diffusion equation. By analyzing the corresponding fractional diffusion equations within the continuous time random walk framework, we obtained waiting time distributions characterized by exponential, stretched exponential, and power-law functions, as well as a crossover between two behaviors. For the mean square displacement, we found crossovers between usual and confined diffusion, and between usual and sub-diffusion. We obtained the exact expressions for the probability distributions, where non-Gaussian and stationary distributions emerged. This former feature is remarkable because the fractional diffusion equation is solved without external forces and subjected to the free diffusion boundary conditions. We have further shown that these new fractional diffusion equations are related to diffusive processes with stochastic resetting, and to fractional diffusion equations with derivatives of distributed order. Thus, our results suggest that these new operators may be a simple and efficient way for incorporating different structural aspects into the system, opening new possibilities for modeling and investigating anomalous diffusive processes.

  16. Instability of turing patterns in reaction-diffusion-ODE systems.

    PubMed

    Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako

    2017-02-01

    The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.

  17. Internal density waves of shock type induced by chemoconvection in miscible reacting liquids

    NASA Astrophysics Data System (ADS)

    Bratsun, D. A.

    2017-10-01

    A theoretical explanation of the phenomenon of spontaneous emergence of density waves experimentally observed recently in bilayered systems of miscible liquids placed in a narrow vertical gap of the Hele-Shaw cell in the gravitational field is provided. Upper and lower layers represent aqueous solutions of acids and bases, respectively, whose contact leads to the beginning of a neutralization reaction. The process is accompanied by a strong dependence of the reagent's diffusion coefficients on their concentrations, giving rise to the generation of local density pockets, in which convection develops. The cavities collapse under certain conditions, causing a density jump, which moves faster than typical perturbations in a medium and takes the form of a shock wave. A mathematical model of the phenomenon is proposed, which can be formally reduced to equations of motion of a compressible gas under certain assumptions. Numerical calculations are given and compared with the experimental data.

  18. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  19. Solitary waves, rogue waves and homoclinic breather waves for a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Dong, Min-Jie; Tian, Shou-Fu; Yan, Xue-Wei; Zou, Li; Li, Jin

    2017-10-01

    We study a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili (gKP) equation, which characterizes the formation of patterns in liquid drops. By using Bell’s polynomials, an effective way is employed to succinctly construct the bilinear form of the gKP equation. Based on the resulting bilinear equation, we derive its solitary waves, rogue waves and homoclinic breather waves, respectively. Our results can help enrich the dynamical behavior of the KP-type equations.

  20. An Artificial Neural Networks Method for Solving Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2010-09-01

    While there already exists many analytical and numerical techniques for solving PDEs, this paper introduces an approach using artificial neural networks. The approach consists of a technique developed by combining the standard numerical method, finite-difference, with the Hopfield neural network. The method is denoted Hopfield-finite-difference (HFD). The architecture of the nets, energy function, updating equations, and algorithms are developed for the method. The HFD method has been used successfully to approximate the solution of classical PDEs, such as the Wave, Heat, Poisson and the Diffusion equations, and on a system of PDEs. The software Matlab is used to obtain the results in both tabular and graphical form. The results are similar in terms of accuracy to those obtained by standard numerical methods. In terms of speed, the parallel nature of the Hopfield nets methods makes them easier to implement on fast parallel computers while some numerical methods need extra effort for parallelization.

  1. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation.

    PubMed

    Liu, Wei; Zhang, Jing; Li, Xiliang

    2018-01-01

    In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides.

  2. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation

    PubMed Central

    Zhang, Jing; Li, Xiliang

    2018-01-01

    In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota’s bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides. PMID:29432495

  3. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  4. A numerical study of the 3-periodic wave solutions to KdV-type equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing

    2018-02-01

    In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.

  5. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartavykh, Y. Y.; Dröge, W.; Gedalin, M.

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock formore » which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.« less

  6. Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations.

    PubMed

    Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing

    2015-12-01

    The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.

  7. An innovation diffusion model of a local electricity network that is influenced by internal and external factors

    NASA Astrophysics Data System (ADS)

    Hattam, Laura; Greetham, Danica Vukadinović

    2018-01-01

    Haynes et al. (1977) derived a nonlinear differential equation to determine the spread of innovations within a social network across space and time. This model depends upon the imitators and the innovators within the social system, where the imitators respond to internal influences, whilst the innovators react to external factors. Here, this differential equation is applied to simulate the uptake of a low-carbon technology (LCT) within a real local electricity network that is situated in the UK. This network comprises of many households that are assigned to certain feeders. Firstly, travelling wave solutions of Haynes' model are used to predict adoption times as a function of the imitation and innovation influences. Then, the grid that represents the electricity network is created so that the finite element method (FEM) can be implemented. Next, innovation diffusion is modelled with Haynes' equation and the FEM, where varying magnitudes of the internal and external pressures are imposed. Consequently, the impact of these model parameters is investigated. Moreover, LCT adoption trajectories at fixed feeder locations are calculated, which give a macroscopic understanding of the uptake behaviour at specific network sites. Lastly, the adoption of LCTs at a household level is examined, where microscopic and macroscopic approaches are combined.

  8. Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation

    DTIC Science & Technology

    2010-01-01

    1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is

  9. Storm Time Evolution of Outer Radiation Belt Relativistic Electrons by a Nearly Continuous Distribution of Chorus

    NASA Astrophysics Data System (ADS)

    Yang, Chang; Xiao, Fuliang; He, Yihua; Liu, Si; Zhou, Qinghua; Guo, Mingyue; Zhao, Wanli

    2018-03-01

    During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10 h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3-6 and magnetic local time = 2-10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 MeV) electrons during two intervals when Probe A passed the location L = 4.3 along its orbit. The simulating results show that chorus with combined quasi-parallel and oblique components can produce a more pronounced flux enhancement in the pitch angle range ˜45°-80°, consistent well with the observation. The current results provide the first evidence on how relativistic electron fluxes vary under the drive of almost continuously distributed chorus with both quasi-parallel and oblique components within a complete orbit of Van Allen Probe.

  10. Effects of pressure on the magnetic properties of FeO: A diffusion Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Townsend, Joshua; Shulenburger, Luke; Mattsson, Thomas; Esler, Ken; Cohen, Ronald

    While simple in terms of structure and composition, both experimental and computational investigations have demonstrated that FeO has a rich phase diagram of structural phase transformations, electronic spin transitions, insulator-metal transitions, and magnetic ordering transitions, due to the open-shell occupation of the Fe 3d electrons. We investigated the magnetic and electronic structures of FeO under ambient and high pressure conditions using diffusion Quantum Monte Carlo (QMC) within the fixed-node approximation. QMC techniques are especially well suited to the study of strongly correlated systems because they explicitly include correlation into the ground-state wave function. Here we report on the effects of the choice of trial wave function on the ambient pressure lattice distortion due to AFM ordering, as well as the equation of state, spin collapse, and metal-insulator transitions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE.

  11. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  12. Nonlinear acoustic wave equations with fractional loss operators.

    PubMed

    Prieur, Fabrice; Holm, Sverre

    2011-09-01

    Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America

  13. Classifying bilinear differential equations by linear superposition principle

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu

    2016-09-01

    In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.

  14. Thermal Characterization, Using the Photopyroelectric Technique, of Liquids Used in the Automobile Industry

    NASA Astrophysics Data System (ADS)

    Cervantes-Espinosa, L. M.; Castillo-Alvarado, F. de L.; Lara-Hernández, G.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Valcárcel, J. P.; García-Quiroz, A.

    2012-11-01

    Thermal properties of liquids used in the automobile industry such as engine oil, antifreeze, and a liquid for windshield wipers were obtained using the photopyroelectric (PPE) technique. The inverse PPE configuration was used in order to obtain the thermal effusivity of the liquid samples. The theoretical equation for the PPE signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back PPE configuration was used to obtain the thermal diffusivity of these liquids; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these liquids used in the automobile industry was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are compared with the thermal properties of similar liquids.

  15. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  16. Dynamical Signatures of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1999-01-01

    One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion equation which represents the mental dynamics. It has been demonstrated that coupled mental-motor dynamics can simulate emerging self-organization, prey-predator games, collaboration and competition, "collective brain," etc.

  17. Diffusion-driven fluid dynamics in ideal gases and plasmas

    NASA Astrophysics Data System (ADS)

    Vold, E. L.; Yin, L.; Taitano, W.; Molvig, K.; Albright, B. J.

    2018-06-01

    The classical transport theory based on Chapman-Enskog methods provides self-consistent approximations for the kinetic flux of mass, heat, and momentum in a fluid limit characterized with a small Knudsen number. The species mass fluxes relative to the center of mass, or "diffusive fluxes," are expressed as functions of known gradient quantities with kinetic coefficients evaluated using similar analyses for mixtures of gases or plasma components. The sum over species of the diffusive mass fluxes is constrained to be zero in the Lagrange frame, and thus results in a non-zero molar flux leading to a pressure perturbation. At an interface between two species initially in pressure equilibrium, the pressure perturbation driven by the diffusive molar flux induces a center of mass velocity directed from the species of greater atomic mass towards the lighter atomic mass species. As the ratio of the species particle masses increases, this center of mass velocity carries an increasingly greater portion of the mass across the interface and for a particle mass ratio greater than about two, the center of mass velocity carries more mass than the gradient driven diffusion flux. Early time transients across an interface between two species in a 1D plasma regime and initially in equilibrium are compared using three methods; a fluid code with closure in a classical transport approximation, a particle in cell simulation, and an implicit Fokker-Planck solver for the particle distribution functions. The early time transient phenomenology is shown to be similar in each of the computational simulation methods, including a pressure perturbation associated with the stationary "induced" component of the center of mass velocity which decays to pressure equilibrium during diffusion. At early times, the diffusive process generates pressure and velocity waves which propagate outward from the interface and are required to maintain momentum conservation. The energy in the outgoing waves dissipates as heat in viscous regions, and it is hypothesized that these diffusion driven waves may sustain fluctuations in less viscid finite domains after reflections from the boundaries. These fluid dynamic phenomena are similar in gases or plasmas and occur in flow transients with a moderate Knudsen number. The analysis and simulation results show how the kinetic flux, represented in the fluid transport closure, directly modifies the mass averaged flow described with the Euler equations.

  18. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  19. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  20. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.

    PubMed

    Jiang, H; Liu, F; Meerschaert, M M; McGough, R J

    2013-01-01

    Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.

  1. Modeling the QBO and SAO Driven by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.

    1999-01-01

    Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by wave mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean zonal and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. (4) In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.

  2. Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk

    NASA Astrophysics Data System (ADS)

    Mencarelli, D.; Bellucci, S.; Sindona, A.; Pierantoni, L.

    2015-11-01

    Excitation of surface plasmon waves in extrinsic graphene is studied using a full-wave electromagnetic field solver as analysis engine. Particular emphasis is placed on the role played by spatial dispersion due to the finite size of the two-dimensional material at the micro-scale. A simple instructive set up is considered where the near field of a wire antenna is held at sub-micrometric distance from a disk-shaped graphene patch. The key-input of the simulation is the graphene conductivity tensor at terahertz frequencies, being modeled by the Boltzmann transport equation for the valence and conduction electrons at the Dirac points (where a linear wave-vector dependence of the band energies is assumed). The conductivity equation is worked out in different levels of approximations, based on the relaxation time ansatz with an additional constraint for particle number conservation. Both drift and diffusion currents are shown to significantly contribute to the spatially dispersive anisotropic features of micro-scale graphene. More generally, spatial dispersion effects are predicted to influence not only plasmon propagation free of external sources, but also typical scanning probe microscopy configurations. The paper sets the focus on plasmon excitation phenomena induced by near field probes, being a central issue for the design of optical devices and photonic circuits.

  3. Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-21

    Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less

  4. Sharp-front wave of strong magnetic field diffusion in solid metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian

    When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.

  5. The critical wave speed for the Fisher Kolmogorov Petrowskii Piscounov equation with cut-off

    NASA Astrophysics Data System (ADS)

    Dumortier, Freddy; Popovic, Nikola; Kaper, Tasso J.

    2007-04-01

    The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with cut-off was introduced in (Brunet and Derrida 1997 Shift in the velocity of a front due to a cut-off Phys. Rev. E 56 2597-604) to model N-particle systems in which concentrations less than ɛ = 1/N are not attainable. It was conjectured that the cut-off function, which sets the reaction terms to zero if the concentration is below the small threshold ɛ, introduces a substantial shift in the propagation speed of the corresponding travelling waves. In this paper, we prove the conjecture of Brunet and Derrida, showing that the speed of propagation is given by c_crit(\\varepsilon)=2-{\\pi^2}/{(\\ln\\varepsilon)^2}+\\cal{O}((\\ln\\varepsilon)^{-3}) , as ɛ → 0, for a large class of cut-off functions. Moreover, we extend this result to a more general family of scalar reaction-diffusion equations with cut-off. The main mathematical techniques used in our proof are the geometric singular perturbation theory and the blow-up method, which lead naturally to the identification of the reasons for the logarithmic dependence of ccrit on ɛ as well as for the universality of the corresponding leading-order coefficient (π2).

  6. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  7. True amplitude wave equation migration arising from true amplitude one-way wave equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Guanquan; Bleistein, Norman

    2003-10-01

    One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition to these newly defined wavefields in heterogeneous media leads to the Kirchhoff inversion formula for common-shot data when the one-way wavefields are replaced by their ray theoretic approximations. This extension enhances the original WEM method. The objective of that technique was a reflector map, only. The underlying theory did not address amplitude issues. Computer output obtained using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data over the entire survey area must be collected from a single common-shot experiment. Multi-experiment data, such as common-offset data, cannot be used with this method as currently formulated. Research on extending the method is ongoing at this time.

  8. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    NASA Astrophysics Data System (ADS)

    Kim, Changho; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.; Donev, Aleksandar

    2017-03-01

    We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. By comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.

  9. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    DOE PAGES

    Kim, Changho; Nonaka, Andy; Bell, John B.; ...

    2017-03-24

    Here, we develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules,more » to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. Furthermore, by comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.« less

  10. Diffusion of Charged Species in Liquids

    NASA Astrophysics Data System (ADS)

    Del Río, J. A.; Whitaker, S.

    2016-11-01

    In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.

  11. Diffusion of Charged Species in Liquids.

    PubMed

    Del Río, J A; Whitaker, S

    2016-11-04

    In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.

  12. Diffusion of Charged Species in Liquids

    PubMed Central

    del Río, J. A.; Whitaker, S.

    2016-01-01

    In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases. PMID:27811959

  13. Microscopic Interpretation and Generalization of the Bloch-Torrey Equation for Diffusion Magnetic Resonance

    PubMed Central

    Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir

    2017-01-01

    In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566

  14. Quantal diffusion description of multinucleon transfers in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ayik, S.; Yilmaz, B.; Yilmaz, O.; Umar, A. S.

    2018-05-01

    Employing the stochastic mean-field (SMF) approach, we develop a quantal diffusion description of the multi-nucleon transfer in heavy-ion collisions at finite impact parameters. The quantal transport coefficients are determined by the occupied single-particle wave functions of the time-dependent Hartree-Fock equations. As a result, the primary fragment mass and charge distribution functions are determined entirely in terms of the mean-field properties. This powerful description does not involve any adjustable parameter, includes the effects of shell structure, and is consistent with the fluctuation-dissipation theorem of the nonequilibrium statistical mechanics. As a first application of the approach, we analyze the fragment mass distribution in 48Ca+ 238U collisions at the center-of-mass energy Ec.m.=193 MeV and compare the calculations with the experimental data.

  15. Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2005-01-01

    The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.

  16. Generalized Sagdeev potential theory for shock waves modeling

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-05-01

    In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.

  17. Investigation of Tropical Transport with UARS Data

    NASA Technical Reports Server (NTRS)

    Dunkerton, Timothy J.

    1999-01-01

    Measurements of trace constituents obtained by instruments aboard the Upper Atmosphere Research Satellite (UARS) have been used to study transport processes associated with the quasi-biennial oscillation, laterally propagating Rossby waves, and upward propagating Kelvin waves in the tropical and subtropical upper troposphere and stratosphere. Mean vertical motions, vertical diffusivities and in-mixing rates were inferred from observations of the 'tape recorder' signal in near-equatorial stratospheric water vapor. The effect of the quasi-biennial oscillation (QBO) on tracer distributions in the upper half of the stratosphere was seen in a spectacular 'staircase' pattern, predominantly in the winter hemisphere, revealing the latitudinally asymmetric nature of QBO transport due to induced mean meridional circulations and modulation of lateral mixing associated with planetary Rossby waves. The propagation of Rossby waves across the equator in the westerly phase of the QBO was seen in tracer fields and corroborating United Kingdom Meteorological Office (UKMO) analyses; a modeling study of the effect of these waves on typical QBO wind profiles was performed. Water vapor in the upper troposphere and lower stratosphere was found to exhibit signatures of the tropical intraseasonal oscillation (TIO) and faster Kelvin waves in the two regions, respectively.

  18. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.

    PubMed

    Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus

    2014-01-01

    Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.

  19. An approach to rogue waves through the cnoidal equation

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2014-05-01

    Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.

  20. Wave equations in conformal gravity

    NASA Astrophysics Data System (ADS)

    Du, Juan-Juan; Wang, Xue-Jing; He, You-Biao; Yang, Si-Jiang; Li, Zhong-Heng

    2018-05-01

    We study the wave equation governing massless fields of all spins (s = 0, 1 2, 1, 3 2 and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.

  1. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    NASA Astrophysics Data System (ADS)

    de Almeida, Valmor F.

    2017-07-01

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  2. Survey of upper band chorus and ECH waves: Implications for the diffuse aurora

    NASA Astrophysics Data System (ADS)

    Meredith, Nigel; Horne, Richard; Thorne, Richard; Anderson, Roger

    2010-05-01

    The origin of the diffuse aurora has been a source of controversy for many years. More recently the question has taken a new significance in view of the associated changes in atmospheric chemistry which may affect the middle atmosphere. Here we use CRRES data to assess the importance of upper band chorus and electron cyclotron harmonic (ECH) waves in the production of the diffuse aurora. Both wave modes increase with increasing geomagnetic activity, suggesting they are related to periods of enhanced convection and/or substorm activity. They are confined to the near-equatorial region which excludes the pre-noon sector from the wave survey. During active conditions intense ECH waves and upper band chorus, with amplitudes exceeding 1 mVm-1, are observed in the region 4 < L < 7 from 2100 to 0600 MLT approximately 20% and 6% of the time respectively. This suggests that both wave modes can put electrons on strong diffusion, but only during active conditions and not at all local times. Scattering rates fall below the strong diffusion limit at other times when the wave amplitudes are weaker. Fluxes of low energy electrons (100 eV < E < 30 keV) also increase with increasing geomagnetic activity in approximately the same region of geospace as the waves, suggesting that these electrons are responsible for the generation of the waves. The patterns of the upper band chorus, ECH waves and low energy electrons are similar to the global morphology of the diffuse aurora, suggesting that both wave modes play significant roles in the production of the diffuse aurora.

  3. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    PubMed

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  4. Investigation of parabolic computational techniques for internal high-speed viscous flows

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Power, G. D.

    1985-01-01

    A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.

  5. Deducing noninductive current profile from surface voltage evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Wukitch, S.; Hershkowitz, N.

    Solving the resistive diffusion equation in the presence of a noninductive current source determines the time-evolution of the surface voltage. By inverting the problem the current drive profile can be determined from the surface voltage evolution. We show that under wide range of conditions the deduced profile is unique. If the conductivity profile is known, this method can be employed to infer the noninductive current profile, and, ipso facto, the profile of the total current. We discuss the application of this method to analyze the Alfven wave current drive experiments in Phaedrus-T.

  6. Lattice Boltzmann method for weakly ionized isothermal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Huayu; Ki, Hyungson

    2007-12-15

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values.

  7. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  8. Rogue periodic waves of the modified KdV equation

    NASA Astrophysics Data System (ADS)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-05-01

    Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.

  9. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  10. Numerical investigation of a modified family of centered schemes applied to multiphase equations with nonconservative sources

    NASA Astrophysics Data System (ADS)

    Crochet, M. W.; Gonthier, K. A.

    2013-12-01

    Systems of hyperbolic partial differential equations are frequently used to model the flow of multiphase mixtures. These equations often contain sources, referred to as nozzling terms, that cannot be posed in divergence form, and have proven to be particularly challenging in the development of finite-volume methods. Upwind schemes have recently shown promise in properly resolving the steady wave solution of the associated multiphase Riemann problem. However, these methods require a full characteristic decomposition of the system eigenstructure, which may be either unavailable or computationally expensive. Central schemes, such as the Kurganov-Tadmor (KT) family of methods, require minimal characteristic information, which makes them easily applicable to systems with an arbitrary number of phases. However, the proper implementation of nozzling terms in these schemes has been mathematically ambiguous. The primary objectives of this work are twofold: first, an extension of the KT family of schemes is proposed that formally accounts for the nonconservative nozzling sources. This modification results in a semidiscrete form that retains the simplicity of its predecessor and introduces little additional computational expense. Second, this modified method is applied to multiple, but equivalent, forms of the multiphase equations to perform a numerical study by solving several one-dimensional test problems. Both ideal and Mie-Grüneisen equations of state are used, with the results compared to an analytical solution. This study demonstrates that the magnitudes of the resulting numerical errors are sensitive to the form of the equations considered, and suggests an optimal form to minimize these errors. Finally, a separate modification of the wave propagation speeds used in the KT family is also suggested that can reduce the extent of numerical diffusion in multiphase flows.

  11. Causal Diffusion and the Survival of Charge Fluctuations

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Mohamed; Gavin, Sean

    2004-10-01

    Diffusion may obliterate fluctuation signals of the QCD phase transition in nuclear collisions at SPS and RHIC energies. We propose a hyperbolic diffusion equation to study the dissipation of net charge fluctuations [1]. This equation is needed in a relativistic context, because the classic parabolic diffusion equation violates causality. We find that causality substantially limits the extent to which diffusion can dissipate these fluctuations. [1] M. Abdel-Aziz and S. Gavin, nucl-th/0404058

  12. Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation

    NASA Astrophysics Data System (ADS)

    Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid

    2018-06-01

    Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.

  13. Gravitational-Wave and Neutrino Signals from Core-Collapse Supernovae with QCD Phase Transition

    NASA Astrophysics Data System (ADS)

    Zha, Shuai; Leung, Shing Chi; Lin, Lap Ming; Chu, Ming-Chung

    Core-collapse supernovae (CCSNe) mark the catastrophic death of massive stars. We simulate CCSNe with a hybrid equations of state (EOS) containing a QCD (quantum chromodynamics) phase transition. The hybrid EOS incorporates the pure hadronic HShen EOS and the MIT Bag Model, with a Gibbs construction. Our two-dimensional hydrodynamics code includes a fifth-order shock capturing scheme WENO and models neutrino transport with the isotropic diffusion source approximation (IDSA). As the proto-neutron-star accretes matter and the core enters the mixed phase, a second collapse takes place due to softening of the EOS. We calculate the gravitational-wave (GW) and neutrino signals for this kind of CCSNe model. Future detection of these signals from CCSNe may help to constrain this scenario and the hybrid EOS.

  14. Sound wave resonances in micro-electro-mechanical systems devices vibrating at high frequencies according to the kinetic theory of gases

    NASA Astrophysics Data System (ADS)

    Desvillettes, Laurent; Lorenzani, Silvia

    2012-09-01

    The mechanism leading to gas damping in micro-electro-mechanical systems (MEMS) devices vibrating at high frequencies is investigated by using the linearized Boltzmann equation based on simplified kinetic models and diffuse reflection boundary conditions. Above a certain frequency of oscillation, the sound waves propagating through the gas are trapped in the gaps between the moving elements and the fixed boundaries of the microdevice. In particular, we found a scaling law, valid for all Knudsen numbers Kn (defined as the ratio between the gas mean free path and a characteristic length of the gas flow), that predicts a resonant response of the system. This response enables a minimization of the damping force exerted by the gas on the oscillating wall of the microdevice.

  15. Probability density function approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1994-01-01

    The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.

  16. Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane

    NASA Astrophysics Data System (ADS)

    Hu, Wenjie; Duan, Yueliang

    2018-04-01

    We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.

  17. FRACTIONAL PEARSON DIFFUSIONS.

    PubMed

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-07-15

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.

  18. A nonlinear equation for ionic diffusion in a strong binary electrolyte

    PubMed Central

    Ghosal, Sandip; Chen, Zhen

    2010-01-01

    The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176

  19. An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene

    PubMed Central

    Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-01-01

    The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122

  20. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eester, D.; Lerche, E.

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester and R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063],more » the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester and E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.« less

  2. Convective wave breaking in the KdV equation

    NASA Astrophysics Data System (ADS)

    Brun, Mats K.; Kalisch, Henrik

    2018-03-01

    The KdV equation is a model equation for waves at the surface of an inviscid incompressible fluid, and it is well known that the equation describes the evolution of unidirectional waves of small amplitude and long wavelength fairly accurately if the waves fall into the Boussinesq regime. The KdV equation allows a balance of nonlinear steepening effects and dispersive spreading which leads to the formation of steady wave profiles in the form of solitary waves and cnoidal waves. While these wave profiles are solutions of the KdV equation for any amplitude, it is shown here that there for both the solitary and the cnoidal waves, there are critical amplitudes for which the horizontal component of the particle velocity matches the phase velocity of the wave. Solitary or cnoidal solutions of the KdV equation which surpass these amplitudes feature incipient wave breaking as the particle velocity exceeds the phase velocity near the crest of the wave, and the model breaks down due to violation of the kinematic surface boundary condition. The condition for breaking can be conveniently formulated as a convective breaking criterion based on the local Froude number at the wave crest. This breaking criterion can also be applied to time-dependent situations, and one case of interest is the development of an undular bore created by an influx at a lateral boundary. It is shown that this boundary forcing leads to wave breaking in the leading wave behind the bore if a certain threshold is surpassed.

  3. Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul

    2018-04-01

    We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.

  4. Wave propagation problem for a micropolar elastic waveguide

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-04-01

    A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.

  5. Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Zhao, Songlin

    2018-01-01

    In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.

  6. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  7. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    NASA Astrophysics Data System (ADS)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  8. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. III. Cylindrical approximations for heat waves traveling inwards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein

    In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on the heat equation in cylindrical geometry using the symmetry (Neumann) boundary condition at the plasma center. This means that the approximations derived here should be used only to estimate transport coefficients between the plasma center and the off-axis perturbative source. If the effect of cylindrical geometry is small, it is also possiblemore » to use semi-infinite domain approximations presented in Part I and Part II of this series. A number of new approximations are derived in this part, Part III, based upon continued fractions of the modified Bessel function of the first kind and the confluent hypergeometric function of the first kind. These approximations together with the approximations based on semi-infinite domains are compared for heat waves traveling towards the center. The relative error for the different derived approximations is presented for different values of the frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can be used to estimate the transport coefficients over a large parameter range for cases without convection and damping, cases with damping only, and cases with convection and damping. The relative error between the approximation and its underlying model is below 2% for the case, where only diffusivity and damping are considered. If also convectivity is considered, the diffusivity can be estimated well in a large region, but there is also a large region in which no suitable approximation is found. This paper is the third part (Part III) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part II, cylindrical approximations are treated for heat waves traveling towards the plasma edge assuming a semi-infinite domain.« less

  9. Rotating spiral waves in fertilized ascidian eggs.

    PubMed

    Ballarò, Benedetto; Reas, Pier Giorgio

    2002-01-01

    Excitable systems modelled by reaction-diffusion equation may be expected to produce quite complex spatial patterns. Winfree [1974] demonstrated experimentally, in the Belousov-Zhabotinskii reaction, the existence of particular waves called rotating spiral waves. Later Keener and Tyson [1986] presented a thorough analysis of these waves in excitable systems. Spiral waves can also be observed in brain tissue (Shibata and Bures [1974]), while it seems that the precursor to cardiac fibrillation is the appearance of rotating waves of electrical impulses (Winfree [1983]). In this work we suppose the appearance of Ca++ spiral waves in the vegetal pole of ascidian egg cells after the first ooplasmic segregation. Previously we observed that (Ballarò and Reas [2000a]), when the myoplasm is completely localized in the vegetal region (excitable stage) and the ascidian egg cell is perturbed by an increase of Ca++ concentration in the culture medium, the cell reacts by showing persistent mechanical waves of contraction which exist as long as the cell is perturbed. Experimentally we observed the production of a polar lobe located in the vegetal region and the change of the inclination of mitotic furrow, after the appearance of a myoplasmic spiral wave in the vegetal pole. So we suppose that the myoplasmic spiral wave is due to a Ca++ spiral wave, and the myoplasmic spiral wave then causes the changes in the shape of the cell (polar lobe, inclination of mitotic furrow, etc.). Moreover we give a simple geometrical description of a spiral wave.

  10. Dissipation of ionospheric irregularities by wave-particle and collisional interactions

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Pongratz, M. B.; Gray, S. P.; Thomsen, M. F.

    1982-01-01

    The nonlinear dissipation of plasma irregularities aligned parallel to an ambient magnetic field is studied numerically using a model which employs both wave-particle and collisional diffusion. A wave-particle diffusion coefficient derived from a local theory of the universal drift instability is used. This coefficient is effective in regions of nonzero plasma gradients and produces triangular-shaped irregularities with spectra which vary as f to the -4th, where f is the spatial frequency. Collisional diffusion acts rapidly on the vertices of the irregularities to reduce their amplitude. The simultaneous action of the two dissipative processes is more efficient than collisions acting alone. In this model, wave-particle diffusion mimics the forward cascade process of wave-wave coupling.

  11. Dynamics of Solar Energetic Particles in the Presence of a Shock Wave

    NASA Astrophysics Data System (ADS)

    Timofeev, V. E.; Petukhov, Ivan; Petukhov, Stanislav; Starodubtsev, Sergei

    2003-07-01

    From the analysis of problem solutions on the solar energetic particle propagation in the presence of a plane shock wave described by the diffusion convective transport equation, the condition and manifestations for the influence of a shock wave on the SEP propagation in the solar wind have been determined. Solar energetic particles (SEP) in gradual events are generated by shock waves (see, for example, [1] and references there). The SEP generation region is limited, on the whole, by the solar corona. Proton fluxes of 470 MeV to 21 GeV energies, a maximum of which occur at a time when the shock in the atmosphere of the Sun reaches heights equal to 5 10 solar radii [2] indicate to it. It is also confirmed by the significant advancing of the occurrence time of maximum in the SEP intensity with kinetic energies more than 10 MeV relative to the shock front arrival moment to Earth's orbit. model calculations for the particles acceleration by the diffusive mechanism in conditions, typical for the solar corona, show that the time taken to pass the solar atmosphere by the shock is quite sufficient to form the particle spectrum corresponding to the SEP characteristics observed [3,4]. Lee and Ryan [5] investigated the problem of SEP gradual event generation, propagation and confirmed the close association between the diffusive acceleration mechanism and SEP events. The absence of depending of particle diffusion coefficients on the energy is a lack of this model. As an extension of preceding investigations, in this work the temporal dynamics of the particle spectrum in the presence of a plane shock for diffusion coefficients depending on the particle energy and also their change in time is studied. The SEP event from a moment of arising of a shock to a moment of it's arrival on the Earth's orbit can be divided on two stages: the first stage (duration is ˜ 1 hour) is a generation of SEP in the solar corona, the second stage (duration is ˜ 1 day) is a propagation in interplanetary space in the presence of a shock. Here we consider the second stage only which as believed to be began with the injection of the particle spectrum formed during the first stage.

  12. Periodic wave, breather wave and travelling wave solutions of a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou

    2016-11-01

    In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.

  13. Diffusion equations and the time evolution of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram

    2013-10-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  14. Characterization of supersonic radiation diffusion waves

    DOE PAGES

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John; ...

    2015-02-27

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. Here, we present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at themore » end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.« less

  15. On the Stability of Shocks with Particle Pressure

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano; Vietri, Mario

    2008-11-01

    We perform a linear stability analysis for corrugations of a Newtonian shock, with particle pressure included, for an arbitrary diffusion coefficient. We study first the dispersion relation for homogeneous media, showing that, besides the conventional pressure waves and entropy/vorticity disturbances, two new perturbation modes exist, dominated by the particles' pressure and damped by diffusion. We show that, due to particle diffusion into the upstream region, the fluid will be perturbed also upstream; we treat these perturbation in the short-wavelength (WKBJ) regime. We then show how to construct a corrugational mode for the shock itself, one, that is, where the shock executes free oscillations (possibly damped or growing) and sheds perturbations away from itself; this global mode requires the new modes. Then, using the perturbed Rankine-Hugoniot conditions, we show that this leads to the determination of the corrugational eigenfrequency. We solve numerically the equations for the eigenfrequency in the WKBJ regime for the models of Amato & Blasi, showing that they are stable. We then discuss the differences between our treatment and previous work.

  16. Characterization of supersonic radiation diffusion waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Alastair S.; Guymer, Thomas M.; Morton, John

    Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. Here, we present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at themore » end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.« less

  17. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie

    2017-07-01

    The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone. From our results we build the functional scheme of the karst system. It demonstrates the impact of the saturated zone on matrix-conduit exchanges in this shallow phreatic aquifer and highlights the important role of the unsaturated zone on storage and transfer functions of the system.

  18. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1994-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.

  19. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1993-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.

  20. Monitoring the diffusion of topically applied drugs through human and pig skin using fiber evanescent wave spectroscopy (FEWS)

    NASA Astrophysics Data System (ADS)

    Spielvogel, Juergen; Reuter, Susanne; Hibst, Raimund; Katzir, Abraham

    1999-04-01

    The objective of this study was to examine if the diffusion process of topically applied drugs can reliably be monitored using FEWS in respect to timely distribution of the drug and chemical alterations of the drug during the diffusion process. In order to do this, recently excised human and pig skin was cut into slices of different thickness while also taking into account the different layers skin is composed of (e.g. Dermis, Stratum Corneum). These layers were first characterized spectroscopically and optically using a microscope before the drug itself was applied topically. The diffusion process was monitored by placing the sample on an ATR (attenuated total reflection) element. Time series from 1 - 4 hours were taken and the characteristic absorption bands of the drug were analyzed in the mid-infrared. By using a first order approach on Fick's diffusion equations (skin assumed to be homogeneous) we were able to fit these experimental values and to obtain diffusion constants, e.g. for water at 3376 cm-1 in the order of 10-5 cm2/s, which compare well with previously published values. The results indicate that this technique can be applied to the prediction of transdermal drug delivery.

  1. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  2. The exit-time problem for a Markov jump process

    NASA Astrophysics Data System (ADS)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  3. Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Macías-Díaz, Jorge E.; Kofané, Timoléon Crépin

    2018-03-01

    We investigate analytically and numerically the conditions for wave instabilities in a hyperbolic activator-inhibitor system with species undergoing anomalous superdiffusion. In the present work, anomalous superdiffusion is modeled using the two-dimensional Weyl fractional operator, with derivative orders α ∈ [1,2]. We perform a linear stability analysis and derive the conditions for diffusion-driven wave instabilities. Emphasis is placed on the effect of the superdiffusion exponent α , the diffusion ratio d , and the inertial time τ . As the superdiffusive exponent increases, so does the wave number of the Turing instability. Opposite to the requirement for Turing instability, the activator needs to diffuse sufficiently faster than the inhibitor in order for the wave instability to occur. The critical wave number for wave instability decreases with the superdiffusive exponent and increases with the inertial time. The maximum value of the inertial time for a wave instability to occur in the system is τmax=3.6 . As one of the main results of this work, we conclude that both anomalous diffusion and inertial time influence strongly the conditions for wave instabilities in hyperbolic fractional reaction-diffusion systems. Some numerical simulations are conducted as evidence of the analytical predictions derived in this work.

  4. Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles

    NASA Astrophysics Data System (ADS)

    Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo

    2018-05-01

    Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.

  5. On the interpretation of continuous wave electron spin resonance spectra of tempo-palmitate in 5-cyanobiphenyl.

    PubMed

    Zerbetto, Mirco; Polimeno, Antonino; Cimino, Paola; Barone, Vincenzo

    2008-01-14

    Electron spin resonance (ESR) measurements are highly informative on the dynamic behavior of molecules, which is of fundamental importance to understand their stability, biological functions and activities, and catalytic action. The wealth of dynamic information which can be extracted from a continuous wave electron spin resonance (cw-ESR) spectrum can be inferred by a basic theoretical approach defined within the stochastic Liouville equation formalism, i.e., the direct inclusion of motional dynamics in the form of stochastic (Fokker-Planck/diffusive) operators in the super Hamiltonian H governing the time evolution of the system. Modeling requires the characterization of magnetic parameters (e.g., hyperfine and Zeeman tensors) and the calculation of ESR observables in terms of spectral densities. The magnetic observables can be pursued by the employment of density functional theory which is apt, provided that hybrid functionals are employed, for the accurate computation of structural properties of molecular systems. Recently, an ab initio integrated computational approach to the in silico interpretation of cw-ESR spectra of multilabeled systems in isotropic fluids has been discussed. In this work we present the extension to the case of nematic liquid crystalline environments by performing simulations of the ESR spectra of the prototypical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-oxy in isotropic and nematic phases of 5-cyanobiphenyl. We first discuss the basic ingredients of the integrated approach, i.e., (1) determination of geometric and local magnetic parameters by quantum-mechanical calculations, taking into account the solvent and, when needed, the vibrational averaging contributions; (2) numerical solution of a stochastic Liouville equation in the presence of diffusive rotational dynamics, based on (3) parameterization of diffusion rotational tensor provided by a hydrodynamic model. Next we present simulated spectra with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing three-dimensional structural and dynamic information on molecular systems in anisotropic environments.

  6. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  7. A comparison/validation of a fractional derivative model with an empirical model of non-linear shock waves in swelling shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2013-04-01

    Control of drilling parameters, as fluid pressure, mud weight, salt concentration is essential to avoid instabilities when drilling through shale sections. To investigate shale deformation, fundamental for deep oil drilling and hydraulic fracturing for gas extraction ("fracking"), a non-linear model of mechanic and chemo-poroelastic interactions among fluid, solute and the solid matrix is here discussed. The two equations of this model describe the isothermal evolution of fluid pressure and solute density in a fluid saturated porous rock. Their solutions are quick non-linear Burger's solitary waves, potentially destructive for deep operations. In such analysis the effect of diffusion, that can play a particular role in fracking, is investigated. Then, following Civan (1998), both diffusive and shock waves are applied to fine particles filtration due to such quick transients , their effect on the adjacent rocks and the resulting time-delayed evolution. Notice how time delays in simple porous media dynamics have recently been analyzed using a fractional derivative approach. To make a tentative comparison of these two deeply different methods,in our model we insert fractional time derivatives, i.e. a kind of time-average of the fluid-rocks interactions. Then the delaying effects of fine particles filtration is compared with fractional model time delays. All this can be seen as an empirical check of these fractional models.

  8. Breakdown of equipartition in diffuse fields caused by energy leakage

    NASA Astrophysics Data System (ADS)

    Margerin, L.

    2017-05-01

    Equipartition is a central concept in the analysis of random wavefields which stipulates that in an infinite scattering medium all modes and propagation directions become equally probable at long lapse time in the coda. The objective of this work is to examine quantitatively how this conclusion is affected in an open waveguide geometry, with a particular emphasis on seismological applications. To carry our this task, the problem is recast as a spectral analysis of the radiative transfer equation. Using a discrete ordinate approach, the smallest eigenvalue and associated eigenfunction of the transfer equation, which control the asymptotic intensity distribution in the waveguide, are determined numerically with the aid of a shooting algorithm. The inverse of this eigenvalue may be interpreted as the leakage time of the diffuse waves out of the waveguide. The associated eigenfunction provides the depth and angular distribution of the specific intensity. The effect of boundary conditions and scattering anisotropy is investigated in a series of numerical experiments. Two propagation regimes are identified, depending on the ratio H∗ between the thickness of the waveguide and the transport mean path in the layer. The thick layer regime H∗ > 1 has been thoroughly studied in the literature in the framework of diffusion theory and is briefly considered. In the thin layer regime H∗ < 1, we find that both boundary conditions and scattering anisotropy leave a strong imprint on the leakage effect. A parametric study reveals that in the presence of a flat free surface, the leakage time is essentially controlled by the mean free time of the waves in the layer in the limit H∗ → 0. By contrast, when the free surface is rough, the travel time of ballistic waves propagating through the crust becomes the limiting factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse coda quality factor, increases with scattering anisotropy. For sufficiently thin layers H∗≈ 1/5, the energy flux is predominantly directed parallel to the surface and equipartition breaks down. Qualitatively, the anisotropy of the intensity field is found to increase with the inverse non-dimensional leakage time, with the scattering mean free time as time scale. Because it enhances leakage, a rough free surface may result in stronger anisotropy of the intensity field than a flat surface, for the same bulk scattering properties. Our work identifies leakage as a potential explanation for the large deviation from isotropy observed in the coda of body waves.

  9. A parallel algorithm for nonlinear convection-diffusion equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1990-01-01

    A parallel algorithm for the efficient solution of nonlinear time-dependent convection-diffusion equations with small parameter on the diffusion term is presented. The method is based on a physically motivated domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. The method is suitable for the solution of problems arising in the simulation of fluid dynamics. Experimental results for a nonlinear equation in two-dimensions are presented.

  10. The time-fractional radiative transport equation—Continuous-time random walk, diffusion approximation, and Legendre-polynomial expansion

    NASA Astrophysics Data System (ADS)

    Machida, Manabu

    2017-01-01

    We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.

  11. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  12. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights

    NASA Astrophysics Data System (ADS)

    Chechkin, A. V.; Gonchar, V. Yu.; Gorenflo, R.; Korabel, N.; Sokolov, I. M.

    2008-08-01

    Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. For processes lacking such scaling the corresponding description may be given by diffusion equations with fractional derivatives of distributed order. Such equations were introduced in A. V. Chechkin, R. Gorenflo, and I. Sokolov [Phys. Rev. E 66, 046129 (2002)] for the description of the processes getting more anomalous in the course of time (decelerating subdiffusion and accelerating superdiffusion). Here we discuss the properties of diffusion equations with fractional derivatives of the distributed order for the description of anomalous relaxation and diffusion phenomena getting less anomalous in the course of time, which we call, respectively, accelerating subdiffusion and decelerating superdiffusion. For the former process, by taking a relatively simple particular example with two fixed anomalous diffusion exponents we show that the proposed equation effectively describes the subdiffusion phenomenon with diffusion exponent varying in time. For the latter process we demonstrate by a particular example how the power-law truncated Lévy stable distribution evolves in time to the distribution with power-law asymptotics and Gaussian shape in the central part. The special case of two different orders is characteristic for the general situation in which the extreme orders dominate the asymptotics.

  13. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.

    PubMed

    Ankiewicz, Adrian; Wang, Yan; Wabnitz, Stefan; Akhmediev, Nail

    2014-01-01

    We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation, providing a corresponding Lax pair. Particular cases of this equation are the Hirota and the Lakshmanan-Porsezian-Daniel equations. The resulting integrable equation admits exact rogue wave solutions. In particular cases, mentioned above, these solutions are reduced to the rogue wave solutions of the corresponding equations.

  14. Theoretical Treatment of Ion Transfers in Two Polarizable Interface Systems When the Analyte Has Access to Both Interfaces.

    PubMed

    Olmos, José Manuel; Molina, Ángela; Laborda, Eduardo; Millán-Barrios, Enrique; Ortuño, Joaquín Ángel

    2018-02-06

    A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.

  15. Critical Latitude in Tidal Dynamics Using the Kara Sea as an Example

    NASA Astrophysics Data System (ADS)

    Kagan, B. A.; Sofina, E. V.; Timofeev, A. A.

    2018-03-01

    It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.

  16. Symmetry classification of time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Naeem, I.; Khan, M. D.

    2017-01-01

    In this article, a new approach is proposed to construct the symmetry groups for a class of fractional differential equations which are expressed in the modified Riemann-Liouville fractional derivative. We perform a complete group classification of a nonlinear fractional diffusion equation which arises in fractals, acoustics, control theory, signal processing and many other applications. Introducing the suitable transformations, the fractional derivatives are converted to integer order derivatives and in consequence the nonlinear fractional diffusion equation transforms to a partial differential equation (PDE). Then the Lie symmetries are computed for resulting PDE and using inverse transformations, we derive the symmetries for fractional diffusion equation. All cases are discussed in detail and results for symmetry properties are compared for different values of α. This study provides a new way of computing symmetries for a class of fractional differential equations.

  17. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Yong

    2018-05-01

    A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.

  18. Multiple branches of travelling waves for the Gross–Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Chiron, David; Scheid, Claire

    2018-06-01

    Explicit solitary waves are known to exist for the Kadomtsev–Petviashvili-I (KP-I) equation in dimension 2. We first address numerically the question of their Morse index. The results confirm that the lump solitary wave has Morse index one and that the other explicit solutions correspond to excited states. We then turn to the 2D Gross–Pitaevskii (GP) equation, which in some long wave regime converges to the KP-I equation. Numerical simulations have already shown that a branch of travelling waves of GP converges to a ground state of KP-I, expected to be the lump. In this work, we perform numerical simulations showing that other explicit solitary waves solutions to the KP-I equation give rise to new branches of travelling waves of GP corresponding to excited states.

  19. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen

    2018-05-01

    The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.

  20. Heavy-tailed fractional Pearson diffusions.

    PubMed

    Leonenko, N N; Papić, I; Sikorskii, A; Šuvak, N

    2017-11-01

    We define heavy-tailed fractional reciprocal gamma and Fisher-Snedecor diffusions by a non-Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in applications. The corresponding fractional reciprocal gamma and Fisher-Snedecor diffusions are governed by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal gamma and Fisher-Snedecor diffusions and strong solutions of the associated Cauchy problems for the fractional backward Kolmogorov equation.

  1. Shock Waves in a Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2005-01-01

    A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.

  2. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    NASA Astrophysics Data System (ADS)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  3. Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2009-04-01

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.

  4. Plasma diffusion at the magnetopause - The case of lower hybrid drift waves

    NASA Technical Reports Server (NTRS)

    Treumann, R. A.; Labelle, J.; Pottelette, R.

    1991-01-01

    The diffusion expected from the quasi-linear theory of the lower hybrid drift instability at the earth's magnetopause is recalculated. The resulting diffusion coefficient is marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various loss processes.

  5. Coronal "wave": Magnetic Footprint Of A Cme?

    NASA Astrophysics Data System (ADS)

    Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.

    2007-05-01

    We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.

  6. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru

    2017-11-01

    This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2  +  1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2  +  1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.

  7. Feynman-Kac equations for reaction and diffusion processes

    NASA Astrophysics Data System (ADS)

    Hou, Ru; Deng, Weihua

    2018-04-01

    This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.

  8. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.

  9. Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation

    NASA Astrophysics Data System (ADS)

    Zou, Li; Tian, Shou-Fu; Feng, Lian-Li

    2017-12-01

    In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.

  10. Fluid pressure waves trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2015-03-01

    Fluids-essentially meteoric water-are present everywhere in the Earth's crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in form of solitary pressure waves propagating at a velocity which decreases with time as v ∝ t [1/(n - 1) - 1] with n ≳ 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.

  11. Wavefront cellular learning automata.

    PubMed

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  12. Wavefront cellular learning automata

    NASA Astrophysics Data System (ADS)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  13. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  14. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  15. The exit-time problem for a Markov jump process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, N.; D'Elia, Marta; Lehoucq, Richard B.

    2014-12-15

    The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developedmore » nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.« less

  16. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  17. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.

    2015-07-01

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  18. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    PubMed

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  19. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  20. Linear ground-water flow, flood-wave response program for programmable calculators

    USGS Publications Warehouse

    Kernodle, John Michael

    1978-01-01

    Two programs are documented which solve a discretized analytical equation derived to determine head changes at a point in a one-dimensional ground-water flow system. The programs, written for programmable calculators, are in widely divergent but commonly encountered languages and serve to illustrate the adaptability of the linear model to use in situations where access to true computers is not possible or economical. The analytical method assumes a semi-infinite aquifer which is uniform in thickness and hydrologic characteristics, bounded on one side by an impermeable barrier and on the other parallel side by a fully penetrating stream in complete hydraulic connection with the aquifer. Ground-water heads may be calculated for points along a line which is perpendicular to the impermeable barrie and the fully penetrating stream. Head changes at the observation point are dependent on (1) the distance between that point and the impermeable barrier, (2) the distance between the line of stress (the stream) and the impermeable barrier, (3) aquifer diffusivity, (4) time, and (5) head changes along the line of stress. The primary application of the programs is to determine aquifer diffusivity by the flood-wave response technique. (Woodard-USGS)

  1. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.

    2016-12-10

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results frommore » the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.« less

  2. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu

    2017-10-01

    Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.

  3. Rogue-wave solutions of the Zakharov equation

    NASA Astrophysics Data System (ADS)

    Rao, Jiguang; Wang, Lihong; Liu, Wei; He, Jingsong

    2017-12-01

    Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these Nth-order rogue-wave solutions explicitly in terms of Nth-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane ( x, y) arising from a constant background at t ≪ 0 and then gradually tending to the constant background for t ≫ 0. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey-Stewartson equation analytically and graphically.

  4. An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    2018-06-01

    In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.

  5. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies (is) greater than1 keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  6. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  7. Characteristics of solitary waves, quasiperiodic solutions, homoclinic breather solutions and rogue waves in the generalized variable-coefficient forced Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Zou, Li

    2017-12-01

    In this paper, the generalized variable-coefficient forced Kadomtsev-Petviashvili (gvcfKP) equation is investigated, which can be used to characterize the water waves of long wavelength relating to nonlinear restoring forces. Using a dependent variable transformation and combining the Bell’s polynomials, we accurately derive the bilinear expression for the gvcfKP equation. By virtue of bilinear expression, its solitary waves are computed in a very direct method. By using the Riemann theta function, we derive the quasiperiodic solutions for the equation under some limitation factors. Besides, an effective way can be used to calculate its homoclinic breather waves and rogue waves, respectively, by using an extended homoclinic test function. We hope that our results can help enrich the dynamical behavior of the nonlinear wave equations with variable-coefficient.

  8. Nonlinear modes of the tensor Dirac equation and CPT violation

    NASA Technical Reports Server (NTRS)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  9. Wave-front propagation in a discrete model of excitable media

    NASA Astrophysics Data System (ADS)

    Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.

    1998-06-01

    We generalize our recent discrete cellular automata (CA) model of excitable media [Y. B. Chernyak, A. B. Feldman, and R. J. Cohen, Phys. Rev. E 55, 3215 (1997)] to incorporate the effects of inhibitory processes on the propagation of the excitation wave front. In the common two variable reaction-diffusion (RD) models of excitable media, the inhibitory process is described by the v ``controller'' variable responsible for the restoration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the ``source'' contribution of excited elements to the excitation of their neighbors decreases with time as a simple function with a single adjustable parameter (a rate constant). We sought specific solutions of the CA state transition equations and obtained (both analytically and numerically) the dependence of the wave-front speed c on the four model parameters and the wave-front curvature κ. By requiring that the major characteristics of c(κ) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remarkably similar to that found in typical RD systems (similar behavior is observed when the analogous model parameters are varied). Most notably, the ``turn-on'' of the inhibitory process is accompanied by the appearance of a solution branch of slow speed, unstable waves. Additionally, when κ is small, we obtain a family of ``eikonal'' relations c(κ) that are suitable for the kinematic analysis of traveling waves in the CA medium. We compared the solutions of the CA equations to CA simulations for the case of plane waves and circular (target) waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific RD system and found good correspondence between the shapes of the RD and CA spiral arms in the region away from the tip where kinematic theory applies. Our analysis suggests that only four physical parameters control the behavior of wave fronts in excitable media.

  10. Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Jung, Soyeun; Zumbrun, Kevin

    2018-03-01

    Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.

  11. Renormalization group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George

    1993-01-01

    The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.

  12. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  13. Classification of the Lie and Noether point symmetries for the Wave and the Klein-Gordon equations in pp-wave spacetimes

    NASA Astrophysics Data System (ADS)

    Paliathanasis, A.; Tsamparlis, M.; Mustafa, M. T.

    2018-02-01

    A complete classification of the Lie and Noether point symmetries for the Klein-Gordon and the wave equation in pp-wave spacetimes is obtained. The classification analysis is carried out by reducing the problem of the determination of the point symmetries to the problem of existence of conformal killing vectors on the pp-wave spacetimes. Employing the existing results for the isometry classes of the pp-wave spacetimes, the functional form of the potential is determined for which the Klein-Gordon equation admits point symmetries and Noetherian conservation law. Finally the Lie and Noether point symmetries of the wave equation are derived.

  14. Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Tawfik, Ashraf M.; Fichtner, Horst; Schlickeiser, Reinhard; Elhanbaly, A.

    2018-02-01

    The aim of this paper is to develop a fractional derivative model of energetic particle transport for both uniform and non-uniform large-scale magnetic field by studying the fractional Telegraph equation and the fractional advection-diffusion equation. Analytical solutions of the space-time fractional Telegraph equation and space-time fractional advection-diffusion equation are obtained by use of the Caputo fractional derivative and the Laplace-Fourier technique. The solutions are given in terms of Fox's H function. As an illustration they are applied to the case of solar energetic particles.

  15. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging.

    PubMed

    Millius, Arthur; Watanabe, Naoki; Weiner, Orion D

    2012-03-01

    The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes.

  16. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging

    PubMed Central

    Millius, Arthur; Watanabe, Naoki; Weiner, Orion D.

    2012-01-01

    The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes. PMID:22349699

  17. Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation

    NASA Astrophysics Data System (ADS)

    Mancas, Stefan C.; Spradlin, Greg; Khanal, Harihar

    2013-08-01

    In this paper the effect of a small dissipation on waves is included to find exact solutions to the modified Benjamin, Bona, and Mahony (BBM) equation by viscosity. Using Lyapunov functions and dynamical systems theory, we prove that when viscosity is added to the BBM equation, in certain regions there still exist bounded traveling wave solutions in the form of solitary waves, periodic, and elliptic functions. By using the canonical form of Abel equation, the polynomial Appell invariant makes the equation integrable in terms of Weierstrass ℘ functions. We will use a general formalism based on Ince's transformation to write the general solution of dissipative BBM in terms of ℘ functions, from which all the other known solutions can be obtained via simplifying assumptions. Using ODE (ordinary differential equations) analysis we show that the traveling wave speed is a bifurcation parameter that makes transition between different classes of waves.

  18. Alternative stable qP wave equations in TTI media with their applications for reverse time migration

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Wang, Huazhong; Liu, Wenqing

    2015-10-01

    Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.

  19. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  20. A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Lin, Zeng; Wang, Dongdong

    2017-10-01

    Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.

  1. The Earth’s Radiation Belts.

    DTIC Science & Technology

    1983-09-20

    on -- 1d. It --- . d id-er, c S, blck -.o~b.1) ’Trapped radiation Steady-state miodels Adiabatic invariants Empirical flux models Diffusion equations...Shell -splitting, Transport theory Nuclear detonations Wave-oarticle interactions Effects on microelectronics 20 ABSTRACT ( C -0- n OR e -~ d . It -~e-lay...olo -i t i os5 at 500 ke\\% live lrtI’m i s pt, eOI iS .1: litv, ,Ie It if 5)ht* stIweo f iul-’t, wi te thle hie av itk, i il - il v t’il 1 Ltt sI c a

  2. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    NASA Astrophysics Data System (ADS)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y. Omura, D. Summers, and C. A. Kletzing (2016), Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss, Geophys. Res. Lett., 43, 10,040-10,049. [4] Omura, Y., Katoh, Y., and Summers, D., Theory and simulation of the generation of whistler-mode chorus (2008), J. Geophys. Res., 113, A04223.

  3. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  4. Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Evoy, E.; Kamal, S.; Bertram, A. K.

    2017-12-01

    Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.

  5. Orbital stability of solitary waves for Kundu equation

    NASA Astrophysics Data System (ADS)

    Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling

    In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ<0, while Guo and Wu (1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.

  6. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  7. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.

    PubMed

    Wen, Xiao-Yong; Yang, Yunqing; Yan, Zhenya

    2015-07-01

    In this paper, a simple and constructive method is presented to find the generalized perturbation (n,M)-fold Darboux transformations (DTs) of the modified nonlinear Schrödinger (MNLS) equation in terms of fractional forms of determinants. In particular, we apply the generalized perturbation (1,N-1)-fold DTs to find its explicit multi-rogue-wave solutions. The wave structures of these rogue-wave solutions of the MNLS equation are discussed in detail for different parameters, which display abundant interesting wave structures, including the triangle and pentagon, etc., and may be useful to study the physical mechanism of multirogue waves in optics. The dynamical behaviors of these multi-rogue-wave solutions are illustrated using numerical simulations. The same Darboux matrix can also be used to investigate the Gerjikov-Ivanov equation such that its multi-rogue-wave solutions and their wave structures are also found. The method can also be extended to find multi-rogue-wave solutions of other nonlinear integrable equations.

  8. A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jeffrey

    2006-04-01

    Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less

  9. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    USGS Publications Warehouse

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  10. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochasticmore » thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.« less

  11. S{sub 2}SA preconditioning for the S{sub n} equations with strictly non negative spatial discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruss, D. E.; Morel, J. E.; Ragusa, J. C.

    2013-07-01

    Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less

  12. Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: The origin of pancake distributions

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Thorne, Richard M.

    2000-03-01

    It has been suggested that highly anisotropic electron pancake distributions are the result of pitch angle diffusion by electrostatic electron cyclotron harmonic (ECH) and whistler mode waves in the equatorial region. Here we present pitch angle diffusion rates for ECH wave spectra centered at different frequencies with respect to the electron gyrofrequency Ωe corresponding to spacecraft observations. The wave spectra are carefully mapped to the correct resonant electron velocities. We show that previous diffusion calculations of ECH waves at 1.5Ωe, driven by the loss cone instability, result in large diffusion rates confined to a small range of pitch angles near the loss cone and therefore cannot account for pancake distributions. However, when the wave spectrum is centered at higher frequencies in the band (>1.6Ωe), the diffusion rates become very small inside the loss cone, peak just outside, and remain large over a wide range of pitch angles up to 60° or more. When the upper hybrid resonance frequency ωUHR is several times Ωe, ECH waves excited in higher bands also contribute significantly to pitch angle diffusion outside the loss cone up to very large pitch angles. We suggest that ECH waves driven by a loss cone could form pancake distributions as they grow if the wave spectrum extends from the middle to the upper part of the first (and higher) gyroharmonic bands. Alternatively, we suggest that pancake distributions can be formed by outward propagation in a nonhomogeneous medium, so that resonant absorption occurs at higher frequencies between(n+12) and (n+1)Ωe in regions where waves are also growing locally at <=1.5Ωe. The calculated diffusion rates suggest that ECH waves with amplitudes of the order of 1 mV m-1 can form pancake distributions from an initially isotropic distribution on a timescale of a few hours. This is consistent with recent CRRES observations of ECH wave amplitudes following substorm injections near geostationary orbit and the timescales for pancake formation. Persistent but much weaker ECH waves can further intensify and maintain pancake distributions during magnetically quiet periods.

  13. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  14. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  15. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.

    PubMed

    Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N

    2013-07-01

    The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

  16. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  17. Pure quasi-P wave equation and numerical solution in 3D TTI media

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; He, Bing-Shou; Tang, Huai-Gu

    2017-03-01

    Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ɛ. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.

  18. Diffusion Driven Combustion Waves in Porous Media

    NASA Technical Reports Server (NTRS)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.

  19. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  20. On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes

    ERIC Educational Resources Information Center

    Chandran, Pallath

    2004-01-01

    The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…

  1. High-frequency homogenization for travelling waves in periodic media.

    PubMed

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  2. Group iterative methods for the solution of two-dimensional time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Balasim, Alla Tareq; Ali, Norhashidah Hj. Mohd.

    2016-06-01

    Variety of problems in science and engineering may be described by fractional partial differential equations (FPDE) in relation to space and/or time fractional derivatives. The difference between time fractional diffusion equations and standard diffusion equations lies primarily in the time derivative. Over the last few years, iterative schemes derived from the rotated finite difference approximation have been proven to work well in solving standard diffusion equations. However, its application on time fractional diffusion counterpart is still yet to be investigated. In this paper, we will present a preliminary study on the formulation and analysis of new explicit group iterative methods in solving a two-dimensional time fractional diffusion equation. These methods were derived from the standard and rotated Crank-Nicolson difference approximation formula. Several numerical experiments were conducted to show the efficiency of the developed schemes in terms of CPU time and iteration number. At the request of all authors of the paper an updated version of this article was published on 7 July 2016. The original version supplied to AIP Publishing contained an error in Table 1 and References 15 and 16 were incomplete. These errors have been corrected in the updated and republished article.

  3. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).

    PubMed

    Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre

    2012-10-01

    A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.

  4. Multi-Hamiltonian structure of equations of hydrodynamic type

    NASA Astrophysics Data System (ADS)

    Gümral, H.; Nutku, Y.

    1990-11-01

    The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.

  5. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  6. Diffusion of phonons through (along and across) the ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, J. P.; Jaćimovski, S. K.; Vučenović, S. M.

    2017-11-01

    Instead of usual approach, applying displacement-displacement Green's functions, the momentum-momentum Green's functions will be used to calculate the diffusion tensor. With this type of Green's function we have calculated and analyzed dispersion law in film-structures. A small number of phonon energy levels along the direction of boundary surfaces joint of the film are discrete-ones and in this case standing waves could occur. This is consequence of quantum size effects. These Green's functions enter into Kubo's formula defining diffusion properties of the system and possible heat transfer direction through observed structures. Calculation of the diffusion tensor for phonons in film-structure requires solving of the system of difference equations. Boundary conditions are included into mentioned system through the Hamiltonian of the film-structure. It has been shown that the diagonal elements of the diffusion tensor express discrete behavior of the dispersion law of elementary excitations. More important result is-that they are temperature independent and that their values are much higher comparing with bulk structures. This result favors better heat conduction of the film, but in direction which is perpendicular to boundary film surface. In the same time this significantly favors appearance 2D superconducting surfaces inside the ultra-thin crystal structure, which are parallel to the boundary surface.

  7. A proposal for the experimental detection of CSL induced random walk

    PubMed Central

    Bera, Sayantani; Motwani, Bhawna; Singh, Tejinder P.; Ulbricht, Hendrik

    2015-01-01

    Continuous Spontaneous Localization (CSL) is one possible explanation for dynamically induced collapse of the wave-function during a quantum measurement. The collapse is mediated by a stochastic non-linear modification of the Schrödinger equation. A consequence of the CSL mechanism is an extremely tiny violation of energy-momentum conservation, which can, in principle, be detected in the laboratory via the random diffusion of a particle induced by the stochastic collapse mechanism. In a paper in 2003, Collett and Pearle investigated the translational CSL diffusion of a sphere, and the rotational CSL diffusion of a disc, and showed that this effect dominates over the ambient environmental noise at low temperatures and extremely low pressures (about ten-thousandth of a pico-Torr). In the present paper, we revisit their analysis and argue that this stringent condition on pressure can be relaxed, and that the CSL effect can be seen at the pressure of about a pico-Torr. A similar analysis is provided for diffusion produced by gravity-induced decoherence, where the effect is typically much weaker than CSL. We also discuss the CSL induced random displacement of a quantum oscillator. Lastly, we propose possible experimental set-ups justifying that CSL diffusion is indeed measurable with the current technology. PMID:25563619

  8. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  9. Nonparaxial wave beams and packets with general astigmatism

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.; Plachenov, A. B.; Chamorro-Posada, P.

    2012-04-01

    We present exact solutions of the wave equation involving an arbitrary wave form with a phase closely similar to the general astigmatic phase of paraxial wave optics. Special choices of the wave form allow general astigmatic beamlike and pulselike waves with a Gaussian-type unrestricted localization in space and time. These solutions are generalizations of the known Bateman-type waves obtained from the connection existing between beamlike solutions of the paraxial parabolic equation and relatively undistorted wave solutions of the wave equation. As a technical tool, we present a full description of parametrizations of 2×2 symmetric matrices with positive imaginary part, which arise in the theory of Gaussian beams.

  10. Acoustics of multiscale sorptive porous materials

    NASA Astrophysics Data System (ADS)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  11. Response of radiation belt simulations to different radial diffusion coefficients for relativistic and ultra-relativistic electrons

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam

    Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  12. Application of New Chorus Wave Model from Van Allen Probe Observations in Earth's Radiation Belt Modeling

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shprits, Y.; Spasojevic, M.; Zhu, H.; Aseev, N.; Drozdov, A.; Kellerman, A. C.

    2017-12-01

    In situ satellite observations, theoretical studies and model simulations suggested that chorus waves play a significant role in the dynamic evolution of relativistic electrons in the Earth's radiation belts. In this study, we developed new wave frequency and amplitude models that depend on Magnetic Local Time (MLT)-, L-shell, latitude- and geomagnetic conditions indexed by Kp for upper-band and lower-band chorus waves using measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. Utilizing the quasi-linear full diffusion code, we calculated corresponding diffusion coefficients in each MLT sector (1 hour resolution) for upper-band and lower-band chorus waves according to the new developed wave models. Compared with former parameterizations of chorus waves, the new parameterizations result in differences in diffusion coefficients that depend on energy and pitch angle. Utilizing obtained diffusion coefficients, lifetime of energetic electrons is parameterized accordingly. In addition, to investigate effects of obtained diffusion coefficients in different MLT sectors and under different geomagnetic conditions, we performed simulations using four-dimensional Versatile Electron Radiation Belt simulations and validated results against observations.

  13. On the anisotropic advection-diffusion equation with time dependent coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.

    The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less

  14. On the anisotropic advection-diffusion equation with time dependent coefficients

    DOE PAGES

    Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.

    2017-02-01

    The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less

  15. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  16. A unifying fractional wave equation for compressional and shear waves.

    PubMed

    Holm, Sverre; Sinkus, Ralph

    2010-01-01

    This study has been motivated by the observed difference in the range of the power-law attenuation exponent for compressional and shear waves. Usually compressional attenuation increases with frequency to a power between 1 and 2, while shear wave attenuation often is described with powers less than 1. Another motivation is the apparent lack of partial differential equations with desirable properties such as causality that describe such wave propagation. Starting with a constitutive equation which is a generalized Hooke's law with a loss term containing a fractional derivative, one can derive a causal fractional wave equation previously given by Caputo [Geophys J. R. Astron. Soc. 13, 529-539 (1967)] and Wismer [J. Acoust. Soc. Am. 120, 3493-3502 (2006)]. In the low omegatau (low-frequency) case, this equation has an attenuation with a power-law in the range from 1 to 2. This is consistent with, e.g., attenuation in tissue. In the often neglected high omegatau (high-frequency) case, it describes attenuation with a power-law between 0 and 1, consistent with what is observed in, e.g., dynamic elastography. Thus a unifying wave equation derived properly from constitutive equations can describe both cases.

  17. General pulsed-field gradient signal attenuation expression based on a fractional integral modified-Bloch equation

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-10-01

    Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).

  18. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  19. The parallel-antiparallel signal difference in double-wave-vector diffusion-weighted MR at short mixing times: A phase evolution perspective

    NASA Astrophysics Data System (ADS)

    Finsterbusch, Jürgen

    2011-01-01

    Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.

  20. Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2018-01-01

    In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.

  1. The Extended Parabolic Equation Method and Implication of Results for Atmospheric Millimeter-Wave and Optical Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  2. Dust acoustic solitary waves in a dusty plasma with two kinds of nonthermal ions at different temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorranian, Davoud; Sabetkar, Akbar

    The nonlinear dust acoustic solitary waves in a dusty plasma with two nonthermal ion species at different temperatures is studied analytically. Using reductive perturbation method, the Kadomtsev-Petviashivili (KP) equation is derived, and the effects of nonthermal coefficient, ions temperature, and ions number density on the amplitude and width of soliton in dusty plasma are investigated. It is shown that the amplitude of solitary wave of KP equation diverges at critical points of plasma parameters. The modified KP equation is also derived, and from there, the soliton like solutions of modified KP equation with finite amplitude is extracted. Results show thatmore » generation of rarefactive or compressive solitary waves strongly depends on the number and temperature of nonthermal ions. Results of KP equation confirm that for different magnitudes of ions temperature (mass) and number density, mostly compressive solitary waves are generated in a dusty plasma. In this case, the amplitude of solitary wave is decreased, while the width of solitary waves is increased. According to the results of modified KP equation for some certain magnitudes of parameters, there is a condition for generation of an evanescent solitary wave in a dusty plasma.« less

  3. Evolution of nonlinear waves in a blood-filled artery with an aneurysm

    NASA Astrophysics Data System (ADS)

    Nikolova, E. V.; Jordanov, I. P.; Dimitrova, Z. I.; Vitanov, N. K.

    2017-10-01

    We discuss propagation of traveling waves in a blood-filled hyper-elastic artery with a local dilatation (an aneurysm). The processes in the injured artery are modeled by an equation of the motion of the arterial wall and by equations of the motion of the fluid (the blood). Taking into account the specific arterial geometry and applying the reductive perturbation method in long-wave approximation we reduce the model equations to a version of the perturbed Korteweg-de Vries kind equation with variable coefficients. Exact traveling-wave solutions of this equation are obtained by the modified method of simplest equation where the differential equation of Abel is used as a simplest equation. A particular case of the obtained exact solution is numerically simulated and discussed from the point of view of arterial disease mechanics.

  4. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C072)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  5. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C048)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  6. Multi-Periodic Waves in Shallow Water

    DTIC Science & Technology

    1992-09-01

    models-the Kadomtsev - Petviashvili (KP) equation . The KP equation describes the evolu- tion of weakly nonlinear, weakly two-dimensional waves on water of...experimentally. The analytical model is a family of periodic solutions of the Kadomtsev -Petviashuili equation . The experiments demonstrate the accuracy... Petviashvili Equation (with Norman Schef- fner & Harvey Segur). Proceedings, Nonlinear Water Waves Workshop, University of Bristol. England, 1991. Resonant

  7. Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

    NASA Astrophysics Data System (ADS)

    Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.

    2014-09-01

    A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.

  8. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  9. B2.5-Eirene modeling of radial transport in the MAGPIE linear plasma device

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Caneses, J. F.; Canik, J.; Lore, J. D.; Corr, C.; Blackwell, B.; Bonnin, X.; Rapp, J.

    2017-05-01

    Radial transport in helicon heated hydrogen plasmas in the MAGnetized Plasma Interaction Experiment (MAGPIE) is studied with the B2.5-Eirene (SOLPS5.0) code. Radial distributions of plasma density, temperature and ambipolar potential are computed for several magnetic field configurations and compared to double Langmuir probe measurements. Evidence for an unmagnetized ion population is seen in the requirement for a convective pinch term in the continuity equation in order to fit the centrally peaked density profile data. The measured slightly hollow electron temperature profiles are reproduced with combinations of on-axis and edge heating which can be interpreted as helicon and Trivelpiece-Gould wave absorption, respectively. Pressure gradient driven radial charged particle diffusion is chosen to describe the diffusive particle flux since the hollowness of the temperature profiles assists the establishment of on-axis density peaking.

  10. There’s plenty of light at the bottom: statistics of photon penetration depth in random media

    PubMed Central

    Martelli, Fabrizio; Binzoni, Tiziano; Pifferi, Antonio; Spinelli, Lorenzo; Farina, Andrea; Torricelli, Alessandro

    2016-01-01

    We propose a comprehensive statistical approach describing the penetration depth of light in random media. The presented theory exploits the concept of probability density function f(z|ρ, t) for the maximum depth reached by the photons that are eventually re-emitted from the surface of the medium at distance ρ and time t. Analytical formulas for f, for the mean maximum depth 〈zmax〉 and for the mean average depth reached by the detected photons at the surface of a diffusive slab are derived within the framework of the diffusion approximation to the radiative transfer equation, both in the time domain and the continuous wave domain. Validation of the theory by means of comparisons with Monte Carlo simulations is also presented. The results are of interest for many research fields such as biomedical optics, advanced microscopy and disordered photonics. PMID:27256988

  11. From the paddle to the beach - A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen's equations

    NASA Astrophysics Data System (ADS)

    Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.

    2012-01-01

    This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.

  12. Simple equations guide high-frequency surface-wave investigation techniques

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.

    2006-01-01

    We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Pure quasi-P-wave calculation in transversely isotropic media using a hybrid method

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq

    2018-07-01

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because Pwaves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulae tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artefacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artefacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constraint ɛ ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  14. The Martian climate and energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1986-01-01

    The analysis begins with a seasonal energy balance model (EBM) for Mars. This is used to compute surface temperature versus x = sin(latitude) and time over the seasonal cycle. The core model also computes the evolving boundaries of the CO2 icecaps, net sublimational/condensation rates, and the resulting seasonal pressure wave. Model results are compared with surface temperature and pressure history data at Viking lander sites, indicating fairly good agreement when meridional heat transport is represented by a thermal diffusion coefficient D approx. 0.015 W/sq. m/K. Condensational wind distributions are also computed. An analytic model of Martian wind circulation is then proposed, as an extension of the EMB, which incorporates vertical wind profiles containing an x-dependent function evaluated by substitution in the equation defining the diffusion coefficient. This leads to a parameterization of D(x) and of the meridional circulation which recovers the high surface winds predicted by dynamic Mars atmosphere models (approx. 10 m/sec). Peak diffusion coefficients, D approx. 0.6 w/sq m/K, are found over strong Hadley zones - some 40 times larger than those of high-latitude baroclinic eddies. When the wind parameterization is used to find streamline patterns over Martian seasons, the resulting picture shows overturning hemispheric Hadley cells crossing the equator during solstices, and attaining peak intensities during the south summer dust storm season, while condensational winds are most important near the polar caps.

  15. The viscous lee wave problem and its implications for ocean modelling

    NASA Astrophysics Data System (ADS)

    Shakespeare, Callum J.; Hogg, Andrew McC.

    2017-05-01

    Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.

  16. Diffusion in plasma: The Hall effect, compositional waves, and chemical spots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urpin, V., E-mail: Vadim.urpin@uv.es

    2017-03-15

    Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.

  17. An enriched finite element method to fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam

    2017-08-01

    In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.

  18. A moving mesh finite difference method for equilibrium radiation diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less

  19. The Fisher-KPP problem with doubly nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Audrito, Alessandro; Vázquez, Juan Luis

    2017-12-01

    The famous Fisher-KPP reaction-diffusion model combines linear diffusion with the typical KPP reaction term, and appears in a number of relevant applications in biology and chemistry. It is remarkable as a mathematical model since it possesses a family of travelling waves that describe the asymptotic behaviour of a large class solutions 0 ≤ u (x , t) ≤ 1 of the problem posed in the real line. The existence of propagation waves with finite speed has been confirmed in some related models and disproved in others. We investigate here the corresponding theory when the linear diffusion is replaced by the "slow" doubly nonlinear diffusion and we find travelling waves that represent the wave propagation of more general solutions even when we extend the study to several space dimensions. A similar study is performed in the critical case that we call "pseudo-linear", i.e., when the operator is still nonlinear but has homogeneity one. With respect to the classical model and the "pseudo-linear" case, the "slow" travelling waves exhibit free boundaries.

  20. The equilibrium-diffusion limit for radiation hydrodynamics

    DOE PAGES

    Ferguson, J. M.; Morel, J. E.; Lowrie, R.

    2017-07-27

    The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β 2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less

Top