Sample records for diffusion-weighted brain mri

  1. Diffusion pseudonormalization and clinical outcome in term neonates with hypoxic-ischemic encephalopathy.

    PubMed

    Hayakawa, Katsumi; Koshino, Sachiko; Tanda, Koichi; Nishimura, Akira; Sato, Osamu; Morishita, Hiroyuki; Ito, Takaaki

    2018-06-01

    Pseudonormalization of diffusion-weighted magnetic resonance imaging (MRI) can lead to underestimation of brain injury in newborns with hypoxic-ischemic encephalopathy (HIE), posing a significant problem. We have noticed that some neonates show pseudonormalization negativity on diffusion-weighted imaging. To compare pseudonormalization negativity with clinical outcomes. Seventeen term neonates with moderate or severe HIE underwent therapeutic hypothermia. They were examined by MRI twice at mean ages of 3 days and 10 days. We evaluated the presence of restricted diffusion, and also the presence or absence of pseudonormalization, by diffusion-weighted imaging at the time of the second MRI, and correlated the results with clinical outcome. DWI demonstrated no abnormality in seven neonates. Among the 10 neonates with abnormal diffusion-weighted imaging findings, 2 were positive for pseudonormalization and 8 were negative. Among neonates with normal diffusion-weighted imaging findings and with positivity for pseudonormalization, none had major disability. Among the eight neonates with pseudonormalization negativity, all but one, who was lost to follow-up, had major disability. Abnormal diffusion-weighted imaging with pseudonormalization negativity might be predictive of severe brain injury and major disability. The second-week MRI is important for the judgment of pseudonormalization.

  2. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  3. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  4. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner–the Diabetes Research in Children Network (DirecNet) experience

    PubMed Central

    Barnea-Goraly, Naama; Weinzimer, Stuart A.; Mauras, Nelly; Beck, Roy W.; Marzelli, Matt J.; Mazaika, Paul K.; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Fox, Larry; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.

    2013-01-01

    Background The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. Objective We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. Materials and methods 222 children (4–9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. Results 205 children (92.3%), mean age 7±1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Conclusion Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. PMID:24096802

  5. MRI diffusion tensor reconstruction with PROPELLER data acquisition.

    PubMed

    Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T

    2004-02-01

    MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.

  6. Diffusion-Weighted Imaging Outside the Brain: Consensus Statement From an ISMRM-Sponsored Workshop

    PubMed Central

    Taouli, Bachir; Beer, Ambros J.; Chenevert, Thomas; Collins, David; Lehman, Constance; Matos, Celso; Padhani, Anwar R.; Rosenkrantz, Andrew B.; Shukla-Dave, Amita; Sigmund, Eric; Tanenbaum, Lawrence; Thoeny, Harriet; Thomassin-Naggara, Isabelle; Barbieri, Sebastiano; Corcuera-Solano, Idoia; Orton, Matthew; Partridge, Savannah C.; Koh, Dow-Mu

    2016-01-01

    The significant advances in magnetic resonance imaging (MRI) hardware and software, sequence design, and postprocessing methods have made diffusion-weighted imaging (DWI) an important part of body MRI protocols and have fueled extensive research on quantitative diffusion outside the brain, particularly in the oncologic setting. In this review, we summarize the most up-to-date information on DWI acquisition and clinical applications outside the brain, as discussed in an ISMRM-sponsored symposium held in April 2015. We first introduce recent advances in acquisition, processing, and quality control; then review scientific evidence in major organ systems; and finally describe future directions. PMID:26892827

  7. Regional brain injury on conventional and diffusion weighted MRI is associated with outcome after pediatric cardiac arrest.

    PubMed

    Fink, Ericka L; Panigrahy, A; Clark, R S B; Fitz, C R; Landsittel, D; Kochanek, P M; Zuccoli, G

    2013-08-01

    To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection. We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI). We examined 28 subjects with median age 1.9 years (IQR 0.4-13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions. Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.

  8. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  9. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    PubMed

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  10. Brain Tissue Compartment Density Estimated Using Diffusion-Weighted MRI Yields Tissue Parameters Consistent With Histology

    PubMed Central

    Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi

    2015-01-01

    We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639

  11. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest

    PubMed Central

    Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.

    2010-01-01

    Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666

  12. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence.

    PubMed

    Zakaria, Rasheed; Pomschar, Andreas; Jenkinson, Michael D; Tonn, Jörg-Christian; Belka, Claus; Ertl-Wagner, Birgit; Niyazi, Maximilian

    2017-02-01

    Stereotactic radiosurgery (SRS) is an effective and well tolerated treatment for selected brain metastases; however, local recurrence still occurs. We investigated the use of diffusion weighted MRI (DWI) as an adjunct for SRS treatment planning in brain metastases. Seventeen consecutive patients undergoing complete surgical resection of a solitary brain metastasis underwent image analysis retrospectively. SRS treatment plans were generated based on standard 3D post-contrast T1-weighted sequences at 1.5T and then separately using apparent diffusion coefficient (ADC) maps in a blinded fashion. Control scans immediately post operation confirmed complete tumour resection. Treatment plans were compared to one another and with volume of local recurrence at progression quantitatively and qualitatively by calculating the conformity index (CI), the overlapping volume as a proportion of the total combined volume, where 1 = identical plans and 0 = no conformation whatsoever. Gross tumour volumes (GTVs) using ADC and post-contrast T1-weighted sequences were quantitatively the same (related samples Wilcoxon signed rank test = -0.45, p = 0.653) but showed differing conformations (CI 0.53, p < 0.001). The diffusion treatment volume (DTV) obtained by combining the two target volumes was significantly greater than the treatment volume based on post contrast T1-weighted MRI alone, both quantitatively (median 13.65 vs. 9.52 cm 3 , related samples Wilcoxon signed rank test p < 0.001) and qualitatively (CI 0.74, p = 0.001). This DTV covered a greater volume of subsequent tumour recurrence than the standard plan (median 3.53 cm 3 vs. 3.84 cm 3 , p = 0.002). ADC maps may be a useful tool in addition to the standard post-contrast T1-weighted sequence used for SRS planning.

  13. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI.

    PubMed

    Viehweger, Adrian; Riffert, Till; Dhital, Bibek; Knösche, Thomas R; Anwander, Alfred; Stepan, Holger; Sorge, Ina; Hirsch, Wolfgang

    2014-10-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm(2). Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R(2) = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state.

  14. Cerebral Metastases of Lung Cancer Mimicking Multiple Ischaemic Lesions - A Case Report and Review of Literature.

    PubMed

    Zacharzewska-Gondek, Anna; Maksymowicz, Hanna; Szymczyk, Małgorzata; Sąsiadek, Marek; Bladowska, Joanna

    2017-01-01

    Restricted diffusion that is found on magnetic resonance diffusion-weighted imaging (DWI) typically indicates acute ischaemic stroke. However, restricted diffusion can also occur in other diseases, like metastatic brain tumours, which we describe in this case report. A 57-year-old male, with a diagnosis of small-cell cancer of the right lung (microcellular anaplastic carcinoma), was admitted with focal neurological symptoms. Initial brain MRI revealed multiple, disseminated lesions that were hyperintense on T2-weighted images and did not enhance after contrast administration; notably, some lesions manifested restricted diffusion on DWI images. Based on these findings, disseminated ischaemic lesions were diagnosed. On follow-up MRI that was performed after 2 weeks, we observed enlargement of the lesions; there were multiple, disseminated, sharply outlined, contrast-enhancing, oval foci with persistent restriction of diffusion. We diagnosed the lesions as disseminated brain metastases due to lung cancer. To our knowledge, this is the first description of a patient with brain metastases that were characterised by restricted diffusion and no contrast enhancement. Multiple, disseminated brain lesions, that are characterised by restricted diffusion on DWI, typically indicate acute or hyperacute ischemic infarcts; however, they can also be due to hypercellular metastases, even if no contrast enhancement is observed. This latter possibility should be considered particularly in patients with cancer.

  15. Functional and structural correlates of magnetic resonance patterns in a new in vitro model of cerebral ischemia by transient occlusion of the medial cerebral artery.

    PubMed

    Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco

    2010-08-01

    Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.

  16. Acute hepatic encephalopathy presenting as cortical laminar necrosis: case report.

    PubMed

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young

    2013-01-01

    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  17. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    PubMed

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  18. MRI as a Translational Tool for the Study of Neonatal Stroke

    PubMed Central

    Dzietko, Mark; Wendland, Michael; Derugin, Nikita; Ferriero, Donna M.; Vexler, Zinaida S.

    2013-01-01

    More than half of neonatal stroke survivors have long-term sequelae, including seizures and neurological deficits. Although the immature brain has tremendous potential for recovery, mechanisms governing repair are essentially unexplored. We explored whether magnetic resonance imaging (MRI) early or late after transient middle cerebral arterial occlusion in 10-day-old (P10) rats can serve as an intermediate endpoint for long-term studies. Injured animals selected by diffusion-weighted MRI during middle cerebral arterial occlusion were scanned using T2-weighted MRI at P18 and P25 (injury volumes on MRI and histology were compared), or were subjected to contrast-enhanced MRI at P13 to characterize cerebral microcirculatory disturbances and blood-brain barrier leakage. Injury volume did not predict histological outcome at 2 weeks. Major reductions occurred by P18, with no further changes by P25. Cerebral perfusion was significantly reduced in the injured caudate but blood-brain barrier leakage was small. Therefore, conventional T2-weighted MRI performed during a subchronic injury phase predicts long-term histological outcome after experimental neonatal focal stroke. PMID:21670390

  19. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testylier, Guy; Lahrech, Hana; Universite Joseph Fourier, Grenoble, F-38043

    2007-04-15

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 {mu}g/kg), the mice were anesthetized with an isoflurane/N{sub 2}O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication andmore » was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures.« less

  20. "MASSIVE" brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation.

    PubMed

    Froeling, Martijn; Tax, Chantal M W; Vos, Sjoerd B; Luijten, Peter R; Leemans, Alexander

    2017-05-01

    In this work, we present the MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation) brain dataset of a single healthy subject, which is intended to facilitate diffusion MRI (dMRI) modeling and methodology development. MRI data of one healthy subject (female, 25 years) were acquired on a clinical 3 Tesla system (Philips Achieva) with an eight-channel head coil. In total, the subject was scanned on 18 different occasions with a total acquisition time of 22.5 h. The dMRI data were acquired with an isotropic resolution of 2.5 mm 3 and distributed over five shells with b-values up to 4000 s/mm 2 and two Cartesian grids with b-values up to 9000 s/mm 2 . The final dataset consists of 8000 dMRI volumes, corresponding B 0 field maps and noise maps for subsets of the dMRI scans, and ten three-dimensional FLAIR, T 1 -, and T 2 -weighted scans. The average signal-to-noise-ratio of the non-diffusion-weighted images was roughly 35. This unique set of in vivo MRI data will provide a robust framework to evaluate novel diffusion processing techniques and to reliably compare different approaches for diffusion modeling. The MASSIVE dataset is made publically available (both unprocessed and processed) on www.massive-data.org. Magn Reson Med 77:1797-1809, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.

    PubMed

    Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J

    2016-03-22

    Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.

  2. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly

    PubMed Central

    Bai, Ruiliang; Stewart, Craig V.; Plenz, Dietmar; Basser, Peter J.

    2016-01-01

    Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239

  3. Effect of gradient pulse duration on MRI estimation of the diffusional kurtosis for a two-compartment exchange model

    NASA Astrophysics Data System (ADS)

    Jensen, Jens H.; Helpern, Joseph A.

    2011-06-01

    Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.

  4. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants.

    PubMed

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Stecher Guzman, Ximena; Hintz, Susan R; Stevenson, David K; Barnea-Goraly, Naama

    2014-01-01

    Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67 mg/dL, p= .006) compared to those without. The number of signal abnormalities observed on structural MRI correlated to mean and peak CRP (rho = .316, p = .002; rho = .318, p= .002). The number of signal abnormalities observed on MRI correlated with thalamus MD (left: r= .382, p= .002; right: r= .400, p= .001), controlling for PMA-at-scan. Thalamus WM microstructure demonstrated the strongest associations with neonatal risk factors. Higher thalamus MD on the left and right, respectively, was associated with lower GA (r = -.322, p = .009; r= -.381, p= .002), lower mean albumin (r = -.276, p= .029; r= -.385, p= .002), and lower mean bilirubin (r = -.293, p= .020; r= -.337 p= .007). Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants.

  5. Brain abscess mimicking lung cancer metastases; a case report.

    PubMed

    Asano, Michiko; Fujimoto, Nobukazu; Fuchimoto, Yasuko; Ono, Katsuichiro; Ozaki, Shinji; Kimura, Fumiaki; Kishimoto, Takumi

    2013-01-01

    A 76-year-old woman came to us because of staggering, fever, dysarthria, and appetite loss. Magnetic resonance imaging (MRI) of the brain revealed multiple masses with surrounding edema. Chest X-ray and computed tomography demonstrated a mass-like lesion in the left lung and left pleural effusion. Lung cancer and multiple brain metastases were suspected. However, the brain lesions demonstrated a high intensity through diffusion-weighted MRI. The finding was an important key to differentiate brain abscesses from lung cancer metastases. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Apparent diffusion coefficient of the normal human brain for various experimental conditions

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Dimitrievici, Lucian

    2017-01-01

    Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is being increasingly used to assess both brain tissues and cerebrospinal fluid integrity. In this paper we study inter-site reproducibility of the apparent diffusion coefficient values for the main cerebral tissues such as gray matter, white matter and into cerebrospinal fluid and for three different stacks of slices that were spaced at L = 79.8, 84.9 and 90 mm. We assessed the impact of the attenuation factor and diffusion gradient on the results reproducibility.

  7. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  8. Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    PubMed

    Lawrence, Andrew J; Chung, Ai Wern; Morris, Robin G; Markus, Hugh S; Barrick, Thomas R

    2014-07-22

    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. © 2014 American Academy of Neurology.

  9. Structural network efficiency is associated with cognitive impairment in small-vessel disease

    PubMed Central

    Chung, Ai Wern; Morris, Robin G.; Markus, Hugh S.; Barrick, Thomas R.

    2014-01-01

    Objective: To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. Methods: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Results: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Conclusions: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. PMID:24951477

  10. Non-invasive high-resolution tracking of human neuronal pathways: diffusion tensor imaging at 7T with 1.2 mm isotropic voxel size

    NASA Astrophysics Data System (ADS)

    Lützkendorf, Ralf; Hertel, Frank; Heidemann, Robin; Thiel, Andreas; Luchtmann, Michael; Plaumann, Markus; Stadler, Jörg; Baecke, Sebastian; Bernarding, Johannes

    2013-03-01

    Diffusion tensor imaging (DTI) allows characterizing and exploiting diffusion anisotropy effects, thereby providing important details about tissue microstructure. A major application in neuroimaging is the so-called fiber tracking where neuronal connections between brain regions are determined non-invasively by DTI. Combining these neural pathways within the human brain with the localization of activated brain areas provided by functional MRI offers important information about functional connectivity of brain regions. However, DTI suffers from severe signal reduction due to the diffusion-weighting. Ultra-high field (UHF) magnetic resonance imaging (MRI) should therefore be advantageous to increase the intrinsic signal-to-noise ratio (SNR). This in turn enables to acquire high quality data with increased resolution, which is beneficial for tracking more complex fiber structures. However, UHF MRI imposes some difficulties mainly due to the larger B1 inhomogeneity compared to 3T MRI. We therefore optimized the parameters to perform DTI at a 7 Tesla whole body MR scanner equipped with a high performance gradient system and a 32-channel head receive coil. A Stesjkal Tanner spin-echo EPI sequence was used, to acquire 110 slices with an isotropic voxel-size of 1.2 mm covering the whole brain. 60 diffusion directions were scanned which allows calculating the principal direction components of the diffusion vector in each voxel. The results prove that DTI can be performed with high quality at UHF and that it is possible to explore the SNT benefit of the higher field strength. Combining UHF fMRI data with UHF DTI results will therefore be a major step towards better neuroimaging methods.

  11. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  12. b matrix errors in echo planar diffusion tensor imaging

    PubMed Central

    Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel

    2001-01-01

    Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015

  13. Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T.

    PubMed

    Prakkamakul, Supada; Witzel, Thomas; Huang, Susie; Boulter, Daniel; Borja, Maria J; Schaefer, Pamela; Rosen, Bruce; Heberlein, Keith; Ratai, Eva; Gonzalez, Gilberto; Rapalino, Otto

    2016-09-01

    To compare an ultrafast brain magnetic resonance imaging (MRI) protocol to the conventional protocol in motion-prone inpatient clinical settings. This retrospective study was HIPAA compliant and approved by the Institutional Review Board with waived inform consent. Fifty-nine inpatients (30 males, 29 females; mean age 55.1, range 23-93 years)who underwent 3-Tesla brain MRI using ultrafast and conventional protocols, both including five sequences, were included in the study. The total scan time for five ultrafast sequences was 4 minutes 59 seconds. The ideal conventional acquisition time was 10 minutes 32 seconds but the actual acquisition took 15-20 minutes. The average scan times for ultrafast localizers, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, T2*-weighted sequences were 14, 41, 62, 96, 80, 6 seconds, respectively. Two blinded neuroradiologists independently assessed three aspects: (1) image quality, (2) gray-white matter (GM-WM) differentiation, and (3) diagnostic concordance for the detection of six clinically relevant imaging findings. Wilcoxon signed-rank test was used to compare image quality and GM-WM scores. Interobserver reproducibility was calculated. The ultrafast T1-weighted sequence demonstrated significantly better image quality (P = .005) and GM-WM differentiation (P < .001) compared to the conventional sequence. There was high agreement (>85%) between both protocols for the detection of mass-like lesion, hemorrhage, diffusion restriction, WM FLAIR hyperintensities, subarachnoid FLAIR hyperintensities, and hydrocephalus. The ultrafast protocol achieved at least comparable image quality and high diagnostic concordance compared to the conventional protocol. This fast protocol can be a viable option to replace the conventional protocol in motion-prone inpatient clinical settings. Copyright © 2016 by the American Society of Neuroimaging.

  14. Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations.

    PubMed

    Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan

    2016-01-01

    Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.

  15. Diffusion Weighted MRI and MRS to Differentiate Radiation Necrosis and Recurrent Disease in Gliomas

    NASA Astrophysics Data System (ADS)

    Ewell, Lars

    2006-03-01

    A difficulty encountered in the diagnosis of patients with gliomas is the differentiation between recurrent disease and Radiation Induced Necrosis (RIN). Both can appear as ‘enhancing lesions’ on a typical T2 weighted MRI scan. Magnetic Resonance Spectroscopy (MRS) and Diffusion Weighted MRI (DWMRI) have the potential to be helpful regarding this differentiation. MRS has the ability to measure the concentration of brain metabolites, such as Choline, Creatin and N- Acetyl Aspartate, the ratios of which have been shown to discriminate between RIN and recurrent disease. DWMRI has been linked via a rise in the Apparent Diffusion Coefficient (ADC) to successful treatment of disease. Using both of these complimentary non-invasive imaging modalities, we intend to initiate an imaging protocol whereby we will study how best to combine metabolite ratios and ADC values to obtain the most useful information in the least amount of scan time. We will look for correlations over time between ADC values, and MRS, among different sized voxels.

  16. Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain.

    PubMed

    Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis-García, Rodrigo

    2017-03-01

    Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer's disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.

  17. MRI and clinical features of maple syrup urine disease: preliminary results in 10 cases.

    PubMed

    Cheng, Ailan; Han, Lianshu; Feng, Yun; Li, Huimin; Yao, Rong; Wang, Dengbin; Jin, Biao

    2017-01-01

    We aimed to evaluate the magnetic resonance imaging (MRI) and clinical features of maple syrup urine disease (MSUD). This retrospective study consisted of 10 MSUD patients confirmed by genetic testing. All patients underwent brain MRI. Phenotype, genotype, and areas of brain injury on MRI were retrospectively reviewed. Six patients (60%) had the classic form of MSUD with BCKDHB mutation, three patients (30%) had the intermittent form (two with BCKDHA mutations and one with DBT mutation), and one patient (10%) had the thiamine-responsive form with DBT mutation. On diffusion-weighted imaging, nine cases presented restricted diffusion in myelinated areas, and one intermittent case with DBT mutation was normal. The classic form of MSUD involved the basal ganglia in six cases; the cerebellum, mesencephalon, pons, and supratentorial area in five cases; and the thalamus in four cases, respectively. The intermittent form involved the cerebellum, pons, and supratentorial area in two cases. The thiamine-responsive form involved the basal ganglia and supratentorial area. Our preliminary results indicate that patients with MSUD presented more commonly in classic form with BCKDHB mutation and displayed extensive brain injury on MRI.

  18. Unexpected recovery of function after severe traumatic brain injury: the limits of early neuroimaging-based outcome prediction.

    PubMed

    Edlow, Brian L; Giacino, Joseph T; Hirschberg, Ronald E; Gerrard, Jason; Wu, Ona; Hochberg, Leigh R

    2013-12-01

    Prognostication in the early stage of traumatic coma is a common challenge in the neuro-intensive care unit. We report the unexpected recovery of functional milestones (i.e., consciousness, communication, and community reintegration) in a 19-year-old man who sustained a severe traumatic brain injury. The early magnetic resonance imaging (MRI) findings, at the time, suggested a poor prognosis. During the first year of the patient's recovery, MRI with diffusion tensor imaging and T2*-weighted imaging was performed on day 8 (coma), day 44 (minimally conscious state), day 198 (post-traumatic confusional state), and day 366 (community reintegration). Mean apparent diffusion coefficient (ADC) and fractional anisotropy values in the corpus callosum, cerebral hemispheric white matter, and thalamus were compared with clinical assessments using the Disability Rating Scale (DRS). Extensive diffusion restriction in the corpus callosum and bihemispheric white matter was observed on day 8, with ADC values in a range typically associated with neurotoxic injury (230-400 × 10(-6 )mm(2)/s). T2*-weighted MRI revealed widespread hemorrhagic axonal injury in the cerebral hemispheres, corpus callosum, and brainstem. Despite the presence of severe axonal injury on early MRI, the patient regained the ability to communicate and perform activities of daily living independently at 1 year post-injury (DRS = 8). MRI data should be interpreted with caution when prognosticating for patients in traumatic coma. Recovery of consciousness and community reintegration are possible even when extensive traumatic axonal injury is demonstrated by early MRI.

  19. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  20. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Unusual MRI findings in an immunocompetent patient with EBV encephalitis: a case report

    PubMed Central

    2011-01-01

    Blackground It is well-known that Epstein-Barr virus (EBV) can affect the central nervous system (CNS). Case presentation Herein the authors report unusual timely Magnetic Resonance Imaging (MRI) brain scan findings in an immunocompetent patient with EBV encephalitis. Diffusion weighted MRI sequence performed during the acute phase of the disease was normal, whereas the Fast Relaxation Fast Spin Echo T2 image showed diffuse signal intensity changes in white matter. The enhancement pattern suggested an inflammatory response restricted to the brain microcirculation. Acyclovir and corticosteroid therapy was administered. After three weeks, all signal intensities returned to normal and the patient showed clinical recovery. Conclusion This report demonstrates that EBV in an immunocompetent adult can present with diffuse, reversible brain white matter involvement in the acute phase of mononucleosis. Moreover, our case suggests that a negative DWI sequence is associated with a favorable improvement in severe EBV CNS infection. More extensive studies are needed to assess what other instrumental data can help to distinguish viral lesions from other causes in the acute phase of disease. PMID:21435249

  2. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  3. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770

  4. In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure

    PubMed Central

    2010-01-01

    Permanent middle cerebral artery (MCA) occlusion (pMCAO) by electrocoagulation is a commonly used model but with potential traumatic lesions. Early MRI monitoring may assess pMCAO for non-specific brain damage. The surgical steps of pMCAO were evaluated for traumatic cerebral injury in 22 Swiss mice using diffusion and T2-weighted MRI (7T) performed within 1 h and 24 h after surgery. Temporal muscle cauterization without MCA occlusion produced an early T2 hyperintensity mimicking an infarct. No lesion was visible after temporal muscle incision or craniotomy. Early MRI monitoring is useful to identify non-specific brain injury that could hamper neuroprotective drugs assessment. PMID:20298536

  5. Quantification of ante-mortem hypoxic ischemic brain injury by post-mortem cerebral magnetic resonance imaging in neonatal encephalopathy.

    PubMed

    Montaldo, Paolo; Chaban, Badr; Lally, Peter J; Sebire, Neil J; Taylor, Andrew M; Thayyil, Sudhin

    2015-11-01

    Post-mortem (PM) magnetic resonance imaging (MRI) is increasingly used as an alternative to conventional autopsy in babies dying from neonatal encephalopathy. However, the confounding effect of post-mortem changes on the detection of ante-mortem ischemic injury is unclear. We examined whether quantitative MR measurements can accurately distinguish ante-mortem ischemic brain injury from artifacts using post-mortem MRI. We compared PM brain MRI (1.5 T Siemens, Avanto) in 7 infants who died with neonatal encephalopathy (NE) of presumed hypoxic-ischemic origin with 7 newborn infants who had sudden unexplained neonatal death (SUND controls) without evidence of hypoxic-ischemic brain injury at autopsy. We measured apparent diffusion coefficients (ADCs), T1-weighted signal intensity ratios (SIRs) compared to vitreous humor and T2 relaxation times from 19 predefined brain areas typically involved in neonatal encephalopathy. There were no differences in mean ADC values, SIRs on T1-weighted images or T2 relaxation times in any of the 19 predefined brain areas between NE and SUND infants. All MRI images showed loss of cortical gray/white matter differentiation, loss of the normal high signal intensity (SI) in the posterior limb of the internal capsule on T1-weighted images, and high white matter SI on T2-weighted images. Normal post-mortem changes may be easily mistaken for ante-mortem ischemic injury, and current PM MRI quantitative assessment cannot reliably distinguish these. These findings may have important implications for appropriate interpretation of PM imaging findings, especially in medico-legal practice. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm-2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7-9 (equivalent to 21 Gy).

  7. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  8. MRI and clinical features of maple syrup urine disease: preliminary results in 10 cases

    PubMed Central

    Cheng, Ailan; Han, Lianshu; Feng, Yun; Li, Huimin; Yao, Rong; Wang, Dengbin; Jin, Biao

    2017-01-01

    PURPOSE We aimed to evaluate the magnetic resonance imaging (MRI) and clinical features of maple syrup urine disease (MSUD). METHODS This retrospective study consisted of 10 MSUD patients confirmed by genetic testing. All patients underwent brain MRI. Phenotype, genotype, and areas of brain injury on MRI were retrospectively reviewed. RESULTS Six patients (60%) had the classic form of MSUD with BCKDHB mutation, three patients (30%) had the intermittent form (two with BCKDHA mutations and one with DBT mutation), and one patient (10%) had the thiamine-responsive form with DBT mutation. On diffusion-weighted imaging, nine cases presented restricted diffusion in myelinated areas, and one intermittent case with DBT mutation was normal. The classic form of MSUD involved the basal ganglia in six cases; the cerebellum, mesencephalon, pons, and supratentorial area in five cases; and the thalamus in four cases, respectively. The intermittent form involved the cerebellum, pons, and supratentorial area in two cases. The thiamine-responsive form involved the basal ganglia and supratentorial area. CONCLUSION Our preliminary results indicate that patients with MSUD presented more commonly in classic form with BCKDHB mutation and displayed extensive brain injury on MRI. PMID:28830848

  9. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  10. Creatine, Glutamine plus Glutamate, and Macromolecules Are Decreased in the Central White Matter of Premature Neonates around Term

    PubMed Central

    Le Fur, Yann; Viout, Patrick; Ratiney, Hélène; Confort-Gouny, Sylviane; Cozzone, Patrick J.; Girard, Nadine

    2016-01-01

    Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS) to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks) and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks) were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS) sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05), the occipital white matter (P<0.005) and the thalamus (P<0.05). The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05) at a TE of 30 ms, and reduced (creatine+phosphocreatine)/H2O and (glutamine+glutamate)/H2O ratios (P<0.05) at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis. PMID:27547969

  11. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

    PubMed

    Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I

    2017-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Characterization of Cerebral White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains

    PubMed Central

    Hurley, Samuel A.; Samsonov, Alexey A.; Adluru, Nagesh; Hosseinbor, Ameer Pasha; Mossahebi, Pouria; Tromp, Do P.M.; Zakszewski, Elizabeth; Field, Aaron S.

    2011-01-01

    Abstract The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains. PMID:22432902

  13. Corticobulbar tract changes as predictors of dysarthria in childhood brain injury.

    PubMed

    Liégeois, Frédérique; Tournier, Jacques-Donald; Pigdon, Lauren; Connelly, Alan; Morgan, Angela T

    2013-03-05

    To identify corticobulbar tract changes that may predict chronic dysarthria in young people who have sustained a traumatic brain injury (TBI) in childhood using diffusion MRI tractography. We collected diffusion-weighted MRI data from 49 participants. We compared 17 young people (mean age 17 years, 10 months; on average 8 years postinjury) with chronic dysarthria who sustained a TBI in childhood (range 3-16 years) with 2 control groups matched for age and sex: 1 group of young people who sustained a traumatic injury but had no subsequent dysarthria (n = 15), and 1 group of typically developing individuals (n = 17). We performed tractography from spherical seed regions within the precentral gyrus white matter to track: 1) the hand-related corticospinal tract; 2) the dorsal corticobulbar tract, thought to correspond to the lips/larynx motor representation; and 3) the ventral corticobulbar tract, corresponding to the tongue representation. Despite widespread white matter damage, radial (perpendicular) diffusivity within the left dorsal corticobulbar tract was the best predictor of the presence of dysarthria after TBI. Diffusion metrics in this tract also predicted speech and oromotor performance across the whole group of TBI participants, with additional significant contributions from ventral speech tract volume in the right hemisphere. An intact left dorsal corticobulbar tract seems crucial to the normal execution of speech long term after acquired injury. Examining the speech-related motor pathways using diffusion-weighted MRI tractography offers a promising prognostic tool for people with acquired, developmental, or degenerative neurologic conditions likely to affect speech.

  14. Fiber estimation and tractography in diffusion MRI: Development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values

    PubMed Central

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-01-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and consequently tractography and the ability to recover complex white-matter pathways, as well as differences between results due to choice of analysis method and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies. We found the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for a complex three-fiber crossing region. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project “Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations” at http://www.nitrc.org/projects/sim_dwi_brain PMID:25555998

  15. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

    PubMed

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-04-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for complex three-fiber crossing regions. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project "Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations" at http://www.nitrc.org/projects/sim_dwi_brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Diffusion MRI at 25: Exploring brain tissue structure and function

    PubMed Central

    Bihan, Denis Le; Johansen-Berg, Heidi

    2013-01-01

    Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012

  17. [Reversible neurotoxicity secondary to metronidazole: report of one case].

    PubMed

    Retamal-Riquelme, Eva; Soto-San Martín, Hernán; Vallejos-Castro, José; Galdames-Poblete, Daniel

    2014-03-01

    Metronidazole can cause adverse effects both in the central and peripheral nervous system. We report a 34-year-old female who presented a reversible cerebellar syndrome and peripheral neuropathy as an adverse effect associated with the use of metronidazole. Brain magnetic resonance imaging (MRI) showed hyperintense T2 and FLAIR bilateral symmetrical cerebellar lesions, without contrast enhancement or mass effect, isointense in diffusion-weighted imaging and hypointense in apparent diffusion coefficient sequences. Also, electrophysiological evaluation was consistent with axonal polyneuropathy. She had received metronidazole for a liver abscess during 49 days. After discontinuation of metronidazole, she had rapid regression of cerebellar symptoms and normalization of MRI, with subsequent disappearance of peripheral symptoms. The brain MRI, electromyography and nerve conduction studies performed at 35 months later showed complete resolution of the lesions. Although metronidazole neurotoxicity is a rare event, it must be borne in mind because the prognosis is usually favorable after stopping the drug.

  18. A time-efficient acquisition protocol for multipurpose diffusion-weighted microstructural imaging at 7 Tesla.

    PubMed

    Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus

    2017-12-01

    Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Imaging brain microstructure with diffusion MRI: practicality and applications.

    PubMed

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  20. White Matter Connectivity of the Thalamus Delineates the Functional Architecture of Competing Thalamocortical Systems

    PubMed Central

    O'Muircheartaigh, Jonathan; Keller, Simon S.; Barker, Gareth J.; Richardson, Mark P.

    2015-01-01

    There is an increasing awareness of the involvement of thalamic connectivity on higher level cortical functioning in the human brain. This is reflected by the influence of thalamic stimulation on cortical activity and behavior as well as apparently cortical lesion syndromes occurring as a function of small thalamic insults. Here, we attempt to noninvasively test the correspondence of structural and functional connectivity of the human thalamus using diffusion-weighted and resting-state functional MRI. Using a large sample of 102 adults, we apply tensor independent component analysis to diffusion MRI tractography data to blindly parcellate bilateral thalamus according to diffusion tractography-defined structural connectivity. Using resting-state functional MRI collected in the same subjects, we show that the resulting structurally defined thalamic regions map to spatially distinct, and anatomically predictable, whole-brain functional networks in the same subjects. Although there was significant variability in the functional connectivity patterns, the resulting 51 structural and functional patterns could broadly be reduced to a subset of 7 similar core network types. These networks were distinct from typical cortical resting-state networks. Importantly, these networks were distributed across the brain and, in a subset, map extremely well to known thalamocortico-basal-ganglial loops. PMID:25899706

  1. Artifact correction in diffusion MRI of non-human primate brains on a clinical 3T scanner.

    PubMed

    Zhang, Xiaodong; Kirsch, John E; Zhong, Xiaodong

    2016-02-01

    Smearing artifacts were observed and investigated in diffusion tensor imaging (DTI) studies of macaque monkeys on a clinical whole-body 3T scanner. Four adult macaques were utilized to evaluate DTI artifacts. DTI images were acquired with a single-shot echo-planar imaging (EPI) sequence using a parallel imaging technique. The smearing artifacts observed on the diffusion-weighted images and fractional anisotropy maps were caused by the incomplete fat suppression due to the irregular macaque frontal skull geometry and anatomy. The artifact can be reduced substantially using a novel three-dimensional (3D) shimming procedure. The smearing artifacts observed on diffusion weighted images and fractional anisotropy (FA) maps of macaque brains can be reduced substantially using a robust 3D shimming approach. The DTI protocol combined with the shimming procedure could be a robust approach to examine brain connectivity and white matter integrity of non-human primates using a conventional clinical setting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood.

    PubMed

    Blesa, Manuel; Serag, Ahmed; Wilkinson, Alastair G; Anblagan, Devasuda; Telford, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Macnaught, Gillian; Semple, Scott I; Bastin, Mark E; Boardman, James P

    2016-01-01

    Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39(+5) weeks, range 37(+2)-41(+6)). An adult brain atlas (SRI24/TZO) was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database), with the final atlas (Edinburgh Neonatal Atlas, ENA33) constructed using the Symmetric Group Normalization (SyGN) method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modeling brain growth during development.

  3. Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders.

    PubMed

    Arab, Anas; Wojna-Pelczar, Anna; Khairnar, Amit; Szabó, Nikoletta; Ruda-Kucerova, Jana

    2018-05-01

    Pathology of neurodegenerative diseases can be correlated with intra-neuronal as well as extracellular changes which lead to neuronal degeneration. The central nervous system (CNS) is a complex structure comprising of many biological barriers. These microstructural barriers might be affected by a variety of pathological processes. Specifically, changes in the brain tissue's microstructure affect the diffusion of water which can be assessed non-invasively by diffusion weighted (DW) magnetic resonance imaging (MRI) techniques. Diffusion tensor imaging (DTI) is a diffusion MRI technique that considers diffusivity as a Gaussian process, i.e. does not account for any diffusion hindrance. However, environment of the brain tissues is characterized by a non-Gaussian diffusion. Therefore, diffusion kurtosis imaging (DKI) was developed as an extension of DTI method in order to quantify the non-Gaussian distribution of water diffusion. This technique represents a promising approach for early diagnosis of neurodegenerative diseases when the neurodegenerative process starts. Hence, the purpose of this article is to summarize the ongoing clinical and preclinical research on Parkinson's, Alzheimer's and Huntington diseases, using DKI and to discuss the role of this technique as an early stage biomarker of neurodegenerative conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A pathophysiologic approach for subacute encephalopathy with seizures in alcoholics (SESA) syndrome.

    PubMed

    Choi, Jun Yong; Kwon, Jiwon; Bae, Eun-Kee

    2014-09-01

    Subacute encephalopathy with seizures in alcoholics (SESA) syndrome is a unique disease entity characterized by typical clinical and electroencephalographic (EEG) features in the setting of chronic alcoholism. We present two patients with distinctive serial MRI and EEG findings which suggest a clue to the underlying pathophysiologic mechanisms of SESA syndrome. Two patients with chronic alcoholism and alcoholic liver cirrhosis presented with generalized seizures and confused mental status. Brain MRI demonstrated restricted diffusion, increased T2-weighted signal intensity, and hyperperfusion in the presumed seizure focus and nearby posterior regions of the cerebral hemispheres. EEG showed periodic lateralized epileptiform discharges which were prominent in the posterior regions of the cerebral hemispheres ipsilateral to the side of brain MRI abnormalities. Even after patients clinically improved, these brain abnormalities persisted with progressive atrophic changes on follow-up brain MRI. These patients had not only the distinguishing clinical and EEG features of SESA syndrome, but also showed novel brain MRI abnormalities. These changes on MRI displayed characteristics of seizure-related changes. The posterior dominance of abnormalities on MRI and EEG suggests that the pathophysiologic mechanisms of SESA syndrome may share those of posterior reversible encephalopathy syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure.

    PubMed

    Özarslan, Evren; Koay, Cheng Guan; Shepherd, Timothy M; Komlosh, Michal E; İrfanoğlu, M Okan; Pierpaoli, Carlo; Basser, Peter J

    2013-09-01

    Diffusion-weighted magnetic resonance (MR) signals reflect information about underlying tissue microstructure and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical and physical framework for representing diffusion-weighted MR imaging (MRI) data obtained in "q-space," and the corresponding "mean apparent propagator (MAP)" describing molecular displacements in "r-space." We also define and map novel quantitative descriptors of diffusion that can be computed robustly using this MAP-MRI framework. We describe efficient analytical representation of the three-dimensional q-space MR signal in a series expansion of basis functions that accurately describes diffusion in many complex geometries. The lowest order term in this expansion contains a diffusion tensor that characterizes the Gaussian displacement distribution, equivalent to diffusion tensor MRI (DTI). Inclusion of higher order terms enables the reconstruction of the true average propagator whose projection onto the unit "displacement" sphere provides an orientational distribution function (ODF) that contains only the orientational dependence of the diffusion process. The representation characterizes novel features of diffusion anisotropy and the non-Gaussian character of the three-dimensional diffusion process. Other important measures this representation provides include the return-to-the-origin probability (RTOP), and its variants for diffusion in one- and two-dimensions-the return-to-the-plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These zero net displacement probabilities measure the mean compartment (pore) volume and cross-sectional area in distributions of isolated pores irrespective of the pore shape. MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space signal and transform it into diffusion propagators. Experiments on an excised marmoset brain specimen demonstrate that MAP-MRI provides several novel, quantifiable parameters that capture previously obscured intrinsic features of nervous tissue microstructure. This should prove helpful for investigating the functional organization of normal and pathologic nervous tissue. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

    PubMed Central

    Hernández, Moisés; Guerrero, Ginés D.; Cecilia, José M.; García, José M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.

    2013-01-01

    With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616

  7. Voxelwise multivariate analysis of multimodality magnetic resonance imaging

    PubMed Central

    Naylor, Melissa G.; Cardenas, Valerie A.; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2015-01-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remains a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. PMID:23408378

  8. Brain-water diffusion coefficients reflect the severity of inherited prion disease

    PubMed Central

    Hyare, H.; Wroe, S.; Siddique, D.; Webb, T.; Fox, N. C.; Stevens, J.; Collinge, J.; Yousry, T.; Thornton, J. S.

    2010-01-01

    Objective: Inherited prion diseases are progressive neurodegenerative conditions, characterized by cerebral spongiosis, gliosis, and neuronal loss, caused by mutations within the prion protein (PRNP) gene. We wished to assess the potential of diffusion-weighted MRI as a biomarker of disease severity in inherited prion diseases. Methods: Twenty-five subjects (mean age 45.2 years) with a known PRNP mutation including 19 symptomatic patients, 6 gene-positive asymptomatic subjects, and 7 controls (mean age 54.1 years) underwent conventional and diffusion-weighted MRI. An index of normalized brain volume (NBV) and region of interest (ROI) mean apparent diffusion coefficient (ADC) for the head of caudate, putamen, and pulvinar nuclei were recorded. ADC histograms were computed for whole brain (WB) and gray matter (GM) tissue fractions. Clinical assessment utilized standardized clinical scores. Mann-Whitney U test and regression analyses were performed. Results: Symptomatic patients exhibited an increased WB mean ADC (p = 0.006) and GM mean ADC (p = 0.024) compared to controls. Decreased NBV and increased mean ADC measures significantly correlated with clinical measures of disease severity. Using a stepwise multivariate regression procedure, GM mean ADC was an independent predictor of Clinician's Dementia Rating score (p = 0.001), Barthel Index of activities of daily living (p = 0.001), and Rankin disability score (p = 0.019). Conclusions: Brain volume loss in inherited prion diseases is accompanied by increased cerebral apparent diffusion coefficient (ADC), correlating with increased disease severity. The association between gray matter ADC and clinical neurologic status suggests this measure may prove a useful biomarker of disease activity in inherited prion diseases. GLOSSARY ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive subscale; ADC = apparent diffusion coefficient; ADL = Barthel Activities of Daily Living scale; BET = brain extraction tool; BPRS = Brief Psychiatric Rating Scale; BSE = bovine spongiform encephalopathy; CDR = Clinician's Dementia Rating Scale; CGIS = Clinician's Global Impression of Disease; CI = confidence interval; DWI = diffusion-weighted imaging; FLAIR = fluid-attenuated inversion recovery; FOV = field of view; GM = gray matter; LC = left head of caudate; LP = left putamen; LPu = left pulvinar; MMSE = Mini-Mental State Examination; NBV = normalized brain volume; PH = peak height; PL = peak location; RC = right head of caudate; RP = right putamen; RPu = right pulvinar; ROI = region of interest; sCJD = sporadic Creutzfeldt-Jakob disease; TE = echo time; TI = inversion time; TR = repetition time; vCJD = variant Creutzfeldt-Jakob disease; WB = whole brain; WM = white matter. PMID:20177119

  9. Focal Cortical Dysplasia (FCD) lesion analysis with complex diffusion approach.

    PubMed

    Rajan, Jeny; Kannan, K; Kesavadas, C; Thomas, Bejoy

    2009-10-01

    Identification of Focal Cortical Dysplasia (FCD) can be difficult due to the subtle MRI changes. Though sequences like FLAIR (fluid attenuated inversion recovery) can detect a large majority of these lesions, there are smaller lesions without signal changes that can easily go unnoticed by the naked eye. The aim of this study is to improve the visibility of focal cortical dysplasia lesions in the T1 weighted brain MRI images. In the proposed method, we used a complex diffusion based approach for calculating the FCD affected areas. Based on the diffused image and thickness map, a complex map is created. From this complex map; FCD areas can be easily identified. MRI brains of 48 subjects selected by neuroradiologists were given to computer scientists who developed the complex map for identifying the cortical dysplasia. The scientists were blinded to the MRI interpretation result of the neuroradiologist. The FCD could be identified in all the patients in whom surgery was done, however three patients had false positive lesions. More lesions were identified in patients in whom surgery was not performed and lesions were seen in few of the controls. These were considered as false positive. This computer aided detection technique using complex diffusion approach can help detect focal cortical dysplasia in patients with epilepsy.

  10. [From Brownian motion to mind imaging: diffusion MRI].

    PubMed

    Le Bihan, Denis

    2006-11-01

    The success of diffusion MRI, which was introduced in the mid 1980s is deeply rooted in the powerful concept that during their random, diffusion-driven movements water molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. The observation of these movements thus provides valuable information on the structure and the geometric organization of tissues. The most successful application of diffusion MRI has been in brain ischemia, following the discovery that water diffusion drops at a very early stage of the ischemic event. Diffusion MRI provides some patients with the opportunity to receive suitable treatment at a very acute stage when brain tissue might still be salvageable. On the other hand, diffusion is modulated by the spatial orientation of large bundles of myelinated axons running in parallel through in brain white matter. This feature can be exploited to map out the orientation in space of the white matter tracks and to visualize the connections between different parts of the brain on an individual basis. Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid dynamic tissue changes, such as neuronal swelling, associated with cortical activation, offering a new and direct approach to brain functional imaging.

  11. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes

    PubMed Central

    Andersson, Jesper L.R.; Sotiropoulos, Stamatios N.

    2015-01-01

    Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of “Kriging”. We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell. PMID:26236030

  12. The VALiDATe29 MRI Based Multi-Channel Atlas of the Squirrel Monkey Brain.

    PubMed

    Schilling, Kurt G; Gao, Yurui; Stepniewska, Iwona; Wu, Tung-Lin; Wang, Feng; Landman, Bennett A; Gore, John C; Chen, Li Min; Anderson, Adam W

    2017-10-01

    We describe the development of the first digital atlas of the normal squirrel monkey brain and present the resulting product, VALiDATe29. The VALiDATe29 atlas is based on multiple types of magnetic resonance imaging (MRI) contrast acquired on 29 squirrel monkeys, and is created using unbiased, nonlinear registration techniques, resulting in a population-averaged stereotaxic coordinate system. The atlas consists of multiple anatomical templates (proton density, T1, and T2* weighted), diffusion MRI templates (fractional anisotropy and mean diffusivity), and ex vivo templates (fractional anisotropy and a structural MRI). In addition, the templates are combined with histologically defined cortical labels, and diffusion tractography defined white matter labels. The combination of intensity templates and image segmentations make this atlas suitable for the fundamental atlas applications of spatial normalization and label propagation. Together, this atlas facilitates 3D anatomical localization and region of interest delineation, and enables comparisons of experimental data across different subjects or across different experimental conditions. This article describes the atlas creation and its contents, and demonstrates the use of the VALiDATe29 atlas in typical applications. The atlas is freely available to the scientific community.

  13. Complementary aspects of diffusion imaging and fMRI; I: structure and function.

    PubMed

    Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J

    2006-05-01

    Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.

  14. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.

    PubMed

    Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A

    2016-06-21

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.

  15. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    PubMed Central

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  16. Imaging laminar structures in the gray matter with diffusion MRI.

    PubMed

    Assaf, Yaniv

    2018-01-05

    The cortical layers define the architecture of the gray matter and its neuroanatomical regions and are essential for brain function. Abnormalities in cortical layer development, growth patterns, organization, or size can affect brain physiology and cognition. Unfortunately, while large population studies are underway that will greatly increase our knowledge about these processes, current non-invasive techniques for characterizing the cortical layers remain inadequate. For decades, high-resolution T1 and T2 Weighted Magnetic Resonance Imaging (MRI) have been the method-of-choice for gray matter and layer characterization. In the past few years, however, diffusion MRI has shown increasing promise for its unique insights into the fine structure of the cortex. Several different methods, including surface analysis, connectivity exploration, and sub-voxel component modeling, are now capable of exploring the diffusion characteristics of the cortex. In this review, we will discuss current advances in the application of diffusion imaging for cortical characterization and its unique features, with a particular emphasis on its spatial resolution, arguably its greatest limitation. In addition, we will explore the relationship between the diffusion MRI signal and the cellular components of the cortex, as visualized by histology. While the obstacles facing the widespread application of cortical diffusion imaging remain daunting, the information it can reveal may prove invaluable. Within the next few years, we predict a surge in the application of this technique and a concomitant expansion of our knowledge of cortical layers. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18-22 mo of age: an MRI and DTI study.

    PubMed

    Rose, Jessica; Cahill-Rowley, Katelyn; Vassar, Rachel; Yeom, Kristen W; Stecher, Ximena; Stevenson, David K; Hintz, Susan R; Barnea-Goraly, Naama

    2015-12-01

    Near-term brain structure was examined in preterm infants in relation to neurodevelopment. We hypothesized that near-term macrostructural brain abnormalities identified using conventional magnetic resonance imaging (MRI), and white matter (WM) microstructure detected using diffusion tensor imaging (DTI), would correlate with lower cognitive and motor development and slower, less-stable gait at 18-22 mo of age. One hundred and two very-low-birth-weight preterm infants (≤1,500 g birth weight; ≤32 wk gestational age) were recruited prior to routine near-term brain MRI at 36.6 ± 1.8 wk postmenstrual age. Cerebellar and WM macrostructure was assessed on conventional structural MRI. DTI was obtained in 66 out of 102 and WM microstructure was assessed using fractional anisotropy and mean diffusivity (MD) in six subcortical brain regions defined by DiffeoMap neonatal atlas. Neurodevelopment was assessed with Bayley-Scales-of-Infant-Toddler-Development, 3rd-Edition (BSID-III); gait was assessed using an instrumented mat. Neonates with cerebellar abnormalities identified using MRI demonstrated lower mean BSID-III cognitive composite scores (89.0 ± 10.1 vs. 97.8 ± 12.4; P = 0.002) at 18-22 mo. Neonates with higher DTI-derived left posterior limb of internal capsule (PLIC) MD demonstrated lower cognitive and motor composite scores (r = -0.368; P = 0.004; r = -0.354; P = 0.006) at 18-22 mo; neonates with higher genu MD demonstrated slower gait velocity (r = -0.374; P = 0.007). Multivariate linear regression significantly predicted cognitive (adjusted r(2) = 0.247; P = 0.002) and motor score (adjusted r(2) = 0.131; P = 0.017). Near-term cerebellar macrostructure and PLIC and genu microstructure were predictive of early neurodevelopment and gait.

  18. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  19. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  20. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.

    PubMed

    Alfaro-Almagro, Fidel; Jenkinson, Mark; Bangerter, Neal K; Andersson, Jesper L R; Griffanti, Ludovica; Douaud, Gwenaëlle; Sotiropoulos, Stamatios N; Jbabdi, Saad; Hernandez-Fernandez, Moises; Vallee, Emmanuel; Vidaurre, Diego; Webster, Matthew; McCarthy, Paul; Rorden, Christopher; Daducci, Alessandro; Alexander, Daniel C; Zhang, Hui; Dragonu, Iulius; Matthews, Paul M; Miller, Karla L; Smith, Stephen M

    2018-02-01

    UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI, carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR, susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first 10,000 imaged subjects has recently been released for general research access. To help convert this data into useful summary information we have developed an automated processing and QC (Quality Control) pipeline that is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative investigations carried out as part of the development of both the imaging protocol and the processing pipeline. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Imaging of brain metastases.

    PubMed

    Fink, Kathleen R; Fink, James R

    2013-01-01

    Imaging plays a key role in the diagnosis of central nervous system (CNS) metastasis. Imaging is used to detect metastases in patients with known malignancies and new neurological signs or symptoms, as well as to screen for CNS involvement in patients with known cancer. Computed tomography (CT) and magnetic resonance imaging (MRI) are the key imaging modalities used in the diagnosis of brain metastases. In difficult cases, such as newly diagnosed solitary enhancing brain lesions in patients without known malignancy, advanced imaging techniques including proton magnetic resonance spectroscopy (MRS), contrast enhanced magnetic resonance perfusion (MRP), diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI) may aid in arriving at the correct diagnosis. This image-rich review discusses the imaging evaluation of patients with suspected intracranial involvement and malignancy, describes typical imaging findings of parenchymal brain metastasis on CT and MRI, and provides clues to specific histological diagnoses such as the presence of hemorrhage. Additionally, the role of advanced imaging techniques is reviewed, specifically in the context of differentiating metastasis from high-grade glioma and other solitary enhancing brain lesions. Extra-axial CNS involvement by metastases, including pachymeningeal and leptomeningeal metastases is also briefly reviewed.

  2. Voxelwise multivariate analysis of multimodality magnetic resonance imaging.

    PubMed

    Naylor, Melissa G; Cardenas, Valerie A; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2014-03-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remain a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. Copyright © 2013 Wiley Periodicals, Inc.

  3. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    PubMed Central

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  4. The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI).

    PubMed

    Walker, Lindsay; Chang, Lin-Ching; Nayak, Amritha; Irfanoglu, M Okan; Botteron, Kelly N; McCracken, James; McKinstry, Robert C; Rivkin, Michael J; Wang, Dah-Jyuu; Rumsey, Judith; Pierpaoli, Carlo

    2016-01-01

    The NIH MRI Study of normal brain development sought to characterize typical brain development in a population of infants, toddlers, children and adolescents/young adults, covering the socio-economic and ethnic diversity of the population of the United States. The study began in 1999 with data collection commencing in 2001 and concluding in 2007. The study was designed with the final goal of providing a controlled-access database; open to qualified researchers and clinicians, which could serve as a powerful tool for elucidating typical brain development and identifying deviations associated with brain-based disorders and diseases, and as a resource for developing computational methods and image processing tools. This paper focuses on the DTI component of the NIH MRI study of normal brain development. In this work, we describe the DTI data acquisition protocols, data processing steps, quality assessment procedures, and data included in the database, along with database access requirements. For more details, visit http://www.pediatricmri.nih.gov. This longitudinal DTI dataset includes raw and processed diffusion data from 498 low resolution (3 mm) DTI datasets from 274 unique subjects, and 193 high resolution (2.5 mm) DTI datasets from 152 unique subjects. Subjects range in age from 10 days (from date of birth) through 22 years. Additionally, a set of age-specific DTI templates are included. This forms one component of the larger NIH MRI study of normal brain development which also includes T1-, T2-, proton density-weighted, and proton magnetic resonance spectroscopy (MRS) imaging data, and demographic, clinical and behavioral data. Published by Elsevier Inc.

  5. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI

    PubMed Central

    Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel

    2012-01-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696

  6. [A case of MM1+2 Creutzfeldt-Jakob disease with a longitudinal study of EEG and MRI].

    PubMed

    Katsube, Mizuho; Shiota, Yuri; Harada, Takayuki; Shibata, Hiroshi; Nagai, Atsushi

    2013-11-01

    We report a case of definite MM1 + 2 sporadic Creutzfeldt-Jakob disease (sCJD). A 66-year-old woman was admitted to our hospital with memory disturbance and disorientation for three months. On admission she presented a progressive cognitive insufficiency. Electroencephalography (EEG) revealed a frontal intermittent rhythmical delta activity (FIRDA) and the brain magnetic resonance imaging (MRI) showed high signal intensities in cerebral cortex on diffusion weighted images (DWI). After four months from the onset, she reached the akinetic mutism state followed by myoclonus. Follow up examination revealed that periodic synchronous discharge (PSD) was found in EEG, and DWI revealed enlargement of high signal intensity lesions in cerebral cortex. At seven months from the onset, PSD and high signal intensities of cortex became unclear with disappearance of myoclonus, and brain white matter lesions were evident on MRI. Serial studies of EEG and MRI revealed that PSD generalized from frontal lobe dominant pattern, while high signal intensity lesions of cortex diffusely increased on DWI. At ten months from the onset patient died. Pathological examination in brain showed moderate and diffuse neuronal cell loss and gliosis in cerebral cortex corresponding with DWI changes. The genotype at codon 129 of the prion protein (PrP) was homozygous methionine (MM) and the type of protease-resistant PrP (PrPres) was the mixed type of 1 and 2 in Western blot analysis. It has been rare to analyze the changes of EEG and MRI in the entire stage and to investigate pathological finding in the case of sCJD-MM1 + 2. A longitudinal examination of EEG and MRI is useful for early diagnosis of CJD. Also we could correlate these findings with clinical and histopathological phenotype.

  7. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

    PubMed

    Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard

    2012-04-02

    Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the architecture of neural circuitry and developing imaging biomarkers of poor neurodevelopment outcome in infants with prenatal diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Diffusion properties of conventional and calcium-sensitive MRI contrast agents in the rat cerebral cortex.

    PubMed

    Hagberg, Gisela E; Mamedov, Ilgar; Power, Anthony; Beyerlein, Michael; Merkle, Hellmut; Kiselev, Valerij G; Dhingra, Kirti; Kubìček, Vojtĕch; Angelovski, Goran; Logothetis, Nikos K

    2014-01-01

    Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents. Simulations and experiments demonstrate that the method is applicable both for conventional contrast agents with a fixed relaxivity value and for calcium-sensitive contrast agents. The full pharmacokinetic time-course of gadolinium concentration estimates was observed by MRI before, during and after intracerebral administration of the agent, and the effective diffusion coefficient D* was determined by voxel-wise fitting of the solution to the diffusion equation. The method yielded whole brain coverage with a high spatial and temporal sampling. The use of two types of MRI sequences for sampling of the diffusion time courses was investigated: Look-Locker-based quantitative T(1) mapping, and T(1) -weighted MRI. The observation times of the proposed MRI method is long (up to 20 h) and consequently the diffusion distances covered are also long (2-4 mm). Despite this difference, the D* values in vivo were in agreement with previous findings using optical measurement techniques, based on observation times of a few minutes. The effective diffusion coefficient determined for the calcium-sensitive contrast agents may be used to determine local tissue concentrations and to design infusion protocols that maintain the agent concentration at a steady state, thereby enabling quantitative sensing of the local calcium concentration. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury.

    PubMed

    Tu, Tsang-Wei; Lescher, Jacob D; Williams, Rashida A; Jikaria, Neekita; Turtzo, L Christine; Frank, Joseph A

    2017-01-01

    Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations.

  10. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury

    PubMed Central

    Lescher, Jacob D.; Williams, Rashida A.; Jikaria, Neekita; Turtzo, L. Christine; Frank, Joseph A.

    2017-01-01

    Abstract Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations. PMID:26905805

  11. The Role of Brain MRI in Mitochondrial Neurogastrointestinal Encephalomyopathy

    PubMed Central

    Scarpelli, Mauro; Ricciardi, Giuseppe Kenneth; Beltramello, Alberto; Zocca, Isabella; Calabria, Francesca; Russignan, Anna; Zappini, Francesca; Cotelli, Maria Sofia; Padovani, Alessandro; Tomelleri, Giuliano; Filosto, Massimiliano; Tonin, Paola

    2013-01-01

    Summary Leukoencephalopathy is a hallmark of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) a devastating disorder characterized by ptosis, ophthalmoparesis, gastrointestinal dysfunction and polyneuropathy. To characterize MNGIE-associated leukoencephalopathy and to correlate it with clinical, biochemical and molecular data, four MNGIE patients with heterogeneous clinical phenotypes (enteropathic arthritis, exercise intolerance, CIDP-like phenotype and typical presentation) were studied by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC) maps were also obtained. In two patients we also investigated the role of brain MRI in monitoring the evolution of leukoencephalopathy by performing follow-up imaging studies at an interval of one and two years. The extension and distribution of leukoencephalopathy were not clearly linked with age, phenotype or disease severity, and did not seem to be related to TYMP mutations, enzyme activity or pyrimidine levels. In the studied patients MRS revealed reduced N-acetyl-aspartate and increased choline signals. Although DWI appeared normal in all patients but one, ADC maps always showed moderate increased diffusivity. Leukoencephalopathy worsened over a two-year period in two patients, regardless of the clinical course, indicating a lack of correlation between clinical phenotype, size and progression of white matter abnormalities during this period. Brain MRI should be considered a very useful tool to diagnose both classical and atypical MNGIE. Serial MRIs in untreated and treated MNGIE patients will help to establish whether the leukoencephalopathy is a reversible condition or not. PMID:24199812

  12. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI.

    PubMed

    Jones, D K; Alexander, D C; Bowtell, R; Cercignani, M; Dell'Acqua, F; McHugh, D J; Miller, K L; Palombo, M; Parker, G J M; Rudrapatna, U S; Tax, C M W

    2018-05-22

    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'. Copyright © 2018. Published by Elsevier Inc.

  13. Accuracies and Contrasts of Models of the Diffusion-Weighted-Dependent Attenuation of the MRI Signal at Intermediate b-values.

    PubMed

    Nicolas, Renaud; Sibon, Igor; Hiba, Bassem

    2015-01-01

    The diffusion-weighted-dependent attenuation of the MRI signal E(b) is extremely sensitive to microstructural features. The aim of this study was to determine which mathematical model of the E(b) signal most accurately describes it in the brain. The models compared were the monoexponential model, the stretched exponential model, the truncated cumulant expansion (TCE) model, the biexponential model, and the triexponential model. Acquisition was performed with nine b-values up to 2500 s/mm(2) in 12 healthy volunteers. The goodness-of-fit was studied with F-tests and with the Akaike information criterion. Tissue contrasts were differentiated with a multiple comparison corrected nonparametric analysis of variance. F-test showed that the TCE model was better than the biexponential model in gray and white matter. Corrected Akaike information criterion showed that the TCE model has the best accuracy and produced the most reliable contrasts in white matter among all models studied. In conclusion, the TCE model was found to be the best model to infer the microstructural properties of brain tissue.

  14. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd‐DTPA and USPIO‐enhanced imaging

    PubMed Central

    Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A.; Jones, Chris; Robinson, Simon P.

    2016-01-01

    Abstract High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co‐option in regions of invasive growth (in which the blood–brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd‐DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)‐enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k‐means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA‐MB‐231 LM2–4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd‐DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA‐MB‐231 LM2–4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA‐MB‐231 LM2–4 tumours on T 2‐weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1) were predominantly located at the tumour margins, regions of MDA‐MB‐231 LM2–4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers. PMID:27671990

  15. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging.

    PubMed

    Boult, Jessica K R; Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A; Jones, Chris; Robinson, Simon P

    2016-11-01

    High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co-option in regions of invasive growth (in which the blood-brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd-DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)-enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k-means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA-MB-231 LM2-4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd-DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA-MB-231 LM2-4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA-MB-231 LM2-4 tumours on T 2 -weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1 ) were predominantly located at the tumour margins, regions of MDA-MB-231 LM2-4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  16. Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast

    PubMed Central

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-01-01

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680

  17. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging.

    PubMed

    Mardor, Yael; Pfeffer, Raphael; Spiegelmann, Roberto; Roth, Yiftach; Maier, Stephan E; Nissim, Ouzi; Berger, Raanan; Glicksman, Ami; Baram, Jacob; Orenstein, Arie; Cohen, Jack S; Tichler, Thomas

    2003-03-15

    To study the feasibility of using diffusion-weighted magnetic resonance imaging (DWMRI), which is sensitive to the diffusion of water molecules in tissues, for detection of early tumor response to radiation therapy; and to evaluate the additional information obtained from high DWMRI, which is more sensitive to low-mobility water molecules (such as intracellular or bound water), in increasing the sensitivity to response. Standard MRI and DWMRI were acquired before and at regular intervals after initiating radiation therapy for 10 malignant brain lesions in eight patients. One week posttherapy, three of six responding lesions showed an increase in the conventional DWMRI parameters. Another three responding lesions showed no change. Four nonresponding lesions showed a decrease or no change. The early change in the diffusion parameters was enhanced by using high DWMRI. When high DWMRI was used, all responding lesions showed increase in the diffusion parameter and all nonresponding lesions showed no change or decrease. Response was determined by standard MRI 7 weeks posttherapy. The changes in the diffusion parameters measured 1 week after initiating treatment were correlated with later tumor response or no response (P <.006). This correlation was increased to P <.0006 when high DWMRI was used. The significant correlation between changes in diffusion parameters 1 week after initiating treatment and later tumor response or no response suggests the feasibility of using DWMRI for early, noninvasive prediction of tumor response. The ability to predict response may enable early termination of treatment in nonresponding patients, prevent additional toxicity, and allow for early changes in treatment.

  18. Individual white matter fractional anisotropy analysis on patients with MRI negative partial epilepsy.

    PubMed

    Duning, Thomas; Kellinghaus, Christoph; Mohammadi, Siawoosh; Schiffbauer, Hagen; Keller, Simon; Ringelstein, E Bernd; Knecht, Stefan; Deppe, Michael

    2010-02-01

    Conventional structural MRI fails to identify a cerebral lesion in 25% of patients with cryptogenic partial epilepsy (CPE). Diffusion tensor imaging is an MRI technique sensitive to microstructural abnormalities of cerebral white matter (WM) by quantification of fractional anisotropy (FA). The objectives of the present study were to identify focal FA abnormalities in patients with CPE who were deemed MRI negative during routine presurgical evaluation. Diffusion tensor imaging at 3 T was performed in 12 patients with CPE and normal conventional MRI and in 67 age matched healthy volunteers. WM integrity was compared between groups on the basis of automated voxel-wise statistics of FA maps using an analysis of covariance. Volumetric measurements from high resolution T1-weighted images were also performed. Significant FA reductions in WM regions encompassing diffuse areas of the brain were observed when all patients as a group were compared with controls. On an individual basis, voxel based analyses revealed widespread symmetrical FA reduction in CPE patients. Furthermore, asymmetrical temporal lobe FA reduction was consistently ipsilateral to the electroclinical focus. No significant correlations were found between FA alterations and clinical data. There were no differences in brain volumes of CPE patients compared with controls. Despite normal conventional MRI, WM integrity abnormalities in CPE patients extend far beyond the epileptogenic zone. Given that unilateral temporal lobe FA abnormalities were consistently observed ipsilateral to the seizure focus, analysis of temporal FA may provide an informative in vivo investigation into the localisation of the epileptogenic zone in MRI negative patients.

  19. A comparative quantitative analysis of magnetic susceptibility artifacts in echo planar and PROPELLER diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan

    2013-01-01

    In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.

  20. Effects of b-value and number of gradient directions on diffusion MRI measures obtained with Q-ball imaging

    NASA Astrophysics Data System (ADS)

    Schilling, Kurt G.; Nath, Vishwesh; Blaber, Justin; Harrigan, Robert L.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-02-01

    High-angular-resolution diffusion-weighted imaging (HARDI) MRI acquisitions have become common for use with higher order models of diffusion. Despite successes in resolving complex fiber configurations and probing microstructural properties of brain tissue, there is no common consensus on the optimal b-value and number of diffusion directions to use for these HARDI methods. While this question has been addressed by analysis of the diffusion-weighted signal directly, it is unclear how this translates to the information and metrics derived from the HARDI models themselves. Using a high angular resolution data set acquired at a range of b-values, and repeated 11 times on a single subject, we study how the b-value and number of diffusion directions impacts the reproducibility and precision of metrics derived from Q-ball imaging, a popular HARDI technique. We find that Q-ball metrics associated with tissue microstructure and white matter fiber orientation are sensitive to both the number of diffusion directions and the spherical harmonic representation of the Q-ball, and often are biased when under sampled. These results can advise researchers on appropriate acquisition and processing schemes, particularly when it comes to optimizing the number of diffusion directions needed for metrics derived from Q-ball imaging.

  1. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  2. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation

    PubMed Central

    Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381

  3. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation.

    PubMed

    Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.

  4. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    PubMed

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  5. Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects.

    PubMed

    Jovicich, Jorge; Marizzoni, Moira; Bosch, Beatriz; Bartrés-Faz, David; Arnold, Jennifer; Benninghoff, Jens; Wiltfang, Jens; Roccatagliata, Luca; Picco, Agnese; Nobili, Flavio; Blin, Oliver; Bombois, Stephanie; Lopes, Renaud; Bordet, Régis; Chanoine, Valérie; Ranjeva, Jean-Philippe; Didic, Mira; Gros-Dagnac, Hélène; Payoux, Pierre; Zoccatelli, Giada; Alessandrini, Franco; Beltramello, Alberto; Bargalló, Núria; Ferretti, Antonio; Caulo, Massimo; Aiello, Marco; Ragucci, Monica; Soricelli, Andrea; Salvadori, Nicola; Tarducci, Roberto; Floridi, Piero; Tsolaki, Magda; Constantinidis, Manos; Drevelegas, Antonios; Rossini, Paolo Maria; Marra, Camillo; Otto, Josephin; Reiss-Zimmermann, Martin; Hoffmann, Karl-Titus; Galluzzi, Samantha; Frisoni, Giovanni B

    2014-11-01

    Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using 18F-FDG PET and MRI

    PubMed Central

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-01-01

    Abstract Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD. PMID:27082610

  7. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using ¹⁸F-FDG PET and MRI.

    PubMed

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-04-01

    Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD.

  8. Spurious group differences due to head motion in a diffusion MRI study

    PubMed Central

    Yendiki, Anastasia; Koldewyn, Kami; Kakunoori, Sita; Kanwisher, Nancy; Fischl, Bruce

    2014-01-01

    Diffusion-weighted MRI (DW-MRI) has become a popular imaging modality for probing the microstructural properties of white matter and comparing them between populations in vivo. However, the contrast in DW-MRI arises from the microscopic random motion of water molecules in brain tissues, which makes it particularly sensitive to macroscopic head motion. Although this has been known since the introduction of DW-MRI, most studies that use this modality for group comparisons do not report measures of head motion for each group and rely on registration-based correction methods that cannot eliminate the full effects of head motion on the DW-MRI contrast. In this work we use data from children with autism and typically developing children to investigate the effects of head motion on differences in anisotropy and diffusivity measures between groups. We show that group differences in head motion can induce group differences in DW-MRI measures, and that this is the case even when comparing groups that include control subjects only, where no anisotropy or diffusivity differences are expected. We also show that such effects can be more prominent in some white-matter pathways than others, and that they can be ameliorated by including motion as a nuisance regressor in the analyses. Our results demonstrate the importance of taking head motion into account in any population study where one group might exhibit more head motion than the other. PMID:24269273

  9. Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem, and thalamus in different magnetic resonance imaging sequences.

    PubMed

    Moen, Kent G; Brezova, Veronika; Skandsen, Toril; Håberg, Asta K; Folvik, Mari; Vik, Anne

    2014-09-01

    The aim of this study was to explore the prognostic value of visible traumatic axonal injury (TAI) loads in different MRI sequences from the early phase after adjusting for established prognostic factors. Likewise, we sought to explore the prognostic role of early apparent diffusion coefficient (ADC) values in normal-appearing corpus callosum. In this prospective study, 128 patients (mean age, 33.9 years; range, 11-69) with moderate (n = 64) and severe traumatic brain injury (TBI) were examined with MRI at a median of 8 days (range, 0-28) postinjury. TAI lesions in fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and T2*-weighted gradient echo (T2*GRE) sequences were counted and FLAIR lesion volumes estimated. In patients and 47 healthy controls, mean ADC values were computed in 10 regions of interests in the normal-appearing corpus callosum. Outcome measure was the Glasgow Outcome Scale-Extended (GOS-E) at 12 months. In patients with severe TBI, number of DWI lesions and volume of FLAIR lesions in the corpus callosum, brain stem, and thalamus predicted outcome in analyses with adjustment for age, Glasgow Coma Scale score, and pupillary dilation (odds ratio, 1.3-6.9; p = <0.001-0.017). The addition of Rotterdam CT score and DWI lesions in the corpus callosum yielded the highest R2 (0.24), compared to all other MRI variables, including brain stem lesions. For patients with moderate TBI only the number of cortical contusions (p = 0.089) and Rotterdam CT score (p = 0.065) tended to predict outcome. Numbers of T2*GRE lesions did not affect outcome. Mean ADC values in the normal-appearing corpus callosum did not differ from controls. In conclusion, the loads of visible TAI lesions in the corpus callosum, brain stem, and thalamus in DWI and FLAIR were independent prognostic factors in patients with severe TBI. DWI lesions in the corpus callosum were the most important predictive MRI variable. Interestingly, number of cortical contusions in MRI and CT findings seemed more important for patients with moderate TBI.

  10. Child dermoid cyst mimicking a craniopharyngioma: the benefit of MRI T2-weighted diffusion sequence.

    PubMed

    Amelot, Aymeric; Borha, Alin; Calmon, Raphael; Barbet, Patrick; Puget, Stephanie

    2018-02-01

    Brain dermoid cysts are very rare lesions. Although benign, these cysts may be associated with devastating complications due to mass effect or meningitis. The discovery of completely asymptomatic dermoid cysts in the pediatric population is exceedingly rare. Despite the advances in imaging modalities, it sometimes remains difficult to exclude the differential diagnosis of craniopharyngioma. We describe a 12-year-old boy addressed for suspicion of craniopharyngioma diagnosed by decreased visual acuity, bitemporal hemianopia and a CT scan showing a large hypodense suprasellar lesion with intralesional calcifications. Despite the unusual localization and size of this lesion, the absence of dermal sinus commonly found, and before visualizing a hyperintense mass on MRI-diffusion, the diagnosis of craniopharyngioma was ruled out in favor of a dermoid cyst. Radical excision was performed. In the suprasellar area, craniopharyngioma and dermoid cyst may have very similar radiological aspects: low density masses on CT scan and a hyperintense signal on T1-weighted MRI sequences with a variable signal on T2-weighted sequences. Hitherto, only two cases in literature have described suprasellar dermoid cyst. Their initial diagnosis was facilitated by the presence of a dermal sinus.

  11. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.

  12. [An old woman with sudden pareses and blindness].

    PubMed

    Arntzen, Kjell Arne; Albretsen, Claus; Bajic, Radoslav

    2007-03-01

    We present a patient with Posterior Reversible Encephalopathy Syndrome (PRES). A 74-year-old woman was admitted with sepsis, which originated from erysipelas on her neck the following day. She developed respiratory obstruction due to oedema, septic shock, disseminated intravascular coagulation (DIC), acute renal failure and atrial fibrillation. She responded well to treatment and improved rapidly, despite of her serious condition. When she had almost fully recovered after 15 days, her general condition worsened, and she developed confusion, blindness and pareses. MRI showed vasogenic oedema in the parietooccipital regions of the brain and in the cerebellum, consistent with PRES. PRES is a clinical and radiological diagnosis consisting of headache, confusion, cortical blindness, convulsions and sometimes pareses. MRI of the cerebrum with diffusion-weighted imaging (DWI) and Apparent Diffusion Coefficient (ADC) map are decisive to the diagnosis, and usually shows a characteristic bilateral vasogenic oedema in the parietooccipital region. This can distinguish PRES from brain infarction, which shows a cytotoxic oedema on MRI. We discuss our patient in the light of different conditions leading to PRES, possible pathophysiological factors and treatment options.

  13. A rare case of short stature: Say Meyer syndrome.

    PubMed

    Karthik, T S; Prasad, N Rajendra; Rani, P Radha; Maheshwari, Rushikesh; Reddy, P Amaresh; Chakradhar, B V S; Menon, Bindu

    2013-10-01

    Say Meyer syndrome is rare X linked condition characterized by developmental delay, short stature and metopic suture synostosis. We are reporting a case of Say Meyer syndrome presented to our hospital for short stature and developmental delay at age 3½ years. A 3½-year-old boy presented to our hospital for decreased growth velocity from the age of 1 year. History revealed the boy had a birth weight of 2.3 kg, had an episode of seizures in the neonatal period. He was born to non-consanguineous marriage. He had global developmental delay and there was a lack of bowel and bladder control. History did not reveal any hearing or visual impairment. No history of any chronic systemic illnesses. Magnetic resonance imaging (MRI) brain revealed mild diffuse frontotemporal atrophy with multiple irregular gliotic areas in bilateral frontal lobes. Diffuse white matter volume loss in bilateral cerebral hemispheres. Diffuse thinning of corpus callosum. Diffuse periventricular hyper intensity on T2W and fluid attenuated inversion recovery sequences. Say Meyer syndrome is rare X linked condition characterized by developmental delay, short stature and metopic suture synostosis. Characteristic MRI brain findings include diffuse frontotemporal atrophy with multiple gliotic areas in frontal lobes. Diffuse white matter volume loss in bilateral cerebral hemispheres.

  14. [See the thinking brain: a story about water].

    PubMed

    Le Bihan, D

    2008-01-01

    Among the astonishing Einstein's papers from 1905, there is one which unexpectedly gave birth to a powerful method to explore the brain. Molecular diffusion was explained by Einstein on the basis of the random translational motion of molecules which results from their thermal energy. In the mid 1980s it was shown that water diffusion in the brain could be imaged using MRI. During their random displacements water molecules probe tissue structure at a microscopic scale, interacting with cell membranes and, thus, providing unique information on the functional architecture of tissues. A dramatic application of diffusion MRI has been brain ischemia, following the discovery that water diffusion drops immediately after the onset of an ischemic event, when brain cells undergo swelling through cytotoxic edema. On the other hand, water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the fibers. This feature can be exploited to map out the orientation in space of the white matter tracks and image brain connections. More recently, it has been shown that diffusion MRI could accurately detect cortical activation. As the diffusion response precedes by several seconds the hemodynamic response captured by BOLD fMRI, it has been suggested that water diffusion could reflect early neuronal events, such as the transient swelling of activated cortical cells. If confirmed, this discovery will represent a significant breakthrough, allowing non invasive access to a direct physiological marker of brain activation. This approach will bridge the gap between invasive optical imaging techniques in neuronal cell cultures, and current functional neuroimaging approaches in humans, which are based on indirect and remote blood flow changes.

  15. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  16. Early detection of neuropathophysiology using diffusion-weighted magnetic resonance imaging in asymptomatic cats with feline immunodeficiency viral infection.

    PubMed

    Bucy, Daniel S; Brown, Mark S; Bielefeldt-Ohmann, Helle; Thompson, Jesse; Bachand, Annette M; Morges, Michelle; Elder, John H; Vandewoude, Sue; Kraft, Susan L

    2011-08-01

    HIV infection results in a highly prevalent syndrome of cognitive and motor disorders designated as HIV-associated dementia (HAD). Neurologic dysfunction resembling HAD has been documented in cats infected with strain PPR of the feline immunodeficiency virus (FIV), whereas another highly pathogenic strain (C36) has not been known to cause neurologic signs. Animals experimentally infected with equivalent doses of FIV-C36 or FIV-PPR, and uninfected controls were evaluated by magnetic resonance diffusion-weighted imaging (DW-MRI) and spectroscopy (MRS) at 17.5-18 weeks post-infection, as part of a study of viral clade pathogenesis in FIV-infected cats. The goals of the MR imaging portion of the project were to determine whether this methodology was capable of detecting early neuropathophysiology in the absence of outward manifestation of neurological signs and to compare the MR imaging results for the two viral strains expected to have differing degrees of neurologic effects. We hypothesized that there would be increased diffusion, evidenced by the apparent diffusion coefficient as measured by DW-MRI, and altered metabolite ratios measured by MRS, in the brains of FIV-PPR-infected cats relative to C36-infected cats and uninfected controls. Increased apparent diffusion coefficients were seen in the white matter, gray matter, and basal ganglia of both the PPR and C36-infected (asymptomatic) cats. Thalamic MRS metabolite ratios did not differ between groups. The equivalently increased diffusion by DW-MRI suggests similar indirect neurotoxicity mechanisms for the two viral genotypes. DW-MRI is a sensitive tool to detect neuropathophysiological changes in vivo that could be useful during longitudinal studies of FIV.

  17. Brain structural changes in spasmodic dysphonia: A multimodal magnetic resonance imaging study.

    PubMed

    Kostic, Vladimir S; Agosta, Federica; Sarro, Lidia; Tomić, Aleksandra; Kresojević, Nikola; Galantucci, Sebastiano; Svetel, Marina; Valsasina, Paola; Filippi, Massimo

    2016-04-01

    The pathophysiology of spasmodic dysphonia is poorly understood. This study evaluated patterns of cortical morphology, basal ganglia, and white matter microstructural alterations in patients with spasmodic dysphonia relative to healthy controls. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) scans were obtained from 13 spasmodic dysphonia patients and 30 controls. Tract-based spatial statistics was applied to compare diffusion tensor MRI indices (i.e., mean, radial and axial diffusivities, and fractional anisotropy) between groups on a voxel-by-voxel basis. Cortical measures were analyzed using surface-based morphometry. Basal ganglia were segmented on T1-weighted images, and volumes and diffusion tensor MRI metrics of nuclei were measured. Relative to controls, patients with spasmodic dysphonia showed increased cortical surface area of the primary somatosensory cortex bilaterally in a region consistent with the buccal sensory representation, as well as right primary motor cortex, left superior temporal, supramarginal and superior frontal gyri. A decreased cortical area was found in the rolandic operculum bilaterally, left superior/inferior parietal and lingual gyri, as well as in the right angular gyrus. Compared to controls, spasmodic dysphonia patients showed increased diffusivities and decreased fractional anisotropy of the corpus callosum and major white matter tracts, in the right hemisphere. Altered diffusion tensor MRI measures were found in the right caudate and putamen nuclei with no volumetric changes. Multi-level alterations in voice-controlling networks, that included regions devoted not only to sensorimotor integration, motor preparation and motor execution, but also processing of auditory and visual information during speech, might have a role in the pathophysiology of spasmodic dysphonia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A 1-minute full brain MR exam using a multicontrast EPI sequence.

    PubMed

    Skare, Stefan; Sprenger, Tim; Norbeck, Ola; Rydén, Henric; Blomberg, Lars; Avventi, Enrico; Engström, Mathias

    2018-06-01

    A new multicontrast echo-planar imaging (EPI)-based sequence is proposed for brain MRI, which can directly generate six MR contrasts (T 1 -FLAIR, T 2 -w, diffusion-weighted (DWI), apparent diffusion coefficient (ADC), T2*-w, T 2 -FLAIR) in 1 min with full brain coverage. This could enable clinical MR clinical screening in similar time as a conventional CT exam but with more soft-tissue information. Eleven sequence modules were created as dynamic building blocks for the sequence. Two EPI readout modules were reused throughout the sequence and were prepended by other modules to form the desired MR contrasts. Two scan protocols were optimized with scan times of 55-75 s. Motion experiments were carried out on two volunteers to investigate the robustness against head motion. Scans on patients were carried out and compared to conventional clinical images. The pulse sequence is found to be robust against motion given its single-shot nature of each contrast. For excessive out-of-plane head motion, the T 1 -FLAIR and T 2 -FLAIR contrasts suffer from incomplete inversion. Despite lower signal-to-noise ratio (SNR) and resolution, the 1-min multicontrast EPI data show promising correspondence with conventional diagnostic scans on patients. A 1 min multicontrast brain MRI scan based on EPI readouts has been presented in this feasibility study. Preliminary data show potential for clinical brain MRI use with minimal bore time for the patient. Such short examination time could be useful (e.g., for screening and acute stroke). The sequence may also help planning conventional brain MRI scans if run at the beginning of an examination. Magn Reson Med 79:3045-3054, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Engraftment of Human Mesenchymal Stem Cells in a Rat Photothrombotic Cerebral Infarction Model : Comparison of Intra-Arterial and Intravenous Infusion Using MRI and Histological Analysis

    PubMed Central

    Byun, Jun Soo; Kim, Jae Kyun; Jung, Jisung; Ha, Bon Chul; Park, Serah

    2013-01-01

    Objective This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. Methods Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), T2* weighted image (T2*WI), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. Results Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by T2*WI and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. Conclusion In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain. PMID:24527188

  20. Cerebral schistosomiasis: diffusion-weighted imaging helps to differentiate from brain glioma and metastasis.

    PubMed

    Huang, Jinbai; Luo, Jing; Peng, Jie; Yang, Tao; Zheng, Huanghua; Mao, Chunping

    2017-11-01

    Background Diffusion-weighted imaging (DWI) was introduced into clinical use some years ago. However, its use in the diagnosis of cerebral schistosomiasis has not been reported. Purpose To investigate the ability of the apparent diffusion coefficient (ADC) value of DWI in the diagnosis of cerebral schistosomiasis, and to differentiate it from brain high-grade gliomas and metastasis. Material and Methods Conventional brain MRI with pre-contrast, post-contrast, and DWI was performed on 50 cases of cerebral schistosomiasis, high-grade glioma, and brain metastasis. The ADC values of the three lesions, the proximal and the distal perifocal edema were measured. In order to remove the individual difference effect of ADC values, relative ADC (rADC) values were calculated through dividing the ADC value of the lesion area by that of the contralateral normal white matter. rADC values were used to evaluate the differences among cerebral schistosomiasis, brain high-grade gliomas, and metastasis. Results rADC of cerebral schistosomiasis was significantly lower than rADC of brain metastasis ( P < 0.05), without any significant differences when compared with high-grade gliomas. rADC of proximal perifocal edema in cerebral schistosomiasis was significantly higher than in high-grade gliomas ( P < 0.010), but not different compared with brain metastasis. Conclusion DWI examination with ADC values of lesions and proximal perifocal edema might be helpful in the exact diagnosis of cerebral schistosomiasis.

  1. Functional Imaging and Related Techniques: An Introduction for Rehabilitation Researchers

    PubMed Central

    Crosson, Bruce; Ford, Anastasia; McGregor, Keith M.; Meinzer, Marcus; Cheshkov, Sergey; Li, Xiufeng; Walker-Batson, Delaina; Briggs, Richard W.

    2010-01-01

    Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques. PMID:20593321

  2. Acute Brain Imaging in Children: Can MRI Replace CT as a Screening Tool?

    PubMed

    Wagner, Matthias W; Kontzialis, Marinos; Seeburg, Daniel; Stern, Steven E; Oshmyansky, Alexander; Poretti, Andrea; Huisman, Thierry A G M

    2016-01-01

    To determine if axial T2-weighted imaging can serve as screening tool for pediatric brain imaging. We retrospectively evaluated consecutive brain magnetic resonance imaging (MRI) data of 161 children (74 girls) with a mean age of 7.44 ± 5.71 years. Standard of reference was the final report of neuroradiology attendings. Three readers with different levels of experience were blinded for clinical diagnoses and study indications. First, readers studied only the axial T2-weighted screening sequence. Second, they studied all available anatomical and functional MRI sequences as performed per standard protocol for each clinical indication. The readings were classified as normal or abnormal. Sensitivity and specificity were measured. Axial T2 screening yielded a sensitivity of 77-88% and a specificity of 92%. The full studies/data sets had a sensitivity of 89-95% and a specificity of 86-93%. Nineteen of 167 studies were acquired for acute and 148 of 167 studies for nonacute clinical indication. Twenty-five false-negative diagnoses paneled in three groups were made by all readers together. Readers misread four of 19 studies with acute and 21 of 148 studies with nonacute clinical indication. Four of 21 misread studies with nonacute indications harbored unexpected findings needing management. Axial T2 screening can detect pediatric brain abnormalities with high sensitivity and specificity and can possibly replace CT as screening tool if the reading physician is aware of possible limitations/pitfalls. The level of experience influences sensitivity and specificity. Adding diffusion-weighted imaging and susceptibility-weighted imaging to a 3-dimensional T2-weighted sequence would most likely further increase sensitivity and specificity. Copyright © 2015 by the American Society of Neuroimaging.

  3. The Potential for an Enhanced Role for MRI in Radiation-therapy Treatment Planning

    PubMed Central

    Metcalfe, P.; Liney, G. P.; Holloway, L.; Walker, A.; Barton, M.; Delaney, G. P.; Vinod, S.; Tomé, W.

    2013-01-01

    The exquisite soft-tissue contrast of magnetic resonance imaging (MRI) has meant that the technique is having an increasing role in contouring the gross tumor volume (GTV) and organs at risk (OAR) in radiation therapy treatment planning systems (TPS). MRI-planning scans from diagnostic MRI scanners are currently incorporated into the planning process by being registered to CT data. The soft-tissue data from the MRI provides target outline guidance and the CT provides a solid geometric and electron density map for accurate dose calculation on the TPS computer. There is increasing interest in MRI machine placement in radiotherapy clinics as an adjunct to CT simulators. Most vendors now offer 70 cm bores with flat couch inserts and specialised RF coil designs. We would refer to these devices as MR-simulators. There is also research into the future application of MR-simulators independent of CT and as in-room image-guidance devices. It is within the background of this increased interest in the utility of MRI in radiotherapy treatment planning that this paper is couched. The paper outlines publications that deal with standard MRI sequences used in current clinical practice. It then discusses the potential for using processed functional diffusion maps (fDM) derived from diffusion weighted image sequences in tracking tumor activity and tumor recurrence. Next, this paper reviews publications that describe the use of MRI in patient-management applications that may, in turn, be relevant to radiotherapy treatment planning. The review briefly discusses the concepts behind functional techniques such as dynamic contrast enhanced (DCE), diffusion-weighted (DW) MRI sequences and magnetic resonance spectroscopic imaging (MRSI). Significant applications of MR are discussed in terms of the following treatment sites: brain, head and neck, breast, lung, prostate and cervix. While not yet routine, the use of apparent diffusion coefficient (ADC) map analysis indicates an exciting future application for functional MRI. Although DW-MRI has not yet been routinely used in boost adaptive techniques, it is being assessed in cohort studies for sub-volume boosting in prostate tumors. PMID:23617289

  4. Clinicoradiological Correlation of Infarct Patterns on Diffusion-weighted Magnetic Resonance Imaging in Stroke.

    PubMed

    Hussain, Zainab; Hilal, Kiran; Ahmad, Muhammad; Sajjad, Zafar; Sayani, Raza

    2018-03-02

    Diffusion-weighted magnetic resonance imaging (DW-MRI) represents a major advance in the early diagnosis of acute ischemic stroke. It can detect edema due to ischemia in the brain tissue. It not only establishes the presence and location of ischemic brain injury but also a relatively new concept is the determination of infarct patterns seen on diffusion imaging and its clinical correlation. Objective To determine the frequency of various infarct patterns and their relationship with functional outcome of the patient. Materials and methods A total of 108 patients with acute stroke were enrolled by purposive sampling. Magnetic resonance imaging (MRI) was obtained with departmental protocol and diffusion-weighted sequences. The clinical data was collected from medical records and functional outcome was assessed at the time of admission using Barthel Index (BI) which was dichotomized into poor and favorable outcomes. The radiological data was collected and three infarct patterns (cortical, subcortical, and territorial infarcts) were recorded from diffusion-weighted images. Association of other risk factors such as age, gender, diabetes, hypertension (HTN), hyperlipidemia, and smoking were also evaluated. Results Amongst the three infarct patterns, subcortical infarcts were noted with the highest proportion of 62% (67/108). The highest proportion of territorial infarcts (78.6%) was significantly associated with a poor outcome in comparison to cortical and subcortical infarcts. Cortical infarcts (61.5%) were significantly associated with good outcomes followed by subcortical and then territorial infarcts (p-value < 0.002). Amongst the risk factors, HTN was found to be highly prevalent followed by diabetes mellitus (DM). Conclusion Subcortical infarct pattern was the most common, followed by territorial and cortical infarct. The highest proportion of infarct pattern with good outcomes was seen with cortical infarcts followed by subcortical and then territorial infarct pattern. HTN and coronary artery disease (CAD) were the effect modifiers showing significant association with poor outcomes.

  5. Novel Diffusion-Weighted MRI for High-Grade Prostate Cancer Detection

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0346 TITLE: Novel Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection PRINCIPAL INVESTIGATOR: Michael Abern...Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of...Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0346 5c. PROGRAM ELEMENT NUMBER 6

  6. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future.

    PubMed

    Salama, Gayle R; Heier, Linda A; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2017-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.

  7. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma—Foundations and Future

    PubMed Central

    Salama, Gayle R.; Heier, Linda A.; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2018-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes. PMID:29403420

  8. Correlation of neurocognitive function and brain lesion load on magnetic resonance imaging in systemic lupus erythematosus.

    PubMed

    Roldan, Paola C; Jung, Rex E; Sibbitt, Wilmer L; Qualls, Clifford R; Flores, Ranee A; Roldan, Carlos A

    2018-06-13

    Neurocognitive dysfunction and brain injury on magnetic resonance imaging (MRI) are common in patients with systemic lupus erythematosus (SLE) and are associated with increased morbidity and mortality. However, brain MRI is expensive, is restricted by payers, and requires high expertise. Neurocognitive assessment is an easily available, safe, and inexpensive clinical tool that may select patients needing brain MRI. In this cross-sectional and controlled study, 76 SLE patients (69 women, age 37 ± 12 years) and 26 age and gender-matched healthy subjects (22 women, age 34 ± 11 years) underwent assessment of attention, memory, processing speed, executive function, motor function, and global neurocognitive function. All subjects underwent brain MRI with T1-weighted, fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted imaging. Hemispheric and whole brain lesion load in cm 3 were determined using semi-automated methods. Neurocognitive z-scores in all clinical domains were significantly lower and whole brain and right and left hemispheres brain lesion load were significantly greater in patients than in controls (all p ≤ 0.02). There was significant correlation between neurocognitive z-scores in all domains and whole brain lesion load: processing speed (r = - 0.46; p < 0.0001), attention (r = - 0.42; p < 0.001), memory (r = - 0.40; p = 0.0004), executive function (r = - 0.25; p = 0.03), motor function (r = - 0.25; p = 0.05), and global neurocognitive function (r = - 0.38; p = 0.006). Similar correlations were found for brain hemisphere lesion loads (all p ≤ 0.05). These correlations were strengthened when adjusted for glucocorticoid therapy and SLE disease activity index. Finally, global neurocognitive z-score and erythrosedimentation rate were the only independent predictors of whole brain lesion load (both p ≤ 0.007). Neurocognitive measures and brain lesion load are worse in SLE patients than in controls. In SLE patients, neurocognitive z-scores correlate negatively with and independently predict brain lesion load. Therefore, neurocognitive testing may be an effective clinical tool to select patients needing brain MRI.

  9. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    NASA Astrophysics Data System (ADS)

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao

    2016-03-01

    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.

  10. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb.

    PubMed

    Hoffmann, Angelika; Kunze, Reiner; Helluy, Xavier; Milford, David; Heiland, Sabine; Bendszus, Martin; Pham, Mirko; Marti, Hugo H

    2016-01-01

    Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.

  11. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping.

    PubMed

    Ianuş, Andrada; Shemesh, Noam

    2018-04-01

    Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  12. Posterior reversible encephalopathy syndrome: a case of unusual diffusion-weighted MR images.

    PubMed

    Benziada-Boudour, A; Schmitt, E; Kremer, S; Foscolo, S; Rivière, A-S; Tisserand, M; Boudour, A; Bracard, S

    2009-05-01

    Posterior reversible encephalopathy (PRES) represents an uncommon entity related to multiple pathologies, the most common of which is hypertensive crisis. PRES is classically characterized as symmetrical parieto-occipital edema, but may affect other areas of the brain. Diffusion-weighted magnetic resonance imaging (DWI) is important for differentiating between vasogenic and cytotoxic edema. We present here the case of a 43-year-old woman, known to suffer from arterial hypertension and severe renal failure, who developed PRES with restricted apparent diffusion coefficients (ADC) in various cerebral areas, suggesting irreversible tissue damage. Nevertheless, follow-up cranial MRI revealed complete remission, indicating that restricted diffusion does not always lead to cell death in this pathology. The underlying pathophysiological mechanism is not well understood. Such reversibility of diffusion anomalies has already been reported with transient ischemia, vasospasm after subarachnoid hemorrhage and epilepsy but, to our knowledge, never before in PRES.

  13. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI.

    PubMed

    Bible, Ellen; Dell'Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter M; Badylak, Stephen F; Ahrens, Eric T; Modo, Michel

    2012-04-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Sheet Probability Index (SPI): Characterizing the geometrical organization of the white matter with diffusion MRI

    PubMed Central

    Tax, Chantal M.W.; Haije, Tom Dela; Fuster, Andrea; Westin, Carl-Fredrik; Viergever, Max A.; Florack, Luc; Leemans, Alexander

    2017-01-01

    The question whether our brain pathways adhere to a geometric grid structure has been a popular topic of debate in the diffusion imaging and neuroscience society. Wedeen et al. (2012a b) proposed that the brain’s white matter is organized like parallel sheets of interwoven pathways. Catani et al. (2012) concluded that this grid pattern is most likely an artifact, resulting from methodological biases that cause the tractography pathways to cross in orthogonal angles. To date, ambiguities in the mathematical conditions for a sheet structure to exist (e.g. its relation to orthogonal angles) combined with the lack of extensive quantitative evidence have prevented wide acceptance of the hypothesis. In this work, we formalize the relevant terminology and recapitulate the condition for a sheet structure to exist. Note that this condition is not related to the presence or absence of orthogonal crossing fibers, and that sheet structure is defined formally as a surface formed by two sets of interwoven pathways intersecting at arbitrary angles within the surface. To quantify the existence of sheet structure, we present a novel framework to compute the sheet probability index (SPI), which reflects the presence of sheet structure in discrete orientation data (e.g. fiber peaks derived from diffusion MRI). With simulation experiments we investigate the effect of spatial resolution, curvature of the fiber pathways, and measurement noise on the ability to detect sheet structure. In real diffusion MRI data experiments we can identify various regions where the data supports sheet structure (high SPI values), but also areas where the data does not support sheet structure (low SPI values) or where no reliable conclusion can be drawn. Several areas with high SPI values were found to be consistent across subjects, across multiple data sets obtained with different scanners, resolutions, and degrees of diffusion weighting, and across various modeling techniques. Under the strong assumption that the diffusion MRI peaks reflect true axons, our results would therefore indicate that pathways do not form sheet structures at every crossing fiber region but instead at well-defined locations in the brain. With this framework, sheet structure location, extent, and orientation could potentially serve as new structural features of brain tissue. The proposed method can be extended to quantify sheet structure in directional data obtained with techniques other than diffusion MRI, which is essential for further validation. PMID:27456538

  15. Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques

    NASA Astrophysics Data System (ADS)

    Wang, F. H.; Kim, D. K.; Yoshitake, T.; Johansson, S. M.; Bjelke, B.; Muhammed, M.; Kehr, J.

    2011-01-01

    The purpose of the present study was to investigate, by MRI and histochemical techniques, the diffusion and clearance abilities of superparamagnetic iron oxide nanoparticles (SPION) coated with dextran (Dextran-SPION) and gold (Au-SPION) following their local infusions into the rat brain. In separate groups of anesthetized rats, the Dextran-SPION and Au-SPION were infused at concentrations of 0.01, 0.1, 1 and 5 µg Fe/0.5 µl and at the flow rate of 0.5 µl min - 1 into the left and right striata, respectively. Repetitive T2-weighted spin-echo MRI scans were performed at time intervals of 1, 6, 12, 24, 48, 72 h, and one, two and eight weeks after inoculation. Following infusion of Dextran-SPION (0.1 µg and 1 µg Fe), the maximal distribution volume was observed at about 12-24 h after inoculation and two weeks later the Fe signals were undetectable for the lower dose. On the other hand, Au-SPION remained tightly localized in the closest vicinity of the infusion site as revealed by unchanged MRI signal intensities and strong histochemical staining of Fe2 + and Fe3 + ions in the corresponding brain slices. Immunohistochemical staining of astrocytic and microglial reactions revealed that there were no marked differences in GFAP, VIM or OX-42 labeling observed between the nanoparticle types, however the astrocytic reaction was more pronounced in rats receiving nanoparticles compared to the control (aCSF-infused) rats. In conclusion, the present data demonstrate that the viral-sized Dextran-SPION were able to diffuse freely through the interstitial space of the brain being progressively cleared out from the infusion site within two weeks. Thus, Dextran-SPION could be beneficially used in MRI-guided diagnostic applications such as in experimental oncology or as labels and carriers for targeted drug delivery, whereas Au-SPION could be used for labeling and tracking the transplanted stem cells in experimental MRI.

  16. Diffusion-weighted magnetic resonance imaging of the fetal brain in intrauterine growth restriction.

    PubMed

    Arthurs, O J; Rega, A; Guimiot, F; Belarbi, N; Rosenblatt, J; Biran, V; Elmaleh, M; Sebag, G; Alison, M

    2017-07-01

    Diffusion-weighted magnetic resonance imaging (DWI) is a sensitive method for assessing brain maturation and detecting brain lesions, providing apparent diffusion coefficient (ADC) values as a measure of water diffusion. Abnormal ADC values are seen in ischemic brain lesions, such as those associated with acute or chronic hypoxia. The aim of this study was to assess whether ADC values in the fetal brain were different in fetuses with severe intrauterine growth restriction (IUGR) compared with normal controls. Brain magnetic resonance imaging (MRI) with single-shot axial DWI (b = 0 and b = 700 s/mm 2 ) was performed in 30 fetuses with severe IUGR (estimated fetal weight < 3 rd centile with absent or reversed umbilical artery Doppler flow) and in 24 normal controls of similar gestational age. Brain morphology and biometry were analyzed. ADC values were measured in frontal and occipital white matter, centrum semiovale, thalami, cerebellar hemisphere and pons. Frontal-occipital and frontal-cerebellar ADC ratios were calculated, and values were compared between IUGR fetuses and controls. There was no difference in gestational age at MRI between IUGR and control fetuses (IUGR, 30.2 ± 1.6 weeks vs controls, 30.7 ± 1.4 weeks). Fetal brain morphology and signals were normal in all fetuses. Brain dimensions (supratentorial ± infratentorial) were decreased (Z-score, < -2) in 20 (66.7%) IUGR fetuses. Compared with controls, IUGR fetuses had significantly lower ADC values in frontal white matter (1.97 ± 0.23 vs 2.17 ± 0.22 × 10 -3 mm 2 /s; P < 0.0001), thalami (1.04 ± 0.15 vs 1.13 ± 0.10 ×10 -3 mm 2 /s; P = 0.0002), centrum semiovale (1.86 ± 0.22 vs 1.97 ± 0.23 ×10 -3 mm 2 /s; P = 0.01) and pons (0.85 ± 0.19 vs 0.94 ± 0.12 ×10 -3 mm 2 /s; P = 0.043). IUGR fetuses had a lower frontal-occipital ADC ratio than did normal fetuses (1.00 ± 0.11 vs 1.08 ± 0.05; P = 0.003). ADC values in IUGR fetuses were significantly lower than in normal controls in the frontal white matter, thalami, centrum semiovale and pons, suggesting abnormal maturation in these regions. However, the prognostic value of these ADC changes is still unknown. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  17. Assessment of the usefulness of magnetic resonance brain imaging in patients presenting with acute seizures.

    PubMed

    Olszewska, D A; Costello, D J

    2014-12-01

    Magnetic Resonance Imaging (MRI) is increasingly available as a tool for assessment of patients presenting to acute services with seizures. We set out to prospectively determine the usefulness of early MRI brain in a cohort of patients presenting with acute seizures. We examined the MR imaging studies performed in patients admitted solely because of acute seizures to Cork University Hospital over a 12-month period. The main aim of the study was to determine if the MRI established the proximate cause for the patient's recent seizure. We identified 91 patients who underwent MRI brain within 48 h of admission for seizures. Of the 91 studies, 51 were normal (56 %). The remaining 40 studies were abnormal as follows: microvascular disease (usually moderate/severe) (n = 19), post-traumatic gliosis (n = 7), remote symptomatic lesion (n = 6), primary brain tumour (n = 5), venous sinus thrombosis (n = 3), developmental lesion (n = 3), post-surgical gliosis (n = 3) and single cases of demyelination, unilateral hippocampal sclerosis, lobar haemorrhage and metastatic malignant melanoma. Abnormalities in diffusion-weighted sequences that were attributable to prolonged ictal activity were seen in nine patients, all of who had significant ongoing clinical deficits, most commonly delirium. Of the 40 patients with abnormal MRI studies, seven patients had unremarkable CT brain. MR brain imaging revealed the underlying cause for acute seizures in 44 % of patients. CT brain imaging failed to detect the cause of the acute seizures in 19 % of patients in whom subsequent MRI established the cause. This study emphasises the importance of obtaining optimal imaging in people admitted with acute seizures.

  18. Diffusion heterogeneity tensor MRI (?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009.

    PubMed

    Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M

    2009-01-01

    Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.

  19. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.

    PubMed

    Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin

    2018-06-15

    The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.

  20. Multimodal MRI in cerebral small vessel disease: its relationship with cognition and sensitivity to change over time.

    PubMed

    Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S

    2008-07-01

    Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.

  1. Feasibility and Potential Role of Ferumoxytol-enhanced Neuroimaging in HIV-associated Neurocognitive Disorder

    PubMed Central

    Nakamoto, Beau K.; Shikuma, Cecilia M.; Ogata-Arakaki, Debra; Umaki, Tracie; Neuwelt, Edward A.; Shiramizu, Bruce T.; Chow, Dominic C.; Parikh, Nisha I.; Kallianpur, Kalpana J.; Hamilton, Bronwyn E.

    2013-01-01

    We assessed ferumoxytol-enhanced brain MRI to identify monocyte/macrophage accumulation in HIV-associated neurocognitive disorder (HAND). Four HIV-infected subjects with undetectable HIV RNA levels on antiretroviral therapy, HIV DNA level in CD14+ cells ≥ 10 copies/106 cells, and cognitive impairment underwent ferumoxtyol-enhanced brain MRI. On post-ferumoxytol susceptibility-weighted images, all HIV-infected subjects demonstrated a diffuse “tram track” appearance in the perivascular regions of cortical and deep white matter vessels suggesting ferumoxytol uptake in monocytes/macrophages. This finding was not present in a HIV-seronegative control. While ferumoxytol may have potential as an imaging biomarker for monocytes/macrophage accumulation in patients with HAND, future study is needed. PMID:24129909

  2. Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI.

    PubMed

    Jeurissen, Ben; Leemans, Alexander; Sijbers, Jan

    2014-10-01

    Ensuring one is using the correct gradient orientations in a diffusion MRI study can be a challenging task. As different scanners, file formats and processing tools use different coordinate frame conventions, in practice, users can end up with improperly oriented gradient orientations. Using such wrongly oriented gradient orientations for subsequent diffusion parameter estimation will invalidate all rotationally variant parameters and fiber tractography results. While large misalignments can be detected by visual inspection, small rotations of the gradient table (e.g. due to angulation of the acquisition plane), are much more difficult to detect. In this work, we propose an automated method to align the coordinate frame of the gradient orientations with that of the corresponding diffusion weighted images, using a metric based on whole brain fiber tractography. By transforming the gradient table and measuring the average fiber trajectory length, we search for the transformation that results in the best global 'connectivity'. To ensure a fast calculation of the metric we included a range of algorithmic optimizations in our tractography routine. To make the optimization routine robust to spurious local maxima, we use a stochastic optimization routine that selects a random set of seed points on each evaluation. Using simulations, we show that our method can recover the correct gradient orientations with high accuracy and precision. In addition, we demonstrate that our technique can successfully recover rotated gradient tables on a wide range of clinically realistic data sets. As such, our method provides a practical and robust solution to an often overlooked pitfall in the processing of diffusion MRI. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Statistics of Weighted Brain Networks Reveal Hierarchical Organization and Gaussian Degree Distribution

    PubMed Central

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable. PMID:22761649

  4. Statistics of weighted brain networks reveal hierarchical organization and Gaussian degree distribution.

    PubMed

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable.

  5. Brain MRI in neuropsychiatric lupus: associations with the 1999 ACR case definitions.

    PubMed

    Jeong, Hae Woong; Her, Minyoung; Bae, Jong Seok; Kim, Seong-Kyu; Lee, Sung Won; Kim, Ho Kyun; Kim, Dongyook; Park, Nayoung; Chung, Won Tae; Lee, Sang Yeob; Choe, Jung-Yoon; Kim, In Joo

    2015-05-01

    The purpose of this study was to identify the characteristic magnetic resonance imaging (MRI) findings in neuropsychiatric systemic lupus erythematosus (NPSLE) and to investigate the association between MRI findings and neuropsychiatric manifestations in SLE. Brain MRIs with a diagnosis of SLE from 2002 to 2013 from three tertiary university hospitals were screened. All clinical manifestations evaluated by brain MRI were retrospectively reviewed. If the clinical manifestations were compatible with the 1999 NPSLE American College of Rheumatology (ACR) nomenclature and case definitions, the brain MRIs were assessed for the presence of white matter hyperintensities, gray matter hyperintensities, parenchymal defects, atrophy, enhancement, and abnormalities in diffusion-weighted images (DWI). The number, size, and location of each lesion were evaluated. The neuropsychiatric manifestation of each brain MRI was classified according to the 1999 ACR NPSLE case definitions. The associations between MRI findings and NPSLE manifestations were examined. In total, 219 brain MRIs with a diagnosis of SLE were screened, and 133 brain MRIs met the inclusion criteria for NPSLE. The most common MRI abnormality was white matter hyperintensities, which were observed in 76 MRIs (57.1 %). Gray matter hyperintensities were observed in 41 MRIs (30.8 %). Parenchymal defects were found in 31 MRIs (23.3 %), and atrophy was detected in 20 MRIs (15.0 %). Patients who had seizures were more associated with gray matter hyperintensities than patients with other neuropsychiatric manifestations. Patients with cerebrovascular disease were more associated with gray matter hyperintensity, parenchymal defects, and abnormal DWI than patients with other neuropsychiatric manifestations. In addition to white matter hyperintensities, which were previously known as SLE findings, we also noted the presence of gray matter hyperintensities, parenchymal defects, and abnormal DWI in a substantial portion of SLE patients, particularly in those with cerebrovascular disease or seizures.

  6. MRI and (1)H-MRS in adenosine kinase deficiency.

    PubMed

    Staufner, C; Blom, H J; Dionisi-Vici, C; Freisinger, P; Makhseed, N; Ballhausen, D; Kölker, S; Hoffmann, G F; Harting, I

    2016-07-01

    Adenosine kinase deficiency (ADK deficiency) is a recently described disorder of methionine and adenosine metabolism resulting in a neurological phenotype with developmental delay, muscular hypotonia, and epilepsy as well as variable systemic manifestations. The underlying neuropathology is poorly understood. We have investigated MRI and (1)H-MRS changes in ADK deficiency in order to better understand the in vivo neuropathologic changes of ADK deficiency. Systematic evaluation of 21 MRIs from eight patients (age range 9 days-14.6 years, mean 3.9 years, median 2.7 years) including diffusion-weighted imaging in six and (1)H-MRS in five patients. Brain maturation was delayed in the neonatal period and in infancy (6/6), but ultimately complete. White matter changes occurring in five of eight patients were discrete, periventricular, and unspecific (4/5), or diffuse with sparing of optic radiation, corona radiata, and pyramidal tracts (1/5). Choline was low in white matter spectra (3/3), while there was no indication of low creatine in white matter or basal ganglia (5/5), and diffusion was variably decreased or increased. Central tegmental tract hyperintensity was a common finding (6/8), as was supratentorial atrophy (6/8). MRI changes in ADK deficiency consist of delayed but ultimately completed brain maturation with later onset of mostly unspecific white matter changes and potentially transient central tegmental tract hyperintensity. Immaturity on neonatal MRI is consistent with prenatal onset of disease and reduced choline with lower membrane turnover resulting in delayed myelination and deficient myelin maintenance.

  7. Over-hydration detection in brain by magnetic induction spectroscopy

    NASA Astrophysics Data System (ADS)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  8. Early Detection of Hypothermic Neuroprotection Using T2-Weighted Magnetic Resonance Imaging in a Mouse Model of Hypoxic Ischemic Encephalopathy.

    PubMed

    Doman, Sydney E; Girish, Akanksha; Nemeth, Christina L; Drummond, Gabrielle T; Carr, Patrice; Garcia, Maxine S; Johnston, Michael V; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann

    2018-01-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell death and inflammation. Our results demonstrate that hypothermia has early neuroprotective effects in this model. These findings suggest that hypothermia has an impact on early mechanisms of excitotoxic injury and support initiation of hypothermic intervention as soon as possible after diagnosis of HIE.

  9. Early Detection of Hypothermic Neuroprotection Using T2-Weighted Magnetic Resonance Imaging in a Mouse Model of Hypoxic Ischemic Encephalopathy

    PubMed Central

    Doman, Sydney E.; Girish, Akanksha; Nemeth, Christina L.; Drummond, Gabrielle T.; Carr, Patrice; Garcia, Maxine S.; Johnston, Michael V.; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann

    2018-01-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell death and inflammation. Our results demonstrate that hypothermia has early neuroprotective effects in this model. These findings suggest that hypothermia has an impact on early mechanisms of excitotoxic injury and support initiation of hypothermic intervention as soon as possible after diagnosis of HIE.

  10. Rotationally invariant clustering of diffusion MRI data using spherical harmonics

    NASA Astrophysics Data System (ADS)

    Liptrot, Matthew; Lauze, François

    2016-03-01

    We present a simple approach to the voxelwise classification of brain tissue acquired with diffusion weighted MRI (DWI). The approach leverages the power of spherical harmonics to summarise the diffusion information, sampled at many points over a sphere, using only a handful of coefficients. We use simple features that are invariant to the rotation of the highly orientational diffusion data. This provides a way to directly classify voxels whose diffusion characteristics are similar yet whose primary diffusion orientations differ. Subsequent application of machine-learning to the spherical harmonic coefficients therefore may permit classification of DWI voxels according to their inferred underlying fibre properties, whilst ignoring the specifics of orientation. After smoothing apparent diffusion coefficients volumes, we apply a spherical harmonic transform, which models the multi-directional diffusion data as a collection of spherical basis functions. We use the derived coefficients as voxelwise feature vectors for classification. Using a simple Gaussian mixture model, we examined the classification performance for a range of sub-classes (3-20). The results were compared against existing alternatives for tissue classification e.g. fractional anisotropy (FA) or the standard model used by Camino.1 The approach was implemented on both two publicly-available datasets: an ex-vivo pig brain and in-vivo human brain from the Human Connectome Project (HCP). We have demonstrated how a robust classification of DWI data can be performed without the need for a model reconstruction step. This avoids the potential confounds and uncertainty that such models may impose, and has the benefit of being computable directly from the DWI volumes. As such, the method could prove useful in subsequent pre-processing stages, such as model fitting, where it could inform about individual voxel complexities and improve model parameter choice.

  11. Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI.

    PubMed

    Gulban, Omer F; De Martino, Federico; Vu, An T; Yacoub, Essa; Uğurbil, Kamil; Lenglet, Christophe

    2018-05-10

    Diffusion MRI of the cortical gray matter is challenging because the micro-environment probed by water molecules is much more complex than within the white matter. High spatial and angular resolutions are therefore necessary to uncover anisotropic diffusion patterns and laminar structures, which provide complementary (e.g. to anatomical and functional MRI) microstructural information about the cortex architectonic. Several ex-vivo and in-vivo MRI studies have recently addressed this question, however predominantly with an emphasis on specific cortical areas. There is currently no whole brain in-vivo data leveraging multi-shell diffusion MRI acquisition at high spatial resolution, and depth dependent analysis, to characterize the complex organization of cortical fibers. Here, we present unique in-vivo human 7T diffusion MRI data, and a dedicated cortical depth dependent analysis pipeline. We leverage the high spatial (1.05 mm isotropic) and angular (198 diffusion gradient directions) resolution of this whole brain dataset to improve cortical fiber orientations mapping, and study neurites (axons and/or dendrites) trajectories across cortical depths. Tangential fibers in superficial cortical depths and crossing fiber configurations in deep cortical depths are identified. Fibers gradually inserting into the gyral walls are visualized, which contributes to mitigating the gyral bias effect. Quantitative radiality maps and histograms in individual subjects and cortex-based aligned datasets further support our results. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Developing 3D microscopy with CLARITY on human brain tissue: Towards a tool for informing and validating MRI-based histology.

    PubMed

    Morawski, Markus; Kirilina, Evgeniya; Scherf, Nico; Jäger, Carsten; Reimann, Katja; Trampel, Robert; Gavriilidis, Filippos; Geyer, Stefan; Biedermann, Bernd; Arendt, Thomas; Weiskopf, Nikolaus

    2017-11-28

    Recent breakthroughs in magnetic resonance imaging (MRI) enabled quantitative relaxometry and diffusion-weighted imaging with sub-millimeter resolution. Combined with biophysical models of MR contrast the emerging methods promise in vivo mapping of cyto- and myelo-architectonics, i.e., in vivo histology using MRI (hMRI) in humans. The hMRI methods require histological reference data for model building and validation. This is currently provided by MRI on post mortem human brain tissue in combination with classical histology on sections. However, this well established approach is limited to qualitative 2D information, while a systematic validation of hMRI requires quantitative 3D information on macroscopic voxels. We present a promising histological method based on optical 3D imaging combined with a tissue clearing method, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel (CLARITY), adapted for hMRI validation. Adapting CLARITY to the needs of hMRI is challenging due to poor antibody penetration into large sample volumes and high opacity of aged post mortem human brain tissue. In a pilot experiment we achieved transparency of up to 8 mm-thick and immunohistochemical staining of up to 5 mm-thick post mortem brain tissue by a combination of active and passive clearing, prolonged clearing and staining times. We combined 3D optical imaging of the cleared samples with tailored image processing methods. We demonstrated the feasibility for quantification of neuron density, fiber orientation distribution and cell type classification within a volume with size similar to a typical MRI voxel. The presented combination of MRI, 3D optical microscopy and image processing is a promising tool for validation of MRI-based microstructure estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. [The Role of Imaging in Central Nervous System Infections].

    PubMed

    Yokota, Hajime; Tazoe, Jun; Yamada, Kei

    2015-07-01

    Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.

  14. HARDI denoising using nonlocal means on S2

    NASA Astrophysics Data System (ADS)

    Kuurstra, Alan; Dolui, Sudipto; Michailovich, Oleg

    2012-02-01

    Diffusion MRI (dMRI) is a unique imaging modality for in vivo delineation of the anatomical structure of white matter in the brain. In particular, high angular resolution diffusion imaging (HARDI) is a specific instance of dMRI which is known to excel in detection of multiple neural fibers within a single voxel. Unfortunately, the angular resolution of HARDI is known to be inversely proportional to SNR, which makes the problem of denoising of HARDI data be of particular practical importance. Since HARDI signals are effectively band-limited, denoising can be accomplished by means of linear filtering. However, the spatial dependency of diffusivity in brain tissue makes it impossible to find a single set of linear filter parameters which is optimal for all types of diffusion signals. Hence, adaptive filtering is required. In this paper, we propose a new type of non-local means (NLM) filtering which possesses the required adaptivity property. As opposed to similar methods in the field, however, the proposed NLM filtering is applied in the spherical domain of spatial orientations. Moreover, the filter uses an original definition of adaptive weights, which are designed to be invariant to both spatial rotations as well as to a particular sampling scheme in use. As well, we provide a detailed description of the proposed filtering procedure, its efficient implementation, as well as experimental results with synthetic data. We demonstrate that our filter has substantially better adaptivity as compared to a number of alternative methods.

  15. Embolic stroke associated with injection of buprenorphine tablets.

    PubMed

    Lim, C C Tchoyoson; Lee, Sze Haur; Wong, Yee-Choon; Hui, Francis

    2009-09-15

    Drug users who crush, dissolve, and inject buprenorphine tablets parenterally may be at risk of severe thromboembolic complications or death. We describe patients with neurologic complications after injecting buprenorphine tablets. Brain MRI including diffusion-weighted imaging (DWI) in patients admitted to the neurologic department after injecting buprenorphine tablets were reviewed. Seven men had neurologic complications after buprenorphine tablet injection. In 5 patients, multiple small scattered hyperintense lesions were detected on DWI in the cortex, white matter, and basal ganglia of the cerebral hemisphere; one patient had a single small lesion. The side of MRI abnormality corresponded to the side of needle marks on the neck except in one patient who had bilateral injections. One patient, who denied injecting into the neck, had DWI abnormalities in the middle cerebral artery territory on one side and occlusion of the ipsilateral internal carotid artery. Buprenorphine tablets can be intentionally or inadvertently injected into the carotid artery, causing a characteristic appearance on diffusion-weighted imaging, consistent with embolic cerebral infarction.

  16. Severity of clinical presentation in youth with type 1 diabetes is associated with differences in brain structure.

    PubMed

    Siller, Alejandro F; Lugar, Heather; Rutlin, Jerrel; Koller, Jonathan M; Semenkovich, Katherine; White, Neil H; Arbelaez, Ana Maria; Shimony, Joshua; Hershey, Tamara

    2017-12-01

    Differences in cognition and brain structure have been found in youth with type 1 diabetes compared with controls, even after relatively short disease duration. To determine whether severity of clinical presentation contributes to these differences, we obtained structural magnetic resonance imaging (MRI) scans in youth ages 7-17 who were either newly diagnosed with type 1 diabetes (<3.5 months from diagnosis, n  = 46) or a sibling without diabetes (n = 28). Severity of presentation was measured by the presence of diabetic ketoacidosis (DKA) and degree of hyperglycemia exposure [hemoglobin A1c (HbA1c)] at diagnosis. MRI were obtained using T1-weighted, T2-weighted, and diffusion-weighted sequences. Within the group with type 1 diabetes, 12 subjects presented in DKA and 34 did not. After controlling for age, sex, and multiple comparisons, the type 1 diabetes group had lower volume in the left temporal-parietal-occipital cortex compared with controls. Within the type 1 diabetes group, DKA at presentation was associated with lower radial, axial, and mean diffusivity (MD) throughout major white matter tracts and higher HbA1c was associated with lower hippocampal, thalamic, and cerebellar white matter volumes, lower right posterior parietal cortical thickness, and greater right occipital cortical thickness. These data suggest that severity of clinical presentation is an important factor in predicting brain structural differences in youth with type 1 diabetes approximately 3 months after diagnosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth

    NASA Astrophysics Data System (ADS)

    Atuegwu, N. C.; Colvin, D. C.; Loveless, M. E.; Xu, L.; Gore, J. C.; Yankeelov, T. E.

    2012-01-01

    We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from -0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.

  18. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson's disease: a randomized controlled trial.

    PubMed

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa

    2017-12-01

    Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.

  19. Assessing Diffusion in the Extra-Cellular Space of Brain Tissue by Dynamic MRI Mapping of Contrast Agent Concentrations

    NASA Astrophysics Data System (ADS)

    Mériaux, Sébastien; Conti, Allegra; Larrat, Benoît

    2018-05-01

    The characterization of extracellular space (ECS) architecture represents valuable information for the understanding of transport mechanisms occurring in brain parenchyma. ECS tortuosity reflects the hindrance imposed by cell membranes to molecular diffusion. Numerous strategies have been proposed to measure the diffusion through ECS and to estimate its tortuosity. The first method implies the perfusion for several hours of a radiotracer which effective diffusion coefficient D* is determined after post mortem processing. The most well-established techniques are real-time iontophoresis that measures the concentration of a specific ion at known distance from its release point, and integrative optical imaging that relies on acquiring microscopy images of macromolecules labelled with fluorophore. After presenting these methods, we focus on a recent Magnetic Resonance Imaging (MRI)-based technique that consists in acquiring concentration maps of a contrast agent diffusing within ECS. Thanks to MRI properties, molecular diffusion and tortuosity can be estimated in 3D for deep brain regions. To further discuss the reliability of this technique, we point out the influence of the delivery method on the estimation of D*. We compare the value of D* for a contrast agent intracerebrally injected, with its value when the agent is delivered to the brain after an ultrasound-induced blood-brain barrier (BBB) permeabilization. Several studies have already shown that tortuosity may be modified in pathological conditions. Therefore, we believe that MRI-based techniques could be useful in a clinical context for characterizing the diffusion properties of pathological ECS and thus predicting the drug biodistribution into the targeted area.

  20. The Human Connectome Project: A data acquisition perspective

    PubMed Central

    Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.J.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; Della Penna, S.; Feinberg, D.; Glasser, M.F.; Harel, N.; Heath, A.C.; Larson-Prior, L.; Marcus, D.; Michalareas, G.; Moeller, S.; Oostenveld, R.; Petersen, S.E.; Prior, F.; Schlaggar, B.L.; Smith, S.M.; Snyder, A.Z.; Xu, J.; Yacoub, E.

    2012-01-01

    The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and function and their variability in healthy adults. This review summarizes the data acquisition plans being implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoencephalography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and improved MR pulse sequences. PMID:22366334

  1. Methods to Differentiate Radiation Necrosis and Recurrent Disease in Gliomas

    NASA Astrophysics Data System (ADS)

    Ewell, Lars

    2007-03-01

    Given the difficulty in differentiating Radiation Induced Necrosis (RIN) and recurrent disease in glioma patients using conventional techniques (CT scans, MRI scans), researchers have looked for different imaging modalities. Among these different modalities are Diffusion Weighted Magnetic Resonance Imaging (DWMRI) and Magnetic Resonance Spectroscopy (MRS). In DWMRI, an Apparent Diffusion Coefficient (ADC) is calculated for a Region Of Interest (ROI), and then monitored over time (longitudinally). In the brain, different anatomical features can complicate the interpretation of ADCs. In particular, the density and spatial variation of the cerebral spinal fluid filled fissures known as sulci can influence how a change in an ADC is explained. We have used the covariance of pixel intensity in T1 weighted MRI scans to study how intra-patient and inter-patient sulci density varies, and will present these results. MRS uses the shift in the MR signal due to the local chemical environment to determine the concentration of brain metabolites like choline and creatin. The ratio of metabolites such as these has been shown to have the power to discriminate between RIN and recurrent disease in glioma patients. At our institution, we have initiated a protocol whereby we will use DWMRI and MRS to study how best to utilize these complimentary forms of imaging.

  2. Detailed magnetic resonance imaging features of a case series of primary gliosarcoma.

    PubMed

    Sampaio, Luísa; Linhares, Paulo; Fonseca, José

    2017-12-01

    Objective We aimed to characterise the magnetic resonance imaging (MRI) features of a case series of primary gliosarcoma, with the inclusion of diffusion-weighted imaging and perfusion imaging with dynamic susceptibility contrast MRI. Materials and methods We conducted a retrospective study of cases of primary gliosarcoma from the Pathology Department database from January 2006 to December 2014. Clinical and demographic data were obtained. Two neuroradiologists, blinded to diagnosis, assessed tumour location, signal intensity in T1 and T2-weighted images, pattern of enhancement, diffusion-weighted imaging and dynamic susceptibility contrast MRI studies on preoperative MRI. Results Seventeen patients with primary gliosarcomas had preoperative MRI study: seven men and 10 women, with a mean age of 59 years (range 27-74). All lesions were well demarcated, supratentorial and solitary (frontal n = 5, temporal n = 4, parietal n = 3); 13 tumours abutted the dural surface (8/13 with dural enhancement); T1 and T2-weighted imaging patterns were heterogeneous and the majority of lesions (12/17) showed a rim-like enhancement pattern with focal nodularities/irregular thickness. Restricted diffusion (mean apparent diffusion coefficient values 0.64 × 10 -3 mm 2 /s) in the more solid/thick components was present in eight out of 11 patients with diffusion-weighted imaging study. Dynamic susceptibility contrast MRI study ( n = 8) consistently showed hyperperfusion in non-necrotic/cystic components on relative cerebral volume maps. Conclusions The main distinguishing features of primary gliosarcoma are supratentorial and peripheral location, well-defined boundaries and a rim-like pattern of enhancement with an irregular thick wall. Diffusion-weighted imaging and relative cerebral volume map analysis paralleled primary gliosarcoma with high-grade gliomas, thus proving helpful in differential diagnosis.

  3. Differentiation of brain infection from necrotic glioblastoma using combined analysis of diffusion and perfusion MRI.

    PubMed

    Chawla, Sanjeev; Wang, Sumei; Mohan, Suyash; Nasrallah, MacLean; Verma, Gaurav; Brem, Steven; O'Rourke, Donald M; Wolf, Ronald L; Poptani, Harish; Nabavizadeh, S Ali

    2018-04-20

    Accurate differentiation of brain infections from necrotic glioblastomas (GBMs) may not always be possible on morphologic MRI or on diffusion tensor imaging (DTI) and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) if these techniques are used independently. To investigate the combined analysis of DTI and DSC-PWI in distinguishing brain injections from necrotic GBMs. Retrospective. Fourteen patients with brain infections and 21 patients with necrotic GBMs. 3T MRI, DTI, and DSC-PWI. Parametric maps of mean diffusivity (MD), fractional anisotropy (FA), coefficient of linear (CL), and planar anisotropy (CP) and leakage corrected cerebral blood volume (CBV) were computed and coregistered with postcontrast T 1 -weighted and FLAIR images. All lesions were segmented into the central core and enhancing region. For each region, median values of MD, FA, CL, CP, relative CBV (rCBV), and top 90 th percentile of rCBV (rCBV max ) were measured. All parameters from both regions were compared between brain infections and necrotic GBMs using Mann-Whitney tests. Logistic regression analyses were performed to obtain the best model in distinguishing these two conditions. From the central core, significantly lower MD (0.90 × 10 -3  ± 0.44 × 10 -3 mm 2 /s vs. 1.66 × 10 -3  ± 0.62 × 10 -3 mm 2 /s, P = 0.001), significantly higher FA (0.15 ± 0.06 vs. 0.09 ± 0.03, P < 0.001), and CP (0.07 ± 0.03 vs. 0.04 ± 0.02, P = 0.009) were observed in brain infections compared to those in necrotic GBMs. Additionally, from the contrast-enhancing region, significantly lower rCBV (1.91 ± 0.95 vs. 2.76 ± 1.24, P = 0.031) and rCBV max (3.46 ± 1.41 vs. 5.89 ± 2.06, P = 0.001) were observed from infective lesions compared to necrotic GBMs. FA from the central core and rCBV max from enhancing region provided the best classification model in distinguishing brain infections from necrotic GBMs, with a sensitivity of 91% and a specificity of 93%. Combined analysis of DTI and DSC-PWI may provide better performance in differentiating brain infections from necrotic GBMs. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Change-point analysis data of neonatal diffusion tensor MRI in preterm and term-born infants.

    PubMed

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-06-01

    The data presented in this article are related to the research article entitled "Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI" (Wu et al., 2017) [1]. Brain immaturity at birth poses critical neurological risks in the preterm-born infants. We used a novel change-point model to analyze the critical gestational age at birth (GAB) that could affect postnatal development, based on diffusion tensor MRI (DTI) acquired from 43 preterm and 43 term-born infants in 126 brain regions. In the corresponding research article, we presented change-point analysis of fractional anisotropy (FA) and mean diffusivities (MD) measurements in these infants. In this article, we offered the relative changes of axonal and radial diffusivities (AD and RD) in relation to the change of FA and FA-based change-points, and we also provided the AD- and RD-based change-point results.

  5. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  6. White Matter Development during Adolescence as Shown by Diffusion MRI

    ERIC Educational Resources Information Center

    Schmithorst, Vincent J.; Yuan, Weihong

    2010-01-01

    Previous volumetric developmental MRI studies of the brain have shown white matter development continuing through adolescence and into adulthood. This review presents current findings regarding white matter development and organization from diffusion MRI studies. The general trend during adolescence (age 12-18 years) is towards increasing…

  7. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study.

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Uslu, Lebriz; Khurana, Aman; Qiu, Deqiang; Quon, Andrew; Donig, Jessica; Rosenberg, Jarrett; Luna-Fineman, Sandra; Moseley, Michael; Daldrup-Link, Heike E

    2014-03-01

    Imaging tests are essential for staging of children with cancer. However, CT and radiotracer-based imaging procedures are associated with substantial exposure to ionising radiation and risk of secondary cancer development later in life. Our aim was to create a highly effective, clinically feasible, ionising radiation-free staging method based on whole-body diffusion-weighted MRI and the iron supplement ferumoxytol, used off-label as a contrast agent. We compared whole-body diffusion-weighted MRI with standard clinical (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT scans in children and young adults with malignant lymphomas and sarcomas. Whole-body diffusion-weighted magnetic resonance images were generated by coregistration of colour-encoded ferumoxytol-enhanced whole-body diffusion-weighted MRI scans for tumour detection with ferumoxytol-enhanced T1-weighted MRI scans for anatomical orientation, similar to the concept of integrated (18)F-FDG PET/CT scans. Tumour staging results were compared using Cohen's κ statistics. Histopathology and follow-up imaging served as the standard of reference. Data was assessed in the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01542879. 22 of 23 recruited patients were analysed because one patient discontinued before completion of the whole-body scan. Mean exposure to ionising radiation was 12·5 mSv (SD 4·1) for (18)F-FDG PET/CT compared with zero for whole-body diffusion-weighted MRI. (18)F-FDG PET/CT detected 163 of 174 malignant lesions at 1325 anatomical regions and whole-body diffusion-weighted MRI detected 158. Comparing (18)F-FDG PET/CT to whole-body diffusion-weighted MRI, sensitivities were 93·7% (95% CI 89·0-96·8) versus 90·8% (85·5-94·7); specificities 97·7% (95% CI 96·7-98·5) versus 99·5% (98·9-99·8); and diagnostic accuracies 97·2% (93·6-99·4) versus 98·3% (97·4-99·2). Tumour staging results showed very good agreement between both imaging modalities with a κ of 0·93 (0·81-1·00). No adverse events after administration of ferumoxytol were recorded. Ferumoxytol-enhanced whole-body diffusion-weighted MRI could be an alternative to (18)F-FDG PET/CT for staging of children and young adults with cancer that is free of ionising radiation. This new imaging test might help to prevent long-term side-effects from radiographic staging procedures. Thrasher Research Fund and Clinical Health Research Institute at Stanford University. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Post-anoxic quantitative MRI changes may predict emergence from coma and functional outcomes at discharge.

    PubMed

    Reynolds, Alexandra S; Guo, Xiaotao; Matthews, Elizabeth; Brodie, Daniel; Rabbani, Leroy E; Roh, David J; Park, Soojin; Claassen, Jan; Elkind, Mitchell S V; Zhao, Binsheng; Agarwal, Sachin

    2017-08-01

    Traditional predictors of neurological prognosis after cardiac arrest are unreliable after targeted temperature management. Absence of pupillary reflexes remains a reliable predictor of poor outcome. Diffusion-weighted imaging has emerged as a potential predictor of recovery, and here we compare imaging characteristics to pupillary exam. We identified 69 patients who had MRIs within seven days of arrest and used a semi-automated algorithm to perform quantitative volumetric analysis of apparent diffusion coefficient (ADC) sequences at various thresholds. Area under receiver operating characteristic curves (ROC-AUC) were estimated to compare predictive values of quantitative MRI with pupillary exam at days 3, 5 and 7 post-arrest, for persistence of coma and functional outcomes at discharge. Cerebral Performance Category scores of 3-4 were considered poor outcome. Excluding patients where life support was withdrawn, ≥2.8% diffusion restriction of the entire brain at an ADC of ≤650×10 -6 m 2 /s was 100% specific and 68% sensitive for failure to wake up from coma before discharge. The ROC-AUC of ADC changes at ≤450×10 -6 mm 2 /s and ≤650×10 -6 mm 2 /s were significantly superior in predicting failure to wake up from coma compared to bilateral absence of pupillary reflexes. Among survivors, >0.01% of diffusion restriction of the entire brain at an ADC ≤450×10 -6 m 2 /s was 100% specific and 46% sensitive for poor functional outcome at discharge. The ROC curve predicting poor functional outcome at ADC ≤450×10 -6 mm 2 /s had an AUC of 0.737 (0.574-0.899, p=0.04). Post-anoxic diffusion changes using quantitative brain MRI may aid in predicting persistent coma and poor functional outcomes at hospital discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)

    PubMed Central

    Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.

    2013-01-01

    Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063

  10. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease.

    PubMed

    Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B

    2016-01-01

    Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.

  11. Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Arbat-Plana, Ariadna; Illa, Miriam; Figueras, Francesc; Eixarch, Elisenda; Gratacos, Eduard

    2014-10-15

    Characterization of brain changes produced by intrauterine growth restriction (IUGR) is among the main challenges of modern fetal medicine and pediatrics. This condition affects 5-10% of all pregnancies and is associated with a wide range of neurodevelopmental disorders. Better understanding of the brain reorganization produced by IUGR opens a window of opportunity to find potential imaging biomarkers in order to identify the infants with a high risk of having neurodevelopmental problems and apply therapies to improve their outcomes. Structural brain networks obtained from diffusion magnetic resonance imaging (MRI) is a promising tool to study brain reorganization and to be used as a biomarker of neurodevelopmental alterations. In the present study this technique is applied to a rabbit animal model of IUGR, which presents some advantages including a controlled environment and the possibility to obtain high quality MRI with long acquisition times. Using a Q-Ball diffusion model, and a previously published rabbit brain MRI atlas, structural brain networks of 15 IUGR and 14 control rabbits at 70 days of age (equivalent to pre-adolescence human age) were obtained. The analysis of graph theory features showed a decreased network infrastructure (degree and binary global efficiency) associated with IUGR condition and a set of generalized fractional anisotropy (GFA) weighted measures associated with abnormal neurobehavior. Interestingly, when assessing the brain network organization independently of network infrastructure by means of normalized networks, IUGR showed increased global and local efficiencies. We hypothesize that this effect could reflect a compensatory response to reduced infrastructure in IUGR. These results present new evidence on the long-term persistence of the brain reorganization produced by IUGR that could underlie behavioral and developmental alterations previously described. The described changes in network organization have the potential to be used as biomarkers to monitor brain changes produced by experimental therapies in IUGR animal model. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Imaging and quantitative measurement of brain extracellular space using MRI Gd-DTPA tracer method].

    PubMed

    He, Qing-yuan; Han, Hong-bin; Xu, Fang-jing-wei; Yan, Jun-hao; Zeng, Jin-jin; Li, Xiao-gang; Fu, Yu; Peng, Yun; Chen, He; Hou, Chao; Xu, Xiao-juan

    2010-04-18

    To observe the diffusion of Gd-DTPA in brain extracellular space (ECS) by magnetic resonance imaging(MRI) and investigate the feasibility of ECS measurement by using MRI tracer method in vivo. 2 microL Gd-DTPA was introduced into ECS by caudate nucleus according to stereotaxic atlas in 8 Sprague Dawley(SD) rats (male, 280-320 g). The MRI scans were performed at 1 h, 3 h, 6 h, 9 h and 12 h respectively after administration. MRI appearances of Gd-DTPA diffusion and distribution was observed and compared. The MRI signal enhancement was measured at each time point. The neuroethology assessment was performed after MRI scanning at 12 h. The injection was accurate at the center of the caudate nucleus in 6 rats, while, at the capsula externa in other 2 rats. Gd-DTPA diffused isotropically after it was introduced into caudate nucleus, which spread into lateral cortex at 3 h. The MRI signal enhancement distributed mainly in the middle cerebral artery territory. A significant difference was found between the signal enhancement ratio at 1 h and that at 3 h in the original point of caudate nucleus (t=95.63, P<0.01), and the signal enhancement attenuated following the exponential power function y=1.7886x(-0.1776) (R2=0.94). In 2 rats with the injection point at capsula externa, Gd-DTPA diffused anisotropically along the fiber track of white matter during 1 h to 3 h, and spread into the lateral cortex at 6 h. The diffusion and clearance of Gd-DTPA in brain ECS could be monitored and measured quantitatively in vivo by MRI tracer method.

  14. Correlation of human papillomavirus status with apparent diffusion coefficient of diffusion-weighted MRI in head and neck squamous cell carcinomas.

    PubMed

    Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P

    2016-04-01

    Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emin, David, E-mail: emin@unm.edu; Akhtari, Massoud; Ellingson, B. M.

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  16. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    PubMed

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  17. PANDA: a pipeline toolbox for analyzing brain diffusion images

    PubMed Central

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named “Pipeline for Analyzing braiN Diffusion imAges” (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies. PMID:23439846

  18. Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques

    PubMed Central

    Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.

    2016-01-01

    Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173

  19. Isotropic non-white matter partial volume effects in constrained spherical deconvolution.

    PubMed

    Roine, Timo; Jeurissen, Ben; Perrone, Daniele; Aelterman, Jan; Leemans, Alexander; Philips, Wilfried; Sijbers, Jan

    2014-01-01

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. Significant partial volume effects (PVEs) are present in the DW signal due to relatively large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter (GM) and cerebrospinal fluid (CSF), and by multiple non-parallel WM fiber populations. High angular resolution diffusion imaging (HARDI) methods have been developed to correctly characterize complex WM fiber configurations, but to date, many of the HARDI methods do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical deconvolution (CSD). Experiments were performed on simulated and real DW-MRI data. In particular, simulations were performed to demonstrate the effects of varying the diffusion weightings, signal-to-noise ratios (SNRs), fiber configurations, and tissue fractions. Our results show that the presence of non-WM tissue signal causes a decrease in the precision of the detected fiber orientations and an increase in the detection of false peaks in CSD. We estimated 35-50% of WM voxels to be affected by non-WM PVEs. For HARDI sequences, which typically have a relatively high degree of diffusion weighting, these adverse effects are most pronounced in voxels with GM PVEs. The non-WM PVEs become severe with 50% GM volume for maximum spherical harmonics orders of 8 and below, and already with 25% GM volume for higher orders. In addition, a low diffusion weighting or SNR increases the effects. The non-WM PVEs may cause problems in connectomics, where reliable fiber tracking at the WM-GM interface is especially important. We suggest acquiring data with high diffusion-weighting 2500-3000 s/mm(2), reasonable SNR (~30) and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs in CSD.

  20. Prenatal Exposure of Guinea Pigs to the Organophosphorus Pesticide Chlorpyrifos Disrupts the Structural and Functional Integrity of the Brain

    PubMed Central

    Mullins, Roger J.; Xu, Su; Pereira, Edna F.R.; Pescrille, Joseph D.; Todd, Spencer W.; Mamczarz, Jacek; Albuquerque, Edson X.; Gullapalli, Rao P.

    2015-01-01

    This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (20 mg/kg, s.c.) or vehicle (peanut oil) once per day for ten consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40–45 post-natal days (PND) using the Morris Water Maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and Diffusion Kurtosis Imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of pre-natal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment. PMID:25704171

  1. T1, diffusion tensor, and quantitative magnetization transfer imaging of the hippocampus in an Alzheimer's disease mouse model.

    PubMed

    Whittaker, Heather T; Zhu, Shenghua; Di Curzio, Domenico L; Buist, Richard; Li, Xin-Min; Noy, Suzanna; Wiseman, Frances K; Thiessen, Jonathan D; Martin, Melanie

    2018-07-01

    Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T 1 relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation. Delineation of hippocampal cell layers using DTI color maps allows more detailed analysis of T 1 -weighted imaging, DTI, and qMTI metrics, compared with segmentation of gross anatomy based on relaxation images, and with analysis of DTI or qMTI metrics alone. These alterations are observed in the absence of robust intracellular Aβ accumulation or plaque deposition as revealed by histology. This work demonstrates that multiparametric quantitative MRI methods are useful for characterizing changes within the hippocampal substructures and surrounding white matter tracts of mouse models of AD. Copyright © 2018. Published by Elsevier Inc.

  2. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2012-11-01

    testing and advanced MRI techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of... DTI fiber tracking) and neurobehavioral testing (computerized assessment and standard neuropsychological testing) on 60 chronic trauma patients: 15...data analysis. 15. SUBJECT TERMS Blast-related traumatic brain injury (TBI), fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  3. Reticular Appearance on Gadolinium-enhanced T1- and Diffusion-weighted MRI, and Low Apparent Diffusion Coefficient Values in Microcystic Meningioma Cysts.

    PubMed

    Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi

    2018-03-01

    Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.

  4. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.

    PubMed

    Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J

    2016-02-15

    Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10min. The neuroanatomical consistency across healthy subjects and reproducibility in test-retest experiments of MAP MRI microstructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP MRI metrics could potentially provide more sensitive clinical biomarkers with increased pathophysiological specificity compared to microstructural measures derived using conventional diffusion MRI techniques. Published by Elsevier Inc.

  5. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  6. Brain and behaviour phenotyping of a mouse model of neurofibromatosis type-1: an MRI/DTI study on social cognition.

    PubMed

    Petrella, L I; Cai, Y; Sereno, J V; Gonçalves, S I; Silva, A J; Castelo-Branco, M

    2016-09-01

    Neurofibromatosis type-1 (NF1) is a common neurogenetic disorder and an important cause of intellectual disability. Brain-behaviour associations can be examined in vivo using morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to study brain structure. Here, we studied structural and behavioural phenotypes in heterozygous Nf1 mice (Nf1(+/-) ) using T2-weighted imaging MRI and DTI, with a focus on social recognition deficits. We found that Nf1(+/-) mice have larger volumes than wild-type (WT) mice in regions of interest involved in social cognition, the prefrontal cortex (PFC) and the caudate-putamen (CPu). Higher diffusivity was found across a distributed network of cortical and subcortical brain regions, within and beyond these regions. Significant differences were observed for the social recognition test. Most importantly, significant structure-function correlations were identified concerning social recognition performance and PFC volumes in Nf1(+/-) mice. Analyses of spatial learning corroborated the previously known deficits in the mutant mice, as corroborated by platform crossings, training quadrant time and average proximity measures. Moreover, linear discriminant analysis of spatial performance identified 2 separate sub-groups in Nf1(+/-) mice. A significant correlation between quadrant time and CPu volumes was found specifically for the sub-group of Nf1(+/-) mice with lower spatial learning performance, suggesting additional evidence for reorganization of this region. We found strong evidence that social and spatial cognition deficits can be associated with PFC/CPu structural changes and reorganization in NF1. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  8. Multi-modal neuroimaging in premanifest and early Huntington's disease: 18 month longitudinal data from the IMAGE-HD study.

    PubMed

    Domínguez D, Juan F; Egan, Gary F; Gray, Marcus A; Poudel, Govinda R; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C; Georgiou-Karistianis, Nellie

    2013-01-01

    IMAGE-HD is an Australian based multi-modal longitudinal magnetic resonance imaging (MRI) study in premanifest and early symptomatic Huntington's disease (pre-HD and symp-HD, respectively). In this investigation we sought to determine the sensitivity of imaging methods to detect macrostructural (volume) and microstructural (diffusivity) longitudinal change in HD. We used a 3T MRI scanner to acquire T1 and diffusion weighted images at baseline and 18 months in 31 pre-HD, 31 symp-HD and 29 controls. Volume was measured across the whole brain, and volume and diffusion measures were ascertained for caudate and putamen. We observed a range of significant volumetric and, for the first time, diffusion changes over 18 months in both pre-HD and symp-HD, relative to controls, detectable at the brain-wide level (volume change in grey and white matter) and in caudate and putamen (volume and diffusivity change). Importantly, longitudinal volume change in the caudate was the only measure that discriminated between groups across all stages of disease: far from diagnosis (>15 years), close to diagnosis (<15 years) and after diagnosis. Of the two diffusion metrics (mean diffusivity, MD; fractional anisotropy, FA), only longitudinal FA change was sensitive to group differences, but only after diagnosis. These findings further confirm caudate atrophy as one of the most sensitive and early biomarkers of neurodegeneration in HD. They also highlight that different tissue properties have varying schedules in their ability to discriminate between groups along disease progression and may therefore inform biomarker selection for future therapeutic interventions.

  9. Technical Note: A safe, cheap, and easy-to-use isotropic diffusion MRI phantom for clinical and multicenter studies.

    PubMed

    Pullens, Pim; Bladt, Piet; Sijbers, Jan; Maas, Andrew I R; Parizel, Paul M

    2017-03-01

    Since Diffusion Weighted Imaging (DWI) data acquisition and processing are not standardized, substantial differences in DWI derived measures such as Apparent Diffusion Coefficient (ADC) may arise which are related to the acquisition or MRI processing method, but not to the sample under study. Quality assurance using a standardized test object, or phantom, is a key factor in standardizing DWI across scanners. Current diffusion phantoms are either complex to use, not available in larger quantities, contain substances unwanted in a clinical environment, or are expensive. A diffusion phantom based on a polyvinylpyrrolidone (PVP) solution, together with a phantom holder, is presented and compared to existing diffusion phantoms for use in clinical DWI scans. An ADC vs. temperature calibration curve was obtained. ADC of the phantom (808 to 857 ± 0.2 mm 2 /s) is in the same range as ADC values found in brain tissue. ADC measurements are highly reproducible across time with an intra-class correlation coefficient of > 0.8. ADC as function of temperature (in Kelvin) can be estimated as ADCm(T)=[exp(-7.09)·exp-2903.81T-1293.55] with a total uncertainty (95% confidence limit) of ± 1.7%. We present an isotropic diffusion MRI phantom, together with its temperature calibration curve, that is easy-to-use in a clinical environment, cost-effective, reproducible to produce, and that contains no harmful substances. © 2017 American Association of Physicists in Medicine.

  10. Gray Matter Atrophy Is Primarily Related to Demyelination of Lesions in Multiple Sclerosis: A Diffusion Tensor Imaging MRI Study.

    PubMed

    Tóth, Eszter; Szabó, Nikoletta; Csete, Gergõ; Király, András; Faragó, Péter; Spisák, Tamás; Bencsik, Krisztina; Vécsei, László; Kincses, Zsigmond T

    2017-01-01

    Objective: Cortical pathology, periventricular demyelination, and lesion formation in multiple sclerosis (MS) are related (Hypothesis 1). Factors in the cerebrospinal fluid close to these compartments could possibly drive the parallel processes. Alternatively, the cortical atrophy could be caused by remote axonal transection (Hypothesis 2). Since MRI can differentiate between demyelination and axon loss, we used this imaging modality to investigate the correlation between the pattern of diffusion parameter changes in the periventricular- and deep white matter and the gray matter atrophy. Methods: High-resolution T1-weighted, FLAIR, and diffusion MRI images were acquired in 52 RRMS patients and 50 healthy, age-matched controls. We used EDSS to estimate the clinical disability. We used Tract Based Spatial Statistics to compare diffusion parameters (fractional anisotropy, mean, axial, and radial diffusivity) between groups. We evaluated global brain, white, and gray matter atrophy with SIENAX. Averaged, standard diffusion parameters were calculated in four compartment: periventricular lesioned and normal appearing white matter, non-periventricular lesioned and normal appearing white matter. PLS regression was used to identify which diffusion parameter and in which compartment best predicts the brain atrophy and clinical disability. Results: In our diffusion tensor imaging study compared to controls we found extensive alterations of fractional anisotropy, mean and radial diffusivity and smaller changes of axial diffusivity (maximal p > 0.0002) in patients that suggested demyelination in the lesioned and in the normal appearing white matter. We found significant reduction in total brain, total white, and gray matter (patients: 718.764 ± 14.968, 323.237 ± 7.246, 395.527 ± 8.050 cm 3 , controls: 791.772 ± 22.692, 355.350 ± 10.929, 436.422 ± 12.011 cm 3 ; mean ± SE), ( p < 0.015; p < 0.0001; p < 0.009; respectively) of patients compared to controls. The PLS analysis revealed a combination of demyelination-like diffusion parameters (higher mean and radial diffusivity in patients) in the lesions and in the non-lesioned periventricular white matter, which best predicted the gray matter atrophy ( p < 0.001). Similarly, EDSS was best predicted by the radial diffusivity of the lesions and the non-lesioned periventricular white matter, but axial diffusivity of the periventricular lesions also contributed significantly ( p < 0.0001). Interpretation: Our investigation showed that gray matter atrophy and white matter demyelination are related in MS but white matter axonal loss does not significantly contribute to the gray matter pathology.

  11. A prospective study of diffusion weighted magnetic resonance imaging abnormalities in patients with cluster of seizures and status epilepticus.

    PubMed

    Jabeen, S A; Cherukuri, Pavankumar; Mridula, Rukmini; Harshavardhana, K R; Gaddamanugu, Padmaja; Sarva, Sailaja; Meena, A K; Borgohain, Rupam; Jyotsna Rani, Y

    2017-04-01

    To study the frequency, imaging characteristics, and clinical predictors for development of periictal diffusion weighted MRI abnormalities. We prospectively analyzed electro clinical and imaging characteristic of adult patients with cluster of seizures or status epilepticus between November 2013 and November 2015, in whom the diffusion weighted imaging was done within 24h after the end of last seizure (clinical or electrographic). There were thirty patients who fulfilled the inclusion and exclusion criteria. Twenty patients (66%) had periictal MRI abnormalities. Nine patients (34%) did not have any MRI abnormality. All the patients with PMA had abnormalities on diffusion weighted imaging (DWI). Hippocampal abnormalities were seen in nine (53%), perisylvian in two (11.7%), thalamic in five (30%), splenium involvement in two (11.7%) and cortical involvement (temporo-occipital, parieto-occipital, temporo-parietal, fronto-parietal and fronto-temporal) in sixteen (94.1%) patients. Complete reversal of DWI changes was noted in sixteen (80%) patients and four (20%) patients showed partial resolution of MRI abnormalities. Mean duration of seizures was significantly higher among patients with PMA (59.11+20.97h) compared to those without MRI changes (27.33+9.33h) (p<0.001). Diffusion abnormalities on MRI are common in patients with cluster of seizures and status epilepticus and were highly concordant with clinical semiology and EEG activity. Patients with longer duration of seizures/status were more likely to have PMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Diffusion-Weighted Magnetic Resonance Imaging of Cholesteatoma Using PROPELLER at 1.5T: A Single-Centre Retrospective Study.

    PubMed

    Clarke, Sharon E; Mistry, Dipan; AlThubaiti, Talal; Khan, M Naeem; Morris, David; Bance, Manohar

    2017-05-01

    The purpose of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of the diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique in the detection of cholesteatoma at our institution with surgical confirmation in all cases. A retrospective review of 21 consecutive patients who underwent diffusion-weighted PROPELLER magnetic resonance imaging (MRI) on a 1.5T MRI scanner prior to primary or revision/second-look surgery for suspected cholesteatoma from 2009-2012 was performed. Diffusion-weighted PROPELLER had a sensitivity of 75%, specificity of 60%, positive predictive value of 86%, and negative predictive value of 43%. In the 15 patients for whom the presence or absence of cholesteatoma was correctly predicted, there were 2 cases where the reported locations of diffusion restriction did not correspond to the location of the cholesteatoma observed at surgery. On the basis of our retrospective study, we conclude that diffusion-weighted PROPELLER MRI is not sufficiently accurate to replace second look surgery at our institution. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Modeling fluid diffusion in cerebral white matter with random walks in complex environments

    NASA Astrophysics Data System (ADS)

    Levy, Amichai; Cwilich, Gabriel; Buldyrev, Sergey V.; Weeden, Van J.

    2012-02-01

    Recent studies with diffusion MRI have shown new aspects of geometric order in the brain, including complex path coherence within the cerebral cortex, and organization of cerebral white matter and connectivity across multiple scales. The main assumption of these studies is that water molecules diffuse along myelin sheaths of neuron axons in the white matter and thus the anisotropy of their diffusion tensor observed by MRI can provide information about the direction of the axons connecting different parts of the brain. We model the diffusion of particles confined in the space of between the bundles of cylindrical obstacles representing fibrous structures of various orientations. We have investigated the directional properties of the diffusion, by studying the angular distribution of the end point of the random walks as a function of their length, to understand the scale over which the distribution randomizes. We will show evidence of qualitative change in the behavior of the diffusion for different volume fractions of obstacles. Comparisons with three-dimensional MRI images will be illustrated.

  14. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.

    PubMed

    Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E

    2017-09-01

    We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P < 0.01 FWE) and widespread microstructural changes were detected across the motor system of the "trained" hemisphere. Specifically, region-of-interest-based analyses of diffusion MRI (n = 22) revealed significantly increased fractional anisotropy (FA) in the right caudate nucleus (4.9%; P < 0.05 FWE), and decreased mean diffusivity in the left nucleus accumbens (-1.3%; P < 0.05 FWE). Diffusion MRI tractography (n = 22), seeded by sensorimotor cortex fMRI activation, also revealed increased FA in the right corticospinal tract (mean 3.28%; P < 0.05 FWE) predominantly reflecting decreased radial diffusivity. These changes were consistent throughout the entire length of the tract. The left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P < 0.05 FWE) and right supplementary motor area (18/22 participants; P < 0.05 FWE). Equivalent changes in FA were not seen in the left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Diffusion-weighted MRI in intrahepatic bile duct adenoma arising from the cirrhotic liver.

    PubMed

    An, Chansik; Park, Sumi; Choi, Yoon Jung

    2013-01-01

    A 64-year-old male patient with liver cirrhosis underwent a CT study for hepatocellular carcinoma surveillance, which demonstrated a 1.4-cm hypervascular subcapsular tumor in the liver. On gadoxetic acid-enhanced MRI, the tumor showed brisk arterial enhancement and persistent hyperenhancement in the portal phase, but hypointensity in the hepatobiliary phase. On diffusion-weighted MRI, the tumor showed an apparent diffusion coefficient twofold greater than that of the background liver parenchyma, which suggested that the lesion was benign. The histologic diagnosis was intrahepatic bile duct adenoma with alcoholic liver cirrhosis.

  16. Pitfalls of diffusion-weighted imaging of the female pelvis

    PubMed Central

    Duarte, Ana Luisa; Dias, João Lopes; Cunha, Teresa Margarida

    2018-01-01

    Diffusion-weighted imaging (DWI) is widely used in protocols for magnetic resonance imaging (MRI) of the female pelvis. It provides functional and structural information about biological tissues, without the use of ionizing radiation or intravenous administration of contrast medium. High signal intensity on DWI with simultaneous low signal intensity on apparent diffusion coefficient maps is usually associated with malignancy. However, that pattern can also be seen in many benign lesions, a fact that should be recognized by radiologists. Correlating DWI findings with those of conventional (T1- and T2-weighted) MRI sequences and those of contrast-enhanced MRI sequences is mandatory in order to avoid potential pitfalls. The aim of this review article is the description of the most relevant physiological and benign pathological conditions of the female pelvis that can show restricted diffusion on DWI. PMID:29559764

  17. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.

    PubMed

    Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo

    2018-06-01

    Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.

  18. Reduced acoustic noise in diffusion tensor imaging on a compact MRI system.

    PubMed

    Tan, Ek T; Hardy, Christopher J; Shu, Yunhong; In, Myung-Ho; Guidon, Arnaud; Huston, John; Bernstein, Matt A; K F Foo, Thomas

    2018-06-01

    To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Application of probabilistically weighted graphs to image-based diagnosis of Alzheimer's disease using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Maryam, Syeda; McCrackin, Laura; Crowley, Mark; Rathi, Yogesh; Michailovich, Oleg

    2017-03-01

    The world's aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations.

  20. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation.

    PubMed

    Newsome, Mary R; Scheibel, Randall S; Chu, Zili; Hunter, Jill V; Li, Xiaoqi; Wilde, Elisabeth A; Lu, Hanzhang; Wang, Zhiyue J; Lin, Xiaodi; Steinberg, Joel L; Vasquez, Ana C; Cook, Lori; Levin, Harvey S

    2012-05-01

    Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (p<.055) in the TBI group. To understand any role reduced CBF may play in diffuse extra-activation, we then related the right non-prefrontal CBF to activation. CBF in the right non-prefrontal region in the TD group was positively associated with prefrontal activation, suggesting an interactive role of non-prefrontal and prefrontal blood flow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole brain was related to whole brain activation, revealing a negative relationship between lesion volume and frontal activation, and a positive relationship between lesion volume and posterior activation. These preliminary data, albeit collected with small sample sizes, suggest that reduced non-prefrontal CBF, and possibly pathological tissue associated with T2-hyperintensities, may provide contributions to the diffuse, primarily posterior extra-activation observed in adolescents following moderate to severe TBI. Published by Elsevier Ltd.

  1. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain

    NASA Astrophysics Data System (ADS)

    Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.

    2017-04-01

    Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.

  2. The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: A multi-modal neuroimaging study.

    PubMed

    Slobounov, Semyon M; Walter, Alexa; Breiter, Hans C; Zhu, David C; Bai, Xiaoxiao; Bream, Tim; Seidenberg, Peter; Mao, Xianglun; Johnson, Brian; Talavage, Thomas M

    2017-01-01

    The cumulative effect of repetitive subconcussive collisions on the structural and functional integrity of the brain remains largely unknown. Athletes in collision sports, like football, experience a large number of impacts across a single season of play. The majority of these impacts, however, are generally overlooked, and their long-term consequences remain poorly understood. This study sought to examine the effects of repetitive collisions across a single competitive season in NCAA Football Bowl Subdivision athletes using advanced neuroimaging approaches. Players were evaluated before and after the season using multiple MRI sequences, including T 1 -weighted imaging, diffusion tensor imaging (DTI), arterial spin labeling (ASL), resting-state functional MRI (rs-fMRI), and susceptibility weighted imaging (SWI). While no significant differences were found between pre- and post-season for DTI metrics or cortical volumes, seed-based analysis of rs-fMRI revealed significant ( p  < 0.05) changes in functional connections to right isthmus of the cingulate cortex (ICC), left ICC, and left hippocampus. ASL data revealed significant ( p  < 0.05) increases in global cerebral blood flow (CBF), with a specific regional increase in right postcentral gyrus. SWI data revealed that 44% of the players exhibited outlier rates ( p  < 0.05) of regional decreases in SWI signal. Of key interest, athletes in whom changes in rs-fMRI, CBF and SWI were observed were more likely to have experienced high G impacts on a daily basis. These findings are indicative of potential pathophysiological changes in brain integrity arising from only a single season of participation in the NCAA Football Bowl Subdivision, even in the absence of clinical symptoms or a diagnosis of concussion. Whether these changes reflect compensatory adaptation to cumulative head impacts or more lasting alteration of brain integrity remains to be further explored.

  3. Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain.

    PubMed

    Mohanty, Vaibhav; McKinnon, Emilie T; Helpern, Joseph A; Jensen, Jens H

    2018-05-01

    To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging. For the CE estimates of the kurtosis, the CE was truncated to quadratic order in the b-value and fit to the dMRI signal for b-values from 0 up to 2000s/mm 2 . For the QS estimates, b-values ranging from 0 up to 10,000s/mm 2 were used to determine the diffusion displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then calculated directly from the second and fourth order moments of the dPDF. These two approximations were studied for in vivo human data obtained on a 3T MRI scanner using three orthogonal diffusion encoding directions. The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or less in each of the considered diffusion encoding directions, and the Pearson correlation coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, particularly those with either very high or very low kurtoses relative to the mean values. Estimates of the diffusional kurtosis in brain obtained using CE and QS approximations are strongly correlated, suggesting that they encode similar information. However, for the choice of b-values employed here, there may be substantial differences, depending on the properties of the diffusion microenvironment in each voxel. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. TU-AB-BRA-07: Distortion-Free 3D Diffusion MRI On An MRI-Guided Radiotherapy System for Longitudinal Tumor Response Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y; Yang, Y; Rangwala, N

    Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometricmore » reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10{sup −3}mm{sup 2}/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with excellent geometric fidelity, accurate and highly reproducible ADC measurements was proposed for longitudinal tumor response assessment using an MRI-guided RT system. Yu Gao acknowledges research support from ViewRay.« less

  5. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  6. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures

    PubMed Central

    Irfanoglu, M. Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B.; Sadeghi, Neda; Thomas, Cibu P.; Pierpaoli, Carlo

    2016-01-01

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817

  7. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.

    PubMed

    Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo

    2016-05-15

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme.

    PubMed

    Kashou, Nasser H; Smith, Mark A; Roberts, Cynthia J

    2015-01-01

    Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images. MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp-Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64-512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom. The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data. An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.

  9. Brain morphological and microstructural features in cryptogenic late-onset temporal lobe epilepsy: a structural and diffusion MRI study.

    PubMed

    Sone, Daichi; Sato, Noriko; Kimura, Yukio; Watanabe, Yutaka; Okazaki, Mitsutoshi; Matsuda, Hiroshi

    2018-06-01

    Although epilepsy in the elderly has attracted attention recently, there are few systematic studies of neuroimaging in such patients. In this study, we used structural MRI and diffusion tensor imaging (DTI) to investigate the morphological and microstructural features of the brain in late-onset temporal lobe epilepsy (TLE). We recruited patients with TLE and an age of onset > 50 years (late-TLE group) and age- and sex-matched healthy volunteers (control group). 3-Tesla MRI scans, including 3D T1-weighted images and 15-direction DTI, showed normal findings on visual assessment in both groups. We used Statistical Parametric Mapping 12 (SPM12) for gray and white matter structural normalization and comparison and used Tract-Based Spatial Statistics (TBSS) for fractional anisotropy and mean diffusivity comparisons of DTI. In both methods, p < 0.05 (family-wise error) was considered statistically significant. In total, 30 patients with late-onset TLE (mean ± SD age, 66.8 ± 8.4; mean ± SD age of onset, 63.0 ± 7.6 years) and 40 healthy controls (mean ± SD age, 66.6 ± 8.5 years) were enrolled. The late-onset TLE group showed significant gray matter volume increases in the bilateral amygdala and anterior hippocampus and significantly reduced mean diffusivity in the left temporofrontal lobe, internal capsule, and brainstem. No significant changes were evident in white matter volume or fractional anisotropy. Our findings may reflect some characteristics or mechanisms of cryptogenic TLE in the elderly, such as inflammatory processes.

  10. Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas.

    PubMed

    Vellmer, Sebastian; Tonoyan, Aram S; Suter, Dieter; Pronin, Igor N; Maximov, Ivan I

    2018-02-01

    Diffusion magnetic resonance imaging (dMRI) is a powerful tool in clinical applications, in particular, in oncology screening. dMRI demonstrated its benefit and efficiency in the localisation and detection of different types of human brain tumours. Clinical dMRI data suffer from multiple artefacts such as motion and eddy-current distortions, contamination by noise, outliers etc. In order to increase the image quality of the derived diffusion scalar metrics and the accuracy of the subsequent data analysis, various pre-processing approaches are actively developed and used. In the present work we assess the effect of different pre-processing procedures such as a noise correction, different smoothing algorithms and spatial interpolation of raw diffusion data, with respect to the accuracy of brain glioma differentiation. As a set of sensitive biomarkers of the glioma malignancy grades we chose the derived scalar metrics from diffusion and kurtosis tensor imaging as well as the neurite orientation dispersion and density imaging (NODDI) biophysical model. Our results show that the application of noise correction, anisotropic diffusion filtering, and cubic-order spline interpolation resulted in the highest sensitivity and specificity for glioma malignancy grading. Thus, these pre-processing steps are recommended for the statistical analysis in brain tumour studies. Copyright © 2017. Published by Elsevier GmbH.

  11. Pulsed and oscillating gradient MRI for assessment of cell size and Extracellular space (POMACE) in mouse gliomas

    PubMed Central

    Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S.; Kim, Sungheon Gene

    2016-01-01

    Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and drug delivery pathways that are closely associated with treatment response, metastatic spread and prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, Pulsed and Oscillating gradient MRI for Assessment of Cell size and Extracellular space (POMACE), and demonstrate its feasibility in a mouse tumor model. In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine glioma model (n=8). Since the complete diffusion time-dependence is in general non-analytical, the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable spheres (radius Rcell, intracellular diffusivity Dics) surrounded by extracellular space (approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE parametric maps (ECS, Rcell, Dics, Decs) were compared with conventional diffusion weighted imaging metrics, electron microscopy (EM), alternative ECS determination based on effective medium theory (EMT), and optical microscopy performed on the same samples. It was shown that Decs can be approximated by its long-time tortuosity limit in the range [1/(88 Hz) - 31 ms]. ECS estimations (44±7% in vivo and 54±11% ex vivo) were in agreement with EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical microscopy. Cell sizes (Rcell=4.8±1.3 in vivo and 4.3±1.4 μm ex vivo) were consistent with EM measurements (4.7±1.8 μm). In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors using the proposed POMACE method. Our experimental results support that POMACE provides a way to interpret the frequency- or time-dependence of the diffusion coefficient in tumors in terms of objective biophysical parameters of neuronal tissue, which can be used for non-invasive monitoring of preclinical cancer studies and treatment efficacy. PMID:27448059

  12. Mapping connectivity damage in the case of Phineas Gage.

    PubMed

    Van Horn, John Darrell; Irimia, Andrei; Torgerson, Carinna M; Chambers, Micah C; Kikinis, Ron; Toga, Arthur W

    2012-01-01

    White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a "tamping iron" was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25-36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized "average" brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient.

  13. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma.

    PubMed

    Lober, Robert M; Cho, Yoon-Jae; Tang, Yujie; Barnes, Patrick D; Edwards, Michael S; Vogel, Hannes; Fisher, Paul G; Monje, Michelle; Yeom, Kristen W

    2014-03-01

    While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3-13.2) years, with median follow-up seven (range 1-36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10(-6) mm(2)/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG.

  14. Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning.

    PubMed

    Ciritsis, Alexander; Boss, Andreas; Rossi, Cristina

    2018-04-26

    The diffusion-weighted (DW) MR signal sampled over a wide range of b-values potentially allows for tissue differentiation in terms of cellularity, microstructure, perfusion, and T 2 relaxivity. This study aimed to implement a machine learning algorithm for automatic brain tissue segmentation from DW-MRI datasets, and to determine the optimal sub-set of features for accurate segmentation. DWI was performed at 3 T in eight healthy volunteers using 15 b-values and 20 diffusion-encoding directions. The pixel-wise signal attenuation, as well as the trace and fractional anisotropy (FA) of the diffusion tensor, were used as features to train a support vector machine classifier for gray matter, white matter, and cerebrospinal fluid classes. The datasets of two volunteers were used for validation. For each subject, tissue classification was also performed on 3D T 1 -weighted data sets with a probabilistic framework. Confusion matrices were generated for quantitative assessment of image classification accuracy in comparison with the reference method. DWI-based tissue segmentation resulted in an accuracy of 82.1% on the validation dataset and of 82.2% on the training dataset, excluding relevant model over-fitting. A mean Dice coefficient (DSC) of 0.79 ± 0.08 was found. About 50% of the classification performance was attributable to five features (i.e. signal measured at b-values of 5/10/500/1200 s/mm 2 and the FA). This reduced set of features led to almost identical performances for the validation (82.2%) and the training (81.4%) datasets (DSC = 0.79 ± 0.08). Machine learning techniques applied to DWI data allow for accurate brain tissue segmentation based on both morphological and functional information. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Reliability of magnetic resonance imaging for the detection of hypopituitarism in children with optic nerve hypoplasia.

    PubMed

    Ramakrishnaiah, Raghu H; Shelton, Julie B; Glasier, Charles M; Phillips, Paul H

    2014-01-01

    It is essential to identify hypopituitarism in children with optic nerve hypoplasia (ONH) because they are at risk for developmental delay, seizures, or death. The purpose of this study is to determine the reliability of neurohypophyseal abnormalities on magnetic resonance imaging (MRI) for the detection of hypopituitarism in children with ONH. Cross-sectional study. One hundred one children with clinical ONH who underwent MRI of the brain and orbits and a detailed pediatric endocrinologic evaluation. Magnetic resonance imaging studies were performed on 1.5-Tesla scanners. The imaging protocol included sagittal T1-weighted images, axial fast fluid-attenuated inversion-recovery/T2-weighted images, and diffusion-weighted images of the brain. Orbital imaging included fat-saturated axial and coronal images and high-resolution axial T2-weighted images. The MRI studies were reviewed by 2 pediatric neuroradiologists for optic nerve hypoplasia, absent or ectopic posterior pituitary, absent pituitary infundibulum, absent septum pellucidum, migration anomalies, and hemispheric injury. Medical records were reviewed for clinical examination findings and endocrinologic status. All patients underwent a clinical evaluation by a pediatric endocrinologist and a standardized panel of serologic testing that included serum insulin-like growth factor-1, insulin-like growth factor binding protein-3, prolactin, cortisol, adrenocorticotropic hormone, thyroid-stimulating hormone, and free thyroxine levels. Radiologists were masked to patients' endocrinologic status and funduscopic findings. Sensitivity and specificity of MRI findings for the detection of hypopituitarism. Neurohypophyseal abnormalities, including absent pituitary infundibulum, ectopic posterior pituitary bright spot, and absent posterior pituitary bright spot, occurred in 33 children. Magnetic resonance imaging disclosed neurohypophyseal abnormalities in 27 of the 28 children with hypopituitarism (sensitivity, 96%). A normal neurohypophysis occurred in 67 of 73 children with normal endocrinologic function (specificity, 92%). Neurohypophyseal abnormalities on MRI are sensitive and specific indicators of hypopituitarism in children with ONH. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI

    PubMed Central

    Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe

    2016-01-01

    Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056

  17. Individual T1-weighted/T2-weighted ratio brain networks: Small-worldness, hubs and modular organization

    NASA Astrophysics Data System (ADS)

    Wu, Huijun; Wang, Hao; Lü, Linyuan

    Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.

  18. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  19. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media

    NASA Astrophysics Data System (ADS)

    Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.

    2012-08-01

    In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.

  1. MRI-based Brain Healthcare Quotients: A bridge between neural and behavioral analyses for keeping the brain healthy

    PubMed Central

    Nemoto, Kiyotaka; Oka, Hiroki; Fukuda, Hiroki

    2017-01-01

    Neurological and psychiatric disorders are a burden on social and economic resources. Therefore, maintaining brain health and preventing these disorders are important. While the physiological functions of the brain are well studied, few studies have focused on keeping the brain healthy from a neuroscientific viewpoint. We propose a magnetic resonance imaging (MRI)-based quotient for monitoring brain health, the Brain Healthcare Quotient (BHQ), which is based on the volume of gray matter (GM) and the fractional anisotropy (FA) of white matter (WM). We recruited 144 healthy adults to acquire structural neuroimaging data, including T1-weighted images and diffusion tensor images, and data associated with both physical (BMI, blood pressure, and daily time use) and social (subjective socioeconomic status, subjective well-being, post-materialism and Epicureanism) factors. We confirmed that the BHQ was sensitive to an age-related decline in GM volume and WM integrity. Further analysis revealed that the BHQ was critically affected by both physical and social factors. We believe that our BHQ is a simple yet highly sensitive, valid measure for brain health research that will bridge the needs of the scientific community and society and help us lead better lives in which we stay healthy, active, and sharp. PMID:29077756

  2. Quantifying the association between white matter integrity changes and subconcussive head impact exposure from a single season of youth and high school football using 3D convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Saghafi, Behrouz; Murugesan, Gowtham; Davenport, Elizabeth; Wagner, Ben; Urban, Jillian; Kelley, Mireille; Jones, Derek; Powers, Alexander; Whitlow, Christopher; Stitzel, Joel; Maldjian, Joseph; Montillo, Albert

    2018-02-01

    The effect of subconcussive head impact exposure during contact sports, including American football, on brain health is poorly understood particularly in young and adolescent players, who may be more vulnerable to brain injury during periods of rapid brain maturation. This study aims to quantify the association between cumulative effects of head impact exposure from a single season of football on white matter (WM) integrity as measured with diffusion MRI. The study targets football players aged 9-18 years old. All players were imaged pre- and post-season with structural MRI and diffusion tensor MRI (DTI). Fractional Anisotropy (FA) maps, shown to be closely correlated with WM integrity, were computed for each subject, co-registered and subtracted to compute the change in FA per subject. Biomechanical metrics were collected at every practice and game using helmet mounted accelerometers. Each head impact was converted into a risk of concussion, and the risk of concussion-weighted cumulative exposure (RWE) was computed for each player for the season. Athletes with high and low RWE were selected for a two-category classification task. This task was addressed by developing a 3D Convolutional Neural Network (CNN) to automatically classify players into high and low impact exposure groups from the change in FA maps. Using the proposed model, high classification performance, including ROC Area Under Curve score of 85.71% and F1 score of 83.33% was achieved. This work adds to the growing body of evidence for the presence of detectable neuroimaging brain changes in white matter integrity from a single season of contact sports play, even in the absence of a clinically diagnosed concussion.

  3. A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data

    PubMed Central

    Calabrese, Evan; Badea, Alexandra; Cofer, Gary; Qi, Yi; Johnson, G. Allan

    2015-01-01

    Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data. PMID:26048951

  4. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.

    PubMed

    Roebroeck, Alard; Miller, Karla L; Aggarwal, Manisha

    2018-06-04

    This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  5. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly

    USDA-ARS?s Scientific Manuscript database

    Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

  6. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  7. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  8. [Transient ischemic attacks in the elderly: new definition and diagnostic difficulties].

    PubMed

    Rancurel, Gérald

    2005-03-01

    Transient ischemic attacks (TIA) are very frequent in the elderly. Their frequency increases beyond 65 years. However, no epidemiologic study was specifically dedicated to elderly patients. The first definition of TIA was a sudden focal neurologic deficit that lasted for less than 24 hours, presumed to be of vascular origin and located in a specific artery territory of the brain or eye. The Working Study Group has proposed a new definition: TIA is a brief episode of neurologic dysfunction caused by focal brain or retinal ischemia with clinical symptoms typically lasting less than one hour, most often some minutes, and without evidence of acute infarction. Weighted diffusion MRI may show very early an aspect of cytotoxic oedema. The one-hour criterion associated with a stable neurological deficit is requested for initiating IV thrombolysis, if the angio-MRI shows an occlusion of the supra-aortic trunks or intracranial arteries, even in aged patients. Each TIA constitutes a major risk for a completed infarct resulting in disability or death. Hypertension is the main risk factor for TIAs, followed by atrial fibrillation, diabetes, coronaropathy and sedentarity. These factors multiply by 4 the stroke risk. In the elderly, TIAs are pecularly associated with lacunar infarcts in the territory of deep perforating arteries. TIAs represent a neurologic emergency that allows no delay in clinical and laboratory investigations, such as ultrasonic echographies and weighted diffusion MRI. Diagnostic errors are often due to frequent polypathology and cognitive changes in great age. The most misleading symptoms are vertigo, imbalance, falls, disorders of consciousness. Unawareness of the deficit is also a frequent cause of failure of TIA diagnosis. Conversely, the most frequent cause of diagnostic error by excess is epileptic seizures which are often under-evaluated.

  9. The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Differentiation of Head and Neck Masses.

    PubMed

    Kanmaz, Lutfi; Karavas, Erdal

    2018-05-29

    The purpose of this study was to evaluate the value of diffusion-weighted MRI (DW-MRI) in differentiating benign and malignant head and neck masses by comparing their apparent diffusion coefficient (ADC) values. The study included 32 patients with a neck mass >1 cm in diameter who were examined with echo planar DW-MRI. Two different diffusion gradients (b values of b = 0 and b = 1000 s/mm²) were applied. DWI and ADC maps of 32 neck masses in 32 patients were obtained. Mean ADC values of benign and malignant neck lesions were measured and compared statistically. A total of 15 (46.9%) malignant masses and 17 (53.1%) benign masses were determined. Of all the neck masses, the ADC value of cystic masses was the highest and that of lymphomas was the lowest. The mean ADC values of benign and malignant neck masses were 1.57 × 10 -3 mm²/s and 0.90 × 10 -3 mm²/s, respectively. The difference between mean ADC values of benign and malignant neck masses was significant ( p < 0.01). Diffusion-weighted MRI with ADC measurements can be useful in the differential diagnosis of neck masses.

  10. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference?

    PubMed

    Toth, Arnold; Kovacs, Noemi; Perlaki, Gabor; Orsi, Gergely; Aradi, Mihaly; Komaromy, Hedvig; Ezer, Erzsebet; Bukovics, Peter; Farkas, Orsolya; Janszky, Jozsef; Doczi, Tamas; Buki, Andras; Schwarcz, Attila

    2013-01-01

    Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected p<0.05) lower, and mean diffusivity (MD) to be higher in the mTBI group in several white matter tracts (FA=40,737; MD=39,078 voxels) compared with controls at 72 hours after injury and still 1month later for FA. Longitudinal analysis revealed significant change (i.e., normalization) of FA and MD over 1 month dominantly in the left hemisphere (FA=3408; MD=7450 voxels). A significant (p<0.05) decrease in cortical volumes (mean 1%) and increase in ventricular volumes (mean 3.4%) appeared at 1 month after injury in the mTBI group. SWI did not reveal microhemorrhage in our patients. Our findings present dynamic micro- and macrostructural changes occurring in the acute to sub-acute phase in mTBI, in very mildly injured patients lacking microhemorrhage detectable by SWI. These results underscore the importance of strictly defined image acquisition time points when performing MRI studies on patients with mTBI.

  12. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  13. Serial MR diffusion to predict treatment response in high-grade pediatric brain tumors: a comparison of regional and voxel-based diffusion change metrics

    PubMed Central

    Rodriguez Gutierrez, Daniel; Manita, Muftah; Jaspan, Tim; Dineen, Robert A.; Grundy, Richard G.; Auer, Dorothee P.

    2013-01-01

    Background Assessment of treatment response by measuring tumor size is known to be a late and potentially confounded response index. Serial diffusion MRI has shown potential for allowing earlier and possibly more reliable response assessment in adult patients, with limited experience in clinical settings and in pediatric brain cancer. We present a retrospective study of clinical MRI data in children with high-grade brain tumors to assess and compare the values of several diffusion change metrics to predict treatment response. Methods Eighteen patients (age range, 1.9–20.6 years) with high-grade brain tumors and serial diffusion MRI (pre- and posttreatment interval range, 1–16 weeks posttreatment) were identified after obtaining parental consent. The following diffusion change metrics were compared with the clinical response status assessed at 6 months: (1) regional change in absolute and normalized apparent diffusivity coefficient (ADC), (2) voxel-based fractional volume of increased (fiADC) and decreased ADC (fdADC), and (3) a new metric based on the slope of the first principal component of functional diffusion maps (fDM). Results Responders (n = 12) differed significantly from nonresponders (n = 6) in all 3 diffusional change metrics demonstrating higher regional ADC increase, larger fiADC, and steeper slopes (P < .05). The slope method allowed the best response prediction (P < .01, η2 = 0.78) with a classification accuracy of 83% for a slope of 58° using receiver operating characteristic (ROC) analysis. Conclusions We demonstrate that diffusion change metrics are suitable response predictors for high-grade pediatric tumors, even in the presence of variable clinical diffusion imaging protocols. PMID:23585630

  14. Brain stem venous congestion due to dural arteriovenous fistulas of the cavernous sinus.

    PubMed

    Kai, Y; Hamada, J I; Morioka, M; Yano, S; Ushio, Y

    2004-10-01

    Venous congestion of the brain stem due to dural arteriovenous fistulas (DAVFs) in the cavernous sinus is rare and presents therapeutic challenges. To assess the prognosis of patients with symptomatic DAVFs and brain stem dysfunction, we evaluated the degree of venous ischemia by examining pre- and post-treatment magnetic resonance images (MRI) in 2 patients presenting with venous congestion of the brain stem. A 56-year-old woman with left hemiparesis and a 70-year-old woman with gait disturbance attributable to right cavernous sinus DAVFs were referred to our hospital. In both cases, T2-weighted magnetic resonance imaging (MRI) disclosed a hyperintensity lesion in the brainstem due to venous congestion. Both patients underwent open surgery for direct embolization of the cavernous sinus because there were no approach routes for transvenous embolization. The patient whose pretreatment MRI demonstrated Gd enhancement continued to manifest neurological deficits and persistence of the abnormal hyperintensity on post-treatment T2-weighted MRI. In the other patient whose pretreatment MRI showed no Gd enhancement, treatment produced a complete response of her neurological deficit and disappearance of the abnormal hyperintensity area. We tentatively conclude that lesions corresponding to hyperintensity areas on non-Gd-enhanced, T2-weighted MRI may reflect a reversible condition whereas lesions identified as hyperintense areas on GD-enhanced T2-weighted MRI may be indicative of irreversibility.

  15. Role of diffusion-weighted MRI in differentiation of hepatic abscesses from non-infected fluid collections.

    PubMed

    Schmid-Tannwald, C; Schmid-Tannwald, C M; Morelli, J N; Neumann, R; Reiser, M F; Nikolaou, K; Rist, C

    2014-07-01

    To evaluate the role of diffusion-weighted magnetic resonance imaging (DW-MRI) in the differentiation of hepatic abscesses from non-infected fluid collections. In this retrospective study, 22 hepatic abscesses and 27 non-infected hepatic fluid collections were examined in 27 patients who underwent abdominal MRI including DW-MRI. Two independent observers reviewed T2-weighted + DW-MRI and T2-weighted + contrast-enhanced T1-weighted (CET1W) images in two sessions. Detection rates and confidence levels were calculated and compared using McNemar's and Wilcoxon's signed rank tests, respectively. Apparent diffusion coefficient (ADC) values of abscesses and non-infected fluid collections were compared using the t-test. Receiver operating characteristic (ROC) curves were constructed. There was no statistically significant difference in the accuracy of detecting abscesses using T2-weighted + DW-MRI (both observers: 21/22, 95.5%) versus T2-weighted + CET1W images (observer 1: 21/22, 95.5%; observer 2: 22/22, 100%; p < 0.01). Mean ADC values were significantly lower with abscesses versus non-infected fluid collections (0.83 ± 0.24 versus 2.25 ± 0.61 × 10(-3) mm(2)/s; p < 0.001). With ROC analysis there was good discrimination of abscess from non-infected fluid collections at a threshold ADC value of 1.36 × 10(-3) mm(2)/s. DW-MRI allows qualitative and quantitative differentiation of abscesses from non-infected fluid collections in the liver. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  16. Association of reversible splenial lesion syndrome (RESLES) with Anti-VGKC autoantibody syndrome: a case report.

    PubMed

    Gilder, Thomas R; Hawley, Jason S; Theeler, Brett J

    2016-05-01

    A 50-year-old male presented with complaints of fatigue, confusion, and memory problems. Neurological evaluation revealed altered cognition, unsteady gait, ataxia, dysmetria, and weakness. MRI of the brain was initially unremarkable. Over several days, the patient experienced improvement of symptoms and a follow-up MRI revealed a small lesion in the splenium of the corpus callosum seen on diffusion weighted and T2 sequences. The patient was discovered to have elevated anti-voltage gated potassium channel serum autoantibodies. Follow-up MRI revealed resolution of the splenial lesion. The patient was treated with intravenous immune globulin, and improved back to his pre-treatment baseline. We believe this to be the first case of a reversible splenial lesion syndrome as a manifestation of the anti-voltage gated potassium channel autoantibody syndrome, and propose a pathophysiologic mechanism.

  17. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    PubMed Central

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  18. The CONNECT project: Combining macro- and micro-structure.

    PubMed

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei

    2013-10-15

    In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A Comparison of Ultrasonography, Computerised Tomography, and Conventional MRI Findings for Splenic Nodules Associated with Type 1 Gaucher’s Disease with Diffusion-Weighted MRI Findings

    PubMed Central

    Albayrak, Eda; Sonmezgoz, Fitnet; Ozmen, Zafer; Aktas, Fatma; Altunkas, Aysegul

    2017-01-01

    A 26-year-old female patient with Type 1 Gaucher’s disease (GD) was admitted to our clinic with complaints of stomachache and signs of anemia. The patient underwent ultrasonography (US), computerised tomography (CT), and magnetic resonance imaging (MRI) scan. Imaging studies revealed massive hepatosplenomegaly, choledocolithiasis, and six nodules in the spleen with a mean size of 14 mm. The nodules appeared hyperechoic, hypoechoic, and of mixed echogenicity on the US and hypodense on the CT. While the nodules were observed to be iso-hypointense in T1-weighted (T1WI) images, they appeared to be hyperintense in the T2-weighted (T2WI) images. There were no diffusion restrictions in these nodules that appeared on the diffusion-weighted magnetic resonance imaging (DWI). A nodule located at the lower pole was observed to be hypointense in the T2WI images. The nodule located at the lower pole, which appeared hypointense in T2WI series, had restricted diffusion upon DWI. In this study, we aimed to present the properties of splenic GD nodules using US, CT, and conventional MRI, together with DWI. This case report is the first to apply US, CT, and conventional MRI, together with DWI, to the splenic nodules associated with Gaucher’s disease. PMID:29386979

  20. Dipy, a library for the analysis of diffusion MRI data.

    PubMed

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

  1. Dipy, a library for the analysis of diffusion MRI data

    PubMed Central

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385

  2. Early Conventional MRI for Prediction of Neurodevelopmental Impairment in Extremely-Low-Birth-Weight Infants.

    PubMed

    Slaughter, Laurel A; Bonfante-Mejia, Eliana; Hintz, Susan R; Dvorchik, Igor; Parikh, Nehal A

    2016-01-01

    Extremely-low-birth-weight (ELBW; ≤1,000 g) infants are at high risk for neurodevelopmental impairments. Conventional brain MRI at term-equivalent age is increasingly used for prediction of outcomes. However, optimal prediction models remain to be determined, especially for cognitive outcomes. The aim was to evaluate the accuracy of a data-driven MRI scoring system to predict neurodevelopmental impairments. 122 ELBW infants had a brain MRI performed at term-equivalent age. Conventional MRI findings were scored with a standardized algorithm and tested using a multivariable regression model to predict neurodevelopmental impairment, defined as one or more of the following at 18-24 months' corrected age: cerebral palsy, bilateral blindness, bilateral deafness requiring amplification, and/or cognitive/language delay. Results were compared with a commonly cited scoring system. In multivariable analyses, only moderate-to-severe gyral maturational delay was a significant predictor of overall neurodevelopmental impairment (OR: 12.6, 95% CI: 2.6, 62.0; p < 0.001). Moderate-to-severe gyral maturational delay also predicted cognitive delay, cognitive delay/death, and neurodevelopmental impairment/death. Diffuse cystic abnormality was a significant predictor of cerebral palsy (OR: 33.6, 95% CI: 4.9, 229.7; p < 0.001). These predictors exhibited high specificity (range: 94-99%) but low sensitivity (30-67%) for the above outcomes. White or gray matter scores, determined using a commonly cited scoring system, did not show significant association with neurodevelopmental impairment. In our cohort, conventional MRI at term-equivalent age exhibited high specificity in predicting neurodevelopmental outcomes. However, sensitivity was suboptimal, suggesting additional clinical factors and biomarkers are needed to enable accurate prognostication. © 2016 S. Karger AG, Basel.

  3. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI.

    PubMed

    Chan, Kevin C; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X

    2014-12-09

    Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  4. Long-Term Effects of Neonatal Hypoxia-Ischemia on Structural and Physiological Integrity of the Eye and Visual Pathway by Multimodal MRI

    PubMed Central

    Chan, Kevin C.; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X.

    2015-01-01

    Purpose. Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Methods. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Results. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. Conclusions. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. PMID:25491295

  5. Tractography from HARDI using an Intrinsic Unscented Kalman Filter

    PubMed Central

    Cheng, Guang; Salehian, Hesamoddin; Forder, John R.; Vemuri, Baba C.

    2014-01-01

    A novel adaptation of the unscented Kalman filter (UKF) was recently introduced in literature for simultaneous multi-tensor estimation and fiber tractography from diffusion MRI. This technique has the advantage over other tractography methods in terms of computational efficiency, due to the fact that the UKF simultaneously estimates the diffusion tensors and propagates the most consistent direction to track along. This UKF and its variants reported later in literature however are not intrinsic to the space of diffusion tensors. Lack of this key property can possibly lead to inaccuracies in the multi-tensor estimation as well as in the tractography. In this paper, we propose a novel intrinsic unscented Kalman filter (IUKF) in the space of diffusion tensors which are symmetric positive definite matrices, that can be used for simultaneous recursive estimation of multi-tensors and propagation of directional information for use in fiber tractography from diffusion weighted MR data. In addition to being more accurate, IUKF retains all the advantages of UKF mentioned above. We demonstrate the accuracy and effectiveness of the proposed method via experiments publicly available phantom data from the fiber cup-challenge (MICCAI 2009) and diffusion weighted MR scans acquired from human brains and rat spinal cords. PMID:25203986

  6. Idiopathic granulomatous mastitis: magnetic resonance imaging findings with diffusion MRI.

    PubMed

    Aslan, Hulya; Pourbagher, Aysin; Colakoglu, Tamer

    2016-07-01

    Idiopathic granulomatous mastitis (IGM) is a rare benign breast disease with unknown etiology which can mimic breast carcinoma, both clinically and radiologically. Magnetic resonance imaging (MRI) findings of IGM have been previously described; however there is no study evaluating diffusion-weighted MRI findings of IGM. To analyze conventional, dynamic contrast-enhanced, and diffusion-weighted MRI signal characteristics of IGM by comparing it with the contralateral normal breast parenchyma. A total of 39 patients were included in the study. On dynamic contrast-enhanced MRI, the distribution and enhancement patterns of the lesions were evaluated. We also detected the frequencies of involving quadrants, retroareolar involvement, accompanying abscess, and skin edema. T2-weighted (T2W) and STIR signal intensities and both mean and minimum apparent diffusion coefficient (ADC) values were compared with the contralateral normal parenchyma. IGM showed significantly lower mean and minimum ADC values when compared with the normal parenchyma. Signal intensities on T2W and STIR sequences of the lesion were significantly higher than the normal parenchyma. On dynamic contrast-enhanced MRI, 7.7% of the patients had mass-like contrast enhancement, 92.3% of the patients had non-mass-like contrast enhancement. Abscess was positive in 33.3% of the patients. As a result, IGM showed commonly non-mass-like lesions with restricted diffusion. Although it is a benign pathology, it may show clustered ring-like enhancement like malignant lesions. © The Foundation Acta Radiologica 2015.

  7. Regional heterogeneity in limbic maturational changes: evidence from integrating cortical thickness, volumetric and diffusion tensor imaging measures.

    PubMed

    Grieve, Stuart M; Korgaonkar, Mayuresh S; Clark, C Richard; Williams, Leanne M

    2011-04-01

    Magnetic resonance imaging (MRI) studies of structural brain development have suggested that the limbic system is relatively preserved in comparison to other brain regions with healthy aging. The goal of this study was to systematically investigate age-related changes of the limbic system using measures of cortical thickness, volumetric and diffusion characteristics. We also investigated if the "relative preservation" concept is consistent across the individual sub-regions of the limbic system. T1 weighted structural MRI and Diffusion Tensor Imaging data from 476 healthy participants from the Brain Resource International Database was used for this study. Age-related changes in grey matter (GM)/white matter (WM) volume, cortical thickness, diffusional characteristics for the pericortical WM and for the fiber tracts associated with the limbic regions were quantified. A regional variability in the aging patterns across the limbic system was present. Four important patterns of age-related changes were highlighted for the limbic sub-regions: 1. early maturation of GM with late loss in the hippocampus and amygdala; 2. an extreme pattern of GM preservation in the entorhinal cortex; 3. a flat pattern of reduced GM loss in the anterior cingulate and the parahippocampus and; 4. accelerated GM loss in the isthmus and posterior cingulate. The GM volumetric data and cortical thickness measures proved to be internally consistent, while the diffusional measures provided complementary data that seem consistent with the GM trends identified. This heterogeneity can be hypothesized to be associated with age-related changes of cognitive function specialized for that region and direct connections to the other brain regions sub-serving these functions. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Convergence Analysis of Micro-Lesions (CAML): An approach to mapping of diffuse lesions from carotid revascularization.

    PubMed

    Rosen, Allyson C; Soman, Salil; Bhat, Jyoti; Laird, Angela R; Stephens, Jeffrey; Eickhoff, Simon B; Fox, P Mickle; Long, Becky; Dinishak, David; Ortega, Mario; Lane, Barton; Wintermark, Max; Hitchner, Elizabeth; Zhou, Wei

    2018-01-01

    Carotid revascularization (endarterectomy, stenting) prevents stroke; however, procedure-related embolization is common and results in small brain lesions easily identified by diffusion weighted magnetic resonance imaging (DWI). A crucial barrier to understanding the clinical significance of these lesions has been the lack of a statistical approach to identify vulnerable brain areas. The problem is that the lesions are small, numerous, and non-overlapping. Here we address this problem with a new method, the Convergence Analysis of Micro-Lesions (CAML) technique, an extension of the Anatomic Likelihood Analysis (ALE). The method combines manual lesion tracing, constraints based on known lesion patterns, and convergence analysis to represent regions vulnerable to lesions as probabilistic brain atlases. Two studies were conducted over the course of 12 years in an active, vascular surgery clinic. An analysis in an initial group of 126 patients at 1.5 T MRI was cross-validated in a second group of 80 patients at 3T MRI. In CAML, lesions were manually defined and center points identified. Brains were aligned according to side of surgery since this factor powerfully determines lesion distribution. A convergence based analysis, was performed on each of these groups. Results indicated the most consistent region of vulnerability was in motor and premotor cortex regions. Smaller regions common to both groups included the dorsolateral prefrontal cortex and medial parietal regions. Vulnerability of motor cortex is consistent with previous work showing changes in hand dexterity associated with these procedures. The consistency of CAML also demonstrates the feasibility of this new approach to characterize small, diffuse, non-overlapping lesions in patients with multifocal pathologies.

  9. Watershed-based segmentation of the corpus callosum in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto

    2012-02-01

    The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.

  10. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.

    PubMed

    de Figueiredo, Eduardo H M S G; Borgonovi, Arthur F N G; Doring, Thomas M

    2011-02-01

    MR image contrast is based on intrinsic tissue properties and specific pulse sequences and parameter adjustments. A growing number of MRI imaging applications are based on diffusion properties of water. To better understand MRI diffusion-weighted imaging, a brief overview of MR physics is presented in this article followed by physics of the evolving techniques of diffusion MR imaging and diffusion tensor imaging. Copyright © 2011. Published by Elsevier Inc.

  11. Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.

    PubMed

    Bickelhaupt, Sebastian; Paech, Daniel; Kickingereder, Philipp; Steudle, Franziska; Lederer, Wolfgang; Daniel, Heidi; Götz, Michael; Gählert, Nils; Tichy, Diana; Wiesenfarth, Manuel; Laun, Frederik B; Maier-Hein, Klaus H; Schlemmer, Heinz-Peter; Bonekamp, David

    2017-08-01

    To assess radiomics as a tool to determine how well lesions found suspicious on breast cancer screening X-ray mammography can be categorized into malignant and benign with unenhanced magnetic resonance (MR) mammography with diffusion-weighted imaging and T 2 -weighted sequences. From an asymptomatic screening cohort, 50 women with mammographically suspicious findings were examined with contrast-enhanced breast MRI (ceMRI) at 1.5T. Out of this protocol an unenhanced, abbreviated diffusion-weighted imaging protocol (ueMRI) including T 2 -weighted, (T 2 w), diffusion-weighted imaging (DWI), and DWI with background suppression (DWIBS) sequences and corresponding apparent diffusion coefficient (ADC) maps were extracted. From ueMRI-derived radiomic features, three Lasso-supervised machine-learning classifiers were constructed and compared with the clinical performance of a highly experienced radiologist: 1) univariate mean ADC model, 2) unconstrained radiomic model, 3) constrained radiomic model with mandatory inclusion of mean ADC. The unconstrained and constrained radiomic classifiers consisted of 11 parameters each and achieved differentiation of malignant from benign lesions with a .632 + bootstrap receiver operating characteristics (ROC) area under the curve (AUC) of 84.2%/85.1%, compared to 77.4% for mean ADC and 95.9%/95.9% for the experienced radiologist using ceMRI/ueMRI. In this pilot study we identified two ueMRI radiomics classifiers that performed well in the differentiation of malignant from benign lesions and achieved higher performance than the mean ADC parameter alone. Classification was lower than the almost perfect performance of a highly experienced breast radiologist. The potential of radiomics to provide a training-independent diagnostic decision tool is indicated. A performance reaching the human expert would be highly desirable and based on our results is considered possible when the concept is extended in larger cohorts with further development and validation of the technique. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:604-616. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.

    PubMed

    Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C

    2014-08-01

    To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.

  13. Eddy current compensated double diffusion encoded (DDE) MRI.

    PubMed

    Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd

    2017-01-01

    Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis.

    PubMed

    Billiet, Thibo; Mädler, Burkhard; D'Arco, Felice; Peeters, Ronald; Deprez, Sabine; Plasschaert, Ellen; Leemans, Alexander; Zhang, Hui; den Bergh, Bea Van; Vandenbulcke, Mathieu; Legius, Eric; Sunaert, Stefan; Emsell, Louise

    2014-01-01

    The histopathological basis of "unidentified bright objects" (UBOs) (hyperintense regions seen on T2-weighted magnetic resonance (MR) brain scans in neurofibromatosis-1 (NF1)) remains unclear. New in vivo MRI-based techniques (multi-exponential T2 relaxation (MET2) and diffusion MR imaging (dMRI)) provide measures relating to microstructural change. We combined these methods and present previously unreported data on in vivo UBO microstructure in NF1. 3-Tesla dMRI data were acquired on 17 NF1 patients, covering 30 white matter UBOs. Diffusion tensor, kurtosis and neurite orientation and dispersion density imaging parameters were calculated within UBO sites and in contralateral normal appearing white matter (cNAWM). Analysis of MET2 parameters was performed on 24 UBO-cNAWM pairs. No significant alterations in the myelin water fraction and intra- and extracellular (IE) water fraction were found. Mean T2 time of IE water was significantly higher in UBOs. UBOs furthermore showed increased axial, radial and mean diffusivity, and decreased fractional anisotropy, mean kurtosis and neurite density index compared to cNAWM. Neurite orientation dispersion and isotropic fluid fraction were unaltered. Our results suggest that demyelination and axonal degeneration are unlikely to be present in UBOs, which appear to be mainly caused by a shift towards a higher T2-value of the intra- and extracellular water pool. This may arise from altered microstructural compartmentalization, and an increase in 'extracellular-like', intracellular water, possibly due to intramyelinic edema. These findings confirm the added value of combining dMRI and MET2 to characterize the microstructural basis of T2 hyperintensities in vivo.

  15. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    NASA Astrophysics Data System (ADS)

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-03-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation

  16. A comprehensive diffusion MRI dataset acquired on the MGH Connectome scanner in a biomimetic brain phantom.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Wichtmann, Barbara; Witzel, Thomas; Mekkaoui, Choukri; Schneider, Walter; Wald, Lawrence L; Huang, Susie Y

    2018-06-01

    We provide a comprehensive diffusion MRI dataset acquired with a novel biomimetic phantom mimicking human white matter. The fiber substrates in the diffusion phantom were constructed from hollow textile axons ("taxons") with an inner diameter of 11.8±1.2 µm and outer diameter of 33.5±2.3 µm. Data were acquired on the 3 T CONNECTOM MRI scanner with multiple diffusion times and multiple q-values per diffusion time, which is a dedicated acquisition for validation of microstructural imaging methods, such as compartment size and volume fraction mapping. Minimal preprocessing was performed to correct for susceptibility and eddy current distortions. Data were deposited in the XNAT Central database (project ID: dMRI_Phant_MGH).

  17. Localized Statistics for DW-MRI Fiber Bundle Segmentation

    PubMed Central

    Lankton, Shawn; Melonakos, John; Malcolm, James; Dambreville, Samuel; Tannenbaum, Allen

    2013-01-01

    We describe a method for segmenting neural fiber bundles in diffusion-weighted magnetic resonance images (DWMRI). As these bundles traverse the brain to connect regions, their local orientation of diffusion changes drastically, hence a constant global model is inaccurate. We propose a method to compute localized statistics on orientation information and use it to drive a variational active contour segmentation that accurately models the non-homogeneous orientation information present along the bundle. Initialized from a single fiber path, the proposed method proceeds to capture the entire bundle. We demonstrate results using the technique to segment the cingulum bundle and describe several extensions making the technique applicable to a wide range of tissues. PMID:23652079

  18. Linear Transforms for Fourier Data on the Sphere: Application to High Angular Resolution Diffusion MRI of the Brain

    PubMed Central

    Haldar, Justin P.; Leahy, Richard M.

    2013-01-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. PMID:23353603

  19. Concomitant fractional anisotropy and volumetric abnormalities in temporal lobe epilepsy: cross-sectional evidence for progressive neurologic injury.

    PubMed

    Keller, Simon S; Schoene-Bake, Jan-Christoph; Gerdes, Jan S; Weber, Bernd; Deppe, Michael

    2012-01-01

    In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients.

  20. Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents.

    PubMed

    Vollmer, Brigitte; Lundequist, Aiko; Mårtensson, Gustaf; Nagy, Zoltan; Lagercrantz, Hugo; Smedler, Ann-Charlotte; Forssberg, Hans

    2017-01-01

    Executive functions are frequently a weakness in children born preterm. We examined associations of executive functions and general cognitive abilities with brain structure in preterm born adolescents who were born with appropriate weight for gestational age and who have no radiological signs of preterm brain injury on neuroimaging. The Stockholm Neonatal Project (SNP) is a longitudinal, population-based study of children born preterm (<36 weeks of gestation) with very low birth weight (<1501g) between 1988-1993. At age 18 years (mean 18 years, SD 2 weeks) 134 preterm born and 94 full term participants underwent psychological assessment (general intelligence, executive function measures). Of these, 71 preterm and 63 full term participants underwent Magnetic Resonance Imaging (MRI) at mean 15.2 years (range 12-18 years), including 3D T1-weighted images for volumetric analyses and Diffusion Tensor Imaging (DTI) for assessment of white matter microstructure. Group comparisons of regional grey and white matter volumes and fractional anisotropy (FA, as a measure of white matter microstructure) and, within each group, correlation analyses of cognitive measures with MRI metrics were carried out. Significant differences in grey and white matter regional volumes and widespread differences in FA were seen between the two groups. No significant correlations were found between cognitive measures and brain volumes in any group after correction for multiple comparisons. However, there were significant correlations between FA in projection fibres and long association fibres, linking frontal, temporal, parietal, and occipital lobes, and measures of executive function and general cognitive abilities in the preterm born adolescents, but not in the term born adolescents. In persons born preterm, in the absence of perinatal brain injury on visual inspection of MRI, widespread alterations in regional brain tissue volumes and microstructure are present in adolescence/young adulthood. Importantly, these alterations in WM tracts are correlated with measures of executive function and general cognitive abilities. Our findings suggest that disturbance of neural pathways, rather than changes in regional brain volumes, are involved in the impaired cognitive functions.

  1. Approximating high angular resolution apparent diffusion coefficient profiles using spherical harmonics under BiGaussian assumption

    NASA Astrophysics Data System (ADS)

    Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun

    2009-02-01

    Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.

  2. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    PubMed

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  3. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    PubMed

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Training-induced improvements in postural control are accompanied by alterations in cerebellar white matter in brain injured patients.

    PubMed

    Drijkoningen, David; Caeyenberghs, Karen; Leunissen, Inge; Vander Linden, Catharine; Leemans, Alexander; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P

    2015-01-01

    We investigated whether balance control in young TBI patients can be promoted by an 8-week balance training program and whether this is associated with neuroplastic alterations in brain structure. The cerebellum and cerebellar peduncles were selected as regions of interest because of their importance in postural control as well as their vulnerability to brain injury. Young patients with moderate to severe TBI and typically developing (TD) subjects participated in balance training using PC-based portable balancers with storage of training data and real-time visual feedback. An additional control group of TD subjects did not attend balance training. Mean diffusivity and fractional anisotropy were determined with diffusion MRI scans and were acquired before, during (4 weeks) and at completion of training (8 weeks) together with balance assessments on the EquiTest® System (NeuroCom) which included the Sensory Organization Test, Rhythmic Weight Shift and Limits of Stability protocols. Following training, TBI patients showed significant improvements on all EquiTest protocols, as well as a significant increase in mean diffusivity in the inferior cerebellar peduncle. Moreover, in both training groups, diffusion metrics in the cerebellum and/or cerebellar peduncles at baseline were predictive of the amount of performance increase after training. Finally, amount of training-induced improvement on the Rhythmic Weight Shift test in TBI patients was positively correlated with amount of change in fractional anisotropy in the inferior cerebellar peduncle. This suggests that training-induced plastic changes in balance control are associated with alterations in the cerebellar white matter microstructure in TBI patients.

  5. Training-induced improvements in postural control are accompanied by alterations in cerebellar white matter in brain injured patients

    PubMed Central

    Drijkoningen, David; Caeyenberghs, Karen; Leunissen, Inge; Vander Linden, Catharine; Leemans, Alexander; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P.

    2014-01-01

    We investigated whether balance control in young TBI patients can be promoted by an 8-week balance training program and whether this is associated with neuroplastic alterations in brain structure. The cerebellum and cerebellar peduncles were selected as regions of interest because of their importance in postural control as well as their vulnerability to brain injury. Young patients with moderate to severe TBI and typically developing (TD) subjects participated in balance training using PC-based portable balancers with storage of training data and real-time visual feedback. An additional control group of TD subjects did not attend balance training. Mean diffusivity and fractional anisotropy were determined with diffusion MRI scans and were acquired before, during (4 weeks) and at completion of training (8 weeks) together with balance assessments on the EquiTest® System (NeuroCom) which included the Sensory Organization Test, Rhythmic Weight Shift and Limits of Stability protocols. Following training, TBI patients showed significant improvements on all EquiTest protocols, as well as a significant increase in mean diffusivity in the inferior cerebellar peduncle. Moreover, in both training groups, diffusion metrics in the cerebellum and/or cerebellar peduncles at baseline were predictive of the amount of performance increase after training. Finally, amount of training-induced improvement on the Rhythmic Weight Shift test in TBI patients was positively correlated with amount of change in fractional anisotropy in the inferior cerebellar peduncle. This suggests that training-induced plastic changes in balance control are associated with alterations in the cerebellar white matter microstructure in TBI patients. PMID:25610786

  6. From the Cover: Magnetic Resonance Imaging Reveals Progressive Brain Injury in Rats Acutely Intoxicated With Diisopropylfluorophosphate

    PubMed Central

    Hobson, Brad A.; Sisó, Sílvia; Rowland, Douglas J.; Harvey, Danielle J.; Bruun, Donald A.; Garbow, Joel R.

    2017-01-01

    Abstract Acute intoxication with organophosphates (OPs) can trigger seizures that progress to status epilepticus, and survivors often exhibit chronic neuropathology, cognitive impairment, affective disorders, and/or electroencephalographic abnormalities. Understanding how acute injury transitions to persistent neurological sequelae is critical to developing medical countermeasures for mitigating damage following OP-induced seizures. Here, we used in vivo magnetic resonance imaging (MRI) to monitor the spatiotemporal patterns of neuropathology for 1 month after acute intoxication with diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to successive administration of DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im), and 2-pralidoxime (25 mg/kg, im) exhibited moderate-to-severe seizure behavior. T2-weighted and diffusion-weighted MR imaging prior to DFP exposure and at 3, 7, 14, 21, or 28 days postexposure revealed prominent lesions, tissue atrophy, and ventricular enlargement in discrete brain regions. Lesions varied in intensity and/or extent over time, with the overall magnitude of injury strongly influenced by seizure severity. Importantly, lesions detected by MRI correlated spatially and temporally with histological evidence of brain pathology. Analysis of histogram parameters extracted from frequency distributions of regional apparent diffusion coefficient (ADC) values identified the standard deviation and 90th percentile of the ADC as robust metrics for quantifying persistent and progressive neuropathological changes. The interanimal and interregional variations observed in lesion severity and progression, coupled with potential reinjury following spontaneous recurrent seizures, underscore the advantages of using in vivo imaging to longitudinally monitor neuropathology and, ultimately, therapeutic response, following acute OP intoxication. PMID:28329842

  7. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  8. Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology.

    PubMed

    Detsky, Jay S; Keith, Julia; Conklin, John; Symons, Sean; Myrehaug, Sten; Sahgal, Arjun; Heyn, Chinthaka C; Soliman, Hany

    2017-09-01

    Radiation necrosis is a serious potential adverse event of stereotactic radiosurgery that cannot be reliably differentiated from recurrent tumor using conventional imaging techniques. Intravoxel incoherent motion (IVIM) is a magnetic resonance imaging (MRI) based method that uses a diffusion-weighted sequence to estimate quantitative perfusion and diffusion parameters. This study evaluated the IVIM-derived apparent diffusion coefficient (ADC) and perfusion fraction (f), and compared the results to the gold standard histopathological-defined outcomes of radiation necrosis or recurrent tumor. Nine patients with ten lesions were included in this study; all lesions exhibited radiographic progression after stereotactic radiosurgery for brain metastases that subsequently underwent surgical resection due to uncertainty regarding the presence of radiation necrosis versus recurrent tumor. Pre-surgical IVIM was performed to obtain f and ADC values and the results were compared to histopathology. Five lesions exhibited pathological radiation necrosis and five had predominantly recurrent tumor. The IVIM perfusion fraction reliably differentiated tumor recurrence from radiation necrosis (f mean  = 10.1 ± 0.7 vs. 8.3 ± 1.2, p = 0.02; cutoff value of 9.0 yielding a sensitivity/specificity of 100%/80%) while the ADC did not distinguish between the two (ADC mean  = 1.1 ± 0.2 vs. 1.2 ± 0.4, p = 0.6). IVIM shows promise in differentiating recurrent tumor from radiation necrosis for brain metastases treated with radiosurgery, but needs to be validated in a larger cohort.

  9. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases.

    PubMed

    Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M

    2012-07-01

    To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.

  10. VBM-DTI correlates of verbal intelligence: a potential link to Broca's area.

    PubMed

    Konrad, Andreas; Vucurevic, Goran; Musso, Francesco; Winterer, Georg

    2012-04-01

    Human brain lesion studies first investigated the biological roots of cognitive functions including language in the late 1800s. Neuroimaging studies have reported correlation findings with general intelligence predominantly in fronto-parietal cortical areas. However, there is still little evidence about the relationship between verbal intelligence and structural properties of the brain. We predicted that verbal performance is related to language regions of Broca's and Wernicke's areas. Verbal intelligence quotient (vIQ) was assessed in 30 healthy young subjects. T1-weighted MRI and diffusion tensor imaging data sets were acquired. Voxel-wise regression analyses were used to correlate fractional anisotropy (FA) and mean diffusivity values with vIQ. Moreover, regression analyses of regional brain volume with vIQ were performed adopting voxel-based morphometry (VBM) and ROI methodology. Our analyses revealed a significant negative correlation between vIQ and FA and a significant positive correlation between vIQ and mean diffusivity in the left-hemispheric Broca's area. VBM regression analyses did not show significant results, whereas a subsequent ROI analysis of Broca's area FA peak cluster demonstrated a positive correlation of gray matter volume and vIQ. These findings suggest that cortical thickness in Broca's area contributes to verbal intelligence. Diffusion parameters predicted gray matter ratio in Broca's area more sensitive than VBM methodology.

  11. Practical estimate of gradient nonlinearity for implementation of apparent diffusion coefficient bias correction.

    PubMed

    Malkyarenko, Dariya I; Chenevert, Thomas L

    2014-12-01

    To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.

  12. Distortion-free diffusion MRI using an MRI-guided Tri-Cobalt 60 radiotherapy system: Sequence verification and preliminary clinical experience.

    PubMed

    Gao, Yu; Han, Fei; Zhou, Ziwu; Cao, Minsong; Kaprealian, Tania; Kamrava, Mitchell; Wang, Chenyang; Neylon, John; Low, Daniel A; Yang, Yingli; Hu, Peng

    2017-10-01

    Monitoring tumor response during the course of treatment and adaptively modifying treatment plan based on tumor biological feedback may represent a new paradigm for radiotherapy. Diffusion MRI has shown great promises in assessing and predicting tumor response to radiotherapy. However, the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) technique suffers from limited resolution, severe distortion, and possibly inaccurate ADC at low field strength. The purpose of this work was to develop a reliable, accurate and distortion-free diffusion MRI technique that is practicable for longitudinal tumor response evaluation and adaptive radiotherapy on a 0.35 T MRI-guided radiotherapy system. A diffusion-prepared turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging sequence on a 0.35 T MRI-guided radiotherapy system (ViewRay). A spatial integrity phantom was used to quantitate and compare the geometric accuracy of the two diffusion sequences for three orthogonal orientations. The apparent diffusion coefficient (ADC) accuracy was evaluated on a diffusion phantom under both 0 °C and room temperature to cover a diffusivity range between 0.40 × 10 -3 and 2.10 × 10 -3 mm 2 /s. Ten room temperature measurements repeated on five different days were conducted to assess the ADC reproducibility of DP-TSE. Two glioblastoma (GBM) and six sarcoma patients were included to examine the in vivo feasibility. The target registration error (TRE) was calculated to quantitate the geometric accuracy where structural CT or MR images were co-registered to the diffusion images as references. ADC maps from DP-TSE and DW-ssEPI were calculated and compared. A tube phantom was placed next to patients not treated on ViewRay, and ADCs of this reference tube were also compared. The proposed DP-TSE passed the spatial integrity test (< 1 mm within 100 mm radius and < 2 mm within 175 mm radius) under the three orthogonal orientations. The detected errors were 0.474 ± 0.355 mm, 0.475 ± 0.287 mm, and 0.546 ± 0.336 mm in the axial, coronal, and sagittal plane. DW-ssEPI, however, failed the tests due to severe distortion and low signal intensity. Noise correction must be performed for the DW-ssEPI to avoid ADC quantitation errors, whereas it is optional for DP-TSE. At 0 °C, the two sequences provided accurate quantitation with < 3% variation with the reference. In the room temperature study, discrepancies between ADCs from DP-TSE and the reference were within 4%, but could be as high as 8% for DW-ssEPI after the noise correction. Excellent ADC reproducibility with a coefficient of variation < 5% was observed among the 10 measurements of DP-TSE, indicating desirable robustness for ADC-based tumor response assessment. In vivo TRE in DP-TSE was less than 1.6 mm overall, whereas it could be greater than 12 mm in DW-ssEPI. For GBM patients, the CSF and brain tissue ADCs from DP-TSE were within the ranges found in literature. ADC differences between the two techniques were within 8% among the six sarcoma patients. For the reference tube that had a relatively low diffusivity, the two diffusion sequences provided matched measurements. A diffusion technique with excellent geometric fidelity, accurate, and reproducible ADC measurement was demonstrated for longitudinal tumor response assessment using a low-field MRI-guided radiotherapy system. © 2017 American Association of Physicists in Medicine.

  13. Body growth and brain development in premature babies: an MRI study.

    PubMed

    Tzarouchi, Loukia C; Drougia, Aikaterini; Zikou, Anastasia; Kosta, Paraskevi; Astrakas, Loukas G; Andronikou, Styliani; Argyropoulou, Maria I

    2014-03-01

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGAa) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGAb). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGAb in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning.

  14. Diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient mapping for diagnosing infectious spondylodiscitis: a preliminary study.

    PubMed

    Chen, Tai-Yuan; Wu, Te-Chang; Tsui, Yu-Kun; Chen, Hou-Hsun; Lin, Chien-Jen; Lee, Huey-Jen; Wu, Tai-Ching

    2015-01-01

    Though diffusion-weighted (DW) magnetic resonance imaging (MRI) is useful for diagnosing many pathologies, its use in infectious spondylodiscitis is unclear. We aimed to evaluate the use of DW MRI and apparent diffusion coefficient (ADC) mapping for the diagnosis of infectious spondylodiscitis. In this retrospective study, 17 patients with confirmed infectious spondylodiscitis were matched by age and level of infected disc with 17 patients with degenerative disc disease (DDD) and 17 healthy controls. All patients received conventional MRI and diffusion-weighted imaging (DWI) in the same imaging session. ADC values of the 3 groups of patients were compared. The mean age of each group was 67.4 ± 11.6 years. The mean ADCs of the normal control, DDD, and infectious spondylodiscitis groups were 1.76 ± 0.19 × 10(-3) , 1.12 ± 0.22 × 10(-3) , and 1.27 ± 0.38 × 10(-3) mm2 /second, respectively. The ADCs of the DDD and infectious spondylodiscitis groups were both significantly lower than that of the normal control group (both, P < 0.001). These data suggest that DWI/ADC MRI may be useful in the early diagnosis of infectious spondylodiscitis. © 2014 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  15. Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Torres, Carlos J.; Engelbach, John A.; Cates, Jeremy

    Purpose: Accurate noninvasive diagnosis is vital for effective treatment planning. Presently, standard anatomical magnetic resonance imaging (MRI) is incapable of differentiating recurring tumor from delayed radiation injury, as both lesions are hyperintense in both postcontrast T1- and T2-weighted images. Further studies are therefore necessary to identify an MRI paradigm that can differentially diagnose these pathologies. Mouse glioma and radiation injury models provide a powerful platform for this purpose. Methods and Materials: Two MRI contrasts that are widely used in the clinic were chosen for application to a glioma/radiation-injury model: diffusion weighted imaging, from which the apparent diffusion coefficient (ADC) ismore » obtained, and magnetization transfer contrast, from which the magnetization transfer ratio (MTR) is obtained. These metrics were evaluated longitudinally, first in each lesion type alone–glioma versus irradiation – and then in a combined irradiated glioma model. Results: MTR was found to be consistently decreased in all lesions compared to nonlesion brain tissue (contralateral hemisphere), with limited specificity between lesion types. In contrast, ADC, though less sensitive to the presence of pathology, was increased in radiation injury and decreased in tumors. In the irradiated glioma model, ADC also increased immediately after irradiation, but decreased as the tumor regrew. Conclusions: ADC is a better metric than MTR for differentiating glioma from radiation injury. However, MTR was more sensitive to both tumor and radiation injury than ADC, suggesting a possible role in detecting lesions that do not enhance strongly on T1-weighted images.« less

  16. Significance of diffusion weighted imaging (DWI) as an improving factor in contrast enhanced magnetic resonance imaging (MRI) enterography in evaluation of patients with Crohn's disease.

    PubMed

    Imširović, Bilal; Zerem, Enver; Efendić, Alma; Mekić Abazović, Alma; Zerem, Omar; Djedović, Muhamed

    2018-08-01

    Aim To determine capabilities and potential of contrast enhanced magnetic resonance imaging (MRI) enterography in order to establish the diagnosis and to evaluate severity and activity of intestinal inflammation. Methods Fifty-five patients with suspicion for presence of Crohn's disease were evaluated. All patients underwent contrast enhanced MRI enterography and diffusion weighted imaging (DWI), and subsequently endoscopic examination or surgical treatment. Four parameters were analysed: thickening of the bowel wall, and presence of abscess, fistula and lymphadenopathy. Results Comparing results of DWI and contrast enhanced MRI enterography a significant difference between results given through diffusion and histopathological test was found, e.g. a significant difference between results obtained through diffusion and MRI enterography was found. MRI enterography sensitiveness for bowel wall thickening was 97.7% and specificity 70%, whilst DWI sensitivity for bowel wall thickening was 84% and specificity 100%. The diagnostics of abscess and fistula showed no significant difference between DWI and MRI, while in lymphadenopathy significant difference between contrast enhanced MRI enterography and DWI was found. Conclusion Contrast enhanced MRI enterography in combination with DWI allows for excellent evaluation of disease activity, but also problems or complications following it. The examination can be repeated, controlled, and it can contribute to monitoring of patients with this disease. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  17. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2007-04-01

    Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.

  18. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  19. Normalization of similarity-based individual brain networks from gray matter MRI and its association with neurodevelopment in infants with intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Figueras, Francesc; Bargallo, Nuria; Eixarch, Elisenda; Gratacos, Eduard

    2013-12-01

    Obtaining individual biomarkers for the prediction of altered neurological outcome is a challenge of modern medicine and neuroscience. Connectomics based on magnetic resonance imaging (MRI) stands as a good candidate to exhaustively extract information from MRI by integrating the information obtained in a few network features that can be used as individual biomarkers of neurological outcome. However, this approach typically requires the use of diffusion and/or functional MRI to extract individual brain networks, which require high acquisition times and present an extreme sensitivity to motion artifacts, critical problems when scanning fetuses and infants. Extraction of individual networks based on morphological similarity from gray matter is a new approach that benefits from the power of graph theory analysis to describe gray matter morphology as a large-scale morphological network from a typical clinical anatomic acquisition such as T1-weighted MRI. In the present paper we propose a methodology to normalize these large-scale morphological networks to a brain network with standardized size based on a parcellation scheme. The proposed methodology was applied to reconstruct individual brain networks of 63 one-year-old infants, 41 infants with intrauterine growth restriction (IUGR) and 22 controls, showing altered network features in the IUGR group, and their association with neurodevelopmental outcome at two years of age by means of ordinal regression analysis of the network features obtained with Bayley Scale for Infant and Toddler Development, third edition. Although it must be more widely assessed, this methodology stands as a good candidate for the development of biomarkers for altered neurodevelopment in the pediatric population. © 2013 Elsevier Inc. All rights reserved.

  20. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Kulikova, S; Poupon, C; Hüppi, P S; Hertz-Pannier, L

    2014-09-12

    Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Neuronal ceroid-lipofuscinosis in longhaired Chihuahuas: clinical, pathologic, and MRI findings.

    PubMed

    Nakamoto, Yuya; Yamato, Osamu; Uchida, Kazuyuki; Nibe, Kazumi; Tamura, Shinji; Ozawa, Tsuyoshi; Ueoka, Naotami; Nukaya, Aya; Yabuki, Akira; Nakaichi, Munekazu

    2011-01-01

    Neuronal ceroid-lipofuscinosis (NCL) is a rare group of inherited neurodegenerative lysosomal storage diseases characterized histopathologically by the abnormal accumulation of ceroid- or lipofuscin-like lipopigments in neurons and other cells throughout the body. The present article describes the clinical, pathologic, and magnetic resonance imaging (MRI) findings of the NCL in three longhaired Chihuahuas between 16 mo and 24 mo of age. Clinical signs, including visual defects and behavioral abnormalities, started between 16 mo and 18 mo of age. Cranial MRI findings in all the dogs were characterized by diffuse severe dilation of the cerebral sulci, dilated fissures of diencephalons, midbrain, and cerebellum, and lateral ventricular enlargement, suggesting atrophy of the forebrain. As the most unusual feature, diffuse meningeal thickening was observed over the entire cerebrum, which was strongly enhanced on contrast T1-weighted images. The dogs' conditions progressed until they each died subsequent to continued neurologic deterioration between 23 mo and 24 mo of age. Histopathologically, there was severe to moderate neuronal cell loss with diffuse astrogliosis throughout the brain. The remaining neuronal cells showed intracytoplasmic accumulation of pale to slightly yellow lipopigments mimicking ceroid or lipofuscin. The thickened meninges consisted of the proliferation of connective tissues with abundant collagen fibers and mild infiltration of inflammatory cells suggesting neuroimmune hyperactivity. Although the etiology of this neuroimmune hyperactivity is not currently known, MRI findings such as meningeal thickening may be a useful diagnostic marker of this variant form of canine NCL.

  2. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.

    PubMed

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan

    2015-08-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.

  3. Effect of intravenous gadolinium-DTPA on diffusion tensor MR imaging for the evaluation of brain tumors.

    PubMed

    Bae, Min Sun; Jahng, Geon-Ho; Ryu, Chang Woo; Kim, Eui Jong; Choi, Woo Suk; Yang, Dal Mo

    2009-12-01

    The aim of this study was to investigate whether indices of diffusion tensor MRI (DT-MRI) are altered after contrast medium injection in patients with brain tumors. DT-MRIs at a 3-T unit before and 6 min after gadolinium-diethylenetriamine penta-acetic acid injection were obtained in nine patients (five women, four men) with histologically confirmed brain tumors (four metastases, one glioblastoma multiforme, three meningiomas, and one lymphoma). Fractional anisotropy (FA), trace and mean raw DT-MRI data without (DT_b0, b value = 0 s/mm(2)) and with (DT_b800, b value = 800 s/mm(2)) diffusion-encoded gradients were calculated. Regions of interest (ROIs) were placed in the tumor, peritumoral edema, and normal-appearing symmetric contralateral brain tissue for each patient. The Kruskal-Wallis rank sum test was used to determine the effects of contrast medium and ROI for all of the maps, and the Wilcoxon signed-rank test was performed for either paired t test between pre- and post-contrast values of DTI indices for the ROIs or the post hoc test. Statistically significant differences between pre-contrast and post-contrast DT-MRI are shown in the trace value of the peritumoral edema area (p = 0.0195) and the FA value of the tumor area (p = 0.0273). Trace and FA values of the other areas show no statistically significant differences between pre- and post-contrast (p > 0.05). In addition, we find a significant ROI effect for both FA (chi (2) = 26.514, df = 2, p = 0.0001) and trace (chi (2) = 21.218, df = 2, p = 0.0001). DT-MRI obtained after contrast medium injection of 6 min results in significant changes in diffusion isotropic and anisotropic values. Therefore, clinical applications of DT-MRI after administrating a contrast medium require caution in interpretation.

  4. A Piglet Model for Detection of Hypoxic-Ischemic Brain Injury with Magnetic Resonance Imaging

    PubMed Central

    Munkeby, B. H.; De Lange, C.; Emblem, K. E.; Bjørnerud, A.; Kro, G. A. B.; Andresen, J.; Winther-Larssen, E. H.; Løberg, E. M.; Hald, J. K.

    2008-01-01

    Munkeby BH, de Lange C, Emblem KE, Bjørnerud A, Kro GAB, Andresen J, Winther-Larssen EH, Løberg EM, Hald JK. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol 2008;49:1049–1057. Background Early detection of hypoxic-ischemic (HI) injury in the asphyxic newborn is important because present prognostic factors are inadequate. Furthermore, therapeutic interventions may have additional benefit if initiated in time. Purpose To assess whether the use of a combined protocol including conventional magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and proton MR spectroscopy (MRS) could detect pathological findings in a piglet model 7 hours after HI. Material and Methods Ten piglets were submitted to HI for 30 min followed by reoxygenation with 21% O2 for 7 hours. MRI at 1.5T was done prior to and 7 hours after the HI. Single-voxel proton MRS was performed, and apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in the basal ganglia. MRS identified N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and lactate (Lac). Histology and microtubule-associated protein 2 (MAP-2) staining was performed in the basal ganglia at the end of the experiment. Results Compared to baseline, ADC, NAA/Cho, and NAA/Cr were significantly reduced after 7 hours (P < 0.001, P = 00.01, and P = 00.05, respectively) and FA values were increased (P <0.025). The ratios of Lac/Cho and Lac/NAA were significantly higher after 7 hours compared to baseline (P <0.001). Presence of necrosis correlated well with reduced ADC (RS = 0.91) and presence of Lac (RS = 0.80). Histology and MAP-2 staining showed more than 90% necrosis in eight piglets, 60% in one piglet, and no necrosis in one piglet. Conclusion Diffusion MRI and proton MRS can detect HI injury in the piglet brain 7 hours after hypoxia. DWI and MRS can be used to give useful prognostic information. This piglet model may potentially be used to mimic clinical situations and is suitable for further research investigating HI injury. PMID:18720081

  5. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  6. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  7. Tissue microstructure estimation using a deep network inspired by a dictionary-based framework.

    PubMed

    Ye, Chuyang

    2017-12-01

    Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN+ allows incorporation of neighborhood information by inserting a stage with learned weights before the MEDN structure, where the diffusion signals in the neighborhood of a voxel are processed. The weights in MEDN or MEDN+ are jointly learned from training samples that are acquired with diffusion gradients densely sampling the q-space. We performed MEDN and MEDN+ on brain dMRI scans, where two shells each with 30 gradient directions were used, and measured their accuracy with respect to the gold standard. Results demonstrate that the proposed networks outperform the competing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sexual dimorphism of volume reduction but not cognitive deficit in fetal alcohol spectrum disorders: A combined diffusion tensor imaging, cortical thickness and brain volume study.

    PubMed

    Treit, Sarah; Chen, Zhang; Zhou, Dongming; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Pei, Jacqueline; Beaulieu, Christian

    2017-01-01

    Quantitative magnetic resonance imaging (MRI) has revealed abnormalities in brain volumes, cortical thickness and white matter microstructure in fetal alcohol spectrum disorders (FASD); however, no study has reported all three measures within the same cohort to assess the relative magnitude of deficits, and few studies have examined sex differences. Participants with FASD (n = 70; 30 females; 5-32 years) and healthy controls (n = 74; 35 females; 5-32 years) underwent cognitive testing and MRI to assess cortical thickness, regional brain volumes and fractional anisotropy (FA)/mean diffusivity (MD) of white matter tracts. A significant effect of group, age-by-group, or sex-by-group was found for 9/9 volumes, 7/39 cortical thickness regions, 3/9 white matter tracts, and 9/10 cognitive tests, indicating group differences that in some cases differ by age or sex. Volume reductions for several structures were larger in males than females, despite similar deficits of cognition in both sexes. Correlations between brain structure and cognitive scores were found in females of both groups, but were notably absent in males. Correlations within a given MRI modality (e.g. total brain volume and caudate volume) were prevalent in both the control and FASD groups, and were more numerous than correlations between measurement types (e.g. volumes and diffusion tensor imaging) in either cohort. This multi-modal MRI study finds widespread differences of brain structure in participants with prenatal alcohol exposure, and to a greater extent in males than females which may suggest attenuation of the expected process of sexual dimorphism of brain structure during typical development.

  9. Reproducibility and Variation of Diffusion Measures in the Squirrel Monkey Brain, In Vivo and Ex Vivo

    PubMed Central

    Schilling, Kurt; Gao, Yurui; Stepniewska, Iwona; Choe, Ann S; Landman, Bennett A; Anderson, Adam W

    2016-01-01

    Purpose Animal models are needed to better understand the relationship between diffusion MRI (dMRI) and the underlying tissue microstructure. One promising model for validation studies is the common squirrel monkey, Saimiri sciureus. This study aims to determine (1) the reproducibility of in vivo diffusion measures both within and between subjects; (2) the agreement between in vivo and ex vivo data acquired from the same specimen and (3) normal diffusion values and their variation across brain regions. Methods Data were acquired from three healthy squirrel monkeys, each imaged twice in vivo and once ex vivo. Reproducibility of fractional anisotropy (FA), mean diffusivity (MD), and principal eigenvector (PEV) was assessed, and normal values were determined both in vivo and ex vivo. Results The calculated coefficients of variation (CVs) for both intra-subject and inter-subject MD were below 10% (low variability) while FA had a wider range of CVs, 2–14% intra-subject (moderate variability), and 3–31% inter-subject (high variability). MD in ex vivo tissue was lower than in vivo (30%–50% decrease), while FA values increased in all regions (30–39% increase). The mode of angular differences between in vivo and ex vivo PEVs was 12 degrees. Conclusion This study characterizes the diffusion properties of the squirrel monkey brain and serves as the groundwork for using the squirrel monkey, both in vivo and ex vivo, as a model for diffusion MRI studies. PMID:27587226

  10. Characterization of the murine orthotopic adamantinomatous craniopharyngioma PDX model by MRI in correlation with histology.

    PubMed

    Hölsken, Annett; Schwarz, Marc; Gillmann, Clarissa; Pfister, Christina; Uder, Michael; Doerfler, Arnd; Buchfelder, Michael; Schlaffer, Sven; Fahlbusch, Rudolf; Buslei, Rolf; Bäuerle, Tobias

    2018-01-01

    Adamantinomatous craniopharyngiomas (ACP) as benign sellar brain tumors are challenging to treat. In order to develop robust in vivo drug testing methodology, the murine orthotopic craniopharyngioma model (PDX) was characterized by magnetic resonance imaging (MRI) and histology in xenografts from three patients (ACP1-3). In ACP PDX, multiparametric MRI was conducted to assess morphologic characteristics such as contrast-enhancing tumor volume (CETV) as well as functional parameters from dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) including area-under-the-curve (AUC), peak enhancement (PE), time-to-peak (TTP) and apparent diffusion coefficient (ADC). These MRI parameters evaluated in 27 ACP PDX were correlated to histological features and percentage of vital tumor cell content. Qualitative analysis of MRI and histology from PDX revealed a similar phenotype as seen in patients, although the MRI appearance in mice resulted in a more solid tumor growth than in humans. CETV were significantly higher in ACP2 xenografts relative to ACP1 and ACP3 which correspond to respective average vitality of 41%, <10% and 26% determined histologically. Importantly, CETV prove tumor growth of ACP2 PDX as it significantly increases in longitudinal follow-up of 110 days. Furthermore, xenografts from ACP2 revealed a significantly higher AUC, PE and TTP in comparison to ACP3, and significantly increased ADC relative to ACP1 and ACP3 respectively. Overall, DCE-MRI and DWI can be used to distinguish vital from non-vital grafts, when using a cut off value of 15% for vital tumor cell content. MRI enables the assessment of craniopharyngioma PDX vitality in vivo as validated histologically.

  11. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    PubMed

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  12. Reversible splenial lesion syndrome after blood transfusion presents callosal disconnection syndrome: A case report.

    PubMed

    Ma, Xinxin; Su, Wen; Chen, Haibo

    2018-06-01

    Reversible splenial lesion syndrome (RESLES) is a reversible condition with an excellent prognosis in most patients. The clinical features include altered states of consciousness, delirium, headache, and seizures, but no callosal disconnection syndromes have been described in RESLES. We presented a 57-year-old patient with alien hand syndrome, autotopagnosia, gait disorders, and left ideomotor apraxia after blood transfusion. The brain magnetic resonance imaging (MRI) showed a few regions with high signal intensity in the genu, body, and splenium of the right corpus callosum on diffusion weighted images. Cerebrovascular examination was unremarkable. He was diagnosed with RESLES and callosal disconnection syndrome. The patient received symptomatic and supportive treatment in our hospital. He recovered to baseline on following up of 6 months and abnormalities on brain MRI completely disappeared. Neurologists should be aware of the symptoms of callosal disconnection syndrome in RESLES. In addition, caution should be taken when transfusing blood products in patients with gastrointestinal bleeding.

  13. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping.

    PubMed

    Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S

    2004-02-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.

  14. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping

    PubMed Central

    Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.

    2014-01-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564

  15. Cognitive Impairment and Whole Brain Diffusion in Patients with Neuromyelitis Optica after Acute Relapse

    ERIC Educational Resources Information Center

    He, Diane; Wu, Qizhu; Chen, Xiuying; Zhao, Daidi; Gong, Qiyong; Zhou, Hongyu

    2011-01-01

    The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive…

  16. Diffusion weighted magnetic resonance imaging and its recent trend—a survey

    PubMed Central

    Chilla, Geetha Soujanya; Tan, Cher Heng

    2015-01-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements. PMID:26029644

  17. Herpes simplex encephalitis presenting as stroke-like symptoms with atypical MRI findings and lacking cerebrospinal fluid pleocytosis.

    PubMed

    Tsuboguchi, Shintaro; Wakasugi, Takahiro; Umeda, Yoshitaka; Umeda, Maiko; Oyake, Mutsuo; Fujita, Nobuya

    2017-07-29

    A 73-year-old woman presented with sudden onset of right hemiparesis and was diagnosed as having cerebral infarction on the basis of diffusion-weighted brain MRI, which demonstrated lesions in the left parietal cortex. On the 3rd day, the patient developed right upper limb myoclonus, aphasia, and disturbance of consciousness with high fever. On the 6th day, she was transferred to our hospital with suspected viral encephalitis, and treatment with acyclovir was started. By the 6th day, the lesions detected by MRI had expanded to the gyrus cinguli, insula and thalamus, but not to the temporal lobe. At that time, the CSF cell count was 8/μl, and this later increased to 17/μl by the 13th day. Although herpes simplex virus DNA was detected in the CSF on the 6th day, there was no evidence of CSF pleocytosis or temporal lobe abnormalities demonstrable by brain MRI throughout the whole follow-up period. This was very atypical case of herpes simplex encephalitis characterized by a stroke-like episode, atypical MRI findings, and absence of cerebrospinal fluid pleocytosis. It is important to be mindful that herpes simplex encephalitis (HSE) can have an atypical presentation, and that sufficient acyclovir treatment should be initiated until HSE can be ruled out.

  18. Postural headache in a patient with Marfan's syndrome.

    PubMed

    Ferrante, E; Citterio, A; Savino, A; Santalucia, P

    2003-09-01

    A 26-year-old man with Marfan's syndrome had postural headache. Brain MRI with gadolinium showed diffuse pachymeningeal enhancement. MRI myelography revealed bilateral multiple large meningeal diverticula at sacral nerve roots level. He was suspected to have spontaneous intracranial hypotension syndrome. Eight days later headache improved with bed rest and hydration. One month after the onset he was asymptomatic and 3 months later brain MRI showed no evidence of diffuse pachymeningeal enhancement. The 1-year follow-up revealed no neurological abnormalities. The intracranial hypotension syndrome likely resulted from a CSF leak from one of the meningeal diverticula. In conclusion patients with spinal meningeal diverticula (frequently seen in Marfan's syndrome) might be at increased risk of developing CSF leaks, possibly secondary to Valsalva maneuver or minor unrecognized trauma.

  19. Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood.

    PubMed

    Olsen, Alexander; Dennis, Emily L; Evensen, Kari Anne I; Husby Hollund, Ingrid Marie; Løhaugen, Gro C C; Thompson, Paul M; Brubakk, Ann-Mari; Eikenes, Live; Håberg, Asta K

    2018-02-15

    Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Decision-making deficit of a patient with axonal damage after traumatic brain injury.

    PubMed

    Yasuno, Fumihiko; Matsuoka, Kiwamu; Kitamura, Soichiro; Kiuchi, Kuniaki; Kosaka, Jun; Okada, Koji; Tanaka, Syohei; Shinkai, Takayuki; Taoka, Toshiaki; Kishimoto, Toshifumi

    2014-02-01

    Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Boosting Classification Accuracy of Diffusion MRI Derived Brain Networks for the Subtypes of Mild Cognitive Impairment Using Higher Order Singular Value Decomposition

    PubMed Central

    Zhan, L.; Liu, Y.; Zhou, J.; Ye, J.; Thompson, P.M.

    2015-01-01

    Mild cognitive impairment (MCI) is an intermediate stage between normal aging and Alzheimer's disease (AD), and around 10-15% of people with MCI develop AD each year. More recently, MCI has been further subdivided into early and late stages, and there is interest in identifying sensitive brain imaging biomarkers that help to differentiate stages of MCI. Here, we focused on anatomical brain networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying early versus late MCI. PMID:26413202

  2. Computation of an MRI brain atlas from a population of Parkinson’s disease patients

    NASA Astrophysics Data System (ADS)

    Angelidakis, L.; Papageorgiou, I. E.; Damianou, C.; Psychogios, M. N.; Lingor, P.; von Eckardstein, K.; Hadjidemetriou, S.

    2017-11-01

    Parkinson’s Disease (PD) is a degenerative disorder of the brain. This study presents an MRI-based brain atlas of PD to characterize associated alterations for diagnostic and interventional purposes. The atlas standardizes primarily the implicated subcortical regions such as the globus pallidus (GP), substantia nigra (SN), subthalamic nucleus (STN), caudate nucleus (CN), thalamus (TH), putamen (PUT), and red nucleus (RN). The data were 3.0 T MRI brain images from 16 PD patients and 10 matched controls. The images used were T1-weighted (T 1 w), T2-weighted (T 2 w) images, and Susceptibility Weighted Images (SWI). The T1w images were the reference for the inter-subject non-rigid registration available from 3DSlicer. Anatomic labeling was achieved with BrainSuite and regions were refined with the level sets segmentation of ITK-Snap. The subcortical centers were analyzed for their volume and signal intensity. Comparison with an age-matched control group unravels a significant PD-related T1w signal loss in the striatum (CN and PUT) centers, but approximately a constant volume. The results in this study improve MRI based PD localization and can lead to the development of novel biomarkers.

  3. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2011-10-01

    promising technology on the horizon is the Diffusion Tensor Imaging ( DTI ). Diffusion tensor imaging ( DTI ) is a magnetic resonance imaging (MRI)-based...in the brain. The potential for DTI to improve our understanding of TBI has not been fully explored and challenges associated with non-existent...processing tools, quality control standards, and a shared image repository. The recommendations will be disseminated and pilot tested. A DTI of TBI

  4. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  5. Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI.

    PubMed

    Neubauer, Henning; Pabst, Thomas; Dick, Anke; Machann, Wolfram; Evangelista, Laura; Wirth, Clemens; Köstler, Herbert; Hahn, Dietbert; Beer, Meinrad

    2013-01-01

    Small-bowel MRI based on contrast-enhanced T1-weighted sequences has been challenged by diffusion-weighted imaging (DWI) for detection of inflammatory bowel lesions and complications in patients with Crohn disease. To evaluate free-breathing DWI, as compared to contrast-enhanced MRI, in children, adolescents and young adults with Crohn disease. This retrospective study included 33 children and young adults with Crohn disease ages 17 ± 3 years (mean ± standard deviation) and 27 matched controls who underwent small-bowel MRI with contrast-enhanced T1-weighted sequences and DWI at 1.5 T. The detectability of Crohn manifestations was determined. Concurrent colonoscopy as reference was available in two-thirds of the children with Crohn disease. DWI and contrast-enhanced MRI correctly identified 32 and 31 patients, respectively. All 22 small-bowel lesions and all Crohn complications were detected. False-positive findings (two on DWI, one on contrast-enhanced MRI), compared to colonoscopy, were a result of large-bowel lumen collapse. Inflammatory wall thickening was comparable on DWI and contrast-enhanced MRI. DWI was superior to contrast-enhanced MRI for detection of lesions in 27% of the assessed bowel segments and equal to contrast-enhanced MRI in 71% of segments. DWI facilitates fast, accurate and comprehensive workup in Crohn disease without the need for intravenous administration of contrast medium. Contrast-enhanced MRI is superior in terms of spatial resolution and multiplanar acquisition.

  6. Parsimonious Continuous Time Random Walk Models and Kurtosis for Diffusion in Magnetic Resonance of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd; Webb, Andrew; Ronen, Itamar

    2015-03-01

    In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

  7. Concomitant Fractional Anisotropy and Volumetric Abnormalities in Temporal Lobe Epilepsy: Cross-Sectional Evidence for Progressive Neurologic Injury

    PubMed Central

    Gerdes, Jan S.; Weber, Bernd; Deppe, Michael

    2012-01-01

    Background In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). Methodology/Principal Findings For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Conclusions/Significance Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients. PMID:23071638

  8. Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children.

    PubMed

    Plouin-Gaudon, Isabelle; Bossard, Denis; Ayari-Khalfallah, Sonia; Froehlich, Patrick

    2010-09-01

    To evaluate the efficiency of diffusion-weighted magnetic resonance imaging (MRI) and high-resolution computed tomographic (CT) scan coregistration in predicting and adequately locating primary or recurrent cholesteatoma in children. Prospective study. Tertiary care university hospital. Ten patients aged 2 to 17 years (mean age, 8.5 years) with cholesteatoma of the middle ear, some of which were previously treated, were included for follow-up with systematic CT scanning and MRI between 2007 and 2008. Computed tomographic scanning was performed on a Siemens Somaton 128 (0.5/0.2-mm slices reformatted in 0.5/0.3-mm images). Fine cuts were obtained parallel and perpendicular to the lateral semicircular canal in each ear (100 × 100-mm field of view). Magnetic resonance imaging was undertaken on a Siemens Avanto 1.5T unit, with a protocol adapted for young children. Diffusion-weighted imaging was acquired using a single-shot turbo spin-echo mode. To allow for diagnosis and localization of the cholesteatoma, CT and diffusion-weighted MRIs were fused for each case. In 10 children, fusion technique allowed for correct diagnosis and precise localization (hypotympanum, epitympanum, mastoid recess, and attical space) as confirmed by subsequent standard surgery (positive predictive value, 100%). In 3 cases, the surgical approach was adequately determined from the fusion results. Lesion sizes on the CT-MRI fusion corresponded with perioperative findings. Recent developments in imaging techniques have made diffusion-weighted MRI more effective for detecting recurrent cholesteatoma. The major drawback of this technique, however, has been its poor anatomical and spatial discrimination. Fusion imaging using high-resolution CT and diffusion-weighted MRI appears to be a promising technique for both the diagnosis and precise localization of cholesteatomas. It provides useful information for surgical planning and, furthermore, is easy to use in pediatric cases.

  9. A challenging issue: Detection of white matter hyperintensities in neonatal brain MRI.

    PubMed

    Morel, Baptiste; Yongchao Xu; Virzi, Alessio; Geraud, Thierry; Adamsbaum, Catherine; Bloch, Isabelle

    2016-08-01

    The progress of magnetic resonance imaging (MRI) allows for a precise exploration of the brain of premature infants at term equivalent age. The so-called DEHSI (diffuse excessive high signal intensity) of the white matter of premature brains remains a challenging issue in terms of definition, and thus of interpretation. We propose a semi-automatic detection and quantification method of white matter hyperintensities in MRI relying on morphological operators and max-tree representations, which constitutes a powerful tool to help radiologists to improve their interpretation. Results show better reproducibility and robustness than interactive segmentation.

  10. A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI.

    PubMed

    Tao, Ran; Fletcher, P Thomas; Gerber, Samuel; Whitaker, Ross T

    2009-01-01

    This paper presents a method for correcting the geometric and greyscale distortions in diffusion-weighted MRI that result from inhomogeneities in the static magnetic field. These inhomogeneities may due to imperfections in the magnet or to spatial variations in the magnetic susceptibility of the object being imaged--so called susceptibility artifacts. Echo-planar imaging (EPI), used in virtually all diffusion weighted acquisition protocols, assumes a homogeneous static field, which generally does not hold for head MRI. The resulting distortions are significant, sometimes more than ten millimeters. These artifacts impede accurate alignment of diffusion images with structural MRI, and are generally considered an obstacle to the joint analysis of connectivity and structure in head MRI. In principle, susceptibility artifacts can be corrected by acquiring (and applying) a field map. However, as shown in the literature and demonstrated in this paper, field map corrections of susceptibility artifacts are not entirely accurate and reliable, and thus field maps do not produce reliable alignment of EPIs with corresponding structural images. This paper presents a new, image-based method for correcting susceptibility artifacts. The method relies on a variational formulation of the match between an EPI baseline image and a corresponding T2-weighted structural image but also specifically accounts for the physics of susceptibility artifacts. We derive a set of partial differential equations associated with the optimization, describe the numerical methods for solving these equations, and present results that demonstrate the effectiveness of the proposed method compared with field-map correction.

  11. Imaging Biomarker Dynamics in an Intracranial Murine Glioma Study of Radiation and Antiangiogenic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Caroline, E-mail: caroline.chung@rmp.uhn.on.ca; Jalali, Shahrzad; Foltz, Warren

    2013-03-01

    Purpose: There is a growing need for noninvasive biomarkers to guide individualized spatiotemporal delivery of radiation therapy (RT) and antiangiogenic (AA) therapy for brain tumors. This study explored early biomarkers of response to RT and the AA agent sunitinib (SU), in a murine intracranial glioma model, using serial magnetic resonance imaging (MRI). Methods and Materials: Mice with MRI-visible tumors were stratified by tumor size into 4 therapy arms: control, RT, SU, and SU plus RT (SURT). Single-fraction conformal RT was delivered using MRI and on-line cone beam computed tomography (CT) guidance. Serial MR images (T2-weighted, diffusion, dynamic contrast-enhanced and gadolinium-enhancedmore » T1-weighted scans) were acquired biweekly to evaluate tumor volume, apparent diffusion coefficient (ADC), and tumor perfusion and permeability responses (K{sub trans}, K{sub ep}). Results: Mice in all treatment arms survived longer than those in control, with a median survival of 35 days for SURT (P<.0001) and 30 days for RT (P=.009) and SU (P=.01) mice vs 26 days for control mice. At Day 3, ADC rise was greater with RT than without (P=.002). Sunitinib treatment reduced tumor perfusion/permeability values with mean K{sub trans} reduction of 27.6% for SU (P=.04) and 26.3% for SURT (P=.04) mice and mean K{sub ep} reduction of 38.1% for SU (P=.01) and 27.3% for SURT (P=.02) mice. The magnitude of individual mouse ADC responses at Days 3 and 7 correlated with subsequent tumor growth rate R values of −0.878 (P=.002) and −0.80 (P=.01), respectively. Conclusions: Early quantitative changes in diffusion and perfusion MRI measures reflect treatment responses soon after starting therapy and thereby raise the potential for these imaging biomarkers to guide adaptive and potentially individualized therapy approaches in the future.« less

  12. Linear transforms for Fourier data on the sphere: application to high angular resolution diffusion MRI of the brain.

    PubMed

    Haldar, Justin P; Leahy, Richard M

    2013-05-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Metastatic Renal Cell Carcinoma Masquerading as Jugular Foramen Paraganglioma: A Role for Novel Magnetic Resonance Imaging.

    PubMed

    Thomas, Andrew J; Wiggins, Richard H; Gurgel, Richard K

    2017-08-01

    To describe a case of metastatic renal cell carcinoma (RCC) masquerading as a jugular foramen paraganglioma (JP). To compare imaging findings between skull base metastatic RCC and histologically proven paraganglioma. A case of unexpected metastatic skull base RCC is reviewed. Computed tomography (CT) and magnetic resonance imaging (MRI) were compared between 3 confirmed cases of JP and our case of metastatic RCC. Diffusion-weighted MRI (DW-MRI) sequences and computed apparent diffusion coefficient (ADC) values were compared between these entities. A 55-year-old man presents with what appears clinically and radiographically to be JP. The tumor was resected, then discovered on postoperative pathology to be metastatic RCC. Imaging was retrospectively compared between 3 histologically confirmed cases of JP and our case of skull base RCC. The RCC metastasis was indistinguishable from JP on CT and traditional MRI but distinct by ADC values calculated from DW-MRI. Metastatic RCC at the skull base may mimic the clinical presentation and radiographic appearance of JP. The MRI finding of flow voids is seen in both paraganglioma and metastatic RCC. Diffusion-weighted MRI is able to distinguish these entities, highlighting its potential utility in distinguishing skull base lesions.

  14. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model

    PubMed Central

    Marcuzzo, Stefania; Bonanno, Silvia; Padelli, Francesco; Moreno-Manzano, Victoria; García-Verdugo, José Manuel; Bernasconi, Pia; Mantegazza, Renato; Bruzzone, Maria Grazia; Zucca, Ileana

    2016-01-01

    Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the optimization of acquisition protocols for preclinical and clinical dMRI studies on the spinal cord. PMID:27560686

  15. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T.

    PubMed

    Morelli, John; Porter, David; Ai, Fei; Gerdes, Clint; Saettele, Megan; Feiweier, Thorsten; Padua, Abraham; Dix, James; Marra, Michael; Rangaswamy, Rajesh; Runge, Val

    2013-04-01

    Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P <10(-4) at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain.

  16. The Value of Diffusion-Weighted Imaging in Combination With Conventional Magnetic Resonance Imaging for Improving Tumor Detection for Early Cervical Carcinoma Treated With Fertility-Sparing Surgery.

    PubMed

    Li, Xiulei; Wang, Ling; Li, Yong; Song, Peiji

    2017-10-01

    This study aimed to investigate the value of diffusion-weighted imaging (DWI) in combination with conventional magnetic resonance imaging (MRI) for improving tumor detection in young patients treated with fertility-sparing surgery because of early cervical carcinoma. Fifty-four patients with stage Ia or Ib1 cervical carcinoma were enrolled into this study. Magnetic resonance examinations were performed for these patients using conventional MRI (including T1-weighted imaging, T2-weighted imaging, and dynamic contrast-enhanced MRI) and DWI. The apparent diffusion coefficient (ADC) values of cervical carcinoma were analyzed quantitatively and compared with that of adjacent epithelium. Sensitivity, positive predictive value, and accuracy of 2 sets of MRI sequences were calculated on the basis of histologic results, and the diagnostic ability of conventional MRI/DWI combinations was compared with that of conventional MRI. The mean ADC value from cervical carcinoma (mean, 786 × 10 mm/s ± 100) was significantly lower than that from adjacent epithelium (mean, 1352 × 10 mm/s ± 147) (P = 0.01). When the threshold ADC value set as 1010 × 10 mm/s, the sensitivity and specificity for differentiating cervical carcinoma from nontumor epithelium were 78.2% and 67.2%, respectively. The sensitivity and accuracy of conventional MRI for tumor detection were 76.0% and 70.4%, whereas the sensitivity and accuracy of conventional MRI/DWI combinations were 91.7% and 90.7%, respectively. Conventional MRI/DWI combinations revealed a positive predictive value of 97.8% and only 4 false-negative findings. The addition of DWI to conventional MRI considerably improves the sensitivity and accuracy of tumor detection in young patients treated with fertility-sparing surgery, which supports the inclusion quantitative analysis of ADC value in routine MRI protocol before fertility-sparing surgery.

  17. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia.

    PubMed

    Groenendaal, Floris; de Vries, Linda S

    2017-01-01

    In the past brain imaging of term infants with hypoxic-ischemic encephalopathy (HIE) was performed with cranial ultrasound (cUS) and computed tomography (CT). Both techniques have several disadvantages sensitivity and specificity is limited compared with magnetic resonance imaging (MRI) and CT makes use of radiation. At present MRI including diffusion weighted MRI during the first week of life, has become the method of choice for imaging infants with HIE. In addition to imaging, blood vessels and blood flow can be visualized using MR angiography, MR venography, and arterial spin labeling. Since the use of these techniques additional lesions in infants with HIE, such as arterial ischemic stroke, sinovenous thrombosis, and subdural hemorrhages can be diagnosed, and the incidence appears to be higher than shown previously. Phosphorus magnetic resonance spectroscopy (MRS) has led to the concept of secondary energy failure in infants with HIE, but has not been widely used. Proton MRS of the basal ganglia and thalamus is one of the best predictors of neurodevelopmental outcome. cUS should still be used for screening infants admitted to a NICU with neonatal encephalopathy. In the future magnetic resonance techniques will be increasingly used as early biomarkers of neurodevelopmental outcome in trials of neuroprotective strategies.

  18. Comparison of multi-fiber reproducibility of PAS-MRI and Q-ball with empirical multiple b-value HARDI

    NASA Astrophysics Data System (ADS)

    Nath, Vishwesh; Schilling, Kurt G.; Blaber, Justin A.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-02-01

    Crossing fibers are prevalent in human brains and a subject of intense interest for neuroscience. Diffusion tensor imaging (DTI) can resolve tissue orientation but is blind to crossing fibers. Many advanced diffusion-weighted magnetic resolution imaging (MRI) approaches have been presented to extract crossing-fibers from high angular resolution diffusion imaging (HARDI), but the relative sensitivity and specificity of approaches remains unclear. Here, we examine two leading approaches (PAS and q-ball) in the context of a large-scale, single subject reproducibility study. A single healthy individual was scanned 11 times with 96 diffusion weighted directions and 10 reference volumes for each of five b-values (1000, 1500, 2000, 2500, 3000 s/mm2) for a total of 5830 volumes (over the course of three sessions). We examined the reproducibility of the number of fibers per voxel, volume fraction, and crossing-fiber angles. For each method, we determined the minimum resolvable angle for each acquisition. Reproducibility of fiber counts per voxel was generally high ( 80% consensus for PAS and 70% for q-ball), but there was substantial bias between individual repetitions and model estimated with all data ( 10% lower consensus for PAS and 15% lower for q-ball). Both PAS and q-ball predominantly discovered fibers crossing at near 90 degrees, but reproducibility was higher for PAS across most measures. Within voxels with low anisotropy, q-ball finds more intra-voxel structure; meanwhile, PAS resolves multiple fibers at greater than 75 degrees for more voxels. These results can inform researchers when deciding between HARDI approaches or interpreting findings across studies.

  19. Superficial white matter damage in anti-NMDA receptor encephalitis.

    PubMed

    Phillips, Owen Robert; Joshi, Shantanu H; Narr, Katherine L; Shattuck, David W; Singh, Manpreet; Di Paola, Margherita; Ploner, Christoph J; Prüss, Harald; Paul, Friedemann; Finke, Carsten

    2018-05-01

    Clinical brain MRI is normal in the majority of patients with anti- N -methyl-D-aspartate receptor (NMDAR) encephalitis. However, extensive deep white matter damage wasrecently identifiedin these patients using diffusion weighted imaging. Here, our aim was to study a particularly vulnerable brain compartment, the late myelinating superficial white matter. Forty-six patients with anti-NMDAR encephalitis were included. Ten out of these were considered neurologically recovered (modified Rankin scale of zero), while 36 patients were non-recovered. In addition, 30 healthy controls were studied. MRI data were collected from all subjects and superficial white matter mean diffusivity derived from diffusion tensor imaging was compared between groups in whole brain, lobar and vertex-based analyses. Patients underwent comprehensive cognitive testing, and correlation analyses were performed between cognitive performance and superficial white matter integrity. Non-recovered patients showed widespread superficial white matter damage in comparison to recovered patients and healthy controls. Vertex-based analyses revealed that damage predominated in frontal and temporal lobes. In contrast, the superficial white matter was intact in recovered patients. Importantly, persistent cognitive impairments in working memory, verbal memory, visuospatial memory and attention significantly correlated with damage of the superficial white matter in patients. Anti-NMDAR encephalitis is associated with extensive superficial white matter damage in patients with incomplete recovery. The strong association with impairment in several cognitive domains highlights the clinical relevance of white matter damage in this disorder and warrants investigations of the underlying pathophysiological mechanisms. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. [Effect of vibration caused by time-varying magnetic fields on diffusion-weighted MRI].

    PubMed

    Ogura, Akio; Maeda, Fumie; Miyai, Akira; Hayashi, Kohji; Hongoh, Takaharu

    2006-04-20

    Diffusion-weighted images (DWIs) with high b-factor in the body are often used to detect and diagnose cancer at MRI. The echo planar imaging (EPI) sequence and high motion probing gradient pulse are used at diffusion weighted imaging, causing high table vibration. The purpose of this study was to assess whether the diffusion signal and apparent diffusion coefficient (ADC) values are influenced by this vibration because of time-varying magnetic fields. Two DWIs were compared. In one, phantoms were fixed on the MRI unit's table transmitting the vibration. In the other, phantoms were supported in air, in the absence of vibration. The phantoms called "solution phantoms" were made from agarose of a particular density. The phantoms called "jelly phantoms" were made from agarose that was heated. The diffusion signal and ADC value of each image were compared. The results showed that the signal of DWI units using the solution phantom was not affected by vibration. However, the signal of DWI and ADC were increased in the low-density jelly phantom as a result of vibration, causing the jelly phantom to vibrate. The DWIs of vibrating regions such as the breast maybe be subject to error. A countermeasure seems to be to support the region adequately.

  2. MRI assessment of whole-brain structural changes in aging.

    PubMed

    Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei

    2017-01-01

    One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P <0.00001). They were associated with age ( r 2 >0.29; P <0.00001) and differed by cognitive status ( χ 2 >26.48, P <0.00001). T2-FLAIR revealed a greater level of periventricular ( χ 2 =29.09) and deep white matter ( χ 2 =26.65, P <0.001) lesions than others, but missed revealing certain dilated perivascular spaces that were seen in T2WI ( P <0.001). Microhemorrhages occurred in 15.3% of the sample examined and were detected using only T2*GRE. The T1WI- and T2WI-based BALI evaluations consistently identified the burden of aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests increased lesion differentiation. Further research is to integrate MRI tests for a clinical tool to aid the diagnosis and intervention of brain aging.

  3. MRI Reveals Edema in Larynx (But Not in Brain) During Anaphylactic Hypotension in Anesthetized Rats

    PubMed Central

    Toyota, Ichiro; Tanida, Mamoru; Wang, Mofei; Kurata, Yasutaka; Tonami, Hisao

    2013-01-01

    Purpose Anaphylactic shock is sometimes accompanied by local interstitial edema due to increased vascular permeability. We performed magnetic resonance imaging (MRI) to compare edema in the larynx and brain of anesthetized rats during anaphylactic hypotension versus vasodilator-induced hypotension. Methods Male Sprague Dawley rats were subjected to hypotension induced by the ovalbumin antigen (n=7) or a vasodilator sodium nitroprusside (SNP; n=7). Apparent diffusion coefficient (ADC) and T2-relaxation time (T2RT) were quantified on MRI performed repeatedly for up to 68 min after the injection of either agent. The presence of laryngeal edema was also examined by histological examination. Separately, the occurrence of brain edema was assessed by measuring brain water content using the wet/dry method in rats with anaphylaxis (n=5) or SNP (n=5) and the non-hypotensive control rats (n=5). Mast cells in hypothalamus were morphologically examined. Results Mean arterial blood pressure similarly decreased to 35 mmHg after an injection of the antigen or SNP. Hyperintensity on T2-weighted images (as reflected by elevated T2RT) was found in the larynx as early as 13 min after an injection of the antigen, but not SNP. A postmortem histological examination revealed epiglottic edema in the rats with anaphylaxis, but not SNP. In contrast, no significant changes in T2RT or ADC were detectable in the brains of any rats studied. In separate experiments, the quantified brain water content did not increase in either anaphylaxis or SNP rats, as compared with the non-hypotensive control rats. The numbers of mast cells with metachromatic granules in the hypothalamus were not different between rats with anaphylaxis and SNP, suggesting the absence of anaphylactic reaction in hypothalamus. Conclusion Edema was detected using the MRI technique in the larynx during rat anaphylaxis, but not in the brain. PMID:24179686

  4. MRI reveals edema in larynx (but not in brain) during anaphylactic hypotension in anesthetized rats.

    PubMed

    Toyota, Ichiro; Tanida, Mamoru; Shibamoto, Toshishige; Wang, Mofei; Kurata, Yasutaka; Tonami, Hisao

    2013-11-01

    Anaphylactic shock is sometimes accompanied by local interstitial edema due to increased vascular permeability. We performed magnetic resonance imaging (MRI) to compare edema in the larynx and brain of anesthetized rats during anaphylactic hypotension versus vasodilator-induced hypotension. Male Sprague Dawley rats were subjected to hypotension induced by the ovalbumin antigen (n=7) or a vasodilator sodium nitroprusside (SNP; n=7). Apparent diffusion coefficient (ADC) and T2-relaxation time (T2RT) were quantified on MRI performed repeatedly for up to 68 min after the injection of either agent. The presence of laryngeal edema was also examined by histological examination. Separately, the occurrence of brain edema was assessed by measuring brain water content using the wet/dry method in rats with anaphylaxis (n=5) or SNP (n=5) and the non-hypotensive control rats (n=5). Mast cells in hypothalamus were morphologically examined. Mean arterial blood pressure similarly decreased to 35 mmHg after an injection of the antigen or SNP. Hyperintensity on T2-weighted images (as reflected by elevated T2RT) was found in the larynx as early as 13 min after an injection of the antigen, but not SNP. A postmortem histological examination revealed epiglottic edema in the rats with anaphylaxis, but not SNP. In contrast, no significant changes in T2RT or ADC were detectable in the brains of any rats studied. In separate experiments, the quantified brain water content did not increase in either anaphylaxis or SNP rats, as compared with the non-hypotensive control rats. The numbers of mast cells with metachromatic granules in the hypothalamus were not different between rats with anaphylaxis and SNP, suggesting the absence of anaphylactic reaction in hypothalamus. Edema was detected using the MRI technique in the larynx during rat anaphylaxis, but not in the brain.

  5. Altered Blood-Brain Barrier Permeability in Patients With Systemic Lupus Erythematosus: A Novel Imaging Approach.

    PubMed

    Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W

    2017-02-01

    To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to confirm the findings of this pilot study. © 2016, American College of Rheumatology.

  6. Alteration of diffusion-tensor MRI measures in brain regions involved in early stages of Parkinson's disease.

    PubMed

    Chen, Nan-Kuei; Chou, Ying-Hui; Sundman, Mark; Hickey, Patrick; Kasoff, Willard S; Bernstein, Adam; Trouard, Theodore P; Lin, Tanya; Rapcsak, Steven Z; Sherman, Scott J; Weingarten, Carol

    2018-06-07

    Many non-motor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion tensor imaging (DTI) is suitable for detecting changes of brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved ROI based analysis methods. Results showed that 1) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; 2) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.

  7. Structural Brain Atlases: Design, Rationale, and Applications in Normal and Pathological Cohorts

    PubMed Central

    Mandal, Pravat K.; Mahajan, Rashima; Dinov, Ivo D.

    2015-01-01

    Structural magnetic resonance imaging (MRI) provides anatomical information about the brain in healthy as well as in diseased conditions. On the other hand, functional MRI (fMRI) provides information on the brain activity during performance of a specific task. Analysis of fMRI data requires the registration of the data to a reference brain template in order to identify the activated brain regions. Brain templates also find application in other neuroimaging modalities, such as diffusion tensor imaging and multi-voxel spectroscopy. Further, there are certain differences (e.g., brain shape and size) in the brains of populations of different origin and during diseased conditions like in Alzheimer’s disease (AD), population and disease-specific brain templates may be considered crucial for accurate registration and subsequent analysis of fMRI as well as other neuroimaging data. This manuscript provides a comprehensive review of the history, construction and application of brain atlases. A chronological outline of the development of brain template design, starting from the Talairach and Tournoux atlas to the Chinese brain template (to date), along with their respective detailed construction protocols provides the backdrop to this manuscript. The manuscript also provides the automated workflow-based protocol for designing a population-specific brain atlas from structural MRI data using LONI Pipeline graphical workflow environment. We conclude by discussing the scope of brain templates as a research tool and their application in various neuroimaging modalities. PMID:22647262

  8. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS).

    PubMed

    Kretzschmar, M; Bieri, O; Miska, M; Wiewiorski, M; Hainc, N; Valderrabano, V; Studler, U

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm(2)/ms) was significantly higher compared to normal cartilage (1.46 μm(2)/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. • MRI is used to assess morphology of the repair tissue during follow-up. • Quantitative MRI allows an estimation of biochemical properties of the repair tissue. • Differences between repair tissue and cartilage were more significant with dwDESS than T2 mapping.

  9. Urea cycle disorders: brain MRI and neurological outcome.

    PubMed

    Bireley, William R; Van Hove, Johan L K; Gallagher, Renata C; Fenton, Laura Z

    2012-04-01

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions.

  10. Diffusion-weighted MRI monitoring of pancreatic cancer response to radiofrequency heat-enhanced intratumor chemotherapy.

    PubMed

    Zhang, Tong; Zhang, Feng; Meng, Yanfeng; Wang, Han; Le, Thomas; Wei, Baojie; Lee, Donghoon; Willis, Patrick; Shen, Baozhong; Yang, Xiaoming

    2013-12-01

    The aim of this study was to evaluate the feasibility of using diffusion-weighted MRI to monitor the early response of pancreatic cancers to radiofrequency heat (RFH)-enhanced chemotherapy. Human pancreatic carcinoma cells (PANC-1) in different groups and 24 mice with pancreatic cancer xenografts in four groups were treated with phosphate-buffered saline (PBS) as a control, RFH at 42 °C, gemcitabine and gemcitabine plus RFH at 42 °C. One day before and 1, 7 and 14 days after treatment, diffusion-weighted MRI and T2 -weighted imaging were applied to monitor the apparent diffusion coefficients (ADCs) of tumors and tumor growth. MRI findings were correlated with the results of tumor apoptosis analysis. In the in vitro experiments, the quantitative viability assay showed lower relative cell viabilities for treatment with gemcitabine plus RFH at 42 °C relative to treatment with RFH only and gemcitabine only (37 ± 5% versus 65 ± 4% and 58 ± 8%, respectively, p < 0.05). In the in vivo experiments, the combination therapy resulted in smaller relative tumor volumes than RFH only and chemotherapy only (0.82 ± 0.17 versus 2.23 ± 0.90 and 1.64 ± 0.44, respectively, p = 0.003). In vivo, 14-T MRI demonstrated a remarkable decrease in ADCs at day 1 and increased ADCs at days 7 and 14 in the combination therapy group. The apoptosis index in the combination therapy group was significantly higher than those in the chemotherapy-only, RFH-only and PBS treatment groups (37 ± 6% versus 20 ± 5%, 8 ± 2% and 3 ± 1%, respectively, p < 0.05). This study confirms that it is feasible to use MRI to monitor RFH-enhanced chemotherapy in pancreatic cancers, which may present new options for the efficient treatment of pancreatic malignancies using MRI/RFH-integrated local chemotherapy. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Assessing the multiscale architecture of muscular tissue with Q-space magnetic resonance imaging: Review.

    PubMed

    Hoffman, Matthew P; Taylor, Erik N; Aninwene, George E; Sadayappan, Sakthivel; Gilbert, Richard J

    2018-02-01

    Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue. © 2016 Wiley Periodicals, Inc.

  12. Assessing the clinical effect of residual cortical disconnection after ischemic strokes.

    PubMed

    Bonilha, Leonardo; Rorden, Chris; Fridriksson, Julius

    2014-04-01

    Studies assessing the relationship between chronic poststroke language impairment (aphasia) and ischemic brain damage usually rely on measuring the extent of brain necrosis observed on MRI. Nonetheless, clinical observation suggests that patients can exhibit deficits that are more severe than what would be expected based on lesion location and size. This phenomenon is commonly explained as being the result of cortical disconnection. To understand whether disconnection contributes to clinical symptoms, we assessed the relationship between language impairments and structural brain connectivity (the connectome) in patients with chronic aphasia after a stroke. Thirty-nine patients with chronic aphasia underwent language assessment and MRI scanning. Relying on MRI data, we reconstructed the individual connectome from T1-weighted and diffusion tensor imaging. Deterministic fiber tractography was used to assess connectivity between each possible pair of cortical Brodmann areas. Multiple linear regression analyses were performed to evaluate the relationship between language performance and cortical necrosis and cortical disconnection. We observed that structural disconnection of Brodmann area 45 (spared by the necrotic tissue) was independently associated with naming performance, controlling for the extent of Brodmann area 45 necrosis (F=4.62; P<0.01; necrosis: β=0.43; P=0.03; disconnection β=1.21; P<0.001). We suggest that cortical disconnection, as measured by the structural connectome, is an independent predictor of naming impairment in patients with chronic aphasia. The full extent of clinically relevant brain damage after an ischemic stroke may be underappreciated by visual inspection of cortical necrosis alone.

  13. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, C; Horton, J

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b =more » 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.« less

  14. Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.

    PubMed

    Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S

    2017-01-01

    The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.

  15. Evolution of ventriculomegaly: comparison between foetal MR imaging and postnatal diagnostic imaging.

    PubMed

    Mehrabi, Sara; Adami, Alessia; Ventriglia, Anna; Zantedeschi, Lisa; Franchi, Massimo; Manfredi, Riccardo

    2013-10-01

    We evaluated the evolution of ventriculomegaly (VM) by comparing foetal magnetic resonance imaging (MRI) with postnatal transcranial ultrasonography (US) and/or encephalic MRI. Between January 2006 and April 2011, 70 foetuses with a mean gestational age of 28 weeks and 4 days (range, 18-36) weeks with VM on foetal MRI were assessed in this prospective study. Half-Fourier rapid acquisition with relaxation enhancement (RARE) T2-weighted, T1-weighted and diffusion-weighted (DWI) images along the three orthogonal planes according to the longitudinal axis of the mother, and subsequently of the foetal brain, were acquired. Quantitative image analysis included the transverse diameter of lateral ventricles in axial and coronal planes. Qualitative image analysis included searching for associated structural anomalies. Thirty-four of 70 patients with a diagnosis of VM on foetal MRI underwent postnatal imaging. Twenty-five of those 34 (73%) had mild, four (12%) had moderate and five (15%) had severe VM on MRI. Normalisation of the diameter of lateral ventricles was observed in 16 of the 34 (47%) newborns. Among these 16, 13 (81%) had mild and three (19%) had moderate VM (two isolated and one associated VM). VM stabilisation was observed in 16 of the 34 (47%) babies. Among them, 11 (69%) had mild (eight isolated and three associated), one (6%) had moderate associated and four (25%) had severe associated VM. Progression from mild to severe (associated) VM was observed in two of the 34 (6%) babies. The absence of associated anomalies and a mild VM are favourable prognostic factors in the evolution of VM.

  16. Diffusion weighted imaging reflects variable cellularity and stromal density present in breast fibroadenomas

    PubMed Central

    Parsian, Sana; Giannakopoulos, Nadia V.; Rahbar, Habib; Rendi, Mara H.; Chai, Xiaoyu

    2016-01-01

    OBJECTIVE To determine the underlying histopathologic features influencing apparent diffusion coefficient (ADC) values of breast fibroadenomas. MATERIALS AND METHODS Biopsy proven fibroadenomas (n=26) initially identified as suspicious on breast MRI were retrospectively evaluated. Histopathological assessments of lesion cellularity and stromal type were compared with ADC measures on diffusion-weighted MRI. RESULTS Presence of epithelial hyperplasia (increased cellularity) and dense collagenous stroma were both significantly associated with lower lesion ADC values (p=0.02 and 0.004, respectively. CONCLUSION Variations in epithelial cellularity and stromal type influence breast lesion ADC values and may explain the wide range of ADC measures observed in benign fibroadenomas. PMID:27379441

  17. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children.

    PubMed

    Rose, Jessica; Butler, Erin E; Lamont, Lauren E; Barnes, Patrick D; Atlas, Scott W; Stevenson, David K

    2009-07-01

    The neurological basis of an increased incidence of cerebral palsy (CP) in preterm males is unknown. This study examined neonatal brain structure on magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) at term-equivalent age, sex, and neurodevelopment at 1 year 6 months on the basis of the Amiel-Tison neurological examination, Gross Motor Function Classification System, and Bayley Scales of Infant Development in 78 very-low-birthweight preterm children (41 males, 37 females; mean gestational age 27.6 wks, SD 2.5; mean birthweight 1021 g, SD 339). Brain abnormalities on MRI and DTI were not different between males and females except in the splenium of the corpus callosum, where males had lower DTI fractional anisotropy (p=0.025) and a higher apparent diffusion coefficient (p=0.013), indicating delayed splenium development. In the 26 infants who were at higher risk on the basis of DTI, males had more abnormalities on MRI (p=0.034) and had lower fractional anisotropy and a higher apparent diffusion coefficient in the splenium (p=0.049; p=0.025) and right posterior limb of the internal capsule (PLIC; p=0.003; p=0.033). Abnormal neurodevelopment was more common in males (n=9) than in females (n=2; p=0.036). Children with abnormal neurodevelopment had more abnormalities on MRI (p=0.014) and reduced splenium and right PLIC fractional anisotropy (p=0.001; p=0.035). In children with abnormal neurodevelopment, right PLIC fractional anisotropy was lower than left (p=0.035), whereas in those with normal neurodevelopment right PLIC fractional anisotropy was higher than left (p=0.001). Right PLIC fractional anisotropy correlated to neurodevelopment (rho=0.371, p=0.002). Logistic regression predicted neurodevelopment with 94% accuracy; only right PLIC fractional anisotropy was a significant logistic coefficient. Results indicate that the higher incidence of abnormal neurodevelopment in preterm males relates to greater incidence and severity of brain abnormalities, including reduced PLIC and splenium development.

  18. The role of diffusion-weighted MR imaging for differentiating benign from malignant bile duct strictures.

    PubMed

    Park, Hyun Jeong; Kim, Seong Hyun; Jang, Kyung Mi; Choi, Seo-youn; Lee, Soon Jin; Choi, Dongil

    2014-04-01

    To assess the added value of diffusion-weighted imaging (DWI) to conventional magnetic resonance imaging (MRI) for differentiating benign from malignant bile duct strictures. Twenty-seven patients with a benign stricture and 42 patients with a malignant stricture who had undergone gadoxetic acid-enhanced MRI with DWI were enrolled. Qualitative (signal intensity, dynamic enhancement pattern) and quantitative (wall thickness and length) analyses were performed. Two observers independently reviewed a set of conventional MRI and a combined set of conventional MRI and DWI, and receiver operating characteristic (ROC) curve analysis was assessed. Benign strictures showed isointensity (18.5-70.4 %) and a similar enhancement pattern (22.2 %) to that of normal bile duct more frequently than malignant strictures (0-40.5 % and 0 %) on conventional MRI (P < 0.05). Malignant strictures (90.5-92.9 %) showed hypervascularity on arterial and portal venous phase images more frequently than benign strictures (37.0-70.4 %) (P < 0.01) On DWI, all malignant strictures showed hyperintensity compared with benign cases (70.4 %) (P < 0.001). Malignant strictures were significantly thicker and longer than benign strictures (P < 0.001). The diagnostic performance of both observers improved significantly after additional review of DWI. Adding DWI to conventional MRI is more helpful for differentiating benign from malignant bile duct strictures than conventional MRI alone. • Accurate diagnosis and exclusion of benign strictures of bile duct are important. • Diffusion-weighted MRI helps to distinguish benign from malignant bile duct strictures. • DWI plus conventional MRI provides superior diagnostic accuracy to conventional MRI alone.

  19. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization.

    PubMed

    Sauwen, Nicolas; Acou, Marjan; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Huffel, Sabine Van

    2017-05-04

    Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments. We present a semi-automated framework for brain tumor segmentation based on non-negative matrix factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional, perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing each patient's dataset with a different set of random seeding points. Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2 mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff distances are found without L1-regularization and when only considering conventional MRI data. Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with state-of-the-art in literature. Robust results were found for most patients, although careful voxel selection is mandatory to avoid sub-optimal segmentation.

  20. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  1. Unilateral or bilateral punctate hippocampal hyperintensities on DW-MRI: seizures, amnesia, or both?

    PubMed

    Bocos-Portillo, Jone; Escalza-Cortina, Inés; Gómez-Beldarrain, Marian; Rodriguez-Sainz, Aida; Garcia-Monco, Juan Carlos

    2018-06-02

    The presence of small hippocampal hyperintense lesions on diffusion-weighted (DW) MRI can respond to different etiologies and represents a challenge where clinical judgment is imperative, since therapeutic approach may be quite different.We here report three patients with similar neuroradiological findings, i.e., hyperintense punctate hippocampal lesions on diffusion-weighted MRI sequences, yet of different origin. The first one presented with isolated amnesia (transient global amnesia), the second one with amnesia and seizures, and the third one with seizures.Thus, hippocampal punctate lesions appear after transient global amnesia, but the same pattern may be present after seizures, either focal-onset or generalized seizures. This peculiar radiological MRI pattern could indicate a pathogenic link between transient global amnesia (TGA) and seizures which should be further studied.

  2. Prenatal MR imaging of a meconium pseudocyst extending to the right subphrenic space with right lung compression.

    PubMed

    Wong, Alex M; Toh, Cheng-Hong; Lien, Reyin; Chao, An-Shine; Wong, Ho-Fai; Ng, Koon-Kwan

    2006-11-01

    Meconium pseudocyst results from a loculated inflammation occurring in response to spillage of meconium into the peritoneal cavity after a bowel perforation. Certain cystic lesions, such as abscesses and dermoid and epidermoid cysts, are known to show reduced water diffusion on DWI. MRI has recently become a valuable adjunct to ultrasonography for fetal gastrointestinal anomalies. Complementary to ultrasonography, prenatal MRI can help further characterize the lesion and can clearly demonstrate the anatomical relationship between the lesion and adjacent organs. We report a case of meconium pseudocyst that was prenatally imaged with ultrasonography and MRI, postnatally complicated by pneumoperitoneum, and proved by postnatal surgery and histopathology. We emphasize the MRI of the pseudocyst, particularly T1-weighted and diffusion-weighted imaging.

  3. Brain activation by music in patients in a vegetative or minimally conscious state following diffuse brain injury.

    PubMed

    Okumura, Yuka; Asano, Yoshitaka; Takenaka, Shunsuke; Fukuyama, Seisuke; Yonezawa, Shingo; Kasuya, Yukinori; Shinoda, Jun

    2014-01-01

    The aim of this study was to objectively evaluate the brain activity potential of patients with impaired consciousness in a chronic stage of diffuse brain injury (DBI) using functional MRI (fMRI) following music stimulation (MS). Two patients in a minimally conscious state (MCS) and five patients in a vegetative state (VS) due to severe DBI were enrolled along with 21 healthy adults. This study examined the brain regions activated by music and assessed topographical differences of the MS-activated brain among healthy adults and these patients. MS was shown to activate the bilateral superior temporal gyri (STG) of both healthy adults and patients in an MCS. In four of five patients in a VS, however, no significant activation in STG could be induced by the same MS. The remaining patient in a VS displayed the same MS-induced brain activation in STG as healthy adults and patients in an MCS and this patient's status also improved to an MCS 4 months after the study. The presence of STG activation by MS may predict a possible improvement of patients in a VS to MCS and fMRI employing MS may be a useful modality to objectively evaluate consciousness in these patients.

  4. Alterations of parenchymal microstructure, neuronal connectivity and cerebrovascular resistance at adolescence following mild to moderate traumatic brain injury in early development.

    PubMed

    Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar

    2018-06-01

    TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.

  5. Aggressive Angiomyxoma with Diffusion-Weighted Magnetic Resonance Imaging and Dynamic Contrast Enhancement: A Case Report and Review of the Literature

    PubMed Central

    Brunelle, S.; Bertucci, F.; Chetaille, B.; Lelong, B.; Piana, G.; Sarran, A.

    2013-01-01

    Introduction Aggressive angiomyxoma (AA) is a rare benign soft tissue tumour usually affecting the pelvis and perineum of young women. Magnetic resonance imaging (MRI) is crucial in the management of AA patients for its diagnostic contribution and for the preoperative assessment of the actual tumour extension. Given the current development of less aggressive therapeutics associated with a higher risk of recurrence, close follow-up with MRI is fundamental after treatment. In this context, diffusion-weighted (DW) imaging has already shown high efficacy in the detection of early small relapses in prostate or rectal cancer. Case Report We report here a case of pelvic AA in a 51-year-old woman examined with dynamic contrast enhancement and DW-MRI, including apparent diffusion coefficient mapping and calculation. Conclusion To our knowledge, this is the first description of DW-MRI in AA reported in the literature. Here, knowledge about imaging features of AA will be reviewed and expanded. PMID:23904848

  6. Aggressive angiomyxoma with diffusion-weighted magnetic resonance imaging and dynamic contrast enhancement: a case report and review of the literature.

    PubMed

    Brunelle, S; Bertucci, F; Chetaille, B; Lelong, B; Piana, G; Sarran, A

    2013-05-01

    Aggressive angiomyxoma (AA) is a rare benign soft tissue tumour usually affecting the pelvis and perineum of young women. Magnetic resonance imaging (MRI) is crucial in the management of AA patients for its diagnostic contribution and for the preoperative assessment of the actual tumour extension. Given the current development of less aggressive therapeutics associated with a higher risk of recurrence, close follow-up with MRI is fundamental after treatment. In this context, diffusion-weighted (DW) imaging has already shown high efficacy in the detection of early small relapses in prostate or rectal cancer. We report here a case of pelvic AA in a 51-year-old woman examined with dynamic contrast enhancement and DW-MRI, including apparent diffusion coefficient mapping and calculation. To our knowledge, this is the first description of DW-MRI in AA reported in the literature. Here, knowledge about imaging features of AA will be reviewed and expanded.

  7. Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.

    PubMed

    Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit

    2012-04-01

    We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.

  8. Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen

    PubMed Central

    Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti

    2015-01-01

    Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079

  9. Accuracy of magnetic resonance imaging in differentiating between benign and malignant vertebral lesions: role of diffusion-weighted imaging, in-phase/opposed-phase imaging and apparent diffusion coefficient.

    PubMed

    Martel Villagrán, J; Bueno Horcajadas, Á; Pérez Fernández, E; Martín Martín, S

    2015-01-01

    To determine the ability of MRI to distinguish between benign and malignant vertebral lesions. We included 85 patients and studied a total of 213 vertebrae (both pathologic and normal). For each vertebra, we determined whether the lesion was hypointense in T1-weighted sequences and whether it was hyperintense in STIR and in diffusion-weighted sequences. We calculated the in-phase/out-of-phase quotient and the apparent diffusion coefficient for each vertebra. We combined parameters from T1-weighted, diffusion-weighted, and STIR sequences to devise a formula to distinguish benign from malignant lesions. The group comprised 60 (70.6%) women and 25 (29.4%) men with a mean age of 67±13.5 years (range, 33-90 y). Of the 85 patients, 26 (30.6%) had a known primary tumor. When the lesion was hypointense on T1-weighted sequences, hyperintense on STIR and diffusion-weighted sequences, and had a signal intensity quotient greater than 0.8, the sensitivity was 97.2%, the specificity was 90%, and the diagnostic accuracy was 91.2%. If the patient had a known primary tumor, these values increased to 97.2%, 99.4%, and 99%, respectively. Benign lesions can be distinguished from malignant lesions if we combine the information from T1-weighted, STIR, and diffusion-weighted sequences together with the in-phase/out-of-phase quotient of the lesion detected in the vertebral body on MRI. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  10. Relative diffusion of paramagnetic metal complexes of MRI contrast agents in an isotropic hydrogel medium.

    PubMed

    Weerakoon, Bimali Sanjeevani; Osuga, Toshiaki

    2017-03-01

    The observation of molecular diffusion by means of magnetic resonance imaging (MRI) is significant in the evaluation of the metabolic activity of living tissues. Series of MRI examinations were conducted on a diffusion model to study the behaviour of the diffusion process of different-molecular-weight (MW) paramagnetic MRI contrast agents in an isotropic agar hydrogel medium. The model consisted of a solidified 1 % agar gel with an initial concentration of 0.5 mmol/L contrast solution layered on top of the gel. The diffusion process was monitored at pre-determined time intervals of immediately, 1, 6, 9, 23, and 48 h after introduction of the contrast agents onto the agar gel with a T1-weighted spin-echo (SE) pulse sequence. Three types of paramagnetic contrast agents, Gd-DTPA with a MW of 547.57 g/mol, Prohance with a MW of 558.69 g/mol and MnCl 2 with a MW of 125.84 g/mol, resulted in an approximate average diffusional displacement ratio of 1:1:2 per hour, respectively, within 48 h of the experiment. Therefore, the results of this study supported the hypothesis that the rate of the diffusion process of MRI contrast agents in the agar hydrogel medium is inversely related to their MWs. However, more repetitions are necessary under various types of experimental conditions and also with various types of contrast media of different MWs for further confirmation and validation of these results.

  11. Diffusion MRI in the heart

    PubMed Central

    Mekkaoui, Choukri; Reese, Timothy G.; Jackowski, Marcel P.; Bhat, Himanshu

    2015-01-01

    Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non‐rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion‐weighted MR acquisition sequences combined with advanced post‐processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual‐gated stimulated echo approach, a velocity‐ (M 1) or an acceleration‐ (M 2) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well‐established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26484848

  12. Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI.

    PubMed

    Barnett, Madeleine L; Tusor, Nora; Ball, Gareth; Chew, Andrew; Falconer, Shona; Aljabar, Paul; Kimpton, Jessica A; Kennea, Nigel; Rutherford, Mary; David Edwards, A; Counsell, Serena J

    2018-01-01

    Preterm infants are at high risk of diffuse white matter injury and adverse neurodevelopmental outcome. The multiple hit hypothesis suggests that the risk of white matter injury increases with cumulative exposure to multiple perinatal risk factors. Our aim was to test this hypothesis in a large cohort of preterm infants using diffusion weighted magnetic resonance imaging (dMRI). We studied 491 infants (52% male) without focal destructive brain lesions born at < 34 weeks, who underwent structural and dMRI at a specialist Neonatal Imaging Centre. The median (range) gestational age (GA) at birth was 30 + 1 (23 + 2 -33 + 5 ) weeks and median postmenstrual age at scan was 42 + 1 (38-45) weeks. dMRI data were analyzed using tract based spatial statistics and the relationship between dMRI measures in white matter and individual perinatal risk factors was assessed. We tested the hypothesis that increased exposure to perinatal risk factors was associated with lower fractional anisotropy (FA), and higher radial, axial and mean diffusivity (RD, AD, MD) in white matter. Neurodevelopmental performance was investigated using the Bayley Scales of Infant and Toddler Development, Third Edition (BSITD-III) in a subset of 381 infants at 20 months corrected age. We tested the hypothesis that lower FA and higher RD, AD and MD in white matter were associated with poorer neurodevelopmental performance. Identified risk factors for diffuse white matter injury were lower GA at birth, fetal growth restriction, increased number of days requiring ventilation and parenteral nutrition, necrotizing enterocolitis and male sex. Clinical chorioamnionitis and patent ductus arteriosus were not associated with white matter injury. Multivariate analysis demonstrated that fetal growth restriction, increased number of days requiring ventilation and parenteral nutrition were independently associated with lower FA values. Exposure to cumulative risk factors was associated with reduced white matter FA and FA values at term equivalent age were associated with subsequent neurodevelopmental performance. This study suggests multiple perinatal risk factors have an independent association with diffuse white matter injury at term equivalent age and exposure to multiple perinatal risk factors exacerbates dMRI defined, clinically significant white matter injury. Our findings support the multiple hit hypothesis for preterm white matter injury.

  13. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI.

    PubMed

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-12-09

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2  = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.

  14. Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T.

    PubMed

    Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien

    2016-04-01

    Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (t d) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long t d (from 86 to 1,011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the t d-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels, respectively, containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (t d varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging.

  15. Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T

    PubMed Central

    Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien

    2016-01-01

    Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (td) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long td (from 86 ms to 1011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the td-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels respectively containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (td varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging. PMID:25520054

  16. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.

    PubMed

    Howell, Brittany R; Styner, Martin A; Gao, Wei; Yap, Pew-Thian; Wang, Li; Baluyot, Kristine; Yacoub, Essa; Chen, Geng; Potts, Taylor; Salzwedel, Andrew; Li, Gang; Gilmore, John H; Piven, Joseph; Smith, J Keith; Shen, Dinggang; Ugurbil, Kamil; Zhu, Hongtu; Lin, Weili; Elison, Jed T

    2018-03-22

    The human brain undergoes extensive and dynamic growth during the first years of life. The UNC/UMN Baby Connectome Project (BCP), one of the Lifespan Connectome Projects funded by NIH, is an ongoing study jointly conducted by investigators at the University of North Carolina at Chapel Hill and the University of Minnesota. The primary objective of the BCP is to characterize brain and behavioral development in typically developing infants across the first 5 years of life. The ultimate goals are to chart emerging patterns of structural and functional connectivity during this period, map brain-behavior associations, and establish a foundation from which to further explore trajectories of health and disease. To accomplish these goals, we are combining state of the art MRI acquisition and analysis techniques, including high-resolution structural MRI (T1-and T2-weighted images), diffusion imaging (dMRI), and resting state functional connectivity MRI (rfMRI). While the overall design of the BCP largely is built on the protocol developed by the Lifespan Human Connectome Project (HCP), given the unique age range of the BCP cohort, additional optimization of imaging parameters and consideration of an age appropriate battery of behavioral assessments were needed. Here we provide the overall study protocol, including approaches for subject recruitment, strategies for imaging typically developing children 0-5 years of age without sedation, imaging protocol and optimization, a description of the battery of behavioral assessments, and QA/QC procedures. Combining HCP inspired neuroimaging data with well-established behavioral assessments during this time period will yield an invaluable resource for the scientific community. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2012-09-01

    fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of the neural changes...orthopedic injuries. We accomplished this goal by conducting advanced neuroimaging (task-activated fMRI and DTI fiber tracking) and neurobehavioral

  18. Readout-segmented multi-shot diffusion-weighted MRI of the knee joint in patients with juvenile idiopathic arthritis.

    PubMed

    Sauer, Alexander; Li, Mengxia; Holl-Wieden, Annette; Pabst, Thomas; Neubauer, Henning

    2017-10-12

    Diffusion-weighted MRI has been proposed as a new technique for imaging synovitis without intravenous contrast application. We investigated diagnostic utility of multi-shot readout-segmented diffusion-weighted MRI (multi-shot DWI) for synovial imaging of the knee joint in patients with juvenile idiopathic arthritis (JIA). Thirty-two consecutive patients with confirmed or suspected JIA (21 girls, median age 13 years) underwent routine 1.5 T MRI with contrast-enhanced T1w imaging (contrast-enhanced MRI) and with multi-shot DWI (RESOLVE, b-values 0-50 and 800 s/mm 2 ). Contrast-enhanced MRI, representing the diagnostic standard, and diffusion-weighted images at b = 800 s/mm 2 were separately rated by three independent blinded readers at different levels of expertise for the presence and the degree of synovitis on a modified 5-item Likert scale along with the level of subjective diagnostic confidence. Fourteen (44%) patients had active synovitis and joint effusion, nine (28%) patients showed mild synovial enhancement not qualifying for arthritis and another nine (28%) patients had no synovial signal alterations on contrast-enhanced imaging. Ratings by the 1st reader on contrast-enhanced MRI and on DWI showed substantial agreement (κ = 0.74). Inter-observer-agreement was high for diagnosing, or ruling out, active arthritis of the knee joint on contrast-enhanced MRI and on DWI, showing full agreement between 1st and 2nd reader and disagreement in one case (3%) between 1st and 3rd reader. In contrast, ratings in cases of absent vs. little synovial inflammation were markedly inconsistent on DWI. Diagnostic confidence was lower on DWI, compared to contrast-enhanced imaging. Multi-shot DWI of the knee joint is feasible in routine imaging and reliably diagnoses, or rules out, active arthritis of the knee joint in paediatric patients without the need of gadolinium-based i.v. contrast injection. Possibly due to "T2w shine-through" artifacts, DWI does not reliably differentiate non-inflamed joints from knee joints with mild synovial irritation.

  19. Does hydration status affect MRI measures of brain volume or water content?

    PubMed

    Meyers, Sandra M; Tam, Roger; Lee, Jimmy S; Kolind, Shannon H; Vavasour, Irene M; Mackie, Emilie; Zhao, Yinshan; Laule, Cornelia; Mädler, Burkhard; Li, David K B; MacKay, Alex L; Traboulsee, Anthony L

    2016-08-01

    To determine whether differences in hydration state, which could arise from routine clinical procedures such as overnight fasting, affect brain total water content (TWC) and brain volume measured with magnetic resonance imaging (MRI). Twenty healthy volunteers were scanned with a 3T MR scanner four times: day 1, baseline scan; day 2, hydrated scan after consuming 3L of water over 12 hours; day 3, dehydrated scan after overnight fasting of 9 hours, followed by another scan 1 hour later for reproducibility. The following MRI data were collected: T2 relaxation (for TWC measurement), inversion recovery (for T1 measurement), and 3D T1 -weighted (for brain volumes). Body weight and urine specific gravity were also measured. TWC was calculated by fitting the T2 relaxation data with a nonnegative least-squares algorithm, with corrections for T1 relaxation and image signal inhomogeneity and normalization to ventricular cerebrospinal fluid. Brain volume changes were measured using SIENA. TWC means were calculated within 14 tissue regions. Despite indications of dehydration as demonstrated by increases in urine specific gravity (P = 0.03) and decreases in body weight (P = 0.001) between hydrated and dehydrated scans, there was no measurable change in TWC (within any brain region) or brain volume between hydration states. We demonstrate that within a range of physiologic conditions commonly encountered in routine clinical scans (no pretreatment with hydration, well hydrated before MRI, and overnight fasting), brain TWC and brain volumes are not substantially affected in a healthy control cohort. J. Magn. Reson. Imaging 2016;44:296-304. © 2016 Wiley Periodicals, Inc.

  20. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation.

    PubMed

    Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M

    2013-09-01

    Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion (lower ADC values) is associated with multiple MRI findings that are traditionally associated with active inflammation in pediatric small bowel Crohn disease.

  1. White matter changes in an untreated, newly diagnosed case of classical homocystinuria.

    PubMed

    Brenton, J Nicholas; Matsumoto, Julie A; Rust, Robert S; Wilson, William G

    2014-01-01

    The authors report the case of a 4-year-old boy who developed progressive unilateral weakness and developmental delays prior to his diagnosis of classical homocystinuria. Magnetic resonance imaging (MRI) of the brain demonstrated diffuse white matter changes, raising the concern for a secondary diagnosis causing leukoencephalopathy, since classical homocystinuria is not typically associated with these changes. Other inborn errors of the transsulfuration pathway have been reported as causing these changes. Once begun on therapy for his homocystinuria, his neurologic deficits resolved and his delays rapidly improved. Repeat MRI performed one year after instating therapy showed resolution of his white matter abnormalities. This case illustrates the need to consider homocystinuria and other amino acidopathies in the differential diagnosis of childhood white matter diseases and lends weight to the hypothesis that hypermethioninemia may induce white matter changes.

  2. Evaluation of neonatal brain myelination using the T1- and T2-weighted MRI ratio.

    PubMed

    Soun, Jennifer E; Liu, Michael Z; Cauley, Keith A; Grinband, Jack

    2017-09-01

    To validate the T1- and T2-weighted (T1w/T2w) MRI ratio technique in evaluating myelin in the neonatal brain. T1w and T2w MR images of 10 term neonates with normal-appearing brain parenchyma were obtained from a single 1.5 Tesla MRI and retrospectively analyzed. T1w/T2w ratio images were created with a postprocessing pipeline and qualitatively compared with standard clinical sequences (T1w, T2w, and apparent diffusion coefficient [ADC]). Quantitative assessment was also performed to assess the ratio technique in detecting areas of known myelination (e.g., posterior limb of the internal capsule) and very low myelination (e.g., optic radiations) using linear regression analysis and the Michelson Contrast equation, a measure of luminance contrast intensity. The ratio image provided qualitative improvements in the ability to visualize regional variation in myelin content of neonates. Linear regression analysis demonstrated a significant inverse relationship between the ratio intensity values and ADC values in the posterior limb of the internal capsule and the optic radiations (R 2  = 0.96 and P < 0.001). The Michelson Contrast equation showed that contrast differences between these two regions for the ratio images were 1.6 times higher than T1w, 2.6 times higher than T2w, and 1.8 times higher than ADC (all P < 0.001). Finally, the ratio improved visualization of the corticospinal tract, one of the earliest myelinated pathways. The T1w/T2w ratio accentuates contrast between myelinated and less myelinated structures and may enhance our diagnostic ability to detect myelination patterns in the neonatal brain. 2 Technical Efficacy: Stage2 J. MAGN. RESON. IMAGING 2017;46:690-696. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Multi-Tiered Analysis of Brain Injury in Neonates with Congenital Heart Disease

    PubMed Central

    Mulkey, Sarah B.; Swearingen, Christopher J.; Melguizo, Maria S.; Schmitz, Michael L.; Ou, Xiawei; Ramakrishnaiah, Raghu H.; Glasier, Charles M.; Schaefer, G. Bradley; Bhutta, Adnan T.

    2014-01-01

    Early brain injury occurs in newborns with congenital heart disease (CHD) placing them at risk for impaired neurodevelopmental outcomes. Predictors for preoperative brain injury have not been well described in CHD newborns. This study aimed to analyze, retrospectively, brain magnetic resonance imaging (MRI) in a heterogeneous group of newborns who had CHD surgery during the first month of life using a detailed qualitative CHD MRI Injury Score, quantitative imaging assessments (regional apparent diffusion coefficient [ADC] values and brain volumes), and clinical characteristics. Seventy-three newborns that had CHD surgery at 8 ± 5 (mean ± standard deviation) days of life and preoperative brain MRI were included; 38 also had postoperative MRI. Thirty-four (34/73, 47%) had at least 1 type of preoperative brain injury, and 28/38 (74%) had postoperative brain injury. The 5-minute APGAR score was negatively associated with preoperative injury, but there was no difference between CHD types. Infants with intraparenchymal hemorrhage, deep gray matter injury, and/or watershed infarcts had the highest CHD MRI Injury Scores. ADC values and brain volumes were not different in infants with different CHD types, or in those with and without brain injury. In a mixed group of CHD newborns, brain injury was found preoperatively on MRI in almost 50%, and there were no significant baseline characteristic differences to predict this early brain injury, except 5-minute APGAR score. We conclude that all infants, regardless of CHD type, who require early surgery, should be evaluated with MRI as they are all at high risk for brain injury. PMID:23652966

  4. Diffusion MRI in the heart.

    PubMed

    Mekkaoui, Choukri; Reese, Timothy G; Jackowski, Marcel P; Bhat, Himanshu; Sosnovik, David E

    2017-03-01

    Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non-rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion-weighted MR acquisition sequences combined with advanced post-processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual-gated stimulated echo approach, a velocity- (M 1 ) or an acceleration- (M 2 ) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well-established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  5. Risk and protective factors for structural brain ageing in the eighth decade of life.

    PubMed

    Ritchie, Stuart J; Tucker-Drob, Elliot M; Cox, Simon R; Dickie, David Alexander; Del C Valdés Hernández, Maria; Corley, Janie; Royle, Natalie A; Redmond, Paul; Muñoz Maniega, Susana; Pattie, Alison; Aribisala, Benjamin S; Taylor, Adele M; Clarke, Toni-Kim; Gow, Alan J; Starr, John M; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2017-11-01

    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing.

  6. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients.

    PubMed

    Bonnier, Guillaume; Maréchal, Benedicte; Fartaria, Mário João; Falkowskiy, Pavel; Marques, José P; Simioni, Samanta; Schluep, Myriam; Du Pasquier, Renaud; Thiran, Jean-Philippe; Krueger, Gunnar; Granziera, Cristina

    2017-01-01

    Quantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI) metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients. Thirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA) tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue. In patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter ( p  = 0.005) and a decrease of T1 relaxation times in the pallidum ( p  < 0.05), which are compatible with edema reabsorption and/or iron deposition. No longitudinal changes in qMRI metrics were observed in controls. In MS lesions, we measured a decrease in T1 relaxation time ( p -value < 2.2e-16) and a significant increase in MTR ( p -value < 1e-6), suggesting repair mechanisms, such as remyelination, increased axonal density, and/or a gliosis. Last, the evolution of advanced MRI metrics-and not changes in lesions or brain volume-were correlated to motor and cognitive tests scores evolution (Adj- R 2  > 0.4, p  < 0.05). In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at early MS stages as suggested by histopathological studies.

  7. The role of high-field magnetic resonance imaging in parkinsonian disorders: Pushing the boundaries forward.

    PubMed

    Lehericy, Stéphane; Vaillancourt, David E; Seppi, Klaus; Monchi, Oury; Rektorova, Irena; Antonini, Angelo; McKeown, Martin J; Masellis, Mario; Berg, Daniela; Rowe, James B; Lewis, Simon J G; Williams-Gray, Caroline H; Tessitore, Alessandro; Siebner, Hartwig R

    2017-04-01

    Historically, magnetic resonance imaging (MRI) has contributed little to the study of Parkinson's disease (PD), but modern MRI approaches have unveiled several complementary markers that are useful for research and clinical applications. Iron- and neuromelanin-sensitive MRI detect qualitative changes in the substantia nigra. Quantitative MRI markers can be derived from diffusion weighted and iron-sensitive imaging or volumetry. Functional brain alterations at rest or during task performance have been captured with functional and arterial spin labeling perfusion MRI. These markers are useful for the diagnosis of PD and atypical parkinsonism, to track disease progression from the premotor stages of these diseases and to better understand the neurobiological basis of clinical deficits. A current research goal using MRI is to generate time-dependent models of the evolution of PD biomarkers that can help understand neurodegeneration and provide reliable markers for therapeutic trials. This article reviews recent advances in MRI biomarker research at high-field (3T) and ultra high field-imaging (7T) in PD and atypical parkinsonism. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

  8. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals.

    PubMed

    Menant, Ophélie; Andersson, Frédéric; Zelena, Dóra; Chaillou, Elodie

    2016-11-01

    The periaqueductal gray (PAG) is a mesencephalic brain structure involved in the expression of numerous behaviours such as maternal, sexual and emotional. Histological approaches showed the PAG is composed by subdivisions with specific cell organisation, neurochemical composition and connections with the rest of the brain. The comparison of studies performed in rodents and cats as the most often examined species, suggests that PAG organisation differs between mammals. However, we should also consider the plurality of the methods used in these studies that makes difficult the comparison of the PAG organisation between species. Therefore, to study the PAG in all mammals including human, the most relevant in vivo imaging method seems to be the magnetic resonance imaging (MRI). The purpose of this review was to summarize the knowledge of the anatomical organisation of the PAG in mammals and highlights the benefits of MRI methods to extend this knowledge. Results obtained by MRI so far support the conclusions of ex vivo studies, especially to describe the subdivisions and the connections of the PAG. In these latter, diffusion-weighted MRI and functional connectivity seem the most appropriate methods. In conclusion firstly, the MRI seems to be the best judicious method to compare species and improve the comprehension of the role of the PAG. Secondly, MRI is an in vivo method aimed to manage repeated measures in the same cohort of subjects allowing to study the impact of aging and the development on the anatomical organisation of the PAG. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Added value of high-b-value (b = 3000 s/mm2) diffusion-weighted imaging at 3 T in relation to fluid-attenuated inversion recovery images for the evaluation of cortical lesions in inflammatory brain diseases.

    PubMed

    Iwashita, Koya; Hirai, Toshinori; Kitajima, Mika; Shigematsu, Yoshinori; Uetani, Hiroyuki; Iryo, Yasuhiko; Azuma, Minako; Hayashida, Eri; Ando, Yukio; Murakami, Ryuji; Yamashita, Yasuyuki

    2013-01-01

    The purpose of this study was to determine how the gray-to-white matter contrast in healthy subjects changes on high-b-value diffusion-weighted imaging (DWI) acquired at 3 T and evaluate whether high-b-value DWI at 3 T is useful for the detection of cortical lesions in inflammatory brain diseases. Ten healthy volunteers underwent DWI at b = 1000, 2000, 3000, 4000, and 5000 s/mm(2) on a 3-T MRI unit. On DW images, 1 radiologist performed region-of-interest measurements of the signal intensity of 8 gray matter structures. The gray-to-white matter contrast ratio (GWCR) was calculated. Ten patients with inflammatory cortical lesions were also included. All patients underwent conventional MRI and DWI at b = 1000 and 3000 s/mm(2). Using a 4-point grading system, 2 radiologists independently assessed the presence of additional information on DW images compared with fluid-attenuated inversion recovery images. Interobserver agreement was assessed by κ statistics. In the healthy subjects, the b value increased as the GWCR decreased in all evaluated gray matter structures. On DW images acquired at b = 3000 s/mm(2), mean GWCR was less than 1.0 in 7 of 8 structures. For both reviewers, DWI at b = 3000 s/mm(2) yielded significantly more additional information than did DWI at b = 1000 s/mm(2) (P < 0.05). Interobserver agreement for DWI at b = 1000 s/mm(2) and b = 3000 s/mm(2) was fair (κ = 0.35) and excellent (κ = 1.0), respectively. At 3-T DWI, the gray-to-white matter contrast in most gray matter structures reverses at b = 3000 s/mm. In the evaluation of cortical lesions in patients with inflammatory brain diseases, 3-T DWI at b = 3000 s/mm was more useful than b = 1000 s/mm(2).

  10. Quantitative analysis of diffusion tensor orientation: theoretical framework.

    PubMed

    Wu, Yu-Chien; Field, Aaron S; Chung, Moo K; Badie, Benham; Alexander, Andrew L

    2004-11-01

    Diffusion-tensor MRI (DT-MRI) yields information about the magnitude, anisotropy, and orientation of water diffusion of brain tissues. Although white matter tractography and eigenvector color maps provide visually appealing displays of white matter tract organization, they do not easily lend themselves to quantitative and statistical analysis. In this study, a set of visual and quantitative tools for the investigation of tensor orientations in the human brain was developed. Visual tools included rose diagrams, which are spherical coordinate histograms of the major eigenvector directions, and 3D scatterplots of the major eigenvector angles. A scatter matrix of major eigenvector directions was used to describe the distribution of major eigenvectors in a defined anatomic region. A measure of eigenvector dispersion was developed to describe the degree of eigenvector coherence in the selected region. These tools were used to evaluate directional organization and the interhemispheric symmetry of DT-MRI data in five healthy human brains and two patients with infiltrative diseases of the white matter tracts. In normal anatomical white matter tracts, a high degree of directional coherence and interhemispheric symmetry was observed. The infiltrative diseases appeared to alter the eigenvector properties of affected white matter tracts, showing decreased eigenvector coherence and interhemispheric symmetry. This novel approach distills the rich, 3D information available from the diffusion tensor into a form that lends itself to quantitative analysis and statistical hypothesis testing. (c) 2004 Wiley-Liss, Inc.

  11. Parametric dictionary learning for modeling EAP and ODF in diffusion MRI.

    PubMed

    Merlet, Sylvain; Caruyer, Emmanuel; Deriche, Rachid

    2012-01-01

    In this work, we propose an original and efficient approach to exploit the ability of Compressed Sensing (CS) to recover diffusion MRI (dMRI) signals from a limited number of samples while efficiently recovering important diffusion features such as the ensemble average propagator (EAP) and the orientation distribution function (ODF). Some attempts to sparsely represent the diffusion signal have already been performed. However and contrarly to what has been presented in CS dMRI, in this work we propose and advocate the use of a well adapted learned dictionary and show that it leads to a sparser signal estimation as well as to an efficient reconstruction of very important diffusion features. We first propose to learn and design a sparse and parametric dictionary from a set of training diffusion data. Then, we propose a framework to analytically estimate in closed form two important diffusion features: the EAP and the ODF. Various experiments on synthetic, phantom and human brain data have been carried out and promising results with reduced number of atoms have been obtained on diffusion signal reconstruction, thus illustrating the added value of our method over state-of-the-art SHORE and SPF based approaches.

  12. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

    PubMed

    Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N

    2018-05-28

    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Neonatal neuroimaging: going beyond the pictures.

    PubMed

    Ramenghi, Luca A; Rutherford, Mary; Fumagalli, Monica; Bassi, Laura; Messner, Hubert; Counsell, Serena; Mosca, Fabio

    2009-10-01

    The cerebral ultrasound has been used many years for the diagnosis of brain lesions in term and preterm newborns. Major improvements were obtained by the combination of different imaging modalities such as Magnetic Resonance Imaging with the Diffusion Weighted Imaging (DWI) and the new quantitative Diffusion Tensor Imaging (DTI). The clinical use of MRI has been validated over some years especially to depict the perinatal asphyxia lesions in term newborns, but its use in order to diagnose the typical diseases of preterm babies is very recent and useful in identifying a marker able to predict neurological outcome. The imaging correlates for motor impairment are well recognized (periventricular white matter cavitations), but no any imaging correlate for cognitive impairment and neurobehavioral disorders. While DWI has been used in term newborns to identify the ischemic areas with restricted diffusion, it may be also used to characterize brain development in preterm infants with the Apparent Diffusion Coefficient (ADC) and may allow us to detect abnormalities responsible for the non-motor impairments. Recent datas showed that in infants without focal lesions higher ADC values in WM were associated with poorer neurodevelopmental assessment at 2 years. The DTI also allows to detect the Fractional Anisotropy (FA) that measures the microstructure. DTI can also be used to map the WM tracts in the immature brain and may be applied to understand the normal development or the response of the brain to injury. Some WM regions in the preterm brain have a lower FA suggesting that widespread WM abnormalities are present in preterms even in the absence of focal lesions. The complexity of the developing brain can be explained by the new tractography that can assess the connectivity of different WM regions and the association between structure and function, such as optic radiations microstructure and visual assessment score. Technological advances in neonatal brain imaging have made a major contribution to understand the neurobehavioral disorders of the developing brain that have the origin in the early structural cerebral organization and maturation.

  14. DIFFUSION-WEIGHTED IMAGING TRACTOGRAPHY-BASED PARCELLATION OF THE HUMAN PARIETAL CORTEX AND COMPARISON WITH HUMAN AND MACAQUE RESTING STATE FUNCTIONAL CONNECTIVITY

    PubMed Central

    Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.

    2011-01-01

    Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650

  15. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    PubMed

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  16. Magnetic resonance imaging in central nervous system sarcoidosis.

    PubMed

    Miller, D H; Kendall, B E; Barter, S; Johnson, G; MacManus, D G; Logsdail, S J; Ormerod, I E; McDonald, W I

    1988-03-01

    We performed brain MRIs on 21 patients with CNS sarcoidosis. Brain CTs were performed in 18 of these. Parenchymal lesions were seen in 17 of 21 with MRI, compared with 9 of 18 with CT. MRI detected a greater number of parenchymal lesions in cases where both CT and MRI were positive, and some lesions appeared more extensive with MRI than with CT. The most common MRI pattern was one of periventricular and multifocal white matter lesions (14 cases). Such a pattern is not specific, and other recognized causes for it were identified in four cases. It is likely, however, that sarcoid tissue causes this pattern in some cases, and confirmation was obtained from cerebral biopsy in one. In six patients, the white matter changes were indistinguishable from those seen in multiple sclerosis. Contrast-enhanced CT in two patients showed diffuse meningeal involvement not seen with MRI. MRI is the investigation of choice in detecting parenchymal changes in the brain of patients with CNS sarcoidosis and may prove useful in monitoring treatment in such cases.

  17. Gray matter abnormalities of the dorsal posterior cingulate in sleep walking.

    PubMed

    Heidbreder, Anna; Stefani, Ambra; Brandauer, Elisabeth; Steiger, Ruth; Kremser, Christian; Gizewski, Elke R; Young, Peter; Poewe, Werner; Högl, Birgit; Scherfler, Christoph

    2017-08-01

    This study aimed to determine whether voxel-based analysis of T1 weighted magnetic resonance imaging (MRI) and diffusion tensor imaging is able to detect alterations of gray and white matter morphometry as well as measures of mean diffusivity and fractional anisotropy in patients with non-rapid eye movement parasomnia. 3 Tesla MRI was performed in 14 drug-free, polysomnography-confirmed adult patients with non-rapid eye movement parasomnia (age: 29 ± 4.2 years; disease duration 19.2 ± 7.7 years) and 14 healthy subjects, matched for age and gender. Statistical parametric mapping was applied to objectively identify focal changes of MRI parameters throughout the entire brain volume. Statistical parametric mapping localized significant decreases of gray matter volume in the left dorsal posterior cingulate cortex (BA23) and posterior midcingulate cortex (BA24) in patients with non-rapid eye movement parasomnias compared to the control group (p < 0.001, corrected for multiple comparisons). No significant differences of mean diffusivity and fractional anisotropy measures were found between the non-rapid eye movement parasomnia group and the healthy control group. Recently, the simultaneous co-existence of arousal or wakefulness originating from the motor and cingulate cortices and persistent sleep in associative cortical regions was suggested as a functional framework of somnambulism. Gray matter volume decline in the dorsal posterior and posterior midcingulate cortex reported in this study might represent the neuroanatomical substrate for this condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    PubMed

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  19. Multiparametric Magnetic Resonance Imaging for Active Surveillance of Prostate Cancer.

    PubMed

    An, Julie Y; Sidana, Abhinav; Choyke, Peter L; Wood, Bradford J.; Pinto, Peter A; Türkbey, İsmail Barış

    2017-09-29

    Active surveillance has gained popularity as an acceptable management option for men with low-risk prostate cancer. Successful utilization of this strategy can delay or prevent unnecessary interventions - thereby reducing morbidity associated with overtreatment. The usefulness of active surveillance primarily depends on correct identification of patients with low-risk disease. However, current population-wide algorithms and tools do not adequately exclude high-risk disease, thereby limiting the confidence of clinicians and patients to go on active surveillance. Novel imaging tools such as mpMRI provide information about the size and location of potential cancers enabling more informed treatment decisions. The term "multiparametric" in prostate mpMRI refers to the summation of several MRI series into one examination whose initial goal is to identify potential clinically-significant lesions suitable for targeted biopsy. The main advantages of MRI are its superior anatomic resolution and the lack of ionizing radiation. Recently, the Prostate Imaging-Reporting and Data System has been instituted as an international standard for unifying mpMRI results. The imaging sequences in mpMRI defined by Prostate Imaging Reporting and Data System version 2 includes: T2-weighted MRI, diffusion-weighted MRI, derived apparent-diffusion coefficient from diffusion-weighted MRI, and dynamic contrast-enhanced MRI. The use of mpMRI prior to starting active surveillance could prevent those with missed, high-grade lesions from going on active surveillance, and reassure those with minimal disease who may be hesitant to take part in active surveillance. Although larger validation studies are still necessary, preliminary results suggest mpMRI has a role in selecting patients for active surveillance. Less certain is the role of mpMRI in monitoring patients on active surveillance, as data on this will take a long time to mature. The biggest obstacles to routine use of prostate MRI are quality control, cost, reproducibility, and access. Nevertheless, there is great a potential for mpMRI to improve outcomes and quality of treatment. The major roles of MRI will continue to expand and its emerging use in standard of care approaches becomes more clearly defined and supported by increasing levels of data.

  20. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: An atlas-based diffusion imaging study

    PubMed Central

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Guzman, Ximena Stecher; Stevenson, David K.; Barnea-Goraly, Naama

    2014-01-01

    At near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age. DTI scans were analyzed in a cross-sectional sample of 45 VLBW preterm infants (BW ≤ 1500 g, GA ≤ 32 weeks) within a cohort of 102 neonates admitted to the NICU and recruited to participate prior to standard-of-care MRI, from 2010 to 2011, 66/102 also had DTI. For inclusion in this analysis, 45 infants had DTI, no evidence of brain abnormality on MRI, and were scanned at PMA ≤40 weeks (34.7–38.6). White matter microstructure was analyzed in 19 subcortical regions defined by DiffeoMap neonatal brain atlas, using threshold values of trace b0.006 mm2 s−1 and FA >0.15. Regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and temporal–spatial trajectories of development were examined in relation to PMA and brain region location. Posterior regions within the corona radiata (CR), corpus callosum (CC), and internal capsule (IC) demonstrated significantly higher mean FA values compared to anterior regions. Posterior regions of the CR and IC demonstrated significantly lower RD values compared to anterior regions. Centrally located projection fibers demonstrated higher mean FA and lower RD values than peripheral regions including the posterior limb of the internal capsule (PLIC), cerebral peduncle, retrolenticular part of the IC, posterior thalamic radiation, and sagittal stratum. Centrally located association fibers of the external capsule had higher FA and lower RD than the more peripherally-located superior longitudinal fasciculus (SLF). A significant relationship between PMA-at-scan and FA, MD, and RD was demonstrated by a majority of regions, the strongest correlations were observed in the anterior limb of the internal capsule, a region undergoing early stages of myelination at near-term age, in which FA increased (r = .433, p = .003) and MD (r = –.545, p = .000) and RD (r = –.540, p = .000) decreased with PMA-at-scan. No correlation with PMA-at-scan was observed in the CC or SLF, regions that myelinate later in infancy. Regional patterns of higher FA and lower RD were observed at this near-term age, suggestive of more advanced microstructural development in posterior compared to anterior regions within the CR, CC, and IC and in central compared to peripheral WM structures. Evidence of region-specific rates of microstructural development was observed. Temporal–spatial patterns of WM microstructure development at near-term age have important implications for interpretation of near-term DTI and for identification of aberrations in typical developmental trajectories that may signal future impairment. PMID:24091089

  1. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study.

    PubMed

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Guzman, Ximena Stecher; Stevenson, David K; Barnea-Goraly, Naama

    2014-02-01

    At near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age. DTI scans were analyzed in a cross-sectional sample of 45 VLBW preterm infants (BW≤1500g, GA≤32weeks) within a cohort of 102 neonates admitted to the NICU and recruited to participate prior to standard-of-care MRI, from 2010 to 2011, 66/102 also had DTI. For inclusion in this analysis, 45 infants had DTI, no evidence of brain abnormality on MRI, and were scanned at PMA ≤40weeks (34.7-38.6). White matter microstructure was analyzed in 19 subcortical regions defined by DiffeoMap neonatal brain atlas, using threshold values of trace <0.006mm(2)s(-1) and FA >0.15. Regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and temporal-spatial trajectories of development were examined in relation to PMA and brain region location. Posterior regions within the corona radiata (CR), corpus callosum (CC), and internal capsule (IC) demonstrated significantly higher mean FA values compared to anterior regions. Posterior regions of the CR and IC demonstrated significantly lower RD values compared to anterior regions. Centrally located projection fibers demonstrated higher mean FA and lower RD values than peripheral regions including the posterior limb of the internal capsule (PLIC), cerebral peduncle, retrolenticular part of the IC, posterior thalamic radiation, and sagittal stratum. Centrally located association fibers of the external capsule had higher FA and lower RD than the more peripherally-located superior longitudinal fasciculus (SLF). A significant relationship between PMA-at-scan and FA, MD, and RD was demonstrated by a majority of regions, the strongest correlations were observed in the anterior limb of the internal capsule, a region undergoing early stages of myelination at near-term age, in which FA increased (r=.433, p=.003) and MD (r=-.545, p=.000) and RD (r=-.540, p=.000) decreased with PMA-at-scan. No correlation with PMA-at-scan was observed in the CC or SLF, regions that myelinate later in infancy. Regional patterns of higher FA and lower RD were observed at this near-term age, suggestive of more advanced microstructural development in posterior compared to anterior regions within the CR, CC, and IC and in central compared to peripheral WM structures. Evidence of region-specific rates of microstructural development was observed. Temporal-spatial patterns of WM microstructure development at near-term age have important implications for interpretation of near-term DTI and for identification of aberrations in typical developmental trajectories that may signal future impairment. © 2013.

  2. Population differences in brain morphology: Need for population specific brain template.

    PubMed

    Rao, Naren P; Jeelani, Haris; Achalia, Rashmin; Achalia, Garima; Jacob, Arpitha; Bharath, Rose Dawn; Varambally, Shivarama; Venkatasubramanian, Ganesan; K Yalavarthy, Phaneendra

    2017-07-30

    Brain templates provide a standard anatomical platform for population based morphometric assessments. Typically, standard brain templates for such assessments are created using Caucasian brains, which may not be ideal to analyze brains from other ethnicities. To effectively demonstrate this, we compared brain morphometric differences between T1 weighted structural MRI images of 27 healthy Indian and Caucasian subjects of similar age and same sex ratio. Furthermore, a population specific brain template was created from MRI images of healthy Indian subjects and compared with standard Montreal Neurological Institute (MNI-152) template. We also examined the accuracy of registration of by acquiring a different T1 weighted MRI data set and registering them to newly created Indian template and MNI-152 template. The statistical analysis indicates significant difference in global brain measures and regional brain structures of Indian and Caucasian subjects. Specifically, the global brain measurements of the Indian brain template were smaller than that of the MNI template. Also, Indian brain images were better realigned to the newly created template than to the MNI-152 template. The notable variations in Indian and Caucasian brains convey the need to build a population specific Indian brain template and atlas. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Ageing and brain white matter structure in 3,513 UK Biobank participants

    PubMed Central

    Cox, Simon R.; Ritchie, Stuart J.; Tucker-Drob, Elliot M.; Liewald, David C.; Hagenaars, Saskia P.; Davies, Gail; Wardlaw, Joanna M.; Gale, Catharine R.; Bastin, Mark E.; Deary, Ian J.

    2016-01-01

    Quantifying the microstructural properties of the human brain's connections is necessary for understanding normal ageing and disease. Here we examine brain white matter magnetic resonance imaging (MRI) data in 3,513 generally healthy people aged 44.64–77.12 years from the UK Biobank. Using conventional water diffusion measures and newer, rarely studied indices from neurite orientation dispersion and density imaging, we document large age associations with white matter microstructure. Mean diffusivity is the most age-sensitive measure, with negative age associations strongest in the thalamic radiation and association fibres. White matter microstructure across brain tracts becomes increasingly correlated in older age. This may reflect an age-related aggregation of systemic detrimental effects. We report several other novel results, including age associations with hemisphere and sex, and comparative volumetric MRI analyses. Results from this unusually large, single-scanner sample provide one of the most extensive characterizations of age associations with major white matter tracts in the human brain. PMID:27976682

  4. Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI.

    PubMed

    Garcés, Pilar; Pereda, Ernesto; Hernández-Tamames, Juan A; Del-Pozo, Francisco; Maestú, Fernando; Pineda-Pardo, José Ángel

    2016-01-01

    Structural and functional connectivity (SC and FC) have received much attention over the last decade, as they offer unique insight into the coordination of brain functioning. They are often assessed independently with three imaging modalities: SC using diffusion-weighted imaging (DWI), FC using functional magnetic resonance imaging (fMRI), and magnetoencephalography/electroencephalography (MEG/EEG). DWI provides information about white matter organization, allowing the reconstruction of fiber bundles. fMRI uses blood-oxygenation level-dependent (BOLD) contrast to indirectly map neuronal activation. MEG and EEG are direct measures of neuronal activity, as they are sensitive to the synchronous inputs in pyramidal neurons. Seminal studies have targeted either the electrophysiological substrate of BOLD or the anatomical basis of FC. However, multimodal comparisons have been scarcely performed, and the relation between SC, fMRI-FC, and MEG-FC is still unclear. Here we present a systematic comparison of SC, resting state fMRI-FC, and MEG-FC between cortical regions, by evaluating their similarities at three different scales: global network, node, and hub distribution. We obtained strong similarities between the three modalities, especially for the following pairwise combinations: SC and fMRI-FC; SC and MEG-FC at theta, alpha, beta and gamma bands; and fMRI-FC and MEG-FC in alpha and beta. Furthermore, highest node similarity was found for regions of the default mode network and primary motor cortex, which also presented the highest hubness score. Distance was partially responsible for these similarities since it biased all three connectivity estimates, but not the unique contributor, since similarities remained after controlling for distance. © 2015 Wiley Periodicals, Inc.

  5. Brain gray and white matter differences in healthy normal weight and obese children

    USDA-ARS?s Scientific Manuscript database

    To compare brain gray and white matter development in healthy normal weight and obese children. Twenty-four healthy 8- to 10-year-old children whose body mass index was either <75th percentile (normal weight) or >95th percentile (obese) completed an MRI examination which included T1-weighted three-d...

  6. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  7. [A case of cerebral fat embolism after artificial bone replacement operation for femoral head fracture].

    PubMed

    Kontani, Satoru; Nakamura, Akinobu; Tokumi, Hiroshi; Hirose, Genjirou

    2014-01-01

    A 83 years old woman was slipped and injured with right femoral neck fracture. After three days from the fracture, she underwent an artificial head bone replacement operation. Immediately after surgery, she complained of chest discomfort, nausea and dyspnea. A few hours later, she became comatose. Brain CT showed no abnormality and clinical diagnosis of heart failure was made without pulmonary embolism on enhanced chest CT. Magnetic resonance imaging (MRI) of the brain next day showed multiple small patchy hyperintense lesion in bilateral hemispheres on diffusion-weighted images (DWI), producing a "star field pattern''. Based on Criteria of Gurd, this patient had one major criterion and four minor criteria. And according to the Criteria of Schonfeld, this patient had 5 points, consistent with clinical diagnosis of fat embolism. Because of these criteria, she was diagnosed as cerebral fat embolism syndrome. We started supported care and edaravon. Two weeks after surgery, her condition recovered and remaind to stuporous state even six month after surgery. We experienced a typical case of cerebral fat embolism, after bone surgery with diagnostic findings on MRI-DWI. Diagnosis of cerebral fat embolism syndrome requires a history of long bone fracture and/or replacing surgery with typical finding on MRI images, such as "star field pattern''.

  8. MRI findings in 6 cases of children by inadvertent ingestion of diphenoxylate-atropine.

    PubMed

    Xiao, Lianxiang; Lin, Xiangtao; Cao, Jinfeng; Wang, Xueyu; Wu, Lebin

    2011-09-01

    Compound diphenoxylate (diphenoxylate-atropine) poisoning can cause toxic encephalopathy in children, and magnetic resonance imaging (MRI) of the brain in this condition has not been reported. This study is to analyze brain MRI findings and to investigate the relations between MRI features and possible pathophysiological changes in children. Six children accidentally swallowed compound diphenoxylate, 4 males, 2 females, aged 20-46 months, average 33 months. Quantity of ingested diphenoxylate-atropine was from 6 to 30 tablets, each tablet contains diphenoxylate 2.5mg and atropine 0.025 mg. These patients were referred to our hospital within 24h after diphenoxylate-atropine ingestion, and underwent brain MRI scan within 24-72 h after emergency treatment. The characteristics of conventional MRI were analyzed. These pediatric patients had various symptoms of opioid intoxication and atropine toxicity. Brain MRI showed abnormal low signal intensity on T1-weighted images (T1WI) and abnormal high signal intensity on T2-weighted images (T2WI) and fluid-attenuated inversion recovery (FLAIR) imaging in bilateral in all cases; abnormal high signal intensity on T1WI, T2WI and FLAIR in 4 cases. Encephalomalacia was observed in 3 cases during follow-up. In the early stage of compound diphenoxylate poisoning in children, multiple extensive edema-necrosis and hemorrhagic-necrosis focus were observed in basic nucleus, pallium and cerebellum, these resulted in the corresponding brain dysfunction with encephalomalacia. MRI scan in the early stage in this condition may provide evidences of brain impairment, and is beneficial for the early diagnosis, treatment and prognosis assessment. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  9. The importance of correcting for signal drift in diffusion MRI.

    PubMed

    Vos, Sjoerd B; Tax, Chantal M W; Luijten, Peter R; Ourselin, Sebastien; Leemans, Alexander; Froeling, Martijn

    2017-01-01

    To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. We investigated the signal magnitude of non-diffusion-weighted EPI volumes in a series of diffusion-weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15-min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. By interspersing the non-diffusion-weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285-299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Modifications of pancreatic diffusion MRI by tissue characteristics: what are we weighting for?

    PubMed

    Nissan, Noam

    2017-08-01

    Diffusion-weighted imaging holds the potential to improve the diagnosis and biological characterization of pancreatic disease, and in particular pancreatic cancer, which exhibits decreased values of the apparent diffusion coefficient (ADC). Yet, variable and overlapping ADC values have been reported for the healthy and the pathological pancreas, including for cancer and other benign conditions. This controversy reflects the complexity of probing the water-diffusion process in the pancreas, which is dependent upon multiple biological factors within this organ's unique physiological environment. In recent years, extensive studies have investigated the correlation between tissue properties including cellularity, vascularity, fibrosis, secretion and microstructure and pancreatic diffusivity. Understanding how the various physiological and pathological features and the underlying functional processes affect the diffusion measurement may serve to optimize the method for improved diagnostic gain. Therefore, the aim of the present review article is to elucidate the relationship between pancreatic tissue characteristics and diffusion MRI measurement. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Diffusion-weighted magnetic resonance imaging for assessment of lung lesions: repeatability of the apparent diffusion coefficient measurement.

    PubMed

    Bernardin, L; Douglas, N H M; Collins, D J; Giles, S L; O'Flynn, E A M; Orton, M; deSouza, N M

    2014-02-01

    To establish repeatability of apparent diffusion coefficients (ADCs) acquired from free-breathing diffusion-weighted magnetic resonance imaging (DW-MRI) in malignant lung lesions and investigate effects of lesion size, location and respiratory motion. Thirty-six malignant lung lesions (eight patients) were examined twice (1- to 5-h interval) using T1-weighted, T2-weighted and axial single-shot echo-planar DW-MRI (b = 100, 500, 800 s/mm(2)) during free-breathing. Regions of interest around target lesions on computed b = 800 s/mm(2) images by two independent observers yielded ADC values from maps (pixel-by-pixel fitting using all b values and a mono-exponential decay model). Intra- and inter-observer repeatability was assessed per lesion, per patient and by lesion size (> or <2 cm) or location. ADCs were similar between observers (mean ± SD, 1.15 ± 0.28 × 10(-3) mm(2)/s, observer 1; 1.15 ± 0.29 × 10(-3) mm(2)/s, observer 2). Intra-observer coefficients of variation of the mean [median] ADC per lesion and per patient were 11% [11.4%], 5.7% [5.7%] for observer 1 and 9.2% [9.5%], 3.9% [4.7%] for observer 2 respectively; inter-observer values were 8.9% [9.3%] (per lesion) and 3.0% [3.7%] (per patient). Inter-observer coefficient of variation (CoV) was greater for lesions <2 cm (n = 20) compared with >2 cm (n = 16) (10.8% vs 6.5% ADCmean, 11.3% vs 6.7% ADCmedian) and for mid (n = 14) vs apical (n = 9) or lower zone (n = 13) lesions (13.9%, 2.7%, 3.8% respectively ADCmean; 14.2%, 2.8%, 4.7% respectively ADCmedian). Free-breathing DW-MRI of whole lung achieves good intra- and inter-observer repeatability of ADC measurements in malignant lung tumours. • Diffusion-weighted MRI of the lung can be satisfactorily acquired during free-breathing • DW-MRI demonstrates high contrast between primary and metastatic lesions and normal lung • Apparent diffusion coefficient (ADC) measurements in lung tumours are repeatable and reliable • ADC offers potential in assessing response in lung metastases in clinical trials.

  13. Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2016-09-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.

  14. A prospective microstructure imaging study in mixed-martial artists using geometric measures and diffusion tensor imaging: methods and findings

    PubMed Central

    Mayer, Andrew R.; Ling, Josef M.; Dodd, Andrew B.; Meier, Timothy B.; Hanlon, Faith M.; Klimaj, Stefan D.

    2018-01-01

    Although diffusion magnetic resonance imaging (dMRI) has been widely used to characterize the effects of repetitive mild traumatic brain injury (rmTBI), to date no studies have investigated how novel geometric models of microstructure relate to more typical diffusion tensor imaging (DTI) sequences. Moreover, few studies have evaluated the sensitivity of different registration pipelines (non-linear, linear and tract-based spatial statistics) for detecting dMRI abnormalities in clinical populations. Results from single-subject analyses in healthy controls (HC) indicated a strong negative relationship between fractional anisotropy (FA) and orientation dispersion index (ODI) in both white and gray matter. Equally important, only moderate relationships existed between all other estimates of free/intracellular water volume fractions and more traditional DTI metrics (FA, mean, axial and radial diffusivity). These findings suggest that geometric measures provide differential information about the cellular microstructure relative to traditional DTI measures. Results also suggest greater sensitivity for non-linear registration pipelines that maximize the anatomical information available in T1-weighted images. Clinically, rmTBI resulted in a pattern of decreased FA and increased ODI, largely overlapping in space, in conjunction with increased intracellular and free water fractions, highlighting the potential role of edema following repeated head trauma. In summary, current results suggest that geometric models of diffusion can provide relatively unique information regarding potential mechanisms of pathology that contribute to long-term neurological damage. PMID:27071950

  15. A prospective microstructure imaging study in mixed-martial artists using geometric measures and diffusion tensor imaging: methods and findings.

    PubMed

    Mayer, Andrew R; Ling, Josef M; Dodd, Andrew B; Meier, Timothy B; Hanlon, Faith M; Klimaj, Stefan D

    2017-06-01

    Although diffusion magnetic resonance imaging (dMRI) has been widely used to characterize the effects of repetitive mild traumatic brain injury (rmTBI), to date no studies have investigated how novel geometric models of microstructure relate to more typical diffusion tensor imaging (DTI) sequences. Moreover, few studies have evaluated the sensitivity of different registration pipelines (non-linear, linear and tract-based spatial statistics) for detecting dMRI abnormalities in clinical populations. Results from single-subject analyses in healthy controls (HC) indicated a strong negative relationship between fractional anisotropy (FA) and orientation dispersion index (ODI) in both white and gray matter. Equally important, only moderate relationships existed between all other estimates of free/intracellular water volume fractions and more traditional DTI metrics (FA, mean, axial and radial diffusivity). These findings suggest that geometric measures provide differential information about the cellular microstructure relative to traditional DTI measures. Results also suggest greater sensitivity for non-linear registration pipelines that maximize the anatomical information available in T 1 -weighted images. Clinically, rmTBI resulted in a pattern of decreased FA and increased ODI, largely overlapping in space, in conjunction with increased intracellular and free water fractions, highlighting the potential role of edema following repeated head trauma. In summary, current results suggest that geometric models of diffusion can provide relatively unique information regarding potential mechanisms of pathology that contribute to long-term neurological damage.

  16. Benign and malignant skull-involved lesions: discriminative value of conventional CT and MRI combined with diffusion-weighted MRI.

    PubMed

    Tu, Zhanhai; Xiao, Zebin; Zheng, Yingyan; Huang, Hongjie; Yang, Libin; Cao, Dairong

    2018-01-01

    Background Little is known about the value of computed tomography (CT) and magnetic resonance imaging (MRI) combined with diffusion-weighted imaging (DWI) in distinguishing malignant from benign skull-involved lesions. Purpose To evaluate the discriminative value of DWI combined with conventional CT and MRI for differentiating between benign and malignant skull-involved lesions. Material and Methods CT and MRI findings of 58 patients with pathologically proven skull-involved lesions (43 benign and 15 malignant) were retrospectively reviewed. Conventional CT and MRI characteristics and apparent diffusion coefficient (ADC) value of the two groups were evaluated and compared. Multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the differential performance of each parameter separately and together. Results The presence of cortical defects or break-through and ill-defined margins were associated with malignant skull-involved lesions (both P < 0.05). Malignant skull-involved lesions demonstrated a significantly lower ADC ( P = 0.016) than benign lesions. ROC curve analyses indicated that a combination of CT, MRI, and DWI with an ADC ≤ 0.703 × 10 -3 mm 2 /s showed optimal sensitivity, while DWI along showed optimal specificity of 88.4% in differentiating between benign and malignant skull-involved lesions. Conclusion The combination of CT, MRI, and DWI can help to differentiate malignant from benign skull-involved lesions. CT + MRI + DWI offers optimal sensitivity, while DWI offers optimal specificity.

  17. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis.

    PubMed

    Bajpai, Jyoti; Gamnagatti, Shivanand; Kumar, Rakesh; Sreenivas, Vishnubhatla; Sharma, Mehar Chand; Khan, Shah Alam; Rastogi, Shishir; Malhotra, Arun; Safaya, Rajni; Bakhshi, Sameer

    2011-04-01

    Histological necrosis, the current standard for response evaluation in osteosarcoma, is attainable after neoadjuvant chemotherapy. To establish the role of surrogate markers of response prediction and evaluation using MRI in the early phases of the disease. Thirty-one treatment-naïve osteosarcoma patients received three cycles of neoadjuvant chemotherapy followed by surgery during 2006-2008. All patients underwent baseline and post-chemotherapy conventional, diffusion-weighted and dynamic contrast-enhanced MRI. Taking histological response (good response ≥90% necrosis) as the reference standard, various parameters of MRI were compared to it. A tumor was considered ellipsoidal; volume, average tumor plane and its relative value (average tumor plane relative/body surface area) was calculated using the standard formula for ellipse. Receiver operating characteristic curves were generated to assess best threshold and predictability. After deriving thresholds for each parameter in univariable analysis, multivariable analysis was carried out. Both pre-and post-chemotherapy absolute and relative-size parameters correlated well with necrosis. Apparent diffusion coefficient did not correlate with necrosis; however, on adjusting for volume, significant correlation was found. Thus, we could derive a new parameter: diffusion per unit volume. In osteosarcoma, chemotherapy response can be predicted and evaluated by conventional and diffusion-weighted MRI early in the disease course and it correlates well with necrosis. Further, newly derived parameter diffusion per unit volume appears to be a sensitive substitute for response evaluation in osteosarcoma.

  18. Rapid resolution of diffusion weighted MRI abnormality in a patient with a stuttering stroke

    PubMed Central

    Peters, Jurriaan M; MacLean, Ainsley V; Young, Geoffrey S

    2010-01-01

    We report the unusually rapid and spontaneous normalisation of low diffusivity that accompanied resolution of acute neurological deficits in a stroke patient who underwent two magnetic resonance imaging examinations within 24 h of symptom onset. Diffusion weighted imaging obtained within hours of onset of left sided weakness demonstrated a focal right capsular area of low diffusivity that resolved within 24 h, coinciding with resolution of the patient’s symptoms. PMID:22315635

  19. Cerebral fat embolism and the "starfield" pattern: a case report.

    PubMed

    Aravapalli, Amit; Fox, James; Lazaridis, Christos

    2009-11-19

    Nearly all long-bone fractures are accompanied by some form of fat embolism. The rare complication of clinically significant fat embolism syndrome, however, occurs in only 0.9-2.2% of cases. The clinical triad of fat embolism syndrome consists of respiratory distress, altered mental status, and petechial rash. Cerebral fat embolism causes the neurologic involvement seen in fat embolism syndrome. A 19-year-old African-American male was admitted with gunshot wounds to his right hand and right knee. He had diffuse hyperactive deep tendon reflexes, bilateral ankle clonus and decerebrate posturing with a Glasgow Coma Scale (GCS) score of 4T. Subsequent MRI of the brain showed innumerable punctate areas of restricted diffusion consistent with "starfield" pattern. On a 10-week follow up he has a normal neurological examination and he is discharged home. Despite the severity of the neurologic insult upon initial presentation, the majority of case reports on cerebral fat embolism illustrate that cerebral dysfunction associated with cerebral fat embolism is reversible. When neurologic deterioration occurs in the non-head trauma patient, then a systemic cause such as fat emboli should be considered. We describe a patient with non-head trauma who demonstrated the classic "starfield" pattern on diffusion-weighted MRI imaging.

  20. Cerebral perfusion abnormalities in therapy-resistant epilepsy in childhood: comparison between EEG, MRI and 99Tcm-ECD brain SPET.

    PubMed

    Vattimo, A; Burroni, L; Bertelli, P; Volterrani, D; Vella, A

    1996-01-01

    We performed 99Tcm-ethyl cysteinate dimer (ECD) interictal single photon emission tomography (SPET) in 26 children with severe therapy-resistant epilepsy. All the children underwent a detailed clinical examination, an electroencephalogram (EEG) investigation and brain magnetic resonance imaging (MRI). In 21 of the 26 children, SPET demonstrated brain blood flow abnormalities, in 13 cases in the same territories that showed EEG alterations. MRI showed structural lesions in 6 of the 26 children, while SPET imaging confirmed these abnormalities in only 5 children. The lesion not detected on SPET was shown to be 3 mm thick on MRI. Five symptomatic patients had normal SPET. In one of these patients, the EEG findings were normal and MRI revealed a small calcific nodule (4 mm thick); in the others, the EEG showed non-focal but diffuse abnormalities. These data confirm that brain SPET is sensitive in detecting and localizing hypoperfused areas that could be associated with epileptic foci in this group of patients, even when the MRI image is normal.

  1. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    PubMed

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  2. Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors

    PubMed Central

    Assili, S.; Fathi Kazerooni, A.; Aghaghazvini, L.; Saligheh Rad, H.R.; Pirayesh Islamian, J.

    2015-01-01

    Background Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional MRI techniques, namely dynamic contrast enhanced (DCE-) MRI and diffusion-weighted MRI (DWI) can indicate the characteristics of tumor tissue. Methods DCE-MRI analysis is based on the parameters of time intensity curve (TIC) before and after contrast agent injection. This method has the potential to identify the angiogenesis of tumors. DWI analysis is performed according to diffusion of water molecules in a tissue for determination of the cellularity of tumors. Conclusion According to the literature, these methods cannot be used individually to differentiate benign from malignant salivary gland tumors. An effective approach could be to combine the aforementioned methods to increase the accuracy of discrimination between different tumor types. The main objective of this study is to explore the application of DCE-MRI and DWI for assessment of salivary gland tumor types. PMID:26688794

  3. Non-invasive detection of infection in acute pancreatic and acute necrotic collections with diffusion-weighted magnetic resonance imaging: preliminary findings.

    PubMed

    Islim, Filiz; Salik, Aysun Erbahceci; Bayramoglu, Sibel; Guven, Koray; Alis, Halil; Turhan, Ahmet Nuray

    2014-06-01

    The purpose of this study was to evaluate the contribution of diffusion-weighted magnetic resonance imaging (DW-MRI) to the detection of infection in acute pancreatitis-related collections. A total of 21 DW-MRI, and computed tomography (CT) were performed on 20 patients diagnosed as acute pancreatitis with acute peri-pancreatic fluid or necrotic collections. Collections were classified as infected or sterile according to the culture and follow-up results. Collections with gas bubbles on CT images were considered to be infected. Collections with peripheral bright signals on DW-MRI images were considered to be positive, whereas those without signals were considered to be negative. Apparent diffusion coefficient (ADC) values of the peripheral and central parts of the collections were measured. Student's t test was used to compare the means of ADC values of independent groups. Apart from one false positive result, the presence of infection was detected by DW-MRI with 95.2% accuracy. The sensitivity and accuracy of DW-MRI were higher than CT for the detection of infection. The ADC values in the central parts of the collections were significantly different between the infected and sterile groups. DW-MRI can be used as a non-invasive technique for the detection of infection in acute pancreatitis-associated collections.

  4. The Relationship between Neurite Density Measured with Confocal Microscopy in a Cleared Mouse Brain and Metrics Obtained from Diffusion Tensor and Diffusion Kurtosis Imaging

    PubMed Central

    Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki

    2018-01-01

    Purpose: Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. Methods: One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Results: Mean kurtosis (MK) (P = 5.2 × 10−9, r = 0.73) and radial kurtosis (P = 2.3 × 10−9, r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10−5, r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). Conclusion: DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures. PMID:29213008

  5. The Relationship between Neurite Density Measured with Confocal Microscopy in a Cleared Mouse Brain and Metrics Obtained from Diffusion Tensor and Diffusion Kurtosis Imaging.

    PubMed

    Irie, Ryusuke; Kamagata, Koji; Kerever, Aurelien; Ueda, Ryo; Yokosawa, Suguru; Otake, Yosuke; Ochi, Hisaaki; Yoshizawa, Hidekazu; Hayashi, Ayato; Tagawa, Kazuhiko; Okazawa, Hitoshi; Takahashi, Kohske; Sato, Kanako; Hori, Masaaki; Arikawa-Hirasawa, Eri; Aoki, Shigeki

    2018-04-10

    Diffusional kurtosis imaging (DKI) enables sensitive measurement of tissue microstructure by quantifying the non-Gaussian diffusion of water. Although DKI is widely applied in many situations, histological correlation with DKI analysis is lacking. The purpose of this study was to determine the relationship between DKI metrics and neurite density measured using confocal microscopy of a cleared mouse brain. One thy-1 yellow fluorescent protein 16 mouse was deeply anesthetized and perfusion fixation was performed. The brain was carefully dissected out and whole-brain MRI was performed using a 7T animal MRI system. DKI and diffusion tensor imaging (DTI) data were obtained. After the MRI scan, brain sections were prepared and then cleared using aminoalcohols (CUBIC). Confocal microscopy was performed using a two-photon confocal microscope with a laser. Forty-eight ROIs were set on the caudate putamen, seven ROIs on the anterior commissure, and seven ROIs on the ventral hippocampal commissure on the confocal microscopic image and a corresponding MR image. In each ROI, histological neurite density and the metrics of DKI and DTI were calculated. The correlations between diffusion metrics and neurite density were analyzed using Pearson correlation coefficient analysis. Mean kurtosis (MK) (P = 5.2 × 10 -9 , r = 0.73) and radial kurtosis (P = 2.3 × 10 -9 , r = 0.74) strongly correlated with neurite density in the caudate putamen. The correlation between fractional anisotropy (FA) and neurite density was moderate (P = 0.0030, r = 0.42). In the anterior commissure and the ventral hippocampal commissure, neurite density and FA are very strongly correlated (P = 1.3 × 10 -5 , r = 0.90). MK in these areas were very high value and showed no significant correlation (P = 0.48). DKI accurately reflected neurite density in the area with crossing fibers, potentially allowing evaluation of complex microstructures.

  6. Fourier transform power spectrum is a potential measure of tissue alignment in standard MRI: A multiple sclerosis study.

    PubMed

    Sharma, Shrushrita; Zhang, Yunyan

    2017-01-01

    Loss of tissue coherency in brain white matter is found in many neurological diseases such as multiple sclerosis (MS). While several approaches have been proposed to evaluate white matter coherency including fractional anisotropy and fiber tracking in diffusion-weighted imaging, few are available for standard magnetic resonance imaging (MRI). Here we present an image post-processing method for this purpose based on Fourier transform (FT) power spectrum. T2-weighted images were collected from 19 patients (10 relapsing-remitting and 9 secondary progressive MS) and 19 age- and gender-matched controls. Image processing steps included: computation, normalization, and thresholding of FT power spectrum; determination of tissue alignment profile and dominant alignment direction; and calculation of alignment complexity using a new measure named angular entropy. To test the validity of this method, we used a highly organized brain white matter structure, corpus callosum. Six regions of interest were examined from the left, central and right aspects of both genu and splenium. We found that the dominant orientation of each ROI derived from our method was significantly correlated with the predicted directions based on anatomy. There was greater angular entropy in patients than controls, and a trend to be greater in secondary progressive MS patients. These findings suggest that it is possible to detect tissue alignment and anisotropy using traditional MRI, which are routinely acquired in clinical practice. Analysis of FT power spectrum may become a new approach for advancing the evaluation and management of patients with MS and similar disorders. Further confirmation is warranted.

  7. Recovery of White Matter following Pediatric Traumatic Brain Injury Depends on Injury Severity.

    PubMed

    Genc, Sila; Anderson, Vicki; Ryan, Nicholas P; Malpas, Charles B; Catroppa, Cathy; Beauchamp, Miriam H; Silk, Timothy J

    2017-02-15

    Previous studies in pediatric traumatic brain injury (TBI) have been variable in describing the effects of injury severity on white-matter development. The present study used diffusion tensor imaging to investigate prospective sub-acute and longitudinal relationships between early clinical indicators of injury severity, diffusion metrics, and neuropsychological outcomes. Pediatric patients with TBI underwent magnetic resonance imaging (MRI) (n = 78, mean [M] = 10.56, standard deviation [SD] = 2.21 years) at the sub-acute stage after injury (M = 5.55, SD = 3.05 weeks), and typically developing children were also included and imaged (n = 30, M = 10.60, SD = 2.88 years). A sub-set of the patients with TBI (n = 15) was followed up with MRI 2 years post-injury. Diffusion MRI images were acquired at sub-acute and 2-year follow-up time points and analyzed using Tract-Based Spatial Statistics. At the sub-acute stage, mean diffusivity and axial diffusivity were significantly higher in the TBI group compared with matched controls (p < 0.05). TBI severity significantly predicted diffusion profiles at the sub-acute and 2-year post-injury MRI. Patients with more severe TBI also exhibited poorer information processing speed at 6-months post-injury, which in turn correlated with their diffusion metrics. These findings highlight that the severity of the injury not only has an impact on white-matter microstructure, it also impacts its recovery over time. Moreover, findings suggest that sub-acute microstructural changes may represent a useful prognostic marker to identify children at elevated risk for longer term deficits.

  8. Optimal-mass-transfer-based estimation of glymphatic transport in living brain.

    PubMed

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-02-21

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the 'glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs 1,2 . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach 3 to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data.

  9. Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study.

    PubMed

    Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu

    2015-09-01

    The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.

  10. A Longitudinal Magnetic Resonance Imaging Study of the Apparent Diffusion Coefficient Values in Corpus Callosum during the First Year after Traumatic Brain Injury

    PubMed Central

    Håberg, Asta Kristine; Skandsen, Toril; Finnanger, Torun Gangaune; Vik, Anne

    2014-01-01

    Abstract The objective of this study was to explore the evolution of apparent diffusion coefficient (ADC) values in magnetic resonance imaging (MRI) in normal-appearing tissue of the corpus callosum during the 1st year after traumatic brain injury (TBI), and relate findings to outcome. Fifty-seven patients (mean age 34 [range 11–63] years) with moderate to severe TBI were examined with diffusion weighted MRI at three time points (median 7 days, 3 and 12 months), and a sex- and age-matched control group of 47 healthy individuals, were examined once. The corpus callosum was subdivided and the mean ADC values computed blinded in 10 regions of interests without any visible lesions in the ADC map. Outcome measures were Glasgow Outcome Scale Extended (GOSE) and neuropsychological domain scores at 12 months. We found a gradual increase of the mean ADC values during the 12 month follow-up, most evident in the posterior truncus (r=0.19, p<0.001). Compared with the healthy control group, we found higher mean ADC values in posterior truncus both at 3 months (p=0.021) and 12 months (p=0.003) post-injury. Patients with fluid-attenuated inversion recovery (FLAIR) lesions in the corpus callosum in the early MRI, and patients with disability (GOSE score ≤6) showed evidence of increased mean ADC values in the genu and posterior truncus at 12 months. Mean ADC values in posterior parts of the corpus callosum at 3 months predicted the sensory-motor function domain score (p=0.010–0.028). During the 1st year after moderate and severe TBI, we demonstrated a slowly evolving disruption of the microstructure in normal appearing corpus callosum in the ADC map, most evident in the posterior truncus. The mean ADC values were associated with both outcome and ability to perform speeded, complex sensory-motor action. PMID:23837731

  11. Extreme Mountain Ultra-Marathon Leads to Acute but Transient Increase in Cerebral Water Diffusivity and Plasma Biomarkers Levels Changes

    PubMed Central

    Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P.; Giardini, Guido; Croisille, Pierre; Haller, Sven

    2017-01-01

    Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods:This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results:The whole brain ADC significantly increased from baseline to arrival (p = 0.005) and then significantly decreased at recovery (p = 0.005) to lower values than at baseline (p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality (p = 0.01), cholesterol (p = 0.009), c-reactive protein (p = 0.04), sodium (p = 0.01), and chloride (p = 0.002) plasma level variations. Conclusions:These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport. PMID:28105018

  12. Extreme Mountain Ultra-Marathon Leads to Acute but Transient Increase in Cerebral Water Diffusivity and Plasma Biomarkers Levels Changes.

    PubMed

    Zanchi, Davide; Viallon, Magalie; Le Goff, Caroline; Millet, Grégoire P; Giardini, Guido; Croisille, Pierre; Haller, Sven

    2016-01-01

    Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods: This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results: The whole brain ADC significantly increased from baseline to arrival ( p = 0.005) and then significantly decreased at recovery ( p = 0.005) to lower values than at baseline ( p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality ( p = 0.01), cholesterol ( p = 0.009), c-reactive protein ( p = 0.04), sodium ( p = 0.01), and chloride ( p = 0.002) plasma level variations. Conclusions: These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport.

  13. General Anesthesia Inhibits the Activity of the “Glymphatic System”

    PubMed Central

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; Martinez de Lizarrondo, Sara; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the “glymphatic system” hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent. PMID:29344300

  14. General Anesthesia Inhibits the Activity of the "Glymphatic System".

    PubMed

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; de Lizarrondo, Sara Martinez; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the "glymphatic system" hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent.

  15. Fast detection of diffuse axonal damage in severe traumatic brain injury: comparison of gradient-recalled echo and turbo proton echo-planar spectroscopic imaging MRI sequences.

    PubMed

    Giugni, Elisabetta; Sabatini, Umberto; Hagberg, Gisela E; Formisano, Rita; Castriota-Scanderbeg, Alessandro

    2005-05-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury (TBI), and is frequently accompanied by tissue tear hemorrhage. T2-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of hemorrhage. The purpose of this study is to compare turbo Proton Echo Planar Spectroscopic Imaging (t-PEPSI), an extremely fast sequence, with GRE sequence in the detection of DAI. Twenty-one patients (mean age 26.8 years) with severe TBI occurred at least 3 months earlier, underwent a brain MR Imaging study on a 1.5-T scanner. A qualitative evaluation of the t-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and t-PEPSI images, and divided according to their anatomic location as lobar and/or deep brain. There was no significant difference between GRE and t-PEPSI sequences in the detection of the total number of DAI lesions (291 vs. 230, respectively). GRE sequence delineated a higher number of DAI in the temporal lobe compared to the t-PEPSI sequence (74 vs. 37, P < .004), while no differences were found for the other regions. The SI CR was significantly lower with the t-PEPSI than the GRE sequence (P < .00001). Owing to its very short scan time and high sensitivity to the hemorrhage foci, the t-PEPSI sequence may be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  16. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database

    ERIC Educational Resources Information Center

    Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.

    2015-01-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…

  17. Structural and functional rich club organization of the brain in children and adults.

    PubMed

    Grayson, David S; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G Costa; Stevens, Corinne; Nigg, Joel T; Fair, Damien A

    2014-01-01

    Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.

  18. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.

    PubMed

    Swan, Amanda; Hillen, Thomas; Bowman, John C; Murtha, Albert D

    2018-05-01

    Gliomas are primary brain tumours arising from the glial cells of the nervous system. The diffuse nature of spread, coupled with proximity to critical brain structures, makes treatment a challenge. Pathological analysis confirms that the extent of glioma spread exceeds the extent of the grossly visible mass, seen on conventional magnetic resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts than in grey matter, leading to irregular patterns of spread. We propose a mathematical model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers a methodology to delineate the major white matter tracts in the brain. We apply the anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25-39, 2013) to data from 10 patients with gliomas. Moreover, we compare the anisotropic model to the state-of-the-art Proliferation-Infiltration (PI) model of Swanson et al. (Cell Prolif 33:317-329, 2000). We find that the anisotropic model offers a slight improvement over the standard PI model. For tumours with low anisotropy, the predictions of the two models are virtually identical, but for patients whose tumours show higher anisotropy, the results differ. We also suggest using the data from the contralateral hemisphere to further improve the model fit. Finally, we discuss the potential use of this model in clinical treatment planning.

  19. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).

  20. Complimentary aspects of diffusion imaging and fMRI: II. Elucidating contributions to the fMRI signal with diffusion sensitization.

    PubMed

    Mulkern, Robert V; Haker, Steven J; Maier, Stephan E

    2007-07-01

    Tissue water molecules reside in different biophysical compartments. For example, water molecules in the vasculature reside for variable periods of time within arteries, arterioles, capillaries, venuoles and veins, and may be within blood cells or blood plasma. Water molecules outside of the vasculature, in the extravascular space, reside, for a time, either within cells or within the interstitial space between cells. Within these different compartments, different types of microscopic motion that water molecules may experience have been identified and discussed. These range from Brownian diffusion to more coherent flow over the time scales relevant to functional magnetic resonance imaging (fMRI) experiments, on the order of several 10s of milliseconds. How these different types of motion are reflected in magnetic resonance imaging (MRI) methods developed for "diffusion" imaging studies has been an ongoing and active area of research. Here we briefly review the ideas that have developed regarding these motions within the context of modern "diffusion" imaging techniques and, in particular, how they have been accessed in attempts to further our understanding of the various contributions to the fMRI signal changes sought in studies of human brain activation.

  1. Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography.

    PubMed

    Chen, Zhenrui; Tie, Yanmei; Olubiyi, Olutayo; Rigolo, Laura; Mehrtash, Alireza; Norton, Isaiah; Pasternak, Ofer; Rathi, Yogesh; Golby, Alexandra J; O'Donnell, Lauren J

    2015-01-01

    Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p < 0.01). Two-tensor UKF tractography provides the ability to trace a larger volume AF than single-tensor streamline tractography in the setting of peritumoral edema in brain tumor patients.

  2. Documenting the location of systematic transrectal ultrasound-guided prostate biopsies: correlation with multi-parametric MRI.

    PubMed

    Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A

    2011-03-29

    During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.

  3. Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.

    PubMed

    Cheng, Jian; Shen, Dinggang; Basser, Peter J; Yap, Pew-Thian

    2015-01-01

    High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian. diffusion assumption that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white matter micro-structure with greater precision. However, HARDI methods such as Diffusion Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF) with a limited number of diffusion-weighted measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS in the q-space of diffusion signal measurements and fail to take into consideration information redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in the full 6D k-q space and reconstructs the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling in k-q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-fold reduction in q-space).

  4. Uterine sarcoma vs adenocarcinoma: can MRI distinguish between them?

    PubMed

    Hernández Mateo, P; Méndez Fernández, R; Serrano Tamayo, E

    2016-01-01

    To analyze the MRI characteristics of uterine sarcomas (mainly carcinosarcomas) and to compare them with those of adenocarcinomas to define the findings that would be useful for the differential diagnosis. We retrospectively reviewed the MRI studies of 13 patients with histologically diagnosed uterine sarcoma. We analyzed tumor size, signal in T2-weighted, unenhanced and gadolinium-enhanced T1-weighted, and diffusion-weighted sequences. We compared the data obtained with those of another series of 30 consecutive cases of adenocarcinomas studied with MRI. The sarcomas (> 9cm in 77% of cases) were considerably larger than the adenocarcinomas (p<0.001). There were no differences in FIGO staging by MRI or surgery: both tumor types were diagnosed in early stages. The signal intensity in T2-weighted images differed significantly between the two tumor types: all the sarcomas were heterogeneous and predominantly hyperintense with respect to the myometrium in T2-weighted sequences (p<0.001). In postcontrast studies, all the sarcomas showed enhancement greater than or equal to the myometrium; this finding was significantly different from the adenocarcinomas (p<0.001). In diffusion-weighted sequences, we found no significant differences in ADC values in the areas with greatest restriction, but the ADC map was more heterogeneous in the sarcomas. Uterine sarcomas do not have specific characteristics on MRI, but some findings can indicate the diagnosis. In our study, we found significant differences between sarcomas and adenocarcinomas. Sarcomas were larger, had more hyperintense and heterogeneous signal intensity in T2-weighted sequences, and enhanced more than or at least as much as the myometrium. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  5. Intrinsic epidermoid of the brain stem: case report and review of the literature.

    PubMed

    Singh, Saraj K; Jain, Kapil; Jain, Vijendra Kumar

    2018-03-19

    Purely cystic brain stem epidermoid is a rare diagnosis among all brainstem cystic lesions. Further, it is very rare in pediatric age group. Here, we are reporting a rare case of completely cystic brain stem epidermoid in a child. The patient presented with clinical features of brain stem involvement. MRI brain was suggestive of cystic brain stem lesion. Patient went through surgical procedure. Final diagnosis of epidermoid cyst was confirmed on histopathological report. With the help of various advanced sequences of MRI like diffusion and ADC, diagnosis of epidermoid cyst can be established at unusual intracranial site also. Surgical resection of epidermoid cyst at brain stem should be attempted judiciously utilizing all modern tools of neurosurgery.

  6. Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging.

    PubMed

    Kaufman, Jason A; Ahrens, Eric T; Laidlaw, David H; Zhang, Song; Allman, John M

    2005-11-01

    This report presents initial results of a multimodal analysis of tissue volume and microstructure in the brain of an aye-aye (Daubentonia madagascariensis). The left hemisphere of an aye-aye brain was scanned using T2-weighted structural magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) prior to histological processing and staining for Nissl substance and myelinated fibers. The objectives of the experiment were to estimate the volume of gross brain regions for comparison with published data on other prosimians and to validate DTI data on fiber anisotropy with histological measurements of fiber spread. Measurements of brain structure volumes in the specimen are consistent with those reported in the literature: the aye-aye has a very large brain for its body size, a reduced volume of visual structures (V1 and LGN), and an increased volume of the olfactory lobe. This trade-off between visual and olfactory reliance is likely a reflection of the nocturnal extractive foraging behavior practiced by Daubentonia. Additionally, frontal cortex volume is large in the aye-aye, a feature that may also be related to its complex foraging behavior and sensorimotor demands. Analysis of DTI data in the anterior cingulum bundle demonstrates a strong correlation between fiber spread as measured from histological sections and fiber spread as measured from DTI. These results represent the first quantitative comparison of DTI data and fiber-stained histology in the brain. (c) 2005 Wiley-Liss, Inc.

  7. Usefulness of diffusion-weighted MR imaging for differentiating between benign and malignant superficial soft tissue tumours and tumour-like lesions

    PubMed Central

    Jeon, Ji Young; Lee, Min Hee; Lee, Sang Hoon; Shin, Myung Jin

    2016-01-01

    Objective: To evaluate the usefulness of adding diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping to conventional 3.0-T MRI to differentiate between benign and malignant superficial soft-tissue masses (SSTMs). Methods: The institutional review board approved this study and informed consent was waived. The authors retrospectively analyzed conventional MR images including diffusion-weighted images (b-values: 0, 400, 800 s mm−2) in 60 histologically proven SSTMs (35 benign and 25 malignant) excluding lipomas. Two radiologists independently evaluated the conventional MRI alone and again with the additional DWI for the evaluation of malignant masses. The mean ADC values measured within an entire mass and the contrast-enhancing solid portion were used for quantitative analysis. Diagnostic performances were compared using receiver-operating characteristic analysis. Results: For an inexperienced reader, using only conventional MRI, the sensitivity, specificity and accuracy were 84%, 80% and 81.6%, respectively. When combining conventional MRI and DWI, the sensitivity, specificity and accuracy were 96%, 85.7% and 90%, respectively. Additional DWI influenced the improvement of the rate of correct diagnosis by 8.3% (5/60). For an experienced reader, additional DWI revealed the same accuracy of 86.7% without added value on the correct diagnosis. The group mean ADCs of malignant SSTMs were significantly lower than that of benign SSTMs (p < 0.001). The best diagnostic performance with respect to differentiation of SSTMs could be obtained when conventional MRI was assessed in combination with DWI. Conclusion: Adding qualitative and quantitative DWI to conventional MRI can improve the diagnostic performance for the differentiation between benign and malignant SSTMs. Advances in knowledge: Because the imaging characteristics of many malignant superficial soft-tissue lesions overlap with those of benign ones, inadequate surgical resection due to misinterpretation of MRI often occurs. Adding DWI to conventional MRI yields greater diagnostic performances [area under the receiver-operating characteristic curve (AUC), 0.83–0.99] than does the use of conventional MRI alone (AUC, 0.71–0.93) in the evaluation of malignant superficial masses by inexperienced readers. PMID:26892266

  8. Warnings and caveats in brain controllability.

    PubMed

    Tu, Chengyi; Rocha, Rodrigo P; Corbetta, Maurizio; Zampieri, Sandro; Zorzi, Marco; Suweis, S

    2018-08-01

    A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, quantified using anatomical diffusion imaging, in terms of their "controllability", drawing on concepts and methods of control theory. They reported that brain activity is controllable from a single node, and that the topology of brain networks provides an explanation for the types of control roles that different regions play in the brain. In this work, we first briefly review the framework of control theory applied to complex networks. We then show contrasting results on brain controllability through the analysis of five different datasets and numerical simulations. We find that brain networks are not controllable (in a statistical significant way) by one single region. Additionally, we show that random null models, with no biological resemblance to brain network architecture, produce the same type of relationship observed by Gu et al. between the average/modal controllability and weighted degree. Finally, we find that resting state networks defined with fMRI cannot be attributed specific control roles. In summary, our study highlights some warning and caveats in the brain controllability framework. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cerebral embolization in asymptomatic versus symptomatic patients after carotid stenting.

    PubMed

    Tulip, Hans H; Rosero, Eric B; Higuera, Adriana J; Ilarraza, Adriana; Valentine, R James; Timaran, Carlos H

    2012-12-01

    Previous studies have investigated the development of new ischemic brain lesions on diffusion-weighted magnetic resonance imaging (DW-MRI) after carotid artery stenting (CAS). The rate of ischemic brain injury after CAS for asymptomatic stenosis has not been extensively studied but is presumed to be less likely than in symptomatic patients. This study assessed the occurrence of cerebral embolization after CAS for asymptomatic vs symptomatic carotid stenosis. During an 18-month period, 40 patients undergoing CAS under filter embolic protection were prospectively evaluated. Transcranial Doppler (TCD) during CAS and preprocedural and 24-hour postprocedural DW-MRI were used to assess cerebral embolization. Univariate and nonparametric analyses were used to compare differences in cerebral embolization after CAS in asymptomatic and symptomatic patients. CAS was performed for 23 asymptomatic (58%) and 17 symptomatic (42%) carotid stenoses. The median microembolic counts detected by TCD were 285 (interquartile range [IQR], 182-376) for asymptomatic and 313 (IQR, 170-426) for symptomatic carotid stenosis (P=.6). DW-MRI was available for assessment in 20 asymptomatic and 14 symptomatic patients. New acute cerebral emboli detected with DW-MRI occurred in 10 asymptomatic (50%) and 7 symptomatic patients (50%) undergoing CAS (P=.9). The ipsilateral and total median number of DW-MRI lesions between groups were not statistically significantly different at, respectively, 1 (IQR, 0-2.5) and 1.5 (IQR, 0-3) for asymptomatic vs 0.5 (IQR, 0-2) and 0.5 (IQR, 0-3) for symptomatic carotid stenosis (P>.5). One asymptomatic patient sustained a minor stroke after CAS. No new neurologic events occurred in symptomatic patients. The 30-day stroke-death rate was 2.5% in this series. Cerebral embolization, as detected by TCD and DW-MRI, occurs with a similar frequency after CAS for asymptomatic and symptomatic carotid stenosis. Because postprocedural ischemic brain injury occurs in approximately half of asymptomatic patients, the safety of CAS under filter embolic protection for asymptomatic carotid stenosis is uncertain and warrants further study. Published by Mosby, Inc.

  10. Rapid language-related plasticity: microstructural changes in the cortex after a short session of new word learning.

    PubMed

    Hofstetter, Shir; Friedmann, Naama; Assaf, Yaniv

    2017-04-01

    Human brain imaging revealed that the brain can undergo structural plasticity following new learning experiences. Most magnetic resonance imaging (MRI) uncovered morphometric alternation in cortical density after the long-term training of weeks to months. A recent diffusion tensor imaging (DTI) study has found changes in diffusion indices after 2 h of training, primarily in the hippocampus. However, whether a short learning experience can induce microstructural changes in the neocortex is still unclear. Here, we used diffusion MRI, a method sensitive to tissue microstructure, to study cortical plasticity. To attain cortical involvement, we used a short language task (under 1 h) of introducing new lexical items (flower names) to the lexicon. We have found significant changes in diffusivity in cortical regions involved in language and reading (inferior frontal gyrus, middle temporal gyrus, and inferior parietal lobule). In addition, the difference in the values of diffusivity correlated with the lexical learning rate in the task. Moreover, significant changes were found in white matter tracts near the cortex, and the extent of change correlated with behavioral measures of lexical learning rate. These findings provide first evidence of short-term cortical plasticity in the human brain after a short language learning task. It seems that short training of less than an hour of high cognitive demand can induce microstructural changes in the cortex, suggesting a rapid time scale of neuroplasticity and providing additional evidence of the power of MRI to investigate the temporal and spatial progressions of this process.

  11. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  12. Integrating histology and MRI in the first digital brain of common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Sun, Peizhen; Parvathaneni, Prasanna; Schilling, Kurt G.; Gao, Yurui; Janve, Vaibhav; Anderson, Adam; Landman, Bennett A.

    2015-03-01

    This effort is a continuation of development of a digital brain atlas of the common squirrel monkey, Saimiri sciureus, a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. Here, we present the integration of histology with multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. The central concept of this work is to use block face photography to establish an intermediate common space in coordinate system which preserves the high resolution in-plane resolution of histology while enabling 3-D correspondence with MRI. In vivo MRI acquisitions include high resolution T2 structural imaging (300 μm isotropic) and low resolution diffusion tensor imaging (600 um isotropic). Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging (both 300 μm isotropic). Cortical regions were manually annotated on the co-registered volumes based on published histological sections in-plane. We describe mapping of histology and MRI based data of the common squirrel monkey and construction of a viewing tool that enable online viewing of these datasets. The previously descried atlas MRI is used for its deformation to provide accurate conformation to the MRI, thus adding information at the histological level to the MRI volume. This paper presents the mapping of single 2D image slice in block face as a proof of concept and this can be extended to map the atlas space in 3D coordinate system as part of the future work and can be loaded to an XNAT system for further use.

  13. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    PubMed

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p < 0.01, voxel size > 40). The volume of right middle frontal gyrus reduced significantly (p < 0.01). The FA and ADC of right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  14. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    PubMed

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  15. White matter tractography using diffusion tensor deflection.

    PubMed

    Lazar, Mariana; Weinstein, David M; Tsuruda, Jay S; Hasan, Khader M; Arfanakis, Konstantinos; Meyerand, M Elizabeth; Badie, Benham; Rowley, Howard A; Haughton, Victor; Field, Aaron; Alexander, Andrew L

    2003-04-01

    Diffusion tensor MRI provides unique directional diffusion information that can be used to estimate the patterns of white matter connectivity in the human brain. In this study, the behavior of an algorithm for white matter tractography is examined. The algorithm, called TEND, uses the entire diffusion tensor to deflect the estimated fiber trajectory. Simulations and imaging experiments on in vivo human brains were performed to investigate the behavior of the tractography algorithm. The simulations show that the deflection term is less sensitive than the major eigenvector to image noise. In the human brain imaging experiments, estimated tracts were generated in corpus callosum, corticospinal tract, internal capsule, corona radiata, superior longitudinal fasciculus, inferior longitudinal fasciculus, fronto-occipital fasciculus, and uncinate fasciculus. This approach is promising for mapping the organizational patterns of white matter in the human brain as well as mapping the relationship between major fiber trajectories and the location and extent of brain lesions. Copyright 2003 Wiley-Liss, Inc.

  16. Non-Gaussian diffusion MR imaging of glioma: comparisons of multiple diffusion parameters and correlation with histologic grade and MIB-1 (Ki-67 labeling) index.

    PubMed

    Yan, Ren; Haopeng, Pang; Xiaoyuan, Feng; Jinsong, Wu; Jiawen, Zhang; Chengjun, Yao; Tianming, Qiu; Ji, Xiong; Mao, Sheng; Yueyue, Ding; Yong, Zhang; Jianfeng, Luo; Zhenwei, Yao

    2016-02-01

    This study was conducted to compare the association of Gaussian and non-Gaussian magnetic resonance imaging (MRI)-derived parameters with histologic grade and MIB-1 (Ki-67 labeling) index (MI) in brain glioma. Sixty-five patients with pathologically confirmed glioma, who underwent diffusion-weighted MRI with 2 b values (0, 1000 s/mm(2)) and 22 b values (≤5000 s/mm(2)), respectively, were divided into three groups of grade II (n = 35), grade III (n = 8), and grade IV (n = 22). Comparisons by two groups were made for apparent diffusion coefficient (ADC), slow diffusion coefficient (Dslow), distributed diffusion coefficient (DDC), and heterogeneity index α. Analyses of receiver operating characteristic (ROC) curve were performed to maximize the area under the curve (AUC) for differentiating grade III + IV (high-grade glioma, HGG) from grade II (low-grade glioma, LGG) and grade IV (glioblastoma multiforme, GBM) from grade II + III (other grade glioma, OGG). Correlations with MI were analyzed for the MRI parameters. On tumor regions, the values of ADC, Dslow, DDC, and α were significantly higher in grade II [(1.37 ± 0.29, 0.70 ± 0.11, 1.39 ± 0.34) (×10(-3) mm(2)/s) and 0.88 ± 0.05, respectively] than in grade III [(0.99 ± 0.13, 0.55 ± 0.07, 1.04 ± 0.20) (×10(-3) mm(2)/s) and 0.80 ± 0.03, respectively] and grade IV [(1.03 ± 0.14, 0.50 ± 0.05, 1.02 ± 0.16) (×10(-3) mm(2)/s) and 0.76 ± 0.04, respectively] (all P < 0.001). The parameter α showed the highest AUCs of 0.950 and 0.922 in discriminating HGG from LGG and GBM from OGG, respectively. Significant correlations with histologic grade and MI were observed for the MRI parameters. The non-Gaussian MRI-derived parameters α and Dslow are superior to ADC in glioma grading, which are comparable with ADC as reliable biomarkers in noninvasively predicting the proliferation level of glioma malignancy.

  17. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity.

    PubMed

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N

    2015-01-01

    To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen-Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure-function relationships but requires further validation in other populations of CP.

  18. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    NASA Astrophysics Data System (ADS)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  19. Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia.

    PubMed

    Sun, Li; Zhou, Wei; Mueller, Christian; Sommer, Clemens; Heiland, Sabine; Bauer, Alexander T; Marti, Hugo H; Veltkamp, Roland

    2010-09-01

    Hyperbaric oxygen (HBO) and normobaric hyperoxia (NBO) protect the brain parenchyma and the cerebral microcirculation against ischemia. We studied their effect on secondary hemorrhage after thrombolysis in two thromboembolic middle cerebral artery occlusion (MCAO) (tMCAO) models. Beginning 60 minutes after tMCAO with either thrombin-induced thromboemboli (TT) or calcium-induced thromboemboli (CT), spontaneously hypertensive rats (n=96) breathed either air, 100% O(2) (NBO), or 100% O(2) at 3 bar (HBO) for 1 hour. Immediately thereafter, recombinant tissue plasminogen activator (rt-PA, 9 mg/kg) was injected. Although significant reperfusion was observed after thrombolysis in TT-tMCAO, vascular occlusion persisted in CT-tMCAO. In TT-tMCAO, NBO and HBO significantly reduced diffusion-weighted imaging-magnetic resonance imaging (MRI) lesion volume and postischemic blood-brain barrier (BBB) permeability on postcontrast T1-weighted images. NBO and, significantly more potently, HBO reduced macroscopic hemorrhage on T2* MRI and on corresponding postmortem cryosections. Oxygen therapy lowered hemoglobin content and attenuated activation of matrix metalloproteinases in the ischemic hemisphere. In contrast, NBO and HBO failed to reduce infarct size in CT but both decreased BBB damage and microscopic hemorrhagic transformation. Only HBO reduced hemoglobin extravasation in the ischemic hemisphere. In conclusion, NBO and HBO decrease infarct size after thromboembolic ischemia only if recanalization is successful. As NBO and HBO also reduce postthrombolytic intracerebral hemorrhage, combining the two with thrombolysis seems promising.

  20. Relationship between pretreatment FDG-PET and diffusion-weighted MRI biomarkers in diffuse large B-cell lymphoma

    PubMed Central

    de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ

    2014-01-01

    The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837

  1. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    PubMed

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    PubMed

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.

  3. Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI⋆

    PubMed Central

    Barmpoutis, Angelos; Jian, Bing; Vemuri, Baba C.; Shepherd, Timothy M.

    2009-01-01

    In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2nd-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4th order symmetric positive semi-definite (PSD) tensor approximation to represent the diffusivity function and present a novel technique to estimate these tensors from the DW-MRI data guaranteeing the PSD property. There have been several published articles in literature on higher order tensor approximations of the diffusivity function but none of them guarantee the positive semi-definite constraint, which is a fundamental constraint since negative values of the diffusivity coefficients are not meaningful. In our methods, we parameterize the 4th order tensors as a sum of squares of quadratic forms by using the so called Gram matrix method from linear algebra and its relation to the Hilbert’s theorem on ternary quartics. This parametric representation is then used in a nonlinear-least squares formulation to estimate the PSD tensors of order 4 from the data. We define a metric for the higher-order tensors and employ it for regularization across the lattice. Finally, performance of this model is depicted on synthetic data as well as real DW-MRI from an isolated rat hippocampus. PMID:17633709

  4. Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.

    PubMed

    Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B

    2017-05-15

    Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Functional brain abnormalities in major depressive disorder using the Hilbert-Huang transform.

    PubMed

    Yu, Haibin; Li, Feng; Wu, Tong; Li, Rui; Yao, Li; Wang, Chuanyue; Wu, Xia

    2018-02-09

    Major depressive disorder is a common disease worldwide, which is characterized by significant and persistent depression. Non-invasive accessory diagnosis of depression can be performed by resting-state functional magnetic resonance imaging (rs-fMRI). However, the fMRI signal may not satisfy linearity and stationarity. The Hilbert-Huang transform (HHT) is an adaptive time-frequency localization analysis method suitable for nonlinear and non-stationary signals. The objective of this study was to apply the HHT to rs-fMRI to find the abnormal brain areas of patients with depression. A total of 35 patients with depression and 37 healthy controls were subjected to rs-fMRI. The HHT was performed to extract the Hilbert-weighted mean frequency of the rs-fMRI signals, and multivariate receiver operating characteristic analysis was applied to find the abnormal brain regions with high sensitivity and specificity. We observed differences in Hilbert-weighted mean frequency between the patients and healthy controls mainly in the right hippocampus, right parahippocampal gyrus, left amygdala, and left and right caudate nucleus. Subsequently, the above-mentioned regions were included in the results obtained from the compared region homogeneity and the fractional amplitude of low frequency fluctuation method. We found brain regions with differences in the Hilbert-weighted mean frequency, and examined their sensitivity and specificity, which suggested a potential neuroimaging biomarker to distinguish between patients with depression and healthy controls. We further clarified the pathophysiological abnormality of these regions for the population with major depressive disorder.

  6. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age.

    PubMed

    Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K

    2016-12-01

    To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH

  8. Condition Number as a Measure of Noise Performance of Diffusion Tensor Data Acquisition Schemes with MRI

    NASA Astrophysics Data System (ADS)

    Skare, Stefan; Hedehus, Maj; Moseley, Michael E.; Li, Tie-Qiang

    2000-12-01

    Diffusion tensor mapping with MRI can noninvasively track neural connectivity and has great potential for neural scientific research and clinical applications. For each diffusion tensor imaging (DTI) data acquisition scheme, the diffusion tensor is related to the measured apparent diffusion coefficients (ADC) by a transformation matrix. With theoretical analysis we demonstrate that the noise performance of a DTI scheme is dependent on the condition number of the transformation matrix. To test the theoretical framework, we compared the noise performances of different DTI schemes using Monte-Carlo computer simulations and experimental DTI measurements. Both the simulation and the experimental results confirmed that the noise performances of different DTI schemes are significantly correlated with the condition number of the associated transformation matrices. We therefore applied numerical algorithms to optimize a DTI scheme by minimizing the condition number, hence improving the robustness to experimental noise. In the determination of anisotropic diffusion tensors with different orientations, MRI data acquisitions using a single optimum b value based on the mean diffusivity can produce ADC maps with regional differences in noise level. This will give rise to rotational variances of eigenvalues and anisotropy when diffusion tensor mapping is performed using a DTI scheme with a limited number of diffusion-weighting gradient directions. To reduce this type of artifact, a DTI scheme with not only a small condition number but also a large number of evenly distributed diffusion-weighting gradients in 3D is preferable.

  9. Diffusion-weighted MRI measures suggest increased white-matter integrity in Internet gaming disorder: Evidence from the comparison with recreational Internet game users.

    PubMed

    Dong, Guangheng; Wu, Lingdan; Wang, Ziliang; Wang, Yifan; Du, Xiaoxia; Potenza, Marc N

    2018-06-01

    Several studies have suggested that Internet gaming disorder (IGD) is related to altered brain white matter integrity. However, seeming inconsistencies exist and may reflect comparison groups not matched well for certain gaming characteristics. In order to address this possible concern, we recruited in the present study individuals with recreational Internet game use (RGU) comprised of individuals who spend similar amounts of time as IGD subjects playing online games without developing IGD. Diffusion tensor imaging data were collected from 42 IGD and 44 RGU subjects. Whole-brain comparisons showed that IGD subjects demonstrated increased fractional anisotropy (FA) in the bilateral anterior thalamic radiation, anterior limb of the internal capsule, bilateral corticospinal tract, bilateral inferior fronto-occipital fasciculus, corpus callosum, and bilateral inferior longitudinal fasciculus. In addition, Internet-addiction severity was positively correlated with FA values. Taken together, we conclude that IGD is associated with measures of increased white-matter integrity in tracts linking reward circuitry and sensory and motor control systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Perspectives on Porous Media MR in Clinical MRI

    NASA Astrophysics Data System (ADS)

    Sigmund, E. E.

    2011-03-01

    Many goals and challenges of research in natural or synthetic porous media are mirrored in quantitative medical MRI. This review will describe examples where MR techniques used in porous media (particularly diffusion-weighted imaging (DWI)) are applied to physiological pathologies. Tissue microstructure is one area with great overlap with porous media science. Diffusion-weighting (esp. in neurological tissue) has motivated models with explicit physical dimensions, statistical parameters, empirical descriptors, or hybrids thereof. Another clinically relevant microscopic process is active flow. Renal (kidney) tissue possesses significant active vascular / tubular transport that manifests as "pseudodiffusion." Cancerous lesions involve anomalies in both structure and flow. The tools of magnetic resonance and their interpretation in porous media has had great impact on clinical MRI, and continued cross-fertilization of ideas can only enhance the progress of both fields.

  11. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, P; Park, P; Li, H

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated withmore » PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.« less

  12. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior.

    PubMed

    Burger, Kyle S; Berner, Laura A

    2014-09-01

    Adequate energy intake is vital for the survival of humans and is regulated by complex homeostatic and hedonic mechanisms. Supported by functional MRI (fMRI) studies that consistently demonstrate differences in brain response as a function of weight status during exposure to appetizing food stimuli, it has been posited that hedonically driven food intake contributes to weight gain and obesity maintenance. These food reward theories of obesity are reliant on the notion that the aberrant brain response to food stimuli relates directly to ingestive behavior, specifically, excess food intake. Importantly, functioning of homeostatic neuroendocrine regulators of food intake, such as leptin and ghrelin, are impacted by weight status. Thus, data from studies that evaluate the effect on weight status on brain response to food may be a result of differences in neuroendocrine functioning and/or behavior. In the present review, we examine the influence of weight and weight change, exogenous administration of appetitive hormones, and ingestive behavior on BOLD response to food stimuli. Published by Elsevier Inc.

  13. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  14. Diffusion tensor tracking of neuronal fiber pathways in the living human brain

    NASA Astrophysics Data System (ADS)

    Lori, Nicolas Francisco

    2001-11-01

    The technique of diffusion tensor tracking (DTT) is described, in which diffusion tensor magnetic resonance imaging (DT-MRI) data are processed to allow the visualization of white matter (WM) tracts in a living human brain. To illustrate the methods, a detailed description is given of the physics of DT-MRI, the structure of the DT-MRI experiment, the computer tools that were developed to visualize WM tracts, the anatomical consistency of the obtained WM tracts, and the accuracy and precision of DTT using computer simulations. When presenting the physics of DT-MRI, a completely quantum-mechanical view of DT-MRI is given where some of the results are new. Examples of anatomical tracts viewed using DTT are presented, including the genu and the splenium of the corpus callosum, the ventral pathway with its amygdala connection highlighted, the geniculo- calcarine tract separated into anterior and posterior parts, the geniculo-calcarine tract defined using functional magnetic resonance imaging (MRI), and U- fibers. In the simulation, synthetic DT-MRI data were constructed that would be obtained for a cylindrical WM tract with a helical trajectory surrounded by gray matter. Noise was then added to the synthetic DT-MRI data, and DTT trajectories were calculated using the noisy data (realistic tracks). Simulated DTT errors were calculated as the vector distance between the realistic tracks and the ideal trajectory. The simulation tested the effects of a comprehensive set of experimental conditions, including voxel size, data sampling, data averaging, type of tract tissue, tract diameter and type of tract trajectory. Simulated DTT accuracy and precision were typically below the voxel dimension, and precision was compatible with the experimental results.

  15. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  16. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes.

    PubMed

    Tjeerdema, Nathanja; Van Schinkel, Linda D; Westenberg, Jos J; Van Elderen, Saskia G; Van Buchem, Mark A; Smit, Johannes W; Van der Grond, Jeroen; De Roos, Albert

    2014-09-01

    To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. Aortic stiffness is associated with brain injury. Aortic stiffness exposes small vessels to high pressure fluctuations and flow. Aortic stiffness is associated with microvascular brain injury in diabetes. This suggests a vascular contribution to early subtle microstructural deficits.

  17. The Genetics of Endophenotypes of Neurofunction to Understand Schizophrenia (GENUS) consortium: A collaborative cognitive and neuroimaging genetics project.

    PubMed

    Blokland, Gabriëlla A M; Del Re, Elisabetta C; Mesholam-Gately, Raquelle I; Jovicich, Jorge; Trampush, Joey W; Keshavan, Matcheri S; DeLisi, Lynn E; Walters, James T R; Turner, Jessica A; Malhotra, Anil K; Lencz, Todd; Shenton, Martha E; Voineskos, Aristotle N; Rujescu, Dan; Giegling, Ina; Kahn, René S; Roffman, Joshua L; Holt, Daphne J; Ehrlich, Stefan; Kikinis, Zora; Dazzan, Paola; Murray, Robin M; Di Forti, Marta; Lee, Jimmy; Sim, Kang; Lam, Max; Wolthusen, Rick P F; de Zwarte, Sonja M C; Walton, Esther; Cosgrove, Donna; Kelly, Sinead; Maleki, Nasim; Osiecki, Lisa; Picchioni, Marco M; Bramon, Elvira; Russo, Manuela; David, Anthony S; Mondelli, Valeria; Reinders, Antje A T S; Falcone, M Aurora; Hartmann, Annette M; Konte, Bettina; Morris, Derek W; Gill, Michael; Corvin, Aiden P; Cahn, Wiepke; Ho, New Fei; Liu, Jian Jun; Keefe, Richard S E; Gollub, Randy L; Manoach, Dara S; Calhoun, Vince D; Schulz, S Charles; Sponheim, Scott R; Goff, Donald C; Buka, Stephen L; Cherkerzian, Sara; Thermenos, Heidi W; Kubicki, Marek; Nestor, Paul G; Dickie, Erin W; Vassos, Evangelos; Ciufolini, Simone; Reis Marques, Tiago; Crossley, Nicolas A; Purcell, Shaun M; Smoller, Jordan W; van Haren, Neeltje E M; Toulopoulou, Timothea; Donohoe, Gary; Goldstein, Jill M; Seidman, Larry J; McCarley, Robert W; Petryshen, Tracey L

    2018-05-01

    Schizophrenia has a large genetic component, and the pathways from genes to illness manifestation are beginning to be identified. The Genetics of Endophenotypes of Neurofunction to Understand Schizophrenia (GENUS) Consortium aims to clarify the role of genetic variation in brain abnormalities underlying schizophrenia. This article describes the GENUS Consortium sample collection. We identified existing samples collected for schizophrenia studies consisting of patients, controls, and/or individuals at familial high-risk (FHR) for schizophrenia. Samples had single nucleotide polymorphism (SNP) array data or genomic DNA, clinical and demographic data, and neuropsychological and/or brain magnetic resonance imaging (MRI) data. Data were subjected to quality control procedures at a central site. Sixteen research groups contributed data from 5199 psychosis patients, 4877 controls, and 725 FHR individuals. All participants have relevant demographic data and all patients have relevant clinical data. The sex ratio is 56.5% male and 43.5% female. Significant differences exist between diagnostic groups for premorbid and current IQ (both p<1×10 -10 ). Data from a diversity of neuropsychological tests are available for 92% of participants, and 30% have structural MRI scans (half also have diffusion-weighted MRI scans). SNP data are available for 76% of participants. The ancestry composition is 70% European, 20% East Asian, 7% African, and 3% other. The Consortium is investigating the genetic contribution to brain phenotypes in a schizophrenia sample collection of >10,000 participants. The breadth of data across clinical, genetic, neuropsychological, and MRI modalities provides an important opportunity for elucidating the genetic basis of neural processes underlying schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: A systematic review.

    PubMed

    Li, Mingmei; Caeyenberghs, Karen

    2018-05-20

    In addition to the burden of a life-threatening diagnosis, cancer patients are struggling with adverse side-effects from cancer treatment. Chemotherapy has been linked to an array of cognitive impairments and alterations in brain structure and function ("chemobrain"). In this review, we summarized the existing evidence that evaluate the changes in cognitive functioning and brain with chemotherapy, as assessed using structural and functional MRI-based techniques in a longitudinal design. This review followed the latest PRISMA guidelines using Embase, Medline, PsychINFO, Scopus, and Web of Science databases with date restrictions from 2012-2017. Fourteen research articles met the key inclusion criteria: (i) the studies involved adult cancer patients (mean age≥18); (ii) the use of chemotherapy in the treatment of cancer; (iii) pre-post assessment of behavioral and brain-based outcomes; and (iv) abstracts written in English. Effect sizes of subjective and objective cognitive impairments from the reviewed studies were estimated using Cohen's d or z-scores. We calculated percentage of mean change or effect sizes for main neuroimaging findings when data were available. Strength of the correlations between brain alterations and cognitive changes was obtained using squared correlation coefficients. We showed small to medium effect sizes on individual tests of attention, processing speed, verbal memory, and executive control; and medium effect sizes on self-report questionnaires. Neuroimaging data showed reduced grey matter density in cancer patients in frontal, parietal, and temporal regions. Changes in brain function (brain activation and cerebral blood flow) were observed with cancer across functional networks involving (pre)frontal, parietal, occipital, temporal, and cerebellar regions. Data from diffusion-weighted MRI suggested reduced white matter integrity involving the superior longitudinal fasciculus, corpus callosum, forceps major, and corona radiate, and altered structural connectivity across the whole brain network. Finally, we observed moderate-to-strong correlations between worsening cognitive function and morphological changes in frontal brain regions. While MRI is a powerful tool for detection of longitudinal brain changes in the 'chemobrain', the underlying biological mechanisms are still unclear. Continued work in this field will hopefully detect MRI metrics to be used as biomarkers to help guide cognitive treatment at the individual cancer patient level. Copyright © 2018. Published by Elsevier Ltd.

  19. Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm

    PubMed Central

    Iyer, Swathi; Shafran, Izhak; Grayson, David; Gates, Kathleen; Nigg, Joel; Fair, Damien

    2013-01-01

    Resting state functional connectivity MRI (rs-fcMRI) is a popular technique used to gauge the functional relatedness between regions in the brain for typical and special populations. Most of the work to date determines this relationship by using Pearson's correlation on BOLD fMRI timeseries. However, it has been recognized that there are at least two key limitations to this method. First, it is not possible to resolve the direct and indirect connections/influences. Second, the direction of information flow between the regions cannot be differentiated. In the current paper, we follow-up on recent work by Smith et al (2011), and apply a Bayesian approach called the PC algorithm to both simulated data and empirical data to determine whether these two factors can be discerned with group average, as opposed to single subject, functional connectivity data. When applied on simulated individual subjects, the algorithm performs well determining indirect and direct connection but fails in determining directionality. However, when applied at group level, PC algorithm gives strong results for both indirect and direct connections and the direction of information flow. Applying the algorithm on empirical data, using a diffusion-weighted imaging (DWI) structural connectivity matrix as the baseline, the PC algorithm outperformed the direct correlations. We conclude that, under certain conditions, the PC algorithm leads to an improved estimate of brain network structure compared to the traditional connectivity analysis based on correlations. PMID:23501054

  20. Emerging imaging tools for use with traumatic brain injury research.

    PubMed

    Hunter, Jill V; Wilde, Elisabeth A; Tong, Karen A; Holshouser, Barbara A

    2012-03-01

    This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.

  1. Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy.

    PubMed

    Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L

    2017-03-01

    Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated with axonal disruption, where lower FA was associated with greater axonal disruption in white matter directly adjacent to hyperphosphorylated tau positive sulci. In summary, our findings indicate that axonal disruption and tau pathology are closely associated, and high spatial resolution ex vivo diffusion MRI has the potential to detect microstructural alterations observed in CTE tissue. Future studies will be required to determine whether this approach can be applied to living people.

  2. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    PubMed

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, p<0.003), while no significant differences were found for the other brain regions. The SI CR was significantly better (i.e. lower) for the turbo-PEPSI than for the GRE sequence (p<0.00001). Owing to its very short scan time and high sensitivity to the haemorrhage foci, the turbo-PEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  3. Early Imaging and Adverse Neurodevelopmental Outcome in Asphyxiated Newborns Treated With Hypothermia.

    PubMed

    Al Amrani, Fatema; Kwan, Saskia; Gilbert, Guillaume; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia

    2017-08-01

    Brain injury can be identified as early as day two of life in asphyxiated newborns treated with hypothermia, when using diffusion magnetic resonance imaging (MRI). However, it remains unclear whether these diffusion changes can predict future neurodevelopment. This study aimed to determine whether abnormal early diffusion changes in newborns treated with hypothermia are associated with adverse neurodevelopmental outcome at age two years. Asphyxiated newborns treated with hypothermia were enrolled prospectively. They underwent magnetic resonance imaging (MRI) at specific time points over the first month of life, including diffusion-weighted imaging and diffusion-tensor imaging. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in different regions of interest. Adverse neurodevelopmental outcome was defined as cerebral palsy, global developmental delay, and/or seizure disorder around age two years. ADC and FA values were compared between the newborns developing or not developing adverse outcome. Twenty-nine asphyxiated newborns treated with hypothermia were included. Among the newborns developing adverse outcome, ADC values were significantly decreased on days two to three of life and increased around day ten of life in the thalamus, posterior limb of the internal capsule, and the lentiform nucleus. FA values decreased in the same regions around day 30 of life. These newborns also had increased ADC around day ten of life and around day 30 of life, and decreased FA around day 30 of life in the anterior and posterior white matter. Diffusion changes that were evident as early as day two of life, when the asphyxiated newborns were still treated with hypothermia, were associated with later abnormal neurodevelopmental outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Optimization of diagnosis indicator selection and inspection plan by 3.0T MRI in breast cancer].

    PubMed

    Jiang, Zhongbiao; Wang, Yunhua; He, Zhong; Zhang, Lejun; Zheng, Kai

    2013-08-01

    To optimize 3.0T MRI diagnosis indicator in breast cancer and to select the best MRI scan program. Totally 45 patients with breast cancers were collected, and another 35 patients with benign breast tumor served as the control group. All patients underwent 3.0T MRI, including T1- weighted imaging (T1WI), fat suppression of the T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), 1H magnetic resonance spectroscopy (1H-MRS) and dynamic contrast enhanced (DCE) sequence. With operation pathology results as the gold standard in the diagnosis of breast diseases, the pathological results of benign and malignant served as dependent variables, and the diagnostic indicators of MRI were taken as independent variables. We put all the indicators of MRI examination under Logistic regression analysis, established the Logistic model, and optimized the diagnosis indicators of MRI examination to further improve MRI scan of breast cancer. By Logistic regression analysis, some indicators were selected in the equation, including the edge feature of the tumor, the time-signal intensity curve (TIC) type and the apparent diffusion coefficient (ADC) value when b=500 s/mm2. The regression equation was Logit (P)=-21.936+20.478X6+3.267X7+ 21.488X3. Valuable indicators in the diagnosis of breast cancer are the edge feature of the tumor, the TIC type and the ADC value when b=500 s/mm2. Combining conventional MRI scan, DWI and dynamic enhanced MRI is a better examination program, while MRS is the complementary program when diagnosis is difficult.

  5. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences.

    PubMed

    Lucas, Rita; Lopes Dias, João; Cunha, Teresa Margarida

    2015-01-01

    We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases.

  6. Utility of Clinical Parameters and Multiparametric MRI as Predictive Factors for Differentiating Uterine Sarcoma From Atypical Leiomyoma.

    PubMed

    Bi, Qiu; Xiao, Zhibo; Lv, Fajin; Liu, Yao; Zou, Chunxia; Shen, Yiqing

    2018-02-05

    The objective of this study was to find clinical parameters and qualitative and quantitative magnetic resonance imaging (MRI) features for differentiating uterine sarcoma from atypical leiomyoma (ALM) preoperatively and to calculate predictive values for uterine sarcoma. Data from 60 patients with uterine sarcoma and 88 patients with ALM confirmed by surgery and pathology were collected. Clinical parameters, qualitative MRI features, diffusion-weighted imaging with apparent diffusion coefficient values, and quantitative parameters of dynamic contrast-enhanced MRI of these two tumor types were compared. Predictive values for uterine sarcoma were calculated using multivariable logistic regression. Patient clinical manifestations, tumor locations, margins, T2-weighted imaging signals, mean apparent diffusion coefficient values, minimum apparent diffusion coefficient values, and time-signal intensity curves of solid tumor components were obvious significant parameters for distinguishing between uterine sarcoma and ALM (all P <.001). Abnormal vaginal bleeding, tumors located mainly in the uterine cavity, ill-defined tumor margins, and mean apparent diffusion coefficient values of <1.272 × 10 -3  mm 2 /s were significant preoperative predictors of uterine sarcoma. When the overall scores of these four predictors were greater than or equal to 7 points, the sensitivity, the specificity, the accuracy, and the positive and negative predictive values were 88.9%, 99.9%, 95.7%, 97.0%, and 95.1%, respectively. The use of clinical parameters and multiparametric MRI as predictive factors was beneficial for diagnosing uterine sarcoma preoperatively. These findings could be helpful for guiding treatment decisions. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Magnetic resonance imaging in active surveillance—a modern approach

    PubMed Central

    Moore, Caroline M.

    2018-01-01

    In recent years, active surveillance has been increasingly adopted as a conservative management approach to low and sometimes intermediate risk prostate cancer, to avoid or delay treatment until there is evidence of higher risk disease. A number of studies have investigated the role of multiparametric magnetic resonance imaging (mpMRI) in this setting. MpMRI refers to the use of multiple MRI sequences (T2-weighted anatomical and functional imaging which can include diffusion-weighted imaging, dynamic contrast enhanced imaging, spectroscopy). Each of the parameters investigates different aspects of the prostate gland (anatomy, cellularity, vascularity, etc.). In addition to a qualitative assessment, the radiologist can also extrapolate quantitative imaging biomarkers from these sequences, for example the apparent diffusion coefficient from diffusion-weighted imaging. There are many different types of articles (e.g., reviews, commentaries, consensus meetings, etc.) that address the use of mpMRI in men on active surveillance for prostate cancer. In this paper, we compare original articles that investigate the role of the different mpMRI sequences in men on active surveillance for prostate cancer, in order to discuss the relative utility of the different sequences, and combinations of sequences. We searched MEDLINE/PubMed for manuscripts published from inception to 1st December 2017. The search terms used were (prostate cancer or prostate adenocarcinoma or prostatic carcinoma or prostate carcinoma or prostatic adenocarcinoma) and (MRI or NMR or magnetic resonance imaging or mpMRI or multiparametric MRI) and active surveillance. Overall, 425 publications were found. All abstracts were reviewed to identify papers with original data. Twenty-five papers were analysed and summarised. Some papers based their analysis only on one mpMRI sequence, while others assessed two or more. The evidence from this review suggests that qualitative assessments and quantitative data from different mpMRI sequences hold promise in the management of men on active surveillance for prostate cancer. Both qualitative and quantitative approaches should be considered when assessing mpMRI of the prostate. There is a need for robust studies assessing the relative utility of different combinations of sequences in a systematic manner to determine the most efficient use of mpMRI in men on active surveillance. PMID:29594026

  8. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  9. Fusing DTI and FMRI Data: A Survey of Methods and Applications

    PubMed Central

    Zhu, Dajiang; Zhang, Tuo; Jiang, Xi; Hu, Xintao; Chen, Hanbo; Yang, Ning; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming

    2014-01-01

    The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain’s white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come. PMID:24103849

  10. Corpus Callosum Diffusion and Language Lateralization in Patients with Brain Tumors: A DTI and fMRI Study.

    PubMed

    Tantillo, Gabriella; Peck, Kyung K; Arevalo-Perez, Julio; Lyo, John K; Chou, Joanne F; Young, Robert J; Brennan, Nicole Petrovich; Holodny, Andrei I

    2016-01-01

    Examining how left-hemisphere brain tumors might impact both the microstructure of the corpus callosum (CC) as measured by fractional anisotropy (FA) values in diffusion tensor imaging (DTI) as well as cortical language lateralization measured with functional MRI (fMRI). fMRI tasks (phonemic fluency and verb generation) were performed in order to detect activation in Broca's and Wernicke's area. Twenty patients with left-hemisphere brain tumors were investigated. fMRI results were divided into left dominant (LD), right dominant (RD), or codominant (CD) for language function. DTI was performed to generate FA maps in the anterior and posterior CC. FA values were correlated with the degree of language dominance. Patients who were LD or RD for language in Broca's area had lower FA in the anterior CC than those who were CD for language (median for CD = .72, LD = .66, RD = .65, P < .09). Lateralized versus CD group level analysis also showed that CD patients had higher FA in the anterior CC than patients who displayed strong lateralization in either hemisphere (median for CD = .72, lateralized = .65, P < .05). Our preliminary observations indicate that the greater FA in CD patients may reflect a more directional microstructure for the CC in this region, suggesting a greater need for interhemispheric transfer of information. Because brain tumors can cause compensatory codominance, our findings may suggest a mechanism by which interhemispheric transfer is facilitated during plasticity in the presence of a tumor. Copyright © 2015 by the American Society of Neuroimaging.

  11. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI.

    PubMed

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2014-06-10

    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area.

  12. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    PubMed Central

    Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2016-01-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the ‘glymphatic pathway’ plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs1,2. It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach3 to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. PMID:26877579

  13. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels.

    PubMed

    Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong

    2018-04-01

    Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes.

    PubMed

    Embleton, Karl V; Haroon, Hamied A; Morris, David M; Ralph, Matthew A Lambon; Parker, Geoff J M

    2010-10-01

    Single shot echo-planar imaging (EPI) sequences are currently the most commonly used sequences for diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) as they allow relatively high signal to noise with rapid acquisition time. A major drawback of EPI is the substantial geometric distortion and signal loss that can occur due to magnetic field inhomogeneities close to air-tissue boundaries. If DWI-based tractography and fMRI are to be applied to these regions, then the distortions must be accurately corrected to achieve meaningful results. We describe robust acquisition and processing methods for correcting such distortions in spin echo (SE) EPI using a variant of the reversed direction k space traversal method with a number of novel additions. We demonstrate that dual direction k space traversal with maintained diffusion-encoding gradient strength and direction results in correction of the great majority of eddy current-associated distortions in DWI, in addition to those created by variations in magnetic susceptibility. We also provide examples to demonstrate that the presence of severe distortions cannot be ignored if meaningful tractography results are desired. The distortion correction routine was applied to SE-EPI fMRI acquisitions and allowed detection of activation in the temporal lobe that had been previously found using PET but not conventional fMRI. © 2010 Wiley-Liss, Inc.

  15. The role of magnetic resonance diffusion-weighted imaging and three-dimensional arterial spin labelling perfusion imaging in the differentiation of parasellar meningioma and cavernous haemangioma.

    PubMed

    Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin

    2014-08-01

    To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Fiber Orientation Estimation Guided by a Deep Network.

    PubMed

    Ye, Chuyang; Prince, Jerry L

    2017-09-01

    Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brain's white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for tract reconstruction. Because the number of FOs in a voxel is usually small, dictionary-based sparse reconstruction has been used to estimate FOs. However, accurate estimation of complex FO configurations in the presence of noise can still be challenging. In this work we explore the use of a deep network for FO estimation in a dictionary-based framework and propose an algorithm named Fiber Orientation Reconstruction guided by a Deep Network (FORDN). FORDN consists of two steps. First, we use a smaller dictionary encoding coarse basis FOs to represent diffusion signals. To estimate the mixture fractions of the dictionary atoms, a deep network is designed to solve the sparse reconstruction problem. Second, the coarse FOs inform the final FO estimation, where a larger dictionary encoding a dense basis of FOs is used and a weighted ℓ 1 -norm regularized least squares problem is solved to encourage FOs that are consistent with the network output. FORDN was evaluated and compared with state-of-the-art algorithms that estimate FOs using sparse reconstruction on simulated and typical clinical dMRI data. The results demonstrate the benefit of using a deep network for FO estimation.

  17. Apparent isotropic electrical property for electrical brain stimulation (EBS) using magnetic resonance diffusion weighted imaging (MR-DWI)

    NASA Astrophysics Data System (ADS)

    Lee, Mun Bae; Kwon, Oh-In

    2018-04-01

    Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.

  18. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.

    PubMed

    Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing

    2015-01-01

    Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

  19. Independent value of image fusion in unenhanced breast MRI using diffusion-weighted and morphological T2-weighted images for lesion characterization in patients with recently detected BI-RADS 4/5 x-ray mammography findings.

    PubMed

    Bickelhaupt, Sebastian; Tesdorff, Jana; Laun, Frederik Bernd; Kuder, Tristan Anselm; Lederer, Wolfgang; Teiner, Susanne; Maier-Hein, Klaus; Daniel, Heidi; Stieber, Anne; Delorme, Stefan; Schlemmer, Heinz-Peter

    2017-02-01

    The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm 2 ). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. • Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. • Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. • Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.

  20. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed Central

    Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D’Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-01-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa. PMID:28725592

  1. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed

    Scialpi, Michele; Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D'Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-06-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa.

  2. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema: Correlation with variation in apparent diffusion coefficient.

    PubMed

    Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-07-25

    To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.

  3. Multiparametric Breast MRI of Breast Cancer

    PubMed Central

    Rahbar, Habib; Partridge, Savannah C.

    2015-01-01

    Synopsis Breast MRI has increased in popularity over the past two decades due to evidence for its high sensitivity for cancer detection. Current clinical MRI approaches rely on the use of a dynamic contrast enhanced (DCE-MRI) acquisition that facilitates morphologic and semi-quantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters, such as pharmacokinetic features from high temporal resolution DCE-MRI, apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) on diffusion weighted MRI, and choline concentrations on MR spectroscopy, hold promise to broaden the utility of MRI and improve its specificity. However, due to wide variations in approach among centers for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use is not yet available, limiting current applications of many of these tools to research purposes. PMID:26613883

  4. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study

    PubMed Central

    Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions (n = 6) and a group of healthy adolescent athletes (n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort. PMID:29357675

  5. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study.

    PubMed

    Muller, Angela M; Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.

  6. Connectome imaging for mapping human brain pathways

    PubMed Central

    Shi, Y; Toga, A W

    2017-01-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. PMID:28461700

  7. Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms.

    PubMed

    Burciu, Roxana G; Hess, Christopher W; Coombes, Stephen A; Ofori, Edward; Shukla, Priyank; Chung, Jae Woo; McFarland, Nikolaus R; Wagle Shukla, Aparna; Okun, Michael S; Vaillancourt, David E

    2017-09-01

    Cervical dystonia (CD) is the most common type of focal dystonia, causing abnormal movements of the neck and head. In this study, we used noninvasive imaging to investigate the motor system of patients with CD and uncover the neural correlates of dystonic symptoms. Furthermore, we examined whether a commonly prescribed anticholinergic medication in CD has an effect on the dystonia-related brain abnormalities. Participants included 16 patients with CD and 16 healthy age-matched controls. We collected functional MRI scans during a force task previously shown to extensively engage the motor system, and diffusion and T1-weighted MRI scans from which we calculated free-water and brain tissue densities. The dystonia group was also scanned ca. 2 h after a 2-mg dose of trihexyphenidyl. Severity of dystonia was assessed pre- and post-drug using the Burke-Fahn-Marsden Dystonia Rating Scale. Motor-related activity in CD was altered relative to controls in the primary somatosensory cortex, cerebellum, dorsal premotor and posterior parietal cortices, and occipital cortex. Most importantly, a regression model showed that increased severity of symptoms was associated with decreased functional activity of the somatosensory cortex and increased activity of the cerebellum. Structural imaging measures did not differ between CD and controls. The single dose of trihexyphenidyl altered the fMRI signal in the somatosensory cortex but not in the cerebellum. Symptom severity was not significantly reduced post-treatment. Findings show widespread changes in functional brain activity in CD and most importantly that dystonic symptoms relate to disrupted activity in the somatosensory cortex and cerebellum. Hum Brain Mapp 38:4563-4573, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.

    PubMed

    Qin, Jiang-Bo; Liu, Zhenyu; Zhang, Hui; Shen, Chen; Wang, Xiao-Chun; Tan, Yan; Wang, Shuo; Wu, Xiao-Feng; Tian, Jie

    2017-05-07

    BACKGROUND Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences - T2-Weighted-Imaging-FLAIR (FLAIR), T1-Weighted-Imaging-Contrast-Enhanced (T1-CE), and Apparent Diffusion Coefficient (ADC) map - in glioma grading, and to improve the power of glioma grading by combining features. MATERIAL AND METHODS Sixty-six patients with histopathologically proven gliomas underwent T2-FLAIR and T1WI-CE sequence scanning with some patients (n=63) also undergoing DWI scanning. A total of 114 radiomic features were derived with radiomic methods by using in-house software. All radiomic features were compared between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Features with significant statistical differences were selected for receiver operating characteristic (ROC) curve analysis. The relationships between significantly different radiomic features and glial fibrillary acidic protein (GFAP) expression were evaluated. RESULTS A total of 8 radiomic features from 3 MRI sequences displayed significant differences between LGGs and HGGs. FLAIR GLCM Cluster Shade, T1-CE GLCM Entropy, and ADC GLCM Homogeneity were the best features to use in differentiating LGGs and HGGs in each MRI sequence. The combined feature was best able to differentiate LGGs and HGGs, which improved the accuracy of glioma grading compared to the above features in each MRI sequence. A significant correlation was found between GFAP and T1-CE GLCM Entropy, as well as between GFAP and ADC GLCM Homogeneity. CONCLUSIONS The combined radiomic feature had the highest efficacy in distinguishing LGGs from HGGs.

  9. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue.

    PubMed

    Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J

    2002-01-01

    The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.

  10. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results.

    PubMed

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M

    2017-07-01

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.

  11. Structural and functional network connectivity breakdown in Alzheimer’s disease studied with magnetic resonance imaging techniques.

    PubMed

    Filippi, Massimo; Agosta, Federica

    2011-01-01

    Patients with Alzheimer’s disease (AD) experience a brain network breakdown, reflecting disconnection at both the structural and functional system level. Resting-state (RS) functional MRI (fMRI) studies demonstrated that the regional coherence of the fMRI signal is significantly altered in patients with AD and amnestic mild cognitive impairment. Diffusion tensor (DT) MRI has made it possible to track fiber bundle projections across the brain, revealing a substantially abnormal interplay of “critical” white matter tracts in these conditions. The observed agreement between the results of RS fMRI and DT MRI tractography studies in healthy individuals is encouraging and offers interesting hypotheses to be tested in patients with AD, a MCI, and other dementias in order to improve our understanding of their pathobiology in vivo. In this review,we describe the major findings obtained in AD using RS fMRI and DT MRI tractography, and discuss how the relationship between structure and function of the brain networks in AD may be better understood through the application of MR-based technology. This research endeavor holds a great promise in clarifying the mechanisms of cognitive decline in complex chronic neurodegenerative disorders.

  12. Spinal Cord as an Adjunct to Brain Magnetic Resonance Imaging in Defining “No Evidence of Disease Activity” in Multiple Sclerosis

    PubMed Central

    Tummala, Subhash; Singhal, Tarun; Oommen, Vinit V.; Kim, Gloria; Khalid, Fariha; Healy, Brian C.

    2017-01-01

    Background: Monitoring patients with multiple sclerosis (MS) for “no evidence of disease activity” (NEDA) may help guide disease-modifying therapy (DMT) management decisions. Whereas surveillance brain magnetic resonance imaging (MRI) is common, the role of spinal cord monitoring for NEDA is unknown. Objective: To evaluate the role of brain and spinal cord 3T MRI in the 1-year evaluation of NEDA. Methods: Of 61 study patients (3 clinically isolated syndrome, 56 relapsing-remitting, 2 secondary progressive), 56 (91.8%) were receiving DMT. The MRI included brain fluid-attenuated inversion recovery and cervical/thoracic T2-weighted fast spin echo images. On MRI, NEDA was defined as the absence of new or enlarging T2 lesions at 1 year. Results: Thirty-nine patients (63.9%) achieved NEDA by brain MRI, only one of whom had spinal cord activity. This translates to a false-positive rate for NEDA based on the brain of 2.6% (95% CI, 0.1%–13.5%). Thirty-eight patients (62.3%) had NEDA by brain and spinal cord MRI. Fifty-five patients (90.2%) had NEDA by spinal cord MRI, 17 of whom had brain activity. Of the 22 patients (36.1%) with brain changes, 5 had spinal cord changes. No evidence of disease activity was sustained in 48.3% of patients at 1 year and was the same with the addition of spinal cord MRI. Patients with MRI activity in either the brain or the spinal cord only were more likely to have activity in the brain (P = .0001). Conclusions: Spinal cord MRI had a low diagnostic yield as an adjunct to brain MRI at 3T in monitoring patients with MS for NEDA over 1 year. Studies with larger data sets are needed to confirm these findings. PMID:28603465

  13. AIDS with acute cerebral infarct: a case report.

    PubMed

    Wu, Lin-Hui; Chen, Wei-Hung; Lien, Li-Ming; Huang, Chien-Hsien; Chiu, Hou-Chang

    2005-06-01

    A 38 year-old male presented with an acute onset of left hemiplegia. Brain magnetic resonance imaging (MRI) revealed a bright lesion by diffusion-weighted imaging with low apparent diffusion coefficient value in the right subcortical region, a finding compatible with an acute cerebral infarct. An old infarct was also noted in the same imaging. Both enzyme-linked immunosorbent assay and Western blot method were positive for human immunodeficiency virus infection. The white blood cell count was 2930 cells / mm3, and the subpopulation study for lymphocyte revealed a decreased cluster of differentiation 4+ count of 149 cells/mm3. Studies for prothrombotic states showed decreased protein S and increased anticardiolipin antibodies. We concluded that this was a case of acquired immunodeficiency syndrome (AIDS) with acute and old cerebral infarcts. This patient might be the first reported case in Taiwan. AIDS might be related with stroke in young patients, a condition probably under-recognized in Taiwan.

  14. Wernicke-Korsakoff syndrome as a rare phenotype of sporadic Creutzfeldt-Jakob disease.

    PubMed

    Bielewicz, Joanna; Szczepańska-Szerej, Anna; Ogórek, Magdalena; Dropko, Piotr; Wojtal, Katarzyna; Rejdak, Konrad

    2018-03-04

    We reported the case of a patient with Wernicke-Korsakoff syndrome (WKs) as an early clinical manifestation of sporadic Creutzfeld-Jakob disease (sCJD). The 66-year-old female complained of dizziness and imbalance which mostly occurred while walking. A neurological examination revealed a triad of symptoms characteristic for WKs such as gaze paresis, ataxia of limbs and trunk as well as memory disturbances with confabulations. The disturbances increased during the course of the disease, which led to the death of the patient four months after the appearance of the signs. The patient was finally diagnosed with sCJD disease. The most useful ancillary examination results supporting sCJD diagnosis were brain diffusion DWI MRI (diffusion weighted magnetic resonance imaging) and the presence of 14-3-3 protein in CSF (cerebrospinal fluid). Since that manifestation of sCJD is very unique other causes should be taken into consideration while making a final diagnosis.

  15. [Cavernous sinus thrombosis as a rare cause of exophthalmos in childhood : A case report].

    PubMed

    Kamawal, A; Schmidt, M A; Rompel, O; Gusek-Schneider, G C; Mardin, C Y; Trollmann, R

    2017-05-01

    Complications of acute bacterial sinusitis mostly occur in children and adolescents. In particular, intracranial spread of the infection can lead to severe even fatal courses of the disease. This article is a case report about a 13-year-old boy suffering from left-sided headache, meningismus and exophthalmos as presenting symptoms. Cranial magnetic resonance imaging (MRI) showed merely right-sided sphenoid sinusitis; however, the diffusion-weighted MRI sequence indicated a left-sided cavernous sinus thrombosis, which could be confirmed by computed tomography (CT) angiography. Cerebrospinal fluid diagnostics showed significant leukocytosis confirming secondary meningitis. Finally, exophthalmos was explained by parainfectious cavernous sinus thrombosis and periorbital edema. This case report highlights the importance of extended and specific diagnostic imaging in cases of clinically suspected complications in children and adolescents with sinusitis and the diagnostic significance of diffusion-weighted MRI.

  16. Can anti-vascular endothelial growth factor antibody reverse radiation necrosis? A preclinical investigation.

    PubMed

    Duan, Chong; Perez-Torres, Carlos J; Yuan, Liya; Engelbach, John A; Beeman, Scott C; Tsien, Christina I; Rich, Keith M; Schmidt, Robert E; Ackerman, Joseph J H; Garbow, Joel R

    2017-05-01

    Anti-vascular endothelial growth factor (anti-VEGF) antibodies are a promising new treatment for late time-to-onset radiation-induced necrosis (RN). We sought to evaluate and validate the response to anti-VEGF antibody in a mouse model of RN. Mice were irradiated with the Leksell Gamma Knife Perfexion™ and then treated with anti-VEGF antibody, beginning at post-irradiation (PIR) week 8. RN progression was monitored via anatomic and diffusion MRI from weeks 4-12 PIR. Standard histology, using haematoxylin and eosin (H&E), and immunohistochemistry staining were used to validate the response to treatment. After treatment, both post-contrast T1-weighted and T2-weighted image-derived lesion volumes decreased (P < 0.001), while the lesion volumes for the control group increased. The abnormally high apparent diffusion coefficient (ADC) for RN also returned to the ADC range for normal brain following treatment (P < 0.001). However, typical RN pathology was still present histologically. Large areas of focal calcification were observed in ~50% of treated mouse brains. Additionally, VEGF and hypoxia-inducible factor 1-alpha (HIF-1α) were continually upregulated in both the anti-VEGF and control groups. Despite improvements observed radiographically following anti-VEGF treatment, lesions were not completely resolved histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α merit further preclinical/clinical investigation.

  17. Can anti-Vascular Endothelial Growth Factor Antibody Reverse Radiation Necrosis? A Preclinical Investigation

    PubMed Central

    Duan, Chong; Perez-Torres, Carlos J; Yuan, Liya; Engelbach, John A; Beeman, Scott C; Tsien, Christina I; Rich, Keith M; Schmidt, Robert E; Ackerman, Joseph JH; Garbow, Joel R

    2017-01-01

    Anti-vascular endothelial growth factor (anti-VEGF) antibodies are a promising new treatment for late time-to-onset radiation-induced necrosis (RN). We sought to evaluate and validate the response to anti-VEGF antibody in a mouse model of RN. Mice were irradiated with the Leksell Gamma Knife PerfexionTM and then treated with anti-VEGF antibody, beginning at post-irradiation (PIR) week 8. RN progression was monitored via anatomic and diffusion MRI from weeks 4 to 12 PIR. Standard histology, using haematoxylin and eosin (H&E), and immunohistochemistry staining were used to validate the response to treatment. After treatment, both post-contrast T1-weighted and T2-weighted image-derived lesion volumes decreased (P<0.001), while the lesion volumes for the control group increased. The abnormally high apparent diffusion coefficient (ADC) for RN also returned to the ADC range for normal brain following treatment (P<0.001). However, typical RN pathology was still present histologically. Large areas of focal calcification were observed in ~50% of treated mouse brains. Additionally, VEGF and hypoxia-inducible factor 1-alpha (HIF-1α) were continually upregulated in both the anti-VEGF and control groups. Despite improvements observed radiographically following anti-VEGF treatment, lesions were not completely resolved histologically. The subsequent calcification and the continued upregulation of VEGF and HIF-1α merit further preclinical/clinical investigation. PMID:28425047

  18. An implanted 8-channel array coil for high-resolution macaque MRI at 3T

    PubMed Central

    Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.

    2012-01-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793

  19. Have clinicians adopted the use of brain MRI for patients with TIA and minor stroke?

    PubMed

    Chaturvedi, Seemant; Ofner, Susan; Baye, Fitsum; Myers, Laura J; Phipps, Mike; Sico, Jason J; Damush, Teresa; Miech, Edward; Reeves, Mat; Johanning, Jason; Williams, Linda S; Arling, Greg; Cheng, Eric; Yu, Zhangsheng; Bravata, Dawn

    2017-01-17

    Use of MRI with diffusion-weighted imaging (DWI) can identify infarcts in 30%-50% of patients with TIA. Previous guidelines have indicated that MRI-DWI is the preferred imaging modality for patients with TIA. We assessed the frequency of MRI utilization and predictors of MRI performance. A review of TIA and minor stroke patients evaluated at Veterans Affairs hospitals was conducted with regard to medical history, use of diagnostic imaging within 2 days of presentation, and in-hospital care variables. Chart abstraction was performed in a subset of hospitals to assess clinical variables not available in the administrative data. A total of 7,889 patients with TIA/minor stroke were included. Overall, 6,694 patients (84.9%) had CT or MRI, with 3,396/6,694 (50.7%) having MRI. Variables that were associated with increased odds of CT performance were age >80 years, prior stroke, history of atrial fibrillation, heart failure, coronary artery disease, anxiety, and low hospital complexity, while blood pressure >140/90 mm Hg and high hospital complexity were associated with increased likelihood of MRI. Diplopia (87% had MRI, p = 0.03), neurologic consultation on the day of presentation (73% had MRI, p < 0.0001), and symptom duration of >6 hours (74% had MRI, p = 0.0009) were associated with MRI performance. Within a national health system, about 40% of patients with TIA/minor stroke had MRI performed within 2 days. Performance of MRI appeared to be influenced by several patient and facility-level variables, suggesting that there has been partial acceptance of the previous guideline that endorsed MRI for patients with TIA. © 2016 American Academy of Neurology.

  20. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.

    PubMed

    Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna

    2016-05-01

    To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

Top