Sample records for diffusion-weighted single-shot spin

  1. The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma.

    PubMed

    Khemani, S; Lingam, R K; Kalan, A; Singh, A

    2011-08-01

    To evaluate the diagnostic performance of half-Fourier-acquisition single-shot turbo-spin-echo (HASTE) diffusion-weighted magnetic resonance imaging in the detection, localisation and prediction of extent of cholesteatoma following canal wall up mastoid surgery. Prospective blinded observational study. University affiliated teaching hospital. Forty-eight patients undergoing second-look surgery after previous canal wall up mastoid surgery for primary acquired cholesteatoma. All patients underwent non-echo planar HASTE diffusion-weighted imaging prior to being offered 'second-look' surgery. Radiological findings were correlated with second-look intra-operative findings in 38 cases with regard to presence, location and maximum dimensions of cholesteatoma. Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging accurately predicted the presence of cholesteatoma in 23 of 28 cases, and it correctly excluded in nine of 10 cases. Five false negatives were caused by keratin pearls of <2 mm and in one case 5 mm. Overall sensitivity and specificity for detection of cholesteatoma were 82% (95% confidence interval [CI] 62-94%) and 90% (CI 55-100%), respectively. Positive predictive value and negative predictive value were 96% (CI 79-100%) and 64% (CI 35-87%), respectively. Overall accuracy for detection of cholesteatoma was 84% (CI 69-94%). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging has good performance in localising cholesteatoma to a number of anatomical sub-sites within the middle ear and mastoid (sensitivity ranging from 75% to 88% and specificity ranging from 94% to 100%). There was no statistically significant difference in the size of cholesteatoma detected radiologically and that found during surgery (paired t-test, P = 0.16). However, analysis of size agreement suggests possible radiological underestimation of size when using HASTE diffusion-weighted imaging (mean difference -0.6 mm, CI -5.3 to 4.6 mm). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging performs reasonably well in predicting the presence and location of postoperative cholesteatoma but may miss small foci of disease and may underestimate the true size of cholesteatoma. © 2011 Blackwell Publishing Ltd.

  2. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  3. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  4. Targeted Single-Shot Methods for Diffusion-Weighted Imaging in the Kidneys

    PubMed Central

    Jin, Ning; Deng, Jie; Zhang, Longjiang; Zhang, Zhuoli; Lu, Guangming; Omary, Reed A.; Larson, Andrew C.

    2011-01-01

    Purpose To investigate the feasibility of combining the inner-volume-imaging (IVI) technique with single-shot diffusion-weighted (DW) spin-echo echo-planar imaging (SE-EPI) and DW-SPLICE (split acquisition of fast spin-echo) sequences for renal DW imaging. Materials and Methods Renal DW imaging was performed in 10 healthy volunteers using single-shot DW-SE-EPI, DW-SPLICE, targeted-DW-SE-EPI and targeted-DW-SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted-DW-SE-EPI and targeted DW-SPLICE methods with conventional full FOV DW-SE-EPI and DW-SPLICE measurements in phantoms and normal volunteers. Results Compared with full FOV DW-SE-EPI and DW-SPLICE methods, targeted-DW-SE-EPI and targeted-DW-SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion and reduced spatial blurring in both phantom and volunteer studies. The ADC values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intra-voxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single-shot DW-SE-EPI, targeted-DW-EPI and targeted-DW-SPLICE (p > 0.05). Conclusion Compared with full-FOV DW imaging methods, targeted-DW-SE-EPI and targeted-DW-SPLICE techniques reduced image distortion and artifacts observed in the single-shot DW-SE-EPI images, reduced blurring in DW-SPLICE images and produced comparable quantitative DW and IVIM measurements to those produced with conventional full-FOV approaches. PMID:21591023

  5. Value of a single-shot turbo spin-echo pulse sequence for assessing the architecture of the subarachnoid space and the constitutive nature of cerebrospinal fluid.

    PubMed

    Pease, Anthony; Sullivan, Stacey; Olby, Natasha; Galano, Heather; Cerda-Gonzalez, Sophia; Robertson, Ian D; Gavin, Patrick; Thrall, Donald

    2006-01-01

    Three case history reports are presented to illustrate the value of the single-shot turbo spin-echo pulse sequence for assessment of the subarachnoid space. The use of the single-shot turbo spin-echo pulse sequence, which is a heavily T2-weighted sequence, allows for a rapid, noninvasive evaluation of the subarachnoid space by using the high signal from cerebrospinal fluid. This sequence can be completed in seconds rather than the several minutes required for a T2-fast spin-echo sequence. Unlike the standard T2-fast spin-echo sequence, a single-shot turbo spin-echo pulse sequence also provides qualitative information about the protein and the cellular content of the cerebrospinal fluid, such as in patients with inflammatory debris or hemorrhage in the cerebrospinal fluid. Although the resolution of the single-shot turbo spin-echo pulse sequence images is relatively poor compared with more conventional sequences, the qualitative information about the subarachnoid space and cerebrospinal fluid and the rapid acquisition time, make it a useful sequence to include in standard protocols of spinal magnetic resonance imaging.

  6. Age-related apparent diffusion coefficient changes in the normal brain.

    PubMed

    Watanabe, Memi; Sakai, Osamu; Ozonoff, Al; Kussman, Steven; Jara, Hernán

    2013-02-01

    To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.

  7. Preoperative detection of malignant liver tumors: Comparison of 3D-T2-weighted sequences with T2-weighted turbo spin-echo and single shot T2 at 1.5 T.

    PubMed

    Barat, Maxime; Soyer, Philippe; Dautry, Raphael; Pocard, Marc; Lo-Dico, Rea; Najah, Haythem; Eveno, Clarisse; Cassinotto, Christophe; Dohan, Anthony

    2018-03-01

    To assess the performances of three-dimensional (3D)-T2-weighted sequences compared to standard T2-weighted turbo spin echo (T2-TSE), T2-half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE), diffusion weighted imaging (DWI) and 3D-T1-weighted VIBE sequences in the preoperative detection of malignant liver tumors. From 2012 to 2015, all patients of our institution undergoing magnetic resonance imaging (MRI) examination for suspected malignant liver tumors were prospectively included. Patients had contrast-enhanced 3D-T1-weighted, DWI, 3D-T2-SPACE, T2-HASTE and T2-TSE sequences. Imaging findings were compared with those obtained at follow-up, surgery and histopathological analysis. Sensitivities for the detection of malignant liver tumors were compared for each sequence using McNemar test. A subgroup analysis was conducted for HCCs. Image artifacts were analyzed and compared using Wilcoxon paired signed rank-test. Thirty-three patients were included: 13 patients had 40 hepatocellular carcinomas (HCC) and 20 had 54 liver metastases. 3D-T2-weighted sequences had a higher sensitivity than T2-weighted TSE sequences for the detection of malignant liver tumors (79.8% versus 68.1%; P < 0.001). The difference did not reach significance for HCC. T1-weighted VIBE and DWI had a higher sensitivity than T2-weighted sequences. 3D-T2-weighted-SPACE sequences showed significantly less artifacts than T2-weitghted TSE. 3D-T2-weighted sequences show very promising performances for the detection of liver malignant tumors compared to T2-weighted TSE sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  9. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence?

    PubMed

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Duerr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2014-09-01

    The purpose of our study was to determine the optimum combination of b values for calculating the apparent diffusion coefficient (ADC) using a diffusion-weighted (DW) single-shot turbo spin-echo (TSE) sequence in the differentiation between acute benign and malignant vertebral body fractures. Twenty-six patients with osteoporotic (mean age, 69 years; range, 31.5-86.2 years) and 20 patients with malignant vertebral fractures (mean age, 63.4 years; range, 24.7-86.4 years) were studied. T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW single-shot TSE sequence at different b values (100, 250, 400, and 600 s/mm(2)) was applied. On the DW images for each evaluated fracture, an ROI was manually adapted to the area of hyperintense signal intensity on STIR-hypointense signal on T1-weighted images. For each ROI, nine different combinations of two, three, and four b values were used to calculate the ADC using a least-squares algorithm. The Student t test and Mann-Whitney U test were used to determine significant differences between benign and malignant fractures. An ROC analysis and the Youden index were used to determine cutoff values for assessment of the highest sensitivity and specificity for the different ADC values. The positive (PPV) and negative predictive values (NPV) were also determined. All calculated ADCs (except the combination of b = 400 s/mm(2) and b = 600 s/mm(2)) showed statistically significant differences between benign and malignant vertebral body fractures, with benign fractures having higher ADCs than malignant ones. The use of higher b values resulted in lower ADCs than those calculated with low b values. The highest AUC (0.85) showed the ADCs calculated with b = 100 and 400 s/mm(2), and the second highest AUC (0.829) showed the ADCs calculated with b = 100, 250, and 400 s/mm(2). The Youden index with equal weight given to sensitivity and specificity suggests use of an ADC calculated with b = 100, 250, and 400 s/mm(2) (cutoff ADC, < 1.7 × 10(-3) mm(2)/s) to best diagnose malignancy (sensitivity, 85%; specificity, 84.6%; PPV, 81.0%; NPV, 88.0%). ADCs calculated with a combination of low to intermediate b values (b = 100, 250, and 400 s/mm(2)) provide the best diagnostic performance of a DW single-shot TSE sequence to differentiate acute benign and malignant vertebral body fractures.

  10. Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.

    PubMed

    Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2017-01-01

    The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)

    PubMed Central

    Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.

    2013-01-01

    Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063

  12. Diffusion-weighted imaging of the spine with a non-carr-purcell-meiboom-gill single-shot fast spin-echo sequence: initial experience.

    PubMed

    Oner, A Y; Tali, T; Celikyay, F; Celik, A; Le Roux, P

    2007-03-01

    To prospectively evaluate the signal-to-noise ratio (SNR) improvement in diffusion-weighted imaging (DWI) of the spine with the use of a newly developed non-Carr-Purcell-Meiboom-Gill (non-CPMG) single-shot fast spin-echo (SS-FSE) sequence and its effect on apparent diffusion coefficient (ADC) measurements. Twenty-four patients were enrolled after written informed consent. DWI of the spine was obtained with an echo-planar imaging (EPI)-based sequence followed by a non-CPMG SS-FSE technique. SNR and ADC values were measured over a lesion-free vertebral corpus. A quality score was assigned for each set of images to assess the image quality. When a spinal lesion was present, contrast-to-noise ratio (CNR) and ADC were also measured. Student t tests were used for statistical analysis. Mean SNR values were 5.83 +/- 2.2 and 11.68 +/- 2.87 for EPI and non-CPMG SS-FSE DWI, respectively. SNR values measured in DWI using parallel imaging were found to be significantly higher (P < .01). Mean ADCs of the spine were 0.53 +/- 0.15 and 0.35 +/- 0.15 x 10(-3) mm(2)/s for EPI and non-CPMG SS-FSE DWI, respectively. Quality scores were found to be higher for the non-CPMG SS-FSE DWI technique (P < .05). Overall lesion CNR was found to be higher in DWI with non-CPMG SS-FSE. The non-CPMG SS-FSE technique provides a significant improvement to current EPI-based DWI of the spine. A study including a larger number of patients is required to determine the use of this DWI sequence as a supplementary tool to conventional MR imaging for increasing diagnostic confidence in spinal pathologic conditions.

  13. Does non-echo-planar diffusion-weighted magnetic resonance imaging have a role in assisting the clinical diagnosis of cholesteatoma in selected cases?

    PubMed

    Nash, R; Lingam, R K; Chandrasekharan, D; Singh, A

    2018-03-01

    To determine the diagnostic performance of diffusion-weighted magnetic resonance imaging in the assessment of patients with suspected, but not clinically evident, cholesteatoma. A retrospective analysis of a prospectively collected database of non-echo-planar diffusion-weighted magnetic resonance imaging studies (using a half-Fourier single-shot turbo-spin echo sequence) was conducted. Clinical records were retrospectively reviewed to determine indications for imaging and operative findings. Seventy-eight investigations in 74 patients with suspected cholesteatoma aged 5.7-79.2 years (mean, 41.7 years) were identified. Operative confirmation was available in 44 ears. Diagnostic accuracy of the imaging technique was calculated using operative findings as a 'gold standard'. Sensitivity of the investigation was examined via comparison with clinically evident cholesteatoma. The accuracy of diffusion-weighted magnetic resonance imaging in assessment of suspected cholesteatoma was 63.6 per cent. The imaging technique was significantly less accurate in assessment of suspected cholesteatoma than clinically evident disease (p < 0.001). Computed tomography and diffusion-weighted magnetic resonance imaging may be complementary in assessment of suspected cholesteatoma, but should be used with caution, and clinical judgement is paramount.

  14. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    PubMed

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0.06) did not exhibit significant differences, quantitative DW single-shot TSE imaging (p = 0.002) and quantitative chemical-shift imaging (p = 0.01) showed significant differences between benign and malignant fractures. The DW-PSIF sequence (delta = 3 ms) had the highest accuracy in differentiating benign from malignant vertebral fractures. Quantitative chemical-shift imaging and quantitative DW single-shot TSE imaging had a lower accuracy than DW-PSIF imaging because of a large overlap. Qualitative assessment of opposed-phase, DW-EPI, and DW single-shot TSE sequences and quantitative assessment of the DW-EPI sequence were not suitable for distinguishing between benign and malignant vertebral fractures.

  15. Diffusion-weighted imaging of the sellar region: a comparison study of BLADE and single-shot echo planar imaging sequences.

    PubMed

    Yiping, Lu; Hui, Liu; Kun, Zhou; Daoying, Geng; Bo, Yin

    2014-07-01

    The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P>0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. PROPELLER for motion-robust imaging of in vivo mouse abdomen at 9.4 T.

    PubMed

    Teh, Irvin; Golay, Xavier; Larkman, David J

    2010-11-01

    In vivo high-field MRI in the abdomen of small animals is technically challenging because of the small voxel sizes, short T(2) and physiological motion. In standard Cartesian sampling, respiratory and gastrointestinal motion can lead to ghosting artefacts. Although respiratory triggering and navigator echoes can either avoid or compensate for motion, they can lead to variable TRs, require invasive intubation and ventilation, or extend TEs. A self-navigated fast spin echo (FSE)-based periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) acquisition was implemented at 9.4 T to enable high-resolution in vivo MRI of mouse abdomen without the use of additional navigators or triggering. T(2)-weighted FSE-PROPELLER data were compared with single-shot FSE and multi-shot FSE data with and without triggering. Single-shot methods, although rapid and robust to motion, demonstrated strong blurring. Multi-shot FSE data showed better resolution, but suffered from marked blurring in the phase-encoding direction and motion in between shots, leading to ghosting artefacts. When respiratory triggering was used, motion artefacts were largely avoided. However, TRs and acquisition times were lengthened by up to approximately 20%. The PROPELLER data showed a 25% and 61% improvement in signal-to-noise ratio and contrast-to-noise ratio, respectively, compared with multi-shot FSE data, together with a 35% reduction in artefact power. A qualitative comparison between acquisition methods using diffusion-weighted imaging was performed. The results were similar, with the exception that respiratory triggering was unable to exclude major motion artefacts as a result of the sensitisation to motion by the diffusion gradients. The PROPELLER data were of consistently higher quality. Considerations specific to the use of PROPELLER at high field are discussed, including the selection of practical blade widths and the effects on contrast, resolution and artefacts.

  17. Analysis of phase error effects in multishot diffusion-prepared turbo spin echo imaging

    PubMed Central

    Cervantes, Barbara; Kooijman, Hendrik; Karampinos, Dimitrios C.

    2017-01-01

    Background To characterize the effect of phase errors on the magnitude and the phase of the diffusion-weighted (DW) signal acquired with diffusion-prepared turbo spin echo (dprep-TSE) sequences. Methods Motion and eddy currents were identified as the main sources of phase errors. An analytical expression for the effect of phase errors on the acquired signal was derived and verified using Bloch simulations, phantom, and in vivo experiments. Results Simulations and experiments showed that phase errors during the diffusion preparation cause both magnitude and phase modulation on the acquired data. When motion-induced phase error (MiPe) is accounted for (e.g., with motion-compensated diffusion encoding), the signal magnitude modulation due to the leftover eddy-current-induced phase error cannot be eliminated by the conventional phase cycling and sum-of-squares (SOS) method. By employing magnitude stabilizers, the phase-error-induced magnitude modulation, regardless of its cause, was removed but the phase modulation remained. The in vivo comparison between pulsed gradient and flow-compensated diffusion preparations showed that MiPe needed to be addressed in multi-shot dprep-TSE acquisitions employing magnitude stabilizers. Conclusions A comprehensive analysis of phase errors in dprep-TSE sequences showed that magnitude stabilizers are mandatory in removing the phase error induced magnitude modulation. Additionally, when multi-shot dprep-TSE is employed the inconsistent signal phase modulation across shots has to be resolved before shot-combination is performed. PMID:28516049

  18. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE

    PubMed Central

    Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519

  19. Diffusion-weighted MR imaging findings of kidneys in patients with early phase of obstruction.

    PubMed

    Bozgeyik, Zulkif; Kocakoc, Ercan; Sonmezgoz, Fitnet

    2009-04-01

    Diffusion-weighted (DW) magnetic resonance (MR) imaging is an MR technique used to show molecular diffusion. The apparent diffusion coefficient (ADC), as a quantitative parameter calculated from the DW MR images. The purpose of this study is to evaluate the ability of DW MR imaging in early phase of obstruction due to urolithiasis. Twenty-six patients with acute dilatation of the pelvicalyceal system detected by intravenous urography were included in this study. MR imaging was performed using a 1.5 T whole-body superconducting MR scanner. DW imaging can be performed using single-shot spin-echo, echo-planar imaging (EPI) sequences with the following diffusion gradient b values: 100, 600, 1000 s/mm(2). Circular region of interest (ROI) was placed in the renal parenchyma for the measurement of ADC values in the normal and obstructed kidney. For statistical analyses, Paired t test were used. In spite of obstructed kidneys had the lower ADC values compared to normal kidneys, these alterations were statistically insignificant. We did not observe significantly different ADC values of early phase of obstructed kidneys compared to normal kidneys.

  20. Multishot cartesian turbo spin-echo diffusion imaging using iterative POCSMUSE Reconstruction.

    PubMed

    Zhang, Zhe; Zhang, Bing; Li, Ming; Liang, Xue; Chen, Xiaodong; Liu, Renyuan; Zhang, Xin; Guo, Hua

    2017-07-01

    To report a diffusion imaging technique insensitive to off-resonance artifacts and motion-induced ghost artifacts using multishot Cartesian turbo spin-echo (TSE) acquisition and iterative POCS-based reconstruction of multiplexed sensitivity encoded magnetic resonance imaging (MRI) (POCSMUSE) for phase correction. Phase insensitive diffusion preparation was used to deal with the violation of the Carr-Purcell-Meiboom-Gill (CPMG) conditions of TSE diffusion-weighted imaging (DWI), followed by a multishot Cartesian TSE readout for data acquisition. An iterative diffusion phase correction method, iterative POCSMUSE, was developed and implemented to eliminate the ghost artifacts in multishot TSE DWI. The in vivo human brain diffusion images (from one healthy volunteer and 10 patients) using multishot Cartesian TSE were acquired at 3T and reconstructed using iterative POCSMUSE, and compared with single-shot and multishot echo-planar imaging (EPI) results. These images were evaluated by two radiologists using visual scores (considering both image quality and distortion levels) from 1 to 5. The proposed iterative POCSMUSE reconstruction was able to correct the ghost artifacts in multishot DWI. The ghost-to-signal ratio of TSE DWI using iterative POCSMUSE (0.0174 ± 0.0024) was significantly (P < 0.0005) smaller than using POCSMUSE (0.0253 ± 0.0040). The image scores of multishot TSE DWI were significantly higher than single-shot (P = 0.004 and 0.006 from two reviewers) and multishot (P = 0.008 and 0.004 from two reviewers) EPI-based methods. The proposed multishot Cartesian TSE DWI using iterative POCSMUSE reconstruction can provide high-quality diffusion images insensitive to motion-induced ghost artifacts and off-resonance related artifacts such as chemical shifts and susceptibility-induced image distortions. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:167-174. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding.

    PubMed

    Karampinos, Dimitrios C; Banerjee, Suchandrima; King, Kevin F; Link, Thomas M; Majumdar, Sharmila

    2012-05-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In  vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI. Copyright © 2011 John Wiley & Sons, Ltd.

  2. MRI of gallstones with different compositions.

    PubMed

    Tsai, Hong-Ming; Lin, Xi-Zhang; Chen, Chiung-Yu; Lin, Pin-Wen; Lin, Jui-Che

    2004-06-01

    Gallstones are usually recognized on MRI as filling defects of hypointensity. However, they sometimes may appear as hyperintensities on T1-weighted imaging. This study investigated how gallstones appear on MRI and how their appearance influences the detection of gallstones. Gallstones from 24 patients who had MRI performed before the removal of the gallstones were collected for study. The gallstones were classified either as cholesterol gallstone (n = 4) or as pigment gallstone (n = 20) according to their gross appearance and based on analysis by Fourier transform infrared spectroscopy. MRI included three sequences: single-shot fast spin-echo T2-weighted imaging, 3D fast spoiled gradient-echo T1-weighted imaging, and in-phase fast spoiled gradient-echo T1-weighted imaging. The signal intensity and the detection rate of gallstones on MRI were further correlated with the character of the gallstones. On T1-weighted 3D fast spoiled gradient-echo images, most of the pigment gallstones (18/20) were hyperintense and all the cholesterol gallstones (4/4) were hypointense. The mean ratio of the signal intensity of gallstone to bile was (+/- standard deviation) 3.36 +/- 1.88 for pigment gallstone and 0.24 +/- 0.10 for cholesterol gallstone on the 3D fast spoiled gradient-echo sequence (p < 0.001). Combining the 3D fast spoiled gradient-echo and single-shot fast spin-echo sequences achieved the highest gallstone detection rate (96.4%). Based on the differences of signal intensity of gallstones, the 3D fast spoiled gradient-echo T1-weighted imaging was able to diagnose the composition of gallstones. Adding the 3D fast spoiled gradient-echo imaging to the single-shot fast spin-echo T2-weighted sequence can further improve the detection rate of gallstones.

  3. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    PubMed

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  4. Dynamic half Fourier acquisition, single shot turbo spin-echo magnetic resonance imaging for evaluating the female pelvis.

    PubMed

    Gousse, A E; Barbaric, Z L; Safir, M H; Madjar, S; Marumoto, A K; Raz, S

    2000-11-01

    We assessed the merit of dynamic half Fourier acquisition, single shot turbo spin-echo sequence T2-weighted magnetic resonance imaging (MRI) for evaluating pelvic organ prolapse and all other female pelvic pathology by prospectively correlating clinical with imaging findings. From September 1997 to April 1998, 100 consecutive women 23 to 88 years old with (65) and without (35) pelvic organ prolapse underwent half Fourier acquisition, single shot turbo spin-echo sequence dynamic pelvic T2-weighted MRI at our institution using a 1.5 Tesla magnet with phased array coils. Mid sagittal and parasagittal views with the patient supine, relaxed and straining were obtained using no pre-examination preparation or instrumentation. We evaluated the anterior vaginal wall, bladder, urethra, posterior vaginal wall, rectum, pelvic floor musculature, perineum, uterus, vaginal cuff, ovaries, ureters and intraperitoneal organs for all pathological conditions, including pelvic prolapse. Patients underwent a prospective physical examination performed by a female urologist, and an experienced radiologist blinded to pre-imaging clinical findings interpreted all studies. Physical examination, MRI and intraoperative findings were statistically correlated. Total image acquisition time was 2.5 minutes, room time 10 minutes and cost American $540. Half Fourier acquisition, single shot turbo spin-echo T2-weighted MRI revealed pathological entities other than pelvic prolapse in 55 cases, including uterine fibroids in 11, ovarian cysts in 9, bilateral ureteronephrosis in 3, nabothian cyst in 7, Bartholin's gland cyst in 4, urethral diverticulum in 3, polytetrafluoroethylene graft abscess in 3, bladder diverticulum in 2, sacral spinal abnormalities in 2, bladder tumor in 1, sigmoid diverticulosis in 1 and other in 9. Intraoperative findings were considered the gold standard against which physical examination and MRI were compared. Using these criteria the sensitivity, specificity and positive predictive value of MRI were 100%, 83% and 97% for cystocele; 100%, 75% and 94% for urethrocele; 100%, 54% and 33% for vaginal vault prolapse; 83%, 100% and 100% for uterine prolapse; 87%, 80% and 91% for enterocele; and 76%, 50% and 96% for rectocele. Dynamic half Fourier acquisition, single shot turbo spin-echo MRI appears to be an important adjunct in the comprehensive evaluation of the female pelvis. Except for rectocele, pelvic floor prolapse is accurately staged and pelvic organ pathology reliably detected. The technique is rapid, noninvasive and cost-effective, and it allows the clinician to visualize the whole pelvis using a single dynamic study that provides superb anatomical detail.

  5. Acoustic-noise-optimized diffusion-weighted imaging.

    PubMed

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  6. Assessment of mediastinal tumors with diffusion-weighted single-shot echo-planar MRI.

    PubMed

    Razek, Ahmed Abdel; Elmorsy, Ahmed; Elshafey, Mohsen; Elhadedy, Tamer; Hamza, Osama

    2009-09-01

    To assess the role of diffusion-weighted single-shot echo-planar magnetic resonance imaging (MRI) in patients with mediastinal tumors. Prospective study was conducted on 45 consecutive patients (29 male, 16 female, age 22-66 years, mean 41 years) with mediastinal tumor. They underwent diffusion-weighted single-shot echo-planar MRI of the mediastinum with a b-factor of 0, 300, and 600 sec/mm(2). The apparent diffusion coefficient (ADC) value of the mediastinal tumor was correlated with the histopathological findings. The mean ADC value of malignant mediastinal tumors was 1.09 +/- 0.25 x 10(-3) mm(2)/sec, and of benign tumors was 2.38 +/- 0.56 x 10(-3) mm(2)/sec. There was a significant difference in the mean ADC value between malignant and benign tumors (P = 0.001) and within different grades of malignancy (0.001). When an ADC value of 1.56 x 10(-3) mm(2)/sec was used as a threshold value for differentiating malignant from benign tumor, the best results were obtained with an accuracy of 95%, sensitivity of 96%, specificity of 94%, positive predictive value of 94%, negative predictive value of 96%, and area under the curve of 0.938. The ADC value is a noninvasive parameter that can be used for differentiation of malignant from benign mediastinal tumors and grading of mediastinal malignancy.

  7. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    PubMed

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.

  8. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    PubMed

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P < 0.05). Tractography with TSE-DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Current noise generated by spin imbalance in presence of spin relaxation

    NASA Astrophysics Data System (ADS)

    Khrapai, V. S.; Nagaev, K. E.

    2017-01-01

    We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor ( L) and the spin relaxation length ( l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.

  10. A new sequence for single-shot diffusion-weighted NMR spectroscopy by the trace of the diffusion tensor.

    PubMed

    Valette, Julien; Giraudeau, Céline; Marchadour, Charlotte; Djemai, Boucif; Geffroy, Françoise; Ghaly, Mohamed Ahmed; Le Bihan, Denis; Hantraye, Philippe; Lebon, Vincent; Lethimonnier, Franck

    2012-12-01

    Diffusion-weighted spectroscopy is a unique tool for exploring the intracellular microenvironment in vivo. In living systems, diffusion may be anisotropic, when biological membranes exhibit particular orientation patterns. In this work, a volume selective diffusion-weighted sequence is proposed, allowing single-shot measurement of the trace of the diffusion tensor, which does not depend on tissue anisotropy. With this sequence, the minimal echo time is only three times the diffusion time. In addition, cross-terms between diffusion gradients and other gradients are cancelled out. An adiabatic version, similar to localization by adiabatic selective refocusing sequence, is then derived, providing partial immunity against cross-terms. Proof of concept is performed ex vivo on chicken skeletal muscle by varying tissue orientation and intra-voxel shim. In vivo performance of the sequence is finally illustrated in a U87 glioblastoma mouse model, allowing the measurement of the trace apparent diffusion coefficient for six metabolites, including J-modulated metabolites. Although measurement performed along three separate orthogonal directions would bring similar accuracy on trace apparent diffusion coefficient under ideal conditions, the method described here should be useful for probing intimate properties of the cells with minimal experimental bias. Copyright © 2012 Wiley Periodicals, Inc.

  11. A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media

    NASA Astrophysics Data System (ADS)

    Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.

    2012-08-01

    In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.

  12. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping.

    PubMed

    Ianuş, Andrada; Shemesh, Noam

    2018-04-01

    Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  13. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T.

    PubMed

    Morelli, John; Porter, David; Ai, Fei; Gerdes, Clint; Saettele, Megan; Feiweier, Thorsten; Padua, Abraham; Dix, James; Marra, Michael; Rangaswamy, Rajesh; Runge, Val

    2013-04-01

    Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P <10(-4) at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain.

  14. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    NASA Astrophysics Data System (ADS)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  16. High spatial resolution diffusion weighted imaging on clinical 3 T MRI scanners using multislab spiral acquisitions

    PubMed Central

    Holtrop, Joseph L.; Sutton, Bradley P.

    2016-01-01

    Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107

  17. Two-dimensional single-shot diffusion-weighted stimulated EPI with reduced FOV for ultrahigh-b radial diffusion-weighted imaging of spinal cord.

    PubMed

    Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee

    2017-06-01

    High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Implementation and assessment of diffusion-weighted partial Fourier readout-segmented echo-planar imaging.

    PubMed

    Frost, Robert; Porter, David A; Miller, Karla L; Jezzard, Peter

    2012-08-01

    Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols. Copyright © 2011 Wiley-Liss, Inc.

  19. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  20. Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats

    PubMed Central

    Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.

    2015-01-01

    Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486

  1. Magnetic resonance imaging of the fetal brain.

    PubMed

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  2. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences.

    PubMed

    Bruegel, Melanie; Gaa, Jochen; Waldt, Simone; Woertler, Klaus; Holzapfel, Konstantin; Kiefer, Berthold; Rummeny, Ernst J

    2008-11-01

    The purpose of this study was to compare the value of respiration-triggered diffusion-weighted (DW) single-shot echo-planar MRI (EPI) and five variants of T2-weighted turbo spin-echo (TSE) sequences in the diagnosis of hepatic metastasis. Fifty-two patients with extrahepatic primary malignant tumors underwent 1.5-T MRI that included DW EPI and the following variants of T2-weighted TSE techniques: breath-hold fat-suppressed HASTE, breath-hold fat-supressed TSE, respiration-triggered fat-suppressed TSE, breath-hold STIR, and respiration-triggered STIR. Images were reviewed independently by two blinded observers who used a 5-point confidence scale to identify lesions. Results were correlated with surgical and histopathologic findings and follow-up imaging findings. The accuracy of each technique was measured with free-response receiver operating characteristic analysis. A total of 118 hepatic metastatic lesions (mean diameter, 12.8 mm; range, 3-84 mm) were evaluated. Accuracy values were higher (p < 0.001) with DW EPI (0.91-0.92) than with the T2-weighted TSE techniques (0.47-0.67). Imaging with the HASTE sequence (0.47-0.52) was less accurate (p < 0.05) than imaging with the breath-hold TSE, breath-hold STIR, respiration-triggered TSE, and respiration-triggered STIR sequences (0.59-0.67). Sensitivity was higher (p < 0.001) with DW EPI (0.88-0.91) than with T2-weighted TSE techniques (0.45-0.62). For small (< or = 10 mm) metastatic lesions only, the differences in sensitivity between DW EPI (0.85) and T2-weighted TSE techniques (0.26-0.44) were even more pronounced. DW EPI was more sensitive and more accurate than imaging with T2-weighted TSE techniques. Because of the black-blood effect on vessels and low susceptibility to motion artifacts, DW EPI was particularly useful for the detection of small (< or = 10 mm) metastatic lesions.

  3. Anomalous Diffusion Measured by a Twice-Refocused Spin Echo Pulse Sequence: Analysis Using Fractional Order Calculus

    PubMed Central

    2011-01-01

    Purpose To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. Materials and Methods The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2,600 s/mm2. For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β and μ values and the goodness-of-fit in three specific regions of interest (ROI) in white matter, gray matter, and cerebrospinal fluid were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. Results The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. Conclusion The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. PMID:21509877

  4. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus.

    PubMed

    Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe

    2011-05-01

    To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. Copyright © 2011 Wiley-Liss, Inc.

  5. Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes.

    PubMed

    Embleton, Karl V; Haroon, Hamied A; Morris, David M; Ralph, Matthew A Lambon; Parker, Geoff J M

    2010-10-01

    Single shot echo-planar imaging (EPI) sequences are currently the most commonly used sequences for diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) as they allow relatively high signal to noise with rapid acquisition time. A major drawback of EPI is the substantial geometric distortion and signal loss that can occur due to magnetic field inhomogeneities close to air-tissue boundaries. If DWI-based tractography and fMRI are to be applied to these regions, then the distortions must be accurately corrected to achieve meaningful results. We describe robust acquisition and processing methods for correcting such distortions in spin echo (SE) EPI using a variant of the reversed direction k space traversal method with a number of novel additions. We demonstrate that dual direction k space traversal with maintained diffusion-encoding gradient strength and direction results in correction of the great majority of eddy current-associated distortions in DWI, in addition to those created by variations in magnetic susceptibility. We also provide examples to demonstrate that the presence of severe distortions cannot be ignored if meaningful tractography results are desired. The distortion correction routine was applied to SE-EPI fMRI acquisitions and allowed detection of activation in the temporal lobe that had been previously found using PET but not conventional fMRI. © 2010 Wiley-Liss, Inc.

  6. Diffusion-weighted magnetic resonance imaging in autoimmune pancreatitis.

    PubMed

    Taniguchi, Takao; Kobayashi, Hisato; Nishikawa, Koji; Iida, Etsushi; Michigami, Yoshihiro; Morimoto, Emiko; Yamashita, Rikiya; Miyagi, Ken; Okamoto, Motozumi

    2009-04-01

    The aim of this study was to investigate the usefulness of diffusion-weighted magnetic resonance imaging (DWI MRI) for the diagnosis and evaluation of autoimmune pancreatitis (AIP). A total of 4 consecutive patients with AIP, 5 patients with chronic alcoholic pancreatitis (CP), and 13 patients without pancreatic disease (controls) were studied. DWI was performed in the axial plane with spin-echo echo-planar imaging single-shot sequence. Apparent diffusion coefficients (ADCs) were measured in circular regions of interest in the pancreas. In AIP patients, abdominal MRI was performed before, and 2-4 weeks after steroid treatment. Follow-up study was performed chronologically for up to 11 months in two patients. The correlation between ADCs of the pancreas and the immunoglobulin G4 (IgG4) index (serum IgG4 value/serum IgG4 value before steroid treatment) was evaluated. In the AIP patients, DWI of the pancreas showed high signal intensity, and the ADCs of the pancreas (mean +/- SD: 0.97 +/- 0.18 x 10(-3) mm(2)/s) were significantly lower than those in patients with CP (1.45 +/- 0.10 x 10(-3) mm(2)/s) or the controls (1.45 +/- 0.16 x 10(-3) mm(2)/s) (Mann-Whitney U-test, P < 0.05). In one AIP patient with focal swelling of the pancreas head that appeared to be a mass, DWI showed high signal intensity throughout the pancreas, indicating diffuse involvement. The ADCs of the pancreas and IgG4 index were significantly inversely correlated (Spearman's rank correlation coefficient, r (s) = -0.80, P < 0.05). Autoimmune pancreatitis showed high signal intensity on DWI, which improved after steroid treatment. ADCs reflected disease activity. Thus, diffusion-weighted MRI might be useful for diagnosing AIP, determining the affected area, and evaluating the effect of treatment.

  7. PROPELLER EPI: An MRI Technique Suitable for Diffusion Tensor Imaging at High Field Strength With Reduced Geometric Distortions

    PubMed Central

    Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K.

    2013-01-01

    A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. PMID:16206142

  8. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions.

    PubMed

    Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K

    2005-11-01

    A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. (c) 2005 Wiley-Liss, Inc.

  9. Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children.

    PubMed

    Plouin-Gaudon, Isabelle; Bossard, Denis; Ayari-Khalfallah, Sonia; Froehlich, Patrick

    2010-09-01

    To evaluate the efficiency of diffusion-weighted magnetic resonance imaging (MRI) and high-resolution computed tomographic (CT) scan coregistration in predicting and adequately locating primary or recurrent cholesteatoma in children. Prospective study. Tertiary care university hospital. Ten patients aged 2 to 17 years (mean age, 8.5 years) with cholesteatoma of the middle ear, some of which were previously treated, were included for follow-up with systematic CT scanning and MRI between 2007 and 2008. Computed tomographic scanning was performed on a Siemens Somaton 128 (0.5/0.2-mm slices reformatted in 0.5/0.3-mm images). Fine cuts were obtained parallel and perpendicular to the lateral semicircular canal in each ear (100 × 100-mm field of view). Magnetic resonance imaging was undertaken on a Siemens Avanto 1.5T unit, with a protocol adapted for young children. Diffusion-weighted imaging was acquired using a single-shot turbo spin-echo mode. To allow for diagnosis and localization of the cholesteatoma, CT and diffusion-weighted MRIs were fused for each case. In 10 children, fusion technique allowed for correct diagnosis and precise localization (hypotympanum, epitympanum, mastoid recess, and attical space) as confirmed by subsequent standard surgery (positive predictive value, 100%). In 3 cases, the surgical approach was adequately determined from the fusion results. Lesion sizes on the CT-MRI fusion corresponded with perioperative findings. Recent developments in imaging techniques have made diffusion-weighted MRI more effective for detecting recurrent cholesteatoma. The major drawback of this technique, however, has been its poor anatomical and spatial discrimination. Fusion imaging using high-resolution CT and diffusion-weighted MRI appears to be a promising technique for both the diagnosis and precise localization of cholesteatomas. It provides useful information for surgical planning and, furthermore, is easy to use in pediatric cases.

  10. Fast Single-Shot Hold Spin Readout in Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry

    Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.

  11. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  12. Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.

    PubMed

    Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V

    2018-07-01

    Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Effect of Contrast Media on Single Shot EPI: Implications for Abdominal Diffusion Imaging

    PubMed Central

    Gulani, Vikas; Willatt, Jonathan M.; Blaimer, Martin; Hussain, Hero K.; Duerk, Jeffrey L.; Griswold, Mark A.

    2010-01-01

    Purpose The goal of this study was to determine the effect of contrast media on the signal behavior of single shot echo planar imaging (ssEPI) used for abdominal diffusion imaging. Materials and Methods The signal of a ssEPI spin echo sequence in a water phantom with varying concentrations of gadolinium was modeled with Bloch equations and the predicted behavior validated on a phantom at 1.5 T. Six volunteers were given gadolinium contrast, and signal intensity (SI) time courses for regions of interest (ROIs) in the liver, pancreas, spleen, renal cortex and medulla were analyzed. The Student's t-test was used to compare pre-contrast SI to 0, 1, 4, 5, 10, and 13 minutes following contrast. Results The results show that following contrast, ssEPI SI goes through a nadir, recovering differently for each organ. Maximal contrast related signal losses relative to pre-contrast signal are 20%, 20%, 53%, and 67%, for the liver, pancreas, renal cortex and medulla respectively. The SIs remain statistically below the pre-contrast values for 5, 4, and 1 minutes for the pancreas, liver, and spleen, and for all times measured for the renal cortex and medulla. Conclusion Abdominal diffusion imaging should be performed prior to contrast due to adverse effects on the signal in ssEPI. PMID:19856456

  14. Physiological Background of Differences in Quantitative Diffusion-Weighted Magnetic Resonance Imaging Between Acute Malignant and Benign Vertebral Body Fractures: Correlation of Apparent Diffusion Coefficient With Quantitative Perfusion Magnetic Resonance Imaging Using the 2-Compartment Exchange Model.

    PubMed

    Geith, Tobias; Biffar, Andreas; Schmidt, Gerwin; Sourbron, Steven; Dietrich, Olaf; Reiser, Maximilian; Baur-Melnyk, Andrea

    2015-01-01

    To test the hypothesis that apparent diffusion coefficient (ADC) in vertebral bone marrow of benign and malignant fractures is related to the volume of the interstitial space, determined with dynamic contrast-enhanced (DCE) magnetic resonance imaging. Patients with acute benign (n = 24) and malignant (n = 19) vertebral body fractures were examined at 1.5 T. A diffusion-weighted single-shot turbo-spin-echo sequence (b = 100 to 600 s/mm) and DCE turbo-FLASH sequence were evaluated. Regions of interest were manually selected for each fracture. Apparent diffusion coefficient was determined with a monoexponential decay model. The DCE magnetic resonance imaging concentration-time curves were analyzed using a 2-compartment tracer-kinetic model. Apparent diffusion coefficient showed a significant positive correlation with interstitial volume in the whole study population (Pearson r = 0.66, P < 0.001), as well as in the malignant (Pearson r = 0.64, P = 0.004) and benign (Pearson r = 0.52, P = 0.01) subgroup. A significant correlation between ADC and the permeability-surface area product could be observed when analyzing the whole study population (Spearman rs = 0.40, P = 0.008), but not when separately examining the subgroups. Plasma flow showed a significant correlation with ADC in benign fractures (Pearson r = 0.23, P = 0.03). Plasma volume did not show significant correlations with ADC. The results support the hypothesis that the ADC of a lesion is inversely correlated to its cellularity. This explains previous observations that ADC is reduced in more malignant lesions.

  15. The Effect of Uphill and Downhill Slopes on Weight Transfer, Alignment and Shot Outcome in Golf.

    PubMed

    Blenkinsop, Glen M; Liang, Ying; Gallimore, Nicholas J; Hiley, Michael J

    2018-04-13

    The aim of the study was to examine changes in weight transfer, alignment and shot outcome during golf shots from flat, uphill, and downhill slopes. Twelve elite male golfers hit 30 shots with a six-iron from a computer assisted rehabilitation environment (CAREN) used to create 5° slopes while collecting 3D kinematics and kinetics of the swing. A launch monitor measured performance outcomes. A shift in the centre of pressure was found throughout the swing when performed on a slope, with the mean position moving approximately 9% closer to the lower foot. The golfers attempted to remain perpendicular to the slope, resulting in the weight transfer towards the lower foot. The golfers adopted a wider stance in the sloped conditions and moved the ball towards the higher foot at address. Ball speed was not significantly affected by the slope, but launch angle and ball spin were. As predicted by the coaching literature, golfers were more likely to hit shots to the left from an uphill slope and to the right for a downhill slope. No consistent compensatory adjustments in alignment at address or azimuth were found, with the change in final shot dispersion due to the lateral spin of the ball.

  16. Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection

    NASA Astrophysics Data System (ADS)

    Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael

    2018-03-01

    Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.

  17. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    PubMed

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Optimising diffusion-weighted imaging in the abdomen and pelvis: comparison of image quality between monopolar and bipolar single-shot spin-echo echo-planar sequences.

    PubMed

    Kyriazi, Stavroula; Blackledge, Matthew; Collins, David J; Desouza, Nandita M

    2010-10-01

    To compare geometric distortion, signal-to-noise ratio (SNR), apparent diffusion coefficient (ADC), efficacy of fat suppression and presence of artefact between monopolar (Stejskal and Tanner) and bipolar (twice-refocused, eddy-current-compensating) diffusion-weighted imaging (DWI) sequences in the abdomen and pelvis. A semiquantitative distortion index (DI) was derived from the subtraction images with b = 0 and 1,000 s/mm(2) in a phantom and compared between the two sequences. Seven subjects were imaged with both sequences using four b values (0, 600, 900 and 1,050 s/mm(2)) and SNR, ADC for different organs and fat-to-muscle signal ratio (FMR) were compared. Image quality was evaluated by two radiologists on a 5-point scale. DI was improved in the bipolar sequence, indicating less geometric distortion. SNR was significantly lower for all tissues and b values in the bipolar images compared with the monopolar (p < 0.05), whereas FMR was not statistically different. ADC in liver, kidney and sacrum was higher in the bipolar scheme compared to the monopolar (p < 0.03), whereas in muscle it was lower (p = 0.018). Image quality scores were higher for the bipolar sequence (p ≤ 0.025). Artefact reduction makes the bipolar DWI sequence preferable in abdominopelvic applications, although the trade-off in SNR may compromise ADC measurements in muscle.

  19. In vivo free-breathing DTI and IVIM of the whole human heart using a real-time slice-followed SE-EPI navigator-based sequence: A reproducibility study in healthy volunteers.

    PubMed

    Moulin, Kevin; Croisille, Pierre; Feiweier, Thorsten; Delattre, Benedicte M A; Wei, Hongjiang; Robert, Benjamin; Beuf, Olivier; Viallon, Magalie

    2016-07-01

    In this study, we proposed an efficient free-breathing strategy for rapid and improved cardiac diffusion-weighted imaging (DWI) acquisition using a single-shot spin-echo echo planar imaging (SE-EPI) sequence. A real-time slice-following technique during free-breathing was combined with a sliding acquisition-window strategy prior Principal Component Analysis temporal Maximum Intensity Projection (PCAtMIP) postprocessing of in-plane co-registered diffusion-weighted images. This methodology was applied to 10 volunteers to quantify the performance of the motion correction technique and the reproducibility of diffusion parameters. The slice-following technique offers a powerful head-foot respiratory motion management solution for SE-EPI cDWI with the advantage of a 100% duty cycle scanning efficiency. The level of co-registration was further improved using nonrigid motion corrections and was evaluated with a co-registration index. Vascular fraction f and the diffusion coefficients D and D* were determined to be 0.122 ± 0.013, 1.41 ± 0.09 × 10(-3) mm(2) /s and 43.6 ± 9.2 × 10(-3) mm(2) /s, respectively. From the multidirectional dataset, the measured mean diffusivity was 1.72 ± 0.09 × 10(-3) mm(2) /s and the fractional anisotropy was 0.36 ± 0.02. The slice-following DWI SE-EPI sequence is a promising solution for clinical implementation, offering a robust improved workflow for further evaluation of DWI in cardiology. Magn Reson Med 76:70-82, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Quantitative diffusion MRI using reduced field-of-view and multi-shot acquisition techniques: Validation in phantoms and prostate imaging.

    PubMed

    Zhang, Yuxin; Holmes, James; Rabanillo, Iñaki; Guidon, Arnaud; Wells, Shane; Hernando, Diego

    2018-09-01

    To evaluate the reproducibility of quantitative diffusion measurements obtained with reduced Field of View (rFOV) and Multi-shot EPI (msEPI) acquisitions, using single-shot EPI (ssEPI) as a reference. Diffusion phantom experiments, and prostate diffusion-weighted imaging in healthy volunteers and patients with known or suspected prostate cancer were performed across the three different sequences. Quantitative diffusion measurements of apparent diffusion coefficient, and diffusion kurtosis parameters (healthy volunteers), were obtained and compared across diffusion sequences (rFOV, msEPI, and ssEPI). Other possible confounding factors like b-value combinations and acquisition parameters were also investigated. Both msEPI and rFOV have shown reproducible quantitative diffusion measurements relative to ssEPI; no significant difference in ADC was observed across pulse sequences in the standard diffusion phantom (p = 0.156), healthy volunteers (p ≥ 0.12) or patients (p ≥ 0.26). The ADC values within the non-cancerous central gland and peripheral zone of patients were 1.29 ± 0.17 × 10 -3  mm 2 /s and 1.74 ± 0.23 × 10 -3  mm 2 /s respectively. However, differences in quantitative diffusion parameters were observed across different number of averages for rFOV, and across b-value groups and diffusion models for all the three sequences. Both rFOV and msEPI have the potential to provide high image quality with reproducible quantitative diffusion measurements in prostate diffusion MRI. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    PubMed

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.

  2. Single-shot diffusion measurement in laser-polarized Gas

    NASA Technical Reports Server (NTRS)

    Peled, S.; Tseng, C. H.; Sodickson, A. A.; Mair, R. W.; Walsworth, R. L.; Cory, D. G.

    1999-01-01

    A single-shot pulsed gradient stimulated echo sequence is introduced to address the challenges of diffusion measurements of laser polarized 3He and 129Xe gas. Laser polarization enhances the NMR sensitivity of these noble gases by >10(3), but creates an unstable, nonthermal polarization that is not readily renewable. A new method is presented which permits parallel acquisition of the several measurements required to determine a diffusive attenuation curve. The NMR characterization of a sample's diffusion behavior can be accomplished in a single measurement, using only a single polarization step. As a demonstration, the diffusion coefficient of a sample of laser-polarized 129Xe gas is measured via this method. Copyright 1999 Academic Press.

  3. Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE) on a 3T clinical scanner

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2013-01-01

    This paper describes the concepts and implementation of an MRI method, Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE), which is capable of acquiring apparent diffusion tensor maps in two scans on a 3T clinical scanner. In each MEDITATE scan, a set of RF-pulses generates multiple echoes whose amplitudes are diffusion-weighted in both magnitude and direction by a pattern of diffusion gradients. As a result, two scans acquired with different diffusion weighting strengths suffice for accurate estimation of diffusion tensor imaging (DTI)-parameters. The MEDITATE variation presented here expands previous MEDITATE approaches to adapt to the clinical scanner platform, such as exploiting longitudinal magnetization storage to reduce T2-weighting. Fully segmented multi-shot Cartesian encoding is used for image encoding. MEDITATE was tested on isotropic (agar gel), anisotropic diffusion phantoms (asparagus), and in vivo skeletal muscle in healthy volunteers with cardiac-gating. Comparisons of accuracy were performed with standard twice-refocused spin echo (TRSE) DTI in each case and good quantitative agreement was found between diffusion eigenvalues, mean diffusivity, and fractional anisotropy derived from TRSE-DTI and from the MEDITATE sequence. Orientation patterns were correctly reproduced in both isotropic and anisotropic phantoms, and approximately so for in vivo imaging. This illustrates that the MEDITATE method of compressed diffusion encoding is feasible on the clinical scanner platform. With future development and employment of appropriate view-sharing image encoding this technique may be used in clinical applications requiring time-sensitive acquisition of DTI parameters such as dynamical DTI in muscle. PMID:23828606

  4. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  5. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.

  6. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    PubMed

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  8. Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

  9. Ultrafast MR imaging of the pelvic floor.

    PubMed

    Unterweger, M; Marincek, B; Gottstein-Aalame, N; Debatin, J F; Seifert, B; Ochsenbein-Imhof, N; Perucchini, D; Kubik-Huch, R A

    2001-04-01

    The aim of this study was to compare pelvic floor anatomy and laxity at rest and on straining (Valsalva's maneuver) using dynamic ultrafast MR imaging in women who were continent versus those with stress incontinence differing in obstetric history. Thirty continent women were divided into three equal groups (nulliparous, previous cesarean delivery, previous vaginal delivery) and compared with 10 women with stress-incontinence with a history of at least one vaginal delivery. MR imaging of the pelvic floor at rest and on maximal strain was performed, using axial T2-weighted fast spin-echo images followed by sagittal ultrafast T2-weighted single-shot fast spin-echo sequences. Mean population age (age range, 22-45 years; mean +/- SD, 36 +/- 5.4 years), was similar in the four groups, as was parity in the three parous groups. Mean distances between the bladder floor and pubococcygeal line at rest did not differ between the four groups. On straining, bladder floor descent was 1.1 +/- 0.9, 1.0 +/- 1.1, and 1.9 +/- 0.9 cm in continent nulliparous, cesarean delivery, and vaginal delivery women, respectively, versus 3.2 +/- 1.0 cm in incontinent women (p = 0.0005). Cervical descent was greater in incontinent versus nulliparous women (p = 0.0019). Bladder floor descent was greater in the continent vaginal delivery group than in continent cesarean delivery control patients (p = 0.04). In patients with stress incontinence, symptoms did not correlate with amplitude of descent. The right levator muscle was thinner overall than the left, regardless of frequency direction (p = 0.001). Ultrafast MR imaging using the T2-weighted single-shot fast spin-echo sequence allows dynamic evaluation of the pelvic compartments at maximal strain with no need for contrast medium. Pelvic floor laxity and supporting fascia abnormalities were most common in patients with stress incontinence followed by continent women with a history of vaginal delivery. The results are therefore compatible with the hypothesis of vaginal delivery as a contributory factor to stress incontinence in older parous women.

  10. High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; D'Anjou, Benjamin; Rudolph, Martin; Jacobson, N. Tobias; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Coish, William A.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    2018-04-01

    The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)-(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. It further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.

  11. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    NASA Astrophysics Data System (ADS)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  12. Distortion-free diffusion MRI using an MRI-guided Tri-Cobalt 60 radiotherapy system: Sequence verification and preliminary clinical experience.

    PubMed

    Gao, Yu; Han, Fei; Zhou, Ziwu; Cao, Minsong; Kaprealian, Tania; Kamrava, Mitchell; Wang, Chenyang; Neylon, John; Low, Daniel A; Yang, Yingli; Hu, Peng

    2017-10-01

    Monitoring tumor response during the course of treatment and adaptively modifying treatment plan based on tumor biological feedback may represent a new paradigm for radiotherapy. Diffusion MRI has shown great promises in assessing and predicting tumor response to radiotherapy. However, the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) technique suffers from limited resolution, severe distortion, and possibly inaccurate ADC at low field strength. The purpose of this work was to develop a reliable, accurate and distortion-free diffusion MRI technique that is practicable for longitudinal tumor response evaluation and adaptive radiotherapy on a 0.35 T MRI-guided radiotherapy system. A diffusion-prepared turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging sequence on a 0.35 T MRI-guided radiotherapy system (ViewRay). A spatial integrity phantom was used to quantitate and compare the geometric accuracy of the two diffusion sequences for three orthogonal orientations. The apparent diffusion coefficient (ADC) accuracy was evaluated on a diffusion phantom under both 0 °C and room temperature to cover a diffusivity range between 0.40 × 10 -3 and 2.10 × 10 -3 mm 2 /s. Ten room temperature measurements repeated on five different days were conducted to assess the ADC reproducibility of DP-TSE. Two glioblastoma (GBM) and six sarcoma patients were included to examine the in vivo feasibility. The target registration error (TRE) was calculated to quantitate the geometric accuracy where structural CT or MR images were co-registered to the diffusion images as references. ADC maps from DP-TSE and DW-ssEPI were calculated and compared. A tube phantom was placed next to patients not treated on ViewRay, and ADCs of this reference tube were also compared. The proposed DP-TSE passed the spatial integrity test (< 1 mm within 100 mm radius and < 2 mm within 175 mm radius) under the three orthogonal orientations. The detected errors were 0.474 ± 0.355 mm, 0.475 ± 0.287 mm, and 0.546 ± 0.336 mm in the axial, coronal, and sagittal plane. DW-ssEPI, however, failed the tests due to severe distortion and low signal intensity. Noise correction must be performed for the DW-ssEPI to avoid ADC quantitation errors, whereas it is optional for DP-TSE. At 0 °C, the two sequences provided accurate quantitation with < 3% variation with the reference. In the room temperature study, discrepancies between ADCs from DP-TSE and the reference were within 4%, but could be as high as 8% for DW-ssEPI after the noise correction. Excellent ADC reproducibility with a coefficient of variation < 5% was observed among the 10 measurements of DP-TSE, indicating desirable robustness for ADC-based tumor response assessment. In vivo TRE in DP-TSE was less than 1.6 mm overall, whereas it could be greater than 12 mm in DW-ssEPI. For GBM patients, the CSF and brain tissue ADCs from DP-TSE were within the ranges found in literature. ADC differences between the two techniques were within 8% among the six sarcoma patients. For the reference tube that had a relatively low diffusivity, the two diffusion sequences provided matched measurements. A diffusion technique with excellent geometric fidelity, accurate, and reproducible ADC measurement was demonstrated for longitudinal tumor response assessment using a low-field MRI-guided radiotherapy system. © 2017 American Association of Physicists in Medicine.

  13. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  14. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE PAGES

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; ...

    2016-02-08

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  15. Single-shot spiral imaging at 7 T.

    PubMed

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast

    PubMed Central

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-01-01

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680

  17. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout.

    PubMed

    Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D

    2017-12-01

    The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250  ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.

  18. High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon.

    PubMed

    Broome, M A; Watson, T F; Keith, D; Gorman, S K; House, M G; Keizer, J G; Hile, S J; Baker, W; Simmons, M Y

    2017-07-28

    In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision-placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4±0.2%. We measure the triplet-minus relaxation time to be of the order 3 s at 2.5 T and observe its predicted decrease as a function of magnetic field, reaching 0.5 s at 1 T.

  19. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    PubMed Central

    Kim, Yun Ju; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    Objective The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Materials and Methods Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. Results The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Conclusion Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast. PMID:25053898

  20. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    NASA Astrophysics Data System (ADS)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  1. Artifact correction in diffusion MRI of non-human primate brains on a clinical 3T scanner.

    PubMed

    Zhang, Xiaodong; Kirsch, John E; Zhong, Xiaodong

    2016-02-01

    Smearing artifacts were observed and investigated in diffusion tensor imaging (DTI) studies of macaque monkeys on a clinical whole-body 3T scanner. Four adult macaques were utilized to evaluate DTI artifacts. DTI images were acquired with a single-shot echo-planar imaging (EPI) sequence using a parallel imaging technique. The smearing artifacts observed on the diffusion-weighted images and fractional anisotropy maps were caused by the incomplete fat suppression due to the irregular macaque frontal skull geometry and anatomy. The artifact can be reduced substantially using a novel three-dimensional (3D) shimming procedure. The smearing artifacts observed on diffusion weighted images and fractional anisotropy (FA) maps of macaque brains can be reduced substantially using a robust 3D shimming approach. The DTI protocol combined with the shimming procedure could be a robust approach to examine brain connectivity and white matter integrity of non-human primates using a conventional clinical setting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Magnetic resonance imaging of pulmonary infection in immunocompromised children: comparison with multidetector computed tomography.

    PubMed

    Ozcan, H Nursun; Gormez, Ayşegul; Ozsurekci, Yasemin; Karakaya, Jale; Oguz, Berna; Unal, Sule; Cetin, Mualla; Ceyhan, Mehmet; Haliloglu, Mithat

    2017-02-01

    Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising.

  3. Comparison of Single-Shot Echo-Planar and Line Scan Protocols for Diffusion Tensor Imaging1

    PubMed Central

    Kubicki, Marek; Maier, Stephan E.; Westin, Carl-Frederik; Mamata, Hatsuho; Ersner-Hershfield, Hal; Estepar, Raul; Kikinis, Ron; Jolesz, Ferenc A.

    2009-01-01

    Rationale and Objectives Both single-shot diffusion-weighted echo-planar imaging (EPI) and line scan diffusion imaging (LSDI) can be used to obtain magnetic resonance diffusion tensor data and to calculate directionally invariant diffusion anisotropy indices, ie, indirect measures of the organization and coherence of white matter fibers in the brain. To date, there has been no comparison of EPI and LSDI. Because EPI is the most commonly used technique for acquiring diffusion tensor data, it is important to understand the limitations and advantages of LSDI relative to EPI. Materials and Methods Five healthy volunteers underwent EPI and LSDI diffusion on a 1.5 Tesla magnet (General Electric Medical Systems, Milwaukee, WI). Four-mm thick coronal sections, covering the entire brain, were obtained. In addition, one subject was tested with both sequences over four sessions. For each image voxel, eigenvectors and eigenvalues of the diffusion tensor were calculated, and fractional anisotropy (FA) was derived. Several regions of interest were delineated, and for each, mean FA and estimated mean standard deviation were calculated and compared. Results Results showed no significant differences between EPI and LSDI for mean FA for the five subjects. When inter-session reproducibility for one subject was evaluated, there was a significant difference between EPI and LSDI in FA for the corpus callosum and the right uncinate fasciculus. Moreover, errors associated with each FA measure were larger for EPI than for LSDI. Conclusion Results indicate that both EPI- and LSDI-derived FA measures are sufficiently robust. However, when higher accuracy is needed, LSDI provides smaller error and smaller inter-subject and inter-session variability than EPI. PMID:14974598

  4. [Comparative study on clinical and pathological changes of liver fibrosis with diffusion-weighted imaging].

    PubMed

    Zhou, Mei-Ling; Yan, Fu-Hua; Xu, Peng-Ju; Chen, Cai-Zhong; Shen, Ji-Zhang; Li, Ren-Chen; Ji, Yuan; Shi, Jian-Ying

    2009-07-07

    To evaluate the clinical practical value of apparent diffusion coefficient (ADC) measurements based on diffusion-weighted MR imaging (DWI) for quantification of liver fibrosis and inflammation for hepatitis viral infection. Diffusion-weighted MRI with parallel imaging was prospectively performed on 85 patients with chronic hepatitis and on 22 healthy volunteers within a single breath-hold using a single-shot spin-echo echo-planar sequence at b values of 100, 300, 500, 800 and 1000 s/mm2 respectively. ADC values of liver were measured with five different b values. The inflammation grades and fibrosis stages were evaluated histologically by biopsy. One-way analysis of variance and Spearman' s rank correlation test were used for statistical analysis. Receiver operating characteristics analysis was used to assess the performance of ADC in predicting the presence of stage > or = 2 and stage > or = 3 hepatic fibrosis, and grade > or = 1 hepatic inflammation. There was moderate negative correlation between hepatic ADC values and fibrosis stage. And the best correlation was obtained for a b value of 800 s/mm2 (r = -0.697, P = 0. 000). At all b values there was a significant decrease in hepatic ADC in patients with stage < or = 1 versus stage > or = 2 fibrosis and stage < or = 2 versus stage > or = 3 fibrosis (P < 0.05). Hepatic ADC was a significant predictor of stage > or = 2 and > or = 3 fibrosis. The areas under the curve were 0.909 vs 0.917, sensitivity 76.6% vs 80.0% and specificity 88.3% vs 91.5% (ADC with a b value of 800 s/mm2, 1.26 x 10(-3) mm2/s or less and 1.19 x 10(-3) mm2/s or less). There was weak to moderate negative correlation between ADCs and inflammation grade. Hepatic ADC was a significant predictor of grade > 1 inflammation with an area under the curve of 0.781, sensitivity of 60.0% and specificity of 86.4% (ADC with a b value of 500 s/mm2, 1.54 x 10(-3) mm2/s or less). The DWI measurement of hepatic ADC can be used to quantify liver fibrosis and inflammation. It will be a new approach for early diagnosis and therapeutic follow-up of hepatic fibrosis.

  5. Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems

    NASA Astrophysics Data System (ADS)

    Slotboom, J.

    1993-10-01

    This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.

  6. Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.

    PubMed

    Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe

    2018-05-01

    This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy

    PubMed Central

    Boujraf, Saïd

    2018-01-01

    Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631

  8. Readout-segmented multi-shot diffusion-weighted MRI of the knee joint in patients with juvenile idiopathic arthritis.

    PubMed

    Sauer, Alexander; Li, Mengxia; Holl-Wieden, Annette; Pabst, Thomas; Neubauer, Henning

    2017-10-12

    Diffusion-weighted MRI has been proposed as a new technique for imaging synovitis without intravenous contrast application. We investigated diagnostic utility of multi-shot readout-segmented diffusion-weighted MRI (multi-shot DWI) for synovial imaging of the knee joint in patients with juvenile idiopathic arthritis (JIA). Thirty-two consecutive patients with confirmed or suspected JIA (21 girls, median age 13 years) underwent routine 1.5 T MRI with contrast-enhanced T1w imaging (contrast-enhanced MRI) and with multi-shot DWI (RESOLVE, b-values 0-50 and 800 s/mm 2 ). Contrast-enhanced MRI, representing the diagnostic standard, and diffusion-weighted images at b = 800 s/mm 2 were separately rated by three independent blinded readers at different levels of expertise for the presence and the degree of synovitis on a modified 5-item Likert scale along with the level of subjective diagnostic confidence. Fourteen (44%) patients had active synovitis and joint effusion, nine (28%) patients showed mild synovial enhancement not qualifying for arthritis and another nine (28%) patients had no synovial signal alterations on contrast-enhanced imaging. Ratings by the 1st reader on contrast-enhanced MRI and on DWI showed substantial agreement (κ = 0.74). Inter-observer-agreement was high for diagnosing, or ruling out, active arthritis of the knee joint on contrast-enhanced MRI and on DWI, showing full agreement between 1st and 2nd reader and disagreement in one case (3%) between 1st and 3rd reader. In contrast, ratings in cases of absent vs. little synovial inflammation were markedly inconsistent on DWI. Diagnostic confidence was lower on DWI, compared to contrast-enhanced imaging. Multi-shot DWI of the knee joint is feasible in routine imaging and reliably diagnoses, or rules out, active arthritis of the knee joint in paediatric patients without the need of gadolinium-based i.v. contrast injection. Possibly due to "T2w shine-through" artifacts, DWI does not reliably differentiate non-inflamed joints from knee joints with mild synovial irritation.

  9. 3T diffusion-weighted MRI of the thyroid gland with reduced distortion: preliminary results

    PubMed Central

    Nagala, S; Priest, A N; McLean, M A; Jani, P; Graves, M J

    2013-01-01

    Objective: Single-shot diffusion-weighted (DW) echo planar imaging (EPI), which is commonly used for imaging the thyroid, is characterised by severe blurring and distortion. The objectives of this work were: 1, to show that a reduced-field of view (r-FOV) DW EPI technique can improve image quality; and 2, to investigate the effect of different reconstruction strategies on the resulting apparent diffusion coefficients (ADCs). Methods: We implemented a single-shot, r-FOV DW EPI technique with a two-dimensional radiofrequency excitation pulse for DW imaging of the thyroid at 3T. Images were reconstructed using root sum of squares (SOS) and an optimal-B1 reconstruction (OBR). Phantom and in vivo experiments were performed to compare r-FOV and conventional full-FOV DW EPI with root SOS and OBR. Results: r-FOV with OBR substantially improved image quality at 3T. In phantoms, r-FOV gave more accurate ADCs than full-FOV. In vivo r-FOV always gave lower ADC values with respect to the full-FOV technique irrespective of the reconstruction used and whether only two or multiple b-values were used to compute the ADCs. Conclusion: r-FOV DW EPI can reduce image blurring and distortion at the expense of a low signal-to-noise ratio. OBR is a promising reconstruction technique for accurate ADC measurements in lower signal-to-noise ratio regimes, although further studies are needed to characterise its performance. Advances in knowledge: DW imaging of the thyroid at 3T could potentially benefit from r-FOV acquisition strategies, such as the r-FOV DW EPI technique proposed in this paper. PMID:23770539

  10. Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.

    PubMed

    Martin, Melanie

    2013-01-01

    This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  11. Improved diagnosis of common bile duct stone with single-shot balanced turbo field-echo sequence in MRCP.

    PubMed

    Noda, Yoshifumi; Goshima, Satoshi; Kojima, Toshihisa; Kawaguchi, Shimpei; Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki; Bae, Kyongtae T

    2017-04-01

    To evaluate the value of adding single-shot balanced turbo field-echo (b-TFE) sequence to conventional magnetic resonance cholangiopancreatography (MRCP) for the detection of common bile duct (CBD) stone. One hundred thirty-seven consecutive patients with suspected CBD stone underwent MRCP including single-shot b-TFE sequence. Twenty-five patients were confirmed with CBD stone by endoscopic retrograde cholangiopancreatography or ultrasonography. Two radiologists reviewed two image protocols: protocol A (conventional MRCP protocol: unenhanced T1-, T2-, and respiratory-triggered three-dimensional fat-suppressed single-shot turbo spin-echo MRCP sequence) and protocol B (protocol A plus single-shot b-TFE sequence). The sensitivity, specificity, positive (PPV) and negative predictive value (NPV), and area under the receiver-operating-characteristic (ROC) curve (AUC) for the detection of CBD stone were compared. The sensitivity (72%) and NPV (94%) were the same between the two protocols. However, protocol B was greater in the specificity (99%) and PPV (94%) than protocol A (92% and 67%, respectively) (P = 0.0078 and 0.031, respectively). The AUC was significantly greater for protocol B (0.93) than for protocol A (0.86) (P = 0.026). Inclusion of single-shot b-TFE sequence to conventional MRCP significantly improved the specificity and PPV for the detection of CBD stone.

  12. Intravoxel Incoherent Motion in Normal Pituitary Gland: Initial Study with Turbo Spin-Echo Diffusion-Weighted Imaging.

    PubMed

    Kamimura, K; Nakajo, M; Fukukura, Y; Iwanaga, T; Saito, T; Sasaki, M; Fujisaki, T; Takemura, A; Okuaki, T; Yoshiura, T

    2016-12-01

    DWI with conventional single-shot EPI of the pituitary gland is hampered by strong susceptibility artifacts. Our purpose was to evaluate the feasibility of intravoxel incoherent motion assessment by using DWI based on TSE of the normal anterior pituitary lobe. The intravoxel incoherent motion parameters, including the true diffusion coefficient (D), the perfusion fraction (f), and the pseudo-diffusion coefficient (D*), were obtained with TSE-DWI in 5 brain regions (the pons, the WM and GM of the vermis, and the genu and splenium of the corpus callosum) in 8 healthy volunteers, and their agreement with those obtained with EPI-DWI was evaluated by using the intraclass correlation coefficient. The 3 intravoxel incoherent motion parameters in the anterior pituitary lobe were compared with those in the brain regions by using the Dunnett test. The agreement between TSE-DWI and EPI-DWI was moderate (intraclass correlation coefficient = 0.571) for D, substantial (0.699) for f', but fair (0.405) for D*. D in the anterior pituitary lobe was significantly higher than in the 5 brain regions (P < .001). The f in the anterior pituitary lobe was significantly higher than in the 5 brain regions (P < .001), except for the vermian GM. The pituitary D* was not significantly different from that in the 5 brain regions. Our results demonstrated the feasibility of intravoxel incoherent motion assessment of the normal anterior pituitary lobe by using TSE-DWI. High D and f values in the anterior pituitary lobe were thought to reflect its microstructural and perfusion characteristics. © 2016 by American Journal of Neuroradiology.

  13. High-Resolution Multi-Shot Spiral Diffusion Tensor Imaging with Inherent Correction of Motion-Induced Phase Errors

    PubMed Central

    Truong, Trong-Kha; Guidon, Arnaud

    2014-01-01

    Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457

  14. TU-AB-BRA-07: Distortion-Free 3D Diffusion MRI On An MRI-Guided Radiotherapy System for Longitudinal Tumor Response Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y; Yang, Y; Rangwala, N

    Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometricmore » reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10{sup −3}mm{sup 2}/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with excellent geometric fidelity, accurate and highly reproducible ADC measurements was proposed for longitudinal tumor response assessment using an MRI-guided RT system. Yu Gao acknowledges research support from ViewRay.« less

  15. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770

  16. Transport phenomena in helical edge state interferometers: A Green's function approach

    NASA Astrophysics Data System (ADS)

    Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael

    2013-10-01

    We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.

  17. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  18. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions.

    PubMed

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-03-04

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.

  19. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase‐corrected diffusion‐prepared 3D turbo spin echo

    PubMed Central

    Van, Anh T.; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J.; Gersing, Alexandra; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2018-01-01

    Purpose To perform in vivo isotropic‐resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase‐navigated diffusion‐prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase‐error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Methods Phase‐navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy‐current effects on the signal magnitude. Phase navigation of motion‐induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single‐shot echo planar imaging (ss‐EPI) in 13 subjects. Diffusion data were phase‐corrected per k z plane with respect to T2‐weighted data. The effects of motion‐induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss‐EPI. Results Non–phase‐corrected 3D TSE resulted in artifacts in diffusion‐weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss‐EPI DTI parameters (MD = 1.62 ± 0.21). Conclusion DP 3D TSE with phase correction allows distortion‐free isotropic diffusion imaging of lower back nerves with robustness to motion‐induced artifacts and DTI quantification errors. Magn Reson Med 80:609–618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29380414

  20. Double-spin-echo diffusion weighting with a modified eddy current adjustment.

    PubMed

    Finsterbusch, Jürgen

    2010-04-01

    Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Abdominal applications of 3.0-T MR imaging: comparative review versus a 1.5-T system.

    PubMed

    Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun; Kim, Ji Youn; Jones, Alun C; de Becker, Jan; van Cauteren, Marc

    2008-01-01

    With the development of dedicated receiver coils and increased gradient performance, 3.0-T magnetic resonance (MR) systems are gaining wider acceptance in clinical practice. The expected twofold increase in signal-to-noise ratio (SNR) compared with that of 1.5-T MR systems may help improve spatial resolution or increase temporal resolution when used with parallel acquisition techniques. Several issues must be considered when applying 3.0-T MR in the abdomen, including the alteration of the radiofrequency field and relaxation time, increase in energy deposition and susceptibility effects, and problems associated with motion artifacts. For the evaluation of liver lesions, higher SNR and greater resolution achieved with the 3.0-T system could translate into better detection of malignant lesions on T2-weighted images obtained with adjusted imaging parameters. For the evaluation of pancreatic and biliary diseases, high-resolution T2-weighted imaging using single-shot turbo spin-echo sequences is useful; improvement in SNR was noticeable on two-dimensional MR cholangiopancreatographic images. For the preoperative imaging of rectal cancer, a single-shot sequence is useful for dramatically decreasing imaging time while maintaining image quality. Substantial modification of examination protocols, with optimized imaging parameters and sequence designs along with ongoing development of hardware, could contribute to an increased role of the 3.0-T system for abdominal MR examinations.

  2. Optimization of diffusion-weighted single-refocused spin-echo EPI by reducing eddy-current artifacts and shortening the echo time.

    PubMed

    Shrestha, Manoj; Hok, Pavel; Nöth, Ulrike; Lienerth, Bianca; Deichmann, Ralf

    2018-03-30

    The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC. The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo. Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm. Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.

  3. Reduced acoustic noise in diffusion tensor imaging on a compact MRI system.

    PubMed

    Tan, Ek T; Hardy, Christopher J; Shu, Yunhong; In, Myung-Ho; Guidon, Arnaud; Huston, John; Bernstein, Matt A; K F Foo, Thomas

    2018-06-01

    To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T.

    PubMed

    Obele, Chika C; Glielmi, Christopher; Ream, Justin; Doshi, Ankur; Campbell, Naomi; Zhang, Hoi Cheung; Babb, James; Bhat, Himanshu; Chandarana, Hersh

    2015-10-01

    To perform image quality comparison between accelerated multiband diffusion acquisition (mb2-DWI) and conventional diffusion acquisition (c-DWI) in patients undergoing clinically indicated liver MRI. In this prospective study 22 consecutive patients undergoing clinically indicated liver MRI on a 3-T scanner equipped to perform multiband diffusion-weighed imaging (mb-DWI) were included. DWI was performed with single-shot spin-echo echo-planar technique with fat-suppression in free breathing with matching parameters when possible using c-DWI, mb-DWI, and multiband DWI with a twofold acceleration (mb2-DWI). These diffusion sequences were compared with respect to various parameters of image quality, lesion detectability, and liver ADC measurements. Accelerated mb2-DWI was 40.9% faster than c-DWI (88 vs. 149 s). Various image quality parameter scores were similar or higher on mb2-DWI when compared to c-DWI. The overall image quality score (averaged over the three readers) was significantly higher for mb-2 compared to c-DWI for b = 0 s/mm(2) (3.48 ± 0.52 vs. 3.21 ± 0.54; p = 0.001) and for b = 800 s/mm(2) (3.24 ± 0.76 vs. 3.06 ± 0.86; p = 0.010). Total of 25 hepatic lesions were visible on mb2-DWI and c-DWI, with identical lesion detectability. There was no significant difference in liver ADC between mb2-DWI and c-DWI (p = 0.12). Bland-Altman plot demonstrates lower mean liver ADC with mb2-DWI compared to c-DWI (by 0.043 × 10(-3) mm(2)/s or 3.7% of the average ADC). Multiband technique can be used to increase acquisition speed nearly twofold for free-breathing DWI of the liver with similar or improved overall image quality and similar lesion detectability compared to conventional DWI.

  5. Comparison of DWI Methods in the Pediatric Brain: PROPELLER Turbo Spin-Echo Imaging Versus Readout-Segmented Echo-Planar Imaging Versus Single-Shot Echo-Planar Imaging.

    PubMed

    Kim, Tae-Hyung; Baek, Moon-Young; Park, Ji Eun; Ryu, Young Jin; Cheon, Jung-Eun; Kim, In-One; Choi, Young Hun

    2018-06-01

    The purpose of this study is to compare DWI for pediatric brain evaluation using single-shot echo-planar imaging (EPI), periodically rotated overlapping parallel lines with enhanced reconstruction (Blade), and readout-segmented EPI (Resolve). Blade, Resolve, and single-shot EPI were performed for 27 pediatric patients (median age, 9 years), and three datasets were independently reviewed by two radiologists. Qualitative analyses were performed for perceptive coarseness, image distortion, susceptibility-related changes, motion artifacts, and lesion conspicuity using a 5-point Likert scale. Quantitative analyses were conducted for spatial distortion and signal uniformity of each sequence. Mean scores were 2.13, 3.17, and 3.76 for perceptive coarseness; 4.85, 3.96, and 2.19 for image distortion; 4.76, 3.96, and 2.30 for susceptibility-related change; 4.96, 3.83, and 4.69 for motion artifacts; and 2.71, 3.75, and 1.92 for lesion conspicuity, for Blade, Resolve, and single-shot EPI, respectively. Blade and Resolve showed better quality than did single-shot EPI for image distortion, susceptibility-related changes, and lesion conspicuity. Blade showed less image distortion, fewer susceptibility-related changes, and fewer motion artifacts than did Resolve, whereas lesion conspicuity was better with Resolve. Blade showed increased signal variation compared with Resolve and single-shot EPI (coefficients of variation were 0.10, 0.08, and 0.05 for lateral ventricle; 0.13, 0.09, and 0.05 for centrum semiovale; and 0.16, 0.09, and 0.06 for pons in Blade, Resolve, and single-shot EPI, respectively). DWI with Resolve or Blade yields better quality regarding distortion, susceptibility-related changes, and lesion conspicuity, compared with single-shot EPI. Blade is less susceptible to motion artifacts than is Resolve, whereas Resolve yields less noise and better lesion conspicuity than does Blade.

  6. Contrast-Enhanced Magnetic Resonance Cholangiography: Practical Tips and Clinical Indications for Biliary Disease Management.

    PubMed

    Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo

    2017-01-01

    Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.

  7. 3D Visual Proxemics: Recognizing Human Interactions in 3D from a Single Image (Open Access)

    DTIC Science & Technology

    2013-06-28

    accurate tracking and identity associations of people’s motions in videos. Proxemics is a subfield of anthropology that involves study of people...cinematography where the shot composition and camera viewpoint is optimized for visual weight [1]. In cinema , a shot is either a long shot, a medium

  8. Diffusion-weighted imaging in the evaluation of odontogenic cysts and tumours.

    PubMed

    Srinivasan, K; Seith Bhalla, A; Sharma, R; Kumar, A; Roychoudhury, A; Bhutia, O

    2012-10-01

    The differentiation between keratocystic odontogenic tumour (KCOT) and other cystic/predominantly cystic odontogenic tumours is difficult on conventional CT and MR sequences as there is overlap in the imaging characteristics of these lesions. The purpose of this study was to evaluate the role of diffusion-weighted imaging (DWI) and to assess the performance of apparent diffusion coefficients (ADCs) in the differential diagnosis of odontogenic cysts and tumours. 20 patients with odontogenic cysts and tumours of the maxillomandibular region were examined with DWI. Diffusion-weighted images were obtained with a single-shot echoplanar technique with b-values of 0, 500 and 1000 s mm(-2). An ADC map was obtained at each slice position. The cystic areas of ameloblastoma (n=10) showed free diffusion with a mean ADC value of 2.192±0.33×10(-3) mm(2) s(-1), whereas the solid areas showed restricted diffusion with a mean ADC value of 1.041±0.41×10(-3) mm(2) s(-1). KCOT (n=5) showed restricted diffusion with a mean ADC value of 1.019±0.07×10(-3) mm(2) s(-1). There was a significant difference between the ADC values of KCOT and cystic ameloblastoma (p<0.01, Mann-Whitney U-test). The cut-off with which KCOT and predominantly cystic ameloblastomas were optimally differentiated was 2.013×10(-3) mm(2) s(-1), which yielded 100% sensitivity and 100% specificity. DWI can be used to differentiate KCOT from cystic (or predominantly cystic) odontogenic tumours.

  9. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  10. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): a general algorithm for reducing motion-related artifacts

    PubMed Central

    Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei

    2014-01-01

    Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325

  11. Preoperative local MRI-staging of patients with a suspected pancreatic mass.

    PubMed

    Fischer, U; Vosshenrich, R; Horstmann, O; Becker, H; Salamat, B; Baum, F; Grabbe, E

    2002-02-01

    The aim of this study was to define the value of MRI of the pancreas for preoperative local staging of patients with a suspected pancreatic mass. Ninety-four patients (41 women, 53 men; age range 32-87 years) with a suspected pancreatic tumor underwent preoperative staging with MRI on a 1.5-T system. The MRI protocol included breath-hold MR cholangiopancreatography in turbo spin-echo technique, biphasic contrast-enhanced 3D MR angiography, and MRI of the upper abdomen with breath-hold T2-weighted half-Fourier acquired single-shot turbo spin-echo and T1-weighted fast-low-angle-shot (pre- and postcontrast) sequences. Data were collected prospectively and analyzed by two radiologists in agreement modality. Evaluation criteria were vascular involvement, resectability, and a characterization benign vs malignant. Results were compared to histopathology in 78 patients. Sixteen patients were followed-up. In 74 of 94 patients a solid tumor or an inflammation of the pancreas ( n=62) or the papilla ( n=12) was detected. In this group, MRI had a sensitivity of 98%, a specificity of 92%, and an accuracy of 96% in the characterization of malignant tumors. Regarding only the solid tumors, the positive predictive value of MRI was 87% with respect to resectability. Other pathologic findings included adenoma or inflammation of the duodenum ( n=5), carcinoma or benign stenosis of the choledochus duct ( n=7) and carcinoma of the gall bladder ( n=2). In 6 patients MRI did not depict any pathologic findings, and follow-up confirmed this interpretation. Magnetic resonance imaging allows a local preoperative staging in patients with suspected pancreatic tumor. Limitations, however, concern to the diagnostics of peritoneal and/or liver metastases.

  12. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure.

    PubMed

    Khorsand, A R; Sobierajski, R; Louis, E; Bruijn, S; van Hattum, E D; van de Kruijs, R W E; Jurek, M; Klinger, D; Pelka, J B; Juha, L; Burian, T; Chalupsky, J; Cihelka, J; Hajkova, V; Vysin, L; Jastrow, U; Stojanovic, N; Toleikis, S; Wabnitz, H; Tiedtke, K; Sokolowski-Tinten, K; Shymanovich, U; Krzywinski, J; Hau-Riege, S; London, R; Gleeson, A; Gullikson, E M; Bijkerk, F

    2010-01-18

    We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources.

  13. Single-shot quantum state estimation via a continuous measurement in the strong backaction regime

    NASA Astrophysics Data System (ADS)

    Cook, Robert L.; Riofrío, Carlos A.; Deutsch, Ivan H.

    2014-09-01

    We study quantum tomography based on a stochastic continuous-time measurement record obtained from a probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous studies, we consider here the case in which the measurement-induced backaction has a non-negligible effect on the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the simplest problem: state tomography of a single pure qubit, which, during the course of the measurement, is also subjected to dynamical control. We identify a regime where the many-body system is well approximated at all times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution. We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by the optimal generalized measurement. This estimate is compared to, and significantly outperforms, an equivalent estimator that ignores measurement backaction.

  14. Persistent increase of blood lead level and suppression of δ-ALAD activity in northern bobwhite quail orally dosed with even a single 2-mm spent lead shot.

    PubMed

    Holladay, S D; Kerr, R; Holladay, J P; Meldrum, B; Williams, S M; Gogal, R M

    2012-10-01

    Birds that display grit ingestion behavior are potentially at risk of lead (Pb) poisoning from mistaken ingestion of spent Pb shot pellets. The majority of available studies designed to assess such risk have used unspent shot pellets rather than field-obtained spent shot, which is oxidized and otherwise changed by weathering. Available studies also often administered more or heavier shot pellets to a bird than it might be expected to ingest. The current study dosed northern bobwhite quail (Colinus virginianus) weighing 194.6 ± 23.1 g (female birds) and 199.3 ± 12.2 g (male birds) with one to three spent no. 9 Pb shot collected from a skeet range, with particular interest in the toxicity that may occur from ingestion of a single 2-mm, 50 mg shot. An 8 week post-dosing clinical observation period was employed, over which feed consumption, body weight, blood Pb levels, and a battery of blood physiological parameters were made. Weight loss occurred in the birds, including male birds dosed with one Pb pellet. Erythrocyte delta aminolevulinic acid dehydratase (δ-ALAD) levels were decreased for the duration of the study across exposures and to levels associated with injury in wild bird populations. Decreased ALAD was particularly severe in female birds dosed with one Pb pellet and was still 92 % decreased at 8 weeks after dosing. Together, these results suggest that inadvertent ingestion of a single no. 9 Pb shot pellet can adversely affect the health of northern bobwhite quail.

  15. Efficient parallel reconstruction for high resolution multishot spiral diffusion data with low rank constraint.

    PubMed

    Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui

    2017-03-01

    To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Magnetic resonance imaging (MRI) of the renal sinus.

    PubMed

    Krishna, Satheesh; Schieda, Nicola; Flood, Trevor A; Shanbhogue, Alampady Krishna; Ramanathan, Subramaniyan; Siegelman, Evan

    2018-04-09

    This article presents methods to improve MR imaging approach of disorders of the renal sinus which are relatively uncommon and can be technically challenging. Multi-planar Single-shot T2-weighted (T2W) Fast Spin-Echo sequences are recommended to optimally assess anatomic relations of disease. Multi-planar 3D-T1W Gradient Recalled Echo imaging before and after Gadolinium administration depicts the presence and type of enhancement and relation to arterial, venous, and collecting system structures. To improve urographic phase MRI, concentrated Gadolinium in the collecting systems should be diluted. Diffusion-Weighted Imaging (DWI) should be performed before Gadolinium administration to minimize T2* effects. Renal sinus cysts are common but can occasionally be confused for dilated collecting system or calyceal diverticula, with the latter communicating with the collecting system and filling on urographic phase imaging. Vascular lesions (e.g., aneurysm, fistulas) may mimic cystic (or solid) lesions on non-enhanced MRI but can be suspected by noting similar signal intensity to the blood pool and diagnosis can be confirmed with MR angiogram/venogram. Multilocular cystic nephroma commonly extends to the renal sinus, however, to date are indistinguishable from cystic renal cell carcinoma (RCC). Solid hilar tumors are most commonly RCC and urothelial cell carcinoma (UCC). Hilar RCC are heterogeneous, hypervascular with epicenter in the renal cortex compared to UCC which are centered in the collecting system, homogeneously hypovascular, and show profound restricted diffusion. Diagnosis of renal sinus invasion in RCC is critically important as it is the most common imaging cause of pre-operative under-staging of disease. Fat is a normal component of the renal sinus; however, amount of sinus fat correlates with cardiovascular disease and is also seen in lipomatosis. Fat-containing hilar lesions include lipomas, angiomyolipomas, and less commonly other tumors which engulf sinus fat. Mesenchymal hilar tumors are rare. MR imaging diagnosis is generally not possible, although anatomic relations should be described to guide diagnosis by percutaneous biopsy or surgery.

  17. Singleshot T1 Mapping using Simultaneous Acquisitions of Spin- and STimulated-Echo Planar Imaging (2D ss-SESTEPI)

    PubMed Central

    Shi, Xianfeng; Kim, Seong-Eun; Jeong, Eun-Kee

    2011-01-01

    The conventional stimulated-echo NMR sequence only measures the longitudinal component, while discarding the transverse component, after tipping up the prepared magnetization. This transverse magnetization can be used to measure a spin-echo, in addition to the stimulated-echo. 2D ss-SESTEPI is an EPI-based singleshot imaging technique that simultaneously acquires a spin-echo-planar image (SEPI) and a stimulated-echo-planar image (STEPI) after a single RF excitation. The magnitudes of SEPI and STEPI differ by T1 decay and diffusion weighting for perfect 90° RF, and thus can be used to rapidly measure T1. However, the spatial variation of B1 amplitude induces un-even splitting of the transverse magnetization for SEPI and STEPI within the imaging FOV. Correction for B1 inhomogeneity is therefore critical for 2D ss-SESTEPI to be used for T1 measurement. We developed a method for B1 inhomogeneity correction by acquiring an additional STEPI with minimal mixing time, calculating the difference between the spin-echo and the stimulated-echo and multiplying the STEPI by the inverse functional map. Diffusion-induced decay is corrected by measuring the average diffusivity during the prescanning. Rapid singleshot T1 mapping may be useful for various applications, such as dynamic T1 mapping for real-time estimation of the concentration of contrast agent in DCE-MRI. PMID:20564579

  18. Assessment of Masses of the External Ear With Diffusion-Weighted MR Imaging.

    PubMed

    Razek, Ahmed Abdel Khalek Abdel

    2018-02-01

    To assess masses of the external ear with diffusion-weighted MR imaging. Retrospective analysis of 43 consecutive patients with soft tissue mass of the external ear. They underwent single shot diffusion-weighted MR imaging of the ear. The apparent diffusion coefficient (ADC) value of the mass of the external ear was calculated. The final diagnosis was performed by biopsy. The ADC value correlated with the biopsy results. The mean ADC value of malignancy (=27) of external ear (0.95 ± 0.19 × 10 mm/s) was significantly lower (p = 0.001) than that of benign (n = 16) lesions (1.49 ± 0.08 × 10 mm/s). The cutoff ADC used for differentiation of malignancy from benign lesions was 1.18 × 10 mm/s with an area under the curve of 0.959, an accuracy of 93%, a sensitivity of 92%, and specificity of 93%. There was a significant difference in the ADC of well and moderately differentiated malignancy versus poorly and undifferentiated squamous cell carcinoma (p = 0.001), and stages I and II versus stages III and IV (p = 0.04) of squamous cell carcinoma. ADC value is a non-invasive promising imaging parameter that can be used for differentiation of malignancy of the external ear from benign lesions, and grading and staging of squamous cell carcinoma of the external ear.

  19. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach.

    PubMed

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Lin, Yi-Ru; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-04-01

    This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts.

  20. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  1. Electron Spin Resonance at the Level of 1 04 Spins Using Low Impedance Superconducting Resonators

    NASA Astrophysics Data System (ADS)

    Eichler, C.; Sigillito, A. J.; Lyon, S. A.; Petta, J. R.

    2017-01-01

    We report on electron spin resonance measurements of phosphorus donors localized in a 200 μ m2 area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited parametric amplification with a low impedance microwave resonator design, we are able to detect around 2 ×1 04 spins with a signal-to-noise ratio of 1 in a single shot. The 150 Hz coupling strength between the resonator field and individual spins is significantly larger than the 1-10 Hz coupling rates obtained with typical coplanar waveguide resonator designs. Because of the larger coupling rate, we find that spin relaxation is dominated by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell.

  2. Diffusion-prepared stimulated-echo turbo spin echo (DPsti-TSE): An eddy current-insensitive sequence for three-dimensional high-resolution and undistorted diffusion-weighted imaging.

    PubMed

    Zhang, Qinwei; Coolen, Bram F; Versluis, Maarten J; Strijkers, Gustav J; Nederveen, Aart J

    2017-07-01

    In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10 -3 versus (1.60 ± 0.02) × 10 -3  mm 2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10 -3  mm 2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  4. Diffusion-weighted magnetic resonance imaging of uterine cervical cancer.

    PubMed

    Liu, Ying; Bai, Renju; Sun, Haoran; Liu, Haidong; Wang, Dehua

    2009-01-01

    To determine the feasibility of diffusion-weighted magnetic resonance (MR) imaging (DWI) of uterine cervical cancer and to investigate whether the apparent diffusion coefficient (ADC) values of cervical cancer differ from those of normal cervix and whether they could indicate the histologic type and the pathologic grade of tumor. Forty-two female patients with histopathologically proven uterine cervical cancer and 15 female patients with uterine leiomyomas underwent preoperative MR examinations using a 1.5-T clinical scanner (GE 1.5T Twin-Speed Infinity with Excite II scanner; GE Healthcare, Waukesha, Wis). Scanning sequences included T2-weighted fast spin-echo imaging, T2-weighted fast spin-echo with fat suppression imaging, T1-weighted spin-echo imaging, and DWI with diffusion factors of 0 and 1000 s/mm2. Parameters evaluated consisted of ADC values of uterine cervical cancer and normal cervix. Histologic specimens were stained with hematoxylin and eosin. The cellular densities of 32 uterine cervical cancers were calculated, which were regarded as the ratio of the total area of tumor cell nuclei divided by the area of sample image. Apparent diffusion coefficient value was statistically different (P = 0.000) between normal and cancerous tissue in the uterine cervix; the former one was (mean [SD], 1.50 [0.16]) x 10(-3) mm2/s, and the latter one was (0.88 [0.15]) x 10(-3) mm2/s. Apparent diffusion coefficient value of squamous carcinoma was statistically lower than that of adenocarcinoma (P = 0.040). The ADC value of uterine cervical cancer correlated negatively with cellular density (r = -0.711, P = 0.000) and the grading of tumor (r = -0.778, P = 0.000). Diffusion-weighted MR imaging has a potential ability to differentiate between normal and cancerous tissue in the uterine cervix, and it can indicate the histologic type of uterine cervical cancer as well. The ADC value of uterine cervical cancer represents tumor cellular density, thus providing a new method for evaluating the pathologic grading of tumor.

  5. Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser.

    PubMed

    Buzzi, Michele; Makita, Mikako; Howald, Ludovic; Kleibert, Armin; Vodungbo, Boris; Maldonado, Pablo; Raabe, Jörg; Jaouen, Nicolas; Redlin, Harald; Tiedtke, Kai; Oppeneer, Peter M; David, Christian; Nolting, Frithjof; Lüning, Jan

    2017-08-03

    The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

  6. Spin diffusion and torques in disordered antiferromagnets

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien

    2017-03-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  7. Requirement of spatiotemporal resolution for imaging intracellular temperature distribution

    NASA Astrophysics Data System (ADS)

    Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira

    2017-04-01

    Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.

  8. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging.

    PubMed

    Bastin, M E; Armitage, P A

    2000-07-01

    The accurate determination of absolute measures of diffusion anisotropy in vivo using single-shot, echo-planar imaging techniques requires the acquisition of a set of high signal-to-noise ratio, diffusion-weighted images that are free from eddy current induced image distortions. Such geometric distortions can be characterized and corrected in brain imaging data using magnification (M), translation (T), and shear (S) distortion parameters derived from separate water phantom calibration experiments. Here we examine the practicalities of using separate phantom calibration data to correct high b-value diffusion tensor imaging data by investigating the stability of these distortion parameters, and hence the eddy currents, with time. It is found that M, T, and S vary only slowly with time (i.e., on the order of weeks), so that calibration scans need not be performed after every patient examination. This not only minimises the scan time required to collect the calibration data, but also the computational time needed to characterize these eddy current induced distortions. Examples of how measurements of diffusion anisotropy are improved using this post-processing scheme are also presented.

  9. Spin effects in transport through single-molecule magnets in the sequential and cotunneling regimes

    NASA Astrophysics Data System (ADS)

    Misiorny, Maciej; Weymann, Ireneusz; Barnaś, Józef

    2009-06-01

    We analyze the stationary spin-dependent transport through a single-molecule magnet weakly coupled to external ferromagnetic leads. Using the real-time diagrammatic technique, we calculate the sequential and cotunneling contributions to current, tunnel magnetoresistance, and Fano factor in both linear and nonlinear response regimes. We show that the effects of cotunneling are predominantly visible in the blockade regime and lead to enhancement of tunnel magnetoresistance (TMR) above the Julliere value, which is accompanied with super-Poissonian shot noise due to bunching of inelastic cotunneling processes through different virtual spin states of the molecule. The effects of external magnetic field and the role of type and strength of exchange interaction between the LUMO level and the molecule’s spin are also considered. When the exchange coupling is ferromagnetic, we find an enhanced TMR, while in the case of antiferromagnetic coupling we predict a large negative TMR effect.

  10. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking.

    PubMed

    Muhonen, J T; Laucht, A; Simmons, S; Dehollain, J P; Kalra, R; Hudson, F E; Freer, S; Itoh, K M; Jamieson, D N; McCallum, J C; Dzurak, A S; Morello, A

    2015-04-22

    Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit.

  11. Measuring small compartment dimensions by probing diffusion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR.

    PubMed

    Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio

    2013-12-01

    Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Addressable single-spin control in multiple quantum dots coupled in series

    NASA Astrophysics Data System (ADS)

    Nakajima, Takashi

    2015-03-01

    Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.

  13. Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses.

    PubMed

    Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Pfeuffer, Josef; Attenberger, Ulrike I; Schoenberg, Stefan O; Haneder, Stefan

    2014-01-01

    Implementation of DWI in the abdomen is challenging due to artifacts, particularly those arising from differences in tissue susceptibility. Two-dimensional, spatially-selective radiofrequency (RF) excitation pulses for single-shot echo-planar imaging (EPI) combined with a reduction in the FOV in the phase-encoding direction (i.e. zooming) leads to a decreased number of k-space acquisition lines, significantly shortening the EPI echo train and potentially susceptibility artifacts. To assess the feasibility and image quality of a zoomed diffusion-weighted EPI (z-EPI) sequence in MR imaging of the pancreas. The approach is compared to conventional single-shot EPI (c-EPI). 23 patients who had undergone an MRI study of the abdomen were included in this retrospective study. Examinations were performed on a 3T whole-body MR system (Magnetom Skyra, Siemens) equipped with a two-channel fully dynamic parallel transmit array (TimTX TrueShape, Siemens). The acquired sequences consisted of a conventional EPI DWI of the abdomen and a zoomed EPI DWI of the pancreas. For z-EPI, the standard sinc excitation was replaced with a two-dimensional spatially-selective RF pulse using an echo-planar transmit trajectory. Images were evaluated with regard to image blur, respiratory motion artifacts, diagnostic confidence, delineation of the pancreas, and overall scan preference. Additionally ADC values of the pancreatic head, body, and tail were calculated and compared between sequences. The pancreas was better delineated in every case (23/23) with z-EPI versus c-EPI. In every case (23/23), both readers preferred z-EPI overall to c-EPI. With z-EPI there was statistically significantly less image blur (p<0.0001) and respiratory motion artifact compared to c-EPI (p<0.0001). Diagnostic confidence was statistically significantly better with z-EPI (p<0.0001). No statistically significant differences in calculated ADC values were observed between the two sequences. Zoomed diffusion-weighted EPI leads to substantial image quality improvements with reduction of susceptibility artifacts in pancreatic DWI.

  14. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  15. Image domain propeller fast spin echo☆

    PubMed Central

    Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland

    2013-01-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683

  16. Image domain propeller fast spin echo.

    PubMed

    Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland

    2013-04-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A single dopant atom in silicon sees the light

    NASA Astrophysics Data System (ADS)

    Rogge, Sven

    2014-03-01

    Optical access to a single qubit is very attractive since it allows for readout with unprecedented high spectral resolution and long distance coupling. Substantial progress has been demonstrated for nitrogen-vacancy centers in diamond (Bernien, Nature, 2013). Optical access to qubits in silicon been an important goal but has to date only been achieved in the ensemble limit (Steger, Science, 2012). Here, we present the photoionization of an individual erbium dopant in silicon (Yin, Nature, 2013). A single-electron transistor is used as a single-shot charge detector to observe the resonant ionization of a single atom as a function of photon energy. This allows for optical addressing and electrical detection of individual erbium dopants with exceptionally narrow line width. The hyperfine coupling is clearly resolved which paves the way to single shot readout of the nuclear spin. This hybrid approach is a first step towards an optical interface to dopants in silicon. in collaboration with Chunming Yin, Milos Rancic, Gabriele G. de Boo, Nikolas Stavrias, Jeffrey C. McCallum, Matthew J. Sellars.

  18. Magnetic resonance imaging of placenta accreta

    PubMed Central

    Varghese, Binoj; Singh, Navdeep; George, Regi A.N; Gilvaz, Sareena

    2013-01-01

    Placenta accreta (PA) is a severe pregnancy complication which occurs when the chorionic villi (CV) invade the myometrium abnormally. Optimal management requires accurate prenatal diagnosis. Ultrasonography (USG) and magnetic resonance imaging (MRI) are the modalities for prenatal diagnosis of PA, although USG remains the primary investigation of choice. MRI is a complementary technique and reserved for further characterization when USG is inconclusive or incomplete. Breath-hold T2-weighted half-Fourier rapid acquisition with relaxation enhancement (RARE) and balanced steady-state free precession imaging in the three orthogonal planes is the key MRI technique. Markedly heterogeneous placenta, thick intraplacental dark bands on half-Fourier acquisition single-shot turbo spin-echo (HASTE), and disorganized abnormal intraplacental vascularity are the cardinal MRI features of PA. MRI is less reliable in differentiating between different degrees of placental invasion, especially between accreta vera and increta. PMID:24604945

  19. In-plane "superresolution" MRI with phaseless sub-pixel encoding.

    PubMed

    Hennel, Franciszek; Tian, Rui; Engel, Maria; Pruessmann, Klaas P

    2018-04-15

    Acquisition of high-resolution imaging data using multiple excitations without the sensitivity to fluctuations of the transverse magnetization phase, which is a major problem of multi-shot MRI. The concept of superresolution MRI based on microscopic tagging is analyzed using an analogy with the optical method of structured illumination. Sinusoidal tagging is shown to provide subpixel resolution by mixing of neighboring spatial frequency (k-space) bands. It represents a phaseless modulation added on top of the standard Fourier encoding, which allows the phase fluctuations to be discarded at an intermediate reconstruction step. Improvements are proposed to correct for tag distortions due to magnetic field inhomogeneity and to avoid the propagation of Gibbs ringing from intermediate low-resolution images to the final image. The method was applied to diffusion-weighted EPI. Artifact-free superresolution images can be obtained despite a finite duration of the tagging sequence and related pattern distortions by a field map based phase correction of band-wise reconstructed images. The ringing effect present in the intermediate images can be suppressed by partial overlapping of the mixed k-space bands in combination with an adapted filter. High-resolution diffusion-weighted images of the human head were obtained with a three-shot EPI sequence despite motion-related phase fluctuations between the shots. Due to its phaseless character, tagging-based sub-pixel encoding is an alternative to k-space segmenting in the presence of unknown phase fluctuations, in particular those due to motion under strong diffusion gradients. Proposed improvements render the method practicable in realistic conditions. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Multi-Shot Sensitivity-Encoded Diffusion Data Recovery Using Structured Low-Rank Matrix Completion (MUSSELS)

    PubMed Central

    Mani, Merry; Jacob, Mathews; Kelley, Douglas; Magnotta, Vincent

    2017-01-01

    Purpose To introduce a novel method for the recovery of multi-shot diffusion weighted (MS-DW) images from echo-planar imaging (EPI) acquisitions. Methods Current EPI-based MS-DW reconstruction methods rely on the explicit estimation of the motion-induced phase maps to recover artifact-free images. In the new formulation, the k-space data of the artifact-free DWI is recovered using a structured low-rank matrix completion scheme, which does not require explicit estimation of the phase maps. The structured matrix is obtained as the lifting of the multi-shot data. The smooth phase-modulations between shots manifest as null-space vectors of this matrix, which implies that the structured matrix is low-rank. The missing entries of the structured matrix are filled in using a nuclear-norm minimization algorithm subject to the data-consistency. The formulation enables the natural introduction of smoothness regularization, thus enabling implicit motion-compensated recovery of the MS-DW data. Results Our experiments on in-vivo data show effective removal of artifacts arising from inter-shot motion using the proposed method. The method is shown to achieve better reconstruction than the conventional phase-based methods. Conclusion We demonstrate the utility of the proposed method to effectively recover artifact-free images from Cartesian fully/under-sampled and partial Fourier acquired data without the use of explicit phase estimates. PMID:27550212

  1. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  2. Effect of diffusion time on liver DWI: an experimental study of normal and fibrotic livers.

    PubMed

    Zhou, Iris Y; Gao, Darwin S; Chow, April M; Fan, Shujuan; Cheung, Matthew M; Ling, Changchun; Liu, Xiaobing; Cao, Peng; Guo, Hua; Man, Kwan; Wu, Ed X

    2014-11-01

    To investigate whether diffusion time (Δ) affects the diffusion measurements in liver and their sensitivity in detecting fibrosis. Liver fibrosis was induced in Sprague-Dawley rats (n = 12) by carbon tetrachloride (CCl(4)) injections. Diffusion-weighted MRI was performed longitudinally during 8-week CCl(4) administration at 7 Tesla (T) using single-shot stimulated-echo EPI with five b-values (0 to 1000 s/mm(2)) and three Δs. Apparent diffusion coefficient (ADC) and true diffusion coefficient (D(true)) were calculated by using all five b-values and large b-values, respectively. ADC and D(true) decreased with Δ for both normal and fibrotic liver at each time point. ADC and D(true) also generally decreased with the time after CCl(4) insult. The reductions in D(true) between 2-week and 4-week CCl(4) insult were larger than the ADC reductions at all Δs. At each time point, D(true) measured with long Δ (200 ms) detected the largest changes among the 3 Δs examined. Histology revealed gradual collagen deposition and presence of intracellular fat vacuoles after CCl(4) insult. Our results demonstrated the Δ dependent diffusion measurements, indicating restricted diffusion in both normal and fibrotic liver. D(true) measured with long Δ acted as a more sensitive index of the pathological alterations in liver microstructure during fibrogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  3. Motion immune diffusion imaging using augmented MUSE (AMUSE) for high-resolution multi-shot EPI

    PubMed Central

    Guhaniyogi, Shayan; Chu, Mei-Lan; Chang, Hing-Chiu; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    Purpose To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multi-shot EPI. Theory The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative DTI measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. Methods MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. Results AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. Conclusion The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging. PMID:25762216

  4. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    PubMed Central

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P < 0.01), and ADC values were in excellent agreement with DWI (0.28 ± 0.4%). In volunteers, myocardial T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P < 0.01); myocardial ADC was not significantly (N.S.) different between T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P < 0.01; ADC: 1.47 ± 0.59 vs 1.65 ± 0.65 mm2/ms; P < 0.01). Conclusion T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  5. Lead shot toxicity to passerines

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Heinz, G.H.

    2001-01-01

    This study evaluated the toxicity of a single size 7.5 lead shot to passerines. No mortalities or signs of plumbism were observed in dosed cowbirds (Molothrus ater) fed a commercial diet, but when given a more natural diet, three of 10 dosed birds died within 1 day. For all survivors from which shot were recovered, all but one excreted the shot within 24 h of dosing, whereas, the dead birds retained their shot. Shot erosion was significantly greater (P < 0.05) when weathered shot were ingested compared to new shot, and the greatest erosion was observed in those birds that died (2.2-9.7%). Blood lead concentrations of birds dosed with new shot were not significantly different (P=0.14) from those of birds exposed to weathered shot. Liver lead concentrations of birds that died ranged from 71 to 137 ppm, dry weight. Despite the short amount of time the shot was retained, songbirds may absorb sufficient lead to compromise their survival.

  6. Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure

    PubMed Central

    Chang, Hing-Chiu; Chen, Nan-kuei

    2016-01-01

    Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342

  7. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  8. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach

    PubMed Central

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-01-01

    Objective This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Materials and methods Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Results Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. Conclusions The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts. PMID:23630654

  9. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.

    PubMed

    Bushev, P; Hétet, G; Slodička, L; Rotter, D; Wilson, M A; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2013-03-29

    We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

  10. High-resolution diffusion and relaxation-edited magic angle spinning 1H NMR spectroscopy of intact liver tissue.

    PubMed

    Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L

    2003-11-01

    High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.

  11. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.

  12. Reduction of Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times.

    PubMed

    Baron, Corey Allan; Kate, Mahesh; Gioia, Laura; Butcher, Kenneth; Emery, Derek; Budde, Matthew; Beaulieu, Christian

    2015-08-01

    Diffusion-weighted imaging (DWI) of tissue water is a sensitive and specific indicator of acute brain ischemia, where reductions of the diffusion of tissue water are observed acutely in the stroke lesion core. Although these diffusion changes have been long attributed to cell swelling, the precise nature of the biophysical mechanisms remains uncertain. The potential cause of diffusion reductions after stroke was investigated using an advanced DWI technique, oscillating gradient spin-echo DWI, that enables much shorter diffusion times and can improve specificity for alterations of structure at the micron level. Diffusion measurements in the white matter lesions of patients with acute ischemic stroke were reduced by only 8% using oscillating gradient spin-echo DWI, in contrast to a 37% decrease using standard DWI. Neurite beading has recently been proposed as a mechanism for the diffusion changes after ischemic stroke with some ex vivo evidence. To explore whether beading could cause such differential results, simulations of beaded cylinders and axonal swelling were performed, yielding good agreement with experiment. Short diffusion times result in dramatically reduced diffusion contrast of human stroke. Simulations implicate a combination of neuronal beading and axonal swelling as the key structural changes leading to the reduced apparent diffusion coefficient after stroke. © 2015 American Heart Association, Inc.

  13. Two-dimensional imaging of molecular hydrogen in H2-air diffusion flames using two-photon laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.

    1991-01-01

    The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.

  14. Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study.

    PubMed

    van den Bos, Indra C; Hussain, Shahid M; Krestin, Gabriel P; Wielopolski, Piotr A

    2008-07-01

    Institutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced black-blood echo-planar imaging (BBEPI) as a potential alternative for specific absorption rate (SAR)-intensive spin-echo sequences, in particular, the fast spin-echo (FSE) sequences, at 3.0 T. Fourteen healthy volunteers (seven men, seven women; mean age +/- standard deviation, 32.7 years +/- 6.8) were imaged for this purpose. Liver coverage (20 cm, z-axis) was always performed in one 25-second breath hold. Imaging parameters were varied interactively with regard to echo time, diffusion b value, and voxel size. Images were evaluated and compared with fat-suppressed T2-weighted FSE images for image quality, liver delineation, geometric distortions, fat suppression, suppression of the blood signal, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). An optimized short- (25 msec) and long-echo (80 msec) BBEPI provided full anatomic, single breath-hold liver coverage (100 and 50 sections, respectively), with resulting voxel sizes of 3.3 x 2.7 x 2.0 mm and 3.3 x 2.7 x 4.0 mm, respectively. Repetition time was 6300 msec, matrix size was 160 x 192, and an acceleration factor of 2.00 was used. b Values of more than 20 sec/mm(2) showed better suppression of the blood signal but b values of 10 sec/mm(2) provided improved volume coverage and signal consistency. Compared with fat-suppressed T2-weighted FSE, the optimized BBEPI sequence provided (a) comparable image quality and liver delineation, (b) acceptable geometric distortions, (c) improved suppression of fat and blood signals, and (d) high CNR and SNR. BBEPI is feasible for fast, low-SAR, thin-section morphologic imaging of the entire liver in a single breath hold at 3.0 T. (c) RSNA, 2008.

  15. Entanglement-Enhanced Phase Estimation without Prior Phase Information

    NASA Astrophysics Data System (ADS)

    Colangelo, G.; Martin Ciurana, F.; Puentes, G.; Mitchell, M. W.; Sewell, R. J.

    2017-06-01

    We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb 87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage.

  16. Reduced field-of-view imaging for single-shot MRI with an amplitude-modulated chirp pulse excitation and Fourier transform reconstruction.

    PubMed

    Li, Jing; Zhang, Miao; Chen, Lin; Cai, Congbo; Sun, Huijun; Cai, Shuhui

    2015-06-01

    We employ an amplitude-modulated chirp pulse to selectively excite spins in one or more regions of interest (ROIs) to realize reduced field-of-view (rFOV) imaging based on single-shot spatiotemporally encoded (SPEN) sequence and Fourier transform reconstruction. The proposed rFOV imaging method was theoretically analyzed and illustrated with numerical simulation and tested with phantom experiments and in vivo rat experiments. In addition, point spread function was applied to demonstrate the feasibility of the proposed method. To evaluate the proposed method, the rFOV results were compared with those obtained using the EPI method with orthogonal RF excitation. The simulation and experimental results show that the proposed method can image one or two separated ROIs along the SPEN dimension in a single shot with higher spatial resolution, less sensitive to field inhomogeneity, and practically no aliasing artifacts. In addition, the proposed method may produce rFOV images with comparable signal-to-noise ratio to the rFOV EPI images. The proposed method is promising for the applications under severe susceptibility heterogeneities and for imaging separate ROIs simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Optical implementation of spin squeezing

    NASA Astrophysics Data System (ADS)

    Ono, Takafumi; Sabines-Chesterking, Javier; Cable, Hugo; O'Brien, Jeremy L.; Matthews, Jonathan C. F.

    2017-05-01

    Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate a model of optical spin-squeezing, which uses post-selection and photon subtraction from the state generated using a parametric downconversion photon source, and we investigate the phase sensitivity of this model. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise value for five-photon events, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.

  18. Measurement of shot noise in magnetic tunnel junction and its utilization for accurate system calibration

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Kubota, H.; Yakushiji, K.; Fukushima, A.; Yuasa, S.

    2017-11-01

    This work presents a technique to calibrate the spin torque oscillator (STO) measurement system by utilizing the whiteness of shot noise. The raw shot noise spectrum in a magnetic tunnel junction based STO in the microwave frequency range is obtained by first subtracting the baseline noise, and then excluding the field dependent mag-noise components reflecting the thermally excited spin wave resonances. As the shot noise is guaranteed to be completely white, the total gain of the signal path should be proportional to the shot noise spectrum obtained by the above procedure, which allows for an accurate gain calibration of the system and a quantitative determination of each noise power. The power spectral density of the shot noise as a function of bias voltage obtained by this technique was compared with a theoretical calculation, which showed excellent agreement when the Fano factor was assumed to be 0.99.

  19. Diffusion measurements in the ischemic human brain with a steady-state sequence.

    PubMed

    Brüning, R; Wu, R H; Deimling, M; Porn, U; Haberl, R L; Reiser, M

    1996-11-01

    The authors evaluate the clinical usefulness of a diffusion-weighted steady-state free-precession (SSFP) sequence to detect acute and subacute ischemic changes. Twenty-four patients were examined on a 1.5-tesla scanner, using a SSFP-sequence (repetition time [TR]/ echo time [TE] = 22/3-8 mseconds). The slice thickness was 5 mm, 10 averages, 57 seconds per slice. The diffusion gradient strength was 23 millitesla/m, with b-values from 165 to 598 seconds/mm2. Diffusion-weighted images (DWI) were compared with T2-weighted images. The diffusion-weighted SSFP sequence produced diagnostic quality images in 23 of 24 patients. Diffusion depicted (group 1: 0-12 hours) more acute lesions (3 of 6) than T2-weighted images (2 of 6); the mean lesion diameter depicted by diffusion was 10.9 mm (standard deviation [SD], 12.3) and in T2-weighted images was 4.7 mm (SD 6.8). A significant correlation (P < 0.017) in subacute lesions was found when diffusion was compared with turbo spin echo (mean size difference/T2 = 18.5/17.5 mm, SD 13.2/12.2). The diffusion-weighted SSFP-sequence is more sensitive in acute ischemia and delineates likewise in subacute ischemia, when compared with T2-weighted imaging.

  20. Free-breathing diffusion-weighted single-shot echo-planar MR imaging using parallel imaging (GRAPPA 2) and high b value for the detection of primary rectal adenocarcinoma.

    PubMed

    Soyer, Philippe; Lagadec, Matthieu; Sirol, Marc; Dray, Xavier; Duchat, Florent; Vignaud, Alexandre; Fargeaudou, Yann; Placé, Vinciane; Gault, Valérie; Hamzi, Lounis; Pocard, Marc; Boudiaf, Mourad

    2010-02-11

    Our objective was to determine the diagnostic accuracy of a free-breathing diffusion-weighted single-shot echo-planar magnetic resonance imaging (FBDW-SSEPI) technique with parallel imaging and high diffusion factor value (b = 1000 s/mm2) in the detection of primary rectal adenocarcinomas. Thirty-one patients (14M and 17F; mean age 67 years) with histopathologically proven primary rectal adenocarcinomas and 31 patients without rectal malignancies (14M and 17F; mean age 63.6 years) were examined with FBDW-SSEPI (repetition time (TR/echo time (TE) 3900/91 ms, gradient strength 45 mT/m, acquisition time 2 min) at 1.5 T using generalized autocalibrating partially parallel acquisitions (GRAPPA, acceleration factor 2) and a b value of 1000 s/mm2. Apparent diffusion coefficients (ADCs) of rectal adenocarcinomas and normal rectal wall were measured. FBDW-SSEPI images were evaluated for tumour detection by 2 readers. Sensitivity, specificity, accuracy and Youden score for rectal adenocarcinoma detection were calculated with their 95% confidence intervals (CI) for ADC value measurement and visual image analysis. Rectal adenocarcinomas had significantly lower ADCs (mean 1.036 x 10(-3)+/- 0.107 x 10(-3) mm2/s; median 1.015 x 10(-3) mm2/s; range (0.827-1.239) x 10(-3) mm2/s) compared with the rectal wall of control subjects (mean 1.387 x 10(-3)+/- 0.106 x 10(-3) mm2/s; median 1.385 x 10(-3) mm2/s; range (1.176-1.612) x 10(-3) mm2/s) (p < 0.0001). Using a threshold value < or = 1.240 x 10(-3) mm2/s, all rectal adenocarcinomas were correctly categorized and 100% sensitivity (31/31; 95% CI 95-100%), 94% specificity (31/33; 95% CI 88-100%), 97% accuracy (60/62; 95% CI 92-100%) and Youden index 0.94 were obtained for the diagnosis of rectal adenocarcinoma. FBDW-SSEPI image analysis allowed depiction of all rectal adenocarcinomas but resulted in 2 false-positive findings, yielding 100% sensitivity (31/31; 95% CI 95-100%), 94% specificity (31/33; 95% CI 88-100%), 97% accuracy (60/62; 95% CI 92-100%) and Youden index 0.94 for the diagnosis of primary rectal adenocarcinoma. We can conclude that FBDW-SSEPI using parallel imaging and high b value may be helpful in the detection of primary rectal adenocarcinomas.

  1. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, M. K.; Velpula, P. K.; Colombier, J. P.

    2014-01-13

    We report single-shot, high aspect ratio nanovoid fabrication in bulk fused silica using zeroth order chirp-controlled ultrafast laser Bessel beams. We identify a unique laser pulse length and energy dependence of the physical characteristics of machined structures over which nanovoids of diameter in the range 200–400 nm and aspect ratios exceeding 1000 can be fabricated. A mechanism based on the axial energy deposition of nonlinear ultrashort Bessel beams and subsequent material densification or rarefaction in fused silica is proposed, intricating the non-diffractive nature with the diffusing character of laser-generated free carriers. Fluid flow through nanochannel is also demonstrated.

  2. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.

    PubMed

    Kawakami, E; Scarlino, P; Ward, D R; Braakman, F R; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2014-09-01

    Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.

  3. Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments†

    PubMed Central

    Nir, Eyal; Michalet, Xavier; Hamadani, Kambiz M.; Laurence, Ted A.; Neuhauser, Daniel; Kovchegov, Yevgeniy; Weiss, Shimon

    2011-01-01

    We describe a simple approach and present a straightforward numerical algorithm to compute the best fit shot-noise limited proximity ratio histogram (PRH) in single-molecule fluorescence resonant energy transfer diffusion experiments. The key ingredient is the use of the experimental burst size distribution, as obtained after burst search through the photon data streams. We show how the use of an alternated laser excitation scheme and a correspondingly optimized burst search algorithm eliminates several potential artifacts affecting the calculation of the best fit shot-noise limited PRH. This algorithm is tested extensively on simulations and simple experimental systems. We find that dsDNA data exhibit a wider PRH than expected from shot noise only and hypothetically account for it by assuming a small Gaussian distribution of distances with an average standard deviation of 1.6 Å. Finally, we briefly mention the results of a future publication and illustrate them with a simple two-state model system (DNA hairpin), for which the kinetic transition rates between the open and closed conformations are extracted. PMID:17078646

  4. Liquid-state nuclear spin comagnetometers.

    PubMed

    Ledbetter, M P; Pustelny, S; Budker, D; Romalis, M V; Blanchard, J W; Pines, A

    2012-06-15

    We discuss nuclear spin comagnetometers based on ultralow-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and 19F nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about 5×10(-9)  Hz, or about 5×10(-11)  Hz in ≈1 day of integration. In a second version, spin precession of protons and 129Xe nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes is discussed.

  5. Self-diffusion imaging by spin echo in Earth's magnetic field.

    PubMed

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  6. Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport.

    PubMed

    Kamra, Akashdeep; Belzig, Wolfgang

    2016-04-08

    The magnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent conductor (N). Such F|N bilayers have become basic building blocks in a wide variety of spin-based devices. We evaluate the shot noise of the spin current traversing the F|N interface when F is subjected to a coherent microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency, and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin transfer, which results from quasiparticles with effective spin ℏ^{*}=ℏ(1+δ). For typical ferromagnetic thin films, δ∼1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.

  7. Longitudinal diffusion MRI for treatment response assessment: Preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system.

    PubMed

    Yang, Yingli; Cao, Minsong; Sheng, Ke; Gao, Yu; Chen, Allen; Kamrava, Mitch; Lee, Percy; Agazaryan, Nzhde; Lamb, James; Thomas, David; Low, Daniel; Hu, Peng

    2016-03-01

    To demonstrate the preliminary feasibility of a longitudinal diffusion magnetic resonance imaging (MRI) strategy for assessing patient response to radiotherapy at 0.35 T using an MRI-guided radiotherapy system (ViewRay). Six patients (three head and neck cancer, three sarcoma) who underwent fractionated radiotherapy were enrolled in this study. A 2D multislice spin echo single-shot echo planar imaging diffusion pulse sequence was implemented on the ViewRay system and tested in phantom studies. The same pulse sequence was used to acquire longitudinal diffusion data (every 2-5 fractions) on the six patients throughout the entire course of radiotherapy. The reproducibility of the apparent diffusion coefficient (ADC) measurements was assessed using reference regions and the temporal variations of the tumor ADC values were evaluated. In diffusion phantom studies, the ADC values measured on the ViewRay system matched well with reference ADC values with <5% error for a range of ground truth diffusion coefficients of 0.4-1.1 × 10(-3) mm(2)/s. The remote reference regions (i.e., brainstem in head and neck patients) had consistent ADC values throughout the therapy for all three head and neck patients, indicating acceptable reproducibility of the diffusion imaging sequence. The tumor ADC values changed throughout therapy, with the change differing between patients, ranging from a 40% drop in ADC within the first week of therapy to gradually increasing throughout therapy. For larger tumors, intratumoral heterogeneity was observed. For one sarcoma patient, postradiotherapy biopsy showed less than 10% necrosis score, which correlated with the observed 40% decrease in ADC from the fifth fraction to the eighth treatment fraction. This pilot study demonstrated that longitudinal diffusion MRI is feasible using the 0.35 T ViewRay MRI. Larger patient cohort studies are warranted to correlate the longitudinal diffusion measurements to patient outcomes. Such an approach may enable response-guided adaptive radiotherapy.

  8. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    PubMed

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  9. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Paul B; Wang, Tuo; Park, Yong Bum

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarizationmore » transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.« less

  10. Single-Shot Rotational Raman Thermometry for Turbulent Flames Using a Low-Resolution Bandwidth Technique

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2007-01-01

    An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.

  11. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  12. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  13. SCALAR MULTI-PASS ATOMIC MAGNETOMETER

    DTIC Science & Technology

    2017-08-01

    primarily by atomic shot noise. Furthermore, the spectrum of quantum spin noise provides information on the time correlation between the spins and...the resulting light to be shot -noise-limited both with and without the polarizer in place. Newer Vixar VCSELs with internal gratings on output...described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320

  14. Coherent spin-exchange via a quantum mediator.

    PubMed

    Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad

    2017-01-01

    Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.

  15. A potential risk of overestimating apparent diffusion coefficient in parotid glands.

    PubMed

    Liu, Yi-Jui; Lee, Yi-Hsiung; Chang, Hing-Chiu; Huang, Teng-Yi; Chiu, Hui-Chu; Wang, Chih-Wei; Chiou, Ta-Wei; Hsu, Kang; Juan, Chun-Jung; Huang, Guo-Shu; Hsu, Hsian-He

    2015-01-01

    To investigate transient signal loss on diffusion weighted images (DWI) and overestimation of apparent diffusion coefficient (ADC) in parotid glands using single shot echoplanar DWI (EPDWI). This study enrolled 6 healthy subjects and 7 patients receiving radiotherapy. All participants received dynamic EPDWI with a total of 8 repetitions. Imaging quality of DWI was evaluated. Probability of severe overestimation of ADC (soADC), defined by an ADC ratio more than 1.2, was calculated. Error on T2WI, DWI, and ADC was computed. Statistical analysis included paired Student t testing and Mann-Whitney U test. A P value less than 0.05 was considered statistically significant. Transient signal loss was visually detected on some excitations of DWI but not on T2WI or mean DWI. soADC occurred randomly among 8 excitations and 3 directions of diffusion encoding gradients. Probability of soADC was significantly higher in radiotherapy group (42.86%) than in healthy group (24.39%). The mean error percentage decreased as the number of excitations increased on all images, and, it was smallest on T2WI, followed by DWI and ADC in an increasing order. Transient signal loss on DWI was successfully detected by dynamic EPDWI. The signal loss on DWI and overestimation of ADC could be partially remedied by increasing the number of excitations.

  16. Characterization of DTI Indices in the Cervical, Thoracic, and Lumbar Spinal Cord in Healthy Humans

    PubMed Central

    Bosma, Rachael L.; Stroman, Patrick W.

    2012-01-01

    The aim of this study was to characterize in vivo measurements of diffusion along the length of the entire healthy spinal cord and to compare DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), between cord regions. The objective is to determine whether or not there are significant differences in DTI indices along the cord that must be considered for future applications of characterizing the effects of injury or disease. A cardiac gated, single-shot EPI sequence was used to acquire diffusion-weighted images of the cervical, thoracic, and lumbar regions of the spinal cord in nine neurologically intact subjects (19 to 22 years). For each cord section, FA versus MD values were plotted, and a k-means clustering method was applied to partition the data according to tissue properties. FA and MD values from both white matter (average FA = 0.69, average MD = 0.93 × 10−3 mm2/s) and grey matter (average FA = 0.44, average MD = 1.8 × 10−3 mm2/s) were relatively consistent along the length of the cord. PMID:22295179

  17. Age-related differences in the rhythmic structure of the golf swing.

    PubMed

    Kim, Tae Hoon; Jagacinski, Richard J; Lavender, Steven A

    2011-01-01

    Participants were 20 younger golfers (M age=19.8 years, SD=1.84 years) and 20 older golfers (M age=63.0 years, SD=2.55 years) who attempted 40- and 80-yard eight-iron shots requiring an adjustment of their force and timing. No age-related differences were found in the tempo or speed of the shot; however, there were differences in the rhythmic relationship between the clubhead force and the weight shift. Whereas younger golfers primarily exhibited a 3 versus 2 polyrhythmic pattern between the peak forces of the clubhead and weight shift, older golfers primarily exhibited a simpler 3 versus 3 rhythmic force pattern by adding a forward weight shift at the beginning of the shot. Additionally, older golfers exhibited less independence between the timing of the clubhead force and weight shift, which indicated greater use of a single integrated coordinative unit rather than 2 units. These findings are interpreted as compensations for age-related slowing and increased temporal variability that help to preserve tempo at a speed comparable to younger adults.

  18. Water and lipid diffusion MRI using chemical shift displacement-based separation of lipid tissue (SPLIT).

    PubMed

    Ohno, Naoki; Kan, Hirohito; Miyati, Tosiaki; Aoki, Toshitaka; Ishida, Shota; Gabata, Toshifumi

    2017-06-01

    To obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging. Single-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA. Water and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56±0.03mm 2 /s, 0.01±0.01mm 2 /s, and 0.06±0.02mm 2 /s, respectively. The mean D*, D, and F of the TA were 13.7±4.3mm 2 /s, 1.48±0.05mm 2 /s, and 4.3±1.6%, respectively. SPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue. Copyright © 2017. Published by Elsevier Inc.

  19. Interleaved diffusion-weighted EPI improved by adaptive partial-Fourier and multi-band multiplexed sensitivity-encoding reconstruction

    PubMed Central

    Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei

    2014-01-01

    Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000

  20. Reduced Field of View Diffusion-Weighted Imaging in the Evaluation of Congenital Spine Malformations.

    PubMed

    Radhakrishnan, Rupa; Betts, Aaron M; Care, Marguerite M; Serai, Suraj; Zhang, Bin; Jones, Blaise V

    2016-05-01

    Reduced field of view diffusion-weighted imaging (rFOV DWI) is a more recently described technique in the evaluation of spine pathology. In adults, this technique has been shown to increase clinician confidence in identification of diffusion restricting lesions. In this study, we evaluate the image quality and diagnostic confidence of the rFOV DWI technique in pediatric spine MRI. We included patients with MRI of the lumbar spine for suspected congenital abnormalities who had conventional SS-EPI (single shot echo planar imaging) with full field of view (fFOV) and rFOV DWI performed. Images were graded for image quality and observer confidence for detection of lesions with reduced diffusion. Position of the conus and L3 vertebral body measurements were recorded. Comparisons were made between the fFOV and rFOV scores. Fifty children (30 girls, 20 boys) were included (median 3.6 years). Compared to the fFOV images, the rFOV images scored higher in image quality (P < 0.0001) and for confidence in detecting lesions with reduced diffusion (P < 0.0001). The average spread of identified conus position was smaller for in rFOV compared to fFOV (P = 0.0042). There was no significant difference in the L3 vertebral body measurements between the two methods. In rFOV, the anterior aspects of the vertebral bodies were excluded in a few studies due to narrow FOV. rFOV DWI of the lumbar spine in the pediatric population has qualitatively improved image quality and observer confidence for lesion detection when compared to conventional fFOV SS-EPI DWI. Copyright © 2015 by the American Society of Neuroimaging.

  1. Multi-second magnetic coherence in a single domain spinor Bose–Einstein condensate

    NASA Astrophysics Data System (ADS)

    Palacios, Silvana; Coop, Simon; Gomez, Pau; Vanderbruggen, Thomas; Natali Martinez de Escobar, Y.; Jasperse, Martijn; Mitchell, Morgan W.

    2018-05-01

    We describe a compact, robust and versatile system for studying the macroscopic spin dynamics in a spinor Bose–Einstein condensate. Condensates of {}87{Rb} are produced by all-optical evaporation in a 1560 nm optical dipole trap, using a non-standard loading sequence that employs an ancillary 1529 nm beam for partial compensation of the strong differential light-shift induced by the dipole trap itself. We use near-resonant Faraday rotation probing to non-destructively track the condensate magnetization, and demonstrate few-Larmor-cycle tracking with no detectable degradation of the spin polarization. In the ferromagnetic F = 1 ground state, we observe the spin orientation between atoms in the condensate is preserved, such that they precess all together like one large spin in the presence of a magnetic field. We characterize this dynamics in terms of the single-shot magnetic coherence times {{ \\mathcal T }}1 and {{ \\mathcal T }}2* , and observe them to be of several seconds, limited only by the residence time of the atoms in the trap. At the densities used, this residence is restricted only by one-body losses set by the vacuum conditions.

  2. Localized high-resolution DTI of the human midbrain using single-shot EPI, parallel imaging, and outer-volume suppression at 7 T

    PubMed Central

    Wargo, Christopher J.; Gore, John C.

    2013-01-01

    Localized high-resolution diffusion tensor images (DTI) from the midbrain were obtained using reduced field-of-view (rFOV) methods combined with SENSE parallel imaging and single-shot echo planar (EPI) acquisitions at 7 T. This combination aimed to diminish sensitivities of DTI to motion, susceptibility variations, and EPI artifacts at ultra-high field. Outer-volume suppression (OVS) was applied in DTI acquisitions at 2- and 1-mm2 resolutions, b=1000 s/mm2, and six diffusion directions, resulting in scans of 7- and 14-min durations. Mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in various fiber tract locations at the two resolutions and compared. Geometric distortion and signal-to-noise ratio (SNR) were additionally measured and compared for reduced-FOV and full-FOV DTI scans. Up to an eight-fold data reduction was achieved using DTI-OVS with SENSE at 1 mm2, and geometric distortion was halved. The localization of fiber tracts was improved, enabling targeted FA and ADC measurements. Significant differences in diffusion properties were observed between resolutions for a number of regions suggesting that FA values are impacted by partial volume effects even at a 2-mm2 resolution. The combined SENSE DTI-OVS approach allows large reductions in DTI data acquisition and provides improved quality for high-resolution diffusion studies of the human brain. PMID:23541390

  3. Improvement of Reliability of Diffusion Tensor Metrics in Thigh Skeletal Muscles.

    PubMed

    Keller, Sarah; Chhabra, Avneesh; Ahmed, Shaheen; Kim, Anne C; Chia, Jonathan M; Yamamura, Jin; Wang, Zhiyue J

    2018-05-01

    Quantitative diffusion tensor imaging (DTI) of skeletal muscles is challenging due to the bias in DTI metrics, such as fractional anisotropy (FA) and mean diffusivity (MD), related to insufficient signal-to-noise ratio (SNR). This study compares the bias of DTI metrics in skeletal muscles via pixel-based and region-of-interest (ROI)-based analysis. DTI of the thigh muscles was conducted on a 3.0-T system in N = 11 volunteers using a fat-suppressed single-shot spin-echo echo planar imaging (SS SE-EPI) sequence with eight repetitions (number of signal averages (NSA) = 4 or 8 for each repeat). The SNR was calculated for different NSAs and estimated for the composite images combining all data (effective NSA = 48) as standard reference. The bias of MD and FA derived by pixel-based and ROI-based quantification were compared at different NSAs. An "intra-ROI diffusion direction dispersion angle (IRDDDA)" was calculated to assess the uniformity of diffusion within the ROI. Using our standard reference image with NSA = 48, the ROI-based and pixel-based measurements agreed for FA and MD. Larger disagreements were observed for the pixel-based quantification at NSA = 4. MD was less sensitive than FA to the noise level. The IRDDDA decreased with higher NSA. At NSA = 4, ROI-based FA showed a lower average bias (0.9% vs. 37.4%) and narrower 95% limits of agreement compared to the pixel-based method. The ROI-based estimation of FA is less prone to bias than the pixel-based estimations when SNR is low. The IRDDDA can be applied as a quantitative quality measure to assess reliability of ROI-based DTI metrics. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Magnetic resonance cholangiopancreatography: value of using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence.

    PubMed

    Ho, J T; Yap, C K

    1999-05-01

    The purpose of this study was to evaluate the accuracy of magnetic resonance cholangiopancreatography (MRCP) for visualisation and diagnosis of pancreatico-biliary diseases. Our results of 35 case studies, correlating with results from endoscopic, percutaneous cholangiopancreatography or laparotomy, showed that MRCP performed using the half-Fourier acquisition single-shot turbo spin echo (HASTE) sequences was fast and accurate for depiction of the biliary and pancreatic system, with a diagnostic value comparable to that of direct cholangiography. The presence of biliary obstruction was accurately diagnosed in all but one patient. In hilar strictures, MR cholangiogram was able to depict the intrahepatic biliary tree proximal to the level of obstruction which was not readily displayed by endoscopic retrograde cholangiopancreatography (ERCP) (Figs. 1 & 2). This overview of the entire biliary system was found to be advantageous for preprocedural planning. However, the accuracy for stone detection was limited by the presence of aerobilia from previous sphincterotomy or biliary-enteric anastomosis. Ductal stones less than 3 mm in size within a non-dilated system may be missed due to inadequate spatial resolution. This occurred in a patient with pancreatic duct stones. It is hoped that the accuracy of HASTE magnetic resonance cholangiopancreatography in evaluation of pancreatico-biliary disease would obviate the need for diagnostic invasive cholangiography in selected patients.

  5. Diffusion-weighted magnetic resonance imaging for assessment of lung lesions: repeatability of the apparent diffusion coefficient measurement.

    PubMed

    Bernardin, L; Douglas, N H M; Collins, D J; Giles, S L; O'Flynn, E A M; Orton, M; deSouza, N M

    2014-02-01

    To establish repeatability of apparent diffusion coefficients (ADCs) acquired from free-breathing diffusion-weighted magnetic resonance imaging (DW-MRI) in malignant lung lesions and investigate effects of lesion size, location and respiratory motion. Thirty-six malignant lung lesions (eight patients) were examined twice (1- to 5-h interval) using T1-weighted, T2-weighted and axial single-shot echo-planar DW-MRI (b = 100, 500, 800 s/mm(2)) during free-breathing. Regions of interest around target lesions on computed b = 800 s/mm(2) images by two independent observers yielded ADC values from maps (pixel-by-pixel fitting using all b values and a mono-exponential decay model). Intra- and inter-observer repeatability was assessed per lesion, per patient and by lesion size (> or <2 cm) or location. ADCs were similar between observers (mean ± SD, 1.15 ± 0.28 × 10(-3) mm(2)/s, observer 1; 1.15 ± 0.29 × 10(-3) mm(2)/s, observer 2). Intra-observer coefficients of variation of the mean [median] ADC per lesion and per patient were 11% [11.4%], 5.7% [5.7%] for observer 1 and 9.2% [9.5%], 3.9% [4.7%] for observer 2 respectively; inter-observer values were 8.9% [9.3%] (per lesion) and 3.0% [3.7%] (per patient). Inter-observer coefficient of variation (CoV) was greater for lesions <2 cm (n = 20) compared with >2 cm (n = 16) (10.8% vs 6.5% ADCmean, 11.3% vs 6.7% ADCmedian) and for mid (n = 14) vs apical (n = 9) or lower zone (n = 13) lesions (13.9%, 2.7%, 3.8% respectively ADCmean; 14.2%, 2.8%, 4.7% respectively ADCmedian). Free-breathing DW-MRI of whole lung achieves good intra- and inter-observer repeatability of ADC measurements in malignant lung tumours. • Diffusion-weighted MRI of the lung can be satisfactorily acquired during free-breathing • DW-MRI demonstrates high contrast between primary and metastatic lesions and normal lung • Apparent diffusion coefficient (ADC) measurements in lung tumours are repeatable and reliable • ADC offers potential in assessing response in lung metastases in clinical trials.

  6. Heavily T2-weighted MR myelography in patients with spontaneous intracranial hypotension: a case-control study.

    PubMed

    Tsai, P-H; Fuh, J-L; Lirng, J-F; Wang, S-J

    2007-08-01

    We performed whole-spine heavily T2-weighted magnetic resonance (MR) myelography using a single-shot fast spin-echo pulse sequence in 17 patients (8 M/9 F) with spontaneous intracranial hypotension (SIH) to detect abnormal cerebrospinal fluid (CSF) collections. In addition, a group of age- and sex-matched controls were recruited. Follow-up MR myelography was also done at 3 weeks. MR myelography showed three kinds of abnormal CSF collections in 15 patients with SIH (88%): epidural fluid collection (n = 15, 88%), C1-2 extraspinal collections (n = 6, 35%) and CSF collections along nerve roots in the lower cervical or upper thoracic spines (n = 6, 35%). One patient (6%) showed a meningeal diverticulum. In contrast, none of the controls showed these findings. Overall, MR myelography results helped in early diagnosis of SIH in four (24%) patients whose initial brain MRIs failed to show typical SIH findings. Follow-up MR myelography results were compatible with the clinical changes with kappa statistics of 0.52 and an agreement rate of 76%. Our study showed heavily T2-weighted MR myelography provided a rapid, non-invasive and high yield method to diagnose and follow-up patients with SIH. Whether the CSF collections along the nerve roots represent the ongoing leakage sites warrants further study.

  7. Noninvasive Localization of Prostate Cancer via Diffusion Sensitive MRI

    DTIC Science & Technology

    2008-03-01

    sequence, Haker et al and Roebuck et al using a line-scan diffusion sequence, and Vigneron et al using a fast spin-echo diffusion sequence (33,35-37...Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CM. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted...36. Haker SJ, Szot Barnes A, Maier SE, Tempany CM, Mulkern RV. Diffusion Tensor Imaging for Prostate Cancer Detection: Preliminary Results from a

  8. Motion Artifact Reduction in Pediatric Diffusion Tensor Imaging Using Fast Prospective Correction

    PubMed Central

    Alhamud, A.; Taylor, Paul A.; Laughton, Barbara; van der Kouwe, André J.W.; Meintjes, Ernesta M.

    2014-01-01

    Purpose To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Materials and Methods Eighteen pediatric subjects (aged 5–6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1-weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. Results In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Conclusion Due to the heterogeneity of brain structures and the comparatively low resolution (~2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. PMID:24935904

  9. Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction.

    PubMed

    Alhamud, A; Taylor, Paul A; Laughton, Barbara; van der Kouwe, André J W; Meintjes, Ernesta M

    2015-05-01

    To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Eighteen pediatric subjects (aged 5-6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1 -weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Due to the heterogeneity of brain structures and the comparatively low resolution (∼2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. © 2014 Wiley Periodicals, Inc.

  10. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping.

    PubMed

    Hemphill, Ashton S; Shen, Yuecheng; Liu, Yan; Wang, Lihong V

    2017-11-27

    In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.

  11. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping

    NASA Astrophysics Data System (ADS)

    Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.

    2017-11-01

    In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.

  12. Partial Fourier techniques in single-shot cross-term spatiotemporal encoded MRI.

    PubMed

    Zhang, Zhiyong; Frydman, Lucio

    2018-03-01

    Cross-term spatiotemporal encoding (xSPEN) is a single-shot approach with exceptional immunity to field heterogeneities, the images of which faithfully deliver 2D spatial distributions without requiring a priori information or using postacquisition corrections. xSPEN, however, suffers from signal-to-noise ratio penalties due to its non-Fourier nature and due to diffusion losses-especially when seeking high resolution. This study explores partial Fourier transform approaches that, acting along either the readout or the spatiotemporally encoded dimensions, reduce these penalties. xSPEN uses an orthogonal (e.g., z) gradient to read, in direct space, the low-bandwidth (e.g., y) dimension. This substantially changes the nature of partial Fourier acquisitions vis-à-vis conventional imaging counterparts. A suitable theoretical analysis is derived to implement these procedures, along either the spatiotemporally or readout axes. Partial Fourier single-shot xSPEN images were recorded on preclinical and human scanners. Owing to their reduction in the experiments' acquisition times, this approach provided substantial sensitivity gains vis-à-vis previous implementations for a given targeted in-plane resolution. The physical origins of these gains are explained. Partial Fourier approaches, particularly when implemented along the low-bandwidth spatiotemporal dimension, provide several-fold sensitivity advantages at minimal costs to the execution and processing of the single-shot experiments. Magn Reson Med 79:1506-1514, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Non-flipping 13C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C510[NV]H252 cluster

    NASA Astrophysics Data System (ADS)

    Nizovtsev, A. P.; Kilin, S. Ya; Pushkarchuk, A. L.; Pushkarchuk, V. A.; Kuten, S. A.; Zhikol, O. A.; Schmitt, S.; Unden, T.; Jelezko, F.

    2018-02-01

    Single NV centers in diamond coupled by hyperfine interaction (hfi) to neighboring 13C nuclear spins are now widely used in emerging quantum technologies as elements of quantum memory adjusted to a nitrogen-vacancy (NV) center electron spin qubit. For nuclear spins with low flip-flop rate, single shot readout was demonstrated under ambient conditions. Here we report on a systematic search for such stable NV-13C systems using density functional theory to simulate the hfi and spatial characteristics of all possible NV-13C complexes in the H-terminated cluster C510[NV]-H252 hosting the NV center. Along with the expected stable ‘NV-axial-13C’ systems wherein the 13C nuclear spin is located on the NV axis, we found for the first time new families of positions for the 13C nuclear spin exhibiting negligible hfi-induced flipping rates due to near-symmetric local spin density distribution. Spatially, these positions are located in the diamond bilayer passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of available publications showed that, apparently, some of the predicted non-axial near-stable NV-13C systems have already been observed experimentally. A special experiment performed on one of these systems confirmed the prediction made.

  14. Numerical simulations of motion-insensitive diffusion imaging based on the distant dipolar field effects.

    PubMed

    Lin, Tao; Sun, Huijun; Chen, Zhong; You, Rongyi; Zhong, Jianhui

    2007-12-01

    Diffusion weighting in MRI is commonly achieved with the pulsed-gradient spin-echo (PGSE) method. When combined with spin-warping image formation, this method often results in ghosts due to the sample's macroscopic motion. It has been shown experimentally (Kennedy and Zhong, MRM 2004;52:1-6) that these motion artifacts can be effectively eliminated by the distant dipolar field (DDF) method, which relies on the refocusing of spatially modulated transverse magnetization by the DDF within the sample itself. In this report, diffusion-weighted images (DWIs) using both DDF and PGSE methods in the presence of macroscopic sample motion were simulated. Numerical simulation results quantify the dependence of signals in DWI on several key motion parameters and demonstrate that the DDF DWIs are much less sensitive to macroscopic sample motion than the traditional PGSE DWIs. The results also show that the dipolar correlation distance (d(c)) can alter contrast in DDF DWIs. The simulated results are in good agreement with the experimental results reported previously.

  15. Fully refocused multi-shot spatiotemporally encoded MRI: robust imaging in the presence of metallic implants.

    PubMed

    Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio

    2012-12-01

    An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.

  16. Analysis of Hanle-effect signals observed in Si-channel spin accumulation devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp; Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552; Akushichi, Taiju

    2014-05-07

    We reexamined curve-fitting analysis for spin-accumulation signals observed in Si-channel spin-accumulation devices, employing widely-used Lorentz functions and a new formula developed from the spin diffusion equation. A Si-channel spin-accumulation device with a high quality ferromagnetic spin injector was fabricated, and its observed spin-accumulation signals were verified. Experimentally obtained Hanle-effect signals for spin accumulation were not able to be fitted by a single Lorentz function and were reproduced by the newly developed formula. Our developed formula can represent spin-accumulation signals and thus analyze Hanle-effect signals.

  17. New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients

    PubMed Central

    Kim, Bong Soo; Lee, Kyung Ryeol; Goh, Myeng Ju

    2014-01-01

    MR imaging has unique benefits for evaluating the liver because of its high-resolution capability and ability to permit detailed assessment of anatomic lesions. In uncooperative patients, motion artifacts can impair the image quality and lead to the loss of diagnostic information. In this setting, the recent advances in motion-resistant liver MR techniques, including faster imaging protocols (e.g., dual-echo magnetization-prepared rapid-acquisition gradient echo (MP-RAGE), view-sharing technique), the data under-sampling (e.g., gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), single-shot echo-train spin-echo (SS-ETSE)), and motion-artifact minimization method (e.g., radial GRE with/without k-space-weighted image contrast (KWIC)), can provide consistent, artifact-free images with adequate image quality and can lead to promising diagnostic performance. Understanding of the different motion-resistant options allows radiologists to adopt the most appropriate technique for their clinical practice and thereby significantly improve patient care. PMID:25243115

  18. [Value of 3T magnetic resonance dynamic contrast-enhanced and diffusion-weighted imaging in differential diagnosis of musculoskeletal tumors].

    PubMed

    Qi, Zi-hua; Li, Chuan-fu; Ma, Xiang-xing; Yang, Hui; Jiang, Bao-dong; Zhang, Kai; Yu, De-xin

    2012-04-01

    To evaluate the value of magnetic resonance dynamic contrast-enhanced (MR-DCE) and magnetic resonance diffusion-weighted imaging (MR-DWI) in the differentiation of benign and malignant musculoskeletal tumors. Sixty-three patients with pathologically confirmed musculoskeletal tumors were examined with MR-DCE and MR-DWI. Using single shot spin echo planar imaging sequence and different b values of 400, 600, 800 and 1000 s/mm(2), we obtained the apparent diffusion coefficient (ADC) of the lesions. ADC values were measured before and after MR-DCE, with a b value of 600 s/mm(2). The 3D fast acquired multiple phase enhanced fast spoiled gradient recalled echo sequence was obtained for multi-slice of the entire lesion. The time-signal intensity curve (TIC), dynamic contrast-enhanced parameters, maximum slope of increase (MSI), positive enhancement integral, signal enhancement ratio, and time to peak (T(peak)) were also recorded. ADC showed no significant difference between benign and malignant tumors when the b value was 400, 600, 800, or 1000 s/mm(2), and it was not significantly different between benign and malignant tumors in both pre-MR-DCE and post-MR-DCE with b value of 600 s/mm(2). TIC were classified into four types type1 showed rapid progression and gradual drainage; type2 showed rapid progression but had no or slight progression; type 3 showed gradual progression; and type 4 had no or slight progression. Most lesions of type1 or type2 were malignant, whereas most lesions of type 3 or type 4 were benign. When using type1 and type 2 as the standards of malignancy, the diagnostic sensitivity and specificity was 87.23% and 50.00%, respectively. The types of TIC showed significant difference between benign and malignant musculoskeletal tumors(χ(2)=17.009,P=0.001). When using MSI 366.62 ± 174.84 as the standard of malignancy, the diagnostic sensitivity and specificity was 86.78% and 78.67%, respectively. When using T(peak)≤70s as the standard of malignancy, the diagnostic sensitivity and specificity was 82.89%and 85.78%, respectively. Positive enhancement integral and signal enhancement ratio showed no significant difference between benign and malignant musculoskeletal tumors. TIC, MSI and T(peak) of MR-DCE are valuable in differentiating benign from malignant musculoskeletal tumors. T(peak) has the highest diagnostic specificity, and TIC has the highest diagnostic sensitivity. The mean ADC value are no significant difference between benign and malignant tumors.

  19. Acute interstitial edematous pancreatitis: Findings on non-enhanced MR imaging

    PubMed Central

    Zhang, Xiao-Ming; Feng, Zhi-Song; Zhao, Qiong-Hui; Xiao, Chun-Ming; Mitchell, Donald G; Shu, Jian; Zeng, Nan-Lin; Xu, Xiao-Xue; Lei, Jun-Yang; Tian, Xiao-Bing

    2006-01-01

    AIM: To study the appearances of acute interstitial edematous pancreatitis (IEP) on non-enhanced MR imaging. METHODS: A total of 53 patients with IEP diagnosed by clinical features and laboratory findings were underwent MR imaging. MR imaging sequences included fast spoiled gradient echo (FSPGR) fat saturation axial T1-weighted imaging, gradient echo T1-weighted (in phase), single shot fast spin echo (SSFSE) T2-weighted, respiratory triggered (R-T) T2-weighted with fat saturation, and MR cholangiopancreatography. Using the MR severity score index, pancreatitis was graded as mild (0-2 points), moderate (3-6 points) and severe (7-10 points). RESULTS: Among the 53 patients, IEP was graded as mild in 37 patients and as moderate in 16 patients. Forty-seven of 53 (89%) patients had at least one abnormality on MR images. Pancreas was hypointense relative to liver on FSPGR T1-weighted images in 18.9% of patients, and hyperintense in 25% and 30% on SSFSE T2-weighted and R-T T2-weighted images, respectively. The prevalences of the findings of IEP on R-T T2-weighted images were, respectively, 85% for pancreatic fascial plane, 77% for left renal fascial plane, 55% for peripancreatic fat stranding, 42% for right renal fascial plane, 45% for perivascular fluid, 40% for thickened pancreatic lobular septum and 25% for peripancreatic fluid, which were markedly higher than those on in-phase or SSFSE T2-weighted images (P < 0.001). CONCLUSION: IEP primarily manifests on non-enhanced MR images as thickened pancreatic fascial plane, left renal fascial plane, peripancreatic fat stranding, and peripancreatic fluid. R-T T2-weighted imaging is more sensitive than in-phase and SSFSE T2-weighted imaging for depicting IEP. PMID:17007053

  20. Acute interstitial edematous pancreatitis: Findings on non-enhanced MR imaging.

    PubMed

    Zhang, Xiao-Ming; Feng, Zhi-Song; Zhao, Qiong-Hui; Xiao, Chun-Ming; Mitchell, Donald-G; Shu, Jian; Zeng, Nan-Lin; Xu, Xiao-Xue; Lei, Jun-Yang; Tian, Xiao-Bing

    2006-09-28

    To study the appearances of acute interstitial edematous pancreatitis (IEP) on non-enhanced MR imaging. A total of 53 patients with IEP diagnosed by clinical features and laboratory findings were underwent MR imaging. MR imaging sequences included fast spoiled gradient echo (FSPGR) fat saturation axial T1-weighted imaging, gradient echo T1-weighted (in phase), single shot fast spin echo (SSFSE) T2-weighted, respiratory triggered (R-T) T2-weighted with fat saturation, and MR cholangiopancreatography. Using the MR severity score index, pancreatitis was graded as mild (0-2 points), moderate (3-6 points) and severe (7-10 points). Among the 53 patients, IEP was graded as mild in 37 patients and as moderate in 16 patients. Forty-seven of 53 (89%) patients had at least one abnormality on MR images. Pancreas was hypointense relative to liver on FSPGR T1-weighted images in 18.9% of patients, and hyperintense in 25% and 30% on SSFSE T2-weighted and R-T T2-weighted images, respectively. The prevalences of the findings of IEP on R-T T2-weighted images were, respectively, 85% for pancreatic fascial plane, 77% for left renal fascial plane, 55% for peripancreatic fat stranding, 42% for right renal fascial plane, 45% for perivascular fluid, 40% for thickened pancreatic lobular septum and 25% for peripancreatic fluid, which were markedly higher than those on in-phase or SSFSE T2-weighted images (P<0.001). IEP primarily manifests on non-enhanced MR images as thickened pancreatic fascial plane, left renal fascial plane, peripancreatic fat stranding, and peripancreatic fluid. R-T T2-weighted imaging is more sensitive than in-phase and SSFSE T2-weighted imaging for depicting IEP.

  1. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with lessmore » charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.« less

  2. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  3. The role of magnetic resonance diffusion-weighted imaging and three-dimensional arterial spin labelling perfusion imaging in the differentiation of parasellar meningioma and cavernous haemangioma.

    PubMed

    Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin

    2014-08-01

    To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Spin Transfer Torque in Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  5. Neutron diffraction study and theoretical analysis of the antiferromagnetic order and the diffuse scattering in the layered kagome system CaBaCo2Fe2O7

    NASA Astrophysics Data System (ADS)

    Reim, J. D.; Rosén, E.; Zaharko, O.; Mostovoy, M.; Robert, J.; Valldor, M.; Schweika, W.

    2018-04-01

    The hexagonal swedenborgite, CaBaCo2Fe2O7 , is a chiral frustrated antiferromagnet, in which magnetic ions form alternating kagome and triangular layers. We observe a long-range √{3 }×√{3 } antiferromagnetic order setting in below TN=160 K by neutron diffraction on single crystals of CaBaCo2Fe2O7 . Both magnetization and polarized neutron single crystal diffraction measurements show that close to TN spins lie predominantly in the a b plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya interactions. The ordered structure can be described and refined within the magnetic space group P 31 m' . Diffuse scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and coexistence of the √{3 }×√{3 } order with disorder. The coexistence can be explained by the freedom to vary spins without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken inversion symmetry of the lattice, in agreement with our symmetry analysis.

  6. Nonequilibrium spintronic transport through an artificial Kondo impurity: conductance, magnetoresistance, and shot noise.

    PubMed

    López, Rosa; Sánchez, David

    2003-03-21

    We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.

  7. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  8. Value of 3 Tesla diffusion-weighted magnetic resonance imaging for assessing liver fibrosis

    PubMed Central

    Papalavrentios, Lavrentios; Sinakos, Emmanouil; Chourmouzi, Danai; Hytiroglou, Prodromos; Drevelegas, Konstantinos; Constantinides, Manos; Drevelegas, Antonios; Talwalkar, Jayant; Akriviadis, Evangelos

    2015-01-01

    Background Limited data are available regarding the role of magnetic resonance imaging (MRI), particularly the new generation 3 Tesla technology, and especially diffusion-weighted imaging (DWI) in predicting liver fibrosis. The aim of our pilot study was to assess the clinical performance of the apparent diffusion coefficient (ADC) of liver parenchyma for the assessment of liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Methods 18 patients with biopsy-proven NAFLD underwent DWI with 3 Tesla MRI. DWI was performed with single-shot echo-planar technique at b values of 0-500 and 0-1000 s/mm2. ADC was measured in four locations in the liver and the mean ADC value was used for analysis. Staging of fibrosis was performed according to the METAVIR system. Results The median age of patients was 52 years (range 23-73). The distribution of patients in different fibrosis stages was: 0 (n=1), 1 (n=7), 2 (n=1), 3 (n=5), 4 (n=4). Fibrosis stage was poorly associated with ADC at b value of 0-500 s/mm2 (r= -0.30, P=0.27). However it was significantly associated with ADC at b value of 0-1000 s/mm2 (r= -0.57, P=0.01). For this b value (0-1000 s/mm2) the area under receiver-operating characteristic curve was 0.93 for fibrosis stage ≥3 and the optimal ADC cut-off value was 1.16 ×10-3 mm2/s. Conclusion 3 Tesla DWI can possibly predict the presence of advanced fibrosis in patients with NAFLD. PMID:25608776

  9. Value of 3 Tesla diffusion-weighted magnetic resonance imaging for assessing liver fibrosis.

    PubMed

    Papalavrentios, Lavrentios; Sinakos, Emmanouil; Chourmouzi, Danai; Hytiroglou, Prodromos; Drevelegas, Konstantinos; Constantinides, Manos; Drevelegas, Antonios; Talwalkar, Jayant; Akriviadis, Evangelos

    2015-01-01

    Limited data are available regarding the role of magnetic resonance imaging (MRI), particularly the new generation 3 Tesla technology, and especially diffusion-weighted imaging (DWI) in predicting liver fibrosis. The aim of our pilot study was to assess the clinical performance of the apparent diffusion coefficient (ADC) of liver parenchyma for the assessment of liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). 18 patients with biopsy-proven NAFLD underwent DWI with 3 Tesla MRI. DWI was performed with single-shot echo-planar technique at b values of 0-500 and 0-1000 s/mm 2 . ADC was measured in four locations in the liver and the mean ADC value was used for analysis. Staging of fibrosis was performed according to the METAVIR system. The median age of patients was 52 years (range 23-73). The distribution of patients in different fibrosis stages was: 0 (n=1), 1 (n=7), 2 (n=1), 3 (n=5), 4 (n=4). Fibrosis stage was poorly associated with ADC at b value of 0-500 s/mm 2 (r= -0.30, P=0.27). However it was significantly associated with ADC at b value of 0-1000 s/mm 2 (r= -0.57, P=0.01). For this b value (0-1000 s/mm 2 ) the area under receiver-operating characteristic curve was 0.93 for fibrosis stage ≥3 and the optimal ADC cut-off value was 1.16 ×10 -3 mm 2 /s. 3 Tesla DWI can possibly predict the presence of advanced fibrosis in patients with NAFLD.

  10. MR Imaging of the Prostate and Adjacent Anatomic Structures before, during, and after Ejaculation: Qualitative and Quantitative Evaluation1

    PubMed Central

    Medved, Milica; Sammet, Steffen; Yousuf, Ambereen; Oto, Aytekin

    2015-01-01

    Purpose To determine the possibility of obtaining high-quality magnetic resonance (MR) images before, during, and immediately after ejaculation and detecting measurable changes in quantitative MR imaging parameters after ejaculation. Materials and Methods In this prospective, institutional review board–approved, HIPAA-compliant study, eight young healthy volunteers (median age, 22.5 years), after providing informed consent, underwent MR imaging while masturbating to the point of ejaculation. A 1.5-T MR imaging unit was used, with an eight-channel surface coil and a dynamic single-shot fast spin-echo sequence. In addition, a quantitative MR imaging protocol that allowed calculation of T1, T2, and apparent diffusion coefficient (ADC) values was applied before and after ejaculation. Volumes of the prostate and seminal vesicles (SV) were calculated by using whole-volume segmentation on T2-weighted images, both before and after ejaculation. Pre- and postejaculation changes in quantitative MR parameters and measured volumes were evaluated by using the Wilcoxon signed rank test with Bonferroni adjustment. Results There was no significant change in prostate volumes on pre- and postejaculation images, while the SV contracted by 41% on average (median, 44.5%; P = .004). No changes before and after ejaculation were observed in T1 values or in T2 and ADC values in the central gland, while T2 and ADC values were significantly reduced in the peripheral zone by 12% and 14%, respectively (median, 13% and 14.5%, respectively; P = .004). Conclusion Successful dynamic MR imaging of ejaculation events and the ability to visualize internal sphincter closure, passage of ejaculate, and significant changes in SV volumes were demonstrated. Significant changes in peripheral zone T2 and ADC values were observed. PMID:24495265

  11. Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI.

    PubMed

    Schmidt, Rita; Seginer, Amir; Frydman, Lucio

    2016-05-01

    Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to its use of a referenceless correction algorithm. A characteristic element of SPEN encoding is the absence of aliasing when its signals are undersampled along the low-bandwidth dimension. This feature was exploited in this study to segment a SPEN experiment into a number of interleaved shots whose inaccuracies were automatically compared and corrected as part of a navigator-free image reconstruction analysis. This could account for normal phase noises, as well as for object motions during the signal collection. The ensuing interleaved SPEN method was applied to phantoms and human volunteers and delivered high-quality images even in inhomogeneous or mobile environments. Submillimeter functional MRI activation maps confined to gray matter regions as well as submillimeter diffusion coefficient maps of human brains were obtained. We have developed an interleaved SPEN approach for the acquisition of high-definition images that promises a wider range of functional and diffusion MRI applications even in challenging environments. © 2015 Wiley Periodicals, Inc.

  12. Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Morello, Andrea

    The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).

  13. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm

    2017-02-01

    Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.

  14. Assessment of inflammatory activity in Crohn's disease by means of dynamic contrast-enhanced MRI.

    PubMed

    Pupillo, V A; Di Cesare, E; Frieri, G; Limbucci, N; Tanga, M; Masciocchi, C

    2007-09-01

    Our aim was to perform a dynamic study of contrast enhancement of the intestinal wall in patients with Crohn's disease to quantitatively assess local inflammatory activity. We studied a population of 50 patients with histologically proven Crohn's disease. Magnetic resonance imaging (MRI) was performed using a 1.5-T magnet with a phased-array coil and acquisition of T2-weighted single-shot fast spin echo (SSFSE) half Fourier sequences before intravenous administration of gadolinium, and T1-weighted fast spoiled gradient (FSPGR) fat-saturated sequences before and after contrast administration. Before the examination, patents received oral polyethylene glycol (PEG) (1,000 ml for adults; 10 ml/Kg of body weight for children). Regions of interest (ROI) were placed on the normal and diseased intestinal wall to assess signal intensity and rate of increase in contrast enhancement over time. Data were compared with the Crohn's Disease Activity Index (CDAI). The diseased bowel wall showed early and intense uptake of contrast that increases over time until a plateau is reached. In patients in the remission phase after treatment, signal intensity was only slightly higher in diseased bowel loops than in healthy loops. There was a significant correlation between the peak of contrast uptake and CDAI. Dynamic MRI is a good technique for quantifying local inflammatory activity of bowel wall in patients with Crohn's disease.

  15. Sensitivity and specificity of univariate MRI analysis of experimentally degraded cartilage under clinical imaging conditions.

    PubMed

    Lukas, Vanessa A; Fishbein, Kenneth W; Reiter, David A; Lin, Ping-Chang; Schneider, Erika; Spencer, Richard G

    2015-07-01

    To evaluate the sensitivity and specificity of classification of pathomimetically degraded bovine nasal cartilage at 3 Tesla and 37°C using univariate MRI measurements of both pure parameter values and intensities of parameter-weighted images. Pre- and posttrypsin degradation values of T1 , T2 , T2 *, magnetization transfer ratio (MTR), and apparent diffusion coefficient (ADC), and corresponding weighted images, were analyzed. Classification based on the Euclidean distance was performed and the quality of classification was assessed through sensitivity, specificity and accuracy (ACC). The classifiers with the highest accuracy values were ADC (ACC = 0.82 ± 0.06), MTR (ACC = 0.78 ± 0.06), T1 (ACC = 0.99 ± 0.01), T2 derived from a three-dimensional (3D) spin-echo sequence (ACC = 0.74 ± 0.05), and T2 derived from a 2D spin-echo sequence (ACC = 0.77 ± 0.06), along with two of the diffusion-weighted signal intensities (b = 333 s/mm(2) : ACC = 0.80 ± 0.05; b = 666 s/mm(2) : ACC = 0.85 ± 0.04). In particular, T1 values differed substantially between the groups, resulting in atypically high classification accuracy. The second-best classifier, diffusion weighting with b = 666 s/mm(2) , as well as all other parameters evaluated, exhibited substantial overlap between pre- and postdegradation groups, resulting in decreased accuracies. Classification according to T1 values showed excellent test characteristics (ACC = 0.99), with several other parameters also showing reasonable performance (ACC > 0.70). Of these, diffusion weighting is particularly promising as a potentially practical clinical modality. As in previous work, we again find that highly statistically significant group mean differences do not necessarily translate into accurate clinical classification rules. © 2014 Wiley Periodicals, Inc.

  16. Determination of the spin Hall angle in single-crystalline Pt films from spin pumping experiments

    NASA Astrophysics Data System (ADS)

    Keller, Sascha; Mihalceanu, Laura; Schweizer, Matthias R.; Lang, Philipp; Heinz, Björn; Geilen, Moritz; Brächer, Thomas; Pirro, Philipp; Meyer, Thomas; Conca, Andres; Karfaridis, Dimitrios; Vourlias, George; Kehagias, Thomas; Hillebrands, Burkard; Papaioannou, Evangelos Th

    2018-05-01

    We report on the determination of the spin Hall angle in ultra-clean, defect-reduced epitaxial Pt films. By applying vector network analyzer ferromagnetic resonance spectroscopy to a series of single crystalline Fe (12 nm) /Pt (t Pt) bilayers we determine the real part of the spin mixing conductance (4.4 ± 0.2) × 1019 m‑2 and reveal a very small spin diffusion length in the epitaxial Pt (1.1 ± 0.1) nm film. We investigate the spin pumping and ISHE in a stripe microstucture excited by a microwave coplanar waveguide antenna. By using their different angular dependencies, we distinguish between spin rectification effects and the inverse spin Hall effect. The relatively large value of the spin Hall angle (5.7 ± 1.4)% shows that ultra-clean e-beam evaporated non-magnetic materials can also have a comparable spin-to-charge current conversion efficiency as sputtered high resistivity layers.

  17. MR-monitored LITT as a palliative concept in patients with high grade gliomas: preliminary clinical experience.

    PubMed

    Reimer, P; Bremer, C; Horch, C; Morgenroth, C; Allkemper, T; Schuierer, G

    1998-01-01

    The purpose of this study was to evaluate the clinical utility of laser-induced thermotherapy (LITT) as a palliative treatment for patients with high-grade gliomas. Four consenting patients with recurrent high grade III/IV gliomas near the primary language or motor areas were palliatively treated with LITT (2-5 W, 3-13 minutes; Neodym YAG Laser, Dornier, Friedrichshafen, Germany). Temperature monitoring was performed by T1-weighted turbo-fast low-angle shot (FLASH) imaging at 1.5 T (Siemens Magnetom SP 4000, Siemens, Erlangen, Germany). MRI studies before LITT included contrast-enhanced conventional scans and functional activation studies to localize the primary motor cortex or language areas using an echo-planar imaging (EPI) spin-echo (SE) sequence. Follow-up studies consisted of contrast-enhanced conventional scans as well as diffusion studies (contrast-enhanced Fourier-acquired steady-state technique and EPI-SE) and perfusion studies (EPI-SE with .2 mmol of gadolinium (Gd)/kg body weight) to differentiate post-therapeutic effects from residual or recurrent tumor growth. Local tumor control was achieved in areas with laser energy deposition with clinically stable conditions > or = 6 months. Conventional contrast-enhanced scans demonstrated strong enhancement surrounding ablated tumor components, which showed a reduction in CBV/CBF. Perfusion studies were useful to discriminate granulomatous tissue enhancement from residual or recurrent tumor growth. Careful application of LITT may evolve as an alternative palliative concept for patients with end-stage high-grade cerebral gliomas reducing clinical symptoms from circumscribed areas of pathology.

  18. Magnetic order at a single-crystal surface in the diffuse-scattering theory

    NASA Astrophysics Data System (ADS)

    Zasada, I.

    2003-06-01

    A theoretical description of incoherent spin-dependent multiple scattering of electrons at a magnetically disordered single-crystal surface is reported. A formalism in which the spin operators specify the magnetic state of a surface atom is used for the description of magnetic order at the surface. The theory is based upon the concepts used in multiple scattering spin-dependent diffuse LEED theory (DSPLEED) theory. In the present considerations, this theory is extended to the case of magnetic materials by using the time-independent Dirac equation with an effective magnetic field. Thus, an expression for incoherent spin-dependent intensity for magnetic material is obtained. It depends on the Fourier transform on the surface lattice of the spin-pair correlation function and, as a consequence, on the magnetic properties of the surface. The equations for the description of magnetization and various correlation functions in the frame of effective field theory are derived and the results of the numerical calculations are presented for the particular case of Ni(1 0 0) surface. The spin-orbit induced and exchange asymmetries are calculated. It is found that the magnetic DSPLEED is sensitive to the properties of the surface characterized by the spin-pair correlation functions. Thus, it is demonstrated that the magnetic DSPLEED can be an effective method in the investigation of critical behaviour of magnetic surfaces.

  19. Steady motion of skyrmions and domains walls under diffusive spin torques

    NASA Astrophysics Data System (ADS)

    Elías, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurélien

    2017-03-01

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β'. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0) 2(1 +2 α β') .

  20. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  1. Defining intrahepatic biliary anatomy in living liver transplant donor candidates at mangafodipir trisodium-enhanced MR cholangiography versus conventional T2-weighted MR cholangiography.

    PubMed

    Lee, Vivian S; Krinsky, Glenn A; Nazzaro, Carol A; Chang, Jerry S; Babb, James S; Lin, Jennifer C; Morgan, Glyn R; Teperman, Lewis W

    2004-12-01

    To compare three-dimensional (3D) mangafodipir trisodium-enhanced T1-weighted magnetic resonance (MR) cholangiography with conventional T2-weighted MR cholangiography for depiction and definition of intrahepatic biliary anatomy in liver transplant donor candidates. One hundred eight healthy liver transplant donor candidates were examined with two MR cholangiographic methods. All candidates gave written informed consent, and the study was approved by the institutional review board. First, breath-hold transverse and coronal half-Fourier single-shot turbo spin-echo and breath-hold oblique coronal heavily T2-weighted turbo spin-echo sequences were performed. Second, mangafodipir trisodium-enhanced breath-hold fat-suppressed 3D gradient-echo sequences were performed through the ducts (oblique coronal plane) and through the entire liver (transverse plane). Interpretation of biliary anatomy findings, particularly variants affecting right liver lobe biliary drainage, and degree of interpretation confidence at both 3D mangafodipir trisodium-enhanced MR cholangiography and T2-weighted MR cholangiography were recorded and compared by using the Wilcoxon signed rank test. Then, consensus interpretations of both MR image sets together were performed. Intraoperative cholangiography was the reference-standard examination for 51 subjects who underwent right lobe hepatectomy. The McNemar test was used to compare the accuracies of the individual MR techniques with that of the consensus interpretation of both image sets together and to compare each technique with intraoperative cholangiography. Biliary anatomy was visualized with mangafodipir trisodium enhancement in all patients. Mangafodipir trisodium-enhanced image findings agreed with findings seen at combined interpretations significantly more often than did T2-weighted image findings (in 107 [99%] vs 88 [82%] of 108 donor candidates, P < .001). Confidence was significantly higher with the mangafodipir trisodium-enhanced images than with the T2-weighted images (mean confidence score, 4.5 vs 3.4; P < .001). In the 51 candidates who underwent intraoperative cholangiography, mangafodipir trisodium-enhanced imaging correctly depicted the biliary anatomy more often than did T2-weighted imaging (in 47 [92%] vs 43 [84%] donor candidates, P = .14), whereas the two MR imaging techniques combined correctly depicted the anatomy in 48 (94%) candidates. Mangafodipir trisodium-enhanced 3D MR cholangiography depicts intrahepatic biliary anatomy, especially right duct variants, more accurately than does conventional T2-weighted MR cholangiography. (c) RSNA, 2004.

  2. Multi-shot PROPELLER for high-field preclinical MRI

    PubMed Central

    Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F.; Johnson, G. Allan

    2012-01-01

    With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T2-weighted imaging using PROPELLER MRI meets this need. The 2-shot PROPELLER technique presented here, provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and non-invasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The 2-shot modification introduced here, retains more high-frequency information and provides higher SNR than conventional single-shot PROPELLER, making this sequence feasible at high-fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. PMID:20572138

  3. Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.

    PubMed

    Lakshmi, Priya G G; Domnic, S

    2014-12-01

    Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.

  4. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  5. Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits.

    PubMed

    Wei, L F; Liu, Yu-xi; Nori, Franco

    2006-06-23

    Going beyond the entanglement of microscopic objects (such as photons, spins, and ions), here we propose an efficient approach to produce and control the quantum entanglement of three macroscopic coupled superconducting qubits. By conditionally rotating, one by one, selected Josephson-charge qubits, we show that their Greenberger-Horne-Zeilinger (GHZ) entangled states can be deterministically generated. The existence of GHZ correlations between these qubits could be experimentally demonstrated by effective single-qubit operations followed by high-fidelity single-shot readouts. The possibility of using the prepared GHZ correlations to test the macroscopic conflict between the noncommutativity of quantum mechanics and the commutativity of classical physics is also discussed.

  6. A model-based reconstruction for undersampled radial spin echo DTI with variational penalties on the diffusion tensor

    PubMed Central

    Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K

    2015-01-01

    Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167

  7. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  8. [Single shot fast spin echo sequence MRI cholangiopancreatography].

    PubMed

    Lefèvre, F; Crouzet, P; Gaucher, H; Chapuis, F; Béot, S; Boccaccini, H; Bazin, C; Régent, D

    1998-05-01

    To assess the value of single shot fast spin echo MR sequence (SS-FSE) in the morphological analysis of the biliary tree and pancreatic ducts and to compare its accuracy with other imaging methods. 95 consecutive patients referred for clinical and/or biological suspicion of biliary obstruction were explored with MR cholangiopancreatography (MRCP). All patients were explored with a Signa 1.5 T GE MR unit, with High Gradient Field Strength and Torso Phased Array Coil. Biliary ducts were explored with SS-FSE sequence, coronal and oblique coronal 20 mm thick slices on a 256 x 256 matrix. Total acquisition time was 1 second. Native pictures were reviewed by two radiologists blinded to clinical information. In case of disagreement, a third radiologist's judgement was requested. In 88 cases, MRCP results were compared with direct biligraphy methods. In all cases, MRCP produced high quality images without MIP or other post-processing methods. For detection of biliary tree distensions, the concordance value of MRCP was over 91% (Kappa 0.82). For detection of biliary tree and/or pancreatic duct obstruction, MR sensitivity was 100% and specificity 91%. The overall diagnostic concordance value of MRCP was > or = 93%. Difficulties in MRCP were caused by functional diseases or benign stenosis. MRCP accurately diagnosed all lithiasic obstructions starting from a stone size of 3 mm. MRCP produces fastly high-quality images. As it is totally safe, it can be proposed as a first intention method in biliopancreatic duct explorations.

  9. Pauli structures arising from confined particles interacting via a statistical potential

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman

    2017-09-01

    There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.

  10. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T.

    PubMed

    Mürtz, Petra; Kaschner, Marius; Träber, Frank; Kukuk, Guido M; Büdenbender, Sarah M; Skowasch, Dirk; Gieseke, Jürgen; Schild, Hans H; Willinek, Winfried A

    2012-11-01

    To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n=5), thorax (n=8), abdomen (n=6) and pelvis (n=21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as "improved", "equal", "worse" or "ambiguous". Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. By the use of TX, signal homogeneity was "improved" in 25/40 and "equal" in 15/40 cases. Fat suppression was "improved" in 17/40 and "equal" in 23/40 cases. These improvements were statistically significant (p<0.001, Wilcoxon signed-rank test). In five patients, fluid-related dielectric shading was present, which improved remarkably. The ADC values did not significantly differ for the two RF excitation methods (p=0.630 over all data, pairwise Student's t-test). Dual-source parallel RF excitation improved image quality of DWIBS at 3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study.

    PubMed

    Vidić, Igor; Egnell, Liv; Jerome, Neil P; Teruel, Jose R; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F; Goa, Pål Erik

    2018-05-01

    Diffusion-weighted MRI (DWI) is currently one of the fastest developing MRI-based techniques in oncology. Histogram properties from model fitting of DWI are useful features for differentiation of lesions, and classification can potentially be improved by machine learning. To evaluate classification of malignant and benign tumors and breast cancer subtypes using support vector machine (SVM). Prospective. Fifty-one patients with benign (n = 23) and malignant (n = 28) breast tumors (26 ER+, whereof six were HER2+). Patients were imaged with DW-MRI (3T) using twice refocused spin-echo echo-planar imaging with echo time / repetition time (TR/TE) = 9000/86 msec, 90 × 90 matrix size, 2 × 2 mm in-plane resolution, 2.5 mm slice thickness, and 13 b-values. Apparent diffusion coefficient (ADC), relative enhanced diffusivity (RED), and the intravoxel incoherent motion (IVIM) parameters diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f) were calculated. The histogram properties (median, mean, standard deviation, skewness, kurtosis) were used as features in SVM (10-fold cross-validation) for differentiation of lesions and subtyping. Accuracies of the SVM classifications were calculated to find the combination of features with highest prediction accuracy. Mann-Whitney tests were performed for univariate comparisons. For benign versus malignant tumors, univariate analysis found 11 histogram properties to be significant differentiators. Using SVM, the highest accuracy (0.96) was achieved from a single feature (mean of RED), or from three feature combinations of IVIM or ADC. Combining features from all models gave perfect classification. No single feature predicted HER2 status of ER + tumors (univariate or SVM), although high accuracy (0.90) was achieved with SVM combining several features. Importantly, these features had to include higher-order statistics (kurtosis and skewness), indicating the importance to account for heterogeneity. Our findings suggest that SVM, using features from a combination of diffusion models, improves prediction accuracy for differentiation of benign versus malignant breast tumors, and may further assist in subtyping of breast cancer. 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1205-1216. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot

    NASA Astrophysics Data System (ADS)

    Kawakami, Erika

    2015-03-01

    Electron spins in Si/SiGe quantum dots are one of the most promising candidates for a quantum bit for their potential to scale up and their long dephasing time. We realized coherent control of single electron spin in a single quantum dot (QD) defined in a Si/SiGe 2D electron gas. Spin rotations are achieved by applying microwave excitation to one of the gates, which oscillates the electron wave function back and forth in the gradient field produced by cobalt micromagnets fabricated near the dot. The electron spin is read out in single-shot mode via spin-to-charge conversion and a QD charge sensor. In earlier work, both the fidelity of single-spin rotations and the spin echo decay time were limited by a small splitting of the lowest two valleys. By changing the direction and magnitude of the external magnetic field as well as the gate voltages that define the dot potential, we were able to increase the valley splitting and also the difference in Zeeman splittings associated with these two valleys. This has resulted in considerable improvements in the gate fidelity and spin echo decay times. Thanks to the long intrinsic dephasing time T2* = 900 ns and Rabi frequency of 1.4 MHz, we now obtain an average single qubit gate fidelity of an electron spin in a Si/SiGe quantum dot of 99 percent, measured via randomized benchmarking. The dephasing time is extended to 70 us for the Hahn echo and up to 400 us with CPMG80. From the dynamical decoupling data, we extract the noise spectral density in the range of 30 kHz-3 MHz. We will discuss the mechanism that induces this noise and is responsible for decoherence. In parallel, we also realized electron spin resonance and coherent single-spin control by second harmonic generation, which means we can drive an electron spin at half the Larmor frequency. Finally, we observe not only single-spin transitions but also transitions whereby both the spin and the valley state are flipped. Altogether, these measurements have significantly increased our understanding and raised the prospects of spin qubits in Si/SiGe quantum dots. This work has been done in collaboration with T.M. J. Jullien, P. Scarlino, V.V. Dobrovitski, D.R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. This work was supported in part by the Army Research Office (ARO) (W911NF-12-0607), the Foundation for Fundamental Research on Matter (FOM) and the European Research Council (ERC). Development and maintenance of the growth facilities used for fabricating samples was supported by the Department of Energy (DOE) (DE-FG02-03ER46028). E.K. was supported by a fellowship from the Nakajima Foundation. This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  13. Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy

    PubMed Central

    Xu, Junzhong; Does, Mark D.; Gore, John C.

    2009-01-01

    The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979

  14. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  15. An Exploration into Diffusion Tensor Imaging in the Bovine Ocular Lens

    PubMed Central

    Vaghefi, Ehsan; Donaldson, Paul J.

    2013-01-01

    We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting) and TE (determines the amount of magnetic resonance imaging-obtained signal) were used to estimate apparent diffusion coefficients (ADC) and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens. PMID:23459990

  16. NMR-based diffusion pore imaging.

    PubMed

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Wetscherek, Andreas; Stieltjes, Bram; Semmler, Wolfhard

    2012-08-01

    Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.

  17. Home disadvantage in professional ice hockey.

    PubMed

    Loignon, Andrew; Gayton, William F; Brown, Melissa; Steinroeder, William; Johnson, Carrie

    2007-06-01

    Occurrence of the home field disadvantage in professional ice hockey was examined by analyzing data on penalty shots from 1983-2004. This datum was used as it does not involve physical contact for only the player taking the penalty shot is involved in the outcome. As a result, inhibition of anxiety associated with physical contact should not occur, and diffusion of responsibility would not occur since only the shooter is involved. Analysis indicated the player who took the penalty shot did not make significantly fewer shots at home than in away games. The result did not support hypotheses about roles of physical contact and diffusion of responsibility in accounting for past failures to find the home disadvantage in professional ice hockey.

  18. Value of diffusion-weighted MR imaging in the diagnosis of lymph node metastases in patients with cholangiocarcinoma.

    PubMed

    Holzapfel, Konstantin; Gaa, Jochen; Schubert, Elaine C; Eiber, Matthias; Kleeff, Joerg; Rummeny, Ernst J; Loos, Martin

    2016-10-01

    To evaluate diffusion-weighted MR imaging (DWI) in the diagnosis of lymph node metastases in patients with cholangiocarcinoma. In 24 patients with cholangiocarcinoma, MR imaging of the upper abdomen was performed prior to surgery at 1.5 T using a respiratory-triggered single-shot echo-planar imaging (SSEPI) sequence (b values: 50, 300, and 600 s/mm(2)). ADC (apparent diffusion coefficient) values and diameters of regional lymph nodes (LN) were determined. Subsequently, in all patients, surgical exploration and/or resection of the primary tumor and regional LN dissection were performed. Imaging results were correlated with results of histopathologic analysis. ADC values and diameters of benign and malignant LN were compared using the Mann-Whitney U test. In addition, a ROC (receiver operating characteristic curve) analysis was performed. The mean ADC value (×10(-3) mm(2)/s) of metastatic LN (1.21 ± 0.15) was significantly lower than that of benign LN (1.62 ± 0.33, p < 0.001) while there was no significant difference in the mean diameter of malignant (16.8 ± 5.4 mm) and benign LN (14.1 ± 4.0 mm; p = 0.09). Using an ADC value of 1.25 × 10(-3) mm(2)/s as threshold, 91.4% of LN were correctly classified as benign or malignant with a sensitivity/specificity of 83.3%/92.8% and a positive/negative predictive value of 66.7%/96.7%. The area under the ROC curve was 0.93. DWI using a respiratory-triggered SSEPI sequence, according to our preliminary experience, is a promising imaging modality in the differentiation of benign and malignant LN in patients with cholangiocarcinoma.

  19. 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging.

    PubMed

    Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A

    2011-07-01

    Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.

  20. Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T.

    PubMed

    Kakite, Suguru; Dyvorne, Hadrien; Besa, Cecilia; Cooper, Nancy; Facciuto, Marcelo; Donnerhack, Claudia; Taouli, Bachir

    2015-01-01

    To evaluate short-term test-retest and interobserver reproducibility of IVIM (intravoxel incoherent motion) diffusion parameters and ADC (apparent diffusion coefficient) of hepatocellular carcinoma (HCC) and liver parenchyma at 3.0T. In this prospective Institutional Review Board (IRB)-approved study, 11 patients were scanned twice using a free-breathing single-shot echo-planar-imaging, diffusion-weighted imaging (DWI) sequence using 4 b values (b = 0, 50, 500, 1000 s/mm(2)) and IVIM DWI using 16 b values (0-800 s/mm(2)) at 3.0T. IVIM parameters (D: true diffusion coefficient, D*: pseudodiffusion coefficient, PF: perfusion fraction) and ADC (using 4 b and 16 b) were calculated. Short-term test-retest and interobserver reproducibility of IVIM parameters and ADC were assessed by measuring correlation coefficient, coefficient of variation (CV), and Bland-Altman limits of agreements (BA-LA). Fifteen HCCs were assessed in 10 patients. Reproducibility of IVIM metrics in HCC was poor for D* and PF (mean CV 60.6% and 37.3%, BA-LA: -161.6% to 135.3% and -66.2% to 101.0%, for D* and PF, respectively), good for D and ADC (CV 19.7% and <16%, BA-LA -57.4% to 36.3% and -38.2 to 34.1%, for D and ADC, respectively). Interobserver reproducibility was on the same order of test-retest reproducibility except for PF in HCC. Reproducibility of diffusion parameters was better in liver parenchyma compared to HCC. Poor reproducibility of D*/PF and good reproducibility for D/ADC were observed in HCC and liver parenchyma. These findings may have implications for trials using DWI in HCC. © 2014 Wiley Periodicals, Inc.

  1. Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1985-01-01

    The influence of coherent mesoscale structures on satellite based Doppler lidar wind measurements was investigated. Range dependent weighting functions and the single shot SNR of scan angle are examined and a space shuttle lidar experiment which used a fixed beam and rotating shuttle is simulated.

  2. Comparison of Different Magnetic Resonance Cholangiography Techniques in Living Liver Donors Including Gd-EOB-DTPA Enhanced T1-Weighted Sequences

    PubMed Central

    Kinner, Sonja; Steinweg, Verena; Maderwald, Stefan; Radtke, Arnold; Sotiropoulos, Georgios; Forsting, Michael; Schroeder, Tobias

    2014-01-01

    Objectives Preoperative evaluation of potential living liver donors (PLLDs) includes the assessment of the biliary anatomy to avoid postoperative complications. Aim of this study was to compare T2-weighted (T2w) and Gd-EOB-DTPA enhanced T1-weighted (T1w) magnetic resonance cholangiography (MRC) techniques in the evaluation of PLLDs. Materials and Methods 30 PLLDs underwent MRC on a 1.5 T Magnetom Avanto (Siemens, Erlangen, Germany) using (A) 2D T2w HASTE (Half Fourier Acquisition Single Shot Turbo Spin Echo) fat saturated (fs) in axial plane, (B) 2D T2w HASTE fs thick slices in coronal plane, (C) free breathing 3D T2w TSE (turbo spin echo) RESTORE (high-resolution navigator corrected) plus (D) maximum intensity projections (MIPs), (E) T2w SPACE (sampling perfection with application optimized contrasts using different flip angle evolutions) plus (F) MIPs and (G) T2w TSE BLADE as well as Gd-EOB-DTPA T1w images without (G) and with (H) inversion recovery. Contrast enhanced CT cholangiography served as reference imaging modality. Two independent reviewers evaluated the biliary tract anatomy on a 5-point scale subjectively and objectively. Data sets were compared using a Mann-Whitney-U-test. Kappa values were also calculated. Results Source images and maximum intensity projections of 3D T2w TSE sequences (RESTORE and SPACE) proved to be best for subjective and objective evaluation directly followed by 2D HASTE sequences. Interobserver variabilities were good to excellent (k = 0.622–0.804). Conclusions 3D T2w sequences are essential for preoperative biliary tract evaluation in potential living liver donors. Furthermore, our results underline the value of different MRCP sequence types for the evaluation of the biliary anatomy in PLLDs including Gd-EOB-DTPA enhanced T1w MRC. PMID:25426932

  3. A systematic examination of the bone destruction pattern of the two-shot technique

    PubMed Central

    Stoetzer, Marcus; Stoetzer, Carsten; Rana, Majeed; Zeller, Alexander; Hanke, Alexander; Gellrich, Nils-Claudius; von See, Constantin

    2014-01-01

    Introduction: The two-shot technique is an effective stopping power method. The precise mechanisms of action on the bone and soft-tissue structures of the skull; however, remain largely unclear. The aim of this study is to compare the terminal ballistics of the two-shot and single-shot techniques. Materials and Methods: 40 fresh pigs’ heads were randomly divided into 4 groups (n = 10). Either a single shot or two shots were fired at each head with a full metal jacket or a semi-jacketed bullet. Using thin-layer computed tomography and photography, the diameter of the destruction pattern and the fractures along the bullet path were then imaged and assessed. Results: A single shot fired with a full metal jacket bullet causes minor lateral destruction along the bullet path. With two shots fired with a full metal jacket bullet, however, the maximum diameter of the bullet path is significantly greater (P < 0.05) than it is with a single shot fired with a full metal jacket bullet. In contrast, the maximum diameter with a semi-jacketed bullet is similar with the single-shot and two-shot techniques. Conclusion: With the two-shot technique, a full metal jacket bullet causes a destruction pattern that is comparable to that of a single shot fired with a semi-jacketed bullet. PMID:24812454

  4. Correlation between standardized uptake value and apparent diffusion coefficient of neoplastic lesions evaluated with whole-body simultaneous hybrid PET/MRI.

    PubMed

    Rakheja, Rajan; Chandarana, Hersh; DeMello, Linda; Jackson, Kimberly; Geppert, Christian; Faul, David; Glielmi, Christopher; Friedman, Kent P

    2013-11-01

    The purpose of this study was to assess the correlation between standardized uptake value (SUV) and apparent diffusion coefficient (ADC) of neoplastic lesions in the use of a simultaneous PET/MRI hybrid system. Twenty-four patients with known primary malignancies underwent FDG PET/CT. They then underwent whole-body PET/MRI. Diffusion-weighted imaging was performed with free breathing and a single-shot spin-echo echo-planar imaging sequence with b values of 0, 350, and 750 s/mm(2). Regions of interest were manually drawn along the contours of neoplastic lesions larger than 1 cm, which were clearly identified on PET and diffusion-weighted images. Maximum SUV (SUVmax) on PET/MRI and PET/CT images, mean SUV (SUVmean), minimum ADC (ADCmin), and mean ADC (ADCmean) were recorded on PET/MR images for each FDG-avid neoplastic soft-tissue lesion with a maximum of three lesions per patient. Pearson correlation coefficient was used to asses the following relations: SUVmax versus ADCmin on PET/MR and PET/CT images, SUVmean versus ADCmean, and ratio of SUVmax to mean liver SUV (SUV ratio) versus ADCmin. A subanalysis of patients with progressive disease versus partial treatment response was performed with the ratio of SUVmax to ADCmin for the most metabolically active lesion. Sixty-nine neoplastic lesions (52 nonosseous lesions, 17 bone metastatic lesions) were evaluated. The mean SUVmax from PET/MRI was 7.0 ± 6.0; SUVmean, 5.6 ± 4.6; mean ADCmin, 1.10 ± 0.58; and mean ADCmean, 1.48 ± 0.72. A significant inverse Pearson correlation coefficient was found between PET/MRI SUVmax and ADCmin (r = -0.21, p = 0.04), between SUVmean and ADCmean (r = -0.18, p = 0.07), and between SUV ratio and ADCmin (r = -0.27, p = 0.01). A similar inverse Pearson correlation coefficient was found between the PET/CT SUVmax and ADCmin. Twenty of 24 patients had previously undergone PET/CT; five patients had a partial treatment response, and six had progressive disease according to Response Evaluation Criteria in Solid Tumors 1.1. The ratio between SUVmax and ADCmin was higher among patients with progressive disease than those with a partial treatment response. Simultaneous PET/MRI is a promising technology for the detection of neoplastic disease. There are inverse correlations between SUVmax and ADCmin and between SUV ratio and ADCmin. Correlation coefficients between SUVmax and ADCmin from PET/MRI were similar to values obtained with SUVmax from the same-day PET/CT. Given that both SUV and ADC are related to malignancy and that the correlation between the two biomarkers is relatively weak, SUV and ADC values may offer complementary information to aid in determination of prognosis and treatment response. The combined tumoral biomarker, ratio between SUVmax and ADCmin, may be useful for assessing progressive disease versus partial treatment response.

  5. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-04-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.

  6. A graphene solution to conductivity mismatch: spin injection from ferromagnetic metal/graphene tunnel contacts into silicon

    NASA Astrophysics Data System (ADS)

    van't Erve, Olaf

    2014-03-01

    New paradigms for spin-based devices, such as spin-FETs and reconfigurable logic, have been proposed and modeled. These devices rely on electron spin being injected, transported, manipulated and detected in a semiconductor channel. This work is the first demonstration on how a single layer of graphene can be used as a low resistance tunnel barrier solution for electrical spin injection into Silicon at room temperature. We will show that a FM metal / monolayer graphene contact serves as a spin-polarized tunnel barrier which successfully circumvents the classic metal / semiconductor conductivity mismatch issue for electrical spin injection. We demonstrate electrical injection and detection of spin accumulation in Si above room temperature, and show that the corresponding spin lifetimes correlate with the Si carrier concentration, confirming that the spin accumulation measured occurs in the Si and not in interface trap states. An ideal tunnel barrier should exhibit several key material characteristics: a uniform and planar habit with well-controlled thickness, minimal defect / trapped charge density, a low resistance-area product for minimal power consumption, and compatibility with both the FM metal and semiconductor, insuring minimal diffusion to/from the surrounding materials at temperatures required for device processing. Graphene, offers all of the above, while preserving spin injection properties, making it a compelling solution to the conductivity mismatch for spin injection into Si. Although Graphene is very conductive in plane, it exhibits poor conductivity perpendicular to the plane. Its sp2 bonding results in a highly uniform, defect free layer, which is chemically inert, thermally robust, and essentially impervious to diffusion. The use of a single monolayer of graphene at the Si interface provides a much lower RA product than any film of an oxide thick enough to prevent pinholes (1 nm). Our results identify a new route to low resistance-area product spin-polarized contacts, a crucial requirement enabling future semiconductor spintronic devices, which rely upon two-terminal magnetoresistance, including spin-based transistors, logic and memory.

  7. Moderate MAS enhances local (1)H spin exchange and spin diffusion.

    PubMed

    Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter

    2015-11-01

    Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Diffusion-weighted MR imaging in thymic epithelial tumors: correlation with World Health Organization classification and clinical staging.

    PubMed

    Abdel Razek, Ahmed Abdel Khalek; Khairy, Mohamed; Nada, Nadia

    2014-10-01

    To assess thymic epithelial tumors with diffusion-weighted magnetic resonance (MR) imaging. Informed consent from patients and institutional review board approval were obtained. Prospective study was conducted on 30 consecutive patients (21 men and nine women; age range, 35-71 years) with thymic epithelial tumors. They underwent true fast imaging with steady-state precession and single-shot echo-planar diffusion-weighted MR imaging of the mediastinum with b values of 0, 400, and 800 sec/mm(2). Apparent diffusion coefficient (ADC) of the thymic epithelial tumors was calculated by the same observer at two settings and was correlated with World Health Organization classification and clinical staging. There was significant difference in longest diameter (P = .001) and necrotic part of the tumor (P = .014) between low-risk thymoma, high-risk thymoma, and thymic carcinoma. Mean ADC value of both readings of thymic epithelial tumors (n = 30) was 1.24 × 10(-3) mm(2)/sec and 1.22 × 10(-3) mm(2)/sec, with good intraobserver agreement (κ = 0.732). There was significant difference in both readings (P = .01 and .20) of low-risk thymoma (1.30 × 10(-3) mm(2)/sec and 1.29 × 10(-3) mm(2)/sec), high-risk thymoma (1.16 × 10(-3) mm(2)/sec and 1.14 × 10(-3) mm(2)/sec), and thymic carcinoma (1.18 × 10(-3) mm(2)/sec and 1.06 × 10(-3) mm(2)/sec). Cutoff ADC values of both readings used to differentiate low-risk thymoma from high-risk thymoma and thymic carcinoma were 1.25 and 1.22 × 10(-3) mm(2)/sec with area under the curve of 0.804 and 0.851, respectively. There was significant difference in both readings of ADC value of early (stage I, II) and advanced stages (stage III, IV) of thymic epithelial tumors (P = .006 and .005, respectively). ADC value is a noninvasive, reliable, and reproducible imaging parameter that may help to assess and characterize thymic epithelial tumors. © RSNA, 2014.

  9. Spin diffusion in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz

    2015-12-01

    An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.

  10. Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-11-01

    The use of the wide-field-stop and beam-expansion method for sensitivity enhancement of one-shot Fourier spectroscopy is proposed to realize health care sensors installed in smartphones for daily monitoring. When measuring the spectral components of human bodies noninvasively, diffuse reflected light from biological membranes is too weak for detection using conventional hyperspectral cameras. One-shot Fourier spectroscopy is a spatial phase-shift-type interferometer that can determine the one-dimensional spectral characteristics from a single frame. However, this method has low sensitivity, so that only the spectral characteristics of light sources with direct illumination can be obtained, because a single slit is used as a field stop. The sensitivity of the proposed spectroscopic method is improved by using the wide-field-stop and beam-expansion method. The use of a wider field stop slit width increases the detected light intensity; however, this simultaneously narrows the diffraction angle. The narrower collimated objective beam diameter degrades the visibility of interferograms. Therefore, a plane-concave cylindrical lens between the objective plane and the single slit is introduced to expand the beam diameter. The resulting sensitivity improvement achieved when using the wide-field-stop and beam-expansion method allows the spectral characteristics of hemoglobin to be obtained noninvasively from a human palm using a midget lamp.

  11. Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout

    PubMed Central

    Vidorreta, Marta; Wang, Ze; Chang, Yulin V.; Wolk, David A.; Fernández-Seara, María A.; Detre, John A.

    2017-01-01

    Arterial Spin Labeled (ASL) perfusion MRI enables non-invasive, quantitative measurements of tissue perfusion, and has a broad range of applications including brain functional imaging. However, ASL suffers from low signal-to-noise ratio (SNR), limiting image resolution. Acquisitions using 3D readouts are optimal for background-suppression of static signals, but can be SAR intensive and typically suffer from through-plane blurring. In this study, we investigated the use of accelerated 3D readouts to obtain whole-brain, high-SNR ASL perfusion maps and reduce SAR deposition. Parallel imaging was implemented along the partition-encoding direction in a pseudo-continuous ASL sequence with background-suppression and 3D RARE Stack-Of-Spirals readout, and its performance was evaluated in three small cohorts. First, both non-accelerated and two-fold accelerated single-shot versions of the sequence were evaluated in healthy volunteers during a motor-photic task, and the performance was compared in terms of temporal SNR, GM-WM contrast, and statistical significance of the detected activation. Secondly, single-shot 1D-accelerated imaging was compared to a two-shot accelerated version to assess benefits of SNR and spatial resolution for applications in which temporal resolution is not paramount. Third, the efficacy of this approach in clinical populations was assessed by applying the single-shot 1D-accelerated version to a larger cohort of elderly volunteers. Accelerated data demonstrated the ability to detect functional activation at the subject level, including cerebellar activity, without loss in the perfusion signal temporal stability and the statistical power of the activations. The use of acceleration also resulted in increased GM-WM contrast, likely due to reduced through-plane partial volume effects, that were further attenuated with the use of two-shot readouts. In a clinical cohort, image quality remained excellent, and expected effects of age and sex on cerebral blood flow could be detected. The sequence is freely available upon request for academic use and could benefit a broad range of cognitive and clinical neuroscience research. PMID:28837640

  12. Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells

    PubMed Central

    2011-01-01

    Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662

  13. TH-A-BRF-05: MRI of Individual Lymph Nodes to Guide Regional Breast Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Asselen, B van; Lagendijk, J

    2014-06-15

    Purpose: In regional radiotherapy (RT) for breast-cancer patients, direct visualization of individual lymph nodes (LNs) may reduce target volumes and Result in lower toxicity (i.e. reduced radiation pneumonitis, arm edema, arm morbidity), relative to standard CT-based delineations. To this end, newly designed magnetic resonance imaging (MRI) sequences were optimized and assessed qualitatively and quantitatively. Methods: In ten healthy female volunteers, a scanning protocol was developed and optimized. Coronal images were acquired in supine RT position positioned on a wedge board on a 1.5 T Ingenia (Philips) wide-bore MRI. In four volunteers the optimized MRI protocol was applied, including a 3-dimensionalmore » (3D) T1-weighted (T1w) fast-field-echo (FFE). T2w sequences, including 3D FFE, 3D and 2D fast spin echo (FSE), and diffusion-weighted single-shot echo-planar imaging (DWI) were also performed. Several fatsuppression techniques were used. Qualitative evaluation parameters included LN contrast, motion susceptibility, visibility of anatomical structures, and fat suppression. The number of visible axillary and supraclavicular LNs was also determined. Results: T1 FFE, insensitive to motion, lacked contrast of LNs, which often blended in with soft tissue and blood. T2 FFE showed high contrast, but some LNs were obscured due to motion. Both 2D and 3D FSE were motion-insensitive having high contrast, although some blood remained visible. 2D FSE showed more anatomical details, while in 3D FSE, some blurring occurred. DWI showed high LN contrast, but suffered from geometric distortions and low resolution. Fat suppression by mDixon was the most reliable in regions with magnetic-field inhomogeneities. The FSE sequences showed the highest sensitivity for LN detection. Conclusion: MRI of regional LNs was achieved in volunteers. The FSE techniques were robust and the most sensitive. Our optimized MRI sequences can facilitate direct delineation of individual LNs. This can Result in smaller target volumes and reduced toxicity in regional RT compared to standard CT planning.« less

  14. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the timing and petrologic conditions of thin zircon rims in metamorphic rocks.

  15. Half Fourier single-shot turbo spin-echo magnetic resonance urography for the evaluation of suspected renal colic in pregnancy.

    PubMed

    Mullins, Jeffrey K; Semins, Michelle J; Hyams, Elias S; Bohlman, Mark E; Matlaga, Brian R

    2012-06-01

    To report our experience with magnetic resonance urography (MRU) in pregnant women suspected of having obstructing upper tract calculi. The diagnosis of an upper tract calculus in the pregnant woman can be challenging. Recent evidence suggests that MRU can be used to effectively evaluate renal colic. From 2008-2011, 9 pregnant women were referred for evaluation of suspected renal colic caused by an obstructing upper tract stone. All patients underwent MRU with a half Fourier single-shot turbo spin-echo (HASTE) protocol. Medical records and imaging studies were reviewed for demographic and clinical data as well as outcome measures. The mean age of the subjects was 25 years (range 20-34); average gestational age of the fetus was 23 weeks (range 9-36). In all cases, a renal ultrasound was the initial imaging study obtained, with nondiagnostic findings. HASTE MRU detected 4 ureteral stones and 4 cases of physiological hydronephrosis of pregnancy. In one case, interpretation of the MRU was limited as a result of patient motion. Of the patients with obstructing stones, 1 required endourologic management during her pregnancy and 3 were followed conservatively. No adverse events related to MRU occurred. HASTE MRU is an informative imaging study for pregnant women with suspected upper tract stone disease. Information gathered from this study augments that gained from alternative modalities, and aids in medical decision-making. The lack of ionizing radiation exposure, coupled with the capture of detailed anatomic imaging, makes HASTE MRU a particularly useful study in this setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Functional MR imaging of the cervical spinal cord by use of electrical stimulation at LI4 (Hegu).

    PubMed

    Wang, W D; Kong, K M; Xiao, Y Y; Wang, X J; Liang, B; Qi, W L; Wu, R H

    2006-01-01

    The purpose is to investigate the cervical spinal cord mapping on electrical stimulation at LI4 (Hegu) by using 'signal enhancement by extravascular water protons' (SEEP)-fMRI, and to establish the response of acupoint-stimulation in spinal cord. Three healthy volunteers were underwent low-frequency electrical stimulation at LI4. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. Cord activation was measured both in the sagittal and transverse imaging planes and then analyzed by AFNI (analysis of functional neuroimages) system. In the sagittal view, two subjects had an fMRI response in the cervical spinal cord upon electrical stimulation at LI4. The localizations of the segmental fMRI activation are both at C6 through T1 and C2/3 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured in the last subjects locating at C6/7 segment, the cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. It is concluded that the fMRI technique can be used for detecting with activity in the human cervical spinal cord by a single-shot fast spin-echo sequence on a 1.5 T GE clinical system. Investigating the acupoint-stimulation response in the spinal cord using the spinal fMRI will be helpful for the further discussion on the mechanisms of acupuncture to spinal cord diseases.

  17. X-PROP: a fast and robust diffusion-weighted propeller technique.

    PubMed

    Li, Zhiqiang; Pipe, James G; Lee, Chu-Yu; Debbins, Josef P; Karis, John P; Huo, Donglai

    2011-08-01

    Diffusion-weighted imaging (DWI) has shown great benefits in clinical MR exams. However, current DWI techniques have shortcomings of sensitivity to distortion or long scan times or combinations of the two. Diffusion-weighted echo-planar imaging (EPI) is fast but suffers from severe geometric distortion. Periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging (PROPELLER DWI) is free of geometric distortion, but the scan time is usually long and imposes high Specific Absorption Rate (SAR) especially at high fields. TurboPROP was proposed to accelerate the scan by combining signal from gradient echoes, but the off-resonance artifacts from gradient echoes can still degrade the image quality. In this study, a new method called X-PROP is presented. Similar to TurboPROP, it uses gradient echoes to reduce the scan time. By separating the gradient and spin echoes into individual blades and removing the off-resonance phase, the off-resonance artifacts in X-PROP are minimized. Special reconstruction processes are applied on these blades to correct for the motion artifacts. In vivo results show its advantages over EPI, PROPELLER DWI, and TurboPROP techniques. Copyright © 2011 Wiley-Liss, Inc.

  18. Spin Forming of an Aluminum 2219-T6 Aft Bulkhead for the Orion Multi-Purpose Crew Vehicle: Phase II Supplemental Report

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Squire, Michael D.; Domack, Marcia S.; Hoffman, Eric K.

    2015-01-01

    The principal focus of this project was to assist the Orion Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the aft bulkhead of the pressure vessel. The spin forming process will enable a single piece aluminum (Al) 2219 aft bulkhead which will eliminate the current multiple piece welded construction, simplify fabrication, and lead to an enhanced design that will reduce vehicle weight by eliminating welds. Phase I of this assessment explored spin forming the single-piece forward pressure vessel bulkhead from aluminum-lithium 2195.

  19. Improved Apparatus to Study Matter-Wave Quantum Optics in a Sodium Spinor Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Zhong, Shan; Bhagat, Anita; Zhang, Qimin; Schwettmann, Arne

    2017-04-01

    We present and characterize our recently improved experimental apparatus for studying matter-wave quantum optics in spin space in ultracold sodium gases. Improvements include our recent addition of a 3D-printed Helmholtz coil frame for field stabilization and a crossed optical dipole trap. Spin-exchange collisions in the F = 1 spinor Bose-Einstein condensate can be precisely controlled by microwave dressing, and generate pairs of entangled atoms with magnetic quantum numbers mF = + 1 and mF = - 1 from pairs of mF = 0 atoms. Spin squeezing generated by the collisions can reduce the noise of population measurements below the shot noise limit. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices with sub-shot noise performance. With an added ion detector to detect Rydberg atoms via pulse-field ionization, we later plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.

  20. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.

  1. Isotopically enhanced triple-quantum-dot qubit

    PubMed Central

    Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.

    2015-01-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  2. Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids

    NASA Astrophysics Data System (ADS)

    Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.

  3. Ultrafast NMR diffusion measurements exploiting chirp spin echoes.

    PubMed

    Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko

    2017-04-01

    Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice.

    PubMed

    Roth, Yiftach; Tichler, Thomas; Kostenich, Genady; Ruiz-Cabello, Jesus; Maier, Stephan E; Cohen, Jack S; Orenstein, Arie; Mardor, Yael

    2004-09-01

    To evaluate the use of diffusion-weighted magnetic resonance (MR) imaging with standard and high b values for pretreatment prediction and early detection of tumor response to various antineoplastic therapies in an animal model. Mice bearing C26 colon carcinoma tumors were treated with doxorubicin (n = 25) and with aminolevulinic acid-based photodynamic therapy (n = 23). Fourteen mice served as controls. Conventional T2-weighted fast spin-echo and diffusion-weighted MR images were acquired once before therapy and at 6, 24, and 48 hours after treatment. Pretreatment and early (1-2 days) posttreatment water diffusion parameters were calculated and compared with later changes in tumor volumes measured on conventional MR images by using the Pearson correlation test. In chemotherapy-treated tumors, a significant correlation (P <.002, r = 0.6) was observed between diffusion parameters that reflected tumor viability, measured prior to treatment, and changes in tumor volumes after therapy. This correlation implies that tumors with high pretreatment viability will respond better to chemotherapy than more necrotic tumors. In tumors treated with photodynamic therapy, no such correlation was found. Changes observed in water diffusion 1-2 days after treatment significantly correlated with later tumor growth rate for both therapies (P <.002, r = 0.54 for photodynamic therapy; P <.0003, r = 0.61 for chemotherapy). High-b-value diffusion-weighted MR imaging has potential use for the early detection of response to therapy and for predicting treatment outcome prior to initiation of chemotherapy. Copyright RSNA, 2004

  5. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.

    PubMed

    Bennett, Kevin M; Schmainda, Kathleen M; Bennett, Raoqiong Tong; Rowe, Daniel B; Lu, Hanbing; Hyde, James S

    2003-10-01

    Experience with diffusion-weighted imaging (DWI) shows that signal attenuation is consistent with a multicompartmental theory of water diffusion in the brain. The source of this so-called nonexponential behavior is a topic of debate, because the cerebral cortex contains considerable microscopic heterogeneity and is therefore difficult to model. To account for this heterogeneity and understand its implications for current models of diffusion, a stretched-exponential function was developed to describe diffusion-related signal decay as a continuous distribution of sources decaying at different rates, with no assumptions made about the number of participating sources. DWI experiments were performed using a spin-echo diffusion-weighted pulse sequence with b-values of 500-6500 s/mm(2) in six rats. Signal attenuation curves were fit to a stretched-exponential function, and 20% of the voxels were better fit to the stretched-exponential model than to a biexponential model, even though the latter model had one more adjustable parameter. Based on the calculated intravoxel heterogeneity measure, the cerebral cortex contains considerable heterogeneity in diffusion. The use of a distributed diffusion coefficient (DDC) is suggested to measure mean intravoxel diffusion rates in the presence of such heterogeneity. Copyright 2003 Wiley-Liss, Inc.

  6. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less

  7. Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Pashaee, F.

    The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.

  8. Effects of spin transition on diffusion of Fe2+ in ferropericlase in Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Saha, Saumitra; Bengtson, Amelia; Crispin, Katherine L.; van Orman, James A.; Morgan, Dane

    2011-11-01

    Knowledge of Fe composition in lower-mantle minerals (primarily perovskite and ferropericlase) is essential to a complete understanding of the Earth's interior. Fe cation diffusion potentially controls many aspects of the distribution of Fe in the Earth's lower mantle, including mixing of chemical heterogeneities, element partitioning, and the extent of core-mantle communications. Fe in ferropericlase has been shown to undergo a spin transition starting at about 40 GPa and exists in a mixture of high-spin and low-spin states over a wide range of pressures. Present experimental data on Fe transport in ferropericlase is limited to pressures below 35 GPa and provides little information on the pressure dependence of the activation volume and none on the impact of the spin transition on diffusion. Therefore, known experimental data on Fe diffusion cannot be reliably extrapolated to predict diffusion throughout the lower mantle. Here, first-principles and statistical modeling are combined to predict diffusion of Fe in ferropericlase over the entire lower mantle, including the effects of the Fe spin transition. A thorough statistical thermodynamic treatment is given to fully incorporate the coexistence of high- and low-spin Fe in the model of overall Fe diffusion in the lower mantle. Pure low-spin Fe diffuses approximately 104 times slower than high-spin Fe in ferropericlase but Fe diffusion of the mixed-spin state is only about 10 times slower than that of high-spin Fe. The predicted Fe diffusivities demonstrate that ferropericlase is unlikely to be rate limiting in transporting Fe in deep earth since much slower Fe diffusion in perovskite is predicted.

  9. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Matsui, Hiroyuki; Kubo, Takayoshi; Häusermann, Roger; Mitsui, Chikahiko; Okamoto, Toshihiro; Watanabe, Shun; Takeya, Jun

    2017-10-01

    Coherent charge transport can occur in organic semiconductor crystals thanks to the highly periodic electrostatic potential--despite the weak van der Waals bonds. And as spin-orbit coupling is usually weak in organic materials, robust spin transport is expected, which is essential if they are to be exploited for spintronic applications. In such systems, momentum relaxation occurs via scattering events, which enables an intrinsic mobility to be defined for band-like charge transport, which is >10 cm2 V-1 s-1. In contrast, there are relatively few experimental studies of the intrinsic spin relaxation for organic band-transport systems. Here, we demonstrate that the intrinsic spin relaxation in organic semiconductors is also caused by scattering events, with much less frequency than the momentum relaxation. Magnetotransport measurements and electron spin resonance spectroscopy consistently show a linear relationship between the two relaxation times over a wide temperature range, clearly manifesting the Elliott-Yafet type of spin relaxation mechanism. The coexistence of an ultra-long spin lifetime of milliseconds and the coherent band-like transport, resulting in a micrometre-scale spin diffusion length, constitutes a key step towards realizing spintronic devices based on organic single crystals.

  10. Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study.

    PubMed

    Liu, Yilin; Zhong, Xiaodong; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Dale, Brian M; Yin, Fang-Fang; Cai, Jing

    2017-02-01

    Diffusion-weighted Magnetic Resonance Imaging (DWI) has been shown to be a powerful tool for cancer detection with high tumor-to-tissue contrast. This study aims to investigate the feasibility of developing a four-dimensional DWI technique (4D-DWI) for imaging respiratory motion for radiation therapy applications. Image acquisition was performed by repeatedly imaging a volume of interest (VOI) using an interleaved multislice single-shot echo-planar imaging (EPI) 2D-DWI sequence in the axial plane. Each 2D-DWI image was acquired with an intermediately low b-value (b = 500 s/mm 2 ) and with diffusion-encoding gradients in x, y, and z diffusion directions. Respiratory motion was simultaneously recorded using a respiratory bellow, and the synchronized respiratory signal was used to retrospectively sort the 2D images to generate 4D-DWI. Cine MRI using steady-state free precession was also acquired as a motion reference. As a preliminary feasibility study, this technique was implemented on a 4D digital human phantom (XCAT) with a simulated pancreas tumor. The respiratory motion of the phantom was controlled by regular sinusoidal motion profile. 4D-DWI tumor motion trajectories were extracted and compared with the input breathing curve. The mean absolute amplitude differences (D) were calculated in superior-inferior (SI) direction and anterior-posterior (AP) direction. The technique was then evaluated on two healthy volunteers. Finally, the effects of 4D-DWI on apparent diffusion coefficient (ADC) measurements were investigated for hypothetical heterogeneous tumors via simulations. Tumor trajectories extracted from XCAT 4D-DWI were consistent with the input signal: the average D value was 1.9 mm (SI) and 0.4 mm (AP). The average D value was 2.6 mm (SI) and 1.7 mm (AP) for the two healthy volunteers. A 4D-DWI technique has been developed and evaluated on digital phantom and human subjects. 4D-DWI can lead to more accurate respiratory motion measurement. This has a great potential to improve the visualization and delineation of cancer tumors for radiotherapy. © 2016 American Association of Physicists in Medicine.

  11. Single-shot work extraction in quantum thermodynamics revisited

    NASA Astrophysics Data System (ADS)

    Wang, Shang-Yung

    2018-01-01

    We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.

  12. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  13. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  14. Optimization of the prescription isodose line for Gamma Knife radiosurgery using the shot within shot technique.

    PubMed

    Johnson, Perry B; Monterroso, Maria I; Yang, Fei; Mellon, Eric

    2017-11-25

    This work explores how the choice of prescription isodose line (IDL) affects the dose gradient, target coverage, and treatment time for Gamma Knife radiosurgery when a smaller shot is encompassed within a larger shot at the same stereotactic coordinates (shot within shot technique). Beam profiles for the 4, 8, and 16 mm collimator settings were extracted from the treatment planning system and characterized using Gaussian fits. The characterized data were used to create over 10,000 shot within shot configurations by systematically changing collimator weighting and choice of prescription IDL. Each configuration was quantified in terms of the dose gradient, target coverage, and beam-on time. By analyzing these configurations, it was found that there are regions of overlap in target size where a higher prescription IDL provides equivalent dose fall-off to a plan prescribed at the 50% IDL. Furthermore, the data indicate that treatment times within these regions can be reduced by up to 40%. An optimization strategy was devised to realize these gains. The strategy was tested for seven patients treated for 1-4 brain metastases (20 lesions total). For a single collimator setting, the gradient in the axial plane was steepest when prescribed to the 56-63% (4 mm), 62-70% (8 mm), and 77-84% (16 mm) IDL, respectively. Through utilization of the optimization technique, beam-on time was reduced by more than 15% in 16/20 lesions. The volume of normal brain receiving 12 Gy or above also decreased in many cases, and in only one instance increased by more than 0.5 cm 3 . This work demonstrates that IDL optimization using the shot within shot technique can reduce treatment times without degrading treatment plan quality.

  15. Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field

    NASA Astrophysics Data System (ADS)

    Ellegood, Jacob; McKay, Ryan T.; Hanstock, Chris C.; Beaulieu, Christian

    2007-01-01

    Although the diffusivity and anisotropy of water has been investigated thoroughly in ordered axonal systems (i.e., nervous tissue), there have been very few studies on the directional dependence of diffusion of metabolites. In this study, the mean apparent diffusion coefficient (Trace/3 ADC) and fractional anisotropy (FA) values of the intracellular metabolites N-acetyl aspartate (NAA), creatine and phosphocreatine (tCr), choline (Cho), taurine (Tau), and glutamate and glutamine (Glx) were measured parallel and perpendicular to the length of excised frog sciatic nerve using a water suppressed, diffusion-weighted, spin-echo pulse sequence at 18.8 T. The degree of anisotropy (FA) of NAA (0.41 ± 0.09) was determined to be less than tCr (0.59 ± 0.07) and Cho (0.61 ± 0.11), which is consistent with previously reported human studies of white matter. In contrast, Glx diffusion was found to be almost isotropic with an FA value of 0.20 ± 0.06. The differences of FA between the metabolites is most likely due to their differing micro-environments and could be beneficial as an indicator of compartment specific changes with disease, information not readily available with water diffusion.

  16. Multishot PROPELLER for high-field preclinical MRI.

    PubMed

    Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F; Johnson, G Allan

    2010-07-01

    With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T(2)-weighted imaging using PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI meets this need. The two-shot PROPELLER technique presented here provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and noninvasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The two-shot modification introduced here retains more high-frequency information and provides higher signal-to-noise ratio than conventional single-shot PROPELLER, making this sequence feasible at high fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. (c) 2010 Wiley-Liss, Inc.

  17. Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.

    1987-01-01

    Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.

  18. Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.

    PubMed

    Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D

    2010-07-01

    In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.

  19. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and 25.8˜373 kg/m3, respectively, much lower than bulk values. Then single anatase TiO2 nanowire is synthesized to understand intrinsic thermophysical properties and secondary porosity. Thermal diffusivity of nanowires varies from 1.76 to 5.08 × 10-6 m 2/s, while thermal conductivity alters from 1.38 to 6.01 W/m·K. SEM image of TiO2 nanowire shows secondary porous surface structure. In addition, nonlinear effects are also observed with experimental data. Two methods, generalized function analysis and direct capacitance derivation, are developed to suppress nonlinear effects. Effective thermal diffusivities from both modified analysis agree well with each other.

  20. A comparison of uterine peristalsis in women with normal uteri and uterine leiomyoma by cine magnetic resonance imaging.

    PubMed

    Orisaka, Makoto; Kurokawa, Tetsuji; Shukunami, Ken-Ichi; Orisaka, Sanae; Fukuda, Mika T; Shinagawa, Akiko; Fukuda, Shin; Ihara, Noboru; Yamada, Hiroki; Itoh, Harumi; Kotsuji, Fumikazu

    2007-11-01

    The non-pregnant uterus shows wave-like activity (uterine peristalsis). This pilot study was intended to determine: (1) whether uterine peristalsis during the menstrual cycle is detectable by cine magnetic resonance imaging (MRI); (2) the effects of leiomyoma on uterine peristalsis. Mid-sagittal MRI was performed sequentially with T2-weighted single-shot fast spin-echo (SSFSE) in 3 normal ovulatory volunteers and 19 premenopausal women with uterine leiomyoma. Direction and frequency of movement of the junctional zone were evaluated using a cine mode display. Junctional zone movement was identified in all subjects. Direction of uterine peristalsis in normal volunteers was fundus-to-cervix during menstruation, cervix-to-fundus during the periovulatory phase, and isthmical during the mid- and late-luteal phases. Abnormal peristaltic patterns were detected in three of five patients with uterine leiomyoma during menstruation and in the mid-luteal phase of the cycle, respectively. Cine MRI is a novel method for evaluation of uterine peristalsis. Results of this pilot study suggest that abnormal uterine peristalsis during menstruation and the mid-luteal phase might be one of the causes of hypermenorrhea and infertility associated with uterine leiomyoma.

  1. Development of a High Angular Resolution Diffusion Imaging Human Brain Template

    PubMed Central

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-01-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  2. The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads.

    PubMed

    Weymann, Ireneusz

    2010-01-13

    We analyze numerically the spin-dependent transport through coherent chains of three coupled quantum dots weakly connected to external magnetic leads. In particular, using the diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that transport characteristics greatly depend on the strength of the interdot Coulomb correlations, which determines the spatial distribution of the electron wavefunction in the chain. When the correlations are relatively strong, depending on the transport regime, we find both negative TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel magnetoresistance is associated with selection rules that govern tunneling processes and various high-spin states of the chain that are relevant for transport. For weak interdot correlations, on the other hand, the TMR is always positive and not larger than the Julliere TMR, although super-Poissonian shot noise and NDC can still be observed.

  3. Spinning-disk generation and drying of monodisperse solid aerosols with output concentrations sufficient for single-breath inhalation studies.

    PubMed

    Byron, P R; Hickey, A J

    1987-01-01

    The air-driven spinning-disk aerosol generator was modified to allow the production of monodisperse dry spherical aerosols of disodium fluorescein (as model solute) in high output concentrations. Output concentrations were determined by filtration. Optical and aerodynamic size distributions were determined microscopically (after electrostatic precipitation) and by cascade impaction. The generator housing allowed the entrainment of 25-microns primary aqueous solution droplets in a 10-L X min-1 downward flow of dry, filtered air. Internal equipment surfaces were machined flush and polished to minimize aerosol losses. Primary droplets were dried within a stainless steel pipe encased in a tube furnace. Water vapor was removed by diffusion drying. Disk-driven air, satellite droplets, and additional dilution air were vented to waste without using a vacuum. Generator yields were increased by reducing the size of the satellite droplet extraction gap. Aerosols were generated reproducibly by delivering aqueous solutions at a rate of 0.2 mL X min-1 to the center of the disk and spinning at 1000 rps. Dry aerosols, with mass median aerodynamic diameters of 2, 4.9, and 9 microns, were produced in concentrations of 0.89, 5.48, and 54.6 micrograms X L-1 from aqueous solutions containing 0.0374, 0.584, and 3.4% solute by weight. Geometric standard deviations were less than 1.2 in all cases. Concentrations are several times higher than others in the literature and are suitable for single-breath inhalation studies of therapeutic aerosol deposition and effect.

  4. Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.

    PubMed

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-09-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.

  5. Evidence for broken Galilean invariance at the quantum spin Hall edge

    NASA Astrophysics Data System (ADS)

    Geissler, Florian; Crépin, François; Trauzettel, Björn

    2015-12-01

    We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.

  6. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    PubMed

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  7. Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing

    2018-04-01

    We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.

  8. Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test.

    PubMed

    Jiang, Lin; Kondo, Akira; Shigeta, Masahiro; Endoh, Shigehisa; Uejima, Mitsugu; Ogura, Isamu; Naito, Makio

    2014-01-01

    To provide data required for assessing the environmental health and safety risks of nanocomposites, abrasion-induced particle release from single-wall carbon nanotube (SWCNT)/polymer composites with or without thermal aging were evaluated by a shot blast system. First, overall composite weight loss (i.e., overall particle release) as a result of shot blasting was measured. Incorporating 5 wt% SWCNTs in polystyrene (PS) matrix was observed to reduce overall particle release by approximately 30% compared with pure PS. Heat treatment of the 5 wt% SWCNT/PS composites at 100°C for 10 days induced very slight change in overall particle release due to shot blasting. However, heat treatment at 350°C for 1 hr greatly deteriorated the abrasion resistance of the composites, enhancing overall particle release. Second, to verify the existence and form of SWCNTs released from the composites, released particles were observed by electron microscopy. Micron-sized particles with protruding SWCNTs and submicron-sized SWCNT clusters were observed in the particles released from the composites. Heat treatment of the composites at 350°C for 1 hr enhanced SWCNT release, which mainly formed clusters or rope-like bundles.

  9. Diffusion tensor imaging in children with tuberous sclerosis complex: tract-based spatial statistics assessment of brain microstructural changes.

    PubMed

    Zikou, Anastasia K; Xydis, Vasileios G; Astrakas, Loukas G; Nakou, Iliada; Tzarouchi, Loukia C; Tzoufi, Meropi; Argyropoulou, Maria I

    2016-07-01

    There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity.

  10. Valuing options in shot noise market

    NASA Astrophysics Data System (ADS)

    Laskin, Nick

    2018-07-01

    A new exactly solvable option pricing model has been introduced and elaborated. It is assumed that a stock price follows a Geometric shot noise process. An arbitrage-free integro-differential option pricing equation has been obtained and solved. The new Greeks have been analytically calculated. It has been shown that in diffusion approximation the developed option pricing model incorporates the well-known Black-Scholes equation and its solution. The stochastic dynamic origin of the Black-Scholes volatility has been uncovered. To model the observed market stock price patterns consisting of high frequency small magnitude and low frequency large magnitude jumps, the superposition of two Geometric shot noises has been implemented. A new generalized option pricing equation has been obtained and its exact solution was found. Merton's jump-diffusion formula for option price was recovered in diffusion approximation. Despite the non-Gaussian nature of probability distributions involved, the new option pricing model has the same degree of analytical tractability as the Black-Scholes model and the Merton jump-diffusion model. This attractive feature allows one to derive exact formulas to value options and option related instruments in the market with jump-like price patterns.

  11. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, C; Horton, J

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b =more » 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.« less

  12. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  13. Low b-value diffusion-weighted cardiac magnetic resonance imaging: initial results in humans using an optimal time-window imaging approach.

    PubMed

    Rapacchi, Stanislas; Wen, Han; Viallon, Magalie; Grenier, Denis; Kellman, Peter; Croisille, Pierre; Pai, Vinay M

    2011-12-01

    Diffusion-weighted imaging (DWI) using low b-values permits imaging of intravoxel incoherent motion in tissues. However, low b-value DWI of the human heart has been considered too challenging because of additional signal loss due to physiological motion, which reduces both signal intensity and the signal-to-noise ratio (SNR). We address these signal loss concerns by analyzing cardiac motion during a heartbeat to determine the time-window during which cardiac bulk motion is minimal. Using this information to optimize the acquisition of DWI data and combining it with a dedicated image processing approach has enabled us to develop a novel low b-value diffusion-weighted cardiac magnetic resonance imaging approach, which significantly reduces intravoxel incoherent motion measurement bias introduced by motion. Simulations from displacement encoded motion data sets permitted the delineation of an optimal time-window with minimal cardiac motion. A number of single-shot repetitions of low b-value DWI cardiac magnetic resonance imaging data were acquired during this time-window under free-breathing conditions with bulk physiological motion corrected for by using nonrigid registration. Principal component analysis (PCA) was performed on the registered images to improve the SNR, and temporal maximum intensity projection (TMIP) was applied to recover signal intensity from time-fluctuant motion-induced signal loss. This PCATMIP method was validated with experimental data, and its benefits were evaluated in volunteers before being applied to patients. Optimal time-window cardiac DWI in combination with PCATMIP postprocessing yielded significant benefits for signal recovery, contrast-to-noise ratio, and SNR in the presence of bulk motion for both numerical simulations and human volunteer studies. Analysis of mean apparent diffusion coefficient (ADC) maps showed homogeneous values among volunteers and good reproducibility between free-breathing and breath-hold acquisitions. The PCATMIP DWI approach also indicated its potential utility by detecting ADC variations in acute myocardial infarction patients. Studying cardiac motion may provide an appropriate strategy for minimizing the impact of bulk motion on cardiac DWI. Applying PCATMIP image processing improves low b-value DWI and enables reliable analysis of ADC in the myocardium. The use of a limited number of repetitions in a free-breathing mode also enables easier application in clinical conditions.

  14. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  15. Molecular imaging of malignant tumor metabolism: whole-body image fusion of DWI/CT vs. PET/CT.

    PubMed

    Reiner, Caecilia S; Fischer, Michael A; Hany, Thomas; Stolzmann, Paul; Nanz, Daniel; Donati, Olivio F; Weishaupt, Dominik; von Schulthess, Gustav K; Scheffel, Hans

    2011-08-01

    To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard. Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard. PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively. WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  16. Single-crystal EPR spectra of the first alternating bimetallic chain compound MnCu(obp)(H2O)3·H2O (obp=oxamido bis(n,n‧-propionato))

    NASA Astrophysics Data System (ADS)

    Gatteschi, Dante; Zanchini, Claudia; Kahn, Olivier; Pei, Yu

    1989-08-01

    Single-crystal EPR spectra of the heterobimetallic alternating double-chain compound MnCu(obp) (H 2O) 3·H 2O (obp=oxamido bis (N,N'-propionato)) were recorded in the 300-20 K range. Analysis of the spectra indicate a substantially dipolar-determined linewidth with enhancement of the secular term of the second moment due to spin diffusion effects. The anisotropic shifts in the resonance field observed in low-temperature spectra revealed that interchain interactions are relevant in determining the preferred spin orientations.

  17. Entanglement distillation between solid-state quantum network nodes.

    PubMed

    Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R

    2017-06-02

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.

  18. The influence of interface on spin pumping effect in Ni{sub 80}Fe{sub 20} /Tb bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Jinjin; Jiang, Sheng; Zhang, Dong

    2016-05-15

    Focusing on the interface effect of the Ni{sub 80}Fe{sub 20} (Py)/terbium (Tb) bilayer, the influence of interface on the magnetization dynamic damping is investigated systematically. Two series of Py (12 nm)/Tb (d nm) films with and without copper (Cu) (1 nm) interlayer are deposited on silicon (Si) substrates by DC magnetron sputtering at room temperature. From vibrating sample magnetometer (VSM) measurements, the saturation magnetization (M{sub s}) decreases with increasing Tb thickness in Py/Tb bilayer while the decrease of M{sub s} is suppressed efficiently by inserting a Cu layer with even 1 nm of thickness. From the frequency dependence of ferromagneticmore » resonance (FMR) linewidth, we can obtain the Gilbert damping coefficient (α), α is found to exhibit an extreme enhancement in comparison to the single Py layer and shows an increasing trend with increasing Tb thickness. By inserting the Cu layer, α decreases significantly. From theoretical fitting, the spin diffusion length (λ{sub SD}) and spin mixing conductance (g{sup ↑↓}) are determined. It shows that the interface structure influences the spin mixing conductance but not the spin diffusion length.« less

  19. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  20. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  1. Turboprop: improved PROPELLER imaging.

    PubMed

    Pipe, James G; Zwart, Nicholas

    2006-02-01

    A variant of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI, called turboprop, is introduced. This method employs an oscillating readout gradient during each spin echo of the echo train to collect more lines of data per echo train, which reduces the minimum scan time, motion-related artifact, and specific absorption rate (SAR) while increasing sampling efficiency. It can be applied to conventional fast spin-echo (FSE) imaging; however, this article emphasizes its application in diffusion-weighted imaging (DWI). The method is described and compared with conventional PROPELLER imaging, and clinical images collected with this PROPELLER variant are shown. Copyright 2006 Wiley-Liss, Inc.

  2. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  3. Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1991-01-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.

  4. Comparison of the Characteristics and Performance of Flurbiprofen 8.75 mg Spray for Sore Throat.

    PubMed

    Veale, David; Shephard, Adrian; Adams, Verity; Lidster, Charlotte

    2017-01-01

    Sore throat sprays provide targeted relief by delivering the active ingredient directly to the site of pain. Different sprays vary in characteristics, thus affecting delivery of the active ingredient to the throat, which can impact compliance. The characteristics and performance of FLURBIPROFEN 8.75 mg SPRAY were compared with 12 other sprays. Parameters assessed included spray angle and pattern, droplet size distribution, shot weight uniformity and shot weight throughout life. Among all sprays tested WICK Sulagil Halsspray had the smallest spray angle (46°) and also the smallest diameter spray pattern (X=32.8 mm; Y=34.4 mm). Thiovalone® Buccal Spray Suspension had both the largest spray angle (82°) and largest diameter spray pattern (X=62.6 mm; Y=78.0 mm). Hasco Sept® Aerosol Spray had the smallest droplet size (Dv90=118.4 μm) whereas OKi infiammazione e dolore® 0.16% spray had the largest (Dv90=214.34 μm). In terms of shot weight uniformity, TANTUM® VERDE GOLA 0.25% spray showed the least variation (2% RSD) between shots and UNIBEN Aerosol Spray the most (23.4% RSD). Shot weight throughout life studies showed that FLURBIPROFEN 8.75 mg SPRAY had the least deviation from shot weight (1.77%) whereas OKi infiammazione e dolore® 0.16% spray deviated the most (44.9%). FLURBIPROFEN 8.75 mg SPRAY had the second smallest spray angle/pattern and droplet size distribution and also the least variation in shot weight. Different sore throat sprays vary in different attributes, affecting delivery of the active ingredient. FLURBIPROFEN 8.75 mg SPRAY performed well overall, ranking first among all sprays tested, and providing a dose which is targeted and uniformly delivered throughout the life of the bottle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics.

    PubMed

    Rehanek, Jens; Milne, Christopher J; Szlachetko, Jakub; Czapla-Masztafiak, Joanna; Schneider, Jörg; Huthwelker, Thomas; Borca, Camelia N; Wetter, Reto; Patthey, Luc; Juranić, Pavle

    2018-01-01

    One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10 -4 , within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

  6. k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T.

    PubMed

    Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert

    2012-04-02

    There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2007-04-01

    Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.

  8. Feasibility study of computed vs measured high b-value (1400 s/mm²) diffusion-weighted MR images of the prostate

    PubMed Central

    Bittencourt, Leonardo K; Attenberger, Ulrike I; Lima, Daniel; Strecker, Ralph; de Oliveira, Andre; Schoenberg, Stefan O; Gasparetto, Emerson L; Hausmann, Daniel

    2014-01-01

    AIM: To evaluate the impact of computed b = 1400 s/mm2 (C-b1400) vs measured b = 1400 s/mm2 (M-b1400) diffusion-weighted images (DWI) on lesion detection rate, image quality and quality of lesion demarcation using a modern 3T-MR system based on a small-field-of-view sequence (sFOV). METHODS: Thirty patients (PSA: 9.5 ± 8.7 ng/mL; 68 ± 12 years) referred for magnetic resonance imaging (MRI) of the prostate were enrolled in this study. All measurements were performed on a 3T MR system. For DWI, a single-shot EPI diffusion sequence (b = 0, 100, 400, 800 s/mm²) was utilized. C-b1400 was calculated voxelwise from the ADC and diffusion images. Additionally, M-b1400 was acquired for evaluation and comparison. Lesion detection rate and maximum lesion diameters were obtained and compared. Image quality and quality of lesion demarcation were rated according to a 5-point Likert-type scale. Ratios of lesion-to-bladder as well as prostate-to-bladder signal intensity (SI) were calculated to estimate the signal-to-noise-ratio (SNR). RESULTS: Twenty-four lesions were detected on M-b1400 images and compared to C-b1400 images. C-b1400 detected three additional cancer suspicious lesions. Overall image quality was rated significantly better and SI ratios were significantly higher on C-b1400 (2.3 ± 0.8 vs 3.1 ± 1.0, P < 0.001; 5.6 ± 1.8 vs 2.8 ± 0.9, P < 0.001). Comparison of lesion size showed no significant differences between C- and M-b1400 (P = 0.22). CONCLUSION: Combination of a high b-value extrapolation and sFOV may contribute to increase diagnostic accuracy of DWI without an increase of acquisition time, which may be useful to guide targeted prostate biopsies and to improve quality of multiparametric MRI (mMRI) especially under economical aspects in a private practice setting. PMID:24976938

  9. Absolute Quantification of Rifampicin by MALDI Imaging Mass Spectrometry Using Multiple TOF/TOF Events in a Single Laser Shot

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.

    2017-01-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R2) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%.

  10. Development of a high angular resolution diffusion imaging human brain template.

    PubMed

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  12. High-resolution magic angle spinning 1H-NMR spectroscopy studies on the renal biochemistry in the bank vole (Clethrionomys glareolus) and the effects of arsenic (As3+) toxicity.

    PubMed

    Griffin, J L; Walker, L; Shore, R F; Nicholson, J K

    2001-06-01

    1. High-resolution magic angle spinning (MAS) 1H-NMR spectroscopy was used to study renal metabolism and the toxicity of As3+, a common environmental contaminant, in the bank vole (Clethrionomys glareolus), a wild species of rodent. 2. Following a 14-day exposure to an environmentally relevant dose of As2O3 (28 mg kg(-1) feed), voles displayed tissue damage at autopsy. MAS 1H spectra indicated abnormal lipid profiles in these samples. 3. Tissue necrosis was also evident from measurements of the apparent diffusion coefficient of water in the intact tissue using MAS 1H diffusion-weighted spectroscopy, its first application to toxicology. 4. Comparison of renal tissue from the wood mouse (Apodemus sylvaticus) exposed to identical exposure levels of As3+ suggested that the bank vole is particularly vulnerable to As3+ toxicity.

  13. Comparative toxicity of lead shot in black ducks (Anas rubripes) and mallards (Anas platyrhynchos)

    USGS Publications Warehouse

    Rattner, B.A.; Fleming, W.J.; Bunck, C.M.

    1989-01-01

    In winter, pen-reared and wild black ducks (Anas rubripes), and game farm and wild mallards (Anas platyrhynchos), maintained on pelleted feed, were sham-dosed or given one number 4 lead shot. After 14 days, dosed birds were redosed with two or four additional lead shot. This dosing regimen also was repeated in summer using pen-reared black ducks and game farm mallards. Based upon mortality, overt intoxication, weight change, delta-aminolevulinic acid dehydratase activity and protoporphyrin concentration, black ducks and mallards were found to be equally tolerant to lead shot. However, captive wild ducks were more sensitive than their domesticated counterparts, as evidenced by greater mortality and weight loss following lead shot administration. This difference may be related to stress associated with captivity and unnatural diet.

  14. MR of the small bowel with a biphasic oral contrast agent (polyethylene glycol): technical aspects and findings in patients affected by Crohn's disease.

    PubMed

    Laghi, Andrea; Paolantonio, Pasquale; Iafrate, Franco; Borrelli, Osvaldo; Dito, Lucia; Tomei, Ernesto; Cucchiara, Salvatore; Passariello, Roberto

    2003-01-01

    To report our experience using MR of the small bowel with polyethylene glycol (PEG) solution as an oral contrast agent in a population of adults and children with known Crohn's disease. 40 patients (29 males; 11 females), 15 adults (age range 24-52 years) and 25 children (age range 5-17 years), with known Crohn's disease, underwent MR of the small bowel using a supeconductive 1.5 T magnet, and polyethylene glycol solution as an oral contrast agent. The fixed amount of contrast agent was 750-1000 ml for adults and 10 ml/kg of body weight for children. The Crohn's Disease Activity Index (CDAI) was available in all patients. Our study protocol included the acquisition of T2-weighted half-Fourier single-shot turbo spin-echo (HASTE) sequences and true fast imaging in the steady-state precession (true-FISP) sequences, followed by the acquisition of "spoiled" 2D gradient echo T1-weighted sequences with fat suppression (FLASH, fast low-angle shot) or alternatively "spoiled" 3D (VIBE, volume interpolated breath-hold examination), acquired 70 seconds after intravenous administration of gadopentetate dimeglumine (Gd-DTPA) (0,1 mmol/kg). A specific MR score was created and calculated for each patient and was compared by means of the Spearman rank with CDAI. In all patients no significant side effects were observed and the MR examination was well tolerated even by paediatric patients. In all cases MR showed a small bowel wall thickening (> 4 mm) in the terminal ileum, with lumen stenosis in 26 patients. In 3 cases pathological segments proximal to the terminal ileum were observed and in another 3 cases caecal involvement was visible. The MR examination was able to show abnormalities of perivisceral fat tissue in 15 patients, mesenteric lymphadenopathy in 1 patient and abdominal abscess in 1 case. The Spearman rank showed a statistically significant correlation between CDAI and the MR score (r = 0.91, P = 0,0001). MR using PEG as an oral contrast agent could be considered a test of great interest in the evaluation of the small bowel in patients suspected of having Crohn's disease in that it is easily reproducible, well tolerated even by paediatric patients and it provides useful information about the localisation, extension and activity of inflammatory disease without the use of ionising radiation.

  15. NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution.

    PubMed

    Kumar, B V N Phani; Priyadharsini, S Umayal; Prameela, G K S; Mandal, Asit Baran

    2011-08-01

    The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and conductivity measurements. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. [Comparison of Quantification of Myocardial Infarct Size by One Breath Hold Single Shot PSIR Sequence and Segmented FLASH-PSIR Sequence at 3. 0 Tesla MR].

    PubMed

    Cheng, Wei; Cai, Shu; Sun, Jia-yu; Xia, Chun-chao; Li, Zhen-lin; Chen, Yu-cheng; Zhong, Yao-zu

    2015-05-01

    To compare the two sequences [single shot true-FISP-PSIR (single shot-PSIR) and segmented-turbo-FLASH-PSIR (segmented-PSIR)] in the value of quantification for myocardial infarct size at 3. 0 tesla MRI. 38 patients with clinical confirmed myocardial infarction were served a comprehensive gadonilium cardiac MRI at 3. 0 tesla MRI system (Trio, Siemens). Myocardial delayed enhancement (MDE) were performed by single shot-PSIR and segmented-PSIR sequences separatedly in 12-20 min followed gadopentetate dimeglumine injection (0. 15 mmol/kg). The quality of MDE images were analysed by experienced physicians. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) between the two techniques were compared. Myocardial infarct size was quantified by a dedicated software automatically (Q-mass, Medis). All objectives were scanned on the 3. 0T MR successfully. No significant difference was found in SNR and CNR of the image quality between the two sequences (P>0. 05), as well as the total myocardial volume, between two sequences (P>0. 05). Furthermore, there were still no difference in the infarct size [single shot-PSIR (30. 87 ± 15. 72) mL, segmented-PSIR (29. 26±14. 07) ml], ratio [single shot-PSIR (22. 94%±10. 94%), segmented-PSIR (20. 75% ± 8. 78%)] between the two sequences (P>0. 05). However, the average aquisition time of single shot-PSIR (21. 4 s) was less than that of the latter (380 s). Single shot-PSIR is equal to segmented-PSIR in detecting the myocardial infarct size with less acquisition time, which is valuable in the clinic application and further research.

  17. Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-10-01

    To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with radial-like k-space sampling, using a 32-channel coil at 3 T in acute brain ischemia. The BLADE DWI was the preferred scan for the detection of acute diffusion abnormalities because of the lack of bulk susceptibility artifacts.

  18. An approach to spin-resolved molecular gas microscopy

    NASA Astrophysics Data System (ADS)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  19. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images.

    PubMed

    Pedersen, T V; Olsen, D R; Skretting, A

    1997-08-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.

  20. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  1. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.

  2. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. [Joint correction for motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging].

    PubMed

    Wu, Wenchuan; Fang, Sheng; Guo, Hua

    2014-06-01

    Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.

  4. Analysis of multilayer and single layer X-ray detectors for contrast-enhanced mammography using imaging task

    NASA Astrophysics Data System (ADS)

    Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.

    2011-03-01

    A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.

  5. Method and device for measuring single-shot transient signals

    DOEpatents

    Yin, Yan

    2004-05-18

    Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.

  6. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging.

    PubMed

    Kirkinen, P; Partanen, K; Ryynänen, M; Ordén, M R

    1997-08-01

    To describe the magnetic resonance imaging (MRI) findings associated with fetal intracranial hemorrhage and to compare them with ultrasound findings. In four pregnancies complicated by fetal intracranial hemorrhage, fetal imaging was carried out using T2-weighted fast spin echo sequences and T1-weighted fast low angle shot imaging sequences and by transabdominal ultrasonography. An antepartum diagnosis of hemorrhage was made by ultrasound in one case and by MRI in two. Retrospectively, the hemorrhagic area could be identified from the MRI images in an additional two cases and from the ultrasound images in one case. In the cases of intraventricular hemorrhage, the MRI signal intensity in the T1-weighted images was increased in the hemorrhagic area as compared to the contralateral ventricle and brain parenchyma. In a case with subdural hemorrhage, T2-weighted MRI signals from the hemorrhagic area changed from low-to high-intensity signals during four weeks of follow-up. Better imaging of the intracranial anatomy was possible by MRI than by transabdominal ultrasonography. MRI can be used for imaging and dating fetal intracranial hemorrhages. Variable ultrasound and MRI findings are associated with this complication, depending on the age and location of the hemorrhage.

  7. Impact of gadolinium-based contrast agent in the assessment of Crohn's disease activity: Is contrast agent injection necessary?

    PubMed

    Quaia, Emilio; Sozzi, Michele; Gennari, Antonio Giulio; Pontello, Michele; Angileri, Roberta; Cova, Maria Assunta

    2016-03-01

    To determine whether magnetic resonance enterography (MRE) performed without intravenous contrast injection is diagnostically noninferior to conventional contrast-enhanced MRE (CE-MRE) in patients with Crohn's disease (CD). This was an Institutional Review Board (IRB)-approved retrospective study. Ninety-six patients (52 male and 44 female; 47.18 years ± 13.6) with a diagnosis of CD underwent MRE at 1.5T including T2 -weighted single-shot turbo-spin-echo, T2 -weighted spectral fat presaturation with inversion recovery (SPAIR), T1 -weighted balanced fast-field-echo MR sequences, and CE-MRE consisting in T1 -weighted breath-hold THRIVE 3D MRI sequences after administration of gadobenate dimeglumine (0.2 mL/kg of body weight). Unenhanced MRE, CE-MRE, and unenhanced MRE plus CE-MRE were reviewed in separate sessions with blinding by two readers in consensus, and subsequently by two other readers independently considering a subgroup of 20 patients. Crohn's Disease Endoscopic Index of Severity (CDEIS) and/or histologic analysis of the surgical specimen were considered as reference standards for the assessment of inflammatory activity. Patients revealed prevalently active (n = 55 patients) or quiescent CD (n = 41 patients). The agreement between unenhanced MRE vs. CE-MRE in interpreting active bowel inflammation was 96% (123/128 bowel segments; one-sided 95% confidence interval [CI], >94.4%). Unenhanced MRE vs. CE-MRE vs. unenhanced MRE plus CE-MRE revealed a diagnostic accuracy of 93% [90/96] vs. 92% [88/96] vs. 97% [93/96] (P > 0.05) in the diagnosis of active CD. Interreader agreement was very good for all variables (κ value = 0.8-0.9) except for the measurement of the length of disease (κ value = 0.45). Unenhanced MRE was noninferior to CE-MRE in diagnosing active inflammation in patients with CD. © 2015 Wiley Periodicals, Inc.

  8. Single-shot antithymocyte globulin (ATG) induction for pancreas/kidney transplantation: ATG-Fresenius versus Thymoglobulin.

    PubMed

    Schulz, T; Papapostolou, G; Schenker, P; Kapischke, M

    2005-03-01

    Single-shot antithymocyte globulin (ATG) prior to reperfusion followed by tacrolimus (TAC), mycophenolate mofetil (MMF), and prednisolone (PRD) is an established induction therapy in simultaneous pancreas kidney transplant (SPK) recipients. We retrospectively analyzed 6-month data from 105 patients who received their first SPK. From January 1996 to December 2000, ATG-Fresenius was used. Since January 2001, Thymoglobulin has been administered. In the first group, 58 patients were treated with ATG-Fresenius (4-6 mg/kg body weight). In the second group, 47 patients received Thymoglobulin (1.5-2.5 mg/kg body weight). HLA-mismatch was comparable. After an observation period of 6 months, patients, kidney, and pancreas graft survival is 98.3%, 96.6%, and 93.1% in group I and 97.9%, 97.9%, and 85.1% in group II, respectively. In each group, one death with functioning graft (DWFG) was observed. Twenty (34.5%) acute rejection episodes (AR) were observed (18 patients) in group I. They were treated with steroids (n = 16) or steroids/OKT3 (n = 4). One kidney graft failure was observed due to rejection and one due to DWFG. Four pancreas grafts were lost (thrombosis, n = 2; AR, n = 1; DWFG, n = 1). In group II, 15 AR (31.9%) were seen in 12 patients and were treated with steroids (n = 12), steroids/ATG (n = 1), or steroids/OKT3 (n = 2). Seven pancreas (thrombosis, n = 5; rejection, n = 1; DWFG, n = 1) and one kidney (DWFG, n = 1) graft losses occurred. These data clearly establish that single-shot ATG prior to reperfusion, followed by TAC, MMF, and PRD results in a low incidence of AR (34.5% in group I and 31.9% in group II) after SPK. Only 6.9% (group I) and 6.4% (group II) of the patients received antibodies for rejection treatment.

  9. High-fidelity spin measurement on the nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Hanks, Michael; Trupke, Michael; Schmiedmayer, Jörg; Munro, William J.; Nemoto, Kae

    2017-10-01

    Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center’s parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.

  10. Correction of spin diffusion during iterative automated NOE assignment

    NASA Astrophysics Data System (ADS)

    Linge, Jens P.; Habeck, Michael; Rieping, Wolfgang; Nilges, Michael

    2004-04-01

    Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However, this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure calculation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus β-spectrin. By comparing structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE assignment scheme.

  11. Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering

    DOE PAGES

    Zhang, Steven S. -L.; Heinonen, Olle

    2018-04-02

    In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less

  12. Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S. -L.; Heinonen, Olle

    In this paper, we study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does themore » TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004)]. Finally, we derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.« less

  13. Topological Hall effect in diffusive ferromagnetic thin films with spin-flip scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Heinonen, Olle

    2018-04-01

    We study the topological Hall (TH) effect in a diffusive ferromagnetic metal thin film by solving a Boltzmann transport equation in the presence of spin-flip scattering. A generalized spin-diffusion equation is derived which contains an additional source term associated with the gradient of the emergent magnetic field that arises from skyrmions. Because of the source term, spin accumulation may build up in the vicinity of the skyrmions. This gives rise to a spin-polarized diffusion current that in general suppresses the bulk TH current. Only when the spin-diffusion length is much smaller than the skyrmion size does the TH resistivity approach the value derived by Bruno et al. [Phys. Rev. Lett. 93, 096806 (2004), 10.1103/PhysRevLett.93.096806]. We derive a general expression of the TH resistivity that applies to thin-film geometries with spin-flip scattering, and show that the corrections to the TH resistivity become large when the size of room temperature skyrmions is further reduced to tens of nanometers.

  14. Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.

    2010-07-01

    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.

  15. Rapid Radiofrequency Field Mapping In Vivo Using Single-Shot STEAM MRI

    PubMed Central

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-01-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60° and 100° instead of 90°, inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T2-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods. Magn Reson Med 60:739–743, 2008. © 2008 Wiley-Liss, Inc. PMID:18727090

  16. Recent advancements in 2D-materials interface based magnetic junctions for spintronics

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Qureshi, Nabeel Anwar; Hussain, Ghulam

    2018-07-01

    Two-dimensional (2D) materials comprising of graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs) have revealed fascinating properties in various spintronic architectures. Here, we review spin valve effect in lateral and vertical magnetic junctions incorporating 2D materials as non-magnetic layer between ferromagnetic (FM) electrodes. The magnetic field dependent spin transport properties are studied by measuring non-local resistance (RNL) and relative magnetoresistance ratio (MR) for lateral and vertical structures, respectively. The review consists of (i) studying spin lifetimes and spin diffusion length thereby exploring the effect of tunneling and transparent contacts in lateral spin valve structures, temperature dependence, gate tunability and contrasting mechanisms of spin relaxation in single layer graphene (SLG) and bilayer graphene (BLG) devices. (ii) Perpendicular spin valve devices are thoroughly investigated thereby studying the role of different 2D materials in vertical spin dynamics. The dependence of spin valve signal on interface quality, temperature and various other parameters is also investigated. Furthermore, the spin reversal in graphene-hBN hybrid system is examined on the basis of Julliere model.

  17. The parallel-antiparallel signal difference in double-wave-vector diffusion-weighted MR at short mixing times: A phase evolution perspective

    NASA Astrophysics Data System (ADS)

    Finsterbusch, Jürgen

    2011-01-01

    Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.

  18. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  19. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  20. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  1. 32 CFR 552.100 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designed or redesigned, made or remade, modified or remodified to automatically fire more than one shot by..., incendiary, blank, shotgun, black powder, and shot). Items shall only be considered as ammunition when loaded... smooth bore either a number of ball shot or a single projectile for each single pull of the trigger. (j...

  2. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  3. Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors

    NASA Astrophysics Data System (ADS)

    Burkard, Guido

    2006-03-01

    Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=<δI δI>φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).

  4. Non-enhanced magnetic resonance imaging of the small bowel at 7 Tesla in comparison to 1.5 Tesla: First steps towards clinical application.

    PubMed

    Hahnemann, Maria L; Kraff, Oliver; Maderwald, Stefan; Johst, Soeren; Orzada, Stephan; Umutlu, Lale; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2016-06-01

    To perform non-enhanced (NE) magnetic resonance imaging (MRI) of the small bowel at 7 Tesla (7T) and to compare it with 1.5 Tesla (1.5T). Twelve healthy subjects were prospectively examined using a 1.5T and 7T MRI system. Coronal and axial true fast imaging with steady-state precession (TrueFISP) imaging and a coronal T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence were acquired. Image analysis was performed by 1) visual evaluation of tissue contrast and detail detectability, 2) measurement and calculation of contrast ratios and 3) assessment of artifacts. NE MRI of the small bowel at 7T was technically feasible. In the vast majority of the cases, tissue contrast and image details were equivalent at both field strengths. At 7T, two cases revealed better detail detectability in the TrueFISP, and better contrast in the HASTE. Susceptibility artifacts and B1 inhomogeneities were significantly increased at 7T. This study provides first insights into NE ultra-high field MRI of the small bowel and may be considered an important step towards high quality T2w abdominal imaging at 7T MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    NASA Astrophysics Data System (ADS)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  7. Emulating Many-Body Localization with a Superconducting Quantum Processor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Chen, Jin-Jun; Zeng, Yu; Zhang, Yu-Ran; Song, Chao; Liu, Wuxin; Guo, Qiujiang; Zhang, Pengfei; Xu, Da; Deng, Hui; Huang, Keqiang; Wang, H.; Zhu, Xiaobo; Zheng, Dongning; Fan, Heng

    2018-02-01

    The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence of many-body localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization, which only addresses noninteracting particles in the presence of disorder, greatly challenges this concept, because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography. Here we present an experiment fully emulating the MBL dynamics with a 10-qubit superconducting quantum processor, which represents a spin-1 /2 X Y model featuring programmable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and, more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems on the platform of large-scale multiqubit superconducting quantum processors.

  8. Spin diffusion from an inhomogeneous quench in an integrable system.

    PubMed

    Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž

    2017-07-13

    Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.

  9. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI

    PubMed Central

    Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.

    2009-01-01

    Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FLASH = fast low-angle shot; GM = gray matter; MPRAGE = magnetization-prepared rapid gradient echo; MR = magnetic resonance; MS = multiple sclerosis; NACGM = normal-appearing cortical gray matter; RF = radiofrequency; ROI = region of interest; RRMS = relapsing–remitting multiple sclerosis; SNR = signal-to-noise ratio; SPMS = secondary progressive multiple sclerosis; TA = time of acquisition; TE = echo time; TR = repetition time; TSE = turbo spin-echo; WM = white matter. PMID:19641168

  10. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    PubMed

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Flying over decades

    NASA Astrophysics Data System (ADS)

    Hoeller, Judith; Issler, Mena; Imamoglu, Atac

    Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.

  12. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Wang, Lihong V.

    2017-02-01

    Optical phase conjugation based wavefront shaping techniques are being actively developed to focus light through or inside scattering media such as biological tissue, and they promise to revolutionize optical imaging, manipulation, and therapy. The speed of digital optical phase conjugation (DOPC) has been limited by the low speeds of cameras and spatial light modulators (SLMs), preventing DOPC from being applied to thick living tissue. Recently, a fast DOPC system was developed based on a single-shot wavefront measurement method, a field programmable gate array (FPGA) for data processing, and a digital micromirror device (DMD) for fast modulation. However, this system has the following limitations. First, the reported single-shot wavefront measurement method does not work when our goal is to focus light inside, instead of through, scattering media. Second, the DMD performed binary amplitude modulation, which resulted in a lower focusing contrast compared with that of phase modulations. Third, the optical fluence threshold causing DMDs to malfunction under pulsed laser illumination is lower than that of liquid crystal based SLMs, and the system alignment is significantly complicated by the oblique reflection angle of the DMD. Here, we developed a simple but high-speed DOPC system using a ferroelectric liquid crystal based SLM (512 × 512 pixels), and focused light through three diffusers within 4.7 ms. Using focused-ultrasound-guided DOPC along with a double exposure scheme, we focused light inside a scattering medium containing two diffusers within 7.7 ms, thus achieving the fastest digital time-reversed ultrasonically encoded (TRUE) optical focusing to date.

  13. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.

    PubMed

    Bhattacharyya, Pallab K; Mullin, Jeffery; Lee, Bryan S; Gonzalez-Martinez, Jorge A; Jones, Stephen E

    2017-05-01

    Surgical resection of the epileptogenic zone (EZ) is a potential cure for medically refractory focal epilepsy. Proper identification of the EZ is essential for such resection. Synergistic application of functional magnetic resonance imaging (fMRI) simultaneously with stimulation of a single externalized intracranial stereotactic EEG (SEEG) electrode has the potential to improve identification of the EZ. While most EEG-fMRI studies use the electrodes passively to record electrical activity, it is possible to stimulate the brain using the electrodes by connecting them with conducting cables to the stimulation hardware. In this study, we investigated the effect of MRI-induced heating on a single SEEG electrode and its sensitivity to geometry, configuration, and associated connections required for the stimulation. The temperature increase of a single electrode embedded within a gel phantom and connected to an external stimulation system was measured during 1.5T MRI scans using adjacent fluoroptic temperature sensors. A receive-only split-array head coil and a transmit-receive head coil were used for testing. Sequences included a standard localizer, T1-weighted axial fast low-angle shot (FLASH), gradient echo-planar imaging (GE-EPI) axial fMRI, and a high specific absorption rate T2-weighted turbo spin-echo (TSE) axial scan. Variations of the electrode location and connecting cable configuration were tested. No unacceptable heating was observed with the standard sequences used for evaluation of the EZ. Considerable heating (up to 14°C) was observed with the TSE sequence, which is not used clinically. The temperature increase was insignificant (<0.05°C) for electrode contacts closest to the isocenter and connecting cables lying along the isocenter, and varied with configurations of the connecting cable assembly. Simultaneous intracranial electrode stimulation during fMRI using an externalized stimulation system may be safe with strict adherence to settings tested prior to the fMRI. Localizer, FLASH, and GE-EPI fMRI may be safely performed in patients with a single SEEG electrode following the configurations tested in this study, but high SAR TSE scans should not be performed in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Spectrum of spin waves in cold polarized gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  15. Solid-state selective (13)C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls.

    PubMed

    Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  16. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André; Kläui, Mathias; Lee, Kyung-Jin; Manchon, Aurélien

    2015-03-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ˜∇2[m ×(u .∇ ) m ] +ξ ∇2[(u .∇ ) m ] , where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  17. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion.

    PubMed

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao

    2017-01-01

    Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.

  18. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells

    PubMed Central

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602

  19. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    PubMed

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  20. Assessment of brain core temperature using MR DWI-thermometry in Alzheimer disease patients compared to healthy subjects.

    PubMed

    Sparacia, Gianvincenzo; Sakai, Koji; Yamada, Kei; Giordano, Giovanna; Coppola, Rosalia; Midiri, Massimo; Grimaldi, Luigi Maria

    2017-04-01

    To assess the brain core temperature of Alzheimer disease (AD) patients in comparison with healthy volunteers using diffusion-weighted thermometry. Fourteen AD patients (3 men, 11 women; age range 60-81 years, mean age 73.8 ± 6.1 years) and 14 healthy volunteers, age and sex-matched (mean age 70.1 ± 6.9 years; range 62-84 years; 5 men, 9 women) underwent MR examination between February 2014 and March 2016. MR imaging studies were performed with a 1.5-T MR scanner. Brain core temperature (T: °C) was calculated using the following equation from the diffusion coefficient (D) in the lateral ventricular (LV) cerebrospinal fluid: T = 2256.74/ln (4.39221/D) - 273.15 using a standard DWI single-shot echo-planar pulse sequence (b value 1000 s/mm 2 ). Statistical analysis was performed using a nonparametric Wilcoxon rank-sum test to compare the patient and control groups regarding LV temperatures. There was no significant difference (P = 0.1937) in LV temperature between patients (mean 37.9 ± 1.1 °C, range 35.8-39.2 °C) and control group (38.7 ± 1.4 °C, range 36.9-42.7 °C). Brain core temperature in AD patients showed no significant alterations compared to healthy volunteers.

  1. [Diffusion tensor imaging findings in first-episode and chronic schizophrenics].

    PubMed

    Wei, Qin-Ling; Kang, Zhuang; Wu, Xiao-Li; Zhang, Jin-Bei; Li, Lei-Jun; Zheng, Liang-Rong; Guo, Xiao-Feng; Zhao, Jing-Ping

    2011-08-23

    To investigate the integrity of white matters in first-episode and chronic schizophrenics. For this study, 39 first-episode and 38 chronic schizophrenics, 69 healthy controls (age, gender and years of received education no significantly different from those of the patients) underwent diffusion weighted images with a single-shot echo planar imaging (EPI) sequence aligned to the straight axial plane. The fractional anisotropy (FA) images of three groups underwent one-way ANOVA with the methods of voxel-based morphometric (VBM) analysis. (1) There were three brain regions where the FA values of white matter were different among three groups: right caudate nucleus (MNI: 20, 12, 14; cluster = 432 voxels; FA value: 0.36 ± 0.18 vs 0.35 ± 0.24 vs 0.38 ± 0.17), left insula (MNI: -32, 18, 2; cluster = 204 voxels; FA value: 0.35 ± 0.31 vs 0.33 ± 0.24 vs 0.36 ± 0.21) and right anterior cingulate (MNI: 16, 36, 12; cluster = 132 voxels; FA value: 0.35 ± 0.29 vs 0.34 ± 0.31 vs 0.37 ± 0.25). (2) The mean FA values of the three brain regions of two patients groups decreased versus those of healthy controls (P < 0.05). (3) The mean FA values of left insular region in chronic patients decreased versus those of the first-episode patients (P < 0.05). The reduced integrity of white matter may play an etiological role in schizophrenia and the changes are probably progressive.

  2. Does apparent diffusion coefficient predict the degree of liver regeneration of donor and recipient after living donor liver transplantation?

    PubMed

    Morita, Koichiro; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Ushijima, Yasuhiro; Takayama, Yukihisa; Okamoto, Daisuke; Fujita, Nobuhiro; Ikegami, Toru; Yoshizumi, Tomoharu; Shirabe, Ken; Honda, Hiroshi

    2017-05-01

    To elucidate the relationship between the ADCs of the liver graft and the remnant liver and the degree of liver regeneration in LDLT. 15 recipients and 15 corresponding donors underwent magnetic resonance imaging and computed tomography 1-2 weeks after living donor liver transplantation (LDLT). For diffusion-weighted imaging (DWI), a single-shot echo-planar sequence with b-factors of 0, 500, and 1000s/mm 2 was scanned. ADCs of the liver parenchyma were calculated at b factors of 0 and 500 and 1000 (ADC 0-500-1000) or 0 and 500 (ADC 0-500) or 500 and 1000 (ADC 500-1000). The liver volume ratio at LDLT, the mean ADCs and the regeneration rate were compared between the graft and the remnant liver using paired-t tests. The mean liver volume ratio of the recipients (41.3±9.8%) tended to be smaller than that of the donors (51.8±13.8%). The mean ADC 0-500 of the remnant liver (1.72±0.33) was significantly higher than that of the graft (1.43±0.32). The regeneration rate of the graft (2.07±0.41) was significantly higher than that of the remnant liver (1.53±0.49). ADC 0-500 can describe differences in blood perfusion between liver grafts and the remnant liver according to the degree of liver regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Economic Evaluation of Immunisation Programme of 23-Valent Pneumococcal Polysaccharide Vaccine and the Inclusion of 13-Valent Pneumococcal Conjugate Vaccine in the List for Single-Dose Subsidy to the Elderly in Japan.

    PubMed

    Hoshi, Shu-ling; Kondo, Masahide; Okubo, Ichiro

    2015-01-01

    Currently in Japan, both 23-valent pneumococcal polysaccharide vaccine (PPSV-23) and 13-valent pneumococcal conjugate vaccine (PCV-13) are available for the elderly for the prevention of S. pneumoniae-related diseases. PPSV-23 was approved in 1988, while the extended use of PCV-13 was approved for adults aged 65 and older in June 2014. Despite these two vaccines being available, the recently launched national immunisation programme for the elderly only subsidised PPSV-23. The framework of the current immunisation programme lasts for five years. The elderly population eligible for the subsidised PPSV-23 shot for the 1st year are those aged 65, 70, 75, 80, 85, 90, 95 and ≥ 100. While from the 2nd year to the 5th year, those who will age 65, 70, 75, 80, 85, 90, 95 and 100 will receive the same subsidised shot. We performed economic evaluations to (1) evaluate the efficiency of alternative strategies of PPSV-23 single-dose immunisation programme, and (2) investigate the efficiency of PCV-13 inclusion in the list for single-dose pneumococcal vaccine immunisation programme. Three alternative strategies were created in this study, namely: (1) current PPSV-23 strategy, (2) 65 to 80 (as "65-80 PPSV-23 strategy"), and (3) 65 and older (as "≥ 65 PPSV-23 strategy"). We constructed a Markov model depicting the S. pneumoniae-related disease course pathways. The transition probabilities, utility weights to estimate quality adjusted life year (QALY) and disease treatment costs were either calculated or cited from literature. Cost of per shot of vaccine was ¥ 8,116 (US$74; US$1 = ¥ 110) for PPSV-23 and ¥ 10,776 (US$98) for PCV-13. The model runs for 15 years with one year cycle after immunisation. Discounting was at 3%. Compared to current PPSV-23 strategy, 65-80 PPSV-23 strategy cost less but gained less, while the incremental cost-effectiveness ratios (ICERs) of ≥ 65 PPSV-23 strategy was ¥ 5,025,000 (US$45,682) per QALY gained. PCV-13 inclusion into the list for single-dose subsidy has an ICER of ¥ 377,000 (US$3,427) per QALY gained regardless of the PCV-13 diffusion level. These ICERs were found to be cost-effective since they are lower than the suggested criterion by WHO of three times GDP (¥ 11,000,000 or US$113,636 per QALY gained), which is the benchmark used in judging the cost-effectiveness of an immunisation programmne. The results suggest that switching current PPSV-23 strategy to ≥ 65 PPSV-23 strategy or including PCV-13 into the list for single-dose subsidy to the elderly in Japan has value for money.

  4. Economic Evaluation of Immunisation Programme of 23-Valent Pneumococcal Polysaccharide Vaccine and the Inclusion of 13-Valent Pneumococcal Conjugate Vaccine in the List for Single-Dose Subsidy to the Elderly in Japan

    PubMed Central

    Hoshi, Shu-ling; Kondo, Masahide; Okubo, Ichiro

    2015-01-01

    Background Currently in Japan, both 23-valent pneumococcal polysaccharide vaccine (PPSV–23) and 13-valent pneumococcal conjugate vaccine (PCV–13) are available for the elderly for the prevention of S. pneumoniae-related diseases. PPSV–23 was approved in 1988, while the extended use of PCV–13 was approved for adults aged 65 and older in June 2014. Despite these two vaccines being available, the recently launched national immunisation programme for the elderly only subsidised PPSV–23. The framework of the current immunisation programme lasts for five years. The elderly population eligible for the subsidised PPSV–23 shot for the 1st year are those aged 65, 70, 75, 80, 85, 90, 95 and ≥100. While from the 2nd year to the 5th year, those who will age 65, 70, 75, 80, 85, 90, 95 and 100 will receive the same subsidised shot. Methods We performed economic evaluations to (1) evaluate the efficiency of alternative strategies of PPSV–23 single-dose immunisation programme, and (2) investigate the efficiency of PCV–13 inclusion in the list for single-dose pneumococcal vaccine immunisation programme. Three alternative strategies were created in this study, namely: (1) current PPSV–23 strategy, (2) 65 to 80 (as “65–80 PPSV–23 strategy”), and (3) 65 and older (as “≥65 PPSV–23 strategy”). We constructed a Markov model depicting the S. pneumoniae-related disease course pathways. The transition probabilities, utility weights to estimate quality adjusted life year (QALY) and disease treatment costs were either calculated or cited from literature. Cost of per shot of vaccine was ¥8,116 (US$74; US$1 = ¥110) for PPSV–23 and ¥10,776 (US$98) for PCV–13. The model runs for 15 years with one year cycle after immunisation. Discounting was at 3%. Results Compared to current PPSV–23 strategy, 65–80 PPSV–23 strategy cost less but gained less, while the incremental cost-effectiveness ratios (ICERs) of ≥65 PPSV–23 strategy was ¥5,025,000 (US$45,682) per QALY gained. PCV–13 inclusion into the list for single-dose subsidy has an ICER of ¥377,000 (US$3,427) per QALY gained regardless of the PCV–13 diffusion level. These ICERs were found to be cost-effective since they are lower than the suggested criterion by WHO of three times GDP (¥11,000,000 or US$113,636 per QALY gained), which is the benchmark used in judging the cost-effectiveness of an immunisation programmne. Conclusions The results suggest that switching current PPSV–23 strategy to ≥65 PPSV–23 strategy or including PCV–13 into the list for single-dose subsidy to the elderly in Japan has value for money. PMID:26444287

  5. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  6. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  7. Effect of low refocusing angle in T1-weighted spin echo and fast spin echo MRI on low-contrast detectability: a comparative phantom study at 1.5 and 3 Tesla.

    PubMed

    Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R

    2013-01-01

    MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.

  8. A three-dimensional spin-diffusion model for micromagnetics

    PubMed Central

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-01-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

  9. Diffusion Tensor Imaging of Lumbar Nerve Roots: Comparison Between Fast Readout-Segmented and Selective-Excitation Acquisitions.

    PubMed

    Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre

    2016-08-01

    The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.

  10. Diffusion-weighted magnetic resonance imaging of the fetal brain in intrauterine growth restriction.

    PubMed

    Arthurs, O J; Rega, A; Guimiot, F; Belarbi, N; Rosenblatt, J; Biran, V; Elmaleh, M; Sebag, G; Alison, M

    2017-07-01

    Diffusion-weighted magnetic resonance imaging (DWI) is a sensitive method for assessing brain maturation and detecting brain lesions, providing apparent diffusion coefficient (ADC) values as a measure of water diffusion. Abnormal ADC values are seen in ischemic brain lesions, such as those associated with acute or chronic hypoxia. The aim of this study was to assess whether ADC values in the fetal brain were different in fetuses with severe intrauterine growth restriction (IUGR) compared with normal controls. Brain magnetic resonance imaging (MRI) with single-shot axial DWI (b = 0 and b = 700 s/mm 2 ) was performed in 30 fetuses with severe IUGR (estimated fetal weight < 3 rd centile with absent or reversed umbilical artery Doppler flow) and in 24 normal controls of similar gestational age. Brain morphology and biometry were analyzed. ADC values were measured in frontal and occipital white matter, centrum semiovale, thalami, cerebellar hemisphere and pons. Frontal-occipital and frontal-cerebellar ADC ratios were calculated, and values were compared between IUGR fetuses and controls. There was no difference in gestational age at MRI between IUGR and control fetuses (IUGR, 30.2 ± 1.6 weeks vs controls, 30.7 ± 1.4 weeks). Fetal brain morphology and signals were normal in all fetuses. Brain dimensions (supratentorial ± infratentorial) were decreased (Z-score, < -2) in 20 (66.7%) IUGR fetuses. Compared with controls, IUGR fetuses had significantly lower ADC values in frontal white matter (1.97 ± 0.23 vs 2.17 ± 0.22 × 10 -3 mm 2 /s; P < 0.0001), thalami (1.04 ± 0.15 vs 1.13 ± 0.10 ×10 -3 mm 2 /s; P = 0.0002), centrum semiovale (1.86 ± 0.22 vs 1.97 ± 0.23 ×10 -3 mm 2 /s; P = 0.01) and pons (0.85 ± 0.19 vs 0.94 ± 0.12 ×10 -3 mm 2 /s; P = 0.043). IUGR fetuses had a lower frontal-occipital ADC ratio than did normal fetuses (1.00 ± 0.11 vs 1.08 ± 0.05; P = 0.003). ADC values in IUGR fetuses were significantly lower than in normal controls in the frontal white matter, thalami, centrum semiovale and pons, suggesting abnormal maturation in these regions. However, the prognostic value of these ADC changes is still unknown. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  11. Superpoissonian shot noise in organic magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascales, Juan Pedro; Martinez, Isidoro; Aliev, Farkhad G., E-mail: farkhad.aliev@uam.es

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunnelingmore » through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.« less

  12. Using light transmission to watch hydrogen diffuse

    PubMed Central

    Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin

    2012-01-01

    Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction. PMID:22692535

  13. Using light transmission to watch hydrogen diffuse

    NASA Astrophysics Data System (ADS)

    Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin

    2012-06-01

    Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.

  14. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  15. T1 weighted fat/water separated PROPELLER acquired with dual bandwidths.

    PubMed

    Rydén, Henric; Berglund, Johan; Norbeck, Ola; Avventi, Enrico; Skare, Stefan

    2018-04-24

    To describe a fat/water separated dual receiver bandwidth (rBW) spin echo PROPELLER sequence that eliminates the dead time associated with single rBW sequences. A nonuniform noise whitening by regularization of the fat/water inverse problem is proposed, to enable dual rBW reconstructions. Bipolar, flyback, and dual spin echo sequences were developed. All sequences acquire two echoes with different rBW without dead time. Chemical shift displacement was corrected by performing the fat/water separation in k-space, prior to gridding. The proposed sequences were compared to fat saturation, and single rBW sequences, in terms of SNR and CNR efficiency, using clinically relevant acquisition parameters. The impact of motion was investigated. Chemical shift correction greatly improved the image quality, especially at high resolution acquired with low rBW, and also improved motion estimates. SNR efficiency of the dual spin echo sequence was up to 20% higher than the single rBW acquisition, while CNR efficiency was 50% higher for the bipolar acquisition. Noise whitening was deemed necessary for all dual rBW acquisitions, rendering high image quality with strong and homogenous fat suppression. Dual rBW sequences eliminate the dead time present in single rBW sequences, which improves SNR efficiency. In combination with the proposed regularization, this enables highly efficient T1-weighted PROPELLER images without chemical shift displacement. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    PubMed

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  17. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity.

    PubMed

    Pikula, Jiri; Bandouchova, Hana; Hilscherova, Klara; Paskova, Veronika; Sedlackova, Jana; Adamovsky, Ondrej; Knotkova, Zora; Lany, Petr; Machat, Jiri; Marsalek, Blahoslav; Novotny, Ladislav; Pohanka, Miroslav; Vitula, Frantisek

    2010-10-01

    Under environmental conditions, wild birds can be exposed to multiple stressors including natural toxins, anthropogenic pollutants and infectious agents at the same time. This experimental study was successful in testing the hypothesis that adverse effects of cyanotoxins, heavy metals and a non-pathogenic immunological challenge combine to enhance avian toxicity. Mortality occurred in combined exposures to naturally occurring cyanobacterial biomass and lead shots, lead shots and Newcastle vaccination as well as in single lead shot exposure. Mostly acute effects around day 10 were observed. On day 30 of exposure, there were no differences in the liver accumulation of lead in single and combined exposure groups. Interestingly, liver microcystin levels were elevated in birds co-exposed to cyanobacterial biomass together with lead or lead and the Newcastle virus. Significant differences in body weights between all Pb-exposed and Pb-non-exposed birds were found on days 10 and 20. Single exposure to cyanobacterial biomass resulted in hepatic vacuolar dystrophy, whereas co-exposure with lead led to more severe granular dystrophy. Haematological changes were associated with lead exposure, in particular. Biochemical analysis revealed a decrease in glucose and an increase in lactate dehydrogenase in single and combined cyanobacterial and lead exposures, which also showed a decreased antibody response to vaccination. The combined exposure of experimental birds to sub-lethal doses of individual stressors is ecologically realistic. It brings together new pieces of knowledge on avian health. In light of this study, investigators of wild bird die-offs should be circumspect when evaluating findings of low concentrations of contaminants that would not result in mortality on a separate basis. As such it has implications for wildlife biologists, veterinarians and conservationists of avian biodiversity. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Effect of quantum tunneling on spin Hall magnetoresistance

    NASA Astrophysics Data System (ADS)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  19. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  20. Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.

    2018-05-01

    In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.

  1. Single and two-shot quantitative phase imaging using Hilbert-Huang Transform based fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos

    2016-08-01

    In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.

  2. Spintronics: spin accumulation in mesoscopic systems.

    PubMed

    Johnson, Mark

    2002-04-25

    In spintronics, in which use is made of the spin degree of freedom of the electron, issues concerning electrical spin injection and detection of electron spin diffusion are fundamentally important. Jedema et al. describe a magneto-resistance study in which they claim to have observed spin accumulation in a mesoscopic copper wire, but their one-dimensional model ignores two-dimensional spin-diffusion effects, which casts doubt on their analysis. A two-dimensional vector formalism of spin transport is called for to model spin-injection experiments, and the identification of spurious background resistance effects is crucial.

  3. Distributional behavior of diffusion coefficients obtained by single trajectories in annealed transit time model

    NASA Astrophysics Data System (ADS)

    Akimoto, Takuma; Yamamoto, Eiji

    2016-12-01

    Local diffusion coefficients in disordered systems such as spin glass systems and living cells are highly heterogeneous and may change over time. Such a time-dependent and spatially heterogeneous environment results in irreproducibility of single-particle-tracking measurements. Irreproducibility of time-averaged observables has been theoretically studied in the context of weak ergodicity breaking in stochastic processes. Here, we provide rigorous descriptions of equilibrium and non-equilibrium diffusion processes for the annealed transit time model, which is a heterogeneous diffusion model in living cells. We give analytical solutions for the mean square displacement (MSD) and the relative standard deviation of the time-averaged MSD for equilibrium and non-equilibrium situations. We find that the time-averaged MSD grows linearly with time and that the time-averaged diffusion coefficients are intrinsically random (irreproducible) even in the long-time measurements in non-equilibrium situations. Furthermore, the distribution of the time-averaged diffusion coefficients converges to a universal distribution in the sense that it does not depend on initial conditions. Our findings pave the way for a theoretical understanding of distributional behavior of the time-averaged diffusion coefficients in disordered systems.

  4. Evaluating Graphene as a Channel Material in Spintronic Logic Devices

    NASA Astrophysics Data System (ADS)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could potentially enable spin injection without the need for a physical tunnel barrier to solve the conductivity mismatch problem inherent to graphene.

  5. Diffusion-Weighted Magnetic Resonance Imaging of Cholesteatoma Using PROPELLER at 1.5T: A Single-Centre Retrospective Study.

    PubMed

    Clarke, Sharon E; Mistry, Dipan; AlThubaiti, Talal; Khan, M Naeem; Morris, David; Bance, Manohar

    2017-05-01

    The purpose of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of the diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique in the detection of cholesteatoma at our institution with surgical confirmation in all cases. A retrospective review of 21 consecutive patients who underwent diffusion-weighted PROPELLER magnetic resonance imaging (MRI) on a 1.5T MRI scanner prior to primary or revision/second-look surgery for suspected cholesteatoma from 2009-2012 was performed. Diffusion-weighted PROPELLER had a sensitivity of 75%, specificity of 60%, positive predictive value of 86%, and negative predictive value of 43%. In the 15 patients for whom the presence or absence of cholesteatoma was correctly predicted, there were 2 cases where the reported locations of diffusion restriction did not correspond to the location of the cholesteatoma observed at surgery. On the basis of our retrospective study, we conclude that diffusion-weighted PROPELLER MRI is not sufficiently accurate to replace second look surgery at our institution. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  6. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    PubMed

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  7. Enhanced diffusion weighting generated by selective adiabatic pulse trains

    NASA Astrophysics Data System (ADS)

    Sun, Ziqi; Bartha, Robert

    2007-09-01

    A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.

  8. Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized (13) C metabolites.

    PubMed

    Koelsch, Bertram L; Reed, Galen D; Keshari, Kayvan R; Chaumeil, Myriam M; Bok, Robert; Ronen, Sabrina M; Vigneron, Daniel B; Kurhanewicz, John; Larson, Peder E Z

    2015-09-01

    Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential. © 2014 Wiley Periodicals, Inc.

  9. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    DTIC Science & Technology

    2016-04-28

    Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow...2001). 6. K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant

  10. Spin-diffusions and diffusive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  11. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface.

    PubMed

    Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C

    2017-11-08

    Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

  12. Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion.

    PubMed

    Mak, D O; Webb, W W

    1997-03-01

    A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.

  13. Diffusion-weighted magnetic resonance imaging of femoral head osteonecrosis in two groups of patients: Legg-Perthes-Calve and Avascular necrosis.

    PubMed

    Ozel, Betul Duran; Ozel, Deniz; Ozkan, Fuat; Halefoglu, Ahmet M

    2016-03-01

    The aim of this prospective study was to evaluate the value of diffusion-weighted magnetic resonance imaging (DW-MRI) in patients with osteonecrosis. Patients were divided into two subgroups as avascular necrosis (AVN) of femoral head for adult group and Legg-Calvé-Perthes (LCP) patients for children. Seventeen patients with femoral head AVN (mean age 42.3 years) and 17 patients with LCP (mean age 8.2 years) were included in this study. Diagnosis confirmed with clinical and other imaging procedures among the patients complaining hip pain. DW images were obtained using the single-shot echo planar sequence and had b values of 0, 500, 1000 s/mm(2). The apparent diffusion coefficient (ADC) values were measured from ADC maps in epiphysis of patients with AVN, both from metaphysis and epiphysis in patients with LCP, respectively. Mann-Whitney U test was used to compare ADC values. The mean ADC value of femoral heads (1.285 ± 0.204 × 10(-3) mm(2)/s) was increased in patients with AVN when compared to normal bone tissue (0.209 ± 0.214 × 10(-3) mm(2)/s) (p < 0.01). The mean ADC values (×10(-3) mm(2)/s) of both metaphysis (0.852 ± 0.293) and epiphysis (0.843 ± 0.332) were also increased in patients with LCP and differences were statistically significant (p < 0.01). As a result, osteonecrosis shows increased ADC values. But it is a controversial concept that DWI offers a valuable data to conventional MRI or not. However, as there are report states, there is a correlation between the stage of the disease with ADC values in the LCP disease. DWI is a fast, without-contrast administration technique and provides quantitative values additional to conventional MR techniques; we believe DWI may play an additional assistance to the diagnosis and treatment for LCP patients. Multicentric larger group studies may provide additional data to this issue.

  14. Epitaxial growth of thermally stable cobalt films on Au(111)

    NASA Astrophysics Data System (ADS)

    Haag, N.; Laux, M.; Stöckl, J.; Kollamana, J.; Seidel, J.; Großmann, N.; Fetzer, R.; Kelly, L. L.; Wei, Z.; Stadtmüller, B.; Cinchetti, M.; Aeschlimann, M.

    2016-10-01

    Ferromagnetic thin films play a fundamental role in spintronic applications as a source for spin polarized carriers and in fundamental studies as ferromagnetic substrates. However, it is challenging to produce such metallic films with high structural quality and chemical purity on single crystalline substrates since the diffusion barrier across the metal-metal interface is usually smaller than the thermal activation energy necessary for smooth surface morphologies. Here, we introduce epitaxial thin Co films grown on an Au(111) single crystal surface as a thermally stable ferromagnetic thin film. Our structural investigations reveal an identical growth of thin Co/Au(111) films compared to Co bulk single crystals with large monoatomic Co terraces with an average width of 500 Å, formed after thermal annealing at 575 K. Combining our results from photoemission and Auger electron spectroscopy, we provide evidence that no significant diffusion of Au into the near surface region of the Co film takes place for this temperature and that no Au capping layer is formed on top of Co films. Furthermore, we show that the electronic valence band is dominated by a strong spectral contribution from a Co 3d band and a Co derived surface resonance in the minority band. Both states lead to an overall negative spin polarization at the Fermi energy.

  15. Single-shot spectroscopy of broadband Yb fiber laser

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2017-02-01

    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  16. Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor.

    PubMed

    Mora, Thierry; Yu, Howard; Wingreen, Ned S

    2009-12-11

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

  17. Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility

    PubMed Central

    Oura, Masaki; Wagai, Tatsuya; Chainani, Ashish; Miyawaki, Jun; Sato, Hiromi; Matsunami, Masaharu; Eguchi, Ritsuko; Kiss, Takayuki; Yamaguchi, Takashi; Nakatani, Yasuhiro; Togashi, Tadashi; Katayama, Tetsuo; Ogawa, Kanade; Yabashi, Makina; Tanaka, Yoshihito; Kohmura, Yoshiki; Tamasaku, Kenji; Shin, Shik; Ishikawa, Tetsuya

    2014-01-01

    In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system’s design enables it to be controlled by an external trigger signal for single-shot pump–probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in ‘single-shot image’, ‘shot-to-shot image (image-to-image storage or block storage)’ and ‘shot-to-shot sweep’ modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in ‘ordinary sweep’ mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL. PMID:24365935

  18. Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Lange, Florian; Ejima, Satoshi; Fehske, Holger

    2018-02-01

    Improving matrix-product state techniques based on the purification of the density matrix, we are able to accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion anisotropy in the Haldane, large-D , and antiferromagnetic phases. Distinct thermally activated scattering processes make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches. In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important and strongly enhances the spectral weight for momentum transfer π .

  19. Simulation of single-molecule trapping in a nanochannel

    PubMed Central

    Robinson, William Neil; Davis, Lloyd M.

    2010-01-01

    The detection and trapping of single fluorescent molecules in solution within a nanochannel is studied using numerical simulations. As optical forces are insufficient for trapping molecules much smaller than the optical wavelength, a means for sensing a molecule’s position along the nanochannel and adjusting electrokinetic motion to compensate diffusion is assessed. Fluorescence excitation is provided by two adjacently focused laser beams containing temporally interleaved laser pulses. Photon detection is time-gated, and the displacement of the molecule from the middle of the two foci alters the count rates collected in the two detection channels. An algorithm for feedback control of the electrokinetic motion in response to the timing of photons, to reposition the molecule back toward the middle for trapping and to rapidly reload the trap after a molecule photobleaches or escapes, is evaluated. While accommodating the limited electrokinetic speed and the finite latency of feedback imposed by experimental hardware, the algorithm is shown to be effective for trapping fast-diffusing single-chromophore molecules within a micron-sized confocal region. Studies show that there is an optimum laser power for which loss of molecules from the trap due to either photobleaching or shot-noise fluctuations is minimized. PMID:20799801

  20. [The Role of Imaging in Central Nervous System Infections].

    PubMed

    Yokota, Hajime; Tazoe, Jun; Yamada, Kei

    2015-07-01

    Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.

  1. Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets

    NASA Astrophysics Data System (ADS)

    Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.

    2018-04-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  2. THE 76-MM GUN M1A1 AND M1A2: AN ANALYSIS OF U.S. ANTI-TANK CAPABILITIES DURING WORLD WAR II

    DTIC Science & Technology

    2018-01-01

    ref. 7). The muzzle velocity of the 38-mm tungsten carbide HVAP-T shot was calculated to be 3800 fps. This is based on an assumed mass of sabot...According to the results of the Isigny test, one of four shots succeeded against the frontal armor of the Panther at 200 yd. One of two is listed as...the “ shot ” on the List of Components. Initial weight was given as 9.36lbs, which is the weight of the Metal Parts Assembly. This revision changed

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, M; Rane-Levandovsky, S; Andre, J

    Purpose: Traditional arterial spin labeling (ASL) acquisitions with echo planar imaging (EPI) readouts suffer from image distortion due to susceptibility effects, compromising ASL’s ability to accurately quantify cerebral blood flow (CBF) and assess disease-specific patterns associated with CBF abnormalities. Phase labeling for additional coordinate encoding (PLACE) can remove image distortion; our goal is to apply PLACE to improve the quantitative accuracy of ASL CBF in humans. Methods: Four subjects were imaged on a 3T Philips Ingenia scanner using a 16-channel receive coil with a 21/21/10cm (frequency/phase/slice direction) field-of-view. An ASL sequence with a pseudo-continuous ASL (pCASL) labeling scheme was employedmore » to acquire thirty dynamics of single-shot EPI data, with control and label datasets for all dynamics, and PLACE gradients applied on odd dynamics. Parameters included a post-labeling delay = 2s, label duration = 1.8s, flip angle = 90°, TR/TE = 5000/23.5ms, and 2.9/2.9/5.0mm (frequency/phase/slice direction) voxel size. “M0” EPI-reference images and T1-weighted spin-echo images with 0.8/1.0/3.3mm (frequency/phase/slice directions) voxel size were also acquired. Complex conjugate image products of pCASL odd and even dynamics were formed, a linear phase ramp applied, and data expanded and smoothed. Data phase was extracted to map control, label, and M0 magnitude image pixels to their undistorted locations, and images were rebinned to original size. All images were corrected for motion artifacts in FSL 5.0. pCASL images were registered to M0 images, and control and label images were subtracted to compute quantitative CBF maps. Results: pCASL image and CBF map distortions were removed by PLACE in all subjects. Corrected images conformed well to the anatomical T1-weighted reference image, and deviations in corrected CBF maps were evident. Conclusion: Eliminating pCASL distortion with PLACE can improve CBF quantification accuracy using minimal pulse sequence modifications and no additional scan time, improving ASL’s clinical applicability.« less

  4. Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation.

    PubMed

    Pang, Zhaoguang; Zhang, Xinping

    2011-04-08

    We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.

  5. Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation

    NASA Astrophysics Data System (ADS)

    Pang, Zhaoguang; Zhang, Xinping

    2011-04-01

    We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.

  6. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion

    PubMed Central

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-01-01

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615

  7. Spin-scattering rates in metallic thin films measured by ferromagnetic resonance damping enhanced by spin-pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, C. T.; Shaw, J. M.; Nembach, H. T.

    2015-06-14

    We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less

  8. Damage threshold of platinum coating used for optics for self-seeding of soft x-ray free electron laser

    DOE PAGES

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; ...

    2015-02-23

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. Wemore » have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm 2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm 2 and 0.75 J/cm 2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.« less

  9. Electron transport and noise spectroscopy in organic magnetic tunnel junctions with PTCDA and Alq3 barriers

    NASA Astrophysics Data System (ADS)

    Martinez, Isidoro; Cascales, Juan Pedro; Hong, Jhen-Yong; Lin, Minn-Tsong; Prezioso, Mirko; Riminucci, Alberto; Dediu, Valentin A.; Aliev, Farkhad G.

    2016-10-01

    The possible influence of internal barrier dynamics on spin, charge transport and their fluctuations in organic spintronics remains poorly understood. Here we present investigation of the electron transport and low frequency noise at temperatures down to 0.3K in magnetic tunnel junctions with an organic PTCDA barriers with thickness up to 5 nm in the tunneling regime and with 200 nm thick Alq3 barrier in the hopping regime. We observed high tunneling magneto-resistance at low temperatures (15-40%) and spin dependent super-poissonian shot noise in organic magnetic tunnel junctions (OMTJs) with PTCDA. The Fano factor exceeds 1.5-2 values which could be caused by interfacial states controlled by spin dependent bunching in the tunneling events through the molecules.1 The bias dependence of the low frequency noise in OMTJs with PTCDA barriers which includes both 1/f and random telegraph noise activated at specific biases will also be discussed. On the other hand, the organic junctions with ferromagnetic electrodes and thick Alq3 barriers present sub-poissonian shot noise which depends on the temperature, indicative of variable range hopping.

  10. Small Field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses.

    PubMed

    Attenberger, Ulrike I; Rathmann, Nils; Sertdemir, Metin; Riffel, Philipp; Weidner, Anja; Kannengiesser, Stefan; Morelli, John N; Schoenberg, Stefan O; Hausmann, Daniel

    2016-06-01

    Spatially-tailored (RF) excitation pulses in echo-planar imaging (EPI), combined with a decreased FOV in the phase-encoding direction, enable a reduction of k-space acquisition lines, which shortens the echo train length (ETL) and reduces susceptibility artifacts. The purpose of this study was to evaluate the image quality of a zoomed EPI (z-EPI) sequence in diffusion-weighted imaging (DWI) of the prostate in comparison to a conventional single-shot EPI using single-channel (c-EPI1) and multi-channel (c-EPI2) RF excitation, with and without use of an endorectal coil. 33 consecutive patients (mean age: 61 +/- 9 years; mean PSA: 8.67±6.23 ng/ml) with examinations between 10/2012 and 02/2014 were analyzed in this retrospective study. In 26 of 33 patients the initial multiparametric (mp)-MRI was performed on a whole-body 3T scanner (Magnetom Trio, Siemens, Erlangen, Germany) using an endorectal coil (c (conventional)-EPI1). Zoomed-EPI (Z-EPI) examinations of these patients and a complete mp-MRI protocol including c-EPI2 of 7 additional patients were carried out on another 3T wb MR scanner with two-channel dynamic parallel transmit capability (Magnetom Skyra with TimTX TrueShape, Siemens). For z-EPI, the one-dimensional spatially selective RF excitation pulse was replaced by a two-dimensional RF pulse. Degree of image blur and susceptibility artifacts (0=not present to 3= non-diagnostic), maximum image distortion (mm), apparent diffusion coefficient (ADC) values, as well as overall scan preference were evaluated. SNR maps were generated to compare c-EPI2 and z-EPI. Overall image quality of z-EPI was preferred by both readers in all examinations with a single exception. Susceptibility artifacts were rated significantly lower on z-EPI compared to both other methods (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01) as well as image blur (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01). Image distortion was not statistically significantly reduced with z-EPI (z-EPI vs c-EPI1: p=0.12; z-EPI vs c-EPI2: p=0.42). Interobserver agreement for ratings of susceptibility artifacts, image blur and overall scan preference was good. SNR was higher for z-EPI than for c-EPI1 (n=1). Z-EPI leads to significant improvements in image quality and artifacts as well as image blur reduction improving prostate DWI and enabling accurate fusion with conventional sequences. The improved fusion could lead to advantages in the field of MRI-guided biopsy suspicous lesions and performance of locally ablative procedures for prostate cancer. Copyright © 2015. Published by Elsevier GmbH.

  11. Ultrafast chirped optical waveform recorder using a time microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  12. Dual echelon femtosecond single-shot spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.

    We have developed a femtosecond single-shot spectroscopic technique to measure irreversible changes in condensed phase materials in real time. Crossed echelons generate a two-dimensional array of time-delayed pulses with one femtosecond probe pulse. This yields 9 ps of time-resolved data from a single laser shot, filling a gap in currently employed measurement methods. We can now monitor ultrafast irreversible dynamics in solid-state materials or other samples that cannot be flowed or replenished between laser shots, circumventing limitations of conventional pump-probe methods due to sample damage or product buildup. Despite the absence of signal-averaging in the single-shot measurement, an acceptable signal-to-noisemore » level has been achieved via background and reference calibration procedures. Pump-induced changes in relative reflectivity as small as 0.2%−0.5% are demonstrated in semimetals, with both electronic and coherent phonon dynamics revealed by the data. The optical arrangement and the space-to-time conversion and calibration procedures necessary to achieve this level of operation are described. Sources of noise and approaches for dealing with them are discussed.« less

  13. Single-particle trajectories reveal two-state diffusion-kinetics of hOGG1 proteins on DNA.

    PubMed

    Vestergaard, Christian L; Blainey, Paul C; Flyvbjerg, Henrik

    2018-03-16

    We reanalyze trajectories of hOGG1 repair proteins diffusing on DNA. A previous analysis of these trajectories with the popular mean-squared-displacement approach revealed only simple diffusion. Here, a new optimal estimator of diffusion coefficients reveals two-state kinetics of the protein. A simple, solvable model, in which the protein randomly switches between a loosely bound, highly mobile state and a tightly bound, less mobile state is the simplest possible dynamic model consistent with the data. It yields accurate estimates of hOGG1's (i) diffusivity in each state, uncorrupted by experimental errors arising from shot noise, motion blur and thermal fluctuations of the DNA; (ii) rates of switching between states and (iii) rate of detachment from the DNA. The protein spends roughly equal time in each state. It detaches only from the loosely bound state, with a rate that depends on pH and the salt concentration in solution, while its rates for switching between states are insensitive to both. The diffusivity in the loosely bound state depends primarily on pH and is three to ten times higher than in the tightly bound state. We propose and discuss some new experiments that take full advantage of the new tools of analysis presented here.

  14. Interface Defect States and Charge Transport Properties in Low-Cost Photovoltaic Devices made from Scalable Deposition Methods

    NASA Astrophysics Data System (ADS)

    Marin, Andrew; Munoz-Rojas, David; Iza, Diana; Gershon, Talia; MacManus-Driscoll, Judith

    2011-03-01

    In-plane (parallel to the substrate) polymer diffusion at and near interfaces has significant implications for polymeric surfactants used in tertiary oil recovery, exfoliation of clay sheets in polymer nano-composites, and several other high technology applications. Here, we report a study on the in-plane diffusion of whole polymer chains confined between interfaces using fluorescence recovery after photobleaching. Adapted from quantitative biology, FRAP provides a platform to independently study the effect of temperature, molecular weight, and film thickness on in-plane diffusion of polymers confined between interfaces. Fluorescently labeled polymers were synthesized, spin coated onto quartz substrates and the self-diffusion coefficient was measured by irreversibly photobleaching fluorophores in a pre-defined pattern and monitoring recovery of fluorescence over time. Preliminary results indicate that for thick films the diffusion coefficient is consistent with bulk values. The authors would like to thank the Gates-Cambridge Trust and the International Copper Association.

  15. Relative toxicity of lead and selected substitute shot types to game farm mallards

    USGS Publications Warehouse

    Irby, H.D.; Locke, L.N.; Bagley, George E.

    1967-01-01

    The acute toxicity of lead, three types of plastic-coated lead, two lead-magnesium alloys, iron, copper, zinc-coated iron, and molybdenum-coated iron shot were tested in year-old male game farm mallards. Mallards (Anus platyrhynchos) were fed eight number 6 shot of each type and observed for a period of 60 days. Ducks used totaled 230 and most shot types were tested in three replicates of 8 ducks each. Mortality and losses of body weight were the criteria used for judging toxicity. Three types of plastic-coated lead shot were as toxic (93 percent) as the commercial lead shot (96 percent). The average mortality in mallards fed lead-magnesium alloy shot was less (58 percent) than that occurring in birds fed commercial lead shot. Mortality among mallards fed iron, copper, zinc-coated iron or molybdenum-coated iron shot was significantly less than in birds fed lead shot, and was not significantly greater than the conrtols.

  16. 3D hybrid profile order technique in a single breath-hold 3D T2-weighted fast spin-echo sequence: Usefulness in diagnosis of small liver lesions.

    PubMed

    Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2018-01-01

    We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.

  17. Quantum memory enhanced nuclear magnetic resonance of nanometer-scale samples with a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Aslam, Nabeel; Pfender, Matthias; Zaiser, Sebastian; Favaro de Oliveira, Felipe; Momenzadeh, S. Ali; Denisenko, Andrej; Isoya, Junichi; Neumann, Philipp; Wrachtrup, Joerg

    Recently nuclear magnetic resonance (NMR) of nanoscale samples at ambient conditions has been achieved with nitrogen-vacancy (NV) centers in diamond. So far the spectral resolution in the NV NMR experiments was limited by the sensor's coherence time, which in turn prohibited revealing the chemical composition and dynamics of the system under investigation. By entangling the NV electron spin sensor with a long-lived memory spin qubit we increase the spectral resolution of NMR measurement sequences for the detection of external nuclear spins. Applying the latter sensor-memory-couple it is particularly easy to track diffusion processes, to identify the molecules under study and to deduce the actual NV center depth inside the diamond. We performed nanoscale NMR on several liquid and solid samples exhibiting unique NMR response. Our method paves the way for nanoscale identification of molecule and protein structures and dynamics of conformational changes.

  18. Electronic shot noise in fractal conductors.

    PubMed

    Groth, C W; Tworzydło, J; Beenakker, C W J

    2008-05-02

    By solving a master equation in the Sierpiński lattice and in a planar random-resistor network, we determine the scaling with size L of the shot noise power P due to elastic scattering in a fractal conductor. We find a power-law scaling P proportional, variantL;{d_{f}-2-alpha}, with an exponent depending on the fractal dimension d_{f} and the anomalous diffusion exponent alpha. This is the same scaling as the time-averaged current I[over ], which implies that the Fano factor F=P/2eI[over ] is scale-independent. We obtain a value of F=1/3 for anomalous diffusion that is the same as for normal diffusion, even if there is no smallest length scale below which the normal diffusion equation holds. The fact that F remains fixed at 1/3 as one crosses the percolation threshold in a random-resistor network may explain recent measurements of a doping-independent Fano factor in a graphene flake.

  19. Single-shot water-immersion microscopy platform for qualitative visualization and quantitative phase imaging of biosamples

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Cojoc, Dan; Torre, Vincent; Micó, Vicente

    2017-07-01

    We present the combination of a single-shot water-immersion digital holographic microscopy with broadband illumination for simultaneous visualization of coherent and incoherent images using microbeads and different biosamples.

  20. Self-referenced single-shot THz detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  1. Self-referenced single-shot THz detection

    DOE PAGES

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang; ...

    2017-06-29

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  2. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  3. Temperature dependence of magneto-transport properties in Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/Cu lateral spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikhtiar,; Mitani, S.; Hono, K.

    2016-02-08

    The non-local spin signals of Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/Cu lateral spin valves with sub-micron size dimensions were measured with varying temperatures. The non-local spin signal reaches 54 mΩ at 4 K, while it degrades down to 13 mΩ at room temperature. Analysis based on the one-dimensional spin diffusion model clarifies the dominant source for degrading of the spin signal is suppression of the spin diffusion length in Cu, not the spin polarization, indicating Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) keeps half-metallic nature even at room temperature. The temperature dependence of non-local spin signal was found to exhibit a downturn at 36 K. The presence of magneticmore » impurities, detrimental effect of which becomes more pronounced for diffusive transport in long Cu wires, is suggested to cause the observed downturn in non-local spin signals.« less

  4. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  5. Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices

    NASA Astrophysics Data System (ADS)

    Viglin, N. A.; Ustinov, V. V.; Demokritov, S. O.; Shorikov, A. O.; Bebenin, N. G.; Tsvelikhovskaya, V. M.; Pavlov, T. N.; Patrakov, E. I.

    2017-12-01

    Electric injection and detection of spin-polarized electrons in InSb semiconductors have been realized in nonlocal experimental geometry using an InSb-based "lateral spin valve." The valve of the InSb /MgO /C o0.9F e0.1 composition has semiconductor/insulator/ferromagnet nanoheterojunctions in which the thickness of the InSb layer considerably exceeded the spin diffusion length of conduction electrons. The spin direction in spin diffusion current has been manipulated by a magnetic field under the Hanle effect conditions. The spin polarization of the electron gas has been registered using ferromagnetic C o0.9F e0.1 probes by measuring electrical potentials arising in the probes in accordance with the Johnson-Silsbee concept of the spin-charge coupling. The developed theory is valid at any degree of degeneracy of electron gas in a semiconductor. The spin relaxation time and spin diffusion length of conduction electrons in InSb have been determined, and the electron-spin polarization in InSb has been evaluated for electrons injected from C o0.9F e0.1 through an MgO tunnel barrier.

  6. White matter tractography by means of Turboprop diffusion tensor imaging.

    PubMed

    Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana

    2005-12-01

    White matter fiber-tractography by means of diffusion tensor imaging (DTI) is a noninvasive technique that provides estimates of the structural connectivity of the brain. However, conventional fiber-tracking methods using DTI are based on echo-planar image acquisitions (EPI), which suffer from image distortions and artifacts due to magnetic susceptibility variations and eddy currents. Thus, a large percentage of white matter fiber bundles that are mapped using EPI-based DTI data are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber-tracking techniques. In contrast, Turboprop imaging is a multiple-shot gradient and spin-echo (GRASE) technique that provides images with significantly fewer susceptibility and eddy current-related artifacts than EPI. The purpose of this work was to evaluate the performance of fiber-tractography techniques when using data obtained with Turboprop-DTI. All fiber pathways that were mapped were found to be in agreement with the anatomy. There were no visible distortions in any of the traced fiber bundles, even when these were located in the vicinity of significant magnetic field inhomogeneities. Additionally, the Turboprop-DTI data used in this research were acquired in less than 19 min of scan time. Thus, Turboprop appears to be a promising DTI data acquisition technique for tracing white matter fibers.

  7. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate.

    PubMed

    Süssmann, F; Zherebtsov, S; Plenge, J; Johnson, Nora G; Kübel, M; Sayler, A M; Mondes, V; Graf, C; Rühl, E; Paulus, G G; Schmischke, D; Swrschek, P; Kling, M F

    2011-09-01

    High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈10(13) W/cm(2)) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO(2) nanospheres. © 2011 American Institute of Physics

  8. 3D GRASE PROPELLER: Improved Image Acquisition Technique for Arterial Spin Labeling Perfusion Imaging

    PubMed Central

    Tan, Huan; Hoge, W. Scott; Hamilton, Craig A.; Günther, Matthias; Kraft, Robert A.

    2014-01-01

    Arterial spin labeling (ASL) is a non-invasive technique that can quantitatively measure cerebral blood flow (CBF). While traditionally ASL employs 2D EPI or spiral acquisition trajectories, single-shot 3D GRASE is gaining popularity in ASL due to inherent SNR advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a PROPELLER trajectory (3DGP) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3×3×5mm3 nominal voxel size with Q2TIPS-FAIR as the ASL preparation sequence. Data from 5 healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in CBF quantification with 3D GRASE, 3DGP demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. PMID:21254211

  9. Parallel MR imaging: a user's guide.

    PubMed

    Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin

    2005-01-01

    Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.

  10. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.

    PubMed

    Longeville, Stéphane; Stingaciu, Laura-Roxana

    2017-09-05

    Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1 ) corresponds to an optimum for oxygen transport for individuals under strong activity.

  11. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells

    DOE PAGES

    Longeville, Stéphane; Stingaciu, Laura-Roxana

    2017-09-05

    Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less

  12. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longeville, Stéphane; Stingaciu, Laura-Roxana

    Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less

  13. Nanoscale Motion of Soft Nanoparticles in Unentangled and Entangled Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Lungova, M.; Krutyeva, M.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Allgaier, J.; Ohl, M.; Sharp, M.; Richter, D.

    2016-09-01

    We have studied the motion of polyhedral oligomeric silsesquioxane (POSS) nanoparticles modified with poly(ethylene glycol) (PEG) arms immersed in PEG matrices of different molecular weight. Employing neutron spin echo spectroscopy in combination with pulsed field gradient (PFG) NMR we found the following. (i) For entangled matrices the center of mass mean square displacement (MSD) of the PEG-POSS particles is subdiffusive following a t0.56 power law. (ii) The diffusion coefficient as well as the crossover to Fickian diffusion is independent of the matrix molecular weight and takes place as soon as the center of mass has moved a distance corresponding to the particle radius—this holds also for unentangled hosts. (iii) For the entangled matrices Rubinstein's scaling theory is validated; however, the numbers indicate that beyond Rouse friction the entanglement constraints appear to strongly increase the effective friction even on the nanoparticle length scale imposing a caveat on the interpretation of microrheological experiments. (iv) The oligomer decorated PEG-POSS particles exhibit the dynamics of a Gaussian star with an internal viscosity that rises with an increase of the host molecular weight.

  14. Facts about Vitamin K Deficiency Bleeding

    MedlinePlus

    ... K shot into a muscle in the thigh. One shot given just after birth will protect your baby ... easily preventable with just a single vitamin K shot at birth. References 1. Zipursky A. Prevention of vitamin K deficiency bleeding ...

  15. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    NASA Astrophysics Data System (ADS)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  16. Corpus callosum differences assessed by fetal MRI in late-onset intrauterine growth restriction and its association with neurobehavior.

    PubMed

    Egaña-Ugrinovic, Gabriela; Sanz-Cortés, Magdalena; Couve-Pérez, Constanza; Figueras, Francesc; Gratacós, Eduard

    2014-09-01

    The aim of this study is to evaluate corpus callosum (CC) development by Magnetic Resonance Imaging (MRI) in late-onset intrauterine growth restricted (IUGR) fetuses compared to appropriate for gestational age and its association with neurobehavioral outcome. One hundred and seventeen late-onset IUGR and 73 control fetuses were imaged using a 3T MRI scanner at term, obtaining T2 half-Fourier acquisition single-shot turbo spin-echo anatomical slices. CC length, thickness, total area and the areas after a subdivision in 7 portions were assessed. Neonatal Behavioral Assessment Scale test was performed on IUGR newborns at 42 ± 1 weeks. IUGR fetuses showed significantly smaller CC (Total CC Area IUGR: 1.3996 ± 0.26 vs. AGA: 1.664 ± 0.31; p < 0.01) and smaller subdivision areas as compared with controls. The differences were slightly more pronounced in fetuses with very low birth weight and/or abnormal brain and/or abnormal uterine Doppler. CC measurements were significantly associated with neurobehavioral outcome in IUGR cases. CC development was significantly altered in late-onset IUGR fetuses and correlated with worse neurobehavioral performance. CC could be further explored as a potential imaging biomarker to predict abnormal neurodevelopment in pregnancies at risk. © 2014 John Wiley & Sons, Ltd.

  17. Quantum Monte Carlo with very large multideterminant wavefunctions.

    PubMed

    Scemama, Anthony; Applencourt, Thomas; Giner, Emmanuel; Caffarel, Michel

    2016-07-01

    An algorithm to compute efficiently the first two derivatives of (very) large multideterminant wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants and their derivatives is performed using the Sherman-Morrison formula for updating the inverse Slater matrix. An improved implementation based on the reduction of the number of column substitutions and on a very efficient implementation of the calculation of the scalar products involved is presented. It is emphasized that multideterminant expansions contain in general a large number of identical spin-specific determinants: for typical configuration interaction-type wavefunctions the number of unique spin-specific determinants Ndetσ ( σ=↑,↓) with a non-negligible weight in the expansion is of order O(Ndet). We show that a careful implementation of the calculation of the Ndet -dependent contributions can make this step negligible enough so that in practice the algorithm scales as the total number of unique spin-specific determinants,  Ndet↑+Ndet↓, over a wide range of total number of determinants (here, Ndet up to about one million), thus greatly reducing the total computational cost. Finally, a new truncation scheme for the multideterminant expansion is proposed so that larger expansions can be considered without increasing the computational time. The algorithm is illustrated with all-electron fixed-node diffusion Monte Carlo calculations of the total energy of the chlorine atom. Calculations using a trial wavefunction including about 750,000 determinants with a computational increase of ∼400 compared to a single-determinant calculation are shown to be feasible. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke; Chen, Qiao

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factormore » is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.« less

  19. Roll diffusion bonding of titanium alloy panels

    NASA Technical Reports Server (NTRS)

    Bennett, J.; De Witt, T. E.; Jones, A. G.; Koeller, F.; Muser, C.

    1968-01-01

    Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations.

  20. Modeling Torque Versus Speed, Shot Noise, and Rotational Diffusion of the Bacterial Flagellar Motor

    PubMed Central

    Mora, Thierry; Yu, Howard; Wingreen, Ned S.

    2010-01-01

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the “knee”) is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions. PMID:20366231

  1. Role of the combination of FA and T2* parameters as a new diagnostic method in therapeutic evaluation of parkinson's disease.

    PubMed

    Fang, Yuan; Zheng, Tao; Liu, Lanxiang; Gao, Dawei; Shi, Qinglei; Dong, Yanchao; Du, Dan

    2017-11-17

    Simple diffusion delivery (SDD) has attained good effects with only tiny amounts of drugs. Fractional anisotropy (FA) and relaxation time T2* that indicate the integrity of fiber tracts and iron concentration within brain tissue were used to evaluate the therapeutic effect of SDD. To evaluate therapeutic effect of SDD in the Parkinson's disease (PD) rat model with FA and T2* parameters. Prospective case-control animal study. Thirty-two male Sprague Dawley rats (eight normal, eight PD, eight SDD, and eight subcutaneous injection rats). Single-shot spin echo echo-planar imaging and fast low-angle shot T 2 WI sequences at 3.0T. Parameters of FA and T2* on the treated side of the substantia nigra were measured to evaluate the therapeutic effect of SDD in a PD rat model. The effects of time on FA and T2* values were analyzed by repeated measurement tests. A one-way analysis of variance was conducted, followed by individual comparisons of the mean FA and T2* values at different timepoints. The FA values on the treated side of the substantia nigra in the SDD treatment group and subcutaneous injection treatment group were significantly higher at week 1 and lower at week 6 than that of the PD control group (SDD vs. PD, week 1, adjusted P = 0.012; subcutaneous vs. PD, week 1, adjusted P < 0.001; SDD vs. PD, week 6, adjusted P = 0.004; subcutaneous vs. PD, week 6, adjusted P = 0.024). The T2* parameter in the SDD treatment group and subcutaneous injection treatment group was significantly higher than that in the PD control group at week 6 (SDD vs. PD, adjusted P = 0.032; subcutaneous vs. PD, adjusted P < 0.001). The combination of FA and T2* parameters can potentially serve as a new effective evaluation method of the therapeutic effect of SDD. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  2. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy.

    PubMed

    Jiang, Xiaoyu; Li, Hua; Xie, Jingping; McKinley, Eliot T; Zhao, Ping; Gore, John C; Xu, Junzhong

    2017-07-01

    A temporal diffusion MRI spectroscopy based approach has been developed to quantify cancer cell size and density in vivo. A novel imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) method selects a specific limited diffusion spectral window for an accurate quantification of cell sizes ranging from 10 to 20 μm in common solid tumors. In practice, it is achieved by a combination of a single long diffusion time pulsed gradient spin echo (PGSE) and three low-frequency oscillating gradient spin echo (OGSE) acquisitions. To validate our approach, hematoxylin and eosin staining and immunostaining of cell membranes, in concert with whole slide imaging, were used to visualize nuclei and cell boundaries, and hence, enabled accurate estimates of cell size and cellularity. Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes were obtained in vivo for three types of human colon cancers. The IMPULSED-derived apparent cellularities showed a stronger correlation (r = 0.81; P < 0.0001) with histology-derived cellularities than conventional ADCs (r = -0.69; P < 0.03). The IMPULSED approach samples a specific region of temporal diffusion spectra with enhanced sensitivity to length scales of 10-20 μm, and enables measurements of cell sizes and cellularities in solid tumors in vivo. Magn Reson Med 78:156-164, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    PubMed

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  4. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  5. Atomic Gas in Blue Ultra Diffuse Galaxies around Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Spekkens, Kristine; Karunakaran, Ananthan

    2018-03-01

    We have found the atomic gas (H I) reservoirs of the blue ultra diffuse galaxy (UDG) candidates identified by Róman and Trujillo in images near Hickson Compact Groups (HCGs). We confirm that all of the objects are indeed UDGs with effective radii {R}e> 1.5 kpc. Three of them are likely to be gravitationally bound to the HCG near which they project, one is plausibly gravitationally bound to the nearest HCG, and one is in the background. We measure H I masses and velocity widths for each object directly from the spectra, and use the widths together with the UDG effective radii to estimate dynamical masses and halo spin parameters. The location of the blue UDGs in the H I mass–stellar mass plane is consistent with that of the broader gas-rich galaxy population, and both their H I masses and gas richnesses are correlated with their effective radii. The blue UDGs appear to be low-mass objects with high-spin halos, although their properties are not as extreme as those of the faintest diffuse objects found in H I searches. The data presented here highlight the potential of single-dish radio observations for measuring the physical properties of blue diffuse objects detected in the optical.

  6. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    PubMed

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. RF Shot Noise Measurements in Au Atomic-scale Junctions

    NASA Astrophysics Data System (ADS)

    Chen, Ruoyu

    Conduction electrons are responsible for many physical or chemical phenomena in condensed matter systems, and their behavior can be directly studied by electronic transport measurements. In conventional transport measurements, conductance or resistance is usually the focus. Such a measurement can be as simple as a quick two terminal DC check by a multi-meter, or a more sophisticated lock-in measurement of multiple higher harmonic signals synchronized to different frequencies. Conductance carries direct information about the quasi-particle density of states and the local electronic distributions, which are usually Fermi-Dirac distribution. Conductance is modified or dominated by scattering from defacts or interfaces, and could also reflect the spin-spin exchange interactions or inelastic couplings with phonons and photons. Naturally one can ask the question: is there anything else we can measure electronically, which carries extra information that a conductance measurement does not provide? One answer to this question is the electronic noise. While the conductance reflects the average charge conduction ability of a system, noise describes how the physical quantities fluctuate around their average values. Some of the fluctuations carry information about their physical origins. This thesis will focus on one particular type of the electronic noise shot noise, but other types of noise will also be introduced and discussed. We choose to measure the radio frequency component of shot noise, combining with a modulated lock-in detection technique, which provides a method to largely get rid of other unwanted low-frequency noise signals. Au atomic-scale junctions are the systems we studied here. Au is relatively well understood and will not generate too many complications, so it's ideal as the first platform for us to understand both shot noise itself and our RF technique. On the other hand, the atomic scale raises fundamental questions about electronic transport and local energy exchange and dissipation, which make our measurements fundamentally interesting. We employed two different types of mechanical controlled Au break junctions: the Scanning Tunneling Microscope(STM)-style Au break junctions, and the mechanically bending Au break junctions. We studied shot noise behaviors of individual configurations or ensemble averages over all the accessible configurations. Measurements were conducted at both room temperature and liquid He temperature. High quality shot noise measurements were demonstrated. New phenomena like anomalous excess noise enhancement at high bias voltages and non-zero shot noise variance below 1G0 were seen. We also found shot noise to be surprisingly insensitive to temperatures between 4.2K and 100K, and can be well described by the non-interacting approximation.

  8. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla.

    PubMed

    Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F

    2011-02-01

    Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Ultrafast nanoscale imaging using high order harmonic generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Merdji, Hamed

    2017-05-01

    Ultrafast coherent diffraction using soft and hard X-rays is actually revolutionizing imaging science thanks to new sources recently available. This powerful technique extends standard X-ray diffraction towards imaging of non-crystalline objects and leads actually to a strong impact in physics, chemistry and biology. New ultrashort pulses recently available hold the promise of watching matter evolving with unprecedented space and time resolution. Femtosecond coherent and intense radiation in the soft X-ray (λ = 10-40 nm) is currently produced in our laboratory, from highly non linear frequency conversion (high harmonic generation). A high intensity UV-X coherent beam is obtained using a loose focusing geometry, which allows coupling a very high amount of Ti:Sapphire laser system energy in the HHG process. Using a long gas cell and a long focal length lens, the emitting volume can be increased by orders of magnitude compared to standard HHG set-ups. This approach, allows reaching up to 1x1011 photons per shot for the 25th harmonic (λ=32nm). We have already demonstrated nanoscale imaging in a single shot mode reaching 70 nm spatial resolution and 20 femtoseconds snapshot [1]. We then implemented a recently proposed holographic technique using extended references. This technique, easy to implement, allows a direct non iterative image reconstruction. In the single shot regime, we demonstrated a spatial resolution of 110nm [2].This opens fascinating perspectives in imaging dynamical phenomena to be spread over a large scientific community. I will present recent results in the investigation of femtosecond phase spin-reversals of magnetic nano-domains [3]. Finally, I will report on recent development on noise sensitivity of the technique and perspectives in attosecond coherent imaging [4]. [1] A. Ravasio et al., Physical Review Letters 103, 028104 (2009). [2] D. Gauthier et al., Physical Review Letters 105, 093901 (2010). [3] Vodungbo et al., Nature Communications 3, 999 (2012) [4] Williams et al., Optics Letters 40 (13), 3205 (2015)

  10. Diffusion heterogeneity tensor MRI (?-Dti): mathematics and initial applications in spinal cord regeneration after trauma - biomed 2009.

    PubMed

    Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M

    2009-01-01

    Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.

  11. Advances in graphene spintronics

    NASA Astrophysics Data System (ADS)

    van Wees, Bart

    I will give an overview of the status of graphene spintronics, from both scientific as technological perspectives. In the introduction I will show that (single) layer graphene is the ideal host for electronic spins, allowing spin transport by diffusion over distances exceeding 20 micrometers at room temperature. I will show how by the use of carrier drift, induced by charge currents, effective spin relaxation lengths of 90 micrometer can be obtained in graphene encapsulated between boron-nitride layers. This also allows the controlled flow and guiding of spin currents, opening new avenues for spin logic devices based on lateral architectures. By preparing graphene on top of a ferromagnetic insulator (yttrium iron garnet (YIG)) we have shown that we can induce an exchange interaction in the graphene, thus effectively making the graphene magnetic. This allows for new ways to induce and control spin precession for new applications. Finally I will show how, by using two-layer BN tunnel barriers, spins can be injected from a ferromagnet into graphene with a spin polarization which can be tuned continuously from -80% to 40%, using a bias range from -0.3V to 0.3V across the barrier. These unique record values of the spin polarization are not yet understood, but they highlight the potential of Van der Waals stacking of graphene and related 2D materials for spintronics.

  12. 76 FR 61269 - Protection of Stratospheric Ozone: acceptability Determination 26 for Significant New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ...://www.regulations.gov . A. Refrigeration and Air Conditioning 1. Hot Shot 2 EPA's decision: EPA finds Hot Shot 2 is acceptable as a substitute for CFC-12, CFC-11, CFC-113, CFC-114, R-13B1, R-500, R-502... conditioning and heat pumps Hot Shot 2 is a blend by weight of 79.3 percent HFC-134a, which is also known as 1...

  13. Relative diffusion of paramagnetic metal complexes of MRI contrast agents in an isotropic hydrogel medium.

    PubMed

    Weerakoon, Bimali Sanjeevani; Osuga, Toshiaki

    2017-03-01

    The observation of molecular diffusion by means of magnetic resonance imaging (MRI) is significant in the evaluation of the metabolic activity of living tissues. Series of MRI examinations were conducted on a diffusion model to study the behaviour of the diffusion process of different-molecular-weight (MW) paramagnetic MRI contrast agents in an isotropic agar hydrogel medium. The model consisted of a solidified 1 % agar gel with an initial concentration of 0.5 mmol/L contrast solution layered on top of the gel. The diffusion process was monitored at pre-determined time intervals of immediately, 1, 6, 9, 23, and 48 h after introduction of the contrast agents onto the agar gel with a T1-weighted spin-echo (SE) pulse sequence. Three types of paramagnetic contrast agents, Gd-DTPA with a MW of 547.57 g/mol, Prohance with a MW of 558.69 g/mol and MnCl 2 with a MW of 125.84 g/mol, resulted in an approximate average diffusional displacement ratio of 1:1:2 per hour, respectively, within 48 h of the experiment. Therefore, the results of this study supported the hypothesis that the rate of the diffusion process of MRI contrast agents in the agar hydrogel medium is inversely related to their MWs. However, more repetitions are necessary under various types of experimental conditions and also with various types of contrast media of different MWs for further confirmation and validation of these results.

  14. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.

  15. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    DOE PAGES

    Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; ...

    2016-08-18

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu 3(OD) 6Cl 2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit belowmore » the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.« less

  16. Phenomenological study of decoherence in solid-state spin qubits due to nuclear spin diffusion

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael J.; Bluhm, Hendrik

    2011-06-01

    We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present calculations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω2 noise power spectrum associated with nuclear spin flips in the host material. Beginning with this validation, we address the effects of nuclear programming, high-frequency nuclear spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.

  17. Spin-orbit torques in magnetic bilayers

    NASA Astrophysics Data System (ADS)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  18. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions.

    PubMed

    Balliu, E; Vilanova, J C; Peláez, I; Puig, J; Remollo, S; Barceló, C; Barceló, J; Pedraza, S

    2009-03-01

    The aim of this study is to evaluate the value of the apparent diffusion coefficient (ADC) obtained in diffusion-weighted (DW) MR sequences for the differentiation between malignant and benign bone marrow lesions. Forty-five patients with altered signal intensity vertebral bodies on conventional MR sequences were included. The cause of altered signal intensity was benign osteoporotic collapse in 16, acute neoplastic infiltration in 15, and infectious processes in 14; based on plain-film, CT, bone scintigraphy, conventional MR studies, biopsy or follow-up. All patients underwent isotropic DW MR images (multi-shot EPI, b values of 0 and 500 s/mm(2)). Signal intensity at DW MR images was evaluated and ADC values were calculated and compared between malignancy, benign edema and infectious spondylitis. Acute malignant fractures were hyperintense compared to normal vertebral bodies on the diffusion-weighted sequence, except in one patient with sclerotic metastases. Mean ADC value from benign edema (1.9+/-0.39 x 10(-3) mm(2)/s) was significantly (p<0.0001) higher than untreated metastasic lesions (0.9+/-1.3 x 10(-3)mm (2)/s). Mean ADC value of infectious spondilytis (0.96+/-0.49 x 10(-3) mm(2)/s) was not statistically (p>0.05) different from untreated metastasic lesions. ADC value was low (0.75 x 10(-3) mm(2)/s) in one case of subacute benign fracture. ADC values are a useful complementary tool to characterize bone marrow lesions, in order to distinguish acute benign fractures from malignant or infectious bone lesions. However, ADC values are not valuable in order to differentiate malignancy from infection.

  19. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Utama, M. Iqbal Bakti; Regan, Emma C.; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-01

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS2)–tungsten diselenide (WSe2) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices.

  20. Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.

    2018-03-01

    Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.

  1. The Agility Advantage: A Survival Guide for Complex Enterprises and Endeavors

    DTIC Science & Technology

    2011-09-01

    weighted probability 75th pctl weighted probability 13. Carman. K. G. and Kooreman, P, “ Flu Shots, Mammogram, and the Perception of Probabilities,” 2010...sharing capabilities until users can tes- tify to the benefi ts. This creates a chicken and egg situa- tion, because the consumers of information fi...Bibliography 563 Campen, Alan D. Look Closely at Network-Centric Warfare. Signal, January 2004. Carman, Katherine G., and Peter Kooreman, Peter. Flu Shots

  2. The use of a selective saturation pulse to suppress t1 noise in two-dimensional 1H fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Aiden J.; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P.

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+ kHz) suppresses t1 noise in the indirect dimension of two-dimensional 1H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl 1H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional 1H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear 1H-1H double quantum (DQ)/single quantum (SQ) MAS and 14N-1H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  3. Three-dimensional hologram display system

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  4. Perforated cenosphere-supported pH-sensitive spin probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomenko, E.V.; Bobko, A.A.; Salanov, A.N.

    2008-03-15

    Porous supports with an accessible internal volume and a shell providing the diffusive migration of pH-sensitive spin probes were obtained for the first time from hollow aluminosilicate cenospheres isolated from the coal fly ash. Using the methods of scanning electron microscopy and electron spin resonance, the morphology of different porous cenosphere modifications and its influence on the diffusion of spin probes from the internal volume were studied. When supporting aqueous solutions of a radical, the characteristic diffusion time for the mesoporous structure of the support is longer by a factor of 3-5 than that for the macroporous structure. Ferrospinel inmore » a content of 6 wt.% do not virtually affect the diffusion rate of spin probes. A constant rate of radical migration of similar to 1 {mu} mol min{sup -1}, determined by radical solubility in water, is achieved when a radical in the solid aggregate state is supported on the magnetic cenospheres.« less

  5. Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics

    PubMed Central

    Veshtort, Mikhail; Griffin, Robert G.

    2011-01-01

    Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method are in excellent agreement with the spin diffusion constants obtained through equations given by the relaxation theory of PDSD. The constants resulting from these two approaches were also in excellent agreement with the results of 2D rotary resonance recoupling proton-driven spin diffusion (R3-PDSD) experiments performed in three model compounds, where magnetization exchange occurred over distances up to 4.9 Å. With the methodology presented, highly accurate internuclear distances can be extracted from such data. Relayed transfer of magnetization between distant nuclei appears to be the main (and apparently resolvable) source of uncertainty in such measurements. The non-Markovian kinetic equation was applied to the analysis of the R2 spin dynamics. The conventional semi-phenomenological treatment of relxation in R2 has been shown to be equivalent to the assumption of the Lorentzian spectral density function in the relaxatoin theory of PDSD. As this assumption is a poor approximation in real physical systems, the conventional R2 treatment is likely to carry a significant model error that has not been recognized previously. The relaxation theory of PDSD appears to provide an accurate, parameter-free alternative. Predictions of this theory agreed well with the full quantum mechanical simulations of the R2 dynamics in the few simple model systems we considered. PMID:21992326

  6. Hourglass Dispersion and Resonance of Magnetic Excitations in the Superconducting State of the Single-Layer Cuprate HgBa 2 CuO 4 + δ Near Optimal Doping

    DOE PAGES

    Chan, M. K.; Tang, Y.; Dorow, C. J.; ...

    2016-12-29

    Here, we use neutron scattering to study magnetic excitations near the antiferromagnetic wave vector in the underdoped single-layer cuprate HgBa 2 CuO 4 + δ (superconducting transition temperature T c ≈ 88 K , pseudogap temperature T* ≈ 220 K ). The response is distinctly enhanced below T* and exhibits a Y -shaped dispersion in the pseudogap state, whereas the superconducting state features an X -shaped (hourglass) dispersion and a further resonancelike enhancement. We also observe a large spin gap of about 40 meV in both states. This phenomenology is reminiscent of that exhibited by bilayer cuprates. The resonance spectralmore » weight, irrespective of doping and compound, scales linearly with the putative binding energy of a spin exciton described by an itinerant-spin formalism.« less

  7. Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minami, Yasuo; Horiuchi, Kohei; Masuda, Kaisei

    We have demonstrated accurate observations of terahertz (THz) dielectric response due to photoexcited carriers in a Si plate via single-shot optical-pump and THz-probe spectroscopy. In contrast to conventional THz time-domain spectroscopy, this spectroscopic technique allows single-shot detection of the THz response of materials at a given delay time between the pump and THz pulses, thereby sufficiently extending the time interval between the pump pulses. As a result, we can accurately measure the dielectric properties of materials, while avoiding artifacts in the response caused by the accumulation of long-lived photoexcited carriers. Using our single-shot scheme, the transmittance of a Si platemore » was measured in the range of 0.5–2.5 THz with different pump fluences. Based on a Drude model analysis, the optically induced complex dielectric constant, plasma frequency, and damping rate in the THz region were quantitatively evaluated.« less

  8. Robust sub-shot-noise measurement via Rabi-Josephson oscillations in bimodal Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonenkov, I.; Vardi, A.; Moore, M. G.

    2011-06-15

    Mach-Zehnder atom interferometry requires hold-time phase squeezing to attain readout accuracy below the standard quantum limit. This increases its sensitivity to phase diffusion, restoring shot-noise scaling of the optimal signal-to-noise ratio in the presence of interactions. The contradiction between the preparations required for readout accuracy and robustness to interactions is removed by monitoring Rabi-Josephson oscillations instead of relative-phase oscillations during signal acquisition. Optimizing the signal-to-noise ratio with a Gaussian squeezed input, we find that hold-time number squeezing satisfies both demands and that sub-shot-noise scaling is retained even for strong interactions.

  9. Positive Noise Cross Correlation in a Copper Pair Splitter.

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Ronen, Yuval; Heiblum, Moty; Shtrikman, Hadas; Mahalu, Diana

    2012-02-01

    Entanglement is in heart of the Einstein-Podolsky-Rosen (EPR) paradox, in which non-locality is a fundamental property. Up to date spin entanglement of electrons had not been demonstrated. Here, we provide direct evidence of such entanglement by measuring: non-local positive current correlation and positive cross correlation among current fluctuations, both of separated electrons born by a Cooper-pair-beam-splitter. The realization of the splitter is provided by injecting current from an Al superconductor contact into two, single channel, pure InAs nanowires - each intercepted by a Coulomb blockaded quantum dot (QD). The QDs impedes strongly the flow of Cooper pairs allowing easy single electron transport. The passage of electron in one wire enables the simultaneous passage of the other in the neighboring wire. The splitting efficiency of the Cooper pairs (relative to Cooper pairs actual current) was found to be ˜ 40%. The positive cross-correlations in the currents and their fluctuations (shot noise) are fully consistent with entangled electrons produced by the beam splitter.

  10. CONTRIBUTIONS OF CHEMICAL AND DIFFUSIVE EXCHANGE TO T1ρ DISPERSION

    PubMed Central

    Cobb, Jared Guthrie; Xie, Jingping; Gore, John C.

    2012-01-01

    Variations in local magnetic susceptibility may induce magnetic field gradients that affect the signals acquired for MR imaging. Under appropriate diffusion conditions, such fields produce effects similar to slow chemical exchange. These effects may also be found in combination with other chemical exchange processes at multiple time scales. We investigate these effects with simulations and measurements to determine their contributions to rotating frame (R1ρ) relaxation in model systems. Simulations of diffusive and chemical exchange effects on R1ρ dispersion were performed using the Bloch equations. Additionally, R1ρ dispersion was measured in suspensions of Sephadex and latex beads with varying spin locking fields at 9.4T. A novel analysis method was used to iteratively fit for apparent chemical and diffusive exchange rates with a model by Chopra et al. Single- and double-inflection points in R1ρ dispersion profiles were observed, respectively, in simulations of slow diffusive exchange alone and when combined with rapid chemical exchange. These simulations were consistent with measurements of R1ρ in latex bead suspensions and small-diameter Sephadex beads that showed single- and double-inflection points, respectively. These observations, along with measurements following changes in temperature and pH, are consistent with the combined effects of slow diffusion and rapid −OH exchange processes. PMID:22791589

  11. Differentiating between axonal damage and demyelination in healthy aging by combining diffusion-tensor imaging and diffusion-weighted spectroscopy in the human corpus callosum at 7 T.

    PubMed

    Branzoli, Francesca; Ercan, Ece; Valabrègue, Romain; Wood, Emily T; Buijs, Mathijs; Webb, Andrew; Ronen, Itamar

    2016-11-01

    Diffusion-tensor imaging and single voxel diffusion-weighted magnetic resonance spectroscopy were used at 7T to explore in vivo age-related microstructural changes in the corpus callosum. Sixteen healthy elderly (age range 60-71 years) and 13 healthy younger controls (age range 23-32 years) were included in the study. In healthy elderly, we found lower water fractional anisotropy and higher water mean diffusivity and radial diffusivity in the corpus callosum, indicating the onset of demyelination processes with healthy aging. These changes were not associated with a concomitant significant difference in the cytosolic diffusivity of the intra-axonal metabolite N-acetylaspartate (p = 0.12), the latter representing a pure measure of intra-axonal integrity. It was concluded that the possible intra-axonal changes associated with normal aging processes are below the detection level of diffusion-weighted magnetic resonance spectroscopy in our experiment (e.g., smaller than 10%) in the age range investigated. Lower axial diffusivity of total creatine was observed in the elderly group (p = 0.058), possibly linked to a dysfunction in the energy metabolism associated with a deficit in myelin synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Single-shot detection and direct control of carrier phase drift of midinfrared pulses.

    PubMed

    Manzoni, Cristian; Först, Michael; Ehrke, Henri; Cavalleri, Andrea

    2010-03-01

    We introduce a scheme for single-shot detection and correction of the carrier-envelope phase (CEP) drift of femtosecond pulses at mid-IR wavelengths. Difference frequency mixing between the mid-IR field and a near-IR gate pulse generates a near-IR frequency-shifted pulse, which is then spectrally interfered with a replica of the gate pulse. The spectral interference pattern contains shot-to-shot information of the CEP of the mid-IR field, and it can be used for simultaneous correction of its slow drifts. We apply this technique to detect and compensate long-term phase drifts at 17 microm wavelength, reducing fluctuations to only 110 mrad over hours of operation.

  13. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  14. Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less

  15. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  16. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhifan; Hu, Shu; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less

  17. Monte Carlo investigations on surface elastic energy of spin-crossover solids: Direct access to image pressure and the Eshelby constant

    NASA Astrophysics Data System (ADS)

    Boukheddaden, Kamel

    2013-10-01

    We present theoretical investigations on surface elastic energy in spin-crossover (SC) solids studied in the frame of a microscopic elastic model, coupling spin, and lattice deformations. Although surface energy plays a crucial role in driving the SC transition, specific quantitative investigations on its effect have been neglected in most of the recent theoretical works based on atomistic descriptions of the SC transitions, resolved by Monte Carlo or by molecular dynamics simulations. Here, we perform a quantitative study of the surface energy resulting from an inserted high-spin (HS) domain in a low-spin (LS) lattice. This situation may be produced experimentally in SC solids, at low temperature, through a photoexcitation by a single pulse laser shot. We demonstrate that the surface energy depends on the ratio between the local molecular volume misfit (between the LS and HS sites) δυ and the lattice volume V, such as Esurf˜δυ2/V for the HS atom at the center of lattice, while it is Esurf˜δυ2/L (L is the length of the lattice) in the case of the HS atom located on the edge of the lattice. We then derived the image pressure (negative in the case of embedded dilatation centers) through the work of the free surface atoms and evaluated the Eshelby constant, which was found equal to γ˜1.90, in very good agreement with the available data of literature. Energetic configuration diagrams in the homogeneous (HS and LS) and heterogeneous (coexistence of HS and LS) are calculated, from which estimations of the macroscopic bulk modulus were deduced.

  18. A scale space based algorithm for automated segmentation of single shot tagged MRI of shearing deformation.

    PubMed

    Sprengers, Andre M J; Caan, Matthan W A; Moerman, Kevin M; Nederveen, Aart J; Lamerichs, Rolf M; Stoker, Jaap

    2013-04-01

    This study proposes a scale space based algorithm for automated segmentation of single-shot tagged images of modest SNR. Furthermore the algorithm was designed for analysis of discontinuous or shearing types of motion, i.e. segmentation of broken tag patterns. The proposed algorithm utilises non-linear scale space for automatic segmentation of single-shot tagged images. The algorithm's ability to automatically segment tagged shearing motion was evaluated in a numerical simulation and in vivo. A typical shearing deformation was simulated in a Shepp-Logan phantom allowing for quantitative evaluation of the algorithm's success rate as a function of both SNR and the amount of deformation. For a qualitative in vivo evaluation tagged images showing deformations in the calf muscles and eye movement in a healthy volunteer were acquired. Both the numerical simulation and the in vivo tagged data demonstrated the algorithm's ability for automated segmentation of single-shot tagged MR provided that SNR of the images is above 10 and the amount of deformation does not exceed the tag spacing. The latter constraint can be met by adjusting the tag delay or the tag spacing. The scale space based algorithm for automatic segmentation of single-shot tagged MR enables the application of tagged MR to complex (shearing) deformation and the processing of datasets with relatively low SNR.

  19. Lead poisoning in a sample of Maryland mourning doves

    USGS Publications Warehouse

    Locke, L.N.; Bagley, George E.

    1967-01-01

    A sick mourning dove (Zenuidura macroura) collected in Maryland with 2 lead shot in the gizzard showed acid-fast intranuclear inclusion bodies in the kidney tubular cells. The liver and the tibia contained 72 ppm and 187 ppm lead (wet weight) respectively. Four gizzards from 62 doves killed by hunters contained lead shot. The lead content of 43 dove livers ranged from 0.4-14.0 ppm (wet weight); 40 of these doves were collected by hunters, and the other 3 were dying of trichomoniasis.

  20. Inter-slice Leakage Artifact Reduction Technique for Simultaneous Multi-Slice Acquisitions

    PubMed Central

    Cauley, Stephen F.; Polimeni, Jonathan R.; Bhat, Himanshu; Wang, Dingxin; Wald, Lawrence L.; Setsompop, Kawin

    2015-01-01

    Purpose Controlled aliasing techniques for simultaneously acquired EPI slices have been shown to significantly increase the temporal efficiency for both diffusion-weighted imaging (DWI) and fMRI studies. The “slice-GRAPPA” (SG) method has been widely used to reconstruct such data. We investigate robust optimization techniques for SG to ensure image reconstruction accuracy through a reduction of leakage artifacts. Methods Split slice-GRAPPA (SP-SG) is proposed as an alternative kernel optimization method. The performance of SP-SG is compared to standard SG using data collected on a spherical phantom and in-vivo on two subjects at 3T. Slice accelerated and non-accelerated data were collected for a spin-echo diffusion weighted acquisition. Signal leakage metrics and time-series SNR were used to quantify the performance of the kernel fitting approaches. Results The SP-SG optimization strategy significantly reduces leakage artifacts for both phantom and in-vivo acquisitions. In addition, a significant boost in time-series SNR for in-vivo diffusion weighted acquisitions with in-plane 2× and slice 3× accelerations was observed with the SP-SG approach. Conclusion By minimizing the influence of leakage artifacts during the training of slice-GRAPPA kernels, we have significantly improved reconstruction accuracy. Our robust kernel fitting strategy should enable better reconstruction accuracy and higher slice-acceleration across many applications. PMID:23963964

  1. Numerical simulations of short-mixing-time double-wave-vector diffusion-weighting experiments with multiple concatenations on whole-body MR systems

    NASA Astrophysics Data System (ADS)

    Finsterbusch, Jürgen

    2010-12-01

    Double- or two-wave-vector diffusion-weighting experiments with short mixing times in which two diffusion-weighting periods are applied in direct succession, are a promising tool to estimate cell sizes in the living tissue. However, the underlying effect, a signal difference between parallel and antiparallel wave vector orientations, is considerably reduced for the long gradient pulses required on whole-body MR systems. Recently, it has been shown that multiple concatenations of the two wave vectors in a single acquisition can double the modulation amplitude if short gradient pulses are used. In this study, numerical simulations of such experiments were performed with parameters achievable with whole-body MR systems. It is shown that the theoretical model yields a good approximation of the signal behavior if an additional term describing free diffusion is included. More importantly, it is demonstrated that the shorter gradient pulses sufficient to achieve the desired diffusion weighting for multiple concatenations, increase the signal modulation considerably, e.g. by a factor of about five for five concatenations. Even at identical echo times, achieved by a shortened diffusion time, a moderate number of concatenations significantly improves the signal modulation. Thus, experiments on whole-body MR systems may benefit from multiple concatenations.

  2. Non-Markovian spin-resolved counting statistics and an anomalous relation between autocorrelations and cross correlations in a three-terminal quantum dot

    NASA Astrophysics Data System (ADS)

    Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun

    2017-01-01

    We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.

  3. Volumetric Arterial Spin-labeled Perfusion Imaging of the Kidneys with a Three-dimensional Fast Spin Echo Acquisition.

    PubMed

    Robson, Philip M; Madhuranthakam, Ananth J; Smith, Martin P; Sun, Maryellen R M; Dai, Weiying; Rofsky, Neil M; Pedrosa, Ivan; Alsop, David C

    2016-02-01

    Renal perfusion measurements using noninvasive arterial spin-labeled (ASL) magnetic resonance imaging techniques are gaining interest. Currently, focus has been on perfusion in the context of renal transplant. Our objectives were to explore the use of ASL in patients with renal cancer, and to evaluate three-dimensional (3D) fast spin echo (FSE) acquisition, a robust volumetric imaging method for abdominal applications. We evaluate 3D ASL perfusion magnetic resonance imaging in the kidneys compared to two-dimensional (2D) ASL in patients and healthy subjects. Isotropic resolution (2.6 × 2.6 × 2.8 mm(3)) 3D ASL using segmented FSE was compared to 2D single-shot FSE. ASL used pseudo-continuous labeling, suppression of background signal, and synchronized breathing. Quantitative perfusion values and signal-to-noise ratio (SNR) were compared between 3D and 2D ASL in four healthy volunteers and semiquantitative assessments were made by four radiologists in four patients with known renal masses (primary renal cell carcinoma). Renal cortex perfusion in healthy subjects was 284 ± 21 mL/100 g/min, with test-retest repeatability of 8.8%. No significant differences were found between the quantitative perfusion value and SNR in volunteers between 3D ASL and 2D ASL, or in 3D ASL with synchronized or free breathing. In patients, semiquantitative assessment by radiologists showed no significant difference in image quality between 2D ASL and 3D ASL. In one case, 2D ASL missed a high perfusion focus in a mass that was seen by 3D ASL. 3D ASL renal perfusion imaging provides isotropic-resolution images, with comparable quantitative perfusion values and image SNR in similar imaging time to single-slice 2D ASL. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  4. Proceedings of the 9th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology

    NASA Astrophysics Data System (ADS)

    Ishioka, Sachio; Fujikawa, Kazuo

    2009-06-01

    Committee -- Obituary: Professor Sadao Nakajima -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Cold atoms and molecules. Pseudopotential method in cold atom research / C. N. Yang. Symmetry breaking in Bose-Einstein condensates / M. Ueda. Quantized vortices in atomic Bose-Einstein condensates / M. Tsubota. Quantum degenerate gases of Ytterbium atoms / S. Uetake ... [et al.]. Superfluid properties of an ultracold fermi gas in the BCS-BEC crossover region / Y. Ohashi, N. Fukushima. Fermionic superfluidity and the BEC-BCS crossover in ultracold atomic fermi gases / M. W. Zwierlein. Kibble-Zurek mechanism in magnetization of a spinor Bose-Einstein condensate / H. Saito, Y. Kawaguchi, M. Ueda. Quasiparticle inducing Josephson effect in a Bose-Einstein condensate / S. Tsuchiya, Y. Ohashi. Stability of superfluid fermi gases in optical lattices / Y. Yunomae ... [et al.]. Z[symbol] symmetry breaking in multi-band bosonic atoms confined by a two-dimensional harmonic potential / M. Sato, A. Tokuno -- Spin hall effect and anomalous hall effect. Recent advances in anomalous hall effect and spin hall effect / N. Nagaosa. Topological insulators and the quantum spin hall effect / C. L. Kane. Application of direct and inverse spin-hall effects: electric manipulation of spin relaxation and electric detection of spin currents / K. Ando, E. Saitoh. Novel current pumping mechanism by spin dynamics / A. Takeuchi, K. Hosono, G. Tatara. Quantum spin hall phase in bismuth ultrathin film / S. Murakami. Anomalous hall effect due to the vector chirality / K. Taguchi, G. Tatara. Spin current distributions and spin hall effect in nonlocal magnetic nanostructures / R. Sugano ... [et al.]. New boundary critical phenomenon at the metal-quantum spin hall insulator transition / H. Obuse. On scaling behaviors of anomalous hall conductivity in disordered ferromagnets studied with the coherent potential approximation / S. Onoda -- Magnetic domain wall dynamics and spin related phenomena. Dynamical magnetoelectric effects in multiferroics / Y. Tokura. Exchange-stabilization of spin accumulation in the two-dimensional electron gas with Rashba-type of spin-orbit interaction / H. M. Saarikoski, G. E. W. Bauer. Electronic Aharonov-Casher effect in InGaAs ring arrays / J. Nitta, M. Kohda, T. Bergsten. Microscopic theory of current-spin interaction in ferromagnets / H. Kohno ... [et al.]. Spin-polarized carrier injection effect in ferromagnetic semiconductor / diffusive semiconductor / superconductor junctions / H. Takayanagi ... [et al.]. Low voltage control of ferromagnetism in a semiconductor P-N junction / J. Wunderlich ... [et al.].Measurement of nanosecond-scale spin-transfer torque magnetization switching / K. Ito ... [et al.]. Current-induced domain wall creep in magnetic wires / J. Ieda, S. Maekawa, S. E. Barnes. Pure spin current injection into superconducting niobium wire / K. Ohnishi, T. Kimura, Y. Otani. Switching of a single atomic spin induced by spin injection: a model calculation / S. Kokado, K. Harigaya, A. Sakuma. Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers / M. Ichimura ... [et al.]. Gapless chirality excitations in one-dimensional spin-1/2 frustrated magnets / S. Furukawa ... [et al.] -- Dirac fermions in condensed matter. Electronic states of graphene and its multi-layers / T. Ando, M. Koshino. Inter-layer magnetoresistance in multilayer massless dirac fermions system [symbol]-(BEDT-TTF)[symbol]I[symbol] / N. Tajima ... [et al.]. Theory on electronic properties of gapless states in molecular solids [symbol]-(BEDT-TTF)[symbol]I[symbol] / A. Kobayashi, Y. Suzumura, H. Fukuyama. Hall effect and diamagnetism of bismuth / Y. Fuseya, M. Ogata, H. Fukuyama. Quantum Nernst effect in a bismuth single crystal / M. Matsuo ... [et al.] -- Quantum dot systems. Kondo effect and superconductivity in single InAs quantum dots contacted with superconducting leads / S. Tarucha ... [et al.]. Electron transport through a laterally coupled triple quantum dot forming Aharonov-Bohm interferometer / T. Kubo ... [et al.]. Aharonov-Bohm oscillations in parallel coupled vertical double quantum dot / T. Hatano ... [et al.]. Laterally coupled triple self-assembled quantum dots / S. Amaha ... [et al.]. Spectroscopy of charge states of a superconducting single-electron transistor in an engineered electromagnetic environment / E. Abe ... [et al.]. Numerical study of the coulomb blockade in an open quantum dot / Y. Hamamoto, T. Kato. Symmetry in the full counting statistics, the fluctuation theorem and an extension of the Onsager theorem in nonlinear transport regime / Y. Utsumi, K. Saito. Single-artificial-atom lasing and its suppression by strong pumping / J. R. Johansson ... [et al.] -- Entanglement and quantum information processing, qubit manipulations. Photonic entanglement in quantum communication and quantum computation / A. Zeilinger. Quantum non-demolition measurement of a superconducting flux qubit / J. E. Mooij. Atomic physics and quantum information processing with superconducting circuits / F. Nori. Theory of macroscopic quantum dynamics in high-T[symbol] Josephson junctions / S. Kawabata. Silicon isolated double quantum-dot qubit architectures / D. A. Williams ... [et al.]. Controlled polarisation of silicon isolated double quantum dots with remote charge sensing for qubit use / M. G. Tanner ... [et al.].Modelling of charge qubits based on Si/SiO[symbol] double quantum dots / P. Howard, A. D. Andreev, D. A. Williams. InAs based quantum dots for quantum information processing: from fundamental physics to 'plug and play' devices / X. Xu ... [et al.]. Quantum aspects in superconducting qubit readout with Josephson bifurcation amplifier / H. Nakano ... [et al.]. Double-loop Josephson-junction flux qubit with controllable energy gap / Y. Shimazu, Y. Saito, Z. Wada. Noise characteristics of the Fano effect and Fano-Kondo effect in triple quantum dots, aiming at charge qubit detection / T. Tanamoto, Y. Nishi, S. Fujita. Geometric universal single qubit operation of cold two-level atoms / H. Imai, A. Morinaga. Entanglement dynamics in quantum Brownian motion / K. Shiokawa. Coupling superconducting flux qubits using AC magnetic flxues / Y. Liu, F. Nori. Entanglement purification using natural spin chain dynamics and single spin measurements / K. Maruyama, F. Nori. Experimental analysis of spatial qutrit entanglement of down-converted photon pairs / G. Taguchi ... [et al.]. On the phase sensitivity of two path interferometry using path-symmetric N-photon states / H. F. Hofmann. Control of multi-photon coherence using the mixing ratio of down-converted photons and weak coherent light / T. Ono, H. F. Hofmann -- Mechanical properties of confined geometry. Rattling as a novel anharmonic vibration in a solid / Z. Hiroi, J. Yamaura. Micro/nanomechanical systems for information processing / H. Yamaguchi, I. Mahboob -- Precise measurements. Electron phase microscopy for observing superconductivity and magnetism / A. Tonomura. Ratio of the Al[symbol] and Hg[symbol] optical clock frequencies to 17 decimal places / W. M. Itano ... [et al.]. STM and STS observation on titanium-carbide metallofullerenes: [symbol] / N. Fukui ... [et al.]. Single shot measurement of a silicon single electron transistor / T. Ferrus ... [et al.]. Derivation of sensitivity of a Geiger mode APDs detector from a given efficiency to estimate total photon counts / K. Hammura, D. A. Williams -- Novel properties in nano-systems. First principles study of electroluminescence in ultra-thin silicon film / Y. Suwa, S. Saito. First principles nonlinear optical spectroscopy / T. Hamada, T. Ohno. Field-induced disorder and carrier localization in molecular organic transistors / M. Ando ... [et al.]. Switching dynamics in strongly coupled Josephson junctions / H. Kashiwaya ... [et al.]. Towards quantum simulation with planar coulomb crystals / I. M. Buluta, S. Hasegawa -- Fundamental problems in quantum physics. The negative binomial distribution in quantum physics / J. Söderholm, S. Inoue. On the elementary decay process / D. Kouznetsov -- List of participants.

  5. Increased Speed and Image Quality for Pelvic Single-Shot Fast Spin-Echo Imaging with Variable Refocusing Flip Angles and Full-Fourier Acquisition

    PubMed Central

    Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.

    2017-01-01

    Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132

  6. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    NASA Astrophysics Data System (ADS)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  7. Q-ball imaging with PROPELLER EPI acquisition.

    PubMed

    Chou, Ming-Chung; Huang, Teng-Yi; Chung, Hsiao-Wen; Hsieh, Tsyh-Jyi; Chang, Hing-Chiu; Chen, Cheng-Yu

    2013-12-01

    Q-ball imaging (QBI) is an imaging technique that is capable of resolving intravoxel fiber crossings; however, the signal readout based on echo-planar imaging (EPI) introduces geometric distortions in the presence of susceptibility gradients. This study proposes an imaging technique that reduces susceptibility distortions in QBI by short-axis PROPELLER EPI acquisition. Conventional QBI and PROPELLER QBI data were acquired from two 3T MR scans of the brains of five healthy subjects. Prior to the PROPELLER reconstruction, residual distortions in single-blade low-resolution b0 and diffusion-weighted images (DWIs) were minimized by linear affine and nonlinear diffeomorphic demon registrations. Subsequently, the PROPELLER keyhole reconstruction was applied to the corrected DWIs to obtain high-resolution PROPELLER DWIs. The generalized fractional anisotropy and orientation distribution function maps contained fewer distortions in PROPELLER QBI than in conventional QBI, and the fiber tracts more closely matched the brain anatomy depicted by turbo spin-echo (TSE) T2-weighted imaging (T2WI). Furthermore, for fixed T(E), PROPELLER QBI enabled a shorter scan time than conventional QBI. We conclude that PROPELLER QBI can reduce susceptibility distortions without lengthening the acquisition time and is suitable for tracing neuronal fiber tracts in the human brain. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Long-Range Anti-ferromagnetic Order in Sm2Ti2O7

    NASA Astrophysics Data System (ADS)

    Mauws, Cole; Sarte, Paul; Hallas, Alannah; Wildes, Andrew; Quilliam, Jeffrey; Luke, Graeme; Gaulin, Bruce; Wiebe, Christopher

    The spin ice state has been a key topic in frustrated magnetism for decades. Largely due to the presence of monopole-like excitations, leading to interesting physics. There has been a consistent effort in the field at synthesising new spin ice phases that possess smaller moments in the hopes of increasing the density of magnetic monopoles. As well as investigating the phase when quantum fluctuations dominate over dipolar interactions. Initially Sm2Ti2O7 was thought to be a candidate for a quantum spin ice, possessing a low moment of 1.5 μB in the high-spin case and crystal fields may reduce it to a true spin-1/2 system. However anti-ferromagnetic interactions as well as a lambda-like heat capacity anomaly pointed towards long-range antiferromagnetic order. An isotopically enriched samarium-154 single crystal was taken to the D7 polarized diffuse scattering spectrometer at the ILL. Long-range antiferromagnetic order was observed and indexed onto the all-in all-out structure. This agrees with theoretical predictions of Ising pyrochlore systems with sufficiently large anti-ferromagnetic coupling. NSERC, CFI, CIFAR, CRC.

  9. Identification of a triplet pair intermediate in singlet exciton fission in solution

    PubMed Central

    Stern, Hannah L.; Musser, Andrew J.; Gelinas, Simon; Parkinson, Patrick; Herz, Laura M.; Bruzek, Matthew J.; Anthony, John; Friend, Richard H.; Walker, Brian J.

    2015-01-01

    Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (<100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process. PMID:26060309

  10. Electronic Noise and Fluctuations in Solids

    NASA Astrophysics Data System (ADS)

    Kogan, Sh.

    2008-07-01

    Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.

  11. Oscillating and pulsed gradient diffusion magnetic resonance microscopy over an extended b-value range: implications for the characterization of tissue microstructure.

    PubMed

    Portnoy, S; Flint, J J; Blackband, S J; Stanisz, G J

    2013-04-01

    Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/μm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/μm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues. Copyright © 2012 Wiley Periodicals, Inc.

  12. Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation.

    PubMed

    Giraud, Nicolas; Blackledge, Martin; Goldman, Maurice; Böckmann, Anja; Lesage, Anne; Penin, François; Emsley, Lyndon

    2005-12-28

    A detailed analysis of nitrogen-15 longitudinal relaxation times in microcrystalline proteins is presented. A theoretical model to quantitatively interpret relaxation times is developed in terms of motional amplitude and characteristic time scale. Different averaging schemes are examined in order to propose an analysis of relaxation curves that takes into account the specificity of MAS experiments. In particular, it is shown that magic angle spinning averages the relaxation rate experienced by a single spin over one rotor period, resulting in individual relaxation curves that are dependent on the orientation of their corresponding carousel with respect to the rotor axis. Powder averaging thus leads to a nonexponential behavior in the observed decay curves. We extract dynamic information from experimental decay curves, using a diffusion in a cone model. We apply this study to the analysis of spin-lattice relaxation rates of the microcrystalline protein Crh at two different fields and determine differential dynamic parameters for several residues in the protein.

  13. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.

    PubMed

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.

  14. Classical Spin Nematic Transition in LiGa0.95In0.05Cr4O8

    NASA Astrophysics Data System (ADS)

    Wawrzyńczak, R.; Tanaka, Y.; Yoshida, M.; Okamoto, Y.; Manuel, P.; Casati, N.; Hiroi, Z.; Takigawa, M.; Nilsen, G. J.

    2017-08-01

    We present the results of a combined 7Li -NMR and diffraction study on LiGa0.95In0.05Cr4O8, a member of the LiGa1 -xInxCr4O8 "breathing" pyrochlore family. Via specific heat and NMR measurements, we find that the complex sequence of first-order transitions observed for LiGaCr4O8 is replaced by a single second-order transition at Tf=11 K . Neutron and x-ray diffraction rule out both structural symmetry lowering and magnetic long-range order as the origin of this transition. Instead, reverse Monte Carlo fitting of the magnetic diffuse scattering indicates that the low-temperature phase may be described as a collinear spin nematic state, characterized by a quadrupolar order parameter. This state also shows signs of short-range order between collinear spin arrangements on tetrahedra, revealed by mapping the reverse Monte Carlo spin configurations onto a three-state color model.

  15. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  16. Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juha, L.; Hajkova, V.; Vorlicek, V.

    2009-05-01

    High-surface-quality amorphous carbon (a-C) optical coatings with a thickness of 45 nm, deposited by magnetron sputtering on a silicon substrate, were irradiated by the focused beam of capillary-discharge Ne-like Ar extreme ultraviolet laser (CDL=capillary-discharge laser; XUV=extreme ultraviolet, i.e., wavelengths below 100 nm). The laser wavelength and pulse duration were 46.9 nm and 1.7 ns, respectively. The laser beam was focused onto the sample surface by a spherical Sc/Si multilayer mirror with a total reflectivity of about 30%. The laser pulse energy was varied from 0.4 to 40 muJ on the sample surface. The irradiation was carried out at five fluencemore » levels between 0.1 and 10 J/cm{sup 2}, accumulating five different series of shots, i.e., 1, 5, 10, 20, and 40. The damage to the a-C thin layer was investigated by atomic force microscopy (AFM) and Nomarski differential interference contrast (DIC) optical microscopy. The dependence of the single-shot-damaged area on pulse energy makes it possible to determine a beam spot diameter in the focus. Its value was found to be equal to 23.3+-3.0 mum using AFM data, assuming the beam to have a Gaussian profile. Such a plot can also be used for a determination of single-shot damage threshold in a-C. A single-shot threshold value of 1.1 J/cm{sup 2} was found. Investigating the consequences of the multiple-shot exposure, it has been found that an accumulation of 10, 20, and 40 shots at a fluence of 0.5 J/cm{sup 2}, i.e., below the single-shot damage threshold, causes irreversible changes of thin a-C layers, which can be registered by both the AFM and the DIC microscopy. In the center of the damaged area, AFM shows a-C removal to a maximum depth of 0.3, 1.2, and 1.5 nm for 10-, 20- and 40-shot exposure, respectively. Raman microprobe analysis does not indicate any change in the structure of the remaining a-C material. The erosive behavior reported here contrasts with the material expansion observed earlier [L. Juha et al., Proc. SPIE 5917, 91 (2005)] on an a-C sample irradiated by a large number of femtosecond pulses of XUV high-order harmonics.« less

  17. Missing pulse detector for a variable frequency source

    DOEpatents

    Ingram, Charles B.; Lawhorn, John H.

    1979-01-01

    A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.

  18. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion

    PubMed Central

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka

    2017-01-01

    Purpose Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. Materials and methods We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. Results The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. Conclusions ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion. PMID:28207858

  19. Evolution of multiple quantum coherences with scaled dipolar Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.

    2017-08-01

    In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.

  20. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures.

    PubMed

    Jin, Chenhao; Kim, Jonghwan; Utama, M Iqbal Bakti; Regan, Emma C; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-25

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )-tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field-free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Top