Investigating fuel-cell transport limitations using hydrogen limiting current
Spingler, Franz B.; Phillips, Adam; Schuler, Tobias; ...
2017-03-09
Reducing mass-transport losses in polymer-electrolyte fuel cells (PEFCs) is essential to increase their power density and reduce overall stack cost. At the same time, cost also motivates the reduction in expensive precious-metal catalysts, which results in higher local transport losses in the catalyst layers. Here, we use a hydrogen-pump limiting-current setup to explore the gas-phase transport losses through PEFC catalyst layers and various gas-diffusion and microporous layers. It is shown that the effective diffusivity in the gas-diffusion layers is a strong function of liquid saturation. Additionally, it is shown how the catalyst layer unexpectedly contributes significantly to the overall measuredmore » transport resistance. This is especially true for low catalyst loadings. It is also shown how the various losses can be separated into different mechanisms including diffusional processes and mass-dependent and independent ones, where the data suggests that a large part of the transport resistance in catalyst layers cannot be attributed to a gas-phase diffusional process. The technique is promising for deconvoluting transport losses in PEFCs.« less
Diffusional aspects of the high-temperature oxidation of protective coatings
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.
1989-01-01
The role of diffusional transport associated with the high-temperature oxidation of coatings is examined, with special attention given to the low-pressure plasma spraying MCrAl-type overlay coatings and similar Ni-base alloys which form protective AlO3 scales. The use of diffusional analysis to predict the minimum solute concentration necessary to form and grow a solute oxide scale is illustrated. Modeling procedures designed to simulate the diffusional transport in coatings and substrates are presented to show their use in understanding coating degradation, predicting the protective life of a coating, and evaluating various coating parameters to guide coating development.
Carbon agent chemical vapor transport growth of Ga2O3 crystal
NASA Astrophysics Data System (ADS)
Jie, Su; Tong, Liu; Jingming, Liu; Jun, Yang; Guiying, Shen; Yongbiao, Bai; Zhiyuan, Dong; Youwen, Zhao
2016-10-01
Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).
Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids.
Wang, Yichun; Bahng, Joong Hwan; Che, Quantong; Han, Jishu; Kotov, Nicholas A
2015-08-25
Understanding transport of carbon nanotubes (CNTs) and other nanocarriers within tissues is essential for biomedical imaging and drug delivery using these carriers. Compared to traditional cell cultures in animal studies, three-dimensional tissue replicas approach the complexity of the actual organs and enable high temporal and spatial resolution of the carrier permeation. We investigated diffusional transport of CNTs in highly uniform spheroids of hepatocellular carcinoma and found that apparent diffusion coefficients of CNTs in these tissue replicas are anomalously high and comparable to diffusion rates of similarly charged molecules with molecular weights 10000× lower. Moreover, diffusivity of CNTs in tissues is enhanced after functionalization with transforming growth factor β1. This unexpected trend contradicts predictions of the Stokes-Einstein equation and previously obtained empirical dependences of diffusivity on molecular mass for permeants in gas, liquid, solid or gel. It is attributed to the planar diffusion (gliding) of CNTs along cellular membranes reducing effective dimensionality of diffusional space. These findings indicate that nanotubes and potentially similar nanostructures are capable of fast and deep permeation into the tissue, which is often difficult to realize with anticancer agents.
Vázquez, M I; de Lara, R; Benavente, J
2008-12-15
A comparison of NaCl transport across two dense cellulosic membranes from different suppliers is presented. Hydraulic and diffusional permeabilities were determined from volume flow-applied pressure and concentration-time relationships, while cation transport number and membrane conductivity were determined from electromotrice force and impedance spectroscopy measurements, respectively. Chemical surface differences between both membranes are correlated to transport parameters and morphology, but differences in elastic properties of both membranes might also be considered in order to get a more complete picture of membrane behaviors and to obtain structural-transport parameters correlations.
Modeling oxygen transport in human placental terminal villi.
Gill, J S; Salafia, C M; Grebenkov, D; Vvedensky, D D
2011-12-21
Oxygen transport from maternal blood to fetal blood is a primary function of the placenta. Quantifying the effectiveness of this exchange remains key in identifying healthy placentas because of the great variability in capillary number, caliber and position within the villus-even in placentas deemed clinically "normal". By considering villous membrane to capillary membrane transport, stationary oxygen diffusion can be numerically solved in terminal villi represented by digital photomicrographs. We aim to provide a method to determine whether and if so to what extent diffusional screening may operate in placental villi. Segmented digital photomicrographs of terminal villi from the Pregnancy, Infection and Nutrition study in North Carolina 2002 are used as a geometric basis for solving the stationary diffusion equation. Constant maternal villous oxygen concentration and perfect fetal capillary membrane absorption are assumed. System efficiency is defined as the ratio of oxygen flux into a villus and the sum of the capillary areas contained within. Diffusion screening is quantified by comparing numerical and theoretical maximum oxygen fluxes. A strong link between various measures of villous oxygen transport efficiency and the number of capillaries within a villus is established. The strength of diffusional screening is also related to the number of capillaries within a villus. Our measures of diffusional efficiency are shown to decrease as a function of the number of capillaries per villus. This low efficiency, high capillary number relationship supports our hypothesis that diffusional screening is present in this system. Oxygen transport per capillary is reduced when multiple capillaries compete for diffusing oxygen. A complete picture of oxygen fluxes, capillary and villus areas is obtainable and presents an opportunity for future work. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kinetic limitations on the diffusional control theory of the ablation rate of carbon.
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1971-01-01
It is shown that the theoretical maximum oxidation rate is limited in many cases even at temperatures much higher than 1650 deg K, not by oxygen transport, but by the kinetics of the carbon-oxygen reaction itself. Mass-loss rates have been calculated at air pressures of 0.01 atm, 1 atm, and 100 atm. It is found that at high temperatures the rate of the oxidation reaction is much slower than has generally been assumed on the basis of a simple linear extrapolation of Scala's 'fast' and 'slow' rate expressions. Accordingly it cannot be assumed that a transport limitation inevitably must be reached at high temperatures.
Diffusional Transport of Organic Solutes in Subsurface Clay Lenses and Layers
NASA Astrophysics Data System (ADS)
Demond, A. H.; Ayral, D.; Goltz, M. N.
2009-12-01
The storage of organic solvents in clay lenses and layers in the subsurface creates long-term contaminant sources. Because of the low hydraulic conductivities of clay, it is thought that organic movement into clay lenses occurs through the process of diffusion. The ratio of the effective diffusion coefficient in the porous medium and the diffusion coefficient in bulk water is usually given by the tortuosity factor which accounts for the reduced area and the increased path length in the porous medium. However, there is field evidence which suggests that the concentrations in these lenses exceed that which can be accounted for by simple diffusion. There are reports, for example, of tortuosity factors greater than 1.0, which theoretically is not possible. Clays such as montmorillonite or bentonite shrink and swell depending on water content, and similar behavior can occur in the presence of organic solvents. In fact, research has shown that the basal spacing of bentonite can decrease by 50% when permeated with heptane. Such contraction of the clay structure can lead to the formation of cracks and macropores, with a concomitant alteration of the diffusional pathways that solutes follow. Models formulated for diffusional transport in soil are available to calculate the tortuosity factor as a function of water content. In addition, models are available to simulate phenomena in which the diffusion coefficient is concentration dependent. However, calculations of diffusional transport using such models show that they may not adequately reflect the impact of the alteration of the clay structure. However, modeling the transport of organic solutes in clay as a dual-domain system with some minimal advective transport in macropores can yield tortuosity factors greater than 1.0. Thus, it appears the cracking of clay in contact with organic solvents and a resultant advective component to transport of the solute may be an explanation of field observations.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
A mathematical model of the erythropoiesis on total red blood cell mass is presented. The loss of red cell mass has been a consistent finding during space flight. Computer simulation of this phenomenon required a model that could account for oxygen transport, red cell production, and red cell destruction. The elements incorporated into the feedback regulation loop of the model are based on the accepted concept that erythrocyte production is governed by the balance between oxygen supply and demand in the body. The mechanisms and pathways of the control circuit include oxygenation of hemoglobin and oxygenation of tissues by blood transport and diffusional processes. Other features of the model include a variable oxygen-hemoglobin affinity, and time delays which represent time for erythropoietin (erythrocyte-stimulating hormone) distribution in plasma, and time for maturation of the erythrocytes in bone marrow.
Potassium transport in monkey erythrocytes.
Stewart, G W; Blackstock, E J; Hall, A C; Ellory, J C
1989-01-01
K transport in Rhesus and Cynomolgus monkey erythrocytes has been characterised and compared to that in human erythrocytes. Transport due to the NaK pump, residual (diffusional) leak, volume-, pressure- and N-ethyl-maleimide-stimulated KCl system and internal Ca2+-stimulated K channel were similar to that in man but in the monkey it differed, in lacking the loop-diuretic-sensitive NaKCl cotransport system.
Lattice continuum and diffusional creep.
Mesarovic, Sinisa Dj
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
Lattice continuum and diffusional creep
NASA Astrophysics Data System (ADS)
Mesarovic, Sinisa Dj.
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
Measurements of water uptake of maize roots: the key function of lateral roots
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.
2014-12-01
Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be efficient in extracting water from the subsoil and better tolerate periods of water shortage. However, in this case the xylem axial resistance could be the limiting factor for the uptake of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmich, G.A.; Randles, J.
1981-01-01
The unidirectional influx of ..cap alpha..-methylglucoside (..cap alpha..-MG) by isolated chicken intestinal epithelial cells is 98% inhibited by phlorizin. The remaining 2% of the total influx occurs in the absence of Na/sup +/, is not sensitive to phloretin, and is equal to the diffusional entry rate for 2-deoxyglucose. The glucoside is much more strongly accumulated (75-fold) than 3-O-methylglucose (3-OMG) (10-fold). Inhibitors of the serosal sugar carrier (phloretin, cytochalasin B, theophylline, and flavanoids) do not enhance ..cap alpha..-MG accumulation. It is concluded that the glycoside is not a substrate for the intestinal serosal transport system. Steady-state gradients of the sugar canmore » be represented accurately by a concentrative, phlorizin-sensitive system that is opposed by a diffusional efflux process.« less
Numerical Modeling of High-Temperature Corrosion Processes
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
1995-01-01
Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.
USDA-ARS?s Scientific Manuscript database
Arabinoxylan (AX) gels entrapping standard model proteins at different mass ratios were formed. The distribution of protein through the network was investigated by confocal laser scanning microscopy (CLSM). In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ra...
Lattice continuum and diffusional creep
2016-01-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696
Unsteady Oxygen Transfer in Space-Filling Models of the Pulmonary Acinus
NASA Astrophysics Data System (ADS)
Hofemeier, Philipp; Shachar-Berman, Lihi; Filoche, Marcel; Sznitman, Josue
2014-11-01
Diffusional screening in the pulmonary acinus is a well-known physical phenomenon that results from the depletion of fresh oxygen in proximal acinar generations diffusing through the alveolar wall membranes and effectively creating a gradient in the oxygen partial pressure along the acinar airways. Until present, most studies have focused on steady-state oxygen diffusion in generic sub-acinar structures and discarded convective oxygen transport due to low Peclet numbers in this region. Such studies, however, fall typically short in capturing the complex morphology of acinar airways as well as the oscillatory nature of convecive acinar breathing. Here, we revisit this problem and solve the convective-diffusive transport equations in breathing 3D acinar structures, underlining the significance of convective flows in proximal acinar generations as well as recirculating alveolar flow patterns. In particular, to assess diffusional screening, we monitor time-dependent efficiencies of the acinus under cyclic breathing motion. Our study emphasizes the necessity of capturing both a dynamically breathing and anatomically-realistic model of the sub-acinus to characterize unsteady oxygen transport across the acinar walls.
Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M
2017-01-01
Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.
2017-12-01
Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.
Skibinski, Bertram; Götze, Christoph; Worch, Eckhard; Uhl, Wolfgang
2018-04-01
Overall apparent reaction rates for the removal of monochloramine (MCA) in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system and under conditions typical for swimming pool water treatment. Reaction rates dropped and quasi-stationary conditions were reached quickly. Diffusional mass transport in the pores was shown to be limiting the overall reaction rate. This was reflected consistently in the Thiele modulus, in the effect of temperature, pore size distribution and of grain size on the reaction rates. Pores <2.5 times the diameter of the monochloramine molecule were shown to be barely accessible for the monochloramine conversion reaction. GACs with a significant proportion of large mesopores were found to have the highest overall reactivity for monochloramine removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
A theoretical study of diffusional transport over the alveolar surfactant layer.
Aberg, Christoffer; Sparr, Emma; Larsson, Marcus; Wennerström, Håkan
2010-10-06
In this communication, we analyse the passage of oxygen and carbon dioxide over the respiratory membrane. The lung surfactant membrane at the alveolar interface can have a very special arrangement, which affects the diffusional transport. We present a theoretical model for the diffusion of small molecules in membranes with a complex structure, and we specifically compare a membrane composed of a tubular bilayer network with a membrane consisting of a stack of bilayers. Oxygen and carbon dioxide differ in terms of their solubility in the aqueous and the lipid regions of the membrane, and we show that this difference clearly influences their transport properties in the different membrane structures. During normal respiration, the rate-limiting step for carbon dioxide transport is in the gas phase of the different compartments in the lung. For oxygen, on the other hand, the rate is limited by the transport between alveoli and the capillary blood vessels, including the lung surfactant membrane. In a membrane with a structure of a continuous tubular lipid network, oxygen transport is facilitated to a significant extent compared with the structure of aligned lipid bilayers. The model calculations in the present study show that transport of oxygen through the tubular structure is indeed ca 30 per cent faster than transport through a membrane composed of stacked bilayers. The tubular network will also facilitate the transport of apolar substances between the gas phase and the blood. Important examples are ethanol and other volatile liquids that can leave the blood through the lungs, and gaseous anaesthetics or volatile solvents that are inhaled. This exemplifies a new physiological role of a tubular lipid network in the lung surfactant membrane.
2012-01-01
We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation/evaporation rates with varying pressure are discussed, measurements that are important for resolving the relative importance of gas diffusional transport and surface kinetics. PMID:23057492
NASA Technical Reports Server (NTRS)
Wittenberger, J. D.; Behrendt, D. R.
1973-01-01
Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.
Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L
2007-01-01
We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)
Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.
2011-01-01
Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.
Efthymiou, George S.; Shuler, Michael L.
1989-08-29
An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.
Hydrogen isotope transport across tungsten surfaces exposed to a fusion relevant He ion fluence
NASA Astrophysics Data System (ADS)
Baldwin, M. J.; Doerner, R. P.
2017-07-01
Tungsten targets are exposed to controlled sequences of D2 and He, and He and D2 plasma in the Pisces-A linear plasma device, with a view to studying the outward and inward transport of D across a He implanted surface, using thermal desorption mass spectrometry. Differences in transport are interpreted from changes in peak desorption temperature and amplitude for D2 release, compared against that of control targets exposed to just D2 plasma. Desorption data are modeled with Tmap-7 to infer the nature by which He leads to the ‘reduced inventory’ effect for H isotope uptake. A dual segment (surface-30 nm, bulk) W Tmap-7 model is developed, that simulates both plasma exposure and thermal desorption. Good agreement between desorption data and model is found for D2 release from control targets provided that the implanted flux is reduced, similar to that reported by others. For He affected release, the H isotope transport properties of the surface segment are adjusted away from control target bulk values during the computation. Modeling that examines outward D transport through the He implanted layer suggests that a permeation barrier is active, but bubble induced porosity is insufficient to fully explain the barrier strength. Moderately increased diffusional migration energy in the model over the He affected region, however, gives a barrier strength consistent with experiment. The same model, applied to inward transport, predicts the reduced inventory effect, but a further reduction in the implanted D flux is necessary for precise agreement.
Over the past two decades, more than 20 mass transfer models have been developed for the sources, sinks, and barriers for volatile and semivolatile organic compounds (VOCs and SVOCs) in the indoor environment. While these models have greatly improved our understanding of VOC and ...
Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
Ali, Mohammad A; Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E
2016-11-04
Time-resolved quartz crystal microbalance with in situ fluorescence measurements are used to monitor the sorption of the nitroaromatic (explosive) vapor, 2,4-dinitrotoluene (DNT) into a porous pentiptycene-containing poly(phenyleneethynylene) sensing film. Correlation of the nitroaromatic mass uptake with fluorescence quenching shows that the analyte diffusion follows the Case-II transport model, a film-swelling-limited process, in which a sharp diffusional front propagates at a constant velocity through the film. At a low vapor pressure of DNT of ≈16 ppb, the analyte concentration in the front is sufficiently high to give an average fluorophore-analyte separation of ≈1.5 nm. Hence, a long exciton diffusion length is not required for real-time sensing in the solid state. Rather the diffusion behavior of the analyte and the strength of the binding interaction between the analyte and the polymer play first-order roles in the fluorescence quenching process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ford, W E; Otvos, J W; Calvin, M
1979-01-01
An amphiphilic tris(2,2'-bipyridine)ruthenium(2+) derivative that is incorporated into the walls of phosphatidylcholine vesicles photosensitizes the irreversible oxidation of ethylenediaminetetraacetate(3-) dissolved in the inner aqueous compartments of the vesicle suspension and the one-electron reduction of heptylviologen(2+) dissolved in the continuous aqueous phase. The quantum yield of viologen radical production depends on the phospholipid-to-ruthenium complex mole ratios. A kinetic model is used to derive an order-of-magnitude estimate for the rate constant of electron transport across the vesicle walls. The results are inconsistent with a diffusional mechanism for electron transport and are interpreted in terms of electron exchange. PMID:291027
NASA Astrophysics Data System (ADS)
Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.
2011-10-01
This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.
A Simple Noise Correction Scheme for Diffusional Kurtosis Imaging
Glenn, G. Russell; Tabesh, Ali; Jensen, Jens H.
2014-01-01
Purpose Diffusional kurtosis imaging (DKI) is sensitive to the effects of signal noise due to strong diffusion weightings and higher order modeling of the diffusion weighted signal. A simple noise correction scheme is proposed to remove the majority of the noise bias in the estimated diffusional kurtosis. Methods Weighted linear least squares (WLLS) fitting together with a voxel-wise, subtraction-based noise correction from multiple, independent acquisitions are employed to reduce noise bias in DKI data. The method is validated in phantom experiments and demonstrated for in vivo human brain for DKI-derived parameter estimates. Results As long as the signal-to-noise ratio (SNR) for the most heavily diffusion weighted images is greater than 2.1, errors in phantom diffusional kurtosis estimates are found to be less than 5 percent with noise correction, but as high as 44 percent for uncorrected estimates. In human brain, noise correction is also shown to improve diffusional kurtosis estimates derived from measurements made with low SNR. Conclusion The proposed correction technique removes the majority of noise bias from diffusional kurtosis estimates in noisy phantom data and is applicable to DKI of human brain. Features of the method include computational simplicity and ease of integration into standard WLLS DKI post-processing algorithms. PMID:25172990
Xie, Y; Zhang, Y; Qin, W; Lu, S; Ni, C; Zhang, Q
2017-03-01
Increasing DTI studies have demonstrated that white matter microstructural abnormalities play an important role in type 2 diabetes mellitus-related cognitive impairment. In this study, the diffusional kurtosis imaging method was used to investigate WM microstructural alterations in patients with type 2 diabetes mellitus and to detect associations between diffusional kurtosis imaging metrics and clinical/cognitive measurements. Diffusional kurtosis imaging and cognitive assessments were performed on 58 patients with type 2 diabetes mellitus and 58 controls. Voxel-based intergroup comparisons of diffusional kurtosis imaging metrics were conducted, and ROI-based intergroup comparisons were further performed. Correlations between the diffusional kurtosis imaging metrics and cognitive/clinical measurements were assessed after controlling for age, sex, and education in both patients and controls. Altered diffusion metrics were observed in the corpus callosum, the bilateral frontal WM, the right superior temporal WM, the left external capsule, and the pons in patients with type 2 diabetes mellitus compared with controls. The splenium of the corpus callosum and the pons had abnormal kurtosis metrics in patients with type 2 diabetes mellitus. Additionally, altered diffusion metrics in the right prefrontal WM were significantly correlated with disease duration and attention task performance in patients with type 2 diabetes mellitus. With both conventional diffusion and additional kurtosis metrics, diffusional kurtosis imaging can provide additional information on WM microstructural abnormalities in patients with type 2 diabetes mellitus. Our results indicate that WM microstructural abnormalities occur before cognitive decline and may be used as neuroimaging markers for predicting the early cognitive impairment in patients with type 2 diabetes mellitus. © 2017 by American Journal of Neuroradiology.
Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers
Cook, P.G.; Solomon, D.K.; Sanford, W.E.; Busenberg, E.; Plummer, Niel; Poreda, R.J.
1996-01-01
The Ridge and Valley Province of eastern Tennessee is characterized by (1) substantial topographic relief, (2) folded and highly fractured rocks of various lithologies that have low primary permeability and porosity, and (3) a shallow residuum of medium permeability and high total porosity. Conceptual models of shallow groundwater flow and solute transport in this system have been developed but are difficult to evaluate using physical characterization or short‐term tracer methods due to extreme spatial variability in hydraulic properties. In this paper we describe how chlorofluorocarbon 12, 3H, and 3He were used to infer groundwater flow and solute transport in saprolite and fractured rock near Oak Ridge, Tennessee. In the shallow residuum, fracture spacings are <0.05 m, suggesting that concentrations of these tracers in fractures and in the matrix have time to diffusionally equilibrate. The relatively smooth nature of tracer concentrations with depth in the residuum is consistent with this model and quantitatively suggests recharge fluxes of 0.2 to 0.4 m yr−1. In contrast, groundwater flow within the unweathered rock appears to be controlled by fractures with spacings of the order of 2 to 5 m, and diffusional equilibration of fractures and matrix has not occurred. For this reason, vertical fluid fluxes in the unweathered rock cannot be estimated from the tracer data.
NASA Astrophysics Data System (ADS)
Carroll, R. W.; Warwick, J. J.
2009-12-01
Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.
Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J
2018-04-01
Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jensen, Jens H.; Helpern, Joseph A.
2011-06-01
Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.
[Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].
Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A
2007-01-01
Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.
The Consequences of Surface Confinement on Free Radical Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birtt, P.F.; Buchanan, A.C., III
1999-08-22
Mass transport limitations impact the thermochemical processing of fossil and renewable energy resources, which involves the breakdown of cross-linked, macromolecular networks. To Investigate the molecular level details of the consequences of molecular confinement on high temperature (275-500°C) free-radical reaction pathways, we have been examining the pyrolysis of model compounds attached to the surface of non-porous silica nanoparticles through a thermally robust Si-O-C aryl, tetha. Pyrolysis of silica-immobilized diphenylalkanes and related ethers have been studied in detail and compared with the corresponding behavior in fluid phases. The diffusional constraints can lead to reduced rates of radical termination on the surface, andmore » enhancement of neophyl-like rearrangements, cyclization-dehydrogenation pathways, and ipso- aromatic substitutions. Furthermore, studies of two-component surfaces have revealed the importance of a radical relay mechanism involving rapid serial hydrogen transfer steps resulting from the molecular pre-organization on the low fractal dimension silica surface. Key findings are reviewed in this paper, and the implications of these results for fuel processing are described.« less
Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport.
Leonidakis, Kimon Alexandros; Bhattacharya, Pinaki; Patterson, Jennifer; Vos, Bart E; Koenderink, Gijsje H; Vermant, Jan; Lambrechts, Dennis; Roeffaers, Maarten; Van Oosterwyck, Hans
2017-01-01
Fibrin hydrogels are promising carrier materials in tissue engineering. They are biocompatible and easy to prepare, they can bind growth factors and they can be prepared from a patient's own blood. While fibrin structure and mechanics have been extensively studied, not much is known about the relation between structure and diffusivity of solutes within the network. This is particularly relevant for solutes with a size similar to that of growth factors. A novel methodological approach has been used in this study to retrieve quantitative structural characteristics of fibrin hydrogels, by combining two complementary techniques, namely confocal fluorescence microscopy with a fiber extraction algorithm and turbidity measurements. Bulk rheological measurements were conducted to determine the impact of fibrin hydrogel structure on mechanical properties. From these measurements it can be concluded that variations in the fibrin hydrogel structure have a large impact on the rheological response of the hydrogels (up to two orders of magnitude difference in storage modulus) but only a moderate influence on the diffusivity of dextran solutes (up to 25% difference). By analyzing the diffusivity measurements by means of the Ogston diffusion model we further provide evidence that individual fibrin fibers can be semi-permeable to solute transport, depending on the average distance between individual protofibrils. This can be important for reducing mass transport limitations, for modulating fibrinolysis and for growth factor binding, which are all relevant for tissue engineering. Fibrin is a natural biopolymer that has drawn much interest as a biomimetic carrier in tissue engineering applications. We hereby use a novel combined approach for the structural characterization of fibrin networks based on optical microscopy and light scattering methods that can also be applied to other fibrillar hydrogels, like collagen. Furthermore, our findings on the relation between solute transport and fibrin structural properties can lead to the optimized design of fibrin hydrogel constructs for controlled release applications. Finally, we provide new evidence for the fact that fibrin fibers may be permeable for solutes with a molecular weight comparable to that of growth factors. This finding may open new avenues for tailoring mass transport properties of fibrin carriers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Uğurlu, Mahmut; Aksekili, Mehmet Atıf Erol; Alkan, Berat Meryem; Kara, Halil; Çağlar, Ceyhun
2017-06-12
The aim of this study was to assess the efficacy of the Artcure Diffusional Patch, which contains a mixture of 6 herbal oils (oleum thymi, oleum limonis, oleum nigra, oleum rosmarini, oleum chamomilla, oleum lauriexpressum) and has a hypoosmolar lipid structure, in the conservative treatment of lumbar disc herniation patients and to show the advantages and/or possibility of using this as an alternative method to surgery. Of the 120 patients enrolled, 79 clinically diagnosed patients were included in the study. Clinical evaluations were performed on patients who had findings of protrusion or extrusion in their magnetic resonance results. The treatment group was treated with the Artcure Diffusional Patch while the control group received a placebo transdermal diffusional patch. The functional state of patients was measured using the Oswestry Disability Index and pain intensity was measured with a visual analog scale as primary outcomes. Secondary outcomes of the study were Lasegue's sign, the femoral stretching test, and paravertebral muscle spasm. The treatment group showed a dramatic recovery in the first month following the application in regards to Oswestry Disability Index scores and visual analog scale values. The patients treated with the Artcure Diffusional Patch showed a statistically significant difference in recovery as compared to the control group. These findings suggest that the Artcure Diffusional Patch may be an alternative for the conservative treatment of lumbar disc herniation with radiculopathy.
Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri
2015-08-07
A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-01-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
NASA Astrophysics Data System (ADS)
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-09-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.
Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.
Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja
2016-08-23
Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.
Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix
2017-10-20
Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demanins, F.; Rado, V.; Vinci, F.
1963-04-01
The macroscopic absorption cross section, diffusion constant, diffusion cooling constant, transport mean free patu, extrapolated distance, diffusion length, and mean life for thermal neutrons were determined for Dowtherm A at 20 deg C, using a pulsed neutron source. The experimental assembly and data analysis method are described, and the results are compared with other determinations. (auth)
Random element method for numerical modeling of diffusional processes
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Oppenheim, A. K.
1982-01-01
The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.
Kheirolomoom, Azadeh; Khorasheh, Farhad; Fazelinia, Hossein
2002-01-01
Immobilization of enzymes on nonporous supports provides a suitable model for investigating the effect of external mass transfer limitation on the reaction rate in the absence of internal diffusional resistance. In this study, deacylation of penicillin G was investigated using penicillin acylase immobilized on ultrafine silica particles. Kinetic studies were performed within the low-substrate-concentration region, where the external mass transfer limitation becomes significant. To predict the apparent kinetic parameters and the overall effectiveness factor, knowledge of the external mass transfer coefficient, k(L)a, is necessary. Although various correlations exist for estimation of k(L)a, in this study, an optimization scheme was utilized to obtain this coefficient. Using the optimum values of k(L)a, the initial reaction rates were predicted and found to be in good agreement with the experimental data.
Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.; Heckel, R. W.
1984-01-01
The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.
Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.
Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A
2014-07-01
Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.
Mason, R P; Chester, D W
1989-01-01
A "membrane bilayer pathway" model, involving ligand partition into the bilayer, lateral diffusion, and receptor binding has been invoked to describe the 1,4-dihydropyridine (DHP) calcium channel antagonist receptor binding mechanism. In an earlier study (Chester et al. 1987. Biophys. J. 52:1021-1030), the diffusional component of this model was examined using an active fluorescence labeled DHP calcium channel antagonist, nisoldipine-lissamine rhodamine B (Ns-R), in purified cardiac sarcolemmal (CSL) lipid multibilayers. Diffusion coefficient measurements on membrane-bound drug and phospholipid at maximum bilayer hydration yielded similar values (3.8 x 10(-8) cm2/s). However, decreases in bilayer hydration resulted in dramatically reduced diffusion coefficient values for both probes with substantially greater impact on Ns-R diffusion. These data suggested that hydration dependent diffusional differences could be a function of relative probe location along the bilayer normal. In this communication, we have addressed the relative effect of the rhodamine substituent on Ns-R diffusion complex by examining the diffusional dynamics of free rhodamine B under the same conditions used to evaluate Ns-R complex and phospholipid diffusion. X-ray diffraction studies were performed to determine the Ns-R location in the membrane and model the CSL lipid bilayer profile structure to give a rationale for the differences in probe diffusional dynamics as a function of interbilayer water space. PMID:2611332
In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils
2016-01-01
The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749
Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Fradkov, V. E.
1996-01-01
We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.
Braziel, S; Sullivan, K; Lee, S
2018-01-29
Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.
Modeling the rate-controlled sorption of hexavalent chromium
Grove, D.B.; Stollenwerk, K.G.
1985-01-01
Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.
The rational design of recognitive polymeric networks for sensing applications
NASA Astrophysics Data System (ADS)
Noss, Kimberly Ryanne Dial
Testosterone recognitive networks were synthesized with varying feed crosslinking percentages and length of the bi-functional crosslinking agent to analyze the effect of changing structural parameters on template binding properties such as affinity, selectivity, capacity, and diffusional transport. The crosslinking percentage of the crosslinking monomer ethylene glycol dimethacrylate was varied from 50% to 90% and associated networks experienced a 2 fold increase in capacity and a 4 fold increase in affinity with the equilibrium association constants, Ka, ranging from 0.32 +/- 0.02 x 10 4 M-1 to 1.3 +/- 0.1 x 104 M -1, respectively. The higher concentration of crosslinking monomer increased the crosslinking points available for inter-chain stabilization creating an increased number of stable cavities for template association. However, by increasing the length of the crosslinking agent and increasing the feed crosslinking percentage from 77% crosslinked poly(methacrylic acid- co-ethylene glycol dimethacrylate) (poly(MAA-co-EGDMA)) to 50% crosslinked poly(methacrylic acid-co-poly(ethylene glycol)200 dimethacrylate) (poly(MAA-co-PEG200DMA)), the mesh size of the network increased resulting in an increased template diffusion coefficient from (2.83 +/- 0.06) x 109 cm2/s to (4.3 +/- 0.06) x 109 cm2/s, respectively, which is approximately a 40% faster template diffussional transport. A 77% crosslinked poly (MAA-co-PEG200DMA) recognitive network had an association constant of (0.20 +/- 0.05) x 104 M -1 and bound (0.72 +/- 0.04) x 10-2 mmol testosterone/g dry polymer, which was less by 6 and 3 fold, respectively, compared to a similarly crosslinked poly(MAA-co-EGDMA) recognitive network. Structural manipulation of the macromolecular architecture illustrates the programmability of recognitive networks for specific template binding parameters and diffusional transport, which may lead to enhanced imprinted sensor materials and successful integration onto sensor platforms.
Shoga, Janty S; Graham, Brian T; Wang, Liyun; Price, Christopher
2017-10-01
Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.
Using Meteoric Ablation to Constrain Vertical Transport in the Upper Mesosphere
NASA Astrophysics Data System (ADS)
Plane, J. M. C.; Carrillo-Sánchez, J. D.; Nesvorny, D.; Pokorný, P.; Janches, D.
2016-12-01
Meteoric ablation injects a variety of metals into the upper mesosphere and lower thermosphere, giving rise to layers of metal atoms centered around 90 km. The Na, Fe, K and Ca atom densities are measured accurately using resonance lidars. Since the reaction kinetics of many of the chemical reactions which produce these layers have now been studied in the laboratory, chemistry modules for each of the metals have been developed with a reasonable degree of confidence. When these modules are put into a global high-top model such as NCAR's Whole Atmosphere Community Climate Model (WACCM), a major problem emerges: the injection flux of each of the metals, termed the Meteoric Input Function (MIF), has to be reduced substantially in order to model the observed metal atom densities. For instance, the Na and Fe MIFs need to be reduced by factors of 8 and 14, respectively, compared with the MIFs determined from the lidar-measured vertical fluxes of Na and Fe atoms. The accumulation of meteoric smoke particles in polar ice cores also indicates that the meteoric ablation flux is significantly larger that can be handled in models where vertical transport is solely due to eddy diffusional mixing. Here we derive new Na and Fe MIFs by determining the relative contributions of the known dust sources in the near-Earth environment: Jupiter Family Comets (JFCs), the main asteroid belt, Halley Type comets, and Oort Cloud comets. The mass/velocity/radiant distributions of these cosmic dust populations are Monte Carlo sampled and the elemental ablation rates calculated with the Leeds Chemical Ablation Model. The contribution of each dust source in the Earth's atmosphere is then determined by fitting the measured cosmic spherule accretion rate at the South Pole, and the measured vertical Na and Fe fluxes above 86 km. We conclude that JFCs contribute either 85% or 93% to the total incoming mass, depending on whether infra-red observations of the Zodiacal Dust Cloud by the IRAS or Planck satellites, respectively, are used. The global ablated meteoric mass is then 6 tonnes per day, of which 0.2 tonnes is Na and 2.1 tonnes is Fe. We show that these large fluxes can be accommodated by including wave-driven chemical transport along with eddy diffusion in a 1-D model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesolowski, David J
2014-07-01
This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energymore » Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.« less
Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C
2017-06-06
Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Statistical variances of diffusional properties from ab initio molecular dynamics simulations
NASA Astrophysics Data System (ADS)
He, Xingfeng; Zhu, Yizhou; Epstein, Alexander; Mo, Yifei
2018-12-01
Ab initio molecular dynamics (AIMD) simulation is widely employed in studying diffusion mechanisms and in quantifying diffusional properties of materials. However, AIMD simulations are often limited to a few hundred atoms and a short, sub-nanosecond physical timescale, which leads to models that include only a limited number of diffusion events. As a result, the diffusional properties obtained from AIMD simulations are often plagued by poor statistics. In this paper, we re-examine the process to estimate diffusivity and ionic conductivity from the AIMD simulations and establish the procedure to minimize the fitting errors. In addition, we propose methods for quantifying the statistical variance of the diffusivity and ionic conductivity from the number of diffusion events observed during the AIMD simulation. Since an adequate number of diffusion events must be sampled, AIMD simulations should be sufficiently long and can only be performed on materials with reasonably fast diffusion. We chart the ranges of materials and physical conditions that can be accessible by AIMD simulations in studying diffusional properties. Our work provides the foundation for quantifying the statistical confidence levels of diffusion results from AIMD simulations and for correctly employing this powerful technique.
Intrinsic frame transport for a model of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Cozzini, S.; Rull, L. F.; Ciccotti, G.; Paolini, G. V.
1997-02-01
We present a computer simulation study of the dynamical properties of a nematic liquid crystal model. The diffusional motion of the nematic director is taken into account in our calculations in order to give a proper estimate of the transport coefficients. Differently from other groups we do not attempt to stabilize the director through rigid constraints or applied external fields. We instead define an intrinsic frame which moves along with the director at each step of the simulation. The transport coefficients computed in the intrinsic frame are then compared against the ones calculated in the fixed laboratory frame, to show the inadequacy of the latter for systems with less than 500 molecules. Using this general scheme on the Gay-Berne liquid crystal model, we evidence the natural motion of the director and attempt to quantify its intrinsic time scale and size dependence. Through extended simulations of systems of different size we calculate the diffusion and viscosity coefficients of this model and compare our results with values previously obtained with fixed director.
Understanding Combustion Processes Through Microgravity Research
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1998-01-01
A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.
Kinetics of transmembrane transport of small molecules into electropermeabilized cells.
Pucihar, Gorazd; Kotnik, Tadej; Miklavcic, Damijan; Teissié, Justin
2008-09-15
The transport of propidium iodide into electropermeabilized Chinese hamster ovary cells was monitored with a photomultiplier tube during and after the electric pulse. The influence of pulse amplitude and duration on the transport kinetics was investigated with time resolutions from 200 ns to 4 ms in intervals from 400 micros to 8 s. The transport became detectable as early as 60 micros after the start of the pulse, continued for tens of seconds after the pulse, and was faster and larger for higher pulse amplitudes and/or longer pulse durations. With fixed pulse parameters, transport into confluent monolayers of cells was slower than transport into suspended cells. Different time courses of fluorescence increase were observed during and at various times after the pulse, reflecting different transport mechanisms and ongoing membrane resealing. The data were compared to theoretical predictions of the Nernst-Planck equation. After a delay of 60 micros, the time course of fluorescence during the pulse was approximately linear, supporting a mainly electrophoretic solution of the Nernst-Planck equation. The time course after the pulse agreed with diffusional solution of the Nernst-Planck equation if the membrane resealing was assumed to consist of three distinct components, with time constants in the range of tens of microseconds, hundreds of microseconds, and tens of seconds, respectively.
Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment.
Yuan, Dajing; Cuartero, Maria; Crespo, Gaston A; Bakker, Eric
2017-01-03
This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).
Chemical reactions simulated by ground-water-quality models
Grove, David B.; Stollenwerk, Kenneth G.
1987-01-01
Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.
NASA Astrophysics Data System (ADS)
Liu, Joseph T. C.; Barbosa Decastilho, Cintia Juliana; Fuller, Mark E.; Sane, Aakash
2017-11-01
The present work uses a perturbation procedure to deduce the small nanoparticle volume concentration conservation equations for momentum, heat and concentration diffusion. Thermal physical variables are obtained from conventional means (mixture and field theories) for alumina-water and gold-water nanofluids. In the case of gold-water nano fluid molecular dynamics results are used to estimate such properties, including transport coefficients. The very thin diffusion layer at large Schmidt numbers is found to have a great impact on the velocity and temperature profiles owing to their dependency on transport properties. This has a profound effect on the conduction surface heat transfer rate enhancement and skin friction suppression for the case of nano fluid concentration withdrawal at the wall, while the diffusional surface heat transfer rate is negligible due to large Schmidt numbers. Possible experimental directed at this interesting phenomenon is suggested.
Chou, Howard A; Zavitz, Daniel H; Ovadia, Marc
2003-01-01
To study in vivo modification of the SAM equivalent circuit when a highly ordered SAM is used as a bioelectrode, dodecanethiolate SAM-Au intramuscular electrodes were studied in living rat heart in a challenging in situ perfused rat model by impedance spectroscopy, cyclic voltammetry, and neutron activation analysis (NAA). The SAM layer experienced disintegration in vivo biological system, as NAA detected the presence of Au atoms that had leached into the surrounding living tissue. Therefore, the underlying Au surface became exposed during biological implant. Study by impedance spectroscopy, however, revealed perfect capacitive behavior for the SAM, similar to in vitro behavior. Electrodes showed a pure capacitive Nyquist plot with 86.1-89.4 degrees near-vertical line segments as the equivalent circuit locus, as for a parallel plate capacitor. Impedance magnitude varied linearly with 1/omega excluding diffusionally limited ionic charge transport. There was no diffusional conductive element Z(W infinity ) or spatially confined Warburg impedance Z(D). The effect of in vivo exposure of a highly ordered SAM is a 'sealing over' effect of new defects by the binding of proteinaceous or lipid species in the biological milieu, a fact of significance for SAM electrodes used either as pacemaker electrodes or as a platform for in vivo biosensors.
Pieprzyk, S.; Heyes, D. M.; Brańka, A. C.
2016-01-01
Solute transport and intermixing in microfluidic devices is strongly dependent on diffusional processes. Brownian Dynamics simulations of pressure-driven flow of model microgel particles in microchannels have been carried out to explore these processes and the factors that influence them. The effects of a pH-field that induces a spatial dependence of particle size and consequently the self-diffusion coefficient and system thermodynamic state were focused on. Simulations were carried out in 1D to represent some of the cross flow dependencies, and in 2D and 3D to include the effects of flow and particle concentration, with typical stripe-like diffusion coefficient spatial variations. In 1D, the mean square displacement and particle displacement probability distribution function agreed well with an analytically solvable model consisting of infinitely repulsive walls and a discontinuous pH-profile in the middle of the channel. Skew category Brownian motion and non-Gaussian dynamics were observed, which follows from correlations of step lengths in the system, and can be considered to be an example of so-called “diffusing diffusivity.” In Poiseuille flow simulations, the particles accumulated in regions of larger diffusivity and the largest particle concentration throughput was found when this region was in the middle of the channel. The trends in the calculated cross-channel diffusional behavior were found to be very similar in 2D and 3D. PMID:27795750
Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L
2015-11-01
What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2) = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Effect of mass transfer in a recirculation batch reactor system for immobilized penicillin amidase.
Park, J M; Choi, C Y; Seong, B L; Han, M H
1982-10-01
The effect of external mass transfer resistance on the overall reaction rate of the immobilized whole cell penicillin amidase of E. coli in a recirculation batch reactor was investigated. The internal diffusional resistance was found negligible as indicated by the value of effectiveness factor, 0.95. The local environmental change in a column due to the pH drop was successfully overcome by employing buffer solution. The reaction rate was measured by pH-stat method and was found to follow the simple Michaelis-Menten law at the initial stage of the reaction. The values of the net reaction rate experimentally determined were used to calculate the substrate concentration at the external surface of the catalyst pellet and then to calculate the mass transfer coefficient, k(L), at various flow rates and substrate concentrations. The correlation proposed by Chilton and Colburn represented adequately the experimental data. The linear change of log j(D) at low log N(Re) with negative slope was ascribed to the fact that the external mass transfer approached the state of pure diffusion in the limit of zero superficial velocity.
NASA Astrophysics Data System (ADS)
Carlson, William D.
1989-09-01
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.
Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium
Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter
2015-01-01
Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634
NASA Astrophysics Data System (ADS)
Fernando, G. W. A. R.; Dharmapriya, P. L.; Baumgartner, Lukas P.
2017-07-01
Sri Lanka is a crucial Gondwana fragment mostly composed of granulitic rocks in the Highland Complex surrounded by rocks with granulite to amphibolite grade in the Vijayan and Wanni Complex that were structurally juxtaposed during Pan-African orogeny. Fluids associated with granulite-facies metamorphism are thought to have controlled various lower crustal processes such as dehydration/hydration reactions, partial melting, and high-temperature metasomatism. Chemical disequilibrium in the hybrid contact zone between a near peak post-tectonic ultramafic enclave and siliceous granulitic gneiss at Rupaha within the Highland Complex produced metasomatic reaction zones under the presence of melt. Different reaction zones observed in the contact zone show the mineral assemblages phlogopite + spinel + sapphirine (zone A), spinel + sapphirine + corundum (zone B), corundum ( 30%) + biotite + plagioclase zone (zone C) and plagioclase + biotite + corundum ( 5%) zone (zone D). Chemical potential diagrams and mass balance reveal that the addition of Mg from ultramafic rocks and removal of Si from siliceous granulitic gneiss gave rise to residual enrichment of Al in the metasomatized mineral assemblages. We propose that contact metasomatism between the two units, promoted by melt influx, caused steady state diffusional transport across the profile. Corundum growth was promoted by the strong residual Al enrichment and Si depletion in reaction zone whereas sapphirine may have been formed under high Mg activity near the ultramafic rocks. Modelling also indicated that metasomatic alteration occurred at ca. 850 °C at 9 kbar, which is consistent with post-peak metamorphic conditions reached during the initial stage of exhumation in the lower crust and with temperature calculations based on conventional geothermometry.
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Arnold, L.; Lohmann, U.; Dietlicher, R.; Paukert, M.
2016-12-01
Our current understanding of charge generation in thunderclouds is based on collisional charge transfer between graupel and ice crystals in the presence of liquid water droplets as dominant mechanism. The physical process of charge transfer and the sign of net charge generated on graupel and ice crystals under different cloud conditions is not yet understood. The Relative-Diffusional-Growth-Rate (RDGR) theory (Baker et al. 1987) suggests that the particle with the faster diffusional radius growth is charged positively. In this contribution, we use simulations of idealized thunderclouds with two-moment warm and cold cloud microphysics to generate realistic combinations of RDGR-parameters. We find that these realistic parameter combinations result in a relationship between sign of charge, cloud temperature and effective water content that deviates from previous theoretical and laboratory studies. This deviation indicates that the RDGR theory is sensitive to correlations between parameters that occur in clouds but are not captured in studies that vary temperature and water content while keeping other parameters at fixed values. In addition, our results suggest that diffusional growth from the riming-related local water vapor field, a key component of the RDGR theory, is negligible for realistic parameter combinations. Nevertheless, we confirm that the RDGR theory results in positive or negative charging of particles under different cloud conditions. Under specific conditions, charge generation via the RDGR theory alone might thus be sufficient to explain tripolar charge structures in thunderclouds. In general, however, additional charge generation mechanisms and adaptations to the RDGR theory that consider riming other than via local vapor deposition seem necessary.
Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume
2017-09-14
The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.
Reduction of diffusional defocusing in hydrodynamically focused flows
Affleck, Rhett L.; Demas, James N.; Goodwin, Peter M.; Keller, Richard; Wu, Ming
1998-01-01
An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream.
Reduction of diffusional defocusing in hydrodynamically focused flows
Affleck, R.L.; Demas, J.N.; Goodwin, P.M.; Keller, R.; Wu, M.
1998-09-01
An analyte fluid stream with first molecules having relatively low molecular weight and a corresponding high coefficient of diffusion has reduced diffusional defocusing out of an analyte fluid stream. The analyte fluid stream of first molecules is associated with second molecules of relatively high molecular weight having a relatively low coefficient of diffusion and a binding constant effective to associate with the first molecules. A focused analyte fluid stream is maintained since the combined molecular weight of the associated first and second molecules is effective to minimize diffusion of the first molecules out of the analyte fluid stream. 6 figs.
Oxygen self-diffusion in diopside with application to cooling rate determinations
NASA Astrophysics Data System (ADS)
Farver, John R.
1989-04-01
The kinetics of oxygen self-diffusion in a natural diopside have been measured over the temperature range 700-1250°C. Experiments were run under hydrothermal conditions using 18O-enriched water. Profiles of 18O/( 16O+ 18O) versus depth into the crystal were obtained using an ion microprobe. At 1000 bars (100 MPa) confining pressure, the Arrhenius relation for diffusion parallel to the c crystallographic direction yields a pre-exponential factor ( D0) = 1.5 × 10 -6 cm 2/s and an activation energy ( Q) = 54 ± 5 kcal/g-atom O (226 kJ/g-atom O) over the temperature range of the experiments. Diffusion coefficients parallel to the c crystallographic direction are ≈ 100 times greater than perpendicular to c. The oxygen self-diffusion coefficient obtained for diopside is ≈ 1000 times less than that for diffusion in feldspars, and ≈ 100 times less than that for quartz at 800°C, transport parallel to the c axis. Closure temperatures calculated for oxygen diffusional exchange in natural diopside are significantly higher than for quartz or feldspars. Measurable oxygen isotope exchange in diopside by diffusion would require geological settings with very high temperatures maintained for very long durations. The oxygen diffusional exchange kinetics in diopside presented in this paper find important applications in studies of meteoric hydrothermal circulation systems and the time-temperature history of high-grade regionally metamorphosed terrains. Examples considered include the Outer Unlayered Gabbro, Cuillins Gabbro Complex, Isle of Skye, Scotland, and the granulite-grade Turpentine Hill Metamorphics near Einasleigh, Queensland, Australia.
Kinetics of diffusional droplet growth in a liquid/liquid two-phase system
NASA Technical Reports Server (NTRS)
Baird, James K.
1992-01-01
In the case of the diaphragm cell transport equation where the interdiffusion coefficient is a function of concentration, we have derived an integral of the form, t = B(sub 0) + B(sub L)ln(delta(c)) + B(sub 1)(delta(c)) + B(sub 2)(delta(c))(exp 2) +... where t is the time and (delta(c)) is the concentration difference across the frit. The coefficient, B(sub 0), is a constant of integration, while the coefficient, B(sub L), B(sub 1), B(sub 2), ..., depend in general upon the cell constant, the compartment volumes, the interdiffusion coefficient, and various of its concentration derivatives evaluated at the mean concentration for the cell. Explicit formulae for B(sub L), B(sub 1), B(sub 2), ... are given.
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1974-01-01
The effect of noncondensable gases on high-performance arterial heat pipes was investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate, and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, were used to postulate stability criteria for arterial heat pipes under isothermal and non-isothermal condensate flow conditions. A rigorous second-order gas-loaded heat pipe model, incorporating axial conduction and one-dimensional vapor transport, was produced and used for thermal and gas studies. A Freon-22 (CHCIF2) heat pipe was used with helium and xenon to validate modeling. With helium, experimental data compared well with theory. Unusual gas-control effects with xenon were attributed to high solubility.
Biocatalytic coatings for air pollution control: a proof of concept study on VOC biodegradation.
Estrada, José M; Bernal, Oscar I; Flickinger, Michael C; Muñoz, Raúl; Deshusses, Marc A
2015-02-01
Although biofilm-based biotechnologies exhibit a large potential as solutions for off-gas treatment, the high water content of biofilms often causes pollutant mass transfer limitations, which ultimately limit their widespread application. The present study reports on the proof of concept of the applicability of bioactive latex coatings for air pollution control. Toluene vapors served as a model volatile organic compound (VOC). The results showed that Pseudomonas putida F1 cells could be successfully entrapped in nanoporous latex coatings while preserving their toluene degradation activity. Bioactive latex coatings exhibited toluene specific biodegradation rates 10 times higher than agarose-based biofilms, because the thin coatings were less subject to diffusional mass transfer limitations. Drying and pollutant starvation were identified as key factors inducing a gradual deterioration of the biodegradation capacity in these innovative coatings. This study constitutes the first application of bioactive latex coatings for VOC abatement. These coatings could become promising means for air pollution control. © 2014 Wiley Periodicals, Inc.
Sun, Yawen; Sun, Jinhua; Zhou, Yan; Ding, Weina; Chen, Xue; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong
2014-10-24
The aim of the current study was to investigate the utility of diffusional kurtosis imaging (DKI) in the detection of gray matter (GM) alterations in people suffering from Internet Gaming Addiction (IGA). DKI was applied to 18 subjects with IGA and to 21 healthy controls (HC). Whole-brain voxel-based analyses were performed with the following derived parameters: mean kurtosis metrics (MK), radial kurtosis (K⊥), and axial kurtosis (K//). A significance threshold was set at P <0.05, AlphaSim corrected. Pearson's correlation was performed to investigate the correlations between the Chen Internet Addiction Scale (CIAS) and the DKI-derived metrics of regions that differed between groups. Additionally, we used voxel-based morphometry (VBM) to detect GM-volume differences between the two groups. Compared with the HC group, the IGA group demonstrated diffusional kurtosis parameters that were significantly less in GM of the right anterolateral cerebellum, right inferior and superior temporal gyri, right supplementary motor area, middle occipital gyrus, right precuneus, postcentral gyrus, right inferior frontal gyrus, left lateral lingual gyrus, left paracentral lobule, left anterior cingulate cortex, and median cingulate cortex. The bilateral fusiform gyrus, insula, posterior cingulate cortex (PCC), and thalamus also exhibited less diffusional kurtosis in the IGA group. MK in the left PCC and K⊥ in the right PCC were positively correlated with CIAS scores. VBM showed that IGA subjects had higher GM volume in the right inferior and middle temporal gyri, and right parahippocampal gyrus, and lower GM volume in the left precentral gyrus. The lower diffusional kurtosis parameters in IGA suggest multiple differences in brain microstructure, which may contribute to the underlying pathophysiology of IGA. DKI may provide sensitive imaging biomarkers for assessing IGA severity.
Mathematical modeling of drug release from lipid dosage forms.
Siepmann, J; Siepmann, F
2011-10-10
Lipid dosage forms provide an interesting potential for controlled drug delivery. In contrast to frequently used poly(ester) based devices for parenteral administration, they do not lead to acidification upon degradation and potential drug inactivation, especially in the case of protein drugs and other acid-labile active agents. The aim of this article is to give an overview on the current state of the art of mathematical modeling of drug release from this type of advanced drug delivery systems. Empirical and semi-empirical models are described as well as mechanistic theories, considering diffusional mass transport, potentially limited drug solubility and the leaching of other, water-soluble excipients into the surrounding bulk fluid. Various practical examples are given, including lipid microparticles, beads and implants, which can successfully be used to control the release of an incorporated drug during periods ranging from a few hours up to several years. The great benefit of mechanistic mathematical theories is the possibility to quantitatively predict the effects of different formulation parameters and device dimensions on the resulting drug release kinetics. Thus, in silico simulations can significantly speed up product optimization. This is particularly useful if long release periods (e.g., several months) are targeted, since experimental trial-and-error studies are highly time-consuming in these cases. In the future it would be highly desirable to combine mechanistic theories with the quantitative description of the drug fate in vivo, ideally including the pharmacodynamic efficacy of the treatments. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
2017-07-01
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.
Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1972-01-01
Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.
Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface.
Tan, L; Pratt, L R; Chaudhari, M I
2018-04-05
Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10 -2 s (into the squalane) and 3 × 10 2 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.
High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.
2007-01-01
Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.
NASA Astrophysics Data System (ADS)
Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn
2016-04-01
Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to accommodate strain via dissolution precipitation creep. The transition from dominantly brittle, to dominantly viscous deformation is determined by the onset of diffusive mass transport. In the transitional regime, reaction kinetics are strongly dependent on strain energy and viscously deforming SB form most likely from an initial brittle stage in a dominantly brittle behaving rock. Viscous deformation in our experiments takes place at comparatively low experimental T, providing a realistic phase assemblage and likely deformation mechanism for the lower crust.
Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix
2016-09-07
One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.
NASA Astrophysics Data System (ADS)
Tu, Yiyou; Tong, Zhen; Jiang, Jianqing
2013-04-01
The effect of microstructure on clad/core interactions during the brazing of 4343/3005/4343 multi-layer aluminum brazing sheet was investigated employing differential scanning calorimetry (DSC) and electron back-scattering diffraction (EBSD). The thickness of the melted clad layer gradually decreased during the brazing operation. It could be completely removed isothermally as a result of diffusional solidification at the brazing temperature. During the brazing cycle, the rate of loss of the melt in the brazing sheet, with small equiaxed grains' core layer, was higher than that with the core layer consisting of elongated large grains. The difference in microstructure affected the amount of liquid formed during brazing.
Intracellular diffusion of oxygen and hypoxic sensing: role of mitochondrial respiration.
Takahashi, Eiji; Sato, Michihiko
2010-01-01
In vivo, diffusional O(2) gradients from the capillary blood to the intracellular space determine O(2) availability at the O(2) sensing molecules in the cell. With a novel technique for imaging intracellular O(2) levels using green fluorescent protein (GFP), we examined the possibility that diffusional O(2) concentration gradients might be involved in the cellular hypoxic sensing in cultured Hep3B cells. In the present study, we failed to demonstrate significant gradients of intracellular O(2) when mitochondrial respiration was maximally elevated by an uncoupler of oxidative phosphorylation. Thus, we conclude that intracellular O(2) gradients may be negligible at normal mitochondrial O(2) demand in these cells.
NASA Astrophysics Data System (ADS)
Parashar, R.; Reeves, D. M.
2010-12-01
Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 450 m below the top of the mesa and 500 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of the T-tunnel complex indicate the presence of a perched saturation zone located approximately 100 m above the T-tunnel complex. This upper zone of saturation extends downward through most of the Tertiary sequence. The groundwater table is located at an elevation of 1300 m within a thrust sheet of Paleozoic carbonates, corresponding to the lower carbonate aquifer hydrostratigraphic unit (LCA3). The LCA3 is considered to be hydraulically connected to the Death Valley regional flow system. The objective of this project is to simulate complex downward patterns of fluid flow and radionuclide transport from the T-tunnel complex through the matrix and fault networks of the Tertiary tuff units to the water table. We developed an improved fracture characterization and mapping methodology consisting of displacement-length scaling relationships, simulation of realistic fault networks based on site-specific data, and the development of novel fracture network upscaling techniques that preserves fracture network flow and transport properties on coarse continuum grid. Development of upscaling method for fracture continua is based on the concepts of discrete fracture network modeling approach which performs better at honoring network connectivity and anisotropy of sparse networks in comparison to other established methods such as a tensor approach. Extensive flow simulations in the dual-continuum framework demonstrate that the characteristics of fault networks strongly influences the saturation profile and formation of perched zones, although they may not conduct a large amount of flow when compared to the matrix continua. The simulated results are found to be very sensitive to distribution of fracture aperture, density of the network, and spatial pattern of fracture clustering. The faults provide rapid pathways for radionuclide transport and the conceptual modeling of diffusional mass transfer between matrix and fracture continua plays a vital role in prediction of the overall behavior of the breakthrough curve.
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Concent Particle Diameter Particle Number Concentration Precipitation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Content Particle Diameter Particle Number Concentration Precipitation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Content Particle Diameter Particle Number Concentration Preciptiation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
Solid-State Diffusional Behaviors of Functional Metal Oxides at Atomic Scale.
Chen, Jui-Yuan; Huang, Chun-Wei; Wu, Wen-Wei
2018-02-01
Metal/metal oxides have attracted extensive research interest because of their combination of functional properties and compatibility with industry. Diffusion and thermal reliability have become essential issues that require detailed study to develop atomic-scaled functional devices. In this work, the diffusional reaction behavior that transforms piezoelectric ZnO into magnetic Fe 3 O 4 is investigated at the atomic scale. The growth kinetics of metal oxides are systematically studied through macro- and microanalyses. The growth rates are evaluated by morphology changes, which determine whether the growth behavior was a diffusion- or reaction-controlled process. Furthermore, atom attachment on the kink step is observed at the atomic scale, which has important implications for the thermodynamics of functional metal oxides. Faster growth planes simultaneously decrease, which result in the predominance of low surface energy planes. These results directly reveal the atomic formation process of metal oxide via solid-state diffusion. In addition, the nanofabricated method provides a novel approach to investigate metal oxide evolution and sheds light on diffusional reaction behavior. More importantly, the results and phenomena of this study provide considerable inspiration to enhance the material stability and reliability of metal/oxide-based devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Karamanos, K.; Mistakidis, S. I.; Massart, T. J.; Mistakidis, I. S.
2015-06-01
The entropy production and the variational functional of a Laplacian diffusional field around the first four fractal iterations of a linear self-similar tree (von Koch curve) is studied analytically and detailed predictions are stated. In a next stage, these predictions are confronted with results from numerical resolution of the Laplace equation by means of Finite Elements computations. After a brief review of the existing results, the range of distances near the geometric irregularity, the so-called "Near Field", a situation never studied in the past, is treated exhaustively. We notice here that in the Near Field, the usual notion of the active zone approximation introduced by Sapoval et al. [M. Filoche and B. Sapoval, Transfer across random versus deterministic fractal interfaces, Phys. Rev. Lett. 84(25) (2000) 5776;1 B. Sapoval, M. Filoche, K. Karamanos and R. Brizzi, Can one hear the shape of an electrode? I. Numerical study of the active zone in Laplacian transfer, Eur. Phys. J. B. Condens. Matter Complex Syst. 9(4) (1999) 739-753.]2 is strictly inapplicable. The basic new result is that the validity of the active-zone approximation based on irreversible thermodynamics is confirmed in this limit, and this implies a new interpretation of this notion for Laplacian diffusional fields.
Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S
2009-04-23
Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.
Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging.
Gong, Nan-Jie; Wong, Chun-Sing; Chan, Chun-Chung; Leung, Lam-Ming; Chu, Yiu-Ching
2014-10-01
Diffusion tensor imaging has already been extensively used to probe microstructural alterations in white matter tracts, and scarcely, in deep gray matter. However, results in literature regarding age-related degenerative mechanisms in white matter tracts and parametric changes in the putamen are inconsistent. Diffusional kurtosis imaging is a mathematical extension of diffusion tensor imaging, which could more comprehensively mirror microstructure, particularly in isotropic tissues such as gray matter. In this study, we used the diffusional kurtosis imaging method and a white-matter model that provided metrics of explicit neurobiological interpretations in healthy participants (58 in total, aged from 25 to 84 years). Tract-based whole-brain analyses and regions-of-interest (anterior and posterior limbs of the internal capsule, cerebral peduncle, fornix, genu and splenium of corpus callosum, globus pallidus, substantia nigra, red nucleus, putamen, caudate nucleus, and thalamus) analyses were performed to examine parametric differences across regions and correlations with age. In white matter tracts, evidence was found supportive for anterior-posterior gradient and not completely supportive for retrogenesis theory. Age-related degenerations appeared to be broadly driven by axonal loss. Demyelination may also be a major driving mechanism, although confined to the anterior brain. In terms of deep gray matter, higher mean kurtosis and fractional anisotropy in the globus pallidus, substantia nigra, and red nucleus reflected higher microstructural complexity and directionality compared with the putamen, caudate nucleus, and thalamus. In particular, the unique age-related positive correlations for fractional anisotropy, mean kurtosis, and radial kurtosis in the putamen opposite to those in other regions call for further investigation of exact underlying mechanisms. In summary, the results suggested that diffusional kurtosis can provide measurements in a new dimension that were complementary to diffusivity metrics. Kurtosis together with diffusivity can more comprehensively characterize microstructural compositions and age-related changes than diffusivity alone. Combined with proper model, it may also assist in providing neurobiological interpretations of the identified alterations. Copyright © 2014 Elsevier Inc. All rights reserved.
Abdel-Malak, Rania; Ahearn, Gregory A
2014-03-01
Effects of luminal Ca(2+) and Mn(2+) on transmural mucosal to serosal (MS) transport of (3) H-L-leucine were characterized in the isolated and perfused intestine of the American lobster, Homarus americanus. (3) H-L-leucine MS transport in the presence of 20 µM Mn(2+) was a sigmoidal function of luminal amino acid concentration, following the Hill equation for multisite cooperative, carrier-mediated, transport. Luminal Ca(2+) was a non-competitive inhibitor of Mn(2+) -stimulated (3) H-L-leucine MS flux. Amino acid transport was hyperbolically stimulated by luminal Ca(2+) or Mn(2+). During 20 µM Mn(2+) -stimulation of (3) H-L-leucine MS flux, addition of 25 mM Ca(2+) strongly reduced amino acid transport Jmax , without affecting amino acid binding properties. Hyperbolic luminal Mn(2+) stimulation of 20 µM (3) H-L-leucine MS flux was also strongly inhibited by 25 mM luminal Ca(2+) , significantly reducing 20 µM (3) H-L-leucine Jmax . Increasing the luminal concentration of verapamil, a calcium channel blocker, significantly increased MS transport of 20 µM (3) H-L-leucine in the presence of 100 nM Mn(2+) by reducing diffusional Ca(2+) uptake into intestinal epithelial cells through verapamil-sensitive channels. A model is proposed supporting the concept of molecular mimicry, whereby (3) H-L-leucine enters lobster intestinal epithelial cells by one or more amino acid-specific transporters and by a dipeptide-like transporter that is capable of binding and transporting peptide molecular mimics (bis-complexes) between Ca(2+) or Mn(2+) and (3) H-L-leucine using the membrane potential as a major driving force for the transport event. According to the model, Ca(2+) entry through apical Ca(2+) channels regulates the magnitude of the membrane potential and therefore the size of the driving force for bis-complex uptake. © 2013 Wiley Periodicals, Inc.
Am Ende, Mary Tanya; Miller, Lee A
2007-02-01
An asymmetric membrane (AM) tablet was developed for a soluble model compound to study the in vitro drug release mechanisms in challenge conditions, including osmotic gradients, concentration gradients, and under potential coating failure modes. Porous, semipermable membrane integrity may be compromised by a high fat meal or by the presence of a defect in the coating that could cause a safety concern about dose-dumping. The osmotic and diffusional release mechanisms of the AM tablet were independently shut down such that their individual contribution to the overall drug release was measured. Shut off of osmotic and diffusional release was accomplished by performing dissolution studies into receptor solutions with osmotic pressure above the internal core osmotic pressure and into receptor solutions saturated with drug, respectively. The effect of coating failure modes on in vitro drug release from the AM tablet was assessed through a simulated high-fat meal and by intentionally compromising the coating integrity. The predominant drug release mechanism for the AM tablet was osmotic and accounted for approximately 90-95% of the total release. Osmotic release was shutoff when the receptor media osmotic pressure exceeded 76 atm. Diffusional release of the soluble drug amounted to 5-10% of the total release mechanism. The observed negative in vitro food effect was attributed to the increased osmotic pressure from the high fat meal when compared to the predicted release rates in sucrose media with the same osmotic pressure. This suppression in drug release rate due to a high fat meal is not anticipated to affect in vivo performance of the dosage form, as the rise in pressure is short-lived. Drug release from the AM system studied was determined to be robust to varying and extreme challenge conditions. The conditions investigated included varying pH, agitation rate, media osmotic pressure, media saturated with drug to eliminate the concentration gradient, simulated high fat meal, and intentionally placed film coating defects. Osmotic and diffusional shut off experiments suggest that the mechanism governing drug release is a combination of osmotic and diffusional at approximately 90-95% and 5-10%, respectively. In addition, the coating failure mode studies revealed this formulation and design is not significantly affected by a high fat meal or by an intentionally placed defect in the film coating, and more specifically, did not result in a burst of drug release.
Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007
Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.
Diffusional correlations among multiple active sites in a single enzyme.
Echeverria, Carlos; Kapral, Raymond
2014-04-07
Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.
Analysis of the depletion of a stored aerosol in low gravity
NASA Technical Reports Server (NTRS)
Squires, P.
1977-01-01
The depletion of an aerosol stored in a container has been studied in l-g and in low gravity. Models were developed for sedimentation, coagulation and diffusional losses to the walls. The overall depletion caused by these three mechanisms is predicted to be of order 5 to 8 percent per hour in terrestrial conditions, which agrees with laboratory experience. Applying the models to a low gravity situation indicates that there only coagulation will be significant. (Gravity influences diffusional losses because of convection currents caused by random temperature gradients). For the types of aerosol studied, the rate of depletion of particles should be somewhat less than 0.001 N percent per hour, where N is the concentration per cu cm.
NASA Astrophysics Data System (ADS)
Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Patton, H.
2013-11-01
Warm sub-polar mode water (SPMW) has been identified as a primary driver of mass loss of marine terminating glaciers draining the Greenland Ice Sheet (GrIS) yet, the specific mechanisms by which SPMW interacts with these tidewater termini remain uncertain. We present oceanographic data from Rink Glacier (RG) and Store Glacier (SG) fjords, two major marine outlets draining the western sector of the GrIS into Baffin Bay over the contrasting melt-seasons of 2009 and 2010. Submarine melting occurs wherever ice is in direct contact with warmer water and the consistent presence of 2.8 °C SPMW adjacent to both ice fronts below 400 m throughout all surveys indicates that melting is maintained by a combination of molecular diffusion and large scale, weak convection, diffusional (hereafter called ubiquitous) melting. At shallower depths (50-200 m), cold, brine-enriched water (BEW) formed over winter appears to persist into the summer thereby buffering this melt by thermal insulation. Our surveys reveal four main modes of glacier-ocean interaction, governed by water depth and the rate of glacier runoff water (GRW) injected into the fjord. Deeper than 200 m, submarine melt is the only process observed, regardless of the intensity of GRW or the depth of injection. However, between the surface and 200 m depth, three further distinct modes are observed governed by the GRW discharge. When GRW is weak (≲1000 m3 s-1), upward motion of the water adjacent to the glacier front is subdued, weak forced or free convection plus diffusional submarine melting dominates at depth, and seaward outflow of melt water occurs from the glacier toe to the base of the insulating BEW. During medium intensity GRW (∼1500 m3 s-1), mixing with SPMW yields deep mixed runoff water (DMRW), which rises as a buoyant plume and intensifies local submarine melting (enhanced buoyancy-driven melting). In this case, DMRW typically attains hydrostatic equilibrium and flows seaward at an intermediate depth of ∼50-150 m, taking the BEW with it. Strong GRW (≳ 2000 m3 s-1) yields vigorous, buoyant DMRW, which has sufficient vertical momentum to break the sea surface before sinking and flowing seaward, thereby leaving much of the BEW largely intact. Whilst these modes of glacier-ocean interaction significantly affect the ice-ocean interaction in the upper water column (0-200 m), below 200 m both RG and SG are dominated by the weak forced convection/diffusional (herein termed ubiquitous) melting due to the presence of SPMW.
Currently used methods for identification and characterization of hemichannels.
Schalper, Kurt A; Palacios-Prado, Nicolás; Orellana, Juan A; Sáez, Juan C
2008-05-01
Connexins and pannexins are vertebrate transmembrane proteins that form hexameric conduits termed hemichannels. Functional hemichannels allow the diffusional transport of ions and small molecules across the plasma membrane and serve as paracrine and autocrine communication pathways. During the last decade, interest in the hemichannel field increased substantially. Today, there is evidence for the existence of connexin hemichannels in vertebrate cells and bulk of information supports their function in diverse physiological and pathological responses. Controversy regarding the molecular identity of the hemichannel type mediating many responses arose recently with the identification of pannexin-based hemichannels. Here, the authors describe the most frequently used methods for studying hemichannels in living mammalian cells and focus on those with which they have more experience. Although the available in vitro evidence is substantial, further studies and possibly new experimental approaches are required to understand the role and properties of connexin and pannexin hemichannels in vivo.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2001-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
Cardiac tissue engineering using perfusion bioreactor systems
Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana
2009-01-01
This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955
Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel; Lasič, Samo
2017-01-01
Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins.
Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel
2017-01-01
Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins. PMID:28493928
Accelerated sintering in phase-separating nanostructured alloys
Park, Mansoo; Schuh, Christopher A.
2015-01-01
Sintering of powders is a common means of producing bulk materials when melt casting is impossible or does not achieve a desired microstructure, and has long been pursued for nanocrystalline materials in particular. Acceleration of sintering is desirable to lower processing temperatures and times, and thus to limit undesirable microstructure evolution. Here we show that markedly enhanced sintering is possible in some nanocrystalline alloys. In a nanostructured W–Cr alloy, sintering sets on at a very low temperature that is commensurate with phase separation to form a Cr-rich phase with a nanoscale arrangement that supports rapid diffusional transport. The method permits bulk full density specimens with nanoscale grains, produced during a sintering cycle involving no applied stress. We further show that such accelerated sintering can be evoked by design in other nanocrystalline alloys, opening the door to a variety of nanostructured bulk materials processed in arbitrary shapes from powder inputs. PMID:25901420
Bidirectional transepithelial water transport: measurement and governing mechanisms.
Phillips, J E; Wong, L B; Yeates, D B
1999-02-01
In the search for the mechanisms whereby water is transported across biological membranes, we hypothesized that in the airways, the hydration of the periciliary fluid layer is regulated by luminal-to-basolateral water transport coupled to active transepithelial sodium transport. The luminal-to-basolateral (JWL-->B) and the basolateral-to-luminal (JWB-->L) transepithelial water fluxes across ovine tracheal epithelia were measured simultaneously. The JWL-->B (6.1 microliter/min/cm2) was larger than JWB-->L (4.5 microliter/min/cm2, p < 0.05, n = 30). The corresponding water diffusional permeabilities were PdL-->B = 1.0 x 10(-4) cm/s and PdB-->L = 7.5 x 10(-5) cm/s. The activation energy (Ea) of JWL-->B (11.6 kcal/mol) was larger than the Ea of JWB-->L (6.5 kcal/mol, p < 0.05, n = 5). Acetylstrophanthidin (100 microM basolateral) reduced JWL-->B from 6.1 to 4.4 microliter/min/cm2 (p < 0. 05, n = 5) and abolished the PD. Amiloride (10 microM luminal) reduced JWL-->B from 5.7 to 3.7 microliter/min/cm2 (p < 0.05, n = 5) and reduced PD by 44%. Neither of these agents significantly changed JWB-->L. These data indicate that in tracheal epithelia under homeostatic conditions, JWB-->L was dominated by diffusion (Ea = 4.6 kcal/mol), whereas approximately 30% of JWL-->B was coupled to the active Na+,K+-ATPase pump (Ea = 27 kcal/mol).
High-altitude physiology: lessons from Tibet
NASA Astrophysics Data System (ADS)
Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili
2013-05-01
Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (P<0.05), enabled by both higher cardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].
Woodman, N D; Rees-White, T C; Beaven, R P; Stringfellow, A M; Barker, J A
2017-08-01
This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5m and 20m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as ~0.02 (~4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Woodman, N. D.; Rees-White, T. C.; Beaven, R. P.; Stringfellow, A. M.; Barker, J. A.
2017-08-01
This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5 m and 20 m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as 0.02 ( 4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting.
Pluen, Alain; Boucher, Yves; Ramanujan, Saroja; McKee, Trevor D.; Gohongi, Takeshi; di Tomaso, Emmanuelle; Brown, Edward B.; Izumi, Yotaro; Campbell, Robert B.; Berk, David A.; Jain, Rakesh K.
2001-01-01
The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors. PMID:11274375
Konti, Aikaterini; Mamma, Diomi; Hatzinikolaou, Dimitios G; Kekos, Dimitris
2016-10-01
3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω ≪ 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor.
Sarkar, Mitul; Koland, John G
2016-01-01
The fluorescence recovery after photobleaching (FRAP) method is a straightforward means of assessing the diffusional mobility of membrane-associated proteins that is readily performed with current confocal microscopy instrumentation. We describe here the specific application of the FRAP method in characterizing the lateral diffusion of genetically encoded green fluorescence protein (GFP)-tagged plasma membrane receptor proteins. The method is exemplified in an examination of whether the previously observed segregation of the mammalian HER3 receptor protein in discrete plasma membrane microdomains results from its physical interaction with cellular entities that restrict its mobility. Our FRAP measurements of the diffusional mobility of GFP-tagged HER3 reporters expressed in MCF7 cultured breast cancer cells showed that despite the observed segregation of HER3 receptors within plasma membrane microdomains their diffusion on the macroscopic scale is not spatially restricted. Thus, in FRAP analyses of various HER3 reporters a near-complete recovery of fluorescence after photobleaching was observed, indicating that HER3 receptors are not immobilized by long-lived physical interactions with intracellular species. An examination of HER3 proteins with varying intracellular domain sequence truncations also indicated that a proposed formation of oligomeric HER3 networks, mediated by physical interactions involving specific HER3 intracellular domain sequences, either does not occur or does not significantly reduce HER3 mobility on the macroscopic scale.
Lai, James J.; Nelson, Kjell; Nash, Michael A.; Hoffman, Allan S.; Yager, Paul; Stayton, Patrick S.
2010-01-01
In the absence of applied forces, the transport of molecules and particulate reagents across laminar flowstreams in microfluidic devices is dominated by the diffusivities of the transported species. While the differential diffusional properties between smaller and larger diagnostic targets and reagents have been exploited for bioseparation and assay applications, there are limitations to methods that depend on these intrinsic size differences. Here a new strategy is described for exploiting the sharply reversible change in size and magnetophoretic mobility of “smart” magnetic nanoparticles (mNPs) to perform bioseparation and target isolation under continuous flow processing conditions. The isolated 5 nm mNPs do not exhibit significant magnetophoretic velocities, but do exhibit high magnetophoretic velocities when aggregated by the action of a pH-responsive polymer coating. A simple external magnet is used to magnetophorese the aggregated mNPs that have captured a diagnostic target from a lower pH laminar flowstream (pH 7.3) to a second higher pH flowstream (pH 8.4) that induces rapid mNP dis-aggregation. In this second disaggregated state and flowstream, the mNPs continue to flow past the magnet rather than being immobilized at the channel surface near the magnet. This stimuli-responsive reagent system has been shown to transfer 81% of a model protein target from an input flowstream to a second flowstream in a continuous flow H-filter device. PMID:19568666
Lai, James J; Nelson, Kjell E; Nash, Michael A; Hoffman, Allan S; Yager, Paul; Stayton, Patrick S
2009-07-21
In the absence of applied forces, the transport of molecules and particulate reagents across laminar flowstreams in microfluidic devices is dominated by the diffusivities of the transported species. While the differential diffusional properties between smaller and larger diagnostic targets and reagents have been exploited for bioseparation and assay applications, there are limitations to methods that depend on these intrinsic size differences. Here a new strategy is described for exploiting the sharply reversible change in size and magnetophoretic mobility of "smart" magnetic nanoparticles (mNPs) to perform bioseparation and target isolation under continuous flow processing conditions. The isolated 5 nm mNPs do not exhibit significant magnetophoretic velocities, but do exhibit high magnetophoretic velocities when aggregated by the action of a pH-responsive polymer coating. A simple external magnet is used to magnetophorese the aggregated mNPs that have captured a diagnostic target from a lower pH laminar flowstream (pH 7.3) to a second higher pH flowstream (pH 8.4) that induces rapid mNP disaggregation. In this second dis-aggregated state and flowstream, the mNPs continue to flow past the magnet rather than being immobilized at the channel surface near the magnet. This stimuli-responsive reagent system has been shown to transfer 81% of a model protein target from an input flowstream to a second flowstream in a continuous flow H-filter device.
Gas sensor with attenuated drift characteristic
Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT
2008-05-13
A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention
Barriers to the free diffusion of proteins and lipids in the plasma membrane
Trimble, William S.
2015-01-01
Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. PMID:25646084
Barriers to the free diffusion of proteins and lipids in the plasma membrane.
Trimble, William S; Grinstein, Sergio
2015-02-02
Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. © 2015 Trimble and Grinstein.
Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus
2016-11-15
The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MK T ), and DIVIDE was used to decompose MK T into components caused by microscopic anisotropy (MK A ) and isotropic heterogeneity (MK I ). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MK A correlated with cell eccentricity (r=0.95, p<10 -7 ) and MK I with the cell density variance (r=0.83, p<10 -3 ). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10 -3 ) and microscopic scale (μFA, r=0.93, p<10 -6 ). A multiple regression analysis showed that the conventional MK T parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MK A was associated only to cell eccentricity, and MK I only to cell density variance. The variance in meningiomas was caused primarily by microscopic anisotropy (mean±s.d.) MK A =1.11±0.33 vs MK I =0.44±0.20 (p<10 -3 ), whereas in the gliomas, it was mostly caused by isotropic heterogeneity MK I =0.57±0.30 vs MK A =0.26±0.11 (p<0.05). In conclusion, DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These results constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and parameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an improved interpretation of tumor heterogeneity as well as diffusion anisotropy on both the microscopic and macroscopic scale. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A Kolmogorov-Brutsaert structure function model for evaporation into a turbulent atmosphere
NASA Astrophysics Data System (ADS)
Katul, Gabriel; Liu, Heping
2017-05-01
In 1965, Brutsaert proposed a model that predicted mean evaporation rate E¯ from rough surfaces to scale with the 3/4 power law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The working hypothesis explored here is that E¯˜
Bozkoyunlu, Gaye; Takaç, Serpil
2014-01-01
Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.
Rhenium-osmium concentration and isotope systematics in group IIAB iron meteorites
Morgan, J.W.; Horan, M.F.; Walker, R.J.; Grossman, J.N.
1995-01-01
Rhenium and osmium abundances, and osmium isotopic compositions were measured by negative thermal ionization mass spectrometry in thirty samples, including replicates, of five IIA and eight IIB iron meteorites. Log plots of Os vs. Re abundances for IIA and IIB irons describe straight lines that approximately converge on Lombard, which has the lowest Re and Os abundances and highest 187Re/188Os measured in a IIA iron to date. The linear IIA trend may be exactly reproduced by fractional crystallization, but is not well fitted using variable partition coefficients. The IIB iron trend, however, cannot be entirely explained by simple fractional crystallization. One explanation is that small amounts of Re and Os were added to the asteroid core during the final stages of crystallization. Another possibility is that diffusional enrichment of Os may have occurred in samples most depleted in Re and Os. -from Authors
Lab and Pore-Scale Study of Low Permeable Soils Diffusional Tortuosity
NASA Astrophysics Data System (ADS)
Lekhov, V.; Pozdniakov, S. P.; Denisova, L.
2016-12-01
Diffusion plays important role in contaminant spreading in low permeable units. The effective diffusion coefficient of saturated porous medium depends on this coefficient in water, porosity and structural parameter of porous space - tortuosity. Theoretical models of relationship between porosity and diffusional tortuosity are usually derived for conceptual granular models of medium filled by solid particles of simple geometry. These models usually do not represent soils with complex microstructure. The empirical models, like as Archie's law, based on the experimental electrical conductivity data are mostly useful for practical applications. Such models contain empirical parameters that should be defined experimentally for given soil type. In this work, we compared tortuosity values obtained in lab-scale diffusional experiments and pore scale diffusion simulation for the studied soil microstructure and exanimated relationship between tortuosity and porosity. Samples for the study were taken from borehole cores of low-permeable silt-clay formation. Using the samples of 50 cm3 we performed lab scale diffusional experiments and estimated the lab-scale tortuosity. Next using these samples we studied the microstructure with X-ray microtomograph. Shooting performed on undisturbed microsamples of size 1,53 mm with a resolution ×300 (10243 vox). After binarization of each obtained 3-D structure, its spatial correlation analysis was performed. This analysis showed that the spatial correlation scale of the indicator variogram is considerably smaller than microsample length. Then there was the numerical simulation of the Laplace equation with binary coefficients for each microsamples. The total number of simulations at the finite-difference grid of 1753 cells was 3500. As a result the effective diffusion coefficient, tortuosity and porosity values were obtained for all studied microsamples. The results were analyzed in the form of graph of tortuosity versus porosity. The 6 experimental tortuosity values well agree with pore-scale simulations falling in the general pattern that shows nonlinear decreasing of tortuosity with decreasing of porosity. Fitting this graph by Archie model we found exponent value in the range between 1,8 and 2,4. This work was supported by RFBR via grant 14-05-00409.
Diffusional creep of fine-grained olivine aggregates: Chemical and melt effects
NASA Astrophysics Data System (ADS)
Yabe, K.; Hiraga, T.
2017-12-01
Since olivine is the major constituent mineral of the earth's upper mantle, flow properties of the upper mantle are often estimated based on flow laws of olivine aggregate which are determined by high-temperature creep experiments. Recently, Miyazaki et al. (2013) showed that crystallographic preferred orientation (CPO) which has been interpreted as the main cause for seismic wave anisotropy in mantle asthenosphere could be formed in diffusional creep regime. The detail of diffusional creep of olivine aggregates is not clear yet. The strength of olivine aggregates synthesized using sol-gel method (Faul and Jackson 2007) was more than one order of magnitude harder in viscosity than those synthesized from natural mantle rocks (Hirth and Kohlstedt 1995, Hansen et al. 2011) even at the same experimental conditions. This discrepancy can be interpreted by a presence of melt and/or impurity. The purpose of this study is to examine the effects of chemical composition and presence of the melt phase on the creep properties of olivine aggregates. At first, Fe-bearing olivine aggregates were prepared by vacuum sintering of nano-sized olivine powder synthesized from highly pure and fine-grained (<100 nm) source powders. Samples with and without dopants of Al2O3 and CaO were prepared. Then uniaxial compression tests at 1 atm were conducted. Deformation experiments showed that all the samples were deformed by diffusional creep mechanism. Both doped and non-doped samples exhibited sample strength at low temperature (=1150˚C), while the doped sample became significantly weaker with showing higher temperature sensitivity compared to non-doped samples at higher temperature. The temperature sensitivity of doped samples didn't change below and above solidus, which indicate the weakening due to chemical effect, not by the melting. Non-doped samples exhibits essentially the same strength as olivine aggregates synthesized from sol-gel method (Faul and Jackson 2007), while doped sample is still harder than olivine aggregates synthesized from naturally derived olivine crystals. Trace elements other than Ca and Al, which segregate at grain boundaries in naturally-derived olivine aggregates, is likely to induce further weakening of olivine aggregates.
Wolf, Matthew B
2002-12-01
To show that a three-pathway pore model can describe extensive transport data in cat and rat skeletal muscle microvascular beds and in frog mesenteric microvessels. A three-pathway pore model was used to predict transport data measured in various microcirculatory preparations. The pathways consist of 4- and 24-nm radii pore systems with a 2.5:1 ratio of hydraulic conductivities and a water-only pathway of variable conductivity. The pore sizes and relative hydraulic conductivities of the small- and large-pore systems were derived from a model fit to reflection coefficient (sigma) data in the cat hindlimb. The fraction (alpha(w)) of total hydraulic conductivity (L(p)) or hydraulic capacity (L(p)S) contributed by the water-only pathway was uniquely determined for each preparation by a fit of the three-pathway model (parameters fixed as above) to sigma data measured in that preparation. These parameter values were unchanged when the model was used to predict diffusion capacity (permeability-surface area product, P(d)S) data in the cat or rat preparations or diffusional permeability (P(d)) data in frog microvessels. The values for L(p) or L(p)S used to predict diffusional data in each preparation were taken from the literature. Predictions of P(d) ratios for solute pairs were also compared with experimental data. The three-pathway model closely predicted the trend of P(d)S or P(d) experimental data in all three preparations; in general, predicted P(d) ratios for paired solutes were quite similar to experimental data. For these comparisons, the only parameter varied between these preparations was alpha(w). It varied considerably, from 7 to 16 to 41% of total in frog, rat, and cat preparations. Individual P(d)S or P(d) experimental data were closely predicted in the cat but somewhat overestimated in the frog and rat. This result could be due the use of L(p) or L(p)S values in the model that were affected by methodological problems. Calculated hydraulic conductivities of the water-only pathway in the three preparations were quite similar. : These results support the hypothesis of a common structure of the transmembrane pathways in these three, very different, microcirculatory preparations. What varies considerably between them is the total number of solute-conducting pathways, but not their dimensions, nor the hydraulic conductivities of their water-only pathways. Because of the wide variation of alpha(w) among these preparations, the ratio of P(d) to L(p) for any solute is not constant, but the deviation from constancy may not be detectable because of errors in the experimental data.
Kelly, B. G.; Loether, A.; Unruh, K. M.; ...
2017-02-01
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B. G.; Loether, A.; Unruh, K. M.
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
Deformation processes in forging ceramics
NASA Technical Reports Server (NTRS)
Cannon, R. M.; Rhodes, W. H.
1973-01-01
The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.
Chemical consequences of the initial diffusional growth of cloud droplets - A clean marine case
NASA Technical Reports Server (NTRS)
Twohy, C. H.; Charlson, R. J.; Austin, P. H.
1989-01-01
A simple microphysical cloud parcel model and a simple representation of the background marine aerosol are used to predict the concentrations and compositions of droplets of various sizes near cloud base. The aerosol consists of an externally-mixed ammonium bisulfate accumulation mode and a sea-salt coarse particle mode. The difference in diffusional growth rates between the small and large droplets as well as the differences in composition between the two aerosol modes result in substantial differences in solute concentration and composition with size of droplets in the parcel. The chemistry of individual droplets is not, in general, representative of the bulk (volume-weighted mean) cloud water sample. These differences, calculated to occur early in the parcel's lifetime, should have important consequences for chemical reactions such as aqueous phase sulfate production.
Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain.
Mohanty, Vaibhav; McKinnon, Emilie T; Helpern, Joseph A; Jensen, Jens H
2018-05-01
To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging. For the CE estimates of the kurtosis, the CE was truncated to quadratic order in the b-value and fit to the dMRI signal for b-values from 0 up to 2000s/mm 2 . For the QS estimates, b-values ranging from 0 up to 10,000s/mm 2 were used to determine the diffusion displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then calculated directly from the second and fourth order moments of the dPDF. These two approximations were studied for in vivo human data obtained on a 3T MRI scanner using three orthogonal diffusion encoding directions. The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or less in each of the considered diffusion encoding directions, and the Pearson correlation coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, particularly those with either very high or very low kurtoses relative to the mean values. Estimates of the diffusional kurtosis in brain obtained using CE and QS approximations are strongly correlated, suggesting that they encode similar information. However, for the choice of b-values employed here, there may be substantial differences, depending on the properties of the diffusion microenvironment in each voxel. Copyright © 2018 Elsevier Inc. All rights reserved.
Astroglial Glutamate Signaling and Uptake in the Hippocampus
Rose, Christine R.; Felix, Lisa; Zeug, Andre; Dietrich, Dirk; Reiner, Andreas; Henneberger, Christian
2018-01-01
Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses. PMID:29386994
Signal mass and Ca²⁺ kinetics in local calcium events: a modeling study.
Baran, Irina; Ganea, Constanta; Ungureanu, Raluca; Tofolean, Ioana Teodora
2012-02-01
We use a detailed modeling formalism based on numerical simulations of local calcium release events where the blurring of the image, the presence of diffusional barriers provided by large organelles situated close to the release site, as well as the variable position of the scan line with respect to the release site are taken into consideration. We have investigated the effect of the fluorescence noise fluctuations on the accuracy in computing the signal mass from linescan recordings and obtained a quantitative description of both the signal mass and the local increase in the free Ca(2+) level as a function of the release current, the release duration and the orientation of the scan line, for three different levels of noise magnitudes. The model could provide a very good fit to a wide set of available experimental data regarding the signal mass of puffs visualized by fluorescence microscopy in the Xenopus oocyte loaded with 40 μM Oregon Green-1 in the absence of the calcium chelator EGTA. Numerical simulations also predict the amplitude and the kinetics of calcium signals evolving in the absence of the indicator, and indicate that sub-maximal activation of IP(3) receptors could produce in average levels of about 2 μM and 0.4 μM free Ca(2+) close to a release site located in the animal or in the vegetal hemisphere, respectively, whereas the maximal levels reached in more rare events could be 11 μM and 4 μM, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, R.G.; Verkman, A.S.
1989-01-24
A quantitative description of transmembrane water transport requires specification of osmotic (Pf) and diffusional (Pd) water permeability coefficients. Methodology has been developed to measure Pf and Pd simultaneously on the basis of the sensitivity and rapid response of the fluorophore aminonaphthalenetrisulfonic acid (ANTS) to solution H2O/D2O content. Cells loaded with ANTS in an H2O buffer were subjected to an inward osmotic gradient with a D2O buffer in a stopped-flow apparatus. The time courses of cell volume (giving Pf) and H2O/D2O content (giving Pd) were recorded with dual photomultiplier detection of scattered light intensity and ANTS fluorescence, respectively. The method wasmore » validated by using sealed red cell ghosts and artificial liposomes reconstituted with the pore-forming agent gramicidin D. At 25 degrees C, red cell ghost Pf was 0.021 cm/s with Pd 0.005 cm/s (H2O/D2O exchange time 7.9 ms). Pf and Pd were inhibited by 90% and 45% upon addition of 0.5 mM HgCl2. The activation energy for Pd increased from 5.1 kcal/mol to 10 kcal/mol with addition of HgCl2 (18-35 degrees C). In 90% phosphatidylcholine (PC)/10% cholesterol liposomes prepared by bath sonication and exclusion chromatography, Pf and Pd were 5.1 X 10(-4) and 6.3 X 10(-4) cm/s, respectively (23 degrees C). Addition of gramicidin D (0.1 micrograms/mg of PC) resulted in a further increment in Pf and Pd of 7 X 10(-4) and 3 X 10(-4) cm/s, respectively. These results validate the new methodology and demonstrate its utility for rapid determination of Pf/Pd in biological membranes and in liposomes reconstituted with water channels.« less
NASA Technical Reports Server (NTRS)
Kumar, R. N.
1976-01-01
This paper considers a model for the pyrolysis of polymers for use in mass loss and smoke density predictions in a fire situation. It is based on the fundamental postulate that the overall rate-limiting reactions are in the relatively low temperature condensed phase; the rate limiting step is the polymer degradation to a vaporizable state. The state of the polymer (chain length) at the surface is specified by the vapor pressure equilibrium criterion. For the case of polymers with inert fillers, like alumina trihydrate, the further assumption is made that the linear regression rate of the material is identical to the unfilled material's at the same surface temperature. The fraction of polymer mass loss converted to smoke is inferred from the literature. The smoke density in the NBS-smoke density chamber is predicted for a polyester and the same polyester with two different loads of alumina trihydrate filler. Diffusional effects in the smoke spreading are considered in an elementary manner. The comparisons with experimental data are encouraging. The overall fire characteristics are predicted using only the fundamental physicochemical property values of ingredients.
Pulmonary diffusional screening and the scaling laws of mammalian metabolic rates
NASA Astrophysics Data System (ADS)
Hou, Chen; Mayo, Michael
2011-12-01
Theoretical considerations suggest that the mammalian metabolic rate is linearly proportional to the surface areas of mitochondria, capillary, and alveolar membranes. However, the scaling exponents of these surface areas to the mammals' body mass (approximately 0.9-1) are higher than exponents of the resting metabolic rate (RMR) to body mass (approximately 0.75), although similar to the one of exercise metabolic rate (EMR); the underlying physiological cause of this mismatch remains unclear. The analysis presented here shows that discrepancies between the scaling exponents of RMR and the relevant surface areas may originate from, at least for the system of alveolar membranes in mammalian lungs, the facts that (i) not all of the surface area is involved in the gas exchange and (ii) that larger mammals host a smaller effective surface area that participates in the material exchange rate. A result of these facts is that lung surface areas unused at rest are activated under heavy breathing conditions (e.g., exercise), wherein larger mammals support larger activated surface areas that provide a higher capability to increase the gas-exchange rate, allowing for mammals to meet, for example, the high energetic demands of foraging and predation.
Entropic Approach to Brownian Movement.
ERIC Educational Resources Information Center
Neumann, Richard M.
1980-01-01
A diffusional driving force, called the radial force, which is responsible for the increase with time of the scalar separation between a fixed point and a particle undergoing three-dimensional Brownian motion, is derived using Boltzmann's equation. (Author/HM)
Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier
2016-10-01
Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan
2008-03-01
The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
Possible role of hemichannels in cancer
Schalper, Kurt A.; Carvajal-Hausdorf, Daniel; Oyarzo, Mauricio P.
2014-01-01
In humans, connexins (Cxs) and pannexins (Panxs) are the building blocks of hemichannels. These proteins are frequently altered in neoplastic cells and have traditionally been considered as tumor suppressors. Alteration of Cxs and Panxs in cancer cells can be due to genetic, epigenetic and post-transcriptional/post-translational events. Activated hemichannels mediate the diffusional membrane transport of ions and small signaling molecules. In the last decade hemichannels have been shown to participate in diverse cell processes including the modulation of cell proliferation and survival. However, their possible role in tumor growth and expansion remains largely unexplored. Herein, we hypothesize about the possible role of hemichannels in carcinogenesis and tumor progression. To support this theory, we summarize the evidence regarding the involvement of hemichannels in cell proliferation and migration, as well as their possible role in the anti-tumor immune responses. In addition, we discuss the evidence linking hemichannels with cancer in diverse models and comment on the current technical limitations for their study. PMID:25018732
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, C; Artaxo, P; Martin, S
Aerosol nucleation and initial growth were investigated during the Green Ocean Amazon (GoAmazon) 2014/15 campaign. Aerosol sampling occurred during the wet and dry seasons of 2014, and took place at the T3 measurement site, downwind of the city of Manaus, Brazil. Characterization of the aerosol size distribution from 10 to 500 nm was accomplished through the deployment of a conventional Scanning Mobility Particle Spectrometer (SMPS) and a fine condensation particle counter (> 10 nm). In order to directly measure aerosol nucleation and initial growth, a Nano SMPS (1.5-20 nm) was also deployed, consisting of a condensation particle counter-based electrical mobilitymore » spectrometer that was modified for the detection of sub-3 nm aerosol. Measurements of the aerosol size distribution from 1.5 nm to 10 nm were obtained during the first observational period, and from 3 nm to 15 nm during the second observational period. Routine, stable measurement in this size range was complicated due to persistent water condensation in the Nano SMPS and diffusional transport losses« less
Chloride ions induce order-disorder transition at water-oxide interfaces
NASA Astrophysics Data System (ADS)
Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.
2013-12-01
Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
2000-01-01
A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.
Tribo-electric charging of dielectric solids of identical composition
NASA Astrophysics Data System (ADS)
Angus, John C.; Greber, Isaac
2018-05-01
Despite its long history and importance in many areas of science and technology, there is no agreement on the mechanisms responsible for tribo-electric charging, including especially the tribo-charging of chemically identical dielectric solids. Modeling of the excitation, diffusional transport, and de-excitation of electrons from hot spots shows that a difference in local surface roughness of otherwise identical solid dielectric objects leads to different transient excited electron concentrations during tribo-processes. The model predicts that excited electron concentrations are lower and concentration gradients higher in solids with rougher rather than smoother surfaces. Consequently, during contact, the flux of charge carriers (electrons or holes) from hot spots will be greater into the rougher solid than into the smoother solid. These predictions are in agreement with current and historical observations of tribo-electric charge transfer between solids of the same composition. This effect can take place in parallel with other processes and may also play a role in the charging of solids of different composition.
Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish.
Luo, Jun; Cheng, Hao; Ren, Jinghua; Davison, William; Zhang, Hao
2014-07-01
This work tests the previously proposed hypothesis that plant uptake of metals is determined dominantly by diffusional controlled or plant limiting uptake mechanisms at, respectively, low and high metal concentrations. Radish (Raphanus sativus) was grown in 13 soils spiked with Ni (10 and 100 mg kg(-1)) and Cd (0.5 and 4 mg kg(-1)) for 4 weeks to investigate the mechanisms affecting plant uptake. Soil solution concentrations, Css, of Ni and Cd were measured, along with the DGT interfacial concentration, CDGT, and the derived effective concentration in soil solution, CE. Free ion activities, aNi(2+) and aCd(2+), were obtained using WHAM 6. Although there was a poor relationship between Ni in radish roots and either Css or aNi(2+) in unamended soils, the distribution of data could be rationalized in terms of the extent of release of Ni from the soil solid phase, as identified by DGT and soil solution measurements. By contrast Ni in radish was linearly related to CE, demonstrating diffusion limited uptake. For soils amended with high concentrations of Ni, linear relationships were obtained for Ni in radish plotted against, Css, aNi(2+), and CE, consistent with the plant controlling uptake. For Ni the hypothesis concerning dominant diffusional and plant limiting uptake mechanisms was demonstrated. Poor relationships between Cd in radish and Css, aCd(2+), and CE, irrespective of amendment by Cd, showed the importance of factors other than diffusional supply, such as rhizosphere and inhibitory processes, and that fulfilment of this hypothesis is plant and metal specific.
Miles, Rachael E H; Davies, James F; Reid, Jonathan P
2016-07-20
We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer coated particle, the droplet is found to have lost a greater proportion of its initial water content. A greater degree of slowing in the evaporative flux can be achieved by increasing the chain length of the surface active alcohol, leading to a greater degree of dehydration.
NASA Astrophysics Data System (ADS)
Piedade, Aldina; Alves, Tiago; Luís Zêzere, José
2017-04-01
Mass-transport deposits form a significant part of the stratigraphic record of ancient and modern deep-water basins worldwide. Three-dimensional (3D) seismic data is used to analyse two different types of buried mass-transport deposits offshore Espírito Santo Basin (SE Brazil. Both types are developed within Early Miocene to Holocene stratigraphic units composed of sandstones, calcarenites, turbidite sands and marls. The high resolution images provided by the interpreted 3D seismic data allowed a detailed analysis of the seismic stratigraphy and internal structure of mass-transport deposits. In addition, improvements in visualisation techniques were used to compute simple morphometric attributes of buried mass-transport deposits in continental slopes. This study classifies the interpreted mass-transport deposits in two different types according to the relationship between the morphology of mass-transport deposits and the surrounding topography. Locally confined mass-transport deposits are laterally constrained by non-deformed strata that surrounds the mass-transport deposit and by the local topography of the depositional surface. Their dimensions are relatively small (area of 5.251 km2). Unconfined mass-transport deposits show a much larger volume compared to the previously type ( 87.180 km2), and local topography does not have control on their geometry. The analysis proves that local topography and geometry of the depositional surface are key controlling factors on the spatial distribution and dimensions of the two types of mass-transport deposits. However, the two types differ in size, geomorphological expression, local structural controls and run-out distance. This work importance is relate variations in the character of the depositional surface with the morphology mass-transport deposits and run-out distance. As a result of the methodology used, two different styles of mass-transport run-out are identified and local factors controlling their morphology are addressed, such as roughness and local morphology of the depositional surface. Separating these two styles, or types, of mass-transport deposits it is of critical importance to understand their mechanisms of gliding, downslope spreading and emplacement.
NASA Technical Reports Server (NTRS)
Talay, T. A.
1975-01-01
Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.
NASA Technical Reports Server (NTRS)
Vali, G.
1982-01-01
A low gravity experiment to assess the effect of the presence of supercooled cloud droplets on the diffusional growth rate of ice crystals is described. The theoretical work and the feasibility studies are summarized. The nucleation of ice crystals in supercooled clouds is also discussed.
Ozawa, I; Saito, K; Sugita, K; Sato, K; Akiba, M; Sugo, T
2000-08-04
A porous hollow-fiber membrane capable of recovery of germanium from a liquid stream was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate, and subsequent functionalization with 2,2'-iminodiethanol, di-2-propanolamine, N-methylglucamine, and 3-amino-1,2-propanediol. The functional group density was as high as 1.4 mol per kg of the resultant hollow fiber. The polymer chains containing functional groups surrounding the pores enabled a high-speed recovery of germanium during permeation of a germanium oxide (GeO2) solution through the pores of the hollow fiber. Because of a negligible diffusional mass-transfer resistance, germanium concentration changes with the effluent volume, i.e., breakthrough curves, overlapped irrespective of the residence time of the solution, which ranged from 0.37 to 3.7 s across the hollow fiber. After repeated use of adsorption and elution, the adsorption capacity did not deteriorate.
The effects of heterogeneities on memory-dependent diffusion
NASA Astrophysics Data System (ADS)
Adib, Farhad; Neogi, P.
1993-07-01
Case II diffusion is often seen in glassy polymers, where the mass uptake in sorption is proportional to time t instead of sqrt{t}. A memory dependent diffusion is needed to explain such effects, where the relaxation function used to describe the memory effect has a characteristic time. The ratio of this time to the overall diffusion times is the diffusional Deborah number. Simple models show that case II results when the Deborah number is around one, that is, when the two time scales are comparable. Under investigation are the possible effects of the fact that the glassy polymers are heterogeneous over molecular scales. The averaging form given by DiMarzio and Sanchez has been used to obtain the averaged response. The calculated dynamics of sorption show that whereas case II is still observed, the long term tails change dramatically from the oscillatory to torpid, to chaotic, which are all observed in the experiments. The Deborah number defined here in a self-consistent manner collapses in those cases, but causes no other ill-effects.
NASA Astrophysics Data System (ADS)
Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin
2016-08-01
Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.
Habibi-Moini, S; D'mello, A P
2001-03-14
Microencapsulated phenylalanine ammonia lyase (PAL) exhibits a marked reduction in activity compared to the activity of the free enzyme in pH 8.5 Tris buffer. The purpose of this investigation was to evaluate the contribution of incomplete entrapment, the internal environment of cellulose nitrate membrane microcapsules, the diffusional barrier of the membrane and the microcapsulation process to the low activity of encapsulated PAL. A solution of PAL and 10% w/v hemoglobin was incorporated into cellulose nitrate membrane microcapsules. Hemoglobin incorporation was used as a surrogate marker of PAL entrapment. Using 14C hemoglobin, the encapsulation efficiency was determined to be 70% and suggested that incomplete entrapment might partially account for the low activity of encapsulated PAL. The effect of the internal environment of the microcapsule (10% hemoglobin solution) on PAL activity was evaluated by comparing enzyme activity in 10% w/v hemoglobin solution and pH 8.5 Tris buffer. Similar K(M) and V(max) values of PAL in the two media indicated that the internal environment of the microcapsule did not contribute to the reduction in activity of the encapsulated enzyme. The contribution of a membrane diffusional barrier was determined by breaking the putative barrier and measuring PAL activity in intact and broken microcapsules. Similar activity of PAL in these two conditions is evidence for the lack of a diffusional barrier. The effect of the microencapsulation process on PAL activity was evaluated by comparing K(M) and V(max) of free and encapsulated PAL. Similar K(M) values in these two media suggested that the process did not affect the conformation of PAL. However, encapsulated PAL had a 50% lower V(max) value compared to free PAL, which showed that the microencapsulation process deactivated a substantial proportion of the enzyme.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE... from high occupancy vehicles and/or public mass transportation systems including rail. The term parking... transportation decisionmaking. (6) Nonhighway public mass transit project—a project to develop or improve public...
Biased Brownian motion mechanism for processivity and directionality of single-headed myosin-VI.
Iwaki, Mitsuhiro; Iwane, Atsuko Hikikoshi; Ikebe, Mitsuo; Yanagida, Toshio
2008-01-01
Conventional form to function as a vesicle transporter is not a 'single molecule' but a coordinated 'two molecules'. The coordinated two molecules make it complicated to reveal its mechanism. To overcome the difficulty, we adopted a single-headed myosin-VI as a model protein. Myosin-VI is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. However, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting doubt on its processivity. Using single molecule techniques, we show that green fluorescent protein (GFP)-fused single-headed myosin-VI does not move processively. However, when coupled to a 200 nm polystyrene bead (comparable to an intracellular vesicle in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40 nm) steps. Furthermore, we found that a single-headed myosin-VI-bead complex moved more processively in a high-viscous solution (40-fold higher than water) similar to cellular environment. Because diffusion of the bead is 60-fold slower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing the head's rebinding following detachment and supporting processive movement of the bead-monomer complex. This investigation will help us understand how molecular motors utilize Brownian motion in cells.
NASA Astrophysics Data System (ADS)
Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen
2014-01-01
Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.
Molecular and Subcellular-Scale Modeling of Nucleotide Diffusion in the Cardiac Myofilament Lattice
Kekenes-Huskey, Peter M.; Liao, Tao; Gillette, Andrew K.; Hake, Johan E.; Zhang, Yongjie; Michailova, Anushka P.; McCulloch, Andrew D.; McCammon, J. Andrew
2013-01-01
Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions. PMID:24209858
Velocity measurements by laser resonance fluorescence. [single atom diffusional motion
NASA Technical Reports Server (NTRS)
She, C. Y.; Fairbank, W. M., Jr.
1980-01-01
The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.
Leading non-Gaussian corrections for diffusion orientation distribution function.
Jensen, Jens H; Helpern, Joseph A; Tabesh, Ali
2014-02-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed from the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves on the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. 2013 John Wiley & Sons, Ltd.
Leading Non-Gaussian Corrections for Diffusion Orientation Distribution Function
Jensen, Jens H.; Helpern, Joseph A.; Tabesh, Ali
2014-01-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed out of the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves upon the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. PMID:24738143
Magnetic resonance imaging of mass transport and structure inside a phototrophic biofilm.
Ramanan, Baheerathan; Holmes, William M; Sloan, William T; Phoenix, Vernon R
2013-05-01
The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 × 22 μm, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.
Anderson, Kim A; Points, Gary L; Donald, Carey E; Dixon, Holly M; Scott, Richard P; Wilson, Glenn; Tidwell, Lane G; Hoffman, Peter D; Herbstman, Julie B; O'Connell, Steven G
2017-01-01
Wristbands are increasingly used for assessing personal chemical exposures. Unlike some exposure assessment tools, guidelines for wristbands, such as preparation, applicable chemicals, and transport and storage logistics, are lacking. We tested the wristband’s capacity to capture and retain 148 chemicals including polychlorinated biphenyls (PCBs), pesticides, flame retardants, polycyclic aromatic hydrocarbons (PAHs), and volatile organic chemicals (VOCs). The chemicals span a wide range of physical–chemical properties, with log octanol–air partitioning coefficients from 2.1 to 13.7. All chemicals were quantitatively and precisely recovered from initial exposures, averaging 102% recovery with relative SD ≤21%. In simulated transport conditions at +30 °C, SVOCs were stable up to 1 month (average: 104%) and VOC levels were unchanged (average: 99%) for 7 days. During long-term storage at −20 °C up to 3 (VOCs) or 6 months (SVOCs), all chemical levels were stable from chemical degradation or diffusional losses, averaging 110%. Applying a paired wristband/active sampler study with human participants, the first estimates of wristband–air partitioning coefficients for PAHs are presented to aid in environmental air concentration estimates. Extrapolation of these stability results to other chemicals within the same physical–chemical parameters is expected to yield similar results. As we better define wristband characteristics, wristbands can be better integrated in exposure science and epidemiological studies. PMID:28745305
Nucleocytoplasmic Distribution and Dynamics of the Autophagosome Marker EGFP-LC3
Drake, Kimberly R.; Kang, Minchul; Kenworthy, Anne K.
2010-01-01
The process of autophagy involves the formation of autophagosomes, double-membrane structures that encapsulate cytosol. Microtubule-associated protein light chain 3 (LC3) was the first protein shown to specifically label autophagosomal membranes in mammalian cells, and subsequently EGFP-LC3 has become one of the most widely utilized reporters of autophagy. Although LC3 is currently thought to function primarily in the cytosol, the site of autophagosome formation, EGFP-LC3 often appears to be enriched in the nucleoplasm relative to the cytoplasm in published fluorescence images. However, the nuclear pool of EGFP-LC3 has not been specifically studied in previous reports, and mechanisms by which LC3 shuttles between the cytoplasm and nucleoplasm are currently unknown. In this study, we therefore investigated the regulation of the nucleo-cytoplasmic distribution of EGFP-LC3 in living cells. By quantitative fluorescence microscopy analysis, we demonstrate that soluble EGFP-LC3 is indeed enriched in the nucleus relative to the cytoplasm in two commonly studied cell lines, COS-7 and HeLa. Although LC3 contains a putative nuclear export signal (NES), inhibition of active nuclear export or mutation of the NES had no effect on the nucleo-cytoplasmic distribution of EGFP-LC3. Furthermore, FRAP analysis indicates that EGFP-LC3 undergoes limited passive nucleo-cytoplasmic transport under steady state conditions, and that the diffusional mobility of EGFP-LC3 was substantially slower in the nucleus and cytoplasm than predicted for a freely diffusing monomer. Induction of autophagy led to a visible decrease in levels of soluble EGFP-LC3 relative to autophagosome-bound protein, but had only modest effects on the nucleo-cytoplasmic ratio or diffusional mobility of the remaining soluble pools of EGFP-LC3. We conclude that the enrichment of soluble EGFP-LC3 in the nucleus is maintained independently of active nuclear export or induction of autophagy. Instead, incorporation of soluble EGFP-LC3 into large macromolecular complexes within both the cytoplasm and nucleus may prevent its rapid equilibrium between the two compartments. PMID:20352102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y.S.; Yeh, H.C.; Guilmette, R.A.
Very large and very small particles most often deposit in the nasal airways. Studies in airway models provide large data sets with which to evaluate the deposition mechanism, while in vivo deposition data are needed to validate results obtained with nasal models. Four adult male, nonsmoking, healthy human volunteers (ages 36-57 yr) participated in this study. Deposition was measured in each subject at constant flow rates of 4, 7.5, 10, and 20 L min{sup -1}. Monodisperse silver particles (5, 8, and 20 nm) and polystyrene latex particles (50 and 100 nm) were used. Bach subject held his breath for 30-60more » sec, during which time, the aerosol was drawn through the nasal airway and exhausted through a mouth tube. Aerosol concentrations in the intake and exhaust air were measured by an ultrafine condensation particle counter. The deposition efficiency in the nasal airway was calculated taking into account particle losses in the mask, mouth tube, and transport lines. Our results were consistent with the turbulent diffusional deposition model previously established from studies using nasal airway casts. 21 refs., 12 figs., 3 tabs.« less
Evolution of rapid nerve conduction.
Castelfranco, Ann M; Hartline, Daniel K
2016-06-15
Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution. Copyright © 2016. Published by Elsevier B.V.
Wang, Xiaoxiao; Wang, Wencheng; Huang, Jianliang; Peng, Shaobing; Xiong, Dongliang
2018-05-01
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt-stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt-stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO 2 concentrations in the chloroplasts (C c ) of rice leaves. Decreased A in salt-stressed leaves was mainly attributable to low C c , which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt-stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity-tolerant rice cultivars. © 2017 Scandinavian Plant Physiology Society.
Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS.
Traffano-Schiffo, Maria Victoria; Castro-Giraldez, Marta; Fito, Pedro J; Perullini, Mercedes; Santagapita, Patricio R
2018-01-01
Previous works show that the addition of trehalose and gums in β-galactosidase (lactase) Ca(II)-alginate encapsulation systems improved its intrinsic stability against freezing and dehydration processes in the pristine state. However, there is no available information on the evolution in microstructure due to the constraints imposed by the operational conditions. The aim of this research is to study the time course of microstructural changes of Ca(II)-alginate matrices driven by the presence of trehalose, arabic and guar gums as excipients and to discuss how these changes influence the diffusional transport (assessed by LF-NMR) and the enzymatic activity of the encapsulated lactase. The structural modifications at different scales were assessed by SAXS. The incorporation of gums as second excipients induces a significant stabilization in the microstructure not only at the rod scale, but also in the characteristic size and density of alginate dimers (basic units of construction of rods) and the degree of interconnection of rods at a larger scale, improving the performance in terms of lactase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
The influence of acid diffusion on the performance of lead-acid cells
NASA Astrophysics Data System (ADS)
Kappus, W.; Bohmann, J.
1983-11-01
A model for the discharge performance of the lead-acid cell is proposed. Diffusion of acid into the porous electrodes, which is connected with diffusio Curves of diffusional polarizations as a function of the discharge time are presented. Calculated discharge capacities show the influence of various pa
Electroreleasing Composite Membranes for Delivery of Insulin and Other Biomacromolecules
1990-04-05
electrochemistry to control the delivery of a chemical or drug (1, 2). The major advantage of electroreleasing systems (over conventional diffusional drug...used to deliver insulin and vitamin B-12. The composite membrane fabrication procedure is shown schematically in Figure 1. An Anopore ( Alltech ) A1203
A sensitivity study of diffusional mass transfer of gases in tropical storm hydrometeors
NASA Astrophysics Data System (ADS)
Ghosh, Satyajit; Gumber, Siddharth; Varotsos, C.
2017-11-01
This paper quantifies mass transfer and diffusional uptake rates of gases in liquid and solid hydrometeors within a cyclonic system. The non-availability of transfer rates for trace gases diffusing into storm hydrometeors, particularly over polluted urban conurbations, often constrain modellers the world over; however, this is an essential requirement to quantify the scavenging rates over the region concerned. The present paper seeks to provide modellers with such rates. Further, all of the earlier studies apply only to temperate regimes, and surprisingly identical formulations are assumed even for tropical conditions. The present analysis fills this research gap and couples cloud morphology with the associated thermodynamics through Weather Research and Forecasting (WRF) runs for cyclone Chapala (27 October 2015-04 November 2015) which battered the coasts of Yemen (Skamarock et al. 2008). It was a good example for undertaking this sensitivity study because the vertical extent spanned from around 0.75 to 16 km—enabling uptake rate calculations over both droplet and ice phases. Many of the diffusing gases were polar; the dipole moment of sulphur dioxide (SO2) and water vapour (H2O) was also included using a full Lennard-Jones model to compute the binary diffusivities of these gases as they diffused into the droplets mixed with water vapour. The first-order uptake rate constants ranged from 2.08 × 10-07 to 3.44 × 10-06 (s-1) and 1.97 × 10-07 to 7.81 × 10-07 (s-1) for H2O and SO2 respectively. The rates are of the order of 10-09 (s-1) for diffusion of water vapour into ice crystals further aloft. Closely linked with the gas uptake rates is another crucial parameter—the mass accommodation coefficient, α. The most widely used values are 1 and 0.036 (Pruppacher and Klett 1998)—the chosen values are restrictive and warrants a closer look. In storm systems, the vertical extents are in the kilometre range. Chapala with a large vertical extent warrants a full profile calculation. This study shows that for H2O vapour, α values range from a low of 0.004 reaching up to 0.046, and for SO2 impacting the liquid droplets, they are 0.004 to 0.077. Using these values in cloud droplet growth equations showed large changes in the positioning of the cloud base height up to about a maximum of 30%—a classic example illustrating the coupling of microphysics with dynamics suggesting that even large-scale models should cautiously use standard un-corrected accommodation and diffusion coefficients. Over polluted environments, aerosol number concentrations are very high—several hundreds of particles in a cubic centimetre—the cumulative effect involving such large-scale scavenging ends up in causing substantive changes in the actual scavenging rates. This is likely to affect overall radiative transfer calculations and must be corrected.
NASA Astrophysics Data System (ADS)
Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.
2018-06-01
Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective diffusion coefficient decreases with depth due to the corresponding increase of diffusional tortuosity. Longitudinal dispersivity of peat also was computed by analyzing advective-dominant transport simulations that showed peat dispersivity is similar to the empirical values reported in the same peat soil; it is not sensitive to soil depth and does not vary much along the soil profile.
Feasibility of Federal assistance for urban mass transportation operating costs
DOT National Transportation Integrated Search
1971-11-01
The contents of the report include the present financial and operating condition of urban mass transportation; the present financial assistance programs for urban mass transportation; an analysis of alternative federal assistance programs; and the se...
National Urban Mass Transportation Statistics (1982 - Section 15 Report)
DOT National Transportation Integrated Search
1983-11-01
This report summarizes the financial and operating data submitted annually to the Urban Mass Transportation Administration (UMTA) by the nation's public transit operators, pursuant to Section 15 of the Urban Mass Transportation (UMT) Act of 1964, as ...
Physical Vapor Transport of Lead Telluride
NASA Technical Reports Server (NTRS)
Palosz, W.
1997-01-01
Mass transport properties of physical vapor transport of PbTe are investigated. Thermochemical analysis of the system and its implications for the growth conditions are discussed. The effect of the material preparation and pre-processing on the stoichiometry and residual gas pressure and composition, and on related mass flux is shown. A procedure leading to high mass transport rates is presented.
Code of Federal Regulations, 2011 CFR
2011-01-01
... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a) The...
Seasonal Variation of Mass Transport Across the Tropopause
NASA Technical Reports Server (NTRS)
Appenzeller, Christof; Holton, James R.; Rosenlof, Karen H.
1996-01-01
The annual cycle of the net mass transport across the extratropical tropopause is examined. Contributions from both the global-scale meridional circulation and the mass variation of the lowermost stratosphere are included. For the northern hemisphere the mass of the lowermost stratosphere has a distinct annual cycle, whereas for the southern hemisphere, the corresponding variation is weak. The net mass transport across the tropopause in the northern hemisphere has a maximum in late spring and a distinct minimum in autumn. This variation and its magnitude compare well with older estimates based on representative Sr-90 mixing ratios. For the southern hemisphere the seasonal cycle of the net mass transport is weaker and follows roughly the annual variation of the net mass flux across a nearby isentropic surface.
NASA Astrophysics Data System (ADS)
Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.
2014-05-01
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded cellular environments.
NASA Astrophysics Data System (ADS)
Abdelmalek, B. F.; Karpyn, Z.; Liu, S.
2014-12-01
Over the last several years, hydrocarbon exploitation and development in North America has been heavily centered on shale gas plays. However, the physical attributes of shales and their manifestation on transport properties and storage capacity remain poorly understood. Therefore, more experimentally based data are needed to fill the gaps in understanding both transport and storage of fluids in shale. The proposed work includes installation and testing of an experimental system which is capable of monitoring the dynamic evolution of shale core permeability under variable loading conditions and in coordination with X-ray microCT imaging. The goal of this study is to better understand and quantify fluid flow patterns and associated transport dynamics of fractured shale samples. The independent variables considered in this study are: mechanical loading and pore pressure. The mechanical response of shale core is captured for different loading paths. To best replicate the in-situ production scenario, the pore pressure is progressively depleted to mimic pressure decline. During the course of experimentation, permeability is estimated using the pulse-decay method under tri-axial stress boundary conditions. Simultaneously, X-ray microCT imaging is used with a tracer gas that is allowed to flow through the sample as an illuminating agent. In the presence of an illuminating agent, either Xenon or Krypton, the X-ray CT scanner can image fractures, global pathways and diffusional fronts in the matrix, as well as sorption sites that reflect heterogeneities in the sample and localized deformation. Anticipated results from these experiments will help quantify permeability evolution as a function of different loading conditions and pore pressure depletion. Also, the X-ray images will help visualize the change of flow patterns and the intensity of sorption as a function of mechanical loading and pore pressure.
Pressure pumping of carbon dioxide from soil
E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman
2000-01-01
Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...
Wu, Fei; Pelster, Lindsey N; Minteer, Shelley D
2015-01-25
Dynamics of metabolon formation in mitochondria was probed by studying diffusional motion of two sequential Krebs cycle enzymes in a microfluidic channel. Enhanced directional co-diffusion of both enzymes against a substrate concentration gradient was observed in the presence of intermediate generation. This reveals a metabolite directed compartmentation of metabolic pathways.
NASA Astrophysics Data System (ADS)
Alexandrov, Dmitri V.; Ivanov, Alexander A.; Alexandrova, Irina V.
2018-01-01
The processes of particle nucleation and their evolution in a moving metastable layer of phase transition (supercooled liquid or supersaturated solution) are studied analytically. The transient integro-differential model for the density distribution function and metastability level is solved for the kinetic and diffusionally controlled regimes of crystal growth. The Weber-Volmer-Frenkel-Zel'dovich and Meirs mechanisms for nucleation kinetics are used. We demonstrate that the phase transition boundary lying between the mushy and pure liquid layers evolves with time according to the following power dynamic law:
In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials
Liu, Y.; Wang, H.; Zhang, X.
2015-11-30
Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2008-02-07
The Hamiltonian description of the spin-conversion induced by a hyperfine interaction (HFI) in photogenerated radical-ion pairs is substituted for the rate (incoherent) description of the same conversion provided by the widely used earlier elementary spin model. The quantum yields of the free ions as well as the singlet and triplet products of geminate recombination are calculated using distant dependent ionization and recombination rates, instead of their contact analogs. Invoking the simplest models of these rates, we demonstrate with the example of a spin-less system that the diffusional acceleration of radical-ion pair recombination at lower viscosity gives way to its diffusional deceleration (Angulo effect), accomplished with a kinetic plateau inherent with the primitive exponential model. Qualitatively the same behavior is found in real systems, assuming both ionization and recombination is carried out by the Marcus electron-transfer rates. Neglecting the Coulomb interaction between solvated ions, the efficiencies of radical-ion pair recombination to the singlet and triplet products are well fitted to the available experimental data. The magnetic field dependence of these yields is specified.
Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae
2008-07-01
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.300 Purpose. The purpose of this subpart is to implement 23 U.S.C. 142(a)(2), which allows the Urban Mass Transportation...
Code of Federal Regulations, 2011 CFR
2011-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.300 Purpose. The purpose of this subpart is to implement 23 U.S.C. 142(a)(2), which allows the Urban Mass Transportation...
GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS
A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...
Code of Federal Regulations, 2010 CFR
2010-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway Facilities § 810.100...), and 149, which authorize various highway public mass transportation improvements and special use...
Singh, Shardendu K; Badgujar, Girish; Reddy, Vangimalla R; Fleisher, David H; Bunce, James A
2013-06-15
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01mM) and two levels of CO2 concentration (ambient 400 and elevated 800μmolmol(-1)) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area. Copyright © 2013 Elsevier GmbH. All rights reserved.
Gong, Nan-Jie; Wong, Chun-Sing; Hui, Edward S; Chan, Chun-Chung; Leung, Lam-Ming
2015-10-01
The purpose of this work was to investigate the effects of hemispheric location, gender and age on susceptibility value, as well as the association between susceptibility value and diffusional metrics, in deep gray matter. Iron content was estimated in vivo using quantitative susceptibility mapping. Microstructure was probed using diffusional kurtosis imaging. Regional susceptibility and diffusional metrics were measured for the putamen, caudate nucleus, globus pallidus, thalamus, substantia nigra and red nucleus in 42 healthy adults (age range 25-78 years). Susceptibility value was significantly higher in the left than the right side of the caudate nucleus (P = 0.043) and substantia nigra (P < 0.001). Women exhibited lower susceptibility values than men in the thalamus (P < 0.001) and red nucleus (P = 0.032). Significant age-related increases of susceptibility were observed in the putamen (P < 0.001), red nucleus (P < 0.001), substantia nigra (P = 0.004), caudate nucleus (P < 0.001) and globus pallidus (P = 0.017). The putamen exhibited the highest rate of iron accumulation with aging (slope of linear regression = 0.73 × 10(-3) ppm/year), which was nearly twice those in substantia nigra (slope = 0.40 × 10(-3) ppm/year) and caudate nucleus (slope = 0.39 × 10(-3) ppm/year). Significant positive correlations between the susceptibility value and diffusion measurements were observed for fractional anisotropy (P = 0.045) and mean kurtosis (P = 0.048) in the putamen without controlling for age. Neither correlation was significant after controlling for age. Hemisphere, gender and age-related differences in iron measurements were observed in deep gray matter. Notably, the putamen exhibited the highest rate of increase in susceptibility with aging. Correlations between susceptibility value and microstructural measurements were inconclusive. These findings could provide new clues for unveiling mechanisms underlying iron-related neurodegenerative diseases. Copyright © 2015 John Wiley & Sons, Ltd.
Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping
2015-01-01
Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals. PMID:25747124
NASA Astrophysics Data System (ADS)
Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping
2015-03-01
Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals.
Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi
2018-01-19
An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.
Heat transfer rate within non-spherical thick grains
NASA Astrophysics Data System (ADS)
Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan
2017-06-01
The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.
DOT National Transportation Integrated Search
1984-12-01
This report summarizes the financial and operating data submitted annually to the Urban Mass Transportation Administration (UMTA) by the nation's public transit operators, pursuant to Section 15 of the Urban Mass Transportation (UMT) Act of 1964, as ...
Mass transport modelling for the electroreduction of CO2 on Cu nanowires
NASA Astrophysics Data System (ADS)
Raciti, David; Mao, Mark; Wang, Chao
2018-01-01
Mass transport plays an important role in CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, {{{{HCO}}}3}-,{{{{CO}}}3}2- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for CO2 reduction is discussed in terms of a fine balance among the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of CO2 reduction electrocatalysis on high-surface-area catalysts.
Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume
2018-01-16
With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading conditions on the permeation process.
NASA Astrophysics Data System (ADS)
Orcutt, B.; Meile, C.
2008-11-01
Anaerobic oxidation of methane (AOM) is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007), none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.
Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.
MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)
To evaluate the importance of external mass transport on the overall rates of
contaminant reduction by iron metal (Fe0), we have compared measured
rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
of external mass transport...
Mass transport and crystal growth of the mixed ZrS2-ZrSe2 system
NASA Technical Reports Server (NTRS)
Wiedemeier, Heribert; Goldman, Howard
1986-01-01
The solid solubility of the ZrS2-ZrSe2 system was reinvestigated by annealing techniques to establish the relationship between composition and lattice parameters. Mixed crystals of ZrS(2x)Se2(1-x) for selected compositions of the source material were grown by chemical vapor transport and characterized by X-ray diffraction and microscopic methods. The mass transport rates and crystal growth of ZrSSe were investigated and compared with those of other compositions. The mass fluxes of the mixed system showed an increase with increasing selenium content. The transport products were richer in ZrSe2 than the residual source materials when the ZrSe2 content of the starting materials was greater than 50 mol.-pct. The mass transport rates revealed an increasing mass flux with pressure.
23 CFR 810.212 - Use to be without charge.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects... available for mass transit shall be borne by the publicly-owned mass transit authority. ...
Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions.
Bahtz, Jana; Gunes, Deniz Z; Hughes, Eric; Pokorny, Lea; Riesch, Francesca; Syrbe, Axel; Fischer, Peter; Windhab, Erich J
2015-05-19
This contribution reports on the mass transport kinetics of osmotically imbalanced water-in-oil-in-water (W1/O/W2) emulsions. Although frequently studied, the control of mass transport in W1/O/W2 emulsions is still challenging. We describe a microfluidics-based method to systematically investigate the impact of various parameters, such as osmotic pressure gradient, oil phase viscosity, and temperature, on the mass transport. Combined with optical microscopy analyses, we are able to identify and decouple the various mechanisms, which control the dynamic droplet size of osmotically imbalanced W1/O/W2 emulsions. So, swelling kinetics curves with a very high accuracy are generated, giving a basis for quantifying the kinetic aspects of transport. Two sequential swelling stages, i.e., a lag stage and an osmotically dominated stage, with different mass transport mechanisms are identified. The determination and interpretation of the different stages are the prerequisite to control and trigger the swelling process. We show evidence that both mass transport mechanisms can be decoupled from each other. Rapid osmotically driven mass transport only takes place in a second stage induced by structural changes of the oil phase in a lag stage, which allow an osmotic exchange between both water phases. Such structural changes are strongly facilitated by spontaneous water-in-oil emulsification. The duration of the lag stage is pressure-independent but significantly influenced by the oil phase viscosity and temperature.
Kulbacka, Julita; Pucek, Agata; Wilk, Kazimiera Anna; Dubińska-Magiera, Magda; Rossowska, Joanna; Kulbacki, Marek; Kotulska, Małgorzata
2016-10-01
Drug delivery technology is still a dynamically developing field of medicine. The main direction in nanotechnology research (nanocarriers, nanovehicles, etc.) is efficient drug delivery to target cells with simultaneous drug reduction concentration. However, nanotechnology trends in reducing the carrier sizes to several nanometers limit the volume of the loaded substance and may pose a danger of uncontrolled access into the cells. On the other hand, nanoparticles larger than 200 nm in diameter have difficulties to undergo rapid diffusional transport through cell membranes. The main advantage of large nanoparticles is higher drug encapsulation efficiency and the ability to deliver a wider array of drugs. Our present study contributes a new approach with large Tween 80 solid lipid nanoparticles SLN (i.e., hydrodynamic GM-SLN-glycerol monostearate, GM, as the lipid and ATO5-SLNs-glyceryl palmitostearate, ATO5, as the lipid) with diameters DH of 379.4 nm and 547 nm, respectively. They are used as drug carriers alone and in combination with electroporation (EP) induced by millisecond pulsed electric fields. We evaluate if EP can support the transport of large nanocarriers into cells. The study was performed with two cell lines: human colon adenocarcinoma LoVo and hamster ovarian fibroblastoid CHO-K1 with coumarin 6 (C6) as a fluorescent marker for encapsulation. The biological safety of the potential treatment procedure was evaluated with cell viability after their exposure to nanoparticles and EP. The EP efficacy was evaluated by FACS method. The impact on intracellular structure organization of cytoskeleton was visualized by CLSM method with alpha-actin and beta-tubulin. The obtained results indicate low cytotoxicity of both carrier types, free and loaded with C6. The evaluation of cytoskeleton proteins indicated no intracellular structure damage. The intracellular uptake and accumulation show that SLNs do not support transport of C6 coumarin. Only application of electroporation improved the transport of encapsulated and free C6 into both treated cell lines.
Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.
In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less
Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes
Cetinbas, Firat C.; Wang, Xiaohua; Ahluwalia, Rajesh K.; ...
2017-12-09
In this study, we present microstructural characterization for polymer electrolyte fuel cell (PEFC) cathodes with low platinum loadings (low-PGM). The characterization results are used to quantify the contribution of mass transport resistances to cell voltage losses observed in polarization curve data. Three-dimensional pore morphology and ionomer distribution are resolved using nano-scale X-ray computed tomography (nano-CT). Electrode structural properties are reported along with analysis of the impact of microstructure on the effective charge and reactant transport properties. These characterizations are incorporated with a two-dimensional multi-physics model that accounts for energy, charge, and mass transport along with the effect of liquid watermore » flooding. Defining a total mass transport resistance for the whole polarization curve, contributions of transport mechanisms are identified. Analysis of the experimental polarization curves at different operating pressures and temperatures indicates that the mass transport resistance in the cathode is dominated by the transport processes in the electrode. It is shown that flooding in the electrode is a major contributor to transport losses especially at elevated operating pressures while the pressure-independent resistance at the catalyst surface due to transport through the ionomer film plays a significant role, especially at low temperatures and low catalyst loading. In addition, by performing a parametric study for varying catalyst loadings, the importance of electrode roughness (i.e, electrochemically-active surface area/geometric electrode area) in determining the mass transport losses is highlighted.« less
Diffusional transport and predicting oxidative failure during cyclic oxidation of beta-NiAl alloys
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.; Vinarcik, E. J.; Barrett, C. A.; Doychak, J.
1992-01-01
Nickel aluminides (NiAl) containing 40-50 at. percent Al and up to 0.1 at. percent Zr have been studied following cyclic oxidation at 1200, 1300, 1350 and 1400 C. The selective oxidation of aluminum resulted in the formation of protective Al2O3 scales on each alloy composition at each temperature. However, repeated cycling eventually resulted in the gradual formation of less protective NiAl2O4. The appearance of the NiAl2O4, signaling the end of the protective scale-forming capability of the alloy, was related to the presence of gamma-prime-(Ni3Al) which formed as a result of the loss of aluminum from the sample. A simple methodology is presented to predict the protective life of beta-NiAl alloys. This method predicts the oxidative lifetime due to aluminum depletion when the aluminum concentration decreases to a critical concentration. The time interval preceding NiAl2O4 formation (i.e., the lifetime based on protective Al2O3 formation) and predicted lifetimes are compared and discussed. Use of the method to predict the maximum use temperature for NiAl-Zr alloys is also discussed.
Role of Proteome Physical Chemistry in Cell Behavior.
Ghosh, Kingshuk; de Graff, Adam M R; Sawle, Lucas; Dill, Ken A
2016-09-15
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells.
Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.
Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S
2015-10-21
A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.
2000-01-01
To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosionmore » kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.« less
Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles.
Mladenovska, K; Raicki, R S; Janevik, E I; Ristoski, T; Pavlova, M J; Kavrakovski, Z; Dodov, M G; Goracinova, K
2007-09-05
Chitosan-Ca-alginate microparticles for colon-specific delivery and controlled release of 5-aminosalicylic acid after peroral administration were prepared using spray drying method followed by ionotropic gelation/polyelectrolyte complexation. Physicochemical characterization pointed to the negatively charged particles with spherical morphology having a mean diameter less than 9 microm. Chitosan was localized dominantly in the particle wall, while for alginate, a homogeneous distribution throughout the particles was observed. (1)H NMR, FTIR, X-ray and DSC studies indicated molecularly dispersed drug within the particles with preserved stability during microencapsulation and in simulated in vivo drug release conditions. In vitro drug release studies carried out in simulated in vivo conditions in respect to pH, enzymatic and salt content confirmed the potential of the particles to release the drug in a controlled manner. The diffusional exponents according to the general exponential release equation indicated anomalous (non-Fickian) transport in 5-ASA release controlled by a polymer relaxation, erosion and degradation. Biodistribution studies of [(131)I]-5-ASA loaded chitosan-Ca-alginate microparticles, carried out within 2 days after peroral administration to Wistar male rats in which TNBS colitis was induced, confirmed the dominant localization of 5-ASA in the colon with low systemic bioavailability.
Reactive solute transport in an asymmetrical fracture-rock matrix system
NASA Astrophysics Data System (ADS)
Zhou, Renjie; Zhan, Hongbin
2018-02-01
The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance which refers to the zero diffusion between the fracture and the rock matrix during the water flushing phase is closely associated with dispersive process in the fracture.
23 CFR 810.102 - Eligible projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway Facilities... Federal-aid system projects which facilitate the use of high occupancy vehicles and public mass...
Browndye: A Software Package for Brownian Dynamics
McCammon, J. Andrew
2010-01-01
A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. PMID:21132109
CO2 flux through a Wyoming seasonal snowpack: Diffusional and pressure pumping effects
William Massman; Richard Sommerfeld; Karl Zeller; Ted Hehn; Laura Hudnell; Shannon Rochelle
1995-01-01
The movement of trace gases through porous media results from a combination of molecular diffusion and natural convection forced by turbulent atmospheric pressure pumping. This study presents observational and modeling results of an experiment to estimate the C02 flux through a seasonal snowpack in the Rocky Mountains of southern Wyoming, USA. Profiles of C02 mole...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvadori, P.
1962-10-31
The proton (p ) and gamma energy and angular distributions from the elastic (Compton) interaction p + gamma -- p + gamma are calculated. The results are tabulated for 25-Mev gamma increments, from 300 to 1500 Mev. (T.F.H.)
USDA-ARS?s Scientific Manuscript database
Nutrients such as phosphorus availability may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of 21st century. Elevated CO2 may overcome the diffusional limitation to photosynthesis posed by stomata and mesop...
A pulse NMR study of water exchange across the erythrocyte membrane
NASA Astrophysics Data System (ADS)
Lahajnar, G.
1993-03-01
A pulse nuclear magnetic resonance (NMR) technique is employed to study the temperature dependence (5-40°C) of the diffusional water exchange time τexch for normal and p-hydroxymercuribenzoate ( p-HMB) treated bovine erythrocytes. The Arrhenius plot of τexch for normal erythrocytes implies the activation energy Ea of 20.4 kJ/mol, similar to that for self-diffusion of water ( Ea = 19.3 - 20.1 kJ/mol), and the value τexch of 12.5 ms at 20°C corresponds to the cell membrane diffusional water permeability coefficient P d of 3.6 × 10 -3 cm/s. The data for p-HMB treated cells display lengthening of τexch (i.e., τexch = 17.3 ms at 20°C) and increased E a of 29.0 kJ/mol. This E a value and a permeability coefficient P d of 2.6 × 10 -3 cm/s at 20°C, if compared to corresponding data for artificial lipid bilayer membranes, indicate either incomplete closure of the specialized water-selective protein channels on binding of p-HMB to their SH-groups, or complete channel closure plus new leaks.
NASA Astrophysics Data System (ADS)
Dayamani, Allumolu; Shinde, Ganesh S.; Chaupatnaik, Anshuman; Rao, R. Prasada; Adams, Stefan; Barpanda, Prabeer
2018-05-01
Solvothermal synthetic routes can provide energy-savvy platforms to fabricate battery anode materials involving relatively milder annealing steps vis-à-vis the conventional solid-state synthesis. These energy efficient routes in turn restrict aggressive grain growth to form nanoscale particles favouring efficient Li+ diffusion. Here, we report an economic solution combustion synthesis of SrLi2Ti6O14 anode involving nitrate-urea complexation with a short annealing duration of only 2 h (900 °C). Rietveld refinement confirms the phase purity of target product assuming an orthorhombic framework (Cmca symmetry). It delivers reversible capacity of ∼125 mAh.g-1 at a rate of C/20 involving a 1.38 V Ti4+/Ti3+ redox activity with excellent rate kinetics and cycling stability. Bond valence site energy (BVSE) calculations gauge SrLi2Ti6O14 to be an anisotropic 3D Li+ ion conductor with the highest ionic conductivity along the c direction. The electrochemical and diffusional pathways have been elucidated for combustion prepared SrLi2Ti6O14 as an efficient and safe negative electrode candidate for Li-ion batteries.
Chen, Tianwu; Zhao, Peng; Guo, Xu; Zhang, Sulin
2017-04-12
Phosphorus represents a promising anode material for sodium ion batteries owing to its extremely high theoretical capacity. Recent in situ transmission electron microscopy studies evidenced anisotropic swelling in sodiated black phosphorus, which may find an origin from the two intrinsic anisotropic properties inherent to the layered structure of black phosphorus: sodium diffusional directionality and insertion strain anisotropy. To understand the morphological evolution and stress generation in sodiated black phosphorus, we develop a chemo-mechanical model by incorporating the intrinsic anisotropic properties into the large elasto-plastic deformation. Our modeling results reveal that the apparent morphological evolution in sodiated black phosphorus is critically controlled by the coupled effect of the two intrinsic anisotropic properties. In particular, sodium diffusional directionality generates sharp interphases along the [010] and [001] directions, which constrain anisotropic development of the insertion strain. The coupled effect renders distinctive stress-generation and fracture mechanisms when sodiation starts from different crystal facets. In addition to providing a powerful modeling framework for sodiation and lithiation of layered structures, our findings shed significant light on the sodiation-induced chemo-mechanical degradation of black phosphorus as a promising anode for the next-generation sodium ion batteries.
Evolution of a phase separated gravity independent bioreactor
NASA Technical Reports Server (NTRS)
Villeneuve, Peter E.; Dunlop, Eric H.
1992-01-01
The evolution of a phase-separated gravity-independent bioreactor is described. The initial prototype, a zero head-space manifold silicone membrane based reactor, maintained large diffusional resistances. Obtaining oxygen transfer rates needed to support carbon-recycling aerobic microbes is impossible if large resistances are maintained. Next generation designs (Mark I and II) mimic heat exchanger design to promote turbulence at the tubing-liquid interface, thereby reducing liquid and gas side diffusional resistances. While oxygen transfer rates increased by a factor of ten, liquid channeling prevented further increases. To overcome these problems, a Mark III reactor was developed which maintains inverted phases, i.e., media flows inside the silicone tubing, oxygen gas is applied external to the tubing. This enhances design through changes in gas side driving force concentration and liquid side turbulence levels. Combining an applied external pressure of 4 atm with increased Reynolds numbers resulted in oxygen transfer intensities of 232 mmol O2/l per hr (1000 times greater than the first prototype and comparable to a conventional fermenter). A 1.0 liter Mark III reactor can potentially deliver oxygen supplies necessary to support cell cultures needed to recycle a 10-astronaut carbon load continuously.
23 CFR 810.210 - Authorization for use and occupancy by mass transit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Authorization for use and occupancy by mass transit. 810.210 Section 810.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...
Lagrangian condensation microphysics with Twomey CCN activation
NASA Astrophysics Data System (ADS)
Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna
2018-01-01
We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets
to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation, transport of super-droplets in the physical space, and the coupling between super-droplets and the Eulerian temperature and water vapor field are discussed in detail. Some of these are relevant to the original super-droplet methodology as well and to the ice phase modeling using the Lagrangian approach. As a computational example, the scheme is applied to an idealized moist thermal rising in a stratified environment, with the original super-droplet methodology providing a benchmark to which the new scheme is compared.
Transport phenomena in polymer electrolyte membrane fuel cells via voltage loss breakdown
NASA Astrophysics Data System (ADS)
Flick, Sarah; Dhanushkodi, Shankar R.; Mérida, Walter
2015-04-01
This study presents a voltage loss breakdown method based on in-situ experimental data to systematically analyze the different overpotentials of a polymer electrolyte membrane fuel cell. This study includes a systematic breakdown of the anodic overpotentials via the use of a reference electrode system. This work demonstrates the de-convolution of the individual overpotentials for both anode and cathode side, including the distinction between mass-transport overpotentials in cathode porous transport layer (PTL) and electrode, based on in-situ polarization tests under different operating conditions. This method is used to study the relationship between mass-transport losses inside the cathode catalyst layer (CL) and the PTL for both a single layer and two-layer PTL configuration. We conclude that the micro-porous layer (MPL) significantly improves the water removal within the cell, especially inside the cathode electrode, and therefore the mass transport within the cathode CL. This study supports the theory that the MPL on the cathode leads to an increase in water permeation from cathode to anode due to its function as a capillary barrier. This is reflected in increased anodic mass-transport overpotential, decreased ohmic losses and decreased cathode mass-transport losses, especially in the cathode electrode.
Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre
NASA Astrophysics Data System (ADS)
Fraile-Nuez, Eugenio; MachíN, Francisco; VéLez-Belchí, Pedro; López-Laatzen, Federico; Borges, Rafael; BeníTez-Barrios, Verónica; HernáNdez-Guerra, Alonso
2010-09-01
One of the longest current meter time series in the Lanzarote Passage in the eastern boundary of the North Atlantic Subtropical Gyre has been used to determine and quantify the 9-year mean transport, the inter-annual and seasonal mass transport variability for the three water masses present in the area. Results show North Atlantic Central Water (NACW) flowing southward in the upper levels with a mean mass transport of -0.81 ± 1.48 Sv, Antarctic Intermediate Water (AAIW) flowing northward at intermediate levels with a mean transport of +0.09 ± 0.57 Sv and Mediterranean Water (MW) flowing southward in the deep part of the passage with a mean transport of -0.05 ± 0.17 Sv. Harmonic and wavelet analysis show the presence of a seasonal pattern in the passage for the three water masses. A maximum southward transport in winter and spring has been observed for the NACW followed by a minimum in summer and fall. Near zero values during winter and spring are found for AAIW, with a maximum northward value in summer and a negative value in fall, when this water mass reverses its flow. MW has a similar seasonal pattern to NACW. The vertical structure in the Lanzarote Passage can be approximated by four significant oscillatory modes which cumulatively explain 86.4% of the variance. The strong transport fluctuation found at the seasonal and inter-annual timescales demonstrates that the Eastern Boundary Current transport has a strong impact on meridional overturning estimates, thus indicating that to understand Meridional Overturning Circulation variability, these transport estimates at the eastern Atlantic margin are necessary.
NASA Astrophysics Data System (ADS)
Zhao, Ming; Wang, Xuefeng; Nolte, David
2009-02-01
In solid-support immunoassays, the transport of target analyte in sample solution to capture molecules on the sensor surface controls the detected binding signal. Depletion of the target analyte in the sample solution adjacent to the sensor surface leads to deviations from ideal association, and causes inhomogeneity of surface binding as analyte concentration varies spatially across the sensor surface. In the field of label-free optical biosensing, studies of mass-transport-limited reaction kinetics have focused on the average response on the sensor surface, but have not addressed binding inhomogeneities caused by mass-transport limitations. In this paper, we employ Molecular Interferometric Imaging (MI2) to study mass-transport-induced inhomogeneity of analyte binding within a single protein spot. Rabbit IgG binding to immobilized protein A/G was imaged at various concentrations and under different flow rates. In the mass-transport-limited regime, enhanced binding at the edges of the protein spots was caused by depletion of analyte towards the center of the protein spots. The magnitude of the inhomogeneous response was a function of analyte reaction rate and sample flow rate.
Mass and Magnetic Field Dependence of Electrostatic Particle Transport and Turbulence in LAPD-U
NASA Astrophysics Data System (ADS)
Crocker, N. A.; Gilmore, M.; Peebles, W. A.; Will, S.; Nguyen, X. V.; Carter, T. A.
2003-10-01
The scaling of particle transport with ion mass and magnetic field strength remains an open question in plasma research. Direct comparison of experiment with theory is often complicated by inability to significantly vary critical parameters such as ion mass, pressure gradient, ion gyro-radius, etc. The LAPD-U magnetized, linear plasma at UCLA provides the ideal platform for such studies, allowing large parameter variation. The magnetic field in LAPD-U can be varied over a range of 500 - 1500 G, while ion species can be varied to change mass by a factor of at least 10. In addition, ion gyro-radii are small compared to the plasma diameter ( 1 m). Cross-field transport in LAPD-U is thought to be caused by electrostatic turbulence, also a leading candidate for transport in fusion plasmas. It is planned, therefore, to investigate turbulence and transport characteristics as a function of parameter space. In particular, measurement of the mass and magnetic field dependence of electrostatic particle transport and turbulence characteristics in LAPD-U will be presented.
Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.; Bran, Donaldo; Gaitán, Juan J.
2017-01-01
Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m−1 day−1. Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m−1 depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover. PMID:28349929
Panebianco, Juan E; Mendez, Mariano J; Buschiazzo, Daniel E; Bran, Donaldo; Gaitán, Juan J
2017-03-28
Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m -1 day -1 . Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m -1 depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover.
Plasma Transport and Magnetic Flux Circulation in Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
Neupane, B. R.; Delamere, P. A.; Ma, X.; Wilson, R. J.
2017-12-01
Radial transport of plasma in the rapidly rotating magnetospheres is an important dynamical process. Radial transport is due to the centrifugally driven interchange instability and magnetodisc reconnection, allowing net mass to be transported outward while conserving magnetic flux. Using Cassini Plasma Spectrometer instrument (CAPS) data products (e.g., Thomsen et al., [2010]; Wilson et al., [2017]) we estimate plasma mass and magnetic flux transport rates as functions of radial distance and local time. The physical requirement for zero net magnetic flux transport provides a key benchmark for assessing the validity of our mass transport estimate. We also evaluate magnetodisc stability using a two-dimensional axisymmetric equilibrium model [Caudal, 1986]. Observed local properties (e.g., specific entropy and estimates of flux tube mass and entropy content) are compared with modeled equilibrium conditions such that departures from equilibrium can be correlated with radial flows and local magnetic field structure. Finally, observations of specific entropy indicate that plasma is non-adiabatic heated during transport. However, the values of specific entropy are well organized in inner magnetosphere (i.e. L<10), and become widely scattered in the middle magnetosphere, suggesting that the transport dynamics of the inner and middle magnetosphere are different.
A PERFECT MATCH CONDITION FOR POINT-SET MATCHING PROBLEMS USING THE OPTIMAL MASS TRANSPORT APPROACH
CHEN, PENGWEN; LIN, CHING-LONG; CHERN, I-LIANG
2013-01-01
We study the performance of optimal mass transport-based methods applied to point-set matching problems. The present study, which is based on the L2 mass transport cost, states that perfect matches always occur when the product of the point-set cardinality and the norm of the curl of the non-rigid deformation field does not exceed some constant. This analytic result is justified by a numerical study of matching two sets of pulmonary vascular tree branch points whose displacement is caused by the lung volume changes in the same human subject. The nearly perfect match performance verifies the effectiveness of this mass transport-based approach. PMID:23687536
23 CFR 810.302 - Eligible projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.302 Eligible projects. (a) Eligible projects are those defined as nonhighway public mass transit projects in...
The mass transportation problem in Illinois : a final report
DOT National Transportation Integrated Search
1959-06-01
Prepared by the State Mass Transportation Commission for the Honorable William G. Stratton, Governor of Illinois and the Honorable Members of the 71st General Assembly. The study contains the findings and recommendations of the Illinois State Mass Tr...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Coordination. 810.8 Section 810.8 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE... Transportation Administrator shall coordinate with each other on any projects involving public mass transit to...
77 FR 61048 - Agency Information Collection Activity Under OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... Information Collection Activity Under OMB Review AGENCY: Federal Transit Administration, DOT. ACTION: Notice... necessary to determine eligibility of applicants and ensure mass transportation service at a minimum cost... will improve mass transportation service or help transportation service meet the total urban...
Mass transportation in Massachusetts : demonstration project progress report no. 3
DOT National Transportation Integrated Search
1963-06-25
The Third Progress Report marks the completion of six months experiments in the program conducted by the Mass Transportation Commission, with the cooperation of the Office of Transportation of the Housing and Home Finance Agency. As of mid-June, expe...
NASA Astrophysics Data System (ADS)
Orcutt, B.; Meile, C.
2008-05-01
Anaerobic oxidation of methane (AOM) is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism, substrate affinity and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal was examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species causes the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007), neither hydrogen nor formate is exchanged fast enough between the consortia partners to achieve measured rates of metabolic activity, but that acetate exchange might support rates that approach those observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conte, F.P.; Droukas, P.C.; Ewing, R.D.
The development of brine shrimp embryos, A. salina, incubated in media of increasing salinity is delayed as evidenced by decreased emergence and lengthening of the time for excystment. Prehydration of cysts at low temperature (3/sup 0/C) for four to ten hours in distilled water eliminates asynchrony of the population in regard to emergency and hatching times. Internal concentration glycerol, which controls the rate of hydration of the cyst stage, is markedly affected by external salinity. Water balance in the cyst stage is maintained via the trehalose-glycerol mechanism which generates a simple passive diffusional gradient across the chitinous shell allowing watermore » to pass. Non-gaseous solutes, such as sodium and glycerol, do not pass through the chitin-membrane barrier. Rupturing the shell by emergence initiates the onset of the prenaupliar stage; it is accompanied by the appearance of large amounts of free glycerol in the external media, decreasing levels of internal glycerol, increased concentrations of internal sodium and the first detectable levels of the cationic transport enzyme, Na + K-ATPase. Continual loss of free glycerol through the cellular and hatching membranes causes the excysting embryo to convert from a trehalose-glycerol mechanism to a sodium-mediated transport system in order to maintain larval water balance. Ontogeny of the sodium regulating mechanism requires formation of Na + K-ATPase. The production of new Na + K-ATPase, as evidenced by incorporation of /sup 14/C-amino acids into polypeptide subunits and density-gradient centrifugation of radioactive membrane vesicles rich in Na + K-ATPase, may play an important role and, if so, it appears to be initiated between E-1 and E-2 stages.« less
23 CFR 810.304 - Submission of projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.304 Submission of projects. (a) An application for an urban system nonhighway public mass transit project shall...
23 CFR 810.310 - Applicability of other provisions.
Code of Federal Regulations, 2010 CFR
2010-04-01
....310 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects... system nonhighway public mass transit project approved under this subpart shall be equal to the Federal...
Code of Federal Regulations, 2011 CFR
2011-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects § 810.200 Purpose. The... to authorize a State to make available to a publicly-owned mass transit authority existing highway...
23 CFR 810.304 - Submission of projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.304 Submission of projects. (a) An application for an urban system nonhighway public mass transit project shall...
23 CFR 810.310 - Applicability of other provisions.
Code of Federal Regulations, 2011 CFR
2011-04-01
....310 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects... system nonhighway public mass transit project approved under this subpart shall be equal to the Federal...
23 CFR 810.202 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects § 810.202 Applicability... mass transit facilities under the provisions of subparts B and D of this part. Rights-of-way made...
Espino-Pérez, Etzael; Bras, Julien; Almeida, Giana; Plessis, Cédric; Belgacem, Naceur; Perré, Patrick; Domenek, Sandra
2018-03-01
Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O 2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boffi, V.C.; Molinari, V.G.; Parks, D.E.
1962-05-01
Features of the pulsed neution source theory connected with the measurement of diffusion parameters are discussed. Various analytical procedures for determining the decay constant of the fully thermalized neutron flux are compared. The problem of the diffusion coefficient definition is also considered in some detail. (auth)
Mass and momentum turbulent transport experiments with confined swirling coaxial jets
NASA Technical Reports Server (NTRS)
Roback, R.; Johnson, B. V.
1983-01-01
Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.
Optimal partial mass transportation and obstacle Monge-Kantorovich equation
NASA Astrophysics Data System (ADS)
Igbida, Noureddine; Nguyen, Van Thanh
2018-05-01
Optimal partial mass transport, which is a variant of the optimal transport problem, consists in transporting effectively a prescribed amount of mass from a source to a target. The problem was first studied by Caffarelli and McCann (2010) [6] and Figalli (2010) [12] with a particular attention to the quadratic cost. Our aim here is to study the optimal partial mass transport problem with Finsler distance costs including the Monge cost given by the Euclidian distance. Our approach is different and our results do not follow from previous works. Among our results, we introduce a PDE of Monge-Kantorovich type with a double obstacle to characterize active submeasures, Kantorovich potential and optimal flow for the optimal partial transport problem. This new PDE enables us to study the uniqueness and monotonicity results for the active submeasures. Another interesting issue of our approach is its convenience for numerical analysis and computations that we develop in a separate paper [14] (Igbida and Nguyen, 2018).
NASA Technical Reports Server (NTRS)
1975-01-01
Transportation mass requirements are developed for various mission and transportation modes based on vehicle systems sized to fit the exact needs of each mission. The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data are described.
Novitski, David; Holdcroft, Steven
2015-12-16
Oxygen mass transport resistance through the ionomer component in the cathode catalyst layer is considered to contribute overpotential losses in polymer electrolyte membrane fuel cells. Whereas it is known that water uptake, water transport, and proton conductivity are reduced upon reducing relative humidity, the effect on oxygen mass transport remains unknown. We report a two-electrode approach to determine mass transport coefficients for the oxygen reduction reaction in air at the Pt/perfluorosulfonic acid ionomer membrane interface between 90 and 30% RH at 70 °C using a Pt microdisk in a solid state electrochemical cell. Potential-step chronoamperometry was performed at specific mass-transport limiting potentials to allow for the elucidation of the oxygen diffusion coefficient (D(bO2)) and oxygen concentration (c(bO2)). In our efforts, novel approaches in data acquisition, as well as analysis, were examined because of the dynamic nature of the membrane under lowered hydration conditions. Linear regression analysis reveals a decrease in oxygen permeability (D(bO2c(bO2)) by a factor of 1.7 and 3.4 from 90 to 30% RH for Nafion 211 membrane and membranes cast from Nafion DE2020 ionomer solutions, respectively. Additionally, nonlinear curve fitting by way of the Shoup-Szabo equation is employed to analyze the entire current transient during potential step controlled ORR. We also report on the presence of an RH dependence of our previously reported time-dependency measurements for O2 mass transport coefficients.
Simulating effects of highway embankments on estuarine circulation
Lee, Jonathan K.; Schaffranek, Raymond W.; Baltzer, Robert A.
1994-01-01
A two-dimensional depth-averaged, finite-difference, numerical model was used to simulate tidal circulation and mass transport in the Port Royal Sound. South Carolina, estuarine system. The purpose of the study was to demonstrate the utility of the Surface-Water. Integrated. Flow and Transport model (SWIFT2D) for evaluating changes in circulation patterns and mass transport caused by highway-crossing embankments. A model of subregion of Port Royal Sound including the highway crossings and having a grid size of 61 m (200ft) was derived from a 183-m (600-ft) model of the entire Port Royal Sound estuarine system. The 183-m model was used to compute boundary-value data for the 61-m submodel, which was then used to simulate flow conditions with and without the highway embankments in place. The numerical simulations show that, with the highway embankment in place, mass transport between the Broad River and Battery Creek is reduced and mass transport between the Beaufort River and Battery Creek is increased. The net result is that mass transport into and out of upper Battery Creek is reduced. The presence of the embankments also alters circulation patterns within Battery Creek.
23 CFR 810.206 - Review by the State Highway Agency.
Code of Federal Regulations, 2011 CFR
2011-04-01
....206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...-owned mass transit authority the land needed for the proposed facility. A request shall be accompanied...
Spaceflight bioreactor studies of cells and tissues.
Freed, Lisa E; Vunjak-Novakovic, Gordana
2002-01-01
Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut well-being (loss of muscle and skeletal tissues [15-17]) and gene- and cell-level responses to the mechanical environment [13,14,18]. All five of the spaceflight bioreactor studies described above utilized three-dimensional cell culture systems in which the cells were associated with biodegradable polymer scaffolds [17], collagen gel [16], or microcarrier beads [13-15,18] in order to promote the expression of differentiated cell function. In four of the five spaceflight bioreactor studies [15-18], cells were cultured in perfused vessels (cartridges or rotating bioreactors) within recirculating loops designed to maintain medium composition within target ranges by a combination of gas exchange and fresh medium supply. Future spaceflight studies of cells and tissues are likely to involve a three-dimensional culture system, to promote cellular differentiation, and perfusion with or without rotation, to provide a gravity-independent mechanism for fluid mixing and mass transport. Previous spaceflight studies have guided the ongoing development of NASA flight hardware for the ISS (e.g. the EDU-2 and the CCU). This next generation of hardware will have extended operational capabilities including on-line microscopy, in-line sensors for the monitoring and control of metabolic parameters, modular design for replicate cultures, and, perhaps most importantly of all, compatibility with the ISS centrifuge. The latter will permit in-flight, 1 g control cultures, and thereby allow the experimental variable to be gravity itself rather than the more general "spaceflight environment". Technical limitations of spaceflight studies (e.g. allowable size, mass, and power) continue to motivate a creative approach to system design and to result in "spin-off" technologies (e.g. the STLV) for ground-based cell and tissue culture research. The increasing scientific and medical relevance of this work is evidenced by the growing number of publications in which advanced bioreactors are used for in vitro studies in physiologically relevant cell and tissue models.
Tracer-monitored flow titrations.
Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G
2016-01-01
The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu
2002-02-01
Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.
Enzymatic Synthesis of Magnetic Nanoparticles
Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.
2015-01-01
We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, Wade F.; Johnson, Kaitlin E.; Sasaki, Darryl Y.
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L o)–liquid disordered (L d) phase separated lipid bilayers when the following particles of increasing size bind to either the L o or L d phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu 2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying themore » size of the bound particle (10–240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L o phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Furthermore, our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.« less
Diffusional falsification of kinetic constants on Lineweaver-Burk plots.
Ghim, Y S; Chang, H N
1983-11-07
The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.
Laser depth profiling studies of helium diffusion in Durango fluorapatite
NASA Astrophysics Data System (ADS)
van Soest, Matthijs C.; Monteleone, Brian D.; Hodges, Kip V.; Boyce, Jeremy W.
2011-05-01
Ultraviolet lasers coupled with sensitive mass spectrometers provide a useful way to measure laboratory-induced noble gas diffusion profiles in minerals, thus enabling the calculation of diffusion parameters. We illustrate this laser ablation depth profiling (LADP) technique for a previously well-studied mineral-isotopic system: 4He in Durango fluorapatite. LADP studies were conducted on oriented, polished slabs from a single crystal that were heated under vacuum to a variety of temperatures between 300 and 450 °C for variable times. The resolved 4He profiles exhibited error-function loss as predicted by previous bulk 4He diffusion studies. All of the slabs, regardless of crystallographic orientation, yielded modeled diffusivities that are statistically co-linear on an Arrhenius diagram, suggesting no diffusional anisotropy of 4He in this material. The data indicate an activation energy of 142.2 ± 5.0 (2 σ) kJ/mol and diffusivity at infinite temperature - reported as ln( D0) - of -4.71 ± 0.94 (2 σ) m 2/s. These values imply a bulk closure temperature for 4He in Durango fluorapatite of 74 °C for a 50 μm radius grain, infinite cylinder geometry, and a cooling rate of 10 °C/Myr.
Lei, Zhongli; Ren, Na; Li, Yanli; Li, Na; Mu, Bo
2009-02-25
Polymer nanocomposite microspheres (PNCMs) as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit. In this work, pectinase was immobilized on Fe(3)O(4)/SiO2-g-poly(PSStNa) nanocomposite microspheres by covalent attachment. Biochemical studies showed an improved storage stability of the immobilized pectinase as well as enhanced performance at higher temperatures and over a wider pH range. The immobilized enzyme retained >50% of its initial activity over 30 days, and the optimum temperature and pH also increased to the ranges of 50-60 degrees C and 3.0-4.7, respectively. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated by the Michaelis-Menten equation. The PSStNa support presents a very simple, mild, and time-saving process for enzyme immobilization, and this strategy of immobilizing pectinase also makes use of expensive enzymes economically viable, strengthening repeated use of them as catalysts following their rapid and easy separation with a magnet.
23 CFR 810.204 - Application by mass transit authority.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Application by mass transit authority. 810.204 Section 810.204 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION... rail or other nonhighway public mass transit facility may submit an application therefor to the State...
MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT
A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...
A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan
A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...
Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.
2000-01-01
A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.
Inomata, Yayoi; Ohizumi, Tsuyoshi; Take, Naoko; Sato, Keiichi; Nishikawa, Masataka
2016-05-15
Sulfur isotopic ratios (δ(34)S) in size separated aerosol particles (PM2.5 and coarse particles) were measured at Niigata-Maki facing the Sea of Japan. Non-sea salt δ(34)S (δ(34)Snss) in PM2.5 showed seasonal variations with relatively high values in winter (1.0-3.9‰ in spring, 2.8-4.5‰ in summer, 1.3-4.5‰ in autumn, 3.7-5.7‰ in winter). Taking into consideration air mass transport routes, δ(34)Snss in the air masses which originated in the Asian continent and were transported over the Sea of Japan to the monitoring sites were higher than those values for air masses which were transported over the Japanese islands after leaving the Asian continent for each season. Considering that the δ(34)Snss in sulfuric acid derived from domestic emissions in Japan are lower than those of δ(34)Snss in coal, the lower δ(34)Snss for the air mass transported over the Japanese islands suggest that sulfuric acid in PM2.5 modified the δ(34)Snss due to aerosol mixing with sulfuric acid in Japan. Material balance calculations suggested that the relative contribution of transboundary transport in winter was also higher than for other seasons (40-75% in spring, 51-63% in summer, 45-73% in autumn, and 53-81% in winter). In particular, the contribution to the air masses which were transported directly from the Asian continent was relatively large (75% in spring, 59% in autumn, 78% in winter) in comparison with that for the air masses which were transported over Japan. Copyright © 2016 Elsevier B.V. All rights reserved.
23 CFR 810.308 - Approval of urban system nonhighway public mass transit projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Approval of urban system nonhighway public mass transit projects. 810.308 Section 810.308 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway...
DOT National Transportation Integrated Search
1998-05-01
This study explores how the mass media covered transportation issues following the 1994 Northridge earthquake. The mass media were a vital channel for travel information, and they provided considerable information to the public about the safety of tr...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2011 CFR
2011-10-01
... natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2010 CFR
2010-10-01
... natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
Texture mapping via optimal mass transport.
Dominitz, Ayelet; Tannenbaum, Allen
2010-01-01
In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover's metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations.
McCauliff, Leslie A; Xu, Zhi; Storch, Judith
2011-08-30
Niemann--Pick C disease is an inherited disorder in which cholesterol and other lipids accumulate in the late endosomal/lysosomal compartment. Recently, cyclodextrins (CD) have been shown to reduce symptoms and extend lifespan in animal models of the disease. In the present studies we examined the mechanism of sterol transport by CD using in vitro model systems and fluorescence spectroscopy and NPC2-deficient fibroblasts. We demonstrate that cholesterol transport from the lysosomal cholesterol-binding protein NPC2 to CD occurs via aqueous diffusional transfer and is very slow; the rate-limiting step appears to be dissociation of cholesterol from NPC2, suggesting that specific interactions between NPC2 and CD do not occur. In contrast, the transfer rate of the fluorescent cholesterol analogue dehydroergosterol (DHE) from CD to phospholipid membranes is very rapid and is directly proportional to the acceptor membrane concentration, as is DHE transfer from membranes to CD. Moreover, CD dramatically increases the rate of sterol transfer between membranes, with rates that can approach those mediated by NPC2. The results suggest that sterol transfer from CD to membranes occurs by a collisional transfer mechanism involving direct interaction of CD with membranes, similar to that shown previously for NPC2. For CD, however, absolute rates are slower compared to NPC2 for a given concentration, and the lysosomal phospholipid lysobisphosphatidic acid (LBPA) does not stimulate rates of sterol transfer between membranes and CD. As expected from the apparent absence of interaction between CD and NPC2, the addition of CD to NPC2-deficient fibroblasts rapidly rescued the cholesterol accumulation phenotype. Thus, the recent observations of CD efficacy in mouse models of NPC disease are likely the result of CD enhancement of cholesterol transport between membranes, with rapid sterol transfer occurring during CD--membrane interactions.
Watching single molecules dance
NASA Astrophysics Data System (ADS)
Mehta, Amit Dinesh
Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less travel distance when in smaller ones.
Synthesis of Biofluidic Microsystems (SYNBIOSYS)
2007-10-01
reaction system. 58 FIGURE 41. The micro reactor is represented by a PFR network model. The calculation of reaction and convection is conducted in...one column of PFRs and the calculation of diffusional mixing is conducted between two columns of PFRs. 59 FIGURE 42. Apply the numerical method of...lines to calculate the diffusion in the channel width direction. Here, we take 10 discretized concentration points in the channel: ci1 - ci10. Points
Equation of state of heated glassy carbon
NASA Technical Reports Server (NTRS)
Sekine, Toshimori; Ahrens, Thomas J.
1991-01-01
New Hugoniot data are presented for glassy carbon preheated to 1550 K and shocked to 20 GPa. The high-temperature Hugoniot is very similar to the principal Hugoniot. This results argues against the diffusional mechanism for the shock-induced transformaton of amorphous carbon to diamond, although the present results are obviously limited to below 20 GPa. This study provides the first Higoniot data for carbon preheated to significantly high temperatures.
1981-07-01
C. McGill and J. 0. McCaldin ..... ............. .. 160 Diffusional Instability of p /n Heterojunctions J. J. Gilman...Preliminary Ideas on a Ductile-Brittle Transition in Fe-Si Single Crystals R. Thomson and J. P . Hirth. . . . . . . . . . . . . . . . 199 Comment on a...Baltimore, MD 21218 Professor Alan J. Heeger Department of Physics/El University of Pennsylvania Philadelphia, PA 19104 Professor John P . Hirth
SDA 7: A modular and parallel implementation of the simulation of diffusional association software
Martinez, Michael; Romanowska, Julia; Kokh, Daria B.; Ozboyaci, Musa; Yu, Xiaofeng; Öztürk, Mehmet Ali; Richter, Stefan
2015-01-01
The simulation of diffusional association (SDA) Brownian dynamics software package has been widely used in the study of biomacromolecular association. Initially developed to calculate bimolecular protein–protein association rate constants, it has since been extended to study electron transfer rates, to predict the structures of biomacromolecular complexes, to investigate the adsorption of proteins to inorganic surfaces, and to simulate the dynamics of large systems containing many biomacromolecular solutes, allowing the study of concentration‐dependent effects. These extensions have led to a number of divergent versions of the software. In this article, we report the development of the latest version of the software (SDA 7). This release was developed to consolidate the existing codes into a single framework, while improving the parallelization of the code to better exploit modern multicore shared memory computer architectures. It is built using a modular object‐oriented programming scheme, to allow for easy maintenance and extension of the software, and includes new features, such as adding flexible solute representations. We discuss a number of application examples, which describe some of the methods available in the release, and provide benchmarking data to demonstrate the parallel performance. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26123630
Zhang, Zhiyan; Wang, Yukai; Shen, Zhiwei; Yang, Zhongxian; Li, Li; Chen, Dongxiao; Yan, Gen; Cheng, Xiaofang; Shen, Yuanyu; Tang, Xiangyong; Hu, Wei; Wu, Renhua
2016-01-01
The diagnosis and pathology of neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging. Herein, we used multimodal imaging to assess anatomical and functional changes in brains of SLE patients instead of a single MRI approach generally used in previous studies. Twenty-two NPSLE patients, 21 non-NPSLE patients and 20 healthy controls (HCs) underwent 3.0 T MRI with multivoxel magnetic resonance spectroscopy, T1-weighted volumetric images for voxel based morphometry (VBM) and diffusional kurtosis imaging (DKI) scans. While there were findings in other basal ganglia regions, the most consistent findings were observed in the posterior cingulate gyrus (PCG). The reduction of multiple metabolite concentration was observed in the PCG in the two patient groups, and the NPSLE patients were more prominent. The two patient groups displayed lower diffusional kurtosis (MK) values in the bilateral PCG compared with HCs (p < 0.01) as assessed by DKI. Grey matter reduction in the PCG was observed in the NPSLE group using VBM. Positive correlations among cognitive function scores and imaging metrics in bilateral PCG were detected. Multimodal imaging is useful for evaluating SLE subjects and potentially determining disease pathology. Impairments of cognitive function in SLE patients may be interpreted by metabolic and microstructural changes in the PCG. PMID:26758023
Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.
2015-04-08
In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less
Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng
Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{supmore » −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.« less
Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael
2014-01-01
Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697
Cable Connected Spinning Spacecraft, 1. the Canonical Equations, 2. Urban Mass Transportation, 3
NASA Technical Reports Server (NTRS)
Sitchin, A.
1972-01-01
Work on the dynamics of cable-connected spinning spacecraft was completed by formulating the equations of motion by both the canonical equations and Lagrange's equations and programming them for numerical solution on a digital computer. These energy-based formulations will permit future addition of the effect of cable mass. Comparative runs indicate that the canonical formulation requires less computer time. Available literature on urban mass transportation was surveyed. Areas of the private rapid transit concept of urban transportation are also studied.
Release, transport and toxicity of engineered nanoparticles.
Soni, Deepika; Naoghare, Pravin K; Saravanadevi, Sivanesan; Pandey, Ram Avatar
2015-01-01
Recent developments in nanotechnology have facilitated the synthesis of novel engineered nanoparticles (ENPs) that possess new and different physicochemical properties. These ENPs have been ex tensive ly used in various commercial sectors to achieve both social and economic benefits. However. the increasing production and consumption of ENPs by many different industries has raised concerns about their possible release and accumulation in the environment. Released EN Ps may either remain suspended in the atmosphere for several years or may accumulate and eventually be modified int o other substances. Settled nanoparticles can he easily washed away during ra in s. and therefore may easily enter the food chain via water and so il. Thus. EN Ps can contaminate air. water and soil and can subsequently pose adverse risks to the health of different organisms. Studies to date indicate that ENP transport to and within the ecosystem depend on their chemical and physical properties (viz .. size. shape and solubility) . Therefore. the EN Ps display variable behavior in the environment because of their individual properties th at affect their tendency for adsorption, absorption, diffusional and colloidal interaction. The transport of EN Ps also influences their fate and chemical transformation in ecosystems. The adsorption, absorption and colloidal interaction of ENPs affect their capacity to be degraded or transformed, whereas the tendency of ENPs to agglomerate fosters their sedimentation. How widely ENPs are transported and their environmental fate influence how tox ic they may become to environmental organisms. One barrier to fully understanding how EN Ps are transformed in the environment and how best to characterize their toxicity, is related to the nature of their ultrafine structure. Experiments with different animals, pl ants, and cell lines have revealed that ENPs induce toxicity via several cellular pathways that is linked to the size. shape. surface area, agglomeration state. and sur face charge of the ENP involved. Future research is needed to elucidate the mechanisms by which nanoparticles act to induce their tox ic effects aft er they reach various ecosystems. Moreover. work is needed to develop a holistic approach for better understanding the effects that ENPs produce at the cellular and genetic level.
Poleward energy transport: is the standard definition physically relevant at all time scales?
NASA Astrophysics Data System (ADS)
Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi
2018-03-01
Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by "eddies" and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^{15} W = 1 PW) in the poleward heat transport. These fluctuations are referred to as "extensive", for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.
Poleward Energy Transport: Is the Standard Definition Physically Relevant at All Time Scales?
NASA Astrophysics Data System (ADS)
Liang, M.; Czaja, A.; Graversen, R.; Tailleux, R.
2017-12-01
Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by ''eddies'' and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 1015W = 1PW) in the poleward heat transport. These fluctuations are referred to as ''extensive'', for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.
NASA Astrophysics Data System (ADS)
Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.
2015-04-01
Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.
NASA Astrophysics Data System (ADS)
Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.
2015-08-01
Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m-3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.
Mass Transport Through Carbon Nanotube-Polystyrene Bundles
NASA Astrophysics Data System (ADS)
Lin, Rongzhou; Tran, Tuan
2016-05-01
Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.
Lindsay, L.; Kuang, Y.
2017-03-13
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less
Enforcing realizability in explicit multi-component species transport
McDermott, Randall J.; Floyd, Jason E.
2015-01-01
We propose a strategy to guarantee realizability of species mass fractions in explicit time integration of the partial differential equations governing fire dynamics, which is a multi-component transport problem (realizability requires all mass fractions are greater than or equal to zero and that the sum equals unity). For a mixture of n species, the conventional strategy is to solve for n − 1 species mass fractions and to obtain the nth (or “background”) species mass fraction from one minus the sum of the others. The numerical difficulties inherent in the background species approach are discussed and the potential for realizability violations is illustrated. The new strategy solves all n species transport equations and obtains density from the sum of the species mass densities. To guarantee realizability the species mass densities must remain positive (semidefinite). A scalar boundedness correction is proposed that is based on a minimal diffusion operator. The overall scheme is implemented in a publicly available large-eddy simulation code called the Fire Dynamics Simulator. A set of test cases is presented to verify that the new strategy enforces realizability, does not generate spurious mass, and maintains second-order accuracy for transport. PMID:26692634
NASA Astrophysics Data System (ADS)
Lindsay, L.; Kuang, Y.
2017-03-01
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, L.; Kuang, Y.
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less
14 CFR 25.789 - Retention of items of mass in passenger and crew compartments and galleys.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Retention of items of mass in passenger and... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.789 Retention of items of mass in...
14 CFR 25.789 - Retention of items of mass in passenger and crew compartments and galleys.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Retention of items of mass in passenger and... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.789 Retention of items of mass in...
Large Eddy Simulation of Cirrus Clouds
NASA Technical Reports Server (NTRS)
Wu, Ting; Cotton, William R.
1999-01-01
The Regional Atmospheric Modeling System (RAMS) with mesoscale interactive nested-grids and a Large-Eddy Simulation (LES) version of RAMS, coupled to two-moment microphysics and a new two-stream radiative code were used to investigate the dynamic, microphysical, and radiative aspects of the November 26, 1991 cirrus event. Wu (1998) describes the results of that research in full detail and is enclosed as Appendix 1. The mesoscale nested grid simulation successfully reproduced the large scale circulation as compared to the Mesoscale Analysis and Prediction System's (MAPS) analyses and other observations. Three cloud bands which match nicely to the three cloud lines identified in an observational study (Mace et al., 1995) are predicted on Grid #2 of the nested grids, even though the mesoscale simulation predicts a larger west-east cloud width than what was observed. Large-eddy simulations (LES) were performed to study the dynamical, microphysical, and radiative processes in the 26 November 1991 FIRE 11 cirrus event. The LES model is based on the RAMS version 3b developed at Colorado State University. It includes a new radiation scheme developed by Harrington (1997) and a new subgrid scale model developed by Kosovic (1996). The LES model simulated a single cloud layer for Case 1 and a two-layer cloud structure for Case 2. The simulations demonstrated that latent heat release can play a significant role in the formation and development of cirrus clouds. For the thin cirrus in Case 1, the latent heat release was insufficient for the cirrus clouds to become positively buoyant. However, in some special cases such as Case 2, positively buoyant cells can be embedded within the cirrus layers. These cells were so active that the rising updraft induced its own pressure perturbations that affected the cloud evolution. Vertical profiles of the total radiative and latent heating rates indicated that for well developed, deep, and active cirrus clouds, radiative cooling and latent heating could be comparable in magnitude in the cloudy layer. This implies that latent heating cannot be neglected in the construction of a cirrus cloud model. The probability density function (PDF) of w was analyzed to assist in the parameterization of cloud-scale velocities in large-scale models. For the more radiatively-driven, thin cirrus case, the PDFs are approximately Gaussian. However, in the interior of the deep, convectively unstable case, the PDFs of w are multi-modal and very broad, indicating that parameterizing cloud-scale motions for such clouds can be very challenging. The results of this research are described in detail in a paper submitted to the Journal of Atmospheric Science (Wu and Cotton, 1999), which is enclosed as Appendix 2. Using soundings extracted from a mesoscale simulation of the November 26, 1991 cirrus event, the radiative effects on vapor deposition/sublimation of ice crystals was studied using a two-dimensional cloud-resolving model (CRM) version of RAMS, coupled to an explicit bin-resolving microphysics. The CRM simulations of the November 26, 1991 cirrus event demonstrate that the radiative impact on the diffusional growth (or sublimation) of ice crystals is significant. In this case, the ice particles experienced radiative warming. Model results show that radiative feedbacks in the diffusional growth of ice particles can be very complex. Radiative warming of an ice particle will restrict the particle's diffusional growth. In the case of radiative warming, ice particles larger than a certain size will experience so much radiative warming that surface ice saturation vapor pressures become large enough to cause sublimation of the larger crystals, while smaller crystals are growing by vapor deposition. However, ice mass production can be enhanced in the case of radiative cooling of an ice particle. For the November 26, 1991 cirrus event, radiative feedback results in significant reduction in the total ice mass, especially in the production of large ice crystals, and consequently, both radiative and dynamic properties of the cirrus cloud are significantly affected. A complete description of this research has been submitted as a paper to the Journal of Atmospheric Science (Wu et al., 1999), and included as Appendix 3.
Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer
NASA Astrophysics Data System (ADS)
Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.
2014-12-01
There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of therapeutic outcome.
Scale effects between body size and limb design in quadrupedal mammals.
Kilbourne, Brandon M; Hoffman, Louwrens C
2013-01-01
Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.
Scale Effects between Body Size and Limb Design in Quadrupedal Mammals
Kilbourne, Brandon M.; Hoffman, Louwrens C.
2013-01-01
Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry. PMID:24260117
Impact of kinetic mass transfer on free convection in a porous medium
NASA Astrophysics Data System (ADS)
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.
Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L
2018-02-01
Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.
Role of Proteome Physical Chemistry in Cell Behavior
2016-01-01
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell’s proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell’s proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2–3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells. PMID:27513457
Engineering Nanowire n-MOSFETs at L_{g}<8 nm
NASA Astrophysics Data System (ADS)
Mehrotra, Saumitra R.; Kim, SungGeun; Kubis, Tillmann; Povolotskyi, Michael; Lundstrom, Mark S.; Klimeck, Gerhard
2013-07-01
As metal-oxide-semiconductor field-effect transistors (MOSFET) channel lengths (Lg) are scaled to lengths shorter than Lg<8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at Lg<8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON state currents in ultra scaled nanowire MOSFETs.
A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea
NASA Astrophysics Data System (ADS)
Hazel, J.; Stewart, A.
2016-12-01
The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.
Diffusional flux of CO2 through snow: Spatial and temporal variability among alpine-subalpine sites
Richard A. Sommerfeld; William J. Massman; Robert C. Musselman
1996-01-01
Three alpine and three subalpine sites were monitored for up to 4 years to acquire data on the temporal and spatial variability of CO2 flux through snowpacks. We conclude that the snow formed a passive cap which controlled the concentration of CO2 at the snow-soil interface, while the flux of CO2 into the atmosphere was controlled by CO2 production in the soil....
Plasma Assisted Combustion: Flame Regimes and Kinetic Studies
2015-01-05
Kinetic model Fuel: Dimethyl ether Oxidizer= (1-x)O2 + xO3, x=0 - 0.1, p=1 atm Ozone chemistry & Dimethyl ether model ...diffusional cool flames • A heated counterflow burner integrated with vaporization system1 • n-heptane/nitrogen vs. oxygen/ ozone • Ozone generator...micro-DBD) produces 2- 5 % of ozone in oxygen stream, depending on oxygen flow rate • Speciation profiles by using a micro-probe sampling with a
2012-07-01
regulate microfluidic flow rates within the TTB, including flow channel height variation and incorporation of valves (see Figure 2 and Supplemental...cartridge. As an alternative to individual channel TURN valve -adjusted flow regulators, we investigated use of pre-fabricated microfluidic flow resistance...Small Parts, Inc. and B) Microfluidic manifolds with built-in TURN valves . Supplemental Figure S3. Simplified 2D and 3D diffusional model
Characterization of chemical agent transport in paints.
Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent
2013-09-15
A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.
Lukyanets, Sergei P; Kliushnychenko, Oleksandr V
2010-11-01
The mass transport in an inhomogeneous medium is modeled as the limiting case of a two-component lattice gas with excluded volume constraint and one of the components fixed. In the long-wavelength approximation, the density relaxation of mobile particles is governed by diffusion and interaction with a medium inhomogeneity represented by the static component distribution. It is shown that the density relaxation can be locally accompanied by density distribution compression, i.e., the local mass transport directed from low-to high-density regions. The origin of such a "negative" mass transport is shown to be associated with the presence of a stationary drift flow defined by the medium inhomogeneity. In the quasi-one-dimensional case, the compression dynamics manifests itself in the hoppinglike motion of packet front position of diffusing substance due to staged passing through inhomogeneity barriers, and it leads to fragmentation of the packet and retardation of its spreading. The root-mean-square displacement reflects only the averaged packet front dynamics and becomes inappropriate as the transport characteristic in this regime. In the stationary case, the mass transport throughout the whole system may be directed from the boundary with lower concentration towards the boundary with higher concentration. Implications of the excluded volume constraint and particle distinguishability for these effects are discussed.
Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Joyce, Ryan T.; Kessler, Paul D.; Merrill, Raymond G.; Qu, Min
2017-01-01
The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.
Development of a mass balance model for estimating PCB export from the lower Fox River to Green Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velleux, M.; Endicott, D.
A mass balance approach was used to model contaminant cycling in the lower Fox River from the DePere Dam to Green Bay. The objectives of this research were (1) to estimate present contaminant export from the Fox River to Green Bay, and (2) to quantify contaminant transport and fate pathways in the lower river for the study period. Specifically, a model describing the transport, fate, and export of chlorides, total suspended solids, total PCBs, and six PCB congeners for the lower Fox River was developed. Field data collected as part of the U.S. Environmental Protection Agency's Green Bay Mass Balancemore » Study were used to calibrate the model. Model results suggest that the transport of inplace pollutants significantly contributed to the cumulative export of total PCBs over this period. Estimated total PCB transport in the Fox River during 1989 increased 60% between the dam and river mouth due to the resuspension of lower river sediments. Total suspended solids and PCB predictions are most sensitive to particle transport parameters, particularly the settling and resuspension velocities. The significant components of the total PCB mass balance are import (loading over the DePere Dam), settling, resuspension, and export to Green Bay. Volatilization, porewater transport, and point source input were not significant to the mass balance. Present point source discharges to the river are not significant total PCB sources, collectively contributing less than 6 kg of PCB to the river during the mass balance period.« less
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; White, Nancy H.; Mills, Janelle C.
2004-01-01
A program, entitled Weights, Areas, and Mass Properties (or WAMI) is centered around an array of menus that contain constants that can be used in various mass estimating relationships for the ultimate purpose of obtaining the mass properties of Earth-to-Orbit Transports. The current Shuttle mass property data was relied upon heavily for baseline equation constant values from which other options were derived.
The Martian climate: Energy balance models with CO2/H2O atmospheres
NASA Technical Reports Server (NTRS)
Hoffert, M. I.
1985-01-01
Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.
National Urban Mass Transportation Statistics (1979 - Section 15 Report)
DOT National Transportation Integrated Search
1981-05-01
This report summarizes the financial and operating data submitted annually to the Urban Mass Transportation Administration (UMTA) by the nation's public transit operators, pursuant to section 15 of UMTA Act of 1964, amended. The report consists of tw...
An analysis of mass transportation in Wilmington, Delaware
DOT National Transportation Integrated Search
1964-06-01
A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Business Administration. The thesis analyzes mass transportation systems and facilities as they existed in Wi...
DOT National Transportation Integrated Search
1998-04-01
The Department of Transportation's (DOT's) Federal Transit Administration (FTA) administers a multibillion-dollar program of financial assistance for grantees that provide urban and rural public mass transportation. In 1992, the General Accounting Of...
National Urban Mass Transportation Statistics (1981 - Section 15 Report)
DOT National Transportation Integrated Search
1982-05-01
This report summarizes the financial and operating data submitted annually to the Urban Mass Transportation Administration (UMTA) by the nation's public transit operators, pursuant to Section 15 of the UMTA Act of 1964, as amended. The report consist...
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
NASA Technical Reports Server (NTRS)
Fanale, Fraser P.; Salvail, James R.; Matson, Dennis L.; Brown, Robert H.
1990-01-01
The present quantitative modeling of convective, condensational, and sublimational effects on porous ice crust volumes subjected to solar radiation encompasses the effect of such insolation's penetration of visible bandpass-translucent light, but opaque to the IR bandpass. Quasi-steady-state temperatures, H2O mass fluxes, and ice mass-density change rates are computed as functions of time of day and ice depth. When the effects of latent heat and mass transport are included in the model, the enhancement of near-surface temperature due to the 'solid-state greenhouse effect' is substantially diminished. When latent heat, mass transport, and densification effects are considered, however, a significant solid-state greenhouse effect is shown to be compatible with both morphological evidence for high crust strengths and icy shell decoupling from the lithosphere.
Specific features of defect and mass transport in concentrated fcc alloys
Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.
2016-06-15
We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less
Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.
Ranathunge, Kosala; Steudle, Ernst; Lafitte, Renee
2003-06-01
A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique involved perfusion of aerenchyma of segments from two different root zones (20-50 mm and 50-100 mm from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity of the OPR (Lp(OPR)=1.2x10(-6) m s(-1) MPa(-1)) was larger by a factor of 30 than the overall hydraulic conductivity (Lp(r)=4x10(-8) m s(-1) MPa(-1)) as measured by pressure chamber and root pressure probe. Low reflection coefficients were obtained for mannitol and NaCl for the OPR (sigma(sOPR)=0.14 and 0.09, respectively). The diffusional water permeability ( P(dOPR)) estimated from isobaric flow of heavy water was smaller by three orders of magnitude than the hydraulic conductivity (Lp(OPR)/ P(fOPR)). Although detailed root anatomy showed well-defined Casparian bands and suberin lamellae in the exodermis, the findings strongly indicate a predominantly apoplastic water flow in the OPR. The Lp(OPR) of heat-killed root segments increased by a factor of only 2, which is in line with the conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR was not limiting the passage of water across the root cylinder. Estimations of the hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the water flow, although the aerenchyma may contribute to the overall resistance. The resistance of the aerenchyma was relatively low, because mono-layered cortical septa crossing the aerenchyma ('spokes') short-circuited the air space between the stele and the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to medium are also low. It is concluded that in rice roots, water uptake and oxygen retention are optimized in such a way that hydraulic water flow can be kept high in the presence of a low efflux of oxygen which is diffusional in nature.
Benga, Gheorghe; Chapman, Bogdan E; Matei, Horea; Cox, Guy C; Romeo, Tony; Mironescu, Eugen; Kuchel, Philip W
2010-03-08
As part of a programme of comparative measurements of Pd (diffusional water permeability) the RBCs (red blood cells) from dingo (Canis familiaris dingo) and greyhound dog (Canis familiaris) were studied. The morphologies of the dingo and greyhound RBCs [examined by light and SEM (scanning electron microscopy)] were found to be very similar, with regard to aspect ratio and size; the mean diameters were estimated to be the same (approximately 7.2 microm) for both dingo and greyhound RBCs. The water diffusional permeability was monitored by using an Mn2+-doping 1H NMR technique at 400 MHz. The Pd (cm/s) values of dingo and greyhound RBCs were similar: 6.5 x 10(-3) at 25 degrees C, 7.5 x 10(-3) at 30 degrees C, 10 x 10(-3) at 37 degrees C and 11.5 x 10(-3) at 42 degrees C. The inhibitory effect of a mercury-containing SH (sulfhydryl)-modifying reagent PCMBS (p-chloromercuribenzene sulfonate) was investigated. The maximal inhibition of dingo and greyhound RBCs was reached in 15-30 min at 37 degrees C with 2 mmol/l PCMBS. The values of maximal inhibition were in the range 72-74% when measured at 25 degrees C and 30 degrees C, and approximately 66% at 37 degrees C. The lowest value of Pd (corresponding to the basal permeability to water) was approximately 2-3 x 10(-3) cm/s in the temperature range 25-37 degrees C. The Ea,d (activation energy of water diffusion) was 25 kJ/mol for dingo RBC and 23 kJ/mol for greyhound RBCs. After incubation with PCMBS, the values of Ea,d increased, reaching 46-48 kJ/mol in the condition of maximal inhibition of water exchange. The electrophoretograms of membrane polypeptides of the dingo and greyhound RBCs were compared and seen to be very similar. We postulate that the RBC parameters reported in the present study are characteristic of all canine species and, in particular in the two cases presented here, these parameters have not been changed by the peculiar Australian habitat over the millennia (as in the case of the dingo) or over shorter time periods, decades or centuries (as in the case of the domestic greyhound).
ERIC Educational Resources Information Center
Utgikar, Vivek P.; MacPherson, David
2016-01-01
Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…
Finite element modeling of mass transport in high-Péclet cardiovascular flows
NASA Astrophysics Data System (ADS)
Hansen, Kirk; Arzani, Amirhossein; Shadden, Shawn
2016-11-01
Mass transport plays an important role in many important cardiovascular processes, including thrombus formation and atherosclerosis. These mass transport problems are characterized by Péclet numbers of up to 108, leading to several numerical difficulties. The presence of thin near-wall concentration boundary layers requires very fine mesh resolution in these regions, while large concentration gradients within the flow cause numerical stabilization issues. In this work, we will discuss some guidelines for solving mass transport problems in cardiovascular flows using a stabilized Galerkin finite element method. First, we perform mesh convergence studies in a series of idealized and patient-specific geometries to determine the required near-wall mesh resolution for these types of problems, using both first- and second-order tetrahedral finite elements. Second, we investigate the use of several boundary condition types at outflow boundaries where backflow during some parts of the cardiac cycle can lead to convergence issues. Finally, we evaluate the effect of reducing Péclet number by increasing mass diffusivity as has been proposed by some researchers. This work was supported by the NSF GRFP and NSF Career Award #1354541.
Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation
NASA Astrophysics Data System (ADS)
Adhikari, S.; Ivins, E. R.; Larour, E.
2017-05-01
The annual cycle and secular trend of Greenland mass loading are well recorded in measurements of solid Earth deformation. Horizontal crustal displacements can potentially track the spatiotemporal detail of mass changes with great fidelity. Our analysis of Greenland crustal motion data reveals that a significant excitation of horizontal amplitudes occurs during the intense melt years. We discover that solitary seasonal waves of substantial mass transport (1.67 ± 0.54 Gt/month) traveled at an average speed of 7.1 km/month through Rink Glacier in 2012. We deduce that intense surface melting enhanced either basal lubrication or softening of shear margins, or both, causing the glacier to thin dynamically in summer. The newly routed upstream subglacial water was likely to be both retarded and inefficient, thus providing a causal mechanism for the prolonged ice transport to continue well into the winter months. As the climate continues to produce increasingly warmer spring and summer, amplified seasonal waves of mass transport may become ever more present with important ramifications for the future sea level rise.
Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells
NASA Astrophysics Data System (ADS)
Paquin, Mathieu; Fréchette, Luc G.
An analysis of water management in air breathing small polymer electrolyte membrane fuel cells (PEMFCs) is presented. Comprehensive understanding of flooding and dry-out limiting phenomena is presented through a combination of analytical modeling and experimental investigations using a small PEMFC prototype. Configurations of the fuel cell with different heat and mass transfer properties are experimentally evaluated to assess the impact of thermal resistance and mass transport resistance on water balance. Manifestation of dry-out and flooding problems, as limiting phenomena, are explained through a ratio between these two resistances. Main conclusions are that decreasing the ratio between thermal and mass transport resistance under a certain point leads to flooding problems in air breathing PEMFC. Increasing this ratio leads to dry-out of the polymer electrolyte membrane. However, too high thermal resistance or too low mass transport resistance reduces the limiting current by pushing forward the dry-out problem. This work provides a framework to achieve the proper balance between thermal rejection and mass transport to optimize the maximum current density of free convection fuel cells.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Purpose. 810.200 Section 810.200 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE... rights-of-way for rail or other non-highway public mass transit facilities. ...
Potential for Flexicab Services : Innovative Uses of Taxis and Jitneys for Public Transportation
DOT National Transportation Integrated Search
1975-12-01
Taxis and jitneys can be significant urban transportation resource. Used innovatively to provide public transit services, they can offer mobility in low density areas where mass transit is not feasible, supplement mass transit economically to improve...
Ngamchuea, Kamonwad; Eloul, Shaltiel; Tschulik, Kristina; Compton, Richard G
2015-07-21
Understanding mass transport is prerequisite to all quantitative analysis of electrochemical experiments. While the contribution of diffusion is well understood, the influence of density gradient-driven natural convection on the mass transport in electrochemical systems is not. To date, it has been assumed to be relevant only for high concentrations of redox-active species and at long experimental time scales. If unjustified, this assumption risks misinterpretation of analytical data obtained from scanning electrochemical microscopy (SECM) and generator-collector experiments, as well as analytical sensors utilizing macroelectrodes/microelectrode arrays. It also affects the results expected from electrodeposition. On the basis of numerical simulation, herein it is demonstrated that even at less than 10 mM concentrations and short experimental times of tens of seconds, density gradient-driven natural convection significantly affects mass transport. This is evident from in-depth numerical simulation for the oxidation of hexacyanoferrate (II) at various electrode sizes and electrode orientations. In each case, the induced convection and its influence on the diffusion layer established near the electrode are illustrated by maps of the velocity fields and concentration distributions evolving with time. The effects of natural convection on mass transport and chronoamperometric currents are thus quantified and discussed for the different cases studied.
Modular Aquatic Simulation System 1D
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-04-19
MASS1 simulates open channel hydrodynamics and transport in branched channel networks, using cross-section averaged forms of the continuity, momentum, and convection diffusion equations. Thermal energy transport (temperature), including meteorological influences is supported. The thermodynamics of total dissolved gas (TDG) can be directly simulated. MASS1 has been developed over the last 20 years. It is currently being used on DOE projects that require MASS1 to beopen source. Hence, the authors would like to distribute MASS1 in source form.
Observation of water mass characteristics in the southwestern Mariana Trench
NASA Astrophysics Data System (ADS)
Xu, H.; Xie, Q.; Hong, B.
2016-12-01
The identification of large water mass characteristic can help oceanographer to better understand the oceanic circulation structures and other physical processes in open oceans. In current stage, the water mass characteristics were recognized well by extensive observation in the upper ocean, however, it was rarely studied in deep oceans, especially for deep trench with > 6000 m depth. In this study, we use observed data collected by CTDs during several surveys to investigate the water mass physical characteristic and transport in the world deepest trench, `Challenger Deep', in the southwestern Mariana Trench. The preliminary results show complex vertical structures of water mass in this trench. From surface to 4500 m, the water masses are occupied by typical tropical surface water, NPTUW, NPMW, NPIW and NPDW. Under 4500m, the water mass shows mixing characteristics of NPDW and AABW, which indicate AABW can be transported by form the deep ocean of the South Ocean to Northwestern Pacific and it can affect local water mass characteristics. The baroclinic geostrophic current calculated from the CTDs data shows the westerly transport of water mass can reach about 1.0 SV in the trench which is close to previous results.
The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models.
Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni
2013-11-20
The consistency of the frequency response predicted by a class of electrochemical impedance expressions is analytically checked by invoking the Kramers-Kronig (KK) relations. These expressions are obtained in the context of Poisson-Nernst-Planck usual or anomalous diffusional models that satisfy Poisson's equation in a finite length situation. The theoretical results, besides being successful in interpreting experimental data, are also shown to obey the KK relations when these relations are modified accordingly.
Garzon, Fernando H.; Brosha, Eric L.
1997-01-01
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.
Garzon, F.H.; Brosha, E.L.
1997-12-09
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.
Optimal startup control of a jacketed tubular reactor.
NASA Technical Reports Server (NTRS)
Hahn, D. R.; Fan, L. T.; Hwang, C. L.
1971-01-01
The optimal startup policy of a jacketed tubular reactor, in which a first-order, reversible, exothermic reaction takes place, is presented. A distributed maximum principle is presented for determining weak necessary conditions for optimality of a diffusional distributed parameter system. A numerical technique is developed for practical implementation of the distributed maximum principle. This involves the sequential solution of the state and adjoint equations, in conjunction with a functional gradient technique for iteratively improving the control function.
Membrane Bioreactor With Pressure Cycle
NASA Technical Reports Server (NTRS)
Efthymiou, George S.; Shuler, Michael L.
1991-01-01
Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.
The Effect of Welding Process on the Microstructure of HY-130 Steel Weldments
1988-12-01
low -carbon, high-strength, low - alloy (HSLA) steels (C below 0.07 per- cent), the weld metal changed from coarse polygonal ferrite to...17. Ricks. R. A., Barritte, G. S., and Howell, P. R., "The Influence of Second Phase Particles on Diffusional Phase Transformations in Steels ... phase , austenite, may transform to mar- tensite on rapid cooling. The martensite has the exact same composi- tion as the austenite (up to two
Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.
Yang, Alicia W; Jensen, Jens H; Hu, Caixia C; Tabesh, Ali; Falangola, Maria F; Helpern, Joseph A
2013-02-01
To evaluate the cerebral spinal fluid (CSF) partial volume effect on diffusional kurtosis imaging (DKI) metrics in white matter and cortical gray matter. Four healthy volunteers participated in this study. Standard DKI and fluid-attenuated inversion recovery (FLAIR) DKI experiments were performed using a twice-refocused-spin-echo diffusion sequence. The conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, D[symbol in text], D[symbol in text] together with DKI metrics of mean, axial, and radial kurtosis (MK, K[symbol in text], K[symbol in text], were measured and compared. Single image slices located above the lateral ventricles, with similar anatomical features for each subject, were selected to minimize the effect of CSF from the ventricles. In white matter, differences of less than 10% were observed between diffusion metrics measured with standard DKI and FLAIR-DKI sequences, suggesting minimal CSF contamination. For gray matter, conventional DTI metrics differed by 19% to 52%, reflecting significant CSF partial volume effects. Kurtosis metrics, however, changed by 11% or less, indicating greater robustness with respect to CSF contamination. Kurtosis metrics are less sensitive to CSF partial voluming in cortical gray matter than conventional diffusion metrics. The kurtosis metrics may then be more specific indicators of changes in tissue microstructure, provided the effect sizes for the changes are comparable. Copyright © 2012 Wiley Periodicals, Inc.
Duchêne, Gaëtan; Peeters, Frank; Peeters, André; Duprez, Thierry
2017-08-01
To compare the sensitivity and early temporal changes of diffusion parameters obtained from diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), q-space analysis (QSA) and bi-exponential modelling in hyperacute stroke patients. A single investigational acquisition allowing the four diffusion analyses was performed on seven hyperacute stroke patients with a 3T system. The percentage change between ipsi- and contralateral regions were compared at admission and 24 h later. Two out of the seven patients were imaged every 6 h during this period. Kurtoses from both DKI and QSA were the most sensitive of the tested diffusion parameters in the few hours following ischemia. An early increase-maximum-decrease pattern of evolution was highlighted during the 24-h period for all parameters proportional to diffusion coefficients. A similar pattern was observed for both kurtoses in only one of two patients. Our comparison was performed using identical diffusion encoding timings and on patients in the same stage of their condition. Although preliminary, our findings confirm those of previous studies that showed enhanced sensitivity of kurtosis. A fine time mapping of diffusion metrics in hyperacute stroke patients was presented which advocates for further investigations on larger animal or human cohorts.
Haggie, Peter M; Verkman, A S
2002-10-25
It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.
Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc
Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; ...
2016-01-11
Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less
Peinetti, Ana Sol; Gilardoni, Rodrigo S; Mizrahi, Martín; Requejo, Felix G; González, Graciela A; Battaglini, Fernando
2016-06-07
Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool.
Benga, Gheorghe; Chapman, Bogdan E; Cox, Guy C; Kuchel, Philip W
2010-07-01
As part of a programme of comparative measurements of Pd (diffusional water permeability) the RBCs (red blood cells) from an aquatic monotreme, platypus (Ornithorhynchus anatinus), and an aquatic reptile, saltwater crocodile (Crocodylus porosus) were studied. The mean diameter of platypus RBCs was estimated by light microscopy and found to be approximately 6.3 microm. Pd was measured by using an Mn2+-doping 1H NMR (nuclear magnetic resonance) technique. The Pd (cm/s) values were relatively low: approximately 2.1 x 10(-3) at 25 degrees C, 2.5 x 10(-3) at 30 degrees C, 3.4 x 10(-3) at 37 degrees C and 4.5 at 42 degrees C for the platypus RBCs and approximately 2.8 x 10(-3) at 25 degrees C, 3.2 x 10(-3) at 30 degrees C, 4.5 x 10(-3) at 37 degrees C and 5.7 x 10(-3) at 42 degrees C for the crocodile RBCs. In parallel with the low water permeability, the Ea,d (activation energy of water diffusion) was relatively high, approximately 35 kJ/mol. These results suggest that "conventional" WCPs (water channel proteins), or AQPs (aquaporins), are probably absent from the plasma membranes of RBCs from both the platypus and the saltwater crocodile.
Diffusional encounter of barnase and barstar.
Spaar, Alexander; Dammer, Christian; Gabdoulline, Razif R; Wade, Rebecca C; Helms, Volkhard
2006-03-15
We present an analysis of trajectories from Brownian dynamics simulations of diffusional protein-protein encounter for the well-studied system of barnase and barstar. This analysis reveals details about the optimal association pathways, the regions of the encounter complex, possible differences of the pathways for dissociation and association, the coupling of translational and rotation motion, and the effect of mutations on the trajectories. We found that a small free-energy barrier divides the energetically most favorable region into a region of the encounter complex above the barnase binding interface and a region around a second energy minimum near the RNA binding loop. When entering the region of the encounter complex from the region near the RNA binding loop, barstar has to change its orientation to increase the electrostatic attraction between the proteins. By concentrating the analysis on the successful binding trajectories, we found that the region of the second minimum is not essential for the binding of barstar to barnase. Nevertheless, this region may be helpful to steer barstar into the region of the encounter complex. When applying the same analysis to several barnase mutants, we found that single mutations may drastically change the free-energy landscape and may significantly alter the population of the two minima. Therefore, certain protein-protein pairs may require careful adaptation of the positions of encounter and transition states when interpreting mutation effects on kinetic rates of association and/or dissociation.
Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Bennett, J. C.
1981-01-01
Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.
An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints
Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.
2014-01-01
The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346
23 CFR 810.202 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Applicability. 810.202 Section 810.202 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects § 810.202 Applicability...
National Urban Mass Transportation Statistics. Second Annual Report, Section 15 Reporting System
DOT National Transportation Integrated Search
1982-06-01
This report summarizes the financial and operating data submitted annually to the Urban Mass Transportation Administration (UMTA) by the nation's public transit operators, pursuant to Section 15 of the UMT Act of 1964, as amended. The report consists...
Comparison of febrile responsiveness of rats and rabbits to endogenous pyrogen.
Stitt, J T; Shimada, S G; Bernheim, H A
1985-12-01
The fever responses of rats and rabbits were compared in detail using a single common source of semipurified endogenous pyrogen prepared from human monocytes. The characteristics and dynamics of the fever-response curves for each species were examined and their dose-response curves were determined and compared. The fevers displayed by rats were qualitatively similar to those of rabbits, but, typically, they developed and terminated more rapidly than those of rabbits. Rabbits were much more sensitive to the endogenous pyrogen than rats. The threshold dose of pyrogen required to elicit a fever was 5 times lower in the rabbit, and the slope of the rabbit's dose-response curve was 1.5 times steeper than that of the rat. The maximum fevers attainable in rabbits were approximately twice those attainable in rats. It was also shown that the more rapid febrile responses of the rat were not due to the 10-fold smaller mass of the rat; instead, we proposed that this difference was more likely due to a closer diffusional proximity of the pyrogen receptor sites to the circulation in rats. The lower sensitivity of the rat to endogenous pyrogen was attributed to a relative insensitivity of the pyrogen receptor sites in rats in the translation of the endogenous pyrogen stimulus into fever.
Tunneling-thermally activated vacancy diffusion mechanism in quantum crystals
NASA Astrophysics Data System (ADS)
Natsik, V. D.; Smirnov, S. N.
2017-10-01
We consider a quasiparticle model of a vacancy in a quantum crystal, with metastable quantum states localized at the lattice sites in potential wells of the crystal field. It is assumed that the quantum dynamics of such vacancies can be described in the semi-classical approximation, where its spectrum consists of a broad band with several split-off levels. The diffusive movement of the vacancy in the crystal volume is reduced to a sequence of tunneling and thermally activated hops between the lattice cites. The temperature dependence of the vacancy diffusion coefficient shows a monotonic decrease during cooling with a sharp transition from an exponential dependence that is characteristic of a high-temperature thermally activated diffusion, to a non-thermal tunneling process in the region of extremely low temperatures. Similar trends have been recently observed in an experimental study of mass-transfer in the 4He and 3He crystals [V. A. Zhuchkov et al., Low Temp. Phys. 41, 169 (2015); Low Temp. Phys. 42, 1075 (2016)]. This mechanism of vacancy diffusion and its analysis complement the concept of a diffusional flow of a defection-quasiparticle quantum gas with a band energy spectrum proposed by Andreev and Lifshitz [JETP 29, 1107 (1969)] and Andreev [Sov. Phys. Usp. 19, 137 (1976)].
Basic ammonothermal GaN growth in molybdenum capsules
NASA Astrophysics Data System (ADS)
Pimputkar, S.; Speck, J. S.; Nakamura, S.
2016-12-01
Single crystal, bulk gallium nitride (GaN) crystals were grown using the basic ammonothermal method in a high purity growth environment created using a non-hermetically sealed molybdenum (Mo) capsule and compared to growths performed in a similarly designed silver (Ag) capsule and capsule-free René 41 autoclave. Secondary ion mass spectrometry (SIMS) analysis revealed transition metal free (<1×1017 cm-3) GaN crystals. Anomalously low oxygen concentrations ((2-6)×1018 cm-3) were measured in a {0001} seeded crystal boule grown using a Mo capsule, despite higher source material oxygen concentrations ((1-5)×1019 cm-3) suggesting that molybdenum (or molybdenum nitrides) may act to getter oxygen under certain conditions. Total system pressure profiles from growth runs in a Mo capsule system were comparable to those without a capsule, with pressures peaking within 2 days and slowly decaying due to hydrogen diffusional losses. Measured Mo capsule GaN growth rates were comparable to un-optimized growth rates in capsule-free systems and appreciably slower than in Ag-capsule systems. Crystal quality replicated that of the GaN seed crystals for all capsule conditions, with high quality growth occurring on the (0001) Ga-face. Optical absorption and impurity concentration characterization suggests reduced concentrations of hydrogenated gallium vacancies (VGa-Hx).
Dynamics of crowding-induced mixing in phase separated lipid bilayers
Zeno, Wade F.; Johnson, Kaitlin E.; Sasaki, Darryl Y.; ...
2016-10-10
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L o)–liquid disordered (L d) phase separated lipid bilayers when the following particles of increasing size bind to either the L o or L d phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu 2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying themore » size of the bound particle (10–240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L o phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Furthermore, our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.« less
NASA Astrophysics Data System (ADS)
Samsudin, N.; Hashim, Y. Z. H.; Arifin, M. A.; Mel, M.; Salleh, H. Mohd; Sopyan, I.; Hamid, M. Abdul
2018-01-01
Polycaprolactone (PCL) has many advantages for use in biomedical engineering field. In the present work PCL microcarriers of 150-200 μm were fabricated using oil-in-water (o/w) emulsification coupled with solvent evaporation method. The surface charge of PCL microcarrier was then been improved by using ultraviolet/ozone treatment to introduce oxygen functional group. Immobilisation of gelatin onto PCL microspheres using zero-length crosslinker provides a stable protein-support complex, with no diffusional barrier which is ideal for mass processing. The optimum concentration of carboxyl group (COOH) absorbed on the surface was 1495.9 nmol/g and the amount of gelatin immobilized was 1797.3 μg/g on UV/O3 treated microcarriers as compared to the untreated (320 μg/g) microcarriers. The absorption of functional oxygen groups on the surface and the immobilized gelatin was confirmed with Fourier Transformed Infrared spectroscopy and the enhancement of hydrophilicity of the surface was confirmed using water contact angle measurement which decreased (86.93° - 49.34°) after UV/O3 treatment and subsequently after immobilisation of gelatin. The attachment and growth kinetics for human skin fibroblast cell (HSFC) showed that adhesion occurred much more rapidly for gelatin immobilised surface as compared to untreated PCL and UV/O3 PCL microcarrier.
Memory effects in nanoparticle dynamics and transport
NASA Astrophysics Data System (ADS)
Sanghi, Tarun; Bhadauria, Ravi; Aluru, N. R.
2016-10-01
In this work, we use the generalized Langevin equation (GLE) to characterize and understand memory effects in nanoparticle dynamics and transport. Using the GLE formulation, we compute the memory function and investigate its scaling with the mass, shape, and size of the nanoparticle. It is observed that changing the mass of the nanoparticle leads to a rescaling of the memory function with the reduced mass of the system. Further, we show that for different mass nanoparticles it is the initial value of the memory function and not its relaxation time that determines the "memory" or "memoryless" dynamics. The size and the shape of the nanoparticle are found to influence both the functional-form and the initial value of the memory function. For a fixed mass nanoparticle, increasing its size enhances the memory effects. Using GLE simulations we also investigate and highlight the role of memory in nanoparticle dynamics and transport.
Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry
NASA Astrophysics Data System (ADS)
Farnsworth, Paul B.; Spencer, Ross L.
2017-08-01
Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.
NASA Astrophysics Data System (ADS)
Fujiwara, K.; Shibahara, M.
2018-02-01
Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.
Optimal Mass Transport for Shape Matching and Comparison
Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng
2015-01-01
Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265
Transport and Thermohaline Structure in the Western Tropical North Pacific
NASA Astrophysics Data System (ADS)
Schonau, Martha Coakley
Transport and thermohaline structure of water masses and their respective variability are observed and modeled in the western tropical North Pacific using autonomous underwater gliders, Argo climatology and a numerical ocean state estimate. The North Equatorial Current (NEC) advects subtropical and subpolar water masses into the region that are transported equatorward by the Mindanao Current (MC). Continuous glider observations of these two currents from June 2009 to December 2013 provide absolute geostrophic velocity, water mass structure, and transport. The observations are compared to Argo climatology (Roemmich and Gilson, 2009), wind and precipitation to assess forcing, and annual and interannual variability. Observations are assimilated into a regional ocean state estimate (1/6°) to examine regional transport variability and its relationship to the El Nino-Southern Oscillation phenomena (ENSO). The NEC, described in Chapter 1, is observed along 134.3°E, from 8.5°N to 16.5°N. NEC thermocline transport is relatively constant, with a variable subthermocline transport that is distinguished by countercurrents centered at 9.6°N and 13.1°N. Correlation between thermocline and subthermocline transport is strong. Isopycnals with subducted water masses, the North Pacific Tropical Water and North Pacific Intermediate Water, have the greatest fine-scale thermohaline variance. The NEC advects water masses into the MC, described in Chapter 2, that flows equatorward along the coast of Mindanao. Gliders observed the MC at a mean latitude of 8.5°N. The Mindanao Undercurrent (MUC) persists in the subthermocline offshore of the MC, with a net poleward transport of intermediate water typical of South Pacific origin. The variable subthermocline transport in the MC/MUC has an inverse linear relationship with the Nino 3.4 index and strongly impacts total transport variability. For each the MC and NEC, surface salinity and thermocline depth have a strong relationship with ENSO, and there is relationship between the fine-scale and large-scale isopycnal thermohaline structure. In Chapter 3, a numerical ocean state estimates shows strong interannual variability of regional transport with ENSO. Prior to mature ENSO events, transport in each the NEC, MC and North Equatorial Counter Current (NECC) increase. The increase is from meridional gradients in isopycnal depth related to interannual wind anomalies.
Magnetic method for stimulating transport in fluids
Martin, James E.; Solis, Kyle J.
2016-10-18
A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.
NASA Astrophysics Data System (ADS)
Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi
Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.
The Gillette Stadium Experience: A Retrospective Review of Mass Gathering Events From 2010 to 2015.
Goldberg, Scott A; Maggin, Jeremy; Molloy, Michael S; Baker, Olesya; Sarin, Ritu; Kelleher, Michael; Mont, Kevin; Fajana, Adedeji; Goralnick, Eric
2018-03-19
Mass gathering events can substantially impact public safety. Analyzing patient presentation and transport rates at various mass gathering events can help inform staffing models and improve preparedness. A retrospective review of all patients seeking medical attention across a variety of event types at a single venue with a capacity of 68,756 from January 2010 through September 2015. We examined 232 events with a total of 8,260,349 attendees generating 8157 medical contacts. Rates were 10 presentations and 1.6 transports per 10,000 attendees with a non-significant trend towards increased rates in postseason National Football League games. Concerts had significantly higher rates of presentation and transport than all other event types. Presenting concern varied significantly by event type and gender, and transport rate increased predictably with age. For cold weather events, transport rates increased at colder temperatures. Overall, on-site physicians did not impact rates. At a single venue hosting a variety of events across a 6-year period, we demonstrated significant variations in presentation and transport rates. Weather, gender, event type, and age all play important roles. Our analysis, while representative only of our specific venue, may be useful in developing response plans and staffing models for similar mass gathering venues. (Disaster Med Public Health Preparedness. 2018;page 1 of 7).
Model simulation and experiments of flow and mass transport through a nano-material gas filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir
2013-11-01
A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing withmore » experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.« less
23 CFR 810.306 - Reservation of funds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Reservation of funds. 810.306 Section 810.306 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.306...
23 CFR 810.306 - Reservation of funds.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Reservation of funds. 810.306 Section 810.306 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Federal-Aid Urban System Nonhighway Public Mass Transit Projects § 810.306...
Specific Space Transportation Costs to GEO - Past, Present and Future
NASA Astrophysics Data System (ADS)
Koelle, Dietrich E.
2002-01-01
The largest share of space missions is going to the Geosynchronous Orbit (GEO); they have the highest commercial importance. The paper first shows the historic trend of specific transportation costs to GEO from 1963 to 2002. It started out with more than 500 000 /kg(2002-value) and has come down to 36 000 /kg. This reduction looks impressive, however, the reason is NOT improved technology or new techniques but solely the growth of GEO payloads`unit mass. The first GEO satellite in 1963 did have a mass of 36 kg mass (BoL) . This has grown to a weight of 1600 kg (average of all GEO satellites) in the year 2000. Mass in GEO after injection is used here instead of GTO mass since the GTO mass depends on the launch site latitude. The specific cost reduction is only due to the "law-of-scale", valid in the whole transportation business: the larger the payload, the lower the specific transportation cost. The paper shows the actual prices of launch services to GTO by the major launch vehicles. Finally the potential GEO transportation costs of future launch systems are evaluated. What is the potential reduction of specific transportation costs if reusable elements are introduced in future systems ? Examples show that cost reductions up to 75 % seem achievable - compared to actual costs - but only with launch systems optimized according to modern principles of cost engineering. 1. 53rd International Astronautical Congress, World Space Congress Houston 2. First Submission 3. Specific Space Transportation Costs to GEO - Past, Present and Future 4. KOELLE, D.E. 5. IAA.1.1 Launch Vehicles' Cost Engineering and Economic Competitiveness 6. D.E. Koelle; A.E. Goldstein 7. One overhead projector and screen 8. Word file attached 9. KOELLE I have approval to attend the Congress. I am not willing to present this paper at the IAC Public Outreach Program.
Photo-induced Mass Transport through Polymer Networks
NASA Astrophysics Data System (ADS)
Meng, Yuan; Anthamatten, Mitchell
2014-03-01
Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.
Application of remote sensing in estimating evapotranspiration in the Platte river basin
NASA Technical Reports Server (NTRS)
Blad, B. L.; Rosenberg, N. J.
1976-01-01
A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes.
Mars Ascent Vehicle Design for Human Exploration
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Thomas, Dan; Sutherlin, Steven; Stephens, Walter; Rucker, Michelle
2015-01-01
In NASA's evolvable Mars campaign, transportation architectures for human missions to Mars rely on a combination of solar electric propulsion and chemical propulsion systems. Minimizing the Mars ascent vehicle (MAV) mass is critical in reducing the overall lander mass and also eases the requirements placed on the transportation stages. This paper presents the results of a conceptual design study to obtain a minimal MAV configuration, including subsystem designs and mass summaries.
Controlling Mass Transport in Microfluidic Devices
Kuo, Jason S.; Chiu, Daniel T.
2017-01-01
Microfluidic platforms offer exquisite capabilities in controlling mass transport for biological studies. In this review, we focus on recent developments in manipulating chemical concentrations at the microscale. Some techniques prevent or accelerate mixing, whereas others shape the concentration gradients of chemical and biological molecules. We also highlight several in vitro biological studies in the areas of organ engineering, cancer, and blood coagulation that have benefited from accurate control of mass transfer. PMID:21456968
Journal: A Review of Some Tracer-Test Design Equations for ...
Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-
Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic
NASA Astrophysics Data System (ADS)
García-Ibáñez, Maribel I.; Pérez, Fiz F.; Lherminier, Pascale; Zunino, Patricia; Mercier, Herlé; Tréguer, Paul
2018-04-01
We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland-Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002-2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002-2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002-2010, with the increase being consistent with other estimates of ISOW transports along 58-59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002-2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in 2014 compared to the 2002-2010 mean was related to both the increase in the northward transport of Central Waters in the AMOC upper limb and to the increase in the southward flow of Irminger Basin SPMW and ISOW in the AMOC lower limb.
Walter, Donald A.
2008-01-01
The unconsolidated glacial sediments underlying Cape Cod, Massachusetts compose a regional aquifer system that is used both as a source of drinking water and as a disposal site for wastewater; in addition, the discharge of clean ground water from the aquifer system is needed for the maintenance of freshwater and marine ecosystems throughout the region. Because these uses of the aquifer conflict with one another in many areas of the Cape, local and regional planners have begun to develop sustainable wastewater plans that will facilitate the disposal of wastewater while protecting water supplies and improving the health of aquatic ecosystems. To assist local and regional planners in these efforts, the U.S. Geological Survey conducted a 2-year investigation to (1) assist local and regional planners in the evaluation of potential wastewater scenarios, (2) use results and interpretation from these analyses to develop hydrologic concepts transferable throughout the region, and (3) establish and test methods that would be of use in future evaluations. Wastewater-disposal scenarios need to be evaluated in the context of the regional ground-water-flow system. For a given rate of disposal, wastewater from sites at or near a regional ground-water divide is transported in a wider arc of flow directions, flows deeper in the system, and contaminates a larger part of the aquifer than does wastewater discharged from sites farther from the divide. Also, traveltimes of wastewater from sites near a ground-water divide to receptors are longer (as much as several hundred years) than traveltimes from sites farther from the divide. Thus, wastewater disposal at or near a divide will affect a larger part of the aquifer and likely contribute wastewater to more receptors than wastewater disposal farther from a divide; however, longer traveltimes could allow for more attenuation of wastewater-derived nitrate from those sites. Ground-water-flow models and particle tracking can be used to identify advective-transport patterns downgradient from wastewater-disposal sites and estimate traveltimes; however, these tools cannot predict the distribution of mass or concentrations of wastewater constituents, such as nitrate, in the aquifer. Flow-based particle-tracking analyses can be used to estimate mass-loading rates and time-varying concentrations at wells and ecological receptors by the accounting of mass-weighted particles discharging into the receptor of interest. This method requires no additional development beyond the flow model; however, post-modeling analyses are required. In addition, the method is based on the assumption that no mass is lost during transport, an assumption that likely is not valid in many systems. Solute-transport models simulate the subsurface transport of nitrate through the aquifer and predict the distribution of the mass of a solute in the aquifer at different transport times. This method does require additional model development beyond the flow model, but can predict timevarying concentrations at receptors. Estimates of mass-loading rates require minimal post-modeling analyses. Time-varying concentrations and mass-loading rates calculated for wells in eastern Barnstable by the two methods generally were in reasonable agreement. Inherent in the flow-based particle-tracking method is the assumption that mass is conserved along a given flow line and that there is no spreading of mass in the aquifer. Although the solute-transport models also incorporate a system-wide conservation of mass, these models allow for a spreading of mass in the aquifer, and mass is not conserved along a given flow line. As a result, estimates of concentrations and mass loading rates generally were higher in particle-tracking analyses than in solute-transport simulations. Results from the two types of simulations agreed best for wells that receive large amounts of wastewater with short traveltimes (less than 10 years) because insufficient transport
Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir
2012-08-20
Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.
Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R
2013-03-28
An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.
NASA Astrophysics Data System (ADS)
Gunsch, Matthew J.; May, Nathaniel W.; Wen, Miao; Bottenus, Courtney L. H.; Gardner, Daniel J.; VanReken, Timothy M.; Bertman, Steven B.; Hopke, Philip K.; Ault, Andrew P.; Pratt, Kerri A.
2018-03-01
Long-range aerosol transport affects locations hundreds of kilometers from the point of emission, leading to distant particle sources influencing rural environments that have few major local sources. Source apportionment was conducted using real-time aerosol chemistry measurements made in July 2014 at the forested University of Michigan Biological Station near Pellston, Michigan, a site representative of the remote forested Great Lakes region. Size-resolved chemical composition of individual 0.5-2.0 µm particles was measured using an aerosol time-of-flight mass spectrometer (ATOFMS), and non-refractory aerosol mass less than 1 µm (PM1) was measured with a high-resolution aerosol mass spectrometer (HR-AMS). The field site was influenced by air masses transporting Canadian wildfire emissions and urban pollution from Milwaukee and Chicago. During wildfire-influenced periods, 0.5-2.0 µm particles were primarily aged biomass burning particles (88 % by number). These particles were heavily coated with secondary organic aerosol (SOA) formed during transport, with organics (average O/C ratio of 0.8) contributing 89 % of the PM1 mass. During urban-influenced periods, organic carbon, elemental carbon-organic carbon, and aged biomass burning particles were identified, with inorganic secondary species (ammonium, sulfate, and nitrate) contributing 41 % of the PM1 mass, indicative of atmospheric processing. With current models underpredicting organic carbon in this region and biomass burning being the largest combustion contributor to SOA by mass, these results highlight the importance for regional chemical transport models to accurately predict the impact of long-range transported particles on air quality in the upper Midwest, United States, particularly considering increasing intensity and frequency of Canadian wildfires.
NASA Astrophysics Data System (ADS)
Weiner, Andre; Bothe, Dieter
2017-10-01
This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.
23 CFR 810.212 - Use to be without charge.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Use to be without charge. 810.212 Section 810.212 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass... agency under § 810.206 is satisfactory; (b) The public interest will be served thereby; and (c) The...
DOT National Transportation Integrated Search
1953-11-18
Notwithstanding its relative size, the motorbus industry provides an essential service. Good mass transportation makes the centralized big city possible, and good mass transportation is essential to preserve it" say the editors of Time - Life - Fo...
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...
Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise
2006-10-01
We demonstrate noninvasive quantitative imaging of colloid and solute transport at millimeter to decimeter (meso-) scale. Ultraviolet (UV) excited fluorescent solute and colloid tracers were independently measured simultaneously during co-advection through saturated quartz sand. Pulse-input experiments were conducted at constant flow rates and ionic strengths 10(-3), 10(-2) and 10(-1) M NaCl. Tracers were 1.9 microm carboxylate latex microspheres and disodium fluorescein. Spatial moments analysis was used to quantify relative changes in mass distribution of the colloid and solute tracers over time. The solute advected through the sand at a constant velocity proportional to flow rate and was described well by a conservative transport model (CXTFIT). In unfavorable deposition conditions increasing ionic strength produced significant reduction in colloid center of mass transport velocity over time. Velocity trends correlated with the increasing fraction of colloid mass retained along the flowpath. Attachment efficiencies (defined by colloid filtration theory) calculated from nondestructive retained mass data were 0.013 +/- 0.03, 0.09 +/- 0.02, and 0.22 +/- 0.05 at 10(-3), 10(-2), and 10(-1) M ionic strength, respectively, which compared well with previously published data from breakthrough curves and destructive sampling. Mesoscale imaging of colloid mass dynamics can quantify key deposition and transport parameters based on noninvasive, nondestructive, spatially high-resolution data.
Canary Current and North Equatorial Current from an inverse box model
NASA Astrophysics Data System (ADS)
HernáNdez-Guerra, Alonso; Fraile-Nuez, Eugenio; López-Laatzen, Federico; MartíNez, Antonio; Parrilla, Gregorio; VéLez-Belchí, Pedro
2005-12-01
The large-scale Canary Basin circulation is estimated from a box inverse model applied to hydrographic data from a quasi-synoptic survey carried out in September 2003. The cruise consisted of 76 full depth CTD and oxygen stations. Circulation is required to nearly conserve mass and anomalies of salinity and heat within layers bounded by neutral surfaces. It permits advective and diffusive exchange between layers and an adjustment of the Ekman transport and the freshwater flux divergences. The Canary Current at the thermocline layer transports a net mass of 4.7 ± 0.8 Sv southward north of the Canary Islands from the African coast to 19°W. It is divided into a northward circulation at a rate of 1.1 ± 0.5 Sv between the African coast and Lanzarote Island and a southward transport of 5.8 ± 0.6 Sv. It transports North Atlantic Central Water and organic matters advected offshore by the filaments protruding from the upwelling system off northwest Africa. At 24°N, the Canary Current feeds the North Equatorial Current that transports a mixture of North and South Atlantic Central Waters westward. In the intermediate layer a southwestward flow of 1.2 ± 1.1 Sv transports Mediterranean Water to the Subtropical Gyre, though the highest salt flux is transported by a meddy. Oxygen distribution and mass transport suggest a northeastward deep flow of a water mass colder than 2.2°C consisting of diluted Antarctic Bottom Water. The heat and freshwater divergences and the average dianeutral velocity and diffusion between the sections and the African coast are negligible.
Institutional and policy issues in adopting advanced public transportation systems technology
DOT National Transportation Integrated Search
1995-09-01
This project, Institutional and Policy Issues in Adopting Advanced Public Transportation Systems Technologies, aimed to study critical mass transportation issues associated with the implementation of intelligent transportation systems (ITS) in the no...
NASA Astrophysics Data System (ADS)
Haqshenas, S. R.; Ford, I. J.; Saffari, N.
2018-01-01
Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.
Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.
2012-01-01
The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.
Haqshenas, S R; Ford, I J; Saffari, N
2018-01-14
Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.
Multi-species ion transport in ICF relevant conditions
NASA Astrophysics Data System (ADS)
Vold, Erik; Kagan, Grigory; Simakov, Andrei; Molvig, Kim; Yin, Lin; Albright, Brian
2017-10-01
Classical transport theory based on Chapman-Enskog methods provides self consistent approximations for kinetic fluxes of mass, heat and momentum for each ion species in a multi-ion plasma characterized with a small Knudsen number. A numerical method for solving the classic forms of multi-ion transport, self-consistently including heat and species mass fluxes relative to the center of mass, is given in [Kagan-Baalrud, arXiv '16] and similar transport coefficients result from recent derivations [Simakov-Molvig, PoP, '16]. We have implemented a combination of these methods in a standalone test code and in xRage, an adaptive-mesh radiation hydrodynamics code, at LANL. Transport mixing is examined between a DT fuel and a CH capsule shell in ICF conditions. The four ion species develop individual self-similar density profiles under the assumption of P-T equilibrium in 1D and show interesting early time transient pressure and center of mass velocity behavior when P-T equilibrium is not enforced. Some 2D results are explored to better understand the transport mix in combination with convective flow driven by macroscopic fluid instabilities at the fuel-capsule interface. Early transient and some 2D behaviors from the fluid transport are compared to kinetic code results. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.
Chen, Li; Zhang, Ruiyuan; Min, Ting; ...
2018-05-19
For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Zhang, Ruiyuan; Min, Ting
For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less
Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, Joel David; Ticknor, Christopher; Collins, Lee A.
2015-09-16
Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm 3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.
Solids mass flow determination
Macko, Joseph E.
1981-01-01
Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.
Systems and methods for forming solar cells with CuInSe.sub.2 and Cu(In,Ga)Se.sub.2 films
Albin, David S.; Vora, Nirav; Jimenez, Sebastian Caparros; Gutierrez, Joaquin Murillo; Cortezon, Emilio Sanchez; Romero, Manuel
2017-02-28
Systems and methods for forming solar cells with CuInSe.sub.2 and Cu(In,Ga)Se.sub.2 films are provided. In one embodiment, a method comprises: during a first stage (220), performing a mass transport through vapor transport of an indium chloride (InCl.sub.x) vapor (143, 223) and Se vapor (121, 225) to deposit a semiconductor film (212, 232, 252) upon a substrate (114, 210, 230, 250); heating the substrate (114, 210, 230, 250) and the semiconductor film to a desired temperature (112); during a second stage (240) following the first stage (220), performing a mass transport through vapor transport of a copper chloride (CuCl.sub.x) vapor (143, 243) and Se vapor (121, 245) to the semiconductor film (212, 232, 252); and during a third stage (260) following the second stage (240), performing a mass transport through vapor transport of an indium chloride (InCl.sub.x) vapor (143, 263) and Se vapor (121, 265) to the semiconductor film (212, 232, 252).
NASA Technical Reports Server (NTRS)
Johnson, D. R.
1984-01-01
The effects of the vorticity distribution are applied to study planetary boundary layer mass convergence beneath free tropospheric wind maximum. For given forcing by viscous and pressure gradient forces beneath a wind maximum, boundary layer cross stream mass transport is increased by anticyclonic vorticity on the right flank and decreased by cyclonic vorticity on the left flank. Such frictionally forced mass transport induces boundary layer mass convergence beneath the relative wind maximum. This result is related to the empirical rule that the most intense convection and severe weather frequently develop beneath the 500 mb zero relative vorticity isopleth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C., E-mail: ngoldbau@illinois.edu
2016-08-10
Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 andmore » leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.« less
A simple exposure-time theory for all time-nonlocal transport formulations and beyond.
NASA Astrophysics Data System (ADS)
Ginn, T. R.; Schreyer, L. G.
2016-12-01
Anomalous transport or better put, anomalous non-transport, of solutes or flowing water or suspended colloids or bacteria etc. has been the subject of intense analyses with multiple formulations appearing in scientific literature from hydrology to geomorphology to chemical engineering, to environmental microbiology to mathematical physics. Primary focus has recently been on time-nonlocal mass conservation formulations such as multirate mass transfer, fractional-time advection-dispersion, continuous-time random walks, and dual porosity modeling approaches, that employ a convolution with a memory function to reflect respective conceptual models of delays in transport. These approaches are effective or "proxy" ones that do not always distinguish transport from immobilzation delays, are generally without connection to measurable physicochemical properties, and involve variously fractional calculus, inverse Laplace or Fourier transformations, and/or complex stochastic notions including assumptions of stationarity or ergodicity at the observation scale. Here we show a much simpler approach to time-nonlocal (non-)transport that is free of all these things, and is based on expressing the memory function in terms of a rate of mobilization of immobilized mass that is a function of the continguous time immobilized. Our approach treats mass transfer completely independently from the transport process, and it allows specification of actual immobilization mechanisms or delays. To our surprize we found that for all practical purposes any memory function can be expressed this way, including all of those associated with the multi-rate mass transfer approaches, original powerlaw, different truncated powerlaws, fractional-derivative, etc. More intriguing is the fact that the exposure-time approach can be used to construct heretofore unseen memory functions, e.g., forms that generate oscillating tails of breakthrough curves such as may occur in sediment transport, forms for delay-differential equations, and so on. Because the exposure-time approach is both simple and localized, it provides a promising platform for launching forays into non-Markovian and/or nonlinear processes and into upscaling age-dependent multicomponent reaction systems.
23 CFR 810.206 - Review by the State Highway Agency.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...
LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...
A Note on Diffusive Mass Transport.
ERIC Educational Resources Information Center
Haynes, Henry W., Jr.
1986-01-01
Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)
23 CFR 810.206 - Review by the State Highway Agency.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...
23 CFR 810.206 - Review by the State Highway Agency.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...
23 CFR 810.206 - Review by the State Highway Agency.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...
Reactive solute transport in an asymmetric aquifer-aquitard system with scale-dependent dispersion
NASA Astrophysics Data System (ADS)
Zhou, R.; Zhan, H.
2017-12-01
Abstract: The understanding of reactive solute transport in an aquifer-aquitard system is important to study transport behavior in the more complex porous media. When transport properties are asymmetric in the upper and lower aquitards, reactive solute transport in such an aquifer-aquitard system becomes a coupled three domain problem that is more complex than the symmetric case in which the upper and lower aquitards have identical transport properties. Meanwhile, the dispersivity of transport in the aquifer is considered as a linear or exponential function of travel distance due to the heterogeneity of aquifer. This study proposed new transport models to describe reactive solute transport in such an asymmetric aquifer-aquitard system with scale-dependent dispersion. Mathematical models were developed for such problems under the first-type and third-type boundary conditions to analyze the spatial-temporal concentration and mass distribution in the aquifer and aquitards with the help of Laplace transform technique and the de Hoog numerical Laplace inversion method. Breakthrough curves (BTCs) and residence time distribution curves (RTDs) obtained from the models with scale-dependent dispersion, constant dispersion and constant effective dispersivity were compared to reflect the lumped scale-dispersion effect in the aquifer-aquitard system. The newly acquired solutions were then tested extensively against previous analytical and numerical solutions and were proven to be robust and accurate. Furthermore, to study the back diffusion of contaminant mass in aquitards, a zero-contaminant mass concentration boundary condition was imposed on the inlet boundary of the system after a certain time, which is also called the process of water flushing. The diffusion loss alone the aquifer/aquitard interfaces and mass stored ratio change in each of three domains (upper aquitard, aquifer, and lower aquitard) after water flushing provided an insightful and comprehensive analysis of transport behavior with asymmetric distribution of transport properties.
NASA Technical Reports Server (NTRS)
Ackerman, A. S.; Fridlind, A. M.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.
2015-01-01
The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present; these conditions are encountered almost exclusively in the vicinity of deep convection. Part 1 (Fridlind et al., 2015) of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 C, and concludes that the measured ice particle size distributions are broadly consistent with past literature with profiling radar measurements of Z(sub e) and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions, the Airbus measurements generally indicate variable IWC that often exceeds 2 gm (exp -3) with relatively uniform mass median area-equivalent diameter (MMD(sub eq) of 200-300 micrometers. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMD(sub eq) than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of the production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice-multiplication source strength increases and as competition for water vapor increases. Both mass and modal diameter are reduced by entrainment and by increasing aerosol concentrations. Weaker updrafts lead to greater mass and larger modal diameters of vapor-grown ice, the opposite of expectations regarding lofting of larger ice particles in stronger updrafts. While stronger updrafts do loft more dense ice particles produced primarily by raindrop freezing, we find that weaker updrafts allow the warm rain process to reduce competition for diffusional growth of the less dense ice expected to persist in convective outflow.
NASA Astrophysics Data System (ADS)
Ma, N.; Walker, J. S.
2000-01-01
This paper presents a model for the unsteady transport of a dopant during the vertical Bridgman crystal growth process with a planar crystal-melt interface and with an axial magnetic field, and investigates the effects of varying different process variables on the crystal composition. The convective mass transport due to the buoyant convection in the melt produces nonuniformities in the concentration in both the melt and the crystal. The convective mass transport plays an important role for all magnetic field strengths considered. Diffusive mass transport begins to dominate for a magnetic flux density of 4 T and a fast growth rate, producing crystals which have an axial variation of the radially averaged crystal composition approaching that of the diffusion-controlled limit. Dopant distributions for several different combinations of process parameters are presented.
NASA Astrophysics Data System (ADS)
Müller, Stefan; Hoor, Peter; Bozem, Heiko; Gute, Ellen; Vogel, Bärbel; Zahn, Andreas; Bönisch, Harald; Keber, Timo; Krämer, Martina; Rolf, Christian; Riese, Martin; Schlager, Hans; Engel, Andreas
2016-08-01
The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In situ measurements of CO, O3 and N2O during TACTS flight 2 on 30 August 2012 show the irreversible mixing of aged stratospheric air masses with younger (recently transported from the troposphere) ones within the Ex-UTLS. Backward trajectories calculated with the trajectory module of CLaMS indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. These air masses are subsequently transported above potential temperatures Θ = 380 K from the monsoon circulation region into the Ex-UTLS, where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway had affected the chemical composition of the Ex-UTLS during boreal summer and autumn 2012. This leads to an intensification of the tropospheric influence on the extratropical lower stratosphere with PV > 8 pvu within 3 weeks during the TACTS mission. During the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. The study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere affects the change in the chemical composition of the Ex-UTLS over Europe and thus contributes to the flushing of the LMS during summer 2012.
A composite smeared finite element for mass transport in capillary systems and biological tissue.
Kojic, M; Milosevic, M; Simic, V; Koay, E J; Fleming, J B; Nizzero, S; Kojic, N; Ziemys, A; Ferrari, M
2017-09-01
One of the key processes in living organisms is mass transport occurring from blood vessels to tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse direction - transport of waste products of cell metabolism to blood vessels. The mass exchange from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process has been investigated experimentally over centuries, and also in the last decades by the use of computational methods. Due to geometrical and functional complexity and heterogeneity of capillary systems, it is however not feasible to model in silico individual capillaries (including transport through the walls and coupling to tissue) within whole organ models. Hence, there is a need for simplified and robust computational models that address mass transport in capillary-tissue systems. We here introduce a smeared modeling concept for gradient-driven mass transport and formulate a new composite smeared finite element (CSFE). The transport from capillary system is first smeared to continuous mass sources within tissue, under the assumption of uniform concentration within capillaries. Here, the fundamental relation between capillary surface area and volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, we formulate the CSFE which relies on the transformation of the one-dimensional (1D) constitutive relations (for transport within capillaries) into the continuum form expressed by Darcy's and diffusion tensors. The introduced CSFE is composed of two volumetric parts - capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and concentration for each of the two domains. The domains are coupled by connectivity elements at each node. The fictitious connectivity elements take into account the surface area of capillary walls which belongs to each node, as well as the wall material properties (permeability and partitioning). The overall FE model contains geometrical and material characteristics of the entire capillary-tissue system, with physiologically measurable parameters assigned to each FE node within the model. The smeared concept is implemented into our implicit-iterative FE scheme and into FE package PAK. The first three examples illustrate accuracy of the CSFE element, while the liver and pancreas models demonstrate robustness of the introduced methodology and its applicability to real physiological conditions.
Mass fluxes in the Canary Basin (eastern boundary of the North Atlantic subtropical gyre)
NASA Astrophysics Data System (ADS)
Burgoa, N.; Machin, F.; Marrero-Díaz, Á.; Rodríguez-Santana, Á.; Martínez-Marrero, A.
2017-12-01
The circulation patterns in the Canary Basin are examined with hydrographic data from two cruises carried out in 2002 and 2003 in the eastern boundary of the North Atlantic subtropical gyre (21-27.5ºN, 17.5-26ºW). These cruises were part of the COCA Project (Coastal-Ocean Carbon Exchange in the Canary Region). First we estimate the geostrophic flow within a closed box divided into 12 layers of neutral density surfaces using the thermal wind equation. The geostrophic velocities are initially referenced to a selected neutral surface previously analyzed in deep. Then, the divergence and the convergence of the flow are analyzed in the closed water volume considering the Ekman transport in the surface of this whole region. The accumulated mass transport along the perimeter of the box is estimated with the aim to study transport imbalances in the different water masses. In addition, variables like the anomalies in the transport of the salt and heat are also considered. In general, mass transport results show that more than 50% of this transport takes place in central waters and around 25% in intermediate waters. In the first cruise carried out in late summer, the circulation of the shallowest layers goes into the box along the north and south transects with values which can arrive to 2 Sv and 1 Sv respectively and it flows westward with a maximum value of 2 Sv. At intermediate levels the mass transport changes its direction going out to the north with 0.5 Sv. On the other hand, in the second cruise carried out in late spring, the transport in the shallowest layers also gets in the box through the north transect, but it goes out along the west and south transects with values which can arrive to 1 Sv and 2 Sv, respectively. At intermediate levels the transports are similar to those already described for the summer cruise. Finally, an inverse box model is applied to both datasets to obtain a solution consistent with both the thermal wind equation and with the mass and other properties conservation within the closed volume. AcknowledgmentsThis work was supported by the project FLUXES (CTM2015-69392-C3-3-R) funded by the Spanish National Research Program.
Source Apportionment of VOCs in Edmonton, Alberta
NASA Astrophysics Data System (ADS)
McCarthy, M. C.; Brown, S. G.; Aklilu, Y.; Lyder, D. A.
2012-12-01
Regional emissions at Edmonton, Alberta, are complex, containing emissions from (1) transportation sources, such as cars, trucks, buses, and rail; (2) industrial sources, such as petroleum refining, light manufacturing, and fugitive emissions from holding tanks or petroleum terminals; and (3) miscellaneous sources, such as biogenic emissions and natural gas use and processing. From 2003 to 2009, whole air samples were collected at two sites in Edmonton and analyzed for over 77 volatile organic compounds (VOCs). VOCs were sampled in the downtown area (Central) and the industrial area on the eastern side of the city (East). Concentrations of most VOCs were highest at the East site. The positive matrix factorization (PMF) receptor model was used to apportion ambient concentration measurements of VOCs into eleven factors, which were associated with emissions source categories. Factors of VOCs identified in the final eleven-factor solution include transportation sources (both gasoline and diesel vehicles), industrial sources, a biogenic source, and a natural-gas-related source. Transportation sources accounted for more mass at the Central site than at the East site; this was expected because Central is in a core urban area where transportation emissions are concentrated. Transportation sources accounted for nearly half of the VOC mass at the Central site, but only 6% of the mass at the East site. Encouragingly, mass from transportation sources has declined by about 4% a year in this area; this trend is similar to the decline found throughout the United States, and is likely due to fleet turnover as older, more highly polluting cars are replaced with newer, cleaner cars. In contrast, industrial sources accounted for ten times more VOC mass at the East site than at the Central site and were responsible for most of the total VOC mass observed at the East site. Of the six industrial factors identified at the East site, four were linked to petrochemical industry production and storage. The two largest contributors to VOC mass at the East site were associated with fugitive emissions of volatile species (butanes, pentanes, hexane, and cyclohexane); together, these two factors accounted for more than 50% of the mass at the East site and less than 2% of the mass at the Central site. Natural-gas-related emissions accounted for 10% to 20% of the mass at both sites. Biogenic emissions and VOCs associated with well-mixed global background were less than 10% of the VOC mass at the Central site and less than 3% of the mass at the East site. Controllable emissions sources account for the bulk of the identified VOC mass. Efforts to reduce ozone or particulate matter precursors or exposure to toxic pollutants can now be directed to those sources most important to the Edmonton area.
Crystal growth from the vapor phase experiment MA-085
NASA Technical Reports Server (NTRS)
Wiedemeir, H.; Sadeek, H.; Klaessig, F. C.; Norek, M.
1976-01-01
Three vapor transport experiments on multicomponent systems were performed during the Apollo Soyuz mission to determine the effects of microgravity forces on crystal morphology and mass transport rates. The mixed systems used germanium selenide, tellurium, germanium tetraiodide (transport agent), germanium monosulfide, germanium tetrachloride (transport agent), and argon (inert atmosphere). The materials were enclosed in evacuated sealed ampoules of fused silica and were transported in a temperature gradient of the multipurpose electric furnace onboard the Apollo Soyuz spacecraft. Preliminary evaluation of 2 systems shows improved quality of space grown crystals in terms of growth morphology and bulk perfection. This conclusion is based on a direct comparison of space grown and ground based crystals by means of X-ray diffraction, microscopic, and chemical etching techniques. The observation of greater mass transport rates than predicted for a microgravity environment by existing vapor transport models indicates the existence of nongravity caused transport effects in a reactive solid/gas phase system.
What controls the mass transport by mode-2 internal solitary-like waves?
NASA Astrophysics Data System (ADS)
Deepwell, David; Stastna, Marek
2016-04-01
Horizontally propagating internal waves are a regular occurrence in the coastal ocean. Their most commonly observed vertical structure is mode-1 in which isopycnals rise and fall in concert at all depths. Second mode waves, where isopycnals expand from and contract toward the pycnocline centre, have been found in recent observations to occur more frequently than previously thought. For the more common convex configuration, these waves mix the pycnocline, and under certain conditions form recirculating cores which efficiently transport material. In the laboratory, mode-2 waves are easily formed by releasing a mixed region into an ambient stratification. Using high resolution, three dimensional, direct numerical simulations of a laboratory configuration we describe the mass transport efficiency of mode-2 waves under a variety of different parameter regimes and initializations. We identify pycnocline configurations for which transport is especially efficient, and explore the structure of recirculating cores during their formation, propagation and disintegration and its implications on mass transport.
Direct simulation of groundwater age
Goode, Daniel J.
1996-01-01
A new method is proposed to simulate groundwater age directly, by use of an advection-dispersion transport equation with a distributed zero-order source of unit (1) strength, corresponding to the rate of aging. The dependent variable in the governing equation is the mean age, a mass-weighted average age. The governing equation is derived from residence-time-distribution concepts for the case of steady flow. For the more general case of transient flow, a transient governing equation for age is derived from mass-conservation principles applied to conceptual “age mass.” The age mass is the product of the water mass and its age, and age mass is assumed to be conserved during mixing. Boundary conditions include zero age mass flux across all noflow and inflow boundaries and no age mass dispersive flux across outflow boundaries. For transient-flow conditions, the initial distribution of age must be known. The solution of the governing transport equation yields the spatial distribution of the mean groundwater age and includes diffusion, dispersion, mixing, and exchange processes that typically are considered only through tracer-specific solute transport simulation. Traditional methods have relied on advective transport to predict point values of groundwater travel time and age. The proposed method retains the simplicity and tracer-independence of advection-only models, but incorporates the effects of dispersion and mixing on volume-averaged age. Example simulations of age in two idealized regional aquifer systems, one homogeneous and the other layered, demonstrate the agreement between the proposed method and traditional particle-tracking approaches and illustrate use of the proposed method to determine the effects of diffusion, dispersion, and mixing on groundwater age.
NASA Astrophysics Data System (ADS)
Behm, R. J.; Jusys, Z.
In this contribution we demonstrate the potential of model studies for the understanding of electrocatalytic reactions in low-temperature polymer electrolyte fuel cells (PEFCs) operated by H 2-rich anode feed gas, in particular of the role of temperature effects and catalyst poisoning. Reviewing previous work from our laboratory and, for better comparison, focussing on carbon-supported Pt catalysts, the important role of using fuel cell relevant reaction and mass transport conditions will be outlined. The latter conditions include continuous reaction, elevated temperatures, realistic supported catalyst materials and controlled mass transport. The data show the importance of combining electrochemical techniques such as rotating disc electrode (RDE), wall-jet and flow cell measurements, and on-line differential electrochemical mass spectrometry (DEMS) under controlled mass transport conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwo, J.P.; Jardine, P.M.; Yeh, G.T.
Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoreticalmore » background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices.« less
Assessment of applications of transport models on regional scale solute transport
NASA Astrophysics Data System (ADS)
Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.
2017-12-01
Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
NASA Astrophysics Data System (ADS)
Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey
2017-02-01
The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor:
Enhanced methanol utilization in direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2001-10-02
The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.
Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery.
Macha, Innocent J; Cazalbou, Sophie; Ben-Nissan, Besim; Harvey, Kate L; Milthorpe, Bruce
2015-01-20
Hydrothermally converted coralline hydroxyapatite (HAp) particles loaded with medically active substances were used to develop polylactic acid (PLA) thin film composites for slow drug delivery systems. The effects of HAp particles within PLA matrix on the gentamicin (GM) release and release kinetics were studied. The gentamicin release kinetics seemed to follow Power law Korsmeyer Peppas model with mainly diffusional process with a number of different drug transport mechanisms. Statistical analysis shows very significant difference on the release of gentamicin between GM containing PLA (PLAGM) and GM containing HAp microspheres within PLA matrix (PLAHApGM) devices, which PLAHApGM displays lower release rates. The use of HAp particles improved drug stabilization and higher drug encapsulation efficiency of the carrier. HAp is also the source of Ca2+ for the regeneration and repair of diseased bone tissue. The release profiles, exhibited a steady state release rate with significant antimicrobial activity against Staphylococcus aureus (S. aureus) (SH1000) even at high concentration of bacteria. The devices also indicated significant ability to control the growth of bacterial even after four weeks of drug release. Clinical release profiles can be easily tuned from drug-HAp physicochemical interactions and degradation kinetics of polymer matrix. The developed systems could be applied to prevent microbial adhesion to medical implant surfaces and to treat infections mainly caused by S. aureus in surgery.
Marine Structure Derived Calcium Phosphate–Polymer Biocomposites for Local Antibiotic Delivery
Macha, Innocent J.; Cazalbou, Sophie; Ben-Nissan, Besim; Harvey, Kate L.; Milthorpe, Bruce
2015-01-01
Hydrothermally converted coralline hydroxyapatite (HAp) particles loaded with medically active substances were used to develop polylactic acid (PLA) thin film composites for slow drug delivery systems. The effects of HAp particles within PLA matrix on the gentamicin (GM) release and release kinetics were studied. The gentamicin release kinetics seemed to follow Power law Korsmeyer Peppas model with mainly diffusional process with a number of different drug transport mechanisms. Statistical analysis shows very significant difference on the release of gentamicin between GM containing PLA (PLAGM) and GM containing HAp microspheres within PLA matrix (PLAHApGM) devices, which PLAHApGM displays lower release rates. The use of HAp particles improved drug stabilization and higher drug encapsulation efficiency of the carrier. HAp is also the source of Ca2+ for the regeneration and repair of diseased bone tissue. The release profiles, exhibited a steady state release rate with significant antimicrobial activity against Staphylococcus aureus (S. aureus) (SH1000) even at high concentration of bacteria. The devices also indicated significant ability to control the growth of bacterial even after four weeks of drug release. Clinical release profiles can be easily tuned from drug-HAp physicochemical interactions and degradation kinetics of polymer matrix. The developed systems could be applied to prevent microbial adhesion to medical implant surfaces and to treat infections mainly caused by S. aureus in surgery. PMID:25608725
Studies of Flame Structure in Microgravity
NASA Technical Reports Server (NTRS)
Law, C. K.; Sung, C. J.; Zhu, D. L.
1997-01-01
The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.
Strutwolf, Jörg; Arrigan, Damien W M
2010-10-01
Micropore membranes have been used to form arrays of microinterfaces between immiscible electrolyte solutions (µITIES) as a basis for the sensing of non-redox-active ions. Implementation of stripping voltammetry as a sensing method at these arrays of µITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetric sensing at the µITIES array. In this scenario, the diffusion of ions in both the aqueous and the organic phases contributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the microinterface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transfer during the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed, which together improve the stripping voltammetric signal and provide an improvement in the detection limit.
Molecular motors interacting with their own tracks
NASA Astrophysics Data System (ADS)
Artyomov, Max N.; Morozov, Alexander Yu.; Kolomeisky, Anatoly B.
2008-04-01
Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state “burnt-bridge” models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular motor is slowed down. There is a change in the direction of the molecular motor’s motion for some range of parameters. The molecular motor also experiences nonmonotonic fluctuations due to the action of two opposing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms of the effective driving forces and transitions between different diffusional regimes.
DOT National Transportation Integrated Search
1981-10-01
In 1979, the Transportation Systems Center (TSC), under sponsorship of the Urban Mass Transportation Administration (UMTA), began a program of research directed toward improving the understanding of the role of transportation in society, in particula...
23 CFR 810.104 - Applicability of other provisions.
Code of Federal Regulations, 2010 CFR
2010-04-01
....104 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway... carpools and vanpools. (3) Fringe and transportation corridor parking facilities or portions thereof which...
Evaluation of the Public Transportation Network : Diffusion of Innovative Transit Practices
DOT National Transportation Integrated Search
1988-08-01
This report presents an evaluation of the Public Transportation Network (PTN), a technical assistance program established by the Urban Mass Transportation Administration in 1983 to help public transportation agencies adopt better ways of managing and...
Transportation Improvement Program of the Mid-Ohio Regional Planning Commission
DOT National Transportation Integrated Search
1996-06-20
The MORPC Transportation Improvement program (TIP) is a staged, multi-year schedule of regionally significant transportation improvements in the Columbus area. The Federal-aid Highway Act of 1962 and the federal Urban Mass Transportation Act of 1964 ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... (BASE) Program for Public Transportation Systems AGENCY: Transportation Security Administration, DHS. ACTION: 60-day Notice. SUMMARY: The Transportation Security Administration (TSA) invites public comment... under contract with a public transportation agency. \\1\\ TSA, ``Transportation Sector-Specific Plan Mass...
Mass balance of a highly active rock glacier during the period 1954 and 2016
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor; Rieckh, Matthias
2017-04-01
Active rock glaciers are creep phenomena of permafrost in high-relief terrain moving slowly downwards and are often characterised by distinct flow structures with ridges and furrows. Active rock glaciers consist of ice and rock material. The ice component might be either congelation (refreezing of liquid water) or sedimentary ('glacier') ice whereas the rock material might be either of periglacial or glacial origin. The formation period of rock glaciers lasts for centuries to millennia as judged from relative or absolute dating approaches. The input of ice and debris onto the rock glacier mass transport system over such long periods might change substantially over time. Long-term monitoring of mass transport, mass changes and nourishment processes of rock glaciers are rare. In this study we analysed on a decadal-scale mass transport (based on photogrammetric and geodetic data; series 1969-2016), mass changes (geodetically-based mass balance quantification; series 1954-2012), and mass input (based on optical data from an automatic digital camera; series 2006-2016) onto the Hinteres Langtal Rock Glacier. This rock glacier is 900 m long, up to 300 m wide, covers an area of 0.17 km2 and is one of the most active ones in the Eastern European Alps. Mass transport rates at the surface indicate relatively low mean annual surface velocities until the beginning of this millennium. A first peak in the horizontal surface velocity was reached in 2003/04 followed by a period of deceleration until 2007/08. Afterwards the rates increased again substantially from year to year with maximum values in 2014/15 (exceeding 6 m/a). This increase in surface velocities during the last decades was accompanied by crevasse formation and landslide activities at its front. Mass changes show for all six analysed periods between 1954 and 2012 a clear negative surface elevation change with mean annual values ranging from -0.016 to -0.058 m/a. This implies a total volume decrease of -435,895 m3 (averaging to -7515 m3/a) over the 58-year period at the rock glacier system. The only area of substantial surface elevation gain was during all periods the rock glacier front indicating a rock glacier advance. Mass input onto the rock glacier transport system was assessed analysing 2044 terrestrial images taken automatically between September 2006 and August 2016 from the main rooting zone of the rock glacier. Results indicate that neither snow and ice nor rock material have been transported in large quantities to the rock glacier system during the 10 year monitoring period. Notable mass movement events have been detected only six times. Perennial snow patches in the rooting zone of the rock glacier only survived on average every second summer. We conclude that the rates of rock glacier mass transport and volumetric losses of the rock glacier are far higher than debris and ice input. This rock glacier is clearly in a state of detachment from its nourishment area and prone to starvation which will eventually lead to rock glacier inactivation. This is a feasible fate for many currently active rock glaciers in the European Alps.
NASA Astrophysics Data System (ADS)
Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe
2017-09-01
In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.
NASA Astrophysics Data System (ADS)
Kivel, Niko; Potthast, Heiko-Dirk; Günther-Leopold, Ines; Vanhaecke, Frank; Günther, Detlef
The interface between the atmospheric pressure plasma ion source and the high vacuum mass spectrometer is a crucial part of an inductively coupled plasma-mass spectrometer. It influences the efficiency of the mass transfer into the mass spectrometer, it also contributes to the formation of interfering ions and to mass discrimination. This region was simulated using the Direct Simulation Monte Carlo method with respect to the formation of shock waves, mass transport and mass discrimination. The modeling results for shock waves and mass transport are in overall agreement with the literature. Insights into the effects and geometrical features causing mass discrimination could be gained. The overall observed collision based mass discrimination is lower than expected from measurements on real instruments, supporting the assumptions that inter-particle collisions play a minor role in this context published earlier. A full representation of the study, for two selected geometries, is given in form of a movie as supplementary data.
DOT National Transportation Integrated Search
1977-01-10
The purpose of the report is to present and document the detailed features of the uniform system of accounts and records and reporting system required by Section 15 of the Urban Mass Transportation Act of 1964, as amended. This report is presented in...
DOT National Transportation Integrated Search
1977-01-10
The purpose of the report is to present and document the detailed features of the uniform system of accounts and records and reporting system required by Section 15 of the Urban Mass Transportation Act of 1964, as amended. Volume 3 contains illustrat...
Satellite measurements of aerosol mass and transport
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.; Mahoney, R. L.
1984-01-01
The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wind vectors measured with rawins.
Abin-Fuentes, Andres; Leung, James C.; Mohamed, Magdy El-Said; Wang, Daniel IC; Prather, Kristala LJ
2014-01-01
A mechanistic analysis of the various mass transport and kinetic steps in the microbial desulfurization of dibenzothiophene (DBT) by Rhodococcus erythropolis IGTS8 in a model biphasic (oil-water), small-scale system was performed. The biocatalyst was distributed into three populations, free cells in the aqueous phase, cell aggregates and oil-adhered cells, and the fraction of cells in each population was measured. The power input per volume (P/V) and the impeller tip speed (vtip) were identified as key operating parameters in determining whether the system is mass transport controlled or kinetically controlled. Oil-water DBT mass transport was found to not be limiting under the conditions tested. Experimental results at both the 100 mL and 4L (bioreactor) scales suggest that agitation leading to P/V greater than 10,000 W/ m3 and/or vtip greater than 0.67 m/s is sufficient to overcome the major mass transport limitation in the system, which was the diffusion of DBT within the biocatalyst aggregates. PMID:24284557
Collins, R; Paul, Z; Reynolds, D B; Short, R F; Wasuwanich, S
1997-01-01
Chronic diseases and pathological medical conditions requiring the administration of longterm pharmaceutical dosages have in the past been treated by oral administrations of tablets, pills and capsules or through the use of creams and ointments, suppositories, aerosols, and injectables. Such forms of drug delivery, which are still currently used today, provide a prompt release of the drug, but with significant fluctuations in the drug levels within various regions of the body. Repeated administrations of the drug are often needed, at rather precise intervals of time, in order to maintain these levels within a relatively narrow therapeutic range as a means of assuring effectiveness at the low end and of minimizing adverse effects at the higher end of the fluctuation spectrum. Recent technical advances now permit one to control the rate of drug delivery. The required therapeutic levels may thus be maintained over long periods of months and years through implanted rate-controlled drug release capsules. Two such novel drug delivery systems currently employed are implanted erodible polymeric and ceramic capsules. Mathematical modeling and computer simulations can be very effective in improving and optimizing the performance of the self-regulating release of therapeutic drugs into specific regions of the body. Further development is needed for the optimal design of such capsules. It is in this area, in particular, that a review will be presented of the mathematical modeling techniques susceptible to refine the development of a reliable tool for designing and predicting the resulting pharmaceutical dosages as a function of time and space. Of primary importance in such models are the time-varying effective permeability of the capsule to the various molecules composing the drug, the effective solubility and diffusion coefficients of the drug and its metabolites in the surrounding tissues and fluids and, finally, the uptake of the drug at the target organ. Mathematical models are presented for the diffusional release of a solute from an erodible matrix in which the initial drug loading c0 is greater than the solubility limit cs. An inward moving diffusional front separates the reservoir (unextracted region) containing the undissolved drug from the partially extracted region. The mathematical formulation of such moving boundary problems has wide application to heat transfer with melting phase transitions and diffusion-controlled growth of particles, in addition to our topic of controlled-release drug delivery. In spite of this diversity of applications, only a very few mathematical descriptions have been published for the analysis of release kinetics of a dispersed solute from polymeric or ceramic matrices. In these rare instances, perfect sink conditions are assumed, while matrix swelling, concentration-dependence of the solute diffusion coefficient and the external mass transfer resistance have been largely neglected. The ultimate goal of such an investigation is to provide a reliable design tool for the fabrication of specialized implantable capsule/drug combinations which will deliver pre-specified and reproducible dosages over a wide spectrum of conditions and required durations of therapeutic treatment. Such a mathematical/computational tool can also prove effective in the prediction of suitable dosages for other drugs of differing chemical and molecular properties which have not been subjected to time-consuming animal laboratory testing. Finally, such models may permit more realistic scaling of the required dosages of therapeutic drug for variations in diverse factors such as body weight or organ size and capacity of the patient (clinical medicine) or animal (veterinary medicine for farm animals). Additional applications of controlled-release drug delivery for insecticide and pesticide use in agriculture, and the control of pollution in lakes, rivers, marshes, etc. in which a pre-programmed dose-time schedule is necessary, further
On mass transport in magmatic porosity waves
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.; Rudge, J. F.
2017-12-01
Geochemical analyses of oceanic basalts indicate the mantle is lithologically heterogenous and subject to partial melting. Here we show that porosity waves-which arise naturally in models of buoyancy driven melt migration-transport mass and preserve geochemical signatures, at least partially. Prior studies of tracer transport in one dimensional porosity waves conclude that porosity waves do not transfer mass. However, it is well known that one-dimensional porosity waves are unstable in two and three dimensions and break up into sets of cylindrical or spherical porosity waves. We show that tracer transport in higher dimensional porosity waves is dramatically different than in one dimension. Lateral melt focusing into these high porosity regions leads to melt recirculating in the center of the wave. Melt focusing and recirculation are not resolvable in one dimension where no sustained transport is observed in numerical experiments of solitary porosity waves. In two and three dimensions, the recirculating melt is separated from the background melt-flow field by a circular or spherical dividing streamline and transported with the phase velocity of the porosity wave. The amount of melt focusing that occurs within any given porosity wave, and thus, the extent of the dividing streamline, and resultant volume of transported melt is extremely sensitive to the selection of porosity-permeability and porosity-rheology relationships. Therefore, we present a regime diagram spanning common parameterizations that illustrates the minimum amplitude and phase velocity required for a solitary porosity wave to transport mass as a function of material properties and common parameters used in magma dynamics and mid-ocean ridge models. The realization that solitary waves are capable of sustaining melt transport may require the reinterpretation of previous studies. For example, transport in porosity waves may allow melts that originated from the partial melting of fertile heterogeneities to retain their incompatible trace element signatures as they rise through the mantle. Porosity waves may also provide a mechanism for mixing melts derived from heterogeneities with ambient melts derived from different depths in the mantle.
Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.
2014-01-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804
Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M
2014-05-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
NASA Astrophysics Data System (ADS)
Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.
2014-05-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
2013-08-06
of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated
NASA Astrophysics Data System (ADS)
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-03-01
A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Lee, M. A.; Klecker, B.; Ipavich, F. M.
1992-01-01
Evidence is presented for focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection. This evidence was obtained with the University of Maryland/Max-Planck-Institute experiment on the ISEE-3 spacecraft during the decay phase of the June 6, 1979, solar particle event. During the early portion of the decay phase of this event, interplanetary magnetic field lines were apparently draped around a coronal mass ejection, leading to a small focusing length on the western flank where ISEE 3 was located. A period of very slow decrease of particle intensity was observed, along with large sunward anisotropy in the solar wind frame, which is inconsistent with predictions of the standard Fokker-Planck equation models for diffusive transport. It was found possible to fit the observations, assuming that focused transport dominates and that the particle pitch angle scattering is isotropic.
Palombo, Marco; Gentili, Silvia; Bozzali, Marco; Macaluso, Emiliano; Capuani, Silvia
2015-05-01
In this MRI study, diffusional kurtosis imaging (DKI) and T2 * multiecho relaxometry were measured from the white matter (WM) of human brains and correlated with each other, with the aim of investigating the influence of magnetic-susceptibility (Δχ (H2O-TISSUE) ) on the contrast. We focused our in vivo analysis on assessing the dependence of mean, axial, and radial kurtosis (MK, K‖ , K⊥ ), as well as DTI indices on Δχ (H2O-TISSUE) (quantified by T2 *) between extracellular water and WM tissue molecules. Moreover, Monte Carlo (MC) simulations were used to elucidate experimental data. A significant positive correlation was observed between K⊥ , MK and R2 * = 1/T2 *, suggesting that Δχ (H2O-TISSUE) could be a source of DKI contrast. In this view, K⊥ and MK-map contrasts in human WM would not just be due to different restricted diffusion processes of compartmentalized water but also to local Δχ (H2O-TISSUE) . However, MC simulations show a strong dependence on microstructure rearrangement and a feeble dependence on Δχ (H2O-TISSUE) of DKI signal. Our results suggests a concomitant and complementary existence of multi-compartmentalized diffusion process and Δχ (H2O-TISSUE) in DKI contrast that might explain why kurtosis contrast is more sensitive than DTI in discriminating between different tissues. However, more realistic numerical simulations are needed to confirm this statement. © 2014 Wiley Periodicals, Inc.
Ultrafast rotation in an amphidynamic crystalline metal organic framework
Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; ...
2017-12-26
Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less
Towards improved artificial lungs through biocatalysis.
Kaar, Joel L; Oh, Heung-Il; Russell, Alan J; Federspiel, William J
2007-07-01
Inefficient CO(2) removal due to limited diffusion represents a significant barrier in the development of artificial lungs and respiratory assist devices, which use hollow fiber membranes (HFMs) as the blood-gas interface and can require large blood-contacting membrane area. To offset the underlying diffusional challenge, "bioactive" HFMs that facilitate CO(2) diffusion were prepared via covalent immobilization of carbonic anhydrase (CA), an enzyme which catalyzes the conversion of bicarbonate in blood to CO(2), onto the surface of plasma-modified conventional HFMs. This study examines the impact of enzyme attachment on the diffusional properties and the rate of CO(2) removal of the bioactive membranes. Plasma deposition of surface reactive hydroxyls, to which CA could be attached, did not change gas permeance of the HFMs or generate membrane defects, as determined by scanning electron microscopy, when low plasma discharge power and short exposure times were employed. Cyanogen bromide activation of the surface hydroxyls and subsequent modification with CA resulted in near monolayer enzyme coverage (88%) on the membrane. The effect of increased plasma discharge power and exposure time on enzyme loading was negligible while gas permeance studies showed enzyme attachment did not impede CO(2) or O(2) diffusion. Furthermore, when employed in a model respiratory assist device, the bioactive membranes improved CO(2) removal rates by as much as 75% from physiological bicarbonate solutions with no enzyme leaching. These results demonstrate the potential of bioactive HFMs with immobilized CA to enhance CO(2) exchange in respiratory devices.
Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca
2017-01-05
The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO 4 - ) and dichromate (Cr 2 O 7 2- ) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultrafast rotation in an amphidynamic crystalline metal organic framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.
Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less
Inertial ratchet driven by colored Lévy noise: current inversion and mass separation
NASA Astrophysics Data System (ADS)
Lü, Yan; Lu, Hong
2018-05-01
Transport of underdamped particles subjected to colored Lévy noise in an asymmetric periodic potential is investigated. Besides the competition between the long jumps and the noise correlation that leads to current inversion, the inertial effect is another important factor that can influence the transport behavior. Note that the critical correlation time at which the current inversion occurs depends on mass. This leads to the current reversals on varying mass and implies mass separation even in the absence of whatever additional load force. Additionally, we find that the region of allowed correlation times for mass separation moves toward a smaller value of with increasing Lévy index or noise intensity.
DOT National Transportation Integrated Search
1981-10-01
In 1979, the Transportation Systems Center (TSC), under sponsorship of the Urban Mass Transportation Administration (UMTA), began a program of research directed toward improving the understanding of the role of transportation in society, in particula...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Administration. (5) The National Highway Traffic Safety Administration. (6) The Urban Mass Transportation... 49 Transportation 1 2010-10-01 2010-10-01 false Definitions. 98.2 Section 98.2 Transportation Office of the Secretary of Transportation ENFORCEMENT OF RESTRICTIONS ON POST-EMPLOYMENT ACTIVITIES...
Directory of Transportation Education.
ERIC Educational Resources Information Center
Department of Transportation, Washington, DC.
This directory lists institutions of higher education that offer degree and non-degree programs in various transportation fields and modes, including aviation, highway, urban mass transportation, railroad, water transport, pipeline, intermodal, and environmental and consumer education. The book catalogs courses and degrees offered, names of…
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Wang, Mengyi; Kang, Qinjun
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
Chen, Li; Wang, Mengyi; Kang, Qinjun; ...
2018-04-26
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan
2018-06-01
Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.
[Phylogeny of gas exchange systems].
Jürgens, K D; Gros, G
2002-04-01
Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is found in the respiration via the skin, which is of significance in some amphibians, but is limited by the thickness of the skin that constitutes a substantial diffusion path for O2 and CO2. The thick skin, on the other hand, provides mechanical protection as well as flexibility for the animals' body and helps avoid massive water loss via the body surface. The gills of fishes, in contrast, exhibit rather short diffusion distances, are located in a mechanically protected space, and the problem of water loss does not exist. The flows of blood and water occur in opposite direction (countercurrent flow) and this situation makes an arterial PO2 approaching the environmental PO2 possible. A major disadvantage is constituted by the environmental medium since water contains little O2 compared to air and, to compensate this, much energy is expended to maintain a high flow rate of water through the gills. In the mammalian lung ("pool system"), the presence of a dead space and the rhythmic ventilation that replaces only a small fraction of the gas volume of the lung per breath, are responsible for an arterial PO2 (2/3 of the atmospheric PO2) that cannot reach the expiratory PO2. However, an advantage of this feature is the constantly high alveolar and arterial PCO2, which provides a highly effective H(+) buffer system in the entire body. The apparent disadvantage of the mammalian lung is avoided by the avian lung, which uses an extended system of airways to establish continuous equilibration of a part of the capillary blood with fresh air (cross current system), during inspiration as well as during expiration. In this system, arterial PO2 can significantly exceed expiratory PO2. A disadvantage here is the enormous amount of space taken up by the avian lung, in animals of 1 kg body weight three times as much as taken up by the mammalian lung. All respiratory exchange systems considered here exhibit high degrees of optimization - yet follow highly diverse construction principles. There is no such thing as an ideal gas exchange system. The system that has evolved in each species depends to an impressive extent on environmental conditions, on body build and size, on the animal's patterns of movement and on its energy consumption.
Track Geometry Measurement System Software Manual
DOT National Transportation Integrated Search
1978-04-01
The Track Geometry Measurement System (TGMS) was developed through the United States Department of Transportation's, Urban Mass Transportation Administration by the Transportation Systems Center in Cambridge, Massachusetts under its Test and Evaluati...
2010-01-01
Background The finite volume solver Fluent (Lebanon, NH, USA) is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. Methods An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) schemes. The fluid has a diffusivity of 3.125 × 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. Results The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140% and 116% was demonstrated between the experimental results and those obtained from the First-Order Upwind and Power Law schemes, respectively. However, both the Second-Order upwind and QUICK schemes accurately predict species concentration under high Peclet number, convection-dominated flow conditions. Conclusion Convection-diffusion discretisation scheme selection has a strong influence on resultant species concentration fields, as determined by CFD. Furthermore, either the Second-Order or QUICK discretisation schemes should be implemented when numerically modelling convection-dominated mass-transport conditions. Finally, care should be taken not to utilize computationally inexpensive discretisation schemes at the cost of accuracy in resultant species concentration. PMID:20642816
NASA Technical Reports Server (NTRS)
1975-01-01
The transportation mass requirements developed for each mission and transportation mode were based on vehicle systems sized to fit the exact needs of each mission (i.e. rubber vehicles). The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data will form the basis for conceptual configurations of the transportation elements in a later phase of study. An investigation of the weight growth approach to future space transportation systems analysis is presented. Parameters which affect weight growth, past weight histories, and the current state of future space-mission design are discussed. Weight growth factors of from 10 percent to 41 percent were derived for various missions or vehicles.
NASA Astrophysics Data System (ADS)
Vogel, Bärbel; Günther, Gebhard; Müller, Rolf; Grooß, Jens-Uwe; Afchine, Armin; Bozem, Heiko; Hoor, Peter; Krämer, Martina; Müller, Stefan; Riese, Martin; Rolf, Christian; Spelten, Nicole; Stiller, Gabriele P.; Ungermann, Jörn; Zahn, Andreas
2016-12-01
Global simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) using artificial tracers of air mass origin are used to analyze transport mechanisms from the Asian monsoon region into the lower stratosphere. In a case study, the transport of air masses from the Asian monsoon anticyclone originating in India/China by an eastward-migrating anticyclone which broke off from the main anticyclone on 20 September 2012 and filaments separated at the northeastern flank of the anticyclone are analyzed. Enhanced contributions of young air masses (younger than 5 months) are found within the separated anticyclone confined at the top by the thermal tropopause. Further, these air masses are confined by the anticyclonic circulation and, on the polar side, by the subtropical jet such that the vertical structure resembles a bubble within the upper troposphere. Subsequently, these air masses are transported eastwards along the subtropical jet and enter the lower stratosphere by quasi-horizontal transport in a region of double tropopauses most likely associated with Rossby wave breaking events. As a result, thin filaments with enhanced signatures of tropospheric trace gases were measured in the lower stratosphere over Europe during the TACTS/ESMVal campaign in September 2012 in very good agreement with CLaMS simulations. Our simulations demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere. Young, moist air masses, in particular at the end of the monsoon season in September/October 2012, flooded the extratropical lower stratosphere in the Northern Hemisphere with contributions of up to ≈ 30 % at 380 K (with the remaining fraction being aged air). In contrast, the contribution of young air masses to the Southern Hemisphere is much lower. At the end of October 2012, approximately 1.5 ppmv H2O is found in the lower Northern Hemisphere stratosphere (at 380 K) from source regions both in Asia and in the tropical Pacific compared to a mean water vapor content of ≈ 5 ppmv. In addition to this main transport pathway from the Asian monsoon anticyclone to the east along the subtropical jet and subsequent transport into the northern lower stratosphere, a second horizontal transport pathway out of the anticyclone to the west into the tropics (TTL) is found in agreement with MIPAS HCFC-22 measurements.
Mass Transport and Shear Stress in the Carotid Artery Bifurcation
NASA Astrophysics Data System (ADS)
Gorder, Riley; Aliseda, Alberto
2010-11-01
The carotid artery bifurcation (CAB) is one of the leading sites for atherosclerosis, a major cause of death and disability in the developed world. The specific processes by which the complex flow found at the bifurcation and carotid sinus promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered key factors. Although the governing equations closely link shear stress and mass transfer, the pulsatile, transitional, and detached flow found at the CAB can lead to differences between regions of WSS and mass transfer statistics. In this study, CAB geometries are reconstructed from patient specific 3D ultrasound medical imaging. Using ANSYS FLUENT, the fluid flow and scalar transport was solved using realistic flow conditions and various mass transfer boundary conditions. The spatial and temporal resolution was validated against the analytical solution of the Graetz-Nusselt problem with constant wall flux to ensure the scalar transport is resolved for a Peclet number up to 100,000. High residence time regions are investigated by determining the number of cardiac cycles required to flush out the carotid sinus. The correlations between regions of low WSS, high OSI, and scalar concentration are computed and interpreted in the context of atherosclerotic plaque origin and progression.
Imamura, Hiroshi; Honda, Shinya
2016-12-01
This article presented the data related to the research article entitled "Calibration-free concentration analysis for an analyte prone to self-association" (H. Imamura, S. Honda, 2017) [1]. The data included surface plasmon resonance (SPR) responses of the variants of protein G with different masses under mass transport limitation. The friction factors of the proteins analyzed by an ultracentrifugation were recorded. Calculation of the SPR response of the proteins was also described.
A finite-volume ELLAM for three-dimensional solute-transport modeling
Russell, T.F.; Heberton, C.I.; Konikow, Leonard F.; Hornberger, G.Z.
2003-01-01
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.
An air-breathing ballistic space transporter for Europe
NASA Technical Reports Server (NTRS)
Kramer, P. A.; Buehler, R. D.
1985-01-01
With increasing transport requirements, reusable space transporters again receive serious consideration in Europe as successors to the Ariane family. The paper deals with a hydrogen-ramjet-propelled, 1-1/2-stage reusable ballistic space transporter with vertical take-off and landing and using liquid hydrogen/oxygen rockets. This novel concept was developed in a theoretical study at the University of Stuttgart. The results are compared with recently published studies of several other European space transporter concepts. The data derived for the Istra - concept are: 15.4 Mg payload into low Earth-orbit, 155 Mg gross lift-off mass, 10% payload ratio, which represents a 57% propellant saving, and 44% reduction in dry mass (structure and engines) compared with comparable two-stage pure rocket concepts.
Innovation in Public Transportation (Fiscal Year 1982)
DOT National Transportation Integrated Search
1983-08-01
This eleventh Annual Directory contains descriptions of Research, Development, Demonstration (RD&D) and training projects sponsored and funded by the Urban Mass Transportation Administration (UMTA) of the Department of Transportation. This Directory ...
Solitary Waves of Ice Loss Detected in Greenland Crustal Motion
NASA Astrophysics Data System (ADS)
Adhikari, S.; Ivins, E. R.; Larour, E. Y.
2017-12-01
The annual cycle and secular trend of Greenland mass loading are well recorded in measurements of solid Earth deformation. While bedrock vertical displacements are in phase with loading as inferred from space observations, horizontal motions have received almost no attention. The horizontal bedrock displacements can potentially track the spatiotemporal detail of mass changes with great fidelity. Our analysis of Greenland crustal motion data reveals that a significant excitation of horizontal amplitudes occurs during the intense Greenland melting. A suite of space geodetic observations and climate reanalysis data cannot explain these large horizontal displacements. We discover that solitary seasonal waves of substantial mass transport traveled through Rink Glacier in 2010 and 2012. We deduce that intense summer melting enhanced either basal lubrication or shear softening, or both, causing the glacier to thin dynamically. The newly routed upstream sublglacial water was likely to be both retarded and inefficient, thus providing a causal mechanism for the prolonged ice transport to continue well into the winter months. As the climate continues to produce increasingly warmer spring and summer, amplified seasonal waves of mass transport may become ever more present in years of future observations. Increased frequency of amplified seasonal mass transport may ultimately strengthen the Greenland's dynamic ice mass loss, a component of the balance that will have important ramifications for sea level rise. This animation shows a solitary wave passing through Rink Glacier, Greenland, in 2012, recorded by the motion of a GPS station (circle with arrow). Darker blue colors within the flow indicate mass loss, red colors show mass gain. The star marks the center of the wave. Credit: NASA/JPL-Caltech
40 CFR 52.138 - Conformity procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... described in 40 CFR 81.303 (i.e., the MAG urban planning area). (7) Transportation control measure (TCM... metropolitan planning organization which describes urban transportation and transportation-related planning... performed with federal planning assistance and with funds available under the Urban Mass Transportation Act...
40 CFR 52.138 - Conformity procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... described in 40 CFR 81.303 (i.e., the MAG urban planning area). (7) Transportation control measure (TCM... metropolitan planning organization which describes urban transportation and transportation-related planning... performed with federal planning assistance and with funds available under the Urban Mass Transportation Act...
Hogg, Karen; Thomas, Jerry; Ashford, David; Cartwright, Jared; Coldwell, Ruth; Weston, Daniel J; Pillmoor, John; Surry, Dominic; O'Toole, Peter
2015-07-01
Flow cytometry is a powerful tool for the quantitation of fluorescence and is proven to be able to correlate the fluorescence intensity to the number of protein on cells surface. Mass spectroscopy can also be used to determine the number of proteins per cell. Here we have developed two methods, using flow cytometry and mass spectroscopy to quantify number of transporters in human cells. These two approaches were then used to analyse the same samples so that a direct comparison could be made. Transporters have a major impact on the behaviour of a diverse number of drugs in human systems. While active uptake studies by transmembrane protein transporters using model substrates are routinely undertaken in human cell lines and hepatocytes as part of drug discovery and development, the interpretation of these results is currently limited by the inability to quantify the number of transporters present in the test samples. Here we provide a flow cytometric method for accurate quantification of transporter levels both on the cell surface and within the cell, and compare this to a quantitative mass spectrometric approach. Two transporters were selected for the study: OATP1B1 (also known as SLCO1B1, LST-1, OATP-C, OATP2) due to its important role in hepatic drug uptake and elimination; P-gp (also known as P-glycoprotein, MDR1, ABCB1) as a well characterised system and due to its potential impact on oral bioavailability, biliary and renal clearance, and brain penetration of drugs that are substrates for this transporter. In all cases the mass spectrometric method gave higher levels than the flow cytometry method. However, the two methods showed very similar trends in the relative ratios of both transporters in the hepatocyte samples investigated. The P-gp antibody allowed quantitative discrimination between externally facing transporters located in the cytoplasmic membrane and the total number of transporters on and in the cell. The proportion of externally facing transporter varied considerably in the four hepatocyte samples analysed, ranging from only 6% to 35% of intact and viable cells. The sample with only 6% externally facing transporter was further analysed by confocal microscopy which qualitatively confirmed the low level of transporter in the membrane and the large internal population. Here we prove that flow cytometry is an important tool for future protein analysis as it can not only quantify the number of proteins that a cell express but also identify the number of proteins on the surface and it is easy to apply for routine assays. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dompierre, Kathryn A.; Barbour, S. Lee; North, Rebecca L.; Carey, Sean K.; Lindsay, Matthew B. J.
2017-06-01
Fluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 × 108 m3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m3 m-2 d-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy.
DOT National Transportation Integrated Search
1977-01-10
The purpose of the report is to present and document the detailed features of the uniform system of accounts and records and reporting system required by Section 15 of the Urban Mass Transportation Act of 1964, as amended. Volume 2 contains the defin...
DOT National Transportation Integrated Search
1977-01-10
The purpose of the report is to present and document the detailed features of the uniform system of accounts and records and reporting system required by Section 15 of the Urban Mass Transportation Act of 1964, as amended. This report is presented in...
The Lake Michigan Mass Balance Project (LMMBP) was initiated to support the development of a Lake Wide Management Plan (LaMP) for Lake Michigan. As one of the models in the LMMBP modeling framework, the Level 2 Lake Michigan containment transport and fate (LM2) model has been dev...
Survey for rural transit assistance program.
DOT National Transportation Integrated Search
2006-02-01
Currently, the California Association for Coordinated Transportation Inc. (CalACT) is under contract to the Department of Transportation, Division of Mass Transportation (DMT) to implement all aspects of Rural Transit Assistance Program. (RTAP). RTAP...
49 CFR 177.810 - Vehicular tunnels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... through any urban vehicular tunnel used for mass transportation. [Amdt. 177-52, 46 FR 5316, Jan. 19, 1981... 49 Transportation 2 2010-10-01 2010-10-01 false Vehicular tunnels. 177.810 Section 177.810 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
Optimal Concentrations in Transport Networks
NASA Astrophysics Data System (ADS)
Jensen, Kaare; Savage, Jessica; Kim, Wonjung; Bush, John; Holbrook, N. Michele
2013-03-01
Biological and man-made systems rely on effective transport networks for distribution of material and energy. Mass flow in these networks is determined by the flow rate and the concentration of material. While the most concentrated solution offers the greatest potential for mass flow, impedance grows with concentration and thus makes it the most difficult to transport. The concentration at which mass flow is optimal depends on specific physical and physiological properties of the system. We derive a simple model which is able to predict optimal concentrations observed in blood flows, sugar transport in plants, and nectar feeding animals. Our model predicts that the viscosity at the optimal concentration μopt =2nμ0 is an integer power of two times the viscosity of the pure carrier medium μ0. We show how the observed powers 1 <= n <= 6 agree well with theory and discuss how n depends on biological constraints imposed on the transport process. The model provides a universal framework for studying flows impeded by concentration and provides hints of how to optimize engineered flow systems, such as congestion in traffic flows.
NASA Astrophysics Data System (ADS)
Lee, S.; Koo, J. H.; Hong, J.; Choi, M.; Kim, J.; Lim, H.; Holben, B. N.; Eck, T. F.; Ahn, J. Y.; Park, J.; Kim, S. K.
2017-12-01
The air quality of South Korea, located in the east of China, is affected by persistent westerlies, showing the relationship to the emission in upwind region. High aerosol concentration in South Korea is also attributed to local emissions. Particularly, the industrial complex and power plants are concentrated in the Chungcheongnam-do (CN), located by the southwest part of Seoul Metropolitan Area (SMA). In this study, we evaluate the contribution of both the transboundary transport of Chinese pollutants and local emissions in the CN to the air quality in South Korea during Korea-US Air Quality (KORUS-AQ) campaign, 1 May to 12 June in 2016. Based on the information of aerosol optical depth (AOD) obtained from ground-based Aerosol Robotic NETwork (AERONET) sunphotometer and surface in-situ Particulate Matter (PM) measurements at 19 stations, high and low aerosol pollution cases are classified first. Then, 2-day back-trajectories are calculated using National Ocean and Atmospheric Administration (NOAA) HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model at each AERONET site to investigate whether transport pattern is different in accordance with the classified cases about aerosol amounts. As a result, we find the distinct pathway of air-mass transport from eastern China; When high AOD is observed at station located in the western coast of South Korea, air masses are directly transported from Shandong peninsular to the Korean peninsula. In contrast, air masses are mostly transported from northwestern or northern China during the period of low AOD conditions. When PM2.5 detected at SMA sites is greater than Korean government criteria (50 micrograms per cubic meter for 24-hour average PM2.5), SMA sites are mostly affected by air mass flows through the CN area. These results indicate that transport pattern can be different vertically and surface aerosol concentration has different transport pattern from the transport pattern related to the variation of total column aerosol.
NASA Astrophysics Data System (ADS)
Rhines, P. B.; Xu, X.; Chassignet, E.; Schmitz, W. J., Jr.
2016-02-01
An eddy-resolving HYCOM circulation model (driven by a reanalysis atmosphere) shows the structure of the North Atlantic meridional overturning circulation (AMOC), heat transport (MHT) and freshwater transport (MFWT). We project the zonal-mean lateral volume transport, called V(θ,S,y), onto the potential temperature/salinity (θ/S-) plane, and `collapse' V into four zonally integrated volume-transport stream-functions with respect to potential density σ, θ, S and vertical coordinate. The figure shows V(θ,S,y) at 4 latitudes, y, labeled a-d, with northward volume transport in red, southward in blue; Sverdrups of transport are inscribed in σ-bands. Collapsing V onto overturning streamfunctions loses the connection with classic water masses, the hydrologic cycle and convective mode-water production. It is essential that the model resolve boundary currents and the dense northern overflows: model and observations show the dominance of basin-scale AMOC in both MHT and MFWT with potential density, σ, as the vertical coordinate... but much less so with z as a vertical coordinate. With adequate resolution of deep sinking, the Lower North Atlantic Deep Water contributes significantly to MHT. Time-mean MHT and MFWT are dominated by 5-year mean-fields: contributions from annual cycles of velocity and θ are surprisingly small. Quantitative comparison between model and observations at 26N and in the subpolar gyre is supportive of these results. Yet isopycnal processes involving lateral gyres and wind forcing are important. They concentrate the activity of the MOC near western boundaries where essential water-mass transformation (WMT) takes place. V(θ,S,y) transport adds thermohaline `spice' to the MOC, revealing both isopycnal and diapycnal mixing and transport and connects directly with classical water masses. 3-dimensional maps of diapycnal and isopycnal mixing/transport connect internal and externally driven WMT and transports. Particularly important transformation sites are the downslope overflow regions, boundary current extensions (Gulf Stream/North Atlantic Current), mode-water convection sites, deep western boundary currents where topographic transitions occur, and frontal regions (Newfoundland Basin) where northward and southward AMOC branches brush against one another.
Simulating Lanform Evolution on Mars
NASA Astrophysics Data System (ADS)
Howard, A. D.
2003-12-01
Knowledge of the planet Mars largely derives from remote sensing. Although these data are of increasing resolution and spectral coverage, including global topography at about 1 km2 resolution, interpretations vary widely about past processes and environments. Most uncertain is the environment of early Mars, during the Noachian Period (4.5 to about 3.5 b.y.). Interpretations range from a relatively warm wet climate with lakes and precipitation runoff, to a cold, dry Mars with valley networks originating solely from hydrothermally-driven seepage. Geomorphic analysis has generally been based upon image interpretation and terrestrial analogs. Increasingly, however, quantitative process and landform modeling is being brought to bear, including simulation modeling of landform evolution. A simulation model incorporates geomorphic processes relevant to Mars. Impact cratering is simulated geometrically by randomly-located impacts drawn from a size-frequency distribution. Scaling of crater dimensions is based upon fresh martian crater morphology, and heuristic rules govern inheritance from the pre-existing topography. Simulated cratered landscapes serve as initial conditions for simulated eolian erosion and deposition, inundation by lava flows,and fluvial denudation. The heuristic eolian model assumes that the long-term rate of eolian deposition and erosion is a function of an "exposure index", which is based upon the relative height of a location, such that valleys and crater floors are rapidly filled, level plains either receive no deposition or are slightly eroded, and crater rims and hill summits are eroded. Deposition on Mars is assumed to occur from saltation, deposition of dust from dust storms, and long-distance transport of crater ejecta and volcanic ash. The eolian model predicts that craters should infill at a nearly constant rate. Simulation of lava flow emplacement is also heuristic, based upon flow events of variable duration from specified source vents. The probability of a lava flow extending in a given direction is assumed greatest at the margins of recently active portions of the flow and is proportional to the local topographic gradient. Inundation of a cratered landscape is highly stochastic, with some craters surviving unscathed while neighbors are filled. Sumulation of fluvial erosion largely follows the landform evolution model of Howard [1994], with: 1) weathering rates a function of regolith thickness; 2) mass wasting involving both linear diffusional creep and accelerated motion as slopes approach a limiting angle; 3) detachment-limited fluvial erosion based upon shear stress, unit stream power, or bedload abrasion; and 4) sediment transport and deposition/erosion in alluvial channels, fans, deltas, and pediments. Fluvial erosion of cratered landscapes under assumed desert climate results in short valley systems with enclosed drainages in and between craters that resemble landscapes of the terrestrial Mojave and Basin and Range provinces. Drainage integration increases with time, but continued impact cratering disrupts fluvial networks. Model validation is limited by low resolution of images and topography, lack of stratigraphic information, absence of dating methods, and strong post-Noachian modification of landscapes by wind, mass-wasting, and "gardening" by small impacts. Nevertheless, the profiles of streams and fans are consistent with the gentle sections being sand or fine gravel, and steeper bedrock or boulder-floored sections. Simulated landscapes also compare favorably with the visual appearance of degraded Noachian cratered landscapes and with hypsometry and slope geometry statistics.
Mobility Management And Market Oriented Local Transportation
DOT National Transportation Integrated Search
1991-03-01
THE URBAN MASS TRANSPORTATION ADMINISTRATION HAS SINCE THE EARLY 1970'S FOSTERED ATTEMPTS TO MAKE GREATER USE OF MARKET MECHANISMS IN ORGANIZING, FINANCING, AND DELIVERING -PUBLIC TRANSPORTATION SERVICES. UMTA'S MOST RECENT VENTURE IN THIS AREA OCCUR...
User's Guide for the Interactive Scheduling Program : Preliminary Calendar Version
DOT National Transportation Integrated Search
1978-08-01
The Office of Transportation Management of the Urban Mass Transportation Administration (UMTA), in conjunction with the Transportation Systems Center (TSC), designed and developed the Interactive Scheduling Program (ISP) to assist rail-transit operat...
1982 World's Fair Transportation System Evaluation
DOT National Transportation Integrated Search
1982-12-01
Each World's Fair is a unique event. Many of the lessons learned in : transportation planning are, however, transferable to other special events. The : Urban Mass Transportation Administration (UMTA) sponsored this study to identify : and evaluate th...
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Gokoglu, S. A.; Israel, R.
1982-01-01
A multiparameter correlation approach to the study of particle deposition rates in engineering applications is discussed with reference to two specific examples, one dealing with thermophoretically augmented small particle convective diffusion and the other involving larger particle inertial impaction. The validity of the correlations proposed here is demonstrated through rigorous computations including all relevant phenomena and interactions. Such representations are shown to minimize apparent differences between various geometric, flow, and physicochemical parameters, allowing many apparently different physicochemical situations to be described in a unified way.
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
A nonlinear wave equation in nonadiabatic flame propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booty, M.R.; Matalon, M.; Matkowsky, B.J.
1988-06-01
The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time.
Crossover of two power laws in the anomalous diffusion of a two lipid membrane
NASA Astrophysics Data System (ADS)
Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco
2015-06-01
Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Liu, Jiangwen; Su, Guangcai; Li, Weizhou; Zeng, Jianmin; Hu, Zhiliu
2012-10-01
The crystallography of body-centered-cube to face-centered cube (bcc-to-fcc) diffusion phase transformations in a duplex stainless steel and a Cu-Zn alloy, including long axis, orientation relationship (OR), habit plane (HP), and dislocation spacing, is successfully interpreted with one-step rotation from the Bain lattice relationship by applying a simplified invariant line (IL) analysis. It is proposed that the dislocation slipping direction in the matrix plays an important role in controlling the crystallography of precipitation.
Crossover of two power laws in the anomalous diffusion of a two lipid membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakalis, Evangelos, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it
2015-06-07
Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.
Crossover of two power laws in the anomalous diffusion of a two lipid membrane.
Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco
2015-06-07
Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.
NASA Astrophysics Data System (ADS)
Flores, Rosa M.; Kaya, Nefel; Eşer, Övgü; Saltan, Şehnaz
2017-11-01
Mineral dust is the most significant source of natural particulate matter. In urban regions, where > 50% of the world population is currently living, local emissions of particulate matter are further aggravated by mineral dust loadings from deserts. The megacity of Istanbul is located in an area sensitive to local pollution due to transportation (i.e., private cars, public transportation, aircrafts, ships, heavy diesel trucks, etc.), industrial emissions, residential heating, and long-range transport from Europe, Asia, and deserts. In this work, the effect of desert dust transport on PM10 concentrations and physical properties was investigated for the period of 2007-2014 in the touristic area of Aksaray, Istanbul. The Dust Regional Atmospheric Model (DREAM8b) was used to predict dust loading in Istanbul during dust transport events. Variations on surface PM10 concentrations were investigated according to seasons and during dust transport events. Cluster analysis of air mass backward trajectories was useful to understand frequency analysis and air mass trajectory dependence of PM10 concentrations on dust loadings. The effect of desert dust transport on aerosol optical depths was also investigated. It was observed that PM10 concentrations exceeded the air quality standard of 50 μg m- 3 50% of the time during the study period. The largest number of exceedances in air quality standard occurred during the spring and winter seasons. Approximately 40-60% of the dust loading occurs during the spring. Desert dust and non-desert dust sources contribute to 22-72% and 48-81% of the ground-level PM10 concentrations in Aksaray, Istanbul during the study period. Averaged AOD observed during dust transport events in spring and summer ranged 0.35-0.55. Cluster analysis resolved over 82% the variability of individual air mass backward trajectories into 5 clusters. Overall, air masses arriving to Istanbul at 500 m are equally distributed into northern (52%) and southern (48%). Frequency analysis of PM10 concentrations with mean air mass backward trajectories showed that PM10 from local anthropogenic sources may be enhanced by long-range transport from the African Desert, Asian Desert, Arabian Peninsula, Russia, and Ukraine. The work presented here provides the first integrated assessment for evaluation of occurrence and quantification of the effect of dust transport to ground-level PM10 concentrations in Istanbul, which is helpful for human health prevention and implementation of air quality control measures.
Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test
NASA Astrophysics Data System (ADS)
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.
2018-02-01
Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.
Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...
2017-12-15
Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here in this paper, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K tomore » 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/ 30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ~2200 K is inferred (1σ uncertainty of ~200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.« less