Science.gov

Sample records for diffusive cavity growth

  1. Daisy patterns in the passive ring cavity with diffusion effects

    NASA Astrophysics Data System (ADS)

    Le Berre, M.; Patrascu, A. S.; Ressayre, E.; Tallet, A.

    1996-02-01

    Near-field patterns with three to fifteen petals set on a single circle are numerically observed in the ring cavity device. Three to six petal daisies result from usual finite size effects. We point out the non-trivial formation of seven to fifteen petal daisies, with a top-hat input, and a small diffusion term that controls this daisy-type pattern formation, preventing the usual hexagonal structure to be formed.

  2. The effect of gas diffusion on the flow coefficient for a ventilated cavity

    NASA Technical Reports Server (NTRS)

    Billet, M. L.; Weir, D. S.

    1975-01-01

    The results of an experimental investigation into the effect of gas diffusion on the volume flow-rate of gas needed to sustain a ventilated cavity are presented. Gas diffusion was found to have a significant effect on the ventilated flow rate required to sustain a cavity of a given size. An analysis for the gas diffusion effect was conducted based on a mathematical model of diffusion proposed by Brennen. The results compare favorably with experimental data. Also, an empirical scaling relationship is proposed for ventilated cavity flows.

  3. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  4. Theory of diffusion controlled growth

    NASA Astrophysics Data System (ADS)

    Ball, R. C.; Somfai, E.

    2003-03-01

    We present a new theoretical framework for Diffusion Limited Aggregation and associated Dielectric Breakdown Models (DBM) in two dimensions [R. C. Ball and E. Somfai; PRL 89, 135503 (2002); and cond-mat/0210598]. The first key step is to understand how these models interrelate when the ultra-violet cut-off strategy is changed, leading us to propose a new set of equivalence relations between generalisations of the original DBM. This enables us to approach these models through the dynamics of conformal maps with a fixed charge cut-off. Using logarithmic field variables then leads to coupled moment equations which appear to be renormalisable. Within the simplest, Gaussian, truncation of mode-mode coupling, all properties can be calculated. The agreement with prior knowledge from simulations is encouraging, and a new superuniversality of the tip scaling exponent is discussed. We find angular resonances relatable to the cone angle theory, and we are led to predict a new Screening Transition in the DBM at large η.

  5. Calculating model of light transmission efficiency of diffusers attached to a lighting cavity.

    PubMed

    Sun, Ching-Cherng; Chien, Wei-Ting; Moreno, Ivan; Hsieh, Chih-To; Lin, Mo-Cha; Hsiao, Shu-Li; Lee, Xuan-Hao

    2010-03-15

    A lighting cavity is a reflecting box with light sources inside. Its exit side is covered with a diffuser plate to mix and distribute light, which addresses a key issue of luminaires, display backlights, and other illumination systems. We derive a simple but precise formula for the optical efficiency of diffuser plates attached to a light cavity. We overcome the complexity of the scattering theory and the difficulty of the multiple calculations involved, by carrying out the calculation with a single ray of light that statistically represents all the scattered rays. We constructed and tested several optical cavities using light-emitting diodes, bulk-scattering diffusers, white scatter sheets, and silver coatings. All measurements are in good agreement with predictions from our optical model.

  6. Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2015-06-01

    An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.

  7. A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhou, Jianqin; Gu, Caikang; Neill, Stuart; Michaelian, Kirk H.; Fairbridge, Craig; Astrath, Nelson G. C.; Baesso, Mauro L.

    2013-12-01

    A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10-5 and (1.427 ± 0.009) × 10-7 m2 s-1, respectively, in very good agreement with accepted literature values.

  8. [APPROACH TO ESTABLISHMENT OF INDICATIONS FOR PROGRAMMED SANATION OF ABDOMINAL CAVITY IN DIFFUSE PERITONITIS].

    PubMed

    Joffe, I V; Lesnoy, V V

    2016-01-01

    The results of treatment of 33 patients, suffering diffuse peritonitis, with postoperatively applied tactics of the programmed surgical sanation of abdominal cavity were analyzed. Indications for relaparotomy were established, based on the estimation scale for the enteral insufficiency severity. The patients death and the complications causes were analyzed, depending on terms and rates of relaparotomy conduction.

  9. Molecular Simulation of Cavity Size Distributions and Diffusivity in Ultrahigh Free Volume Glassy Polymers

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Yan; Sanchez, Isaac C.; Freeman, Benny D.

    2003-03-01

    Poly (1-trimethylsilyl-1-propane) (PTMSP) and random copolymer of tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole (TFE/BDD), two very permeable polymers, have very similar and large fractional free volumes, but very different permeabilities. Cavity size (free volume) distributions obtained by Monte Carlo methods shows that PTMSP has larger cavities compared with TFE/BDD. This explains the observation that PTMSP is more permeable than TFE/BDD in an order of magnitude. Our simulation results are also qualitatively consistent with free volume distributions determined by Positron Annihilation Lifetime (PAL) Spectroscopy. The diffusion coefficient of CO2 in these two high free volume polymers was also calculated through molecular dynamics. The diffusion coefficient of CO2 in PTMSP is much higher than TFE/BDD. Our simulated diffusion data are in good agreement with the experimental data.

  10. Fluctuations and discreteness in diffusion limited growth

    NASA Astrophysics Data System (ADS)

    Devita, Jason P.

    This thesis explores the effects of fluctuations and discreteness on the growth of physical systems where diffusion plays an important role. It focuses on three related problems, all dependent on diffusion in a fundamental way, but each with its own unique challenges. With diffusion-limited aggregation (DLA), the relationship between noisy and noise-free Laplacian growth is probed by averaging the results of noisy growth. By doing so in a channel geometry, we are able to compare to known solutions of the noise-free problem. We see that while the two are comparable, there are discrepancies which are not well understood. In molecular beam epitaxy (MBE), we create efficient computational algorithms, by replacing random walkers (diffusing atoms) with approximately equivalent processes. In one case, the atoms are replaced by a continuum field. Solving for the dynamics of the field yields---in an average sense---the dynamics of the atoms. In the other case, the atoms are treated as individual random-walking particles, but the details of the dynamics are changed to an (approximately) equivalent set of dynamics. This approach involves allowing adatoms to take long hops. We see approximately an order of magnitude speed up for simulating island dynamics, mound growth, and Ostwald ripening. Some ideas from the study of MBE are carried over to the study of front propagation in reaction-diffusion systems. Many of the analytic results about front propagation are derived from continuum models. It is unclear, however, that these results accurately describe the properties of a discrete system. It is reasonable to think that discrete systems will converge to the continuum results when sufficiently many particles are included. However, computational evidence of this is difficult to obtain, since the interesting properties tend to depend on a power law of the logarithm of the number of particles. Thus, the number of particles included in simulations must be exceedingly large. By

  11. Partial heating and partial salting on double-diffusive convection in an open cavity

    NASA Astrophysics Data System (ADS)

    Arbin, N.; Hashim, I.

    2014-09-01

    Double-diffusive natural convection in an open top square cavity and partially heated from the side is studied numerically. Constant temperatures and concentration are imposed along the right and left walls while the heat balance at the surface is assumed to obey Newton's law of cooling. The finite difference method is used to solve the dimensionless governing equations. The numerical results are reported for the effects of Marangoni number and different heater locations on the contours of streamlines, temperature and concentration. The heat and mass transfer rate in the cavity are measured in terms of the average Nusselt and Sherwood numbers.

  12. Characterization of Tack Strength Based on Cavity-Growth Criterion.

    PubMed

    Takahashi, Kosuke; Yamagata, Yuichiro; Inaba, Kazuaki; Kishimoto, Kikuo; Tomioka, Shiori; Sugizaki, Toshio

    2016-04-12

    The adhesive force generated by a small short-term pressure, called tack, is measured by a probe tack test on pressure-sensitive adhesives (PSAs); the maximum force is evaluated by cavity growth at the interface between the PSA layer and the probe surface. As the PSA layer becomes thinner, it is more difficult to measure the tack with a cylindrical probe because of the uneven contact resulting from misalignment. A spherical probe is preferable to obtain reproducible contact on the PSA layer, but the contact area should be taken into account if the contact pressure affects the tack performance. Tack was measured on PSAs with various thicknesses in different contact areas to clarify their effect. The results showed that a larger contact area on a thinner PSA generated higher adhesive stress with larger strain. It was found that the maximum adhesive stress was not affected by the contact pressure, but it was strongly correlated to the contact radius divided by the PSA thickness. In addition, a video microscope observation showed that, in all of the experimental cases, the adhesive stress always reached the maximum when cavities were generated at the interface between the PSA and probe surface. Therefore, the criterion of cavity growth was introduced for the evaluation of the maximum adhesive stress. As a result, the experimental results, even at different release rates, were in good agreement with the estimation by considering the effect of confining a thin layer. Furthermore, the theoretical estimation indicated the ultimate value, which was not dependent upon the PSA thickness or contact area. It was defined as a material property, referred to as the "ultimate tack strength" of PSAs.

  13. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  14. Convective diffusion in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Meehan, E. J., Jr.; Xidis, A. L.; Howard, S. B.

    1986-01-01

    A protein crystal modeled as a flat plate suspended in the parent solution, with the normal to the largest face perpendicular to gravity and the protein concentration in the solution adjacent to the plate taken to be the equilibrium solubility, is studied. The Navier-Stokes equation and the equation for convective diffusion in the boundary layer next to the plate are solved to calculate the flow velocity and the protein mass flux. The local rate of growth of the plate is shown to vary significantly with depth due to the convection. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1-mm-high crystal has a thickness of 80 microns at 1 g, and 2570 microns at 10 to the -6th g.

  15. On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes

    SciTech Connect

    N.N. Gorelenkov, N.J. Fisch and E. Fredrickson

    2010-03-09

    An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.

  16. Cavities

    MedlinePlus

    ... The tooth may hurt even without stimulation (spontaneous toothache). If irreversible damage to the pulp occurs and ... To detect cavities early, a dentist inquires about pain, examines the teeth, probes the teeth with dental instruments, and may take x-rays. People should ...

  17. Motion of an atom in a weakly driven fiber-Bragg-grating cavity: Force, friction, and diffusion

    SciTech Connect

    Le Kien, Fam; Hakuta, K.

    2010-06-15

    We study the translational motion of an atom in the vicinity of a weakly driven nanofiber with two fiber-Bragg-grating mirrors. We calculate numerically and analytically the force, the friction coefficients, and the momentum diffusion. We find that the spatial dependences of the force, the friction coefficients, and the momentum diffusion are very complicated due to the evanescent-wave nature of the atom-field coupling as well as the effect of the van der Waals potential. We show that the time development of the mean number of photons in the cavity closely follows the translational motion of the atom through the nodes and antinodes of the fiber-guided cavity standing-wave field even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.

  18. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  19. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  20. Germanium nanowire growth controlled by surface diffusion effects

    SciTech Connect

    Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert; Teubner, Thomas; Boeck, Torsten; Fornari, Roberto

    2012-07-23

    Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.

  1. [The videoendoscopic sanation of the abdominal cavity by the diffuse septic peritonitis].

    PubMed

    Sukovatykh, B S; Blinkov, Iu Iu; Ivanov, P A

    2012-01-01

    The 1st group consisted of 68 patients with the diffuse peritonitis, who were treated with the use of traditional approach, i.e., laparotomy, elimination of the peritonitis source, nasointestinal intubation, abdominal cavity sanation and drainage. Within 24--48 hours all these patients had videoendoscopic abdominal sanation with the injection of 200 ml 0.03% water solution of sodium hypochlorite. The 2nd group, consisted of 41 patients. The first treatment stage was the same, but during the videoendoscopic stage the pulsing stream of the antiseptic was used and the procedure ended with intraabdominal injection of 200 ml 0.03% water solution of sodium hypochlorite immobilized in gel. All patients of the 2nd group showed better recovery results.

  2. Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System

    SciTech Connect

    Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.; Park, HyeKyoung; Williams, R. Scott

    2014-02-01

    Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we present the current progress of the system development.

  3. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, A.; Garcia, J. A.

    2000-07-01

    A liquid-ambient-compatible thermal wave resonant cavity (TWRC) has been constructed for the measurement of the thermal diffusivity of liquids. The thermal diffusivities of distilled water, glycerol, ethylene glycol, and olive oil were determined at room temperature (25 °C), with four-significant-figure precision as follows: (0.1445±0.0002)×10-2 cm2/s (distilled water); (0.0922±0.0002)×10-2 cm2/s (glycerol); (0.0918±0.0002)×10-2 cm2/s (ethylene glycol); and (0.0881±0.0004)×10-2 cm2/s (olive oil). The liquid-state TWRC sensor was found to be highly sensitive to various mixtures of methanol and salt in distilled water with sensitivity limits 0.5% (v/v) and 0.03% (w/v), respectively. The use of the TWRC to measure gas evolution from liquids and its potential for environmental applications has also been demonstrated.

  4. [Determining the volume of solution necessary for intraoperative disinfection lavage of the abdominal cavity in diffuse suppurative peritonitis].

    PubMed

    Nifant'ev, O E; Popov, A E; Voevodina, T V; Okolelova, E V

    1990-01-01

    The advantages of lavage of the abdominal cavity in diffuse purulent peritonitis by means of a developed device "Geyser" are shown. Changes in the bacterial contamination, toxicity and metabolite contents in the lavage solution and peritoneum depended on a volume of the fluid used.

  5. [Determining the volume of solution necessary for intraoperative disinfection lavage of the abdominal cavity in diffuse suppurative peritonitis].

    PubMed

    Nifant'ev, O E; Popov, A E; Voevodina, T V; Okolelova, E V

    1990-01-01

    The advantages of lavage of the abdominal cavity in diffuse purulent peritonitis by means of a developed device "Geyser" are shown. Changes in the bacterial contamination, toxicity and metabolite contents in the lavage solution and peritoneum depended on a volume of the fluid used. PMID:2338787

  6. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    PubMed

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  7. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    PubMed

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems. PMID:27522987

  8. Commissioning results of Nb3Sn cavity vapor diffusion deposition system at JLab

    SciTech Connect

    Eremeev, Grigory; Clemens, William A.; Macha, Kurt M.; Park, HyeKyoung; Williams, R.

    2015-09-01

    Nb3Sn as a BCS superconductor with a superconducting critical temperature higher than that of niobium offers potential benefit for SRF cavities via a lower-than-niobium surface resistance at the same temperature and frequency. A Nb3Sn vapor diffusion deposition system designed for coating of 1.5 and 1.3 GHz single-cell cavities was built and commissioned at JLab. As the part of the commissioning, RF performance at 2.0 K of a single-cell 1.5 GHz CEBAF-shaped cavity was measured before and after coating in the system. Before Nb3Sn coating the cavity had a Q0 of about 1010 and was limited by the high field Q-slope at Eacc ≅ 27 MV/m. Coated cavity exhibited the superconducting transition at about 17.9 K. The low-field quality factor was about 5∙109 at 4.3 K and 7∙109 at 2.0 K decreasing with field to about 1∙109 at Eacc ≅ 8 MV/m at both temperatures. The highest field was limited by the available RF power.

  9. Abnormal Stability in Growth of Diffusion-Limited Aggregation

    NASA Astrophysics Data System (ADS)

    Ohta, Shonosuke

    2009-01-01

    An abnormal and unsteady growth of an isotropic cluster in diffusion-limited aggregation (DLA) is observed in stability analyses. Macroscopic fluctuation due to the delay of transition from a dendritic tip to a tip-splitting growth induces the anisotropy of DLA. An asymptotic deformation factor \\varepsilon∞ = 0.0888 is obtained from large DLA clusters. A symmetric oval model proposed from the dual-stability growth of DLA gives an asymptotic fractal dimension of 1.7112 using \\varepsilon∞. The correspondence of this model to the box dimension is excellent.

  10. An extended fractal growth regime in the diffusion limited aggregation including edge diffusion

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Batabyal, R.; Das, G. P.; Dev, B. N.

    2016-01-01

    We have investigated on-lattice diffusion limited aggregation (DLA) involving edge diffusion and compared the results with the standard DLA model. For both cases, we observe the existence of a crossover from the fractal to the compact regime as a function of sticking coefficient. However, our modified DLA model including edge diffusion shows an extended fractal growth regime like an earlier theoretical result using realistic growth models and physical parameters [Zhang et al., Phys. Rev. Lett. 73 (1994) 1829]. While the results of Zhang et al. showed the existence of the extended fractal growth regime only on triangular but not on square lattices, we find its existence on the square lattice. There is experimental evidence of this growth regime on a square lattice. The standard DLA model cannot characterize fractal morphology as the fractal dimension (Hausdorff dimension, DH) is insensitive to morphology. It also predicts DH = DP (the perimeter dimension). For the usual fractal structures, observed in growth experiments on surfaces, the perimeter dimension can differ significantly (DH ≠ DP) depending on the morphology. Our modified DLA model shows minor sensitivity to this difference.

  11. Diffusion-controlled growth and degree of disequilibrium of garnet porphyroblasts: is diffusion-controlled growth of porphyroblasts common?

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazuhiro

    2015-12-01

    Rate-limiting processes and the degree of disequilibrium during metamorphic mineral growth are key controls on the rate of dehydration and hydration in the Earth's crust. This paper examines diffusion-controlled growth and the degree of disequilibrium of garnet porphyroblasts in the Tsukuba metamorphic rocks of central Japan. The analyzed porphyroblasts have irregular and branching morphologies with clear diffusional haloes, indicating that they grew in a diffusion-controlled regime. Mathematical analysis shows that the dominant wavelength of the interface of a garnet porphyroblast is dependent on the extent of supersaturation (Δ ζ), which is an index for the degree of disequilibrium. Using the calculated upper and lower limits of the dominant wavelength, the value of Δ ζ is estimated to be 0.05 × 10-1-0.16, which corresponds to a Gibbs free energy (Δ G r ) overstep of 0.9-27 kJ per mole of garnet (12 oxygen atoms) and a temperature overstep (Δ T) of 1.7-50 °C. Using the average value of the dominant wavelength, the following results are obtained: Δ ζ = 0.15 × 10-1, Δ G r = 2.7 kJ per mole of garnet, and Δ T = 5 °C. These values bring into question the importance of diffusion-controlled growth of garnet porphyroblasts, as highly irregular and branching garnet porphyroblasts are rare in most metamorphic belts. After significant overstepping for the nucleation of garnet, the garnet porphyroblasts grow at a high degree of disequilibrium. However, a high degree of disequilibrium under diffusion-controlled growth would be characterized by diffusional instability. The results indicate that garnet porphyroblasts that lack an irregular and branching morphology may grow at a high degree of disequilibrium under interface-controlled growth, provided they are set in a medium where the diffusion and supply of constituent elements are sufficient, such as a sufficient volume of metamorphic fluid.

  12. Bubble growth by rectified diffusion at high gas supersaturation levels.

    PubMed

    Ilinskii, Yurii A; Wilson, Preston S; Hamilton, Mark F

    2008-10-01

    For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius.

  13. Bubble growth by rectified diffusion at high gas supersaturation levels.

    PubMed

    Ilinskii, Yurii A; Wilson, Preston S; Hamilton, Mark F

    2008-10-01

    For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius. PMID:19062834

  14. Non-Darcy double-diffusive natural convection in axisymmetric fluid saturated porous cavities

    NASA Astrophysics Data System (ADS)

    Nithiarasu, P.; Seetharamu, K. N.; Sundararajan, T.

    Double-diffusive natural convection in a fluid saturated porous medium has been investigated using the finite element method. A generalised porous medium model is used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicate that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy regime. The influence of porosity on heat and mass transfer is significant and the transport rates may differ by 25% or more, at higher Darcy and Rayleigh numbers. When compared with the Darcy and other specialised models of Brinkman and Forchheimer, the present generalised model predicts the least heat and mass transfer rates. It is also observed that an increase in radius ratio leads to higher Nusselt and Sherwood numbers along the inner wall. Zusammenfassung Mit Hilfe der Finitelement-Methode wurde die Doppeldiffusion bei natürlicher Konvektion in einem fluidgetränktem porösen Medium untersucht, wobei ein verallgemeinertes Modell für poröse Medien Verwendung fand, das sich sowohl für Darcysches, wie für nicht-Darcysches Fluidverhalten in einem achsialsymmetrischen Ringraum eignet. Aus den Ergebnissen geht hervor, daß die Darcy-Zahl als zusätzlicher Parameter eingeführt werden muß, um das Strömungsverhalten im nicht-Darcyschen Regime verstehen zu können. Die Porosität hat großen Einfluß auf den Wärme- und Stoffaustausch, so daß bei höheren Darcy- und Rayleigh-Zahlen diesbezüglich Unterschiede bis über 25% auftreten können. Im Vergleich mit den speziellen Modellen nach Darcy, Brinkman und Forchheimer liefert das hier untersuchte verallgemeinerte Modell die geringsten Wärme- und Stoffflüsse. Es zeigt sich ferner, daß die Vergrößerung des Radienverhältnisses höhere Nusselt- und Sherwood- Zahlen entlang der Innenwand zur Folge hat.

  15. Fractal aggregation growth and the surrounding diffusion field

    NASA Astrophysics Data System (ADS)

    Miyashita, Satoru; Saito, Yukio; Uwaha, Makio

    2005-10-01

    Silver metal trees grow and form a forest at the edge of a Cu plate in the AgNO3 water solution in a two-dimensional ( d=2) cell. The local structure of the forest is similar to that of the diffusion-limited aggregation (DLA), but the whole pattern approaches a uniform structure. Its growth dynamics is characterized by the fractal dimension Df of DLA. Time-dependence of the tip height is found to satisfy the scaling relation with the solute concentration c, and the asymptotic growth velocity V is consistent with the power law V˜c expected from the theory. The thickness ξc of the diffusion boundary layer is measured by the Michelson interferometry, and the scaling relation is also confirmed.

  16. Growth of Silicon Nanosheets Under Diffusion-Limited Aggregation Environments.

    PubMed

    Lee, Jaejun; Kim, Sung Wook; Kim, Ilsoo; Seo, Dongjea; Choi, Heon-Jin

    2015-12-01

    The two-dimensional (2D) growth of cubic-structured (silicon) Si nanosheets (SiNSs) was investigated. Freestanding, single-crystalline SiNSs with a thickness of 5-20 nm were grown on various Si substrates under an atmospheric chemical vapor deposition process. Systematic investigation indicated that a diffusion-limited aggregation (DLA) environment that leads to dendritic growth in <110> directions at the initial stage is essential for 2D growth. The kinetic aspects under DLA environments that ascribe to the dendritic and 2D growth were discussed. Under the more dilute conditions made by addition of Ar to the flow of H2, the SiNSs grew epitaxially on the substrates with periodic arrangement at a specific angle depending on the orientation of the substrate. It reveals that SiNSs always grew two dimensionally with exposing (111) surfaces. That is thermodynamically favorable. PMID:26518028

  17. Growth of Silicon Nanosheets Under Diffusion-Limited Aggregation Environments

    NASA Astrophysics Data System (ADS)

    Lee, Jaejun; Kim, Sung Wook; Kim, Ilsoo; Seo, Dongjea; Choi, Heon-Jin

    2015-10-01

    The two-dimensional (2D) growth of cubic-structured (silicon) Si nanosheets (SiNSs) was investigated. Freestanding, single-crystalline SiNSs with a thickness of 5-20 nm were grown on various Si substrates under an atmospheric chemical vapor deposition process. Systematic investigation indicated that a diffusion-limited aggregation (DLA) environment that leads to dendritic growth in <110> directions at the initial stage is essential for 2D growth. The kinetic aspects under DLA environments that ascribe to the dendritic and 2D growth were discussed. Under the more dilute conditions made by addition of Ar to the flow of H2, the SiNSs grew epitaxially on the substrates with periodic arrangement at a specific angle depending on the orientation of the substrate. It reveals that SiNSs always grew two dimensionally with exposing (111) surfaces. That is thermodynamically favorable.

  18. Influence of radiation on double conjugate diffusion in a porous cavity

    NASA Astrophysics Data System (ADS)

    Azeem, Khan, T. M. Yunus; Badruddin, Irfan Anjum; Nik-Ghazali, N.; Idris, Mohd Yamani Idna

    2016-05-01

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature Tw and concentration Cw whereas the right surface is maintained at Tc and Cc such that Tw>Tc and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  19. Effect of variable heating on double diffusive flow in a square porous cavity

    NASA Astrophysics Data System (ADS)

    Badruddin, Irfan Anjum; Khan, T. M. Yunus; Salman Ahmed N., J.; Kamangar, Sarfaraz

    2016-05-01

    Investigation of heat and mass transfer due to variable heating at the left vertical surface of a square cavity filled with porous medium is carried out. The left surface of cavity is maintained at higher temperature and concentration as compared to right surface which has low temperature and concentration. Finite element method is used to convert the partial differential equations into simpler algebraic form of equations. The governing equations are solved in iterative manner to obtain the solution parameters.Results are presented in terms of isothermal lines, iso-concentration lines and streamlines for variable wall temperature at left surface.

  20. Single crystalline Si substrate growth by lateral diffusion epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Bo; Yu, Hao Ling; Shen, Huaxiang; Kitai, Adrian

    2013-03-01

    A novel crystal growth method named lateral diffusion epitaxy (LDE) as well as the necessary growth apparatus are described in detail. Single crystalline Si strips are grown on (1 1 1) Si substrates by LDE. The thickness of the LDE Si strips is around 100 μm, and the aspect ratio of width to thickness is around 2 which is an improvement compared with Si strips grown by conventional liquid phase epitaxy (LPE). The LDE Si strip can be peeled off from the substrate for further device processing since the 100 μm thickness provides reasonable mechanical strength. Due to the low cost of LDE technology it is potentially a good candidate for PV application if the LDE can achieve continuous growth and therefore grow Si strips in sizes for practical application.

  1. Structure of S-shaped growth in innovation diffusion.

    PubMed

    Shimogawa, Shinsuke; Shinno, Miyuki; Saito, Hiroshi

    2012-05-01

    A basic question on innovation diffusion is why the growth curve of the adopter population in a large society is often S shaped. From macroscopic, microscopic, and mesoscopic viewpoints, the growth of the adopter population is observed as the growth curve, individual adoptions, and differences among individual adoptions, respectively. The S shape can be explained if an empirical model of the growth curve can be deduced from models of microscopic and mesoscopic structures. However, even the structure of growth curve has not been revealed yet because long-term extrapolations by proposed models of S-shaped curves are unstable and it has been very difficult to predict the long-term growth and final adopter population. This paper studies the S-shaped growth from the viewpoint of social regularities. Simple methods to analyze power laws enable us to extract the structure of the growth curve directly from the growth data of recent basic telecommunication services. This empirical model of growth curve is singular at the inflection point and a logarithmic function of time after this point, which explains the unstable extrapolations obtained using previously proposed models and the difficulty in predicting the final adopter population. Because the empirical S curve can be expressed in terms of two power laws of the regularity found in social performances of individuals, we propose the hypothesis that the S shape represents the heterogeneity of the adopter population, and the heterogeneity parameter is distributed under the regularity in social performances of individuals. This hypothesis is so powerful as to yield models of microscopic and mesoscopic structures. In the microscopic model, each potential adopter adopts the innovation when the information accumulated by the learning about the innovation exceeds a threshold. The accumulation rate of information is heterogeneous among the adopter population, whereas the threshold is a constant, which is the opposite of previously

  2. Diffusion of innovations dynamics, biological growth and catenary function

    NASA Astrophysics Data System (ADS)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  3. Analysis of entropy generation for double diffusive MHD convection in a square cavity with isothermal hollow cylinder

    NASA Astrophysics Data System (ADS)

    Mojumder, Satyajit; Saha, Sourav; Saha, Sumon

    2016-07-01

    Entropy optimization is a major concern for designing modern thermal management system. In the present work, entropy analysis in a square cavity with an isothermal hollow cylinder at the center is carried out for magneto-hydrodynamic (MHD) double diffusive convection. Galerkin weighted residuals method of finite element formulation is adopted for the numerical solution. Entropies due to fluid flow, heat, and mass transfer are computed for wide range of Hartmann (0 ≤ Ha ≤ 50) and Lewis numbers (1 ≤ Le ≤ 15), and buoyancy ratios (-5 ≤ N ≤ 5) at constant Rayleigh and Prandtl numbers. It is found that the influence of buoyancy ratio is prominent on entropy generation, which also depends on both Lewis and Hartmann numbers. The ratio N = -1 shows minimum entropy generation for any combination of Lewis and Hartman numbers. Visualization of isentropic contours and the variation of total entropy with the governing parameters provide remarkable evidences of entropy optimization.

  4. Diffusion-controlled growth rate of stepped interfaces.

    PubMed

    Saidi, P; Hoyt, J J

    2015-07-01

    For many materials, the structure of crystalline surfaces or solid-solid interphase boundaries is characterized by an array of mobile steps separated by immobile terraces. Despite the prevalence of step-terraced interfaces a theoretical description of the growth rate has not been completely solved. In this work the boundary element method (BEM) has been utilized to numerically compute the concentration profile in a fluid phase in contact with an infinite array of equally spaced surface steps and, under the assumption that step motion is controlled by diffusion through the fluid phase, the growth rate is computed. It is also assumed that a boundary layer exists between the growing surface and a point in the liquid where complete convective mixing occurs. The BEM results are presented for varying step spacing, supersaturation, and boundary layer width. BEM calculations were also used to study the phenomenon of step bunching during crystal growth, and it is found that, in the absence of elastic strain energy, a sufficiently large perturbation in the position of a step from its regular spacing will lead to a step bunching instability. Finally, an approximate analytic solution using a matched asymptotic expansion technique is presented for the case of a stagnant liquid or equivalently a solid-solid stepped interface.

  5. Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion.

    PubMed

    Cunningham, Philip; Naftalin, Richard J

    2014-11-01

    Structural changes and xylose docking to eight conformers of Escherichia Coli XylE, a xylose transporter similar to mammalian passive glucose transporters GLUTs, have been examined. Xylose docks to inward and outward facing conformers at a high affinity central site (K(i) 4-20 µM), previously identified by crystallography and additionally consistently docks to lower affinity sites in the external and internal vestibules (K(i) 12-50 µM). All these sites lie within intramolecular tunnels and cavities. Several local regions in the central transmembrane zone have large positional divergences of both skeleton carbon Cα positions and side chains. One such in TM 10 is the destabilizing sequence G388-P389-V390-C391 with an average RMSD (4.5 ± 0.4 Å). Interchange between conformer poses results in coalescence of tunnels with adjacent cavities, thereby producing a transitory channel spanning the entire transporter. A fully open channel exists in one inward-facing apo-conformer, (PDB 4ja4c) as demonstrated by several different tunnel-finding algorithms. The conformer interchanges produce a gated network within a branched central channel that permits staged ligand diffusion across the transporter during the open gate periods. Simulation of this model demonstrates that small-scale conformational changes required for sequentially opening gate with frequencies in the ns-μs time domain accommodate diffusive ligand flow between adjacent sites with association-dissociation rates in the μs-ms domain without imposing delays. This current model helps to unify the apparently opposing concepts of alternate access and multisite models of ligand transport.

  6. Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion.

    PubMed

    Cunningham, Philip; Naftalin, Richard J

    2014-11-01

    Structural changes and xylose docking to eight conformers of Escherichia Coli XylE, a xylose transporter similar to mammalian passive glucose transporters GLUTs, have been examined. Xylose docks to inward and outward facing conformers at a high affinity central site (K(i) 4-20 µM), previously identified by crystallography and additionally consistently docks to lower affinity sites in the external and internal vestibules (K(i) 12-50 µM). All these sites lie within intramolecular tunnels and cavities. Several local regions in the central transmembrane zone have large positional divergences of both skeleton carbon Cα positions and side chains. One such in TM 10 is the destabilizing sequence G388-P389-V390-C391 with an average RMSD (4.5 ± 0.4 Å). Interchange between conformer poses results in coalescence of tunnels with adjacent cavities, thereby producing a transitory channel spanning the entire transporter. A fully open channel exists in one inward-facing apo-conformer, (PDB 4ja4c) as demonstrated by several different tunnel-finding algorithms. The conformer interchanges produce a gated network within a branched central channel that permits staged ligand diffusion across the transporter during the open gate periods. Simulation of this model demonstrates that small-scale conformational changes required for sequentially opening gate with frequencies in the ns-μs time domain accommodate diffusive ligand flow between adjacent sites with association-dissociation rates in the μs-ms domain without imposing delays. This current model helps to unify the apparently opposing concepts of alternate access and multisite models of ligand transport. PMID:25163893

  7. Comparative cephalometric study of nasal cavity growth patterns in seven animal models.

    PubMed

    Losken, A; Mooney, M P; Siegel, M I

    1994-01-01

    Although primates have been the craniofacial growth models of choice, recent circumstances have stimulated the search for nonprimate models. In a series of studies we have described changes in various regions of the craniofacial complex for seven commonly used animal models. The present study examined the bony nasal cavity. One hundred and forty-four serial and cross-sectional lateral head x-rays were obtained for unoperated controls from previous growth studies. The sample consisted of data from 26 rats, 21 rabbits, 21 domestic cats, 23 domestic dogs, 17 baboons, 16 rhesus monkeys, and 20 chimpanzees. Comparative human data was taken from the Bolton Standards. The samples were divided into three age categories based on dental and somatic development. Midsagittal nasal cavity measurements included length, height, shape index, and area. Analysis was based on the percent increase in measures from the infant condition. Three major shapes were discerned at adulthood (1) vertical quadrangles (humans and cats); (2) triangles (chimpanzees, rhesus monkeys, and baboons), and (3) horizontal quadrangles (rabbits, rats, and dogs). Results showed that overall shape was best modeled by the chimpanzee and, as a nonprimate model, the laboratory cat. Rabbits and rats also showed similar percent changes for length or height dimensions at different ages, suggesting that these animals may be acceptable, inexpensive alternatives to primates in some experimental situations.

  8. Ice crystal growth in a dynamic thermal diffusion chamber

    NASA Technical Reports Server (NTRS)

    Keller, V. W.

    1980-01-01

    Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

  9. The roles of hope and optimism on posttraumatic growth in oral cavity cancer patients.

    PubMed

    Ho, Samuel; Rajandram, Rama Krsna; Chan, Natalie; Samman, Nabil; McGrath, Colman; Zwahlen, Roger Arthur

    2011-02-01

    To investigate the association of the positive coping strategies, hope and optimism, on posttraumatic growth (PTG) in oral cavity (OC) cancer patients. A retrospective cross-sectional study was conducted and performed in the outpatient station of the Oral and Maxillofacial Surgery at the University of Hong Kong, Hong Kong SAR, PR China. Fifty patients successfully treated for OC cancer were recruited after their informed consents had been obtained during the review clinic. During their regular follow-up controls in the outpatient clinic, the patients compiled the posttraumatic growth inventory (PTGI) questionnaire, hope scale (HS) and the life orientation scale-revised (LOT-R). Hope and optimism correlated significantly positive with PTG and accounting together for a 25% variance of posttraumatic growth. Hope positively correlated with posttraumatic growth (r=.49, p<.001) as well as optimism (r=.31, p<.05). When compared to unmarried patients, married patients showed high levels of PTG and hope (married participants: mean=53.15, SD=11.04; unmarried participants: mean=41.00, SD=6.36; t (48)=2.403, p<.05). Hope and optimism represent important indicators for PTG in OC cancer patients. An intact dyad relationship seems to be important for hope and consecutive higher levels of PTG when compared to unmarried patients. Supportive psychological treatment strategies related to these two coping factors might be beneficial for OC cancer patients.

  10. A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods.

    PubMed

    Wen, Tianlong; Brush, Lucien N; Krishnan, Kannan M

    2014-04-01

    A nanoparticle growth model is developed to predict and guide the syntheses of monodisperse colloidal nanoparticles in the liquid phase. The model, without any a priori assumptions, is based on the Fick's law of diffusion, conservation of mass and the Gibbs-Thomson equation for crystal growth. In the limiting case, this model reduces to the same expression as the currently accepted model that requires the assumption of a diffusion layer around each nanoparticle. The present growth model bridges the two limiting cases of the previous model i.e. complete diffusion controlled and adsorption controlled growth of nanoparticles. Specifically, the results show that a monodispersion of nanoparticles can be obtained both with fast monomer diffusion and with surface reaction under conditions of small diffusivity to surface reaction constant ratio that results is growth 'focusing'. This comprehensive description of nanoparticle growth provides new insights and establishes the required conditions for fabricating monodisperse nanoparticles critical for a wide range of applications.

  11. Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles

    SciTech Connect

    Watkins, Jim; Watkins, Jim; Manga, Michael; Huber, Christian; Martin, Michael C.

    2007-11-02

    Spherulites are spherical clusters of radiating crystals that occur naturally in rhyolitic obsidian. The growth of spherulites requires diffusion and uptake of crystal forming components from the host rhyolite melt or glass, and rejection of non-crystal forming components from the crystallizing region. Water concentration profiles measured by synchrotron-source Fourier transform spectroscopy reveal that water is expelled into the surrounding matrix during spherulite growth, and that it diffuses outward ahead of the advancing crystalline front. We compare these profiles to models of water diffusion in rhyolite to estimate timescales for spherulite growth. Using a diffusion-controlled growth law, we find that spherulites can grow on the order of days to months at temperatures above the glass transition. The diffusion-controlled growth law also accounts for spherulite size distribution, spherulite growth below the glass transition, and why spherulitic glasses are not completely devitrified.

  12. Crystal growth mechanisms in miarolitic cavities in the Lake George ring complex and vicinity, Colorado

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    1999-01-01

    The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.

  13. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Zhang, Wei; Sun, Ye; Ediger, M. D.; Yu, Lian

    2016-08-01

    Surface self-diffusion coefficients of α,α,β-tris-naphthyl benzene (TNB) glasses have been measured using the method of surface grating decay. For 1000 nm wavelength gratings, the decay occurs by viscous flow at temperatures above Tg + 15 K, where Tg is the glass transition temperature (347 K), and by surface diffusion at lower temperatures. Surface diffusion of TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg. Comparing TNB with other molecular glasses, each evaluated at its own Tg, we find that surface diffusion has a greater system-to-system variation than bulk diffusion, slowing down with increasing molecular size and intermolecular hydrogen bonding. Experimentally determined surface diffusion coefficients are in reasonable agreement with those from simulations and theoretical predictions. TNB and other molecular glasses show fast crystal growth on the free surface and the growth velocity is nearly proportional to the surface diffusion coefficient, indicating that the process is supported by surface mobility.

  14. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  15. Increased diffuse radiation fraction does not significantly accelerate plant growth

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  16. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    SciTech Connect

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  17. Gaugement of the inner space of the apomyoglobin's heme binding site by a single free diffusing proton. I. Proton in the cavity.

    PubMed Central

    Shimoni, E; Tsfadia, Y; Nachliel, E; Gutman, M

    1993-01-01

    Time resolved fluorimetry was employed to monitor the geminate recombination between proton and excited pyranine anion locked, together with less than 30 water molecules, inside the heme binding site of Apomyoglobin (sperm whale). The results were analyzed by a numerical reconstruction of the differential rate equation for time-dependent diffusion controlled reaction with radiating boundaries using N. Agmon's procedure (Huppert, Pines, and Agmon, 1990, J. Opt. Soc. Am. B., 7:1541-1550). The analysis of the curve provided the effective dielectric constant of the proton permeable space in the cavity and the diffusion coefficient of the proton. The electrostatic potential within the cavity was investigated by the equations given by Gilson et al. (1985, J. Mol. Biol., 183:503-516). According to this analysis the dielectric constant of the protein surrounding the site is epsilon prot < or = 6.5. The diffusion coefficient of the proton in the heme binding site of Apomyoglobin-pyranine complex is D = 4 x 10(-5) cm2/s. This value is approximately 50% of the diffusion coefficient of proton in water. The lower value indicates enhanced ordering of water in the cavity, a finding which is corroborated by a large negative enthropy of binding delta S0 = -46.6 cal.mole-1 deg-1. The capacity of a small cavity in a protein to retain a proton had been investigated through the mathematical reconstruction of the dynamics. It has been demonstrated that Coulombic attraction, as large as delta psi of energy coupling membrane, is insufficient to delay a free proton for a time frame comparable to the turnover time of protogenic sites. PMID:8384501

  18. A bioreaction-diffusion model for growth of marine sponge explants in bioreactors.

    PubMed

    Garcia Camacho, F; Chileh, T; Cerón García, M C; Sánchez Mirón, A; Belarbi, E H; Chisti, Y; Molina Grima, E

    2006-12-01

    Marine sponges are sources of high-value bioactives. Engineering aspects of in vitro culture of sponges from cuttings (explants) are poorly understood. This work develops a diffusion-controlled growth model for sponge explants. The model assumes that the explant growth is controlled by diffusive transport of at least some nutrients from the surrounding medium into the explant that generally has a poorly developed aquiferous system for internal irrigation during early stages of growth. Growth is assumed to obey Monod-type kinetics. The model is shown to satisfactorily explain the measured growth behavior of the marine sponge Crambe crambe in two different growth media. In addition, the model is generally consistent with published data for growth of explants of the sponges Disidea avara and Hemimycale columella. The model predicted that nutrient concentration profiles for nutrients, such as dissolved oxygen within the explant, are consistent with data published by independent researchers. In view of the proposed model's ability to explain available data for growth of several species of sponge explants, diffusive transport does play a controlling role in explant growth at least until a fully developed aquiferous system has become established. According to the model and experimental observations, the instantaneous growth rate depends on the size of the explant and all those factors that influence the diffusion of critical nutrients within the explant. Growth follows a hyperbolic profile that is consistent with the Monod kinetics.

  19. Soft bounds on diffusion produce skewed distributions and Gompertz growth.

    PubMed

    Mandrà, Salvatore; Lagomarsino, Marco Cosentino; Gherardi, Marco

    2014-09-01

    Constraints can affect dramatically the behavior of diffusion processes. Recently, we analyzed a natural and a technological system and reported that they perform diffusion-like discrete steps displaying a peculiar constraint, whereby the increments of the diffusing variable are subject to configuration-dependent bounds. This work explores theoretically some of the revealing landmarks of such phenomenology, termed "soft bound." At long times, the system reaches a steady state irreversibly (i.e., violating detailed balance), characterized by a skewed "shoulder" in the density distribution, and by a net local probability flux, which has entropic origin. The largest point in the support of the distribution follows a saturating dynamics, expressed by the Gompertz law, in line with empirical observations. Finally, we propose a generic allometric scaling for the origin of soft bounds. These findings shed light on the impact on a system of such "scaling" constraint and on its possible generating mechanisms.

  20. Soft bounds on diffusion produce skewed distributions and Gompertz growth

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Lagomarsino, Marco Cosentino; Gherardi, Marco

    2014-09-01

    Constraints can affect dramatically the behavior of diffusion processes. Recently, we analyzed a natural and a technological system and reported that they perform diffusion-like discrete steps displaying a peculiar constraint, whereby the increments of the diffusing variable are subject to configuration-dependent bounds. This work explores theoretically some of the revealing landmarks of such phenomenology, termed "soft bound." At long times, the system reaches a steady state irreversibly (i.e., violating detailed balance), characterized by a skewed "shoulder" in the density distribution, and by a net local probability flux, which has entropic origin. The largest point in the support of the distribution follows a saturating dynamics, expressed by the Gompertz law, in line with empirical observations. Finally, we propose a generic allometric scaling for the origin of soft bounds. These findings shed light on the impact on a system of such "scaling" constraint and on its possible generating mechanisms.

  1. Technology Diffusion and Productivity Growth in Health Care

    PubMed Central

    Skinner, Jonathan; Staiger, Douglas

    2015-01-01

    We draw on macroeconomic models of diffusion and productivity to explain empirical patterns of survival gains in heart attacks. Using Medicare data for 2.8 million patients during 1986–2004, we find that hospitals rapidly adopting cost-effective innovations such as beta blockers, aspirin, and reperfusion, had substantially better outcomes for their patients. Holding technology adoption constant, the marginal returns to spending were relatively modest. Hospitals increasing the pace of technology diffusion (“tigers”) experienced triple the survival gains compared to those with diminished rates (“tortoises”). In sum, small differences in the propensity to adopt effective technology lead to wide productivity differences across hospitals. PMID:26989267

  2. Boundary-layer analysis for the convection/diffusion transition in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S. C.

    1981-01-01

    The supercooling dependence of dendritic growth kinetics under the influence of convective heat transport is investigated theoretically and experimentally with emphasis on theoretical prediction of the supercooling level at which the transition from diffusion-controlled to convection-controlled dendritic growth occurs. It is shown that the crossover between diffusive and convective transport depends on the relative thickness of the Stefan length compared with the thermal boundary layer. These lengths become equal at a supercooling which may be calculated from diffusion theory and fluid mechanics. It is also shown that the crossover supercooling varies weakly with the gravitational acceleration, melt viscosity, and the volumetric expansion coefficient.

  3. Diffusion behavior of copper atoms under Cu(II) reduction in Cucurbit[8]uril cavity at elevated temperatures

    SciTech Connect

    Bakovets, Vladimir V.; Nadolinnii, Vladimir A.; Kovalenko, Ekaterina A.; Plyusnin, Pavel E.; Dolgovesova, Irina P.; Zaikovskii, Vladimir I.

    2015-01-15

    In this paper we describe copper clusters and nanoparticles formation by the reduction of copper (II) ions inside cavities of macrocycle molecules using supramolecular compound [Cu(Cyclen)(H{sub 2}O)@CB[8

  4. Calculated diffusion coefficients and the growth rate of olivine in a basalt magma

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.

    1975-01-01

    Concentration gradients in glass adjacent to skeletal olivines in a basalt have been examined by electron probe. The glass is depleted in Mg, Fe, and Cr and enriched in Si, Al, Na, and Ca relative to that far from olivine. Ionic diffusion coefficients for the glass compositions are calculated from temperature, ionic radius and melt viscosity, using the Stokes-Einstein relation. At 1170 C, the diffusion coefficient of Mg(2+) ions in the basalt is 4.5 billionths sq cm per sec. Comparison with measured diffusion coefficients in a mugearite suggests this value may be 16 times too small. The concentration gradient data and the diffusion coefficients are used to calculate instantaneous olivine growth rates. Growth necessarily preceded emplacement such that the composition of the crystals plus the enclosing glass need not be that of a melt. The computed olivine growth rates are compatible with the rate of crystallization deduced for the Skaegaard intrusion.

  5. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers

    SciTech Connect

    Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

    2012-09-01

    We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 meter standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 µm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

  6. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  7. Reaction-diffusion controlled growth of complex structures

    NASA Astrophysics Data System (ADS)

    Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna

    2013-03-01

    Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support

  8. Real-time visualization of diffusion-controlled nanowire growth in solution.

    PubMed

    Ye, Shengrong; Chen, Zuofeng; Ha, Yoon-Cheol; Wiley, Benjamin J

    2014-08-13

    This Letter shows that copper nanowires grow through the diffusion-controlled reduction of dihydroxycopper(I), Cu(OH)2(-). A combination of potentiostatic coulometry, UV-visible spectroscopy, and thermodynamic calculations was used to determine the species adding to growing Cu nanowires is Cu(OH)2(-). Cyclic voltammetry was then used to measure the diffusion coefficient of Cu(OH)2(-) in the reaction solution. Given the diameter of a Cu nanowire and the diffusion coefficient of Cu(OH)2(-), we calculated the dependence of the diffusion-limited growth rate on the concentration of copper ions to be 26 nm s(-1) mM(-1). Independent measurements of the nanowire growth rate with dark-field optical microscopy yielded 24 nm s(-1) mM(-1) for the growth rate dependence on the concentration of copper. Dependence of the nanowire growth rate on temperature yielded a low activation energy of 11.5 kJ mol(-1), consistent with diffusion-limited growth. PMID:25054865

  9. Diffusive transport enhancement by isolated resonances and distribution tails growth in hadronic beams

    SciTech Connect

    Gerasimov, A.

    1990-12-06

    The escape rates and evolution of a distribution of particles are considered for a 2-D model of transverse motion of particles in hadronic storage rings, when nonlinear resonances and external diffusion are present. Dynamic enhancement of diffusion inside separatrices can develop under a certain geometry of resonance oscillations and relatively wide resonances, leading to the fast growth of distribution tails and escape rates. The phenomenon is absent in 1-D. 10 refs., 4 figs.

  10. Multiple wavelength vertical-cavity surface-emitting laser arrays using surface-controlled MOCVD growth rate enhancement and reduction

    SciTech Connect

    Ortiz, G.G.; Hains, C.P.; Luong, S.; Cheng, J.; Hou, H.Q.; Vawter, G.A.

    1997-04-01

    Multiple-wavelength VCSEL and photodetector arrays are useful for wavelength-multiplexed fiberoptic networks, and for optical crosstalk isolation in parallel, free-space interconnects. Multiple wavelength VCSEL arrays have been obtained by varying the growth rate using thermal gradients caused by a backside-patterned substrate, by growth enhancement on a patterned substrate, and by varying the cavity length through anodic oxidation and selective etching of the wafer. We show here for the first time both the enhancement and the reduction of the growth rate of the entire VCSEL structure on a topographically patterned substrate, and demonstrate the controlled variation of the lasing wavelengths of a VCSEL array over an extended spectral range.

  11. Linear optical studies of metal surfaces: Diffusion, growth, and surface dynamics

    NASA Astrophysics Data System (ADS)

    Nabighian, Edward Ara

    Through the use of laser-induced thermal desorption, a monolayer density grating is produced on a Ni(111) substrate. Using linear optical diffraction from this grating we monitor surface diffusion. By varying the angular direction of the grating we also monitor the azimuthal dependence of diffusion over 360° rotation. For hydrogen on Ni(111) we measured the diffusion rates from 65 K to 240 K, yielding diffusion rates which vary from 2 × 10 -15 cm2/sec to 2 × 10-7 cm2/sec. The results reveal energies of diffusion in both the classical overbarrier hopping and phonon-assisted quantum regimes. For xenon on Ni(111) we measured the diffusion rates from 30 K to 60 K, yielding diffusion rates which vary from 1.3 × 10-10 cm2/sec to 1 × 10-9 cm2/sec. In the case of xenon diffusion, the results also reveal an unusually low diffusivity. In addition, growth measurements of xenon on Ni(111) were studied from 35 K to 60 K using an optical reflectance difference technique. The growth of xenon was found to change mechanisms as temperature varied. At 35 K xenon grows in 3-dimensional islands (Volmer-Weber growth), at 40 K xenon grows as 2-dimensional islands (Frank van der Merwe growth), and above 60 K xenon grows to a thickness of only one monolayer. We can not only monitor the growth mechanism, but the growth rate as well. Finally we use optical reflectance difference to monitor sputtering and annealing on the Ni(111) substrate. The competing surface roughening of sputtering and surface reordering of annealing was found to follow an Arrhenius form with an activation energy of Ea = 1.1 eV/atom given by direct atom evaporation from step edges. By monitoring the formation of islands and pits on the surface during sputtering at various temperatures we are able to determine that above 823 K the annealing process reorders the surface faster than sputtering can create surface roughness. As temperature decreases we see an increase in island and pit formation due to the lessened

  12. Double-Diffusive Convection During Growth of Halides and Selenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    several materials such as mercurous chloride, mercurous bromide, mercurous iodide, lead chloride lead bromide, lead iodide, thallium arsenic selenide, gallium selenide, zince sulfide zinc selenide and several crystals into devices. We have used both Bridgman and physical vapor transport (PVT) crystal growth methods. In the past have examined PVT growth numerically for conditions where the boundary of the enclosure is subjected to a nonlinear thermal profile. Since past few months we have been working on binary and ternary materials such as selenoiodides, doped zinc sulfides and mercurous chloro bromide and mercurous bromoiodides. In the doped and ternary materials thermal and solutal convection play extremely important role during the growth. Very commonly striations and banding is observed. Our experiments have indicated that even in highly purified source materials, homogeneity in 1-g environment is very difficult. Some of our previous numerical studies have indicated that gravity level less than 10-4 (?-g) helps in controlling the thermosolutal convection. We will discuss the ground based growth results of HgClxBr(1-x) and ZnSe growth results for the mm thick to large cm size crystals. These results will be compared with our microgravity experiments performed with this class of materials. For both HgCl-HgBr and ZnS-ZnSe the lattice parameters of the mixtures obey Vagard's law in the studied composition range. The study demonstrates that properties are very anisotropic with crystal orientation, and performance achievement requires extremely careful fabrication to utilize highest figure of merit. In addition, some parameters such as crystal growth fabrication, processing time, resolution, field of view and efficiency will be described based on novel solid solution materials. It was predicted that very similar to the pure compounds solid solutions also have very large anisotropy, and very precise oriented and homogeneous bulk and thin film crystals is required to achieve

  13. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  14. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  15. Large interface diffusion in endotaxial growth of MnP films on GaP substrates

    SciTech Connect

    Nateghi, N. Ménard, D.; Masut, R. A.

    2014-10-07

    The metal organic vapor deposition of MnP films on GaP (100) substrates is shown to have a substantial endotaxial component. A study of the growth time evolution of the endotaxial depths of MnP grains reveals a diffusion-controlled growth with a relatively large diffusion coefficient of Mn in GaP. The value (2.2 ± 1.5) × 10⁻¹⁵ (cm²/s) obtained at 650 °C is at least two orders of magnitude larger than the reported Mn diffusion in bulk GaP. GaP surface mounds provide further indirect evidence that this large diffusion coefficient is concurrent with the out-diffusion of Ga atoms at the growing MnP/GaP interface. No trace of dislocations could be observed at or near this interface, which strongly suggests that Mn diffusion occurs through vacant sites generated by the difference between the crystallographic structures of MnP and GaP.

  16. Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth

    NASA Astrophysics Data System (ADS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Bischoff, E.; Mittemeijer, E. J.

    2012-08-01

    The effect of the adatom surface diffusivity on the evolution of the microstructure and the intrinsic stress of thin metal films was investigated for the case of growth of polycrystalline Ag films on amorphous SiO2 (a-SiO2) and amorphous Ge (a-Ge) substrates, with high and low Ag adatom surface diffusivity, respectively. The surface diffusivity of the deposited Ag adatoms on the a-Ge substrate is suppressed also after coalescence of Ag islands due to the continuous (re)segregation of Ge at the surface of the growing film as evidenced by in-situ XPS. An assessment could be made of the role of adatom surface diffusivity on the microstructural development and the intrinsic stress evolution during film growth. As demonstrated by ex-situ TEM and ex-situ XRD, the Ag films grown on the a-SiO2 and a-Ge substrates possess strikingly different microstructures in terms of grain shape, grain size, and crystallographic texture. Nevertheless, the real-time in-situ stress measurements revealed a compressive → tensile → compressive stress evolution for the developing Ag films on both types of substrates, however on different time scales and with stress-component values of largely different magnitudes. It was concluded that (i) the microstructural development of metallic thin films is predominated by the surface diffusivity of the adatoms and (ii) the intrinsic stress evolution is largely controlled by the developing microstructure and the grain-boundary diffusivity.

  17. Large interface diffusion in endotaxial growth of MnP films on GaP substrates

    NASA Astrophysics Data System (ADS)

    Nateghi, N.; Ménard, D.; Masut, R. A.

    2014-10-01

    The metal organic vapor deposition of MnP films on GaP (100) substrates is shown to have a substantial endotaxial component. A study of the growth time evolution of the endotaxial depths of MnP grains reveals a diffusion-controlled growth with a relatively large diffusion coefficient of Mn in GaP. The value (2.2 ± 1.5) × 10-15 (cm2/s) obtained at 650 °C is at least two orders of magnitude larger than the reported Mn diffusion in bulk GaP. GaP surface mounds provide further indirect evidence that this large diffusion coefficient is concurrent with the out-diffusion of Ga atoms at the growing MnP/GaP interface. No trace of dislocations could be observed at or near this interface, which strongly suggests that Mn diffusion occurs through vacant sites generated by the difference between the crystallographic structures of MnP and GaP.

  18. Stationary growth and unique invariant harmonic measure of cylindrical diffusion limited aggregation.

    PubMed

    Marchetti, Riccardo; Taloni, Alessandro; Caglioti, Emanuele; Loreto, Vittorio; Pietronero, Luciano

    2012-08-10

    We prove that the harmonic measure is stationary, unique, and invariant on the interface of diffusion limited aggregation (DLA) growing on a cylinder surface. We provide a detailed theoretical analysis puzzling together multiscaling, multifractality, and conformal invariance, supported by extensive numerical simulations of clusters built using conformal mappings and on a lattice. The growth properties of the active and frozen zones are clearly elucidated. We show that the unique scaling exponent characterizing the stationary growth is the DLA fractal dimension. PMID:23006279

  19. Stationary Growth and Unique Invariant Harmonic Measure of Cylindrical Diffusion Limited Aggregation

    NASA Astrophysics Data System (ADS)

    Marchetti, Riccardo; Taloni, Alessandro; Caglioti, Emanuele; Loreto, Vittorio; Pietronero, Luciano

    2012-08-01

    We prove that the harmonic measure is stationary, unique, and invariant on the interface of diffusion limited aggregation (DLA) growing on a cylinder surface. We provide a detailed theoretical analysis puzzling together multiscaling, multifractality, and conformal invariance, supported by extensive numerical simulations of clusters built using conformal mappings and on a lattice. The growth properties of the active and frozen zones are clearly elucidated. We show that the unique scaling exponent characterizing the stationary growth is the DLA fractal dimension.

  20. Diffusion and growth of aluminum adatoms on magnesium clusters with hexahedral structure

    NASA Astrophysics Data System (ADS)

    Dai, Xiongying; Hu, Wangyu; Yang, Jianyu; Chen, Chuanpin

    2015-02-01

    The surface diffusion and growth of Al atoms on Mg clusters with hexahedral structure was investigated using molecular dynamics simulations. The diffusion pathways and the corresponding energy barriers were determined via the nudged elastic band method. Two diffusion paths from a (0001) facet to a neighboring (1 1 bar 01) facet and between two adjacent (1 1 bar 01) facets were considered. The energy barriers on the (1 1 bar 01) facets and between the two (1 1 bar 01) facets were remarkably increased. As such, the adatom's mobility became limited at low temperatures. The growth of small Al-Mg nanoclusters was modeled via the one-by-one atom deposition technique to form an anomalous core-shell structure. The Mg atoms with lower surface energy and larger atomic radius occupied the core and the Al atoms with higher surface energy and smaller atomic radius occupied the shell.

  1. An Innovative Method for Preparing Semiconductor Change Used in Crystal Growth and Shear Cell Diffusion Experiments

    NASA Technical Reports Server (NTRS)

    Anrold, William A.; Matthiesen, David; Benett, Robert J.; Jayne, Douglas T.

    1997-01-01

    An innovative technique for machining semiconductors has been developed. This technique was used to prepare semiconductor charges for crystal growth and shear cell diffusion experiments. The technique allows brittle semiconductor materials to be quickly and accurately machined. Lightly doping the semiconductor material increases the conductivity enough to allow the material to be shaped by an electrical discharge machine (EDM).

  2. 3D choroid neovascularization growth prediction based on reaction-diffusion model

    NASA Astrophysics Data System (ADS)

    Zhu, Shuxia; Chen, Xinjian; Shi, Fei; Xiang, Dehui; Zhu, Weifang; Chen, Haoyu

    2016-03-01

    Choroid neovascularization (CNV) is a kind of pathology from the choroid and CNV-related disease is one important cause of vision loss. It is desirable to predict the CNV growth rate so that appropriate treatment can be planned. In this paper, we seek to find a method to predict the growth of CNV based on 3D longitudinal Optical Coherence Tomography (OCT) images. A reaction-diffusion model is proposed for prediction. The method consists of four phases: pre-processing, meshing, CNV growth modeling and prediction. We not only apply the reaction-diffusion model to the disease region, but also take the surrounding tissues into consideration including outer retinal layer, inner retinal layer and choroid layer. The diffusion in these tissues is considered as isotropic. The finite-element-method (FEM) is used to solve the partial differential equations (PDE) in the diffusion model. The curve of CNV growth with treatment are fitted and then we can predict the CNV status in a future time point. The preliminary results demonstrated that our proposed method is accurate and the validity and feasibility of our model is obvious.

  3. Experimental techniques for determination of the role of diffusion and convection in crystal growth from solution

    NASA Technical Reports Server (NTRS)

    Zefiro, L.

    1980-01-01

    Various studies of the concentration of the solution around a growing crystal using interferometric techniques are reviewed. A holographic interferometric technique used in laboratory experiments shows that a simple description of the solution based on the assumption of a purely diffusive mechanism appears inadequate since the convection, effective even in reduced columns, always affects the growth.

  4. Hair-inspired crystal growth of HOA in cavities of cellulose matrix via hydrophobic-hydrophilic interface interaction.

    PubMed

    He, Meng; Kwok, Ryan T K; Wang, Zhenggang; Duan, Bo; Tang, Ben Zhong; Zhang, Lina

    2014-06-25

    As one of the most ordinary phenomena in nature, numerous pores on animal skins induce the growth of abundant hairs. In this study, cavities of a cellulose matrix were used as hard templates to lead the hair-inspired crystal growth of 12-hydroxyoctadecanoic acid (HOA) through hydrophobic-hydrophilic interface interaction, and short hair-like HOA crystals with a smooth surface were formed on cellulose films. In our findings, by using solvent evaporation induced crystallization, hydrophobic HOA grew along the hydrophilic cellulose pore wall to form regular vertical worm-like and pillar-like crystals with an average diameter of about 200 nm, depending on the experimental conditions and HOA concentration. The formation mechanism of the short hair-like HOA crystals as well as the structure and properties of the cellulose/HOA submicrometer composite films were studied. The pores of the cellulose matrix supplied not only cavities for the HOA crystals fixation but also hydrophilic shells to favor the vertical growth of the relatively hydrophobic HOA crystals. The cellulose/HOA submicrometer composite films exhibited high hydrophobicity, as a result of the formation of the solid/air composite surface. Furthermore, 4-(1,2,2-triphenylethenyl) benzoic acid, an aggregation-induced emission luminogen, was used to aggregate on the cellulose surface with HOA to emit and monitor the HOA crystal growth, showing bifunctional photoluminscence and self-cleaning properties. This work opens up a novel one-step pathway to design bio-inspired submicrometer materials by utilizing natural products, showing potential applications in self-cleaning optical devices.

  5. Influence of diffusion and convective transport on dendritic growth in dilute alloys

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1982-01-01

    Experimentation has been carried out in which the kinetics and morphology of dendritic growth were measured as a function of thermal supercooling, solute concentration, and spatial orientation of the dendritic growth axis. The crystal growth system studied is succinonitrile, NC(CH2)2CN, with additions of argon (up to 0.1 mole percent). This system is especially useful as a model for alloy studies because kinetic data are available for high purity (7-9's) succinonitrile. The influence of the solute, at fixed thermal supercooling, is to increase the growth velocity and correspondingly decrease intrinsic crystal dimensions. Morphological measurements are described in detail relating tip size, perturbation wavelength, supercooling, and solute concentration. The analysis of these effects based on morphological stability theory is also discussed, and experiments permitting the separation of convective and diffusive heat transport during crystal growth of succinonitrile are described. The studies underscore the importance of gravitationally-induced buoyancy effects on crystal growth.

  6. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity.

    PubMed

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-01-01

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer. PMID:26419420

  7. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity

    NASA Astrophysics Data System (ADS)

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-01

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  8. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity

    PubMed Central

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-01-01

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer. PMID:26419420

  9. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity.

    PubMed

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-30

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  10. Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics.

    PubMed

    Ding, Yang; Batista, Bruno; Steinbock, Oliver; Cartwright, Julyan H E; Cardoso, Silvana S S

    2016-08-16

    To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms.

  11. Wavy membranes and the growth rate of a planar chemical garden: Enhanced diffusion and bioenergetics.

    PubMed

    Ding, Yang; Batista, Bruno; Steinbock, Oliver; Cartwright, Julyan H E; Cardoso, Silvana S S

    2016-08-16

    To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms. PMID:27486248

  12. Transition in the fractal properties from diffusion-limited aggregation to Laplacian growth via their generalization.

    PubMed

    Hentschel, H George E; Levermann, Anders; Procaccia, Itamar

    2002-07-01

    We study the fractal and multifractal properties (i.e., the generalized dimensions of the harmonic measure) of a two-parameter family of growth patterns that result from a growth model that interpolates between diffusion-limited aggregation (DLA) and Laplacian growth patterns in two dimensions. The two parameters are beta that determines the size of particles accreted to the interface, and C that measures the degree of coverage of the interface by each layer accreted to the growth pattern at every growth step. DLA and Laplacian growth are obtained at beta=0, C=0 and beta=2, C=1, respectively. The main purpose of this paper is to show that there exists a line in the beta-C phase diagram that separates fractal (D<2) from nonfractal (D=2) growth patterns. Moreover, Laplacian growth is argued to lie in the nonfractal part of the phase diagram. Some of our arguments are not rigorous, but together with the numerics they indicate this result rather strongly. We first consider the family of models obtained for beta=0, C>0, and derive for them a scaling relation D=2D(3). We then propose that this family has growth patterns for which D=2 for some C>C(cr), where C(cr) may be zero. Next we consider the whole beta-C phase diagram and define a line that separates two-dimensional growth patterns from fractal patterns with D<2. We explain that Laplacian growth lies in the region belonging to two-dimensional growth patterns, motivating the main conjecture of this paper, i.e., that Laplacian growth patterns are two dimensional. The meaning of this result is that the branches of Laplacian growth patterns have finite (and growing) area on scales much larger than any ultraviolet cutoff length. PMID:12241482

  13. Colonic hydrogen generated from fructan diffuses into the abdominal cavity and reduces adipose mRNA abundance of cytokines in rats.

    PubMed

    Nishimura, Naomichi; Tanabe, Hiroki; Adachi, Misato; Yamamoto, Tatsuro; Fukushima, Michihiro

    2013-12-01

    Hydrogen (H2) protects against inflammation-induced oxidative stress. Nondigestible saccharides (NDSs) enhance colonic H2 production. We examined whether colonic H2 transfers to tissues in the abdominal cavity and whether it affects expression of proinflammatory cytokines. In Expts. 1 and 2, rats were fed diets containing fructooligosaccharides [FOSs; 25 (Expt. 1) and 50 g/kg (Expts. 1 and 2)] for 7 and 14 d, respectively. The no-FOS diet was used as the control diet. At the end of the experiment, H2 excretion and the portal H2 concentration were significantly greater in the FOS group than in the control group. In the FOS group, the arterial H2 concentration was no more than 1.5% of the portal H2 concentration (P = 0.03). The H2 concentration in abdominal cavity tissues, especially adipose tissue, in the FOS group was 5.6- to 43-fold of that in the control group (P < 0.05). The H2 content in the abdominal cavity in the FOS group was 11-fold of that in the control group (P < 0.05). In Expt. 3, rats were fed a high-fat diet containing FOS and inulin (50 g/kg) for 28 d. The area under the curve for H2 excretion between 0 and 28 d and portal and adipose H2 concentrations were significantly higher in the FOS and inulin groups than in the high-fat control group. Adipose mRNA abundance of nuclear factor kappa-light-chain-enhancer of activated B cells 1 was lower in the FOS group than in the control group (P = 0.02) and those of interleukin-6 and chemokine (C-C motif) ligand 2 tended to be lower (P < 0.11). Colonic H2 generated from NDS diffuses to the abdominal cavity before transferring to abdominal tissues. Reduced cytokine expression by FOS feeding might be dependent on increased colonic H2. Colonic H2 may have important implications in the suppressive effect on metabolic syndrome via oxidative stress.

  14. Numerical computation of the linear stability of the diffusion model for crystal growth simulation

    SciTech Connect

    Yang, C.; Sorensen, D.C.; Meiron, D.I.; Wedeman, B.

    1996-12-31

    We consider a computational scheme for determining the linear stability of a diffusion model arising from the simulation of crystal growth. The process of a needle crystal solidifying into some undercooled liquid can be described by the dual diffusion equations with appropriate initial and boundary conditions. Here U{sub t} and U{sub a} denote the temperature of the liquid and solid respectively, and {alpha} represents the thermal diffusivity. At the solid-liquid interface, the motion of the interface denoted by r and the temperature field are related by the conservation relation where n is the unit outward pointing normal to the interface. A basic stationary solution to this free boundary problem can be obtained by writing the equations of motion in a moving frame and transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the form.

  15. The Diffusion Model Is Not a Deterministic Growth Model: Comment on Jones and Dzhafarov (2014)

    PubMed Central

    Smith, Philip L.; Ratcliff, Roger; McKoon, Gail

    2015-01-01

    Jones and Dzhafarov (2014) claim that several current models of speeded decision making in cognitive tasks, including the diffusion model, can be viewed as special cases of other general models or model classes. The general models can be made to match any set of response time (RT) distribution and accuracy data exactly by a suitable choice of parameters and so are unfalsifiable. The implication of their claim is that models like the diffusion model are empirically testable only by artificially restricting them to exclude unfalsifiable instances of the general model. We show that Jones and Dzhafarov’s argument depends on enlarging the class of “diffusion” models to include models in which there is little or no diffusion. The unfalsifiable models are deterministic or near-deterministic growth models, from which the effects of within-trial variability have been removed or in which they are constrained to be negligible. These models attribute most or all of the variability in RT and accuracy to across-trial variability in the rate of evidence growth, which is permitted to be distributed arbitrarily and to vary freely across experimental conditions. In contrast, in the standard diffusion model, within-trial variability in evidence is the primary determinant of variability in RT. Across-trial variability, which determines the relative speed of correct responses and errors, is theoretically and empirically constrained. Jones and Dzhafarov’s attempt to include the diffusion model in a class of models that also includes deterministic growth models misrepresents and trivializes it and conveys a misleading picture of cognitive decision-making research. PMID:25347314

  16. Diffusion of Nerve Growth Factor in Rat Striatum as Determined by Multiphoton Microscopy

    PubMed Central

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Webb, Watt W.; Saltzman, W. Mark

    2003-01-01

    Neurotrophins such as nerve growth factor (NGF) may be useful for treating diseases in the central nervous system; our ability to harness the potential therapeutic benefit of NGF is directly related to our understanding of the fate of exogenously supplied factors in brain tissue. We utilized multiphoton microscopy to quantify the dynamic behavior of NGF in coronal, 400-μm thick, fresh rat brain tissue slices. We administered a solution containing bioactive rhodamine nerve growth factor conjugate via pressure injection and monitored the dispersion in the striatal region of the coronal slices. Multiphoton microscopy facilitated repeated imaging deep (∼200 μm) into tissue slices with minimal photodamage of tissue and photobleaching of label. The pressure injection paradigm approximated diffusion from a point source, and we therefore used the corresponding solution to the diffusion equation to estimate an apparent diffusion coefficient in brain tissue (Db(34°C)) of 2.75 ± 0.24 × 10−7 cm2/s (average ± SE). In contrast, we determined a corresponding free diffusion coefficient in buffered solution (Df(34°C)) of 12.6 ± 0.9 × 10−7 cm2/s using multiphoton fluorescence photobleaching recovery. The tortuosity, defined as the square root of the ratio of Df to Db, was 2.14 and moderate in magnitude. PMID:12829512

  17. Nucleation and growth by diffusion under Ostwald-Freundlich boundary condition

    SciTech Connect

    Iwamatsu, Masao

    2014-02-14

    The critical radius of a nucleus grown by diffusion in a solution is studied thermodynamically as well as kinetically. The thermodynamic growth equation called Zeldovich equation of classical nucleation theory and the kinetic diffusional growth equation combined with the Ostwald-Freundlich boundary condition lead to the same critical radius. However, it should be pointed out that the diffusional equation may lead to a kinetic critical radius that is different from the thermodynamic critical radius, thus indicating the possibility of kinetically controlling the critical radius of a nucleus.

  18. The role of carbon surface diffusion on the growth of epitaxial graphene on SiC.

    SciTech Connect

    Thurmer, Konrad; Ohta, Taisuke; Nie, Shu; Bartelt, Norman Charles; Kellogg, Gary Lee

    2010-03-01

    Growth of high quality graphene films on SiC is regarded as one of the more viable pathways toward graphene-based electronics. Graphitic films form on SiC at elevated temperature because of preferential sublimation of Si. Little is known, however, about the atomistic processes of interrelated SiC decomposition and graphene growth. We have observed the formation of graphene on SiC by Si sublimation in an Ar atmosphere using low energy electron microscopy, scanning tunneling microcopy and atomic force microscopy. This work reveals that the growth mechanism depends strongly on the initial surface morphology, and that carbon diffusion governs the spatial relationship between SiC decomposition and graphene growth. Isolated bilayer SiC steps generate narrow ribbons of graphene, whereas triple bilayer steps allow large graphene sheets to grow by step flow. We demonstrate how graphene quality can be improved by controlling the initial surface morphology specifically by avoiding the instabilities inherent in diffusion-limited growth.

  19. Application of Monte Carlo techniques to transient thermal modeling of cavity radiometers having diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Eskin, L. D.

    1981-01-01

    A viable alternative to the net exchange method of radiative analysis which is equally applicable to diffuse and diffuse-specular enclosures is presented. It is particularly more advantageous to use than the net exchange method in the case of a transient thermal analysis involving conduction and storage of energy as well as radiative exchange. A new quantity, called the distribution factor is defined which replaces the angle factor and the configuration factor. Once obtained, the array of distribution factors for an ensemble of surface elements which define an enclosure permits the instantaneous net radiative heat fluxes to all of the surfaces to be computed directly in terms of the known surface temperatures at that instant. The formulation of the thermal model is described, as is the determination of distribution factors by application of a Monte Carlo analysis. The results show that when fewer than 10,000 packets are emitted, an unsatisfactory approximation for the distribution factors is obtained, but that 10,000 packets is sufficient.

  20. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model.

    PubMed

    Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping

    2016-01-01

    Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm's shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here. PMID:27434099

  1. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping

    2016-08-01

    Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm’s shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.

  2. Growth, diffusion, and loss of subsurface ice on Mars : experiments and models

    NASA Astrophysics Data System (ADS)

    Hudson, Troy Lee

    Innovative experiments and models are used to explore the behavior of subsurface ice on Mars. Through communication with the atmosphere, the porous regolith of Mars hosts significant quantities of ice which grow, evolve, and are lost in response to climate changes. As a controlling property of rate of ice response to a changing equilibrium state, the diffusive properties of several regolith simulants are measured in Mars-like environments. Ice loss through a variety of particle sizes, particle size distributions, packing densities, and salt contents are examined and reveal that many unconsolidated media exhibit diffusion coefficients in the range of 2-6 cm^2 s^-1, indicating a response time on the order of several thousand years for ice within the upper meter of the regolith. Only high salt contents or mechanically packed micron-sized dust are observed to exhibit substantially lower coefficients, suggesting that strong diffusive barriers may not form as readily as previously invoked. The growth of ice directly from vapor under diffusive control is reproduced for Mars-like environmental conditions in the absence of the liquid phase. As predicted, ice deposits preferentially at grain contact points and the ice table interface is sharp and strongly controlled by near-surface temperature perturbations. The quantity of ice deposited as a function of depth and time accords well with new numerical models of vapor diffusion and ice deposition, though constriction of the pore space reduces the diffusion coefficient faster than originally expected. A numerical model incorporating a fast solution to subsurface ice growth predicts near-surface ice contents for the last 300,000 years of Mars' history at high latitude locations, including specifically the Phoenix landing site. Several parameterizations of constriction developed from laboratory observations of ice growth are employed and compared. The thickness of the ice-free layer above the ice table has the strongest effect on

  3. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    SciTech Connect

    Aschwanden, Markus J.

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission, amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.

  4. Rotational diffusion of receptors for epidermal growth factor measured by time-resolved phosphorescence depolarization

    NASA Astrophysics Data System (ADS)

    Zidovetzki, Raphael; Johnson, David A.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    1991-06-01

    The cell surface receptor for epidermal growth factor (EGFR) is one of the most studied integral membrane proteins. The receptor is widely distributed in cells and tissues of mammalian and avian tissues and plays an important role in growth control. Binding of the epidermal growth factor (EGF) to EGFR initiates a complex biological response, which includes self-phosphorylation of the receptor due to an intrinsic tyrosine kinase activity, phosphorylation of other membrane proteins, increased intake of metabolites, and increased proliferation. Complete amino acid sequence of EGFR revealed a high degree of homology with viral oncogenes and allowed tentative identification of an external hormone binding domain, a transmembrane domain, and a cytoplasmic domain that includes tyrosine kinase activity. EGF binding induces rapid aggregation of EGFR, a process which was also observed on other receptor systems. These and other observations led to a hypothesis that microaggregation of EGFR is a necessary prerequisite for the biological response of EGF. A direct approach to study the processes of oligomerization of cell membrane proteins is to measure their mobility under various conditions. The lateral mobility of the EGFR was studied on mouse 3T3 fibroblasts and on A431 cells. However, an examination of the equations for the lateral and rotational diffusion in membranes shows that only rotational diffusion is strongly dependent on the size of the diffusing entity. A method of measuring protein rotational diffusion by time-resolved phosphorescence has proved to be very useful in the analysis of both in vivo and in vitro systems. The authors apply this method to study the mobility of EGFR on living A431 cells and membrane preparations.

  5. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis.

    PubMed

    Matsuo, Isao; Kimura-Yoshida, Chiharu

    2014-12-01

    During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.

  6. Streptococcus pneumoniae PstS production is phosphate responsive and enhanced during growth in the murine peritoneal cavity

    NASA Technical Reports Server (NTRS)

    Orihuela, C. J.; Mills, J.; Robb, C. W.; Wilson, C. J.; Watson, D. A.; Niesel, D. W.

    2001-01-01

    Differential display-PCR (DDPCR) was used to identify a Streptococcus pneumoniae gene with enhanced transcription during growth in the murine peritoneal cavity. Northern dot blot analysis and comparative densitometry confirmed a 1.8-fold increase in expression of the encoded sequence following murine peritoneal culture (MPC) versus laboratory culture or control culture (CC). Sequencing and basic local alignment search tool analysis identified the DDPCR fragment as pstS, the phosphate-binding protein of a high-affinity phosphate uptake system. PCR amplification of the complete pstS gene followed by restriction analysis and sequencing suggests a high level of conservation between strains and serotypes. Quantitative immunodot blotting using antiserum to recombinant PstS (rPstS) demonstrated an approximately twofold increase in PstS production during MPC from that during CCs, a finding consistent with the low levels of phosphate observed in the peritoneum. Moreover, immunodot blot and Northern analysis demonstrated phosphate-dependent production of PstS in six of seven strains examined. These results identify pstS expression as responsive to the MPC environment and extracellular phosphate concentrations. Presently, it remains unclear if phosphate concentrations in vivo contribute to the regulation of pstS. Finally, polyclonal antiserum to rPstS did not inhibit growth of the pneumococcus in vitro, suggesting that antibodies do not block phosphate uptake; moreover, vaccination of mice with rPstS did not protect against intraperitoneal challenge as assessed by the 50% lethal dose.

  7. Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources

    PubMed Central

    2013-01-01

    Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 μm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems. PMID:24024736

  8. Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides

    NASA Astrophysics Data System (ADS)

    Somers, Marcel A. J.; Mittemeijer, Eric J.

    1995-01-01

    Models were derived for monolayer and bilayer growth into a substrate in which diffusion of the solute governs the growth kinetics, as in gas-solid reactions, for example. In the models, the composition dependence of the solute diffusivity in the phases constituting the layers was accounted for by appropriate definition of an effective diffusion coefficient for a (sub)layer. This effective diffusion coefficient is the intrinsic diffusion coefficient weighted over the composition range of the (sub)layer. The models were applied for analyzing the growth kinetics of a γ'-Fe4N1-x monolayer on an α-Fe substrate and the growth kinetics of an ɛ-Fe2N1-z/γ'-Fe4N1-x bilayer on an α-Fe substrate, as observed by gaseous nitriding in an NH3/H2-gas mixture at 843 K. The kinetics of layer development and the evolution of the microstructure were investigated by means of thermogravimetry, layer-thickness measurements, light microscopy, and electron probe X-ray microanalysis (EPMA). The effective and self-diffusion coefficients were determined for each of the nitride layers. The composition dependence of the intrinsic (and effective) diffusion coefficients was established. Re-evaluating literature data for diffusion in γ'-Fe4N1-x on the basis of the present model, it followed that the previous and present data are consistent. The activation energy for diffusion of nitrogen in γ'-Fe4N1-x was determined from the temperature dependence of the self-diffusion coefficient. The self-diffusion coefficient for nitrogen in ɛ-Fe2N1-z was significantly larger than that for γ'-Fe4N1-x. This was explained qualitatively, considering the possible mechanisms for interstitial diffusion of nitrogen atoms in the close-packed iron lattices of the ɛ and γ' iron nitrides.

  9. Allometric studies on growth and development of the human placenta: growth of tissue compartments and diffusive conductances in relation to placental volume and fetal mass.

    PubMed

    Mayhew, Terry M

    2006-06-01

    Correlations between placental size and fetal mass during gestation fail to account for changes in composition that accompany placental growth and maturation. This study uses stereological data on the sizes of different tissue compartments in human placentas from 10 weeks of gestation to term and relates them to placental volume and to fetal mass by means of allometric analysis. In addition, tissue dimensions are used to calculate a physiological transport measure (diffusive conductance) for the villous membrane. Histological sections randomly sampled from placentas and analysed stereologically provided estimates of structural quantities (volumes, exchange surface areas, lengths, numbers of nuclei, diffusion distances). These data were combined with a physicochemical quantity (Krogh's diffusion coefficient) in order to estimate oxygen diffusive conductances for the villous membrane and its two components (trophoblast and stroma). Allometric relationships between these quantities and placental volume or fetal mass were obtained by linear regression analyses after log-transformation. Placental tissues had different growth trajectories: most grew more rapidly than placental volume and all grew more slowly than fetal mass. Diffusion distances were inversely related to placental and fetal size. Differential growth impacted on diffusive conductances, which, again, did not improve commensurately with placental volume but did match exactly growth of the fetus. Findings show that successful integration between supply and demand can be achieved by differential tissue growth. Allometric analysis of results from recent studies on the murine placenta suggest further that diffusive conductances may also be matched to fetal mass during gestation and to fetal mass at term across species.

  10. Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion

    PubMed Central

    GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO

    2005-01-01

    • Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful

  11. Stochastic Boundary, Diffusion, Emittance Growth and Lifetime calculation for the RHIC e-lens

    SciTech Connect

    Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.

    2009-01-20

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), a low energy electron beam with proper Gaussian transverse profiles was proposed to collide head-on with the proton beam. In this article, using a modified version of SixTrack [1], we investigate stability of the single particle in the presence of head-on beam-beam compensation. The Lyapunov exponent and action diffusion are calculated and compared between the cases without and with beam-beam compensation for two different working points and various bunch intensities. Using the action diffusion results the emittance growth rate and lifetime of the proton beam is also estimated for the different scenarios.

  12. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rueda-Fonseca, P.; Orrò, M.; Bellet-Amalric, E.; Robin, E.; Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J.

    2016-04-01

    With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.

  13. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma presenting in nasal cavity: a case report and review of literature

    PubMed Central

    Chen, Ji; Feng, Xiaoli; Dong, Mei

    2015-01-01

    Anaplastic lymphoma kinase (ALK)-positive diffuse large B-cell lymphoma (DLBCL) is a rare subtype of non-Hodgkin’s lymphoma (NHL) with distinct morphologic and immunohistochemical features. We reported a 57-year-old female with ALK-positive DLBCL in her left nasal cavity. Histologically, the tumor cells were characterized by plasmablastic morphology and tested positive for ALK in a cytoplasmic granular staining pattern. The neoplastic cells were positive for CD38, CD4, MUM1, CD138 and Vimentin. However, they failed to express CD56, CD30, as well as mature B cells markers, such as CD79a, CD20 and T cells markers such as CD2, CD3, CD5, CD7 and CD8. The patient achieved complete response after four cycles of CHOEP (cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide) treatment. Then she received radiotherapy of the originally involved area. This case represented a rare ALK-positive DLBCL in the nasal region. PMID:25973114

  14. Modeling the Growth of Hyperthermophiles in Deep-sea Hydrothermal Diffuse Fluids and Sulfide Deposits

    NASA Astrophysics Data System (ADS)

    Ver Eecke, H. C.; Oslowski, D. M.; Butterfield, D. A.; Olson, E. J.; Lilley, M. D.; Holden, J. F.

    2009-12-01

    In 2008 and 2009, 534 hydrothermal fluid samples and 5 actively-venting black smoker chimneys were collected using Alvin for correlative microbiological and chemical analyses as part of the Endeavour Segment and Axial Volcano Geochemistry and Ecology Research (EAGER) program. Hyperthermophilic, autotrophic Fe(III) oxide reducers, methanogens, and sulfur-reducing heterotrophs were enriched for at 85 and 95°C using most-probable-number estimates from 28 diffuse fluid and 8 chimney samples. Heterotrophs were the most abundant of the three groups in both diffuse fluids and black-smoker chimneys. Iron reducers were more abundant than methanogens, and more abundant in sulfide-hosted vents than in basalt-hosted vents. Fluid chemistry suggests that there is net biogenic methanogenesis at the Marker 113/62 diffuse vent at Axial Volcano but nowhere else sampled. The growth of hyperthermophilic methanogens and heterotrophs was modeled in the lab using pure cultures. Methanocaldococcus jannaschii grew at 82°C in a 2-liter reactor with continuous gas flow at H2 concentrations between 20 and 225 µM with a H2 km of 100 µM. Correlating H2 end-member mixing curves from vent fluids and seawater with our laboratory modeling study suggests that H2 concentrations are limiting for Methanocaldococcus growth at most Mothra, Main Field, and High Rise vent sites at Endeavour but sufficient to support growth at some Axial Volcano vents. Therefore, hyperthermophilic methanogens may depend on H2 syntrophy at low H2 sites. Twenty-one pure hyperthermophilic heterotroph strains each grew on α-1,4 and β-1,4 linked sugars and polypeptides with concomitant H2 production. The H2 production rate (cell-1 doubling-1) for Pyrococcus furiosus at 95°C without sulfur was 29 fmol, 36 fmol, and 53 fmol for growth on α-1,4 sugars, β-1,4 sugars, and peptides, respectively. The CH4 production rate for M. jannaschii was 390 fmol cell-1 doubling-1; therefore, we estimate that it would take approximately

  15. Growth of a diffusion flame in the field of a vortex

    NASA Technical Reports Server (NTRS)

    Marble, F. E.

    1985-01-01

    In the present study of the growth of a diffusion flame in the field of a vortex, the motion in the core is converted into a solid body rotation. The flame extension and distortion kinematics are presented, and the effect of the local flow field on local flame structure is analyzed in detail. The combustion field is found to consist of a totally reacted core region whose radius is time-dependent, and an external flame region which consists of a pair of spiral arms that extend at large radii toward their original positions on the horizontal axis. Two similarity rules are formulated which are independent of kinematic viscosity.

  16. Dual-wavelength vertical external-cavity surface-emitting laser: strict growth control and scalable design

    NASA Astrophysics Data System (ADS)

    Jasik, Agata; Sokół, Adam Kamil; Broda, Artur; Sankowska, Iwona; Wójcik-Jedlińska, Anna; Wasiak, Michał; Kubacka-Traczyk, Justyna; Muszalski, Jan

    2016-02-01

    This paper reports on the design and fabrication of a dual-wavelength vertical external-cavity surface-emitting laser. Grown by molecular beam epitaxy, the laser structures have a relatively simple active region divided into two sections, between which there is no optical filter. Comparable threshold power was achieved for both wavelengths. The growth rate was controlled precisely by growing AlAs/GaAs superlattices with different period thicknesses and testing them with high-resolution X-ray diffractometry. The simultaneous emission of two wavelengths was detected in setup without a heat spreader, one of 991 nm and the other of 1038 nm. After diamond heat spreader was bonded, both wavelengths lased in continuous-wave mode with the combined output power of 1.79 W. The design scalability allowed us to obtain two further structures with layers thinned by about 3 % in the first and by about 6 % in the second, operating at 958/1011 and 928/977 nm, respectively.

  17. Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth.

    PubMed

    Heijna, M C R; van Enckevort, W J P; Vlieg, E

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick's second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  18. Bacterial Growth on Distant Naphthalene Diffusing through Water, Air, and Water-Saturated and Nonsaturated Porous Media

    PubMed Central

    Harms, H.

    1996-01-01

    The influence of substrate diffusion on bacterial growth was investigated. Crystalline naphthalene was supplied as the substrate at various distances in the range of centimeters from naphthalene-degrading organisms separated from the substrate by agar-solidified mineral medium. Within 2 weeks, the cells grew to final numbers which were negatively correlated with the distance from the substrate. A mathematical model that combined (i) Monod growth kinetics extended by a term for culture maintenance and (ii) substrate diffusion could explain the observed growth curves. The model could also predict growth on naphthalene that was separated from the bacteria by air. In addition, the bacteria were grown on distant naphthalene that had to diffuse to the cells through water-saturated and unsaturated porous media. The growth of the bacteria could be used to calculate the effective diffusivity of naphthalene in the three-phase system. Diffusion of naphthalene in the pore space containing 80% air was roughly 1 order of magnitude faster than in medium containing only 20% air because of the high Henry's law coefficient of naphthalene. It is proposed that the effective diffusivities of the substrates and the spatial distribution of substrates and bacteria are the main determinants of final cell numbers and, consequently, final degradation rates. PMID:16535349

  19. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS.

    PubMed

    Li, Chun; Huang, Liang; Snigdha, Gayatri Pongur; Yu, Yifei; Cao, Linyou

    2012-10-23

    We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.

  20. Thermal diffusion dominated dendritic growth — an analysis of the wall proximity effect

    NASA Astrophysics Data System (ADS)

    Pines, Vladimir; Chait, Arnon; Zlatkowski, Marianne

    1996-09-01

    It is demonstrated that using a simple correction to the original Ivantsov solution to account for wall proximity effects is sufficient to describe the Peclet number microgravity data of Glicksman et al. [M.E. Glicksman, M.B. Koss and E.A. Winsa, Phys. Rev. Lett. 73 (1994) 573; M.E. Glicksman, M.B. Koss, L.T. Bushnell, J.C. LaCombe and E.A. Winsa, ISLJ International 35 (1995) 1216; MRS Fall Meeting, Symp. P, Boston MA, 1995, in press] at low supercooling. The analytical correction provides for the enhanced diffusive heat transfer when the thermal diffusion length becomes comparable to the physical chamber dimension. The wall proximity effect is also responsible for the existence of a lower supercooling limit below which the dendrite cannot grow in a steady-state manner. It is concluded that Glicksman's USMP-2 microgravity data is thermal diffusion dominated and thus entirely appropriate for comparison with dendritic growth theories.

  1. Structure and morphology in diffusion-driven growth of nanowires: the case of ZnTe.

    PubMed

    Rueda-Fonseca, P; Bellet-Amalric, E; Vigliaturo, R; den Hertog, M; Genuist, Y; André, R; Robin, E; Artioli, A; Stepanov, P; Ferrand, D; Kheng, K; Tatarenko, S; Cibert, J

    2014-01-01

    Gold-catalyzed ZnTe nanowires were grown at low temperature by molecular beam epitaxy on a ZnTe(111) B buffer layer, under different II/VI flux ratios, including with CdTe insertions. High-resolution electron microscopy and energy-dispersive X-ray spectroscopy (EDX) gave information about the crystal structure, polarity, and growth mechanisms. We observe, under stoichiometric conditions, the simultaneous presence of zinc-blende and wurtzite nanowires spread homogeneously on the same sample. Wurtzite nanowires are cylinder-shaped with a pyramidal-structured base. Zinc-blende nanowires are cone-shaped with a crater at their base. Both nanowires and substrate show a Te-ended polarity. Te-rich conditions favor zinc-blende nanowires, while Zn-rich suppress nanowire growth. Using a diffusion-driven growth model, we present a criterion for the existence of a crater or a pyramid at the base of the nanowires. The difference in nanowire morphology indicates lateral growth only for zinc-blende nanowires. The role of the direct impinging flux on the nanowire's sidewall is discussed.

  2. Structure and morphology in diffusion-driven growth of nanowires: the case of ZnTe.

    PubMed

    Rueda-Fonseca, P; Bellet-Amalric, E; Vigliaturo, R; den Hertog, M; Genuist, Y; André, R; Robin, E; Artioli, A; Stepanov, P; Ferrand, D; Kheng, K; Tatarenko, S; Cibert, J

    2014-01-01

    Gold-catalyzed ZnTe nanowires were grown at low temperature by molecular beam epitaxy on a ZnTe(111) B buffer layer, under different II/VI flux ratios, including with CdTe insertions. High-resolution electron microscopy and energy-dispersive X-ray spectroscopy (EDX) gave information about the crystal structure, polarity, and growth mechanisms. We observe, under stoichiometric conditions, the simultaneous presence of zinc-blende and wurtzite nanowires spread homogeneously on the same sample. Wurtzite nanowires are cylinder-shaped with a pyramidal-structured base. Zinc-blende nanowires are cone-shaped with a crater at their base. Both nanowires and substrate show a Te-ended polarity. Te-rich conditions favor zinc-blende nanowires, while Zn-rich suppress nanowire growth. Using a diffusion-driven growth model, we present a criterion for the existence of a crater or a pyramid at the base of the nanowires. The difference in nanowire morphology indicates lateral growth only for zinc-blende nanowires. The role of the direct impinging flux on the nanowire's sidewall is discussed. PMID:24564275

  3. Roughness distribution of multiple hit and long surface diffusion length noise reduced discrete growth models

    NASA Astrophysics Data System (ADS)

    Disrattakit, P.; Chanphana, R.; Chatraphorn, P.

    2016-11-01

    Conventionally, the universality class of a discrete growth model is identified via the scaling of interface width. This method requires large-scale simulations to minimize finite-size effects on the results. The multiple hit noise reduction techniques (m > 1 NRT) and the long surface diffusion length noise reduction techniques (ℓ > 1 NRT) have been used to promote the asymptotic behaviors of the growth models. Lately, an alternative method involving comparison of roughness distribution in the steady state has been proposed. In this work, the roughness distribution of the (2 +1)-dimensional Das Sarma-Tamborenea (DT), Wolf-Villain (WV), and Larger Curvature (LC) models, with and without NRTs, are calculated in order to investigate effects of the NRTs on the roughness distribution. Additionally, effective growth exponents of the noise reduced (2 +1)-dimensional DT, WV and LC models are also calculated. Our results indicate that the NRTs affect the interface width both in the growth and the saturation regimes. In the steady state, the NRTs do not seem to have any impact on the roughness distribution of the DT model, but it significantly changes the roughness distribution of the WV and LC models to the normal distribution curves.

  4. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  5. Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge.

    PubMed

    Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; McCarthy, Graham W; Gocke, Thomas E; Olson, Betty H; Park, Hee-Deung; Al-Omari, Ahmed; Murthy, Sudhir; Bott, Charles B; Wett, Bernhard; Smeraldi, Joshua D; Shaw, Andrew R; Rosso, Diego

    2016-03-01

    Aeration is commonly identified as the largest contributor to process energy needs in the treatment of wastewater and therefore garners significant focus in reducing energy use. Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. These diffusers are subject to fouling and scaling, resulting in loss in transfer efficiency as biofilms form and change material properties producing larger bubbles, hindering mass transfer and contributing to increased plant energy costs. This research establishes a direct correlation and apparent mechanistic link between biofilm DNA concentration and reduced aeration efficiency caused by biofilm fouling. Although the connection between biofilm growth and fouling has been implicit in discussions of diffuser fouling for many years, this research provides measured quantitative connection between the extent of biofouling and reduced diffuser efficiency. This was clearly established by studying systematically the deterioration of aeration diffusers efficiency during a 1.5 year period, concurrently with the microbiological study of the biofilm fouling in order to understand the major factors contributing to diffuser fouling. The six different diffuser technologies analyzed in this paper included four different materials which were ethylene-propylene-diene monomer (EPDM), polyurethane, silicone and ceramic. While all diffusers foul eventually, some novel materials exhibited fouling resistance. The material type played a major role in determining the biofilm characteristics (i.e., growth rate, composition, and microbial density) which directly affected the rate and intensity at what the diffusers were fouled, whereas diffuser geometry exerted little influence. Overall, a high correlation between the increase in biofilm DNA and the decrease in αF was evident (CV < 14.0 ± 2.0%). By linking bacterial growth with aeration efficiency, the research was able to show quantitatively the causal connection

  6. Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach

    PubMed Central

    Chen, Ying; Lowengrub, John S.

    2014-01-01

    We develop a mathematical model of tumor growth in complex, dynamic microenvironments with active, deformable membranes. Using a diffuse domain approach, the complex domain is captured implicitly using an auxiliary function and the governing equations are appropriately modified, extended and solved in a larger, regular domain. The diffuse domain method enables us to develop an efficient numerical implementation that does not depend on the space dimension or the microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented via a membrane energy that models cell-BM interactions. We incorporate simple models of elastic forces and the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it necessary to downregulate cell-BM adhesiveness, which is consistent with experimental observations. A stiff BM promotes invasiveness because at early stages the opening in the BM created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus promotes fragmentation that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was found to increase in size even when the BM is stiff because of pressure induced by growing tumor clusters. A larger opening in the BM can increase the potential for further invasiveness by increasing the possibility that additional

  7. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  8. Calculation of surface diffusivity and residence time by molecular dynamics with application to nanoscale selective-area growth

    NASA Astrophysics Data System (ADS)

    Almeida, S.; Ochoa, E.; Chavez, J. J.; Zhou, X. W.; Zubia, D.

    2015-08-01

    The surface diffusivity and residence time were calculated by molecular dynamics simulations in order to solve the surface diffusion equations for selective-area growth. The calculations for CdTe/CdS material system were performed in substrates with Cd termination and S termination. The surface diffusivity and residence time were obtained at different temperatures (600 K, 800 K, 1000 K, 1200 K, and 1400 K). The thermal activation energies were extracted from Arrhenius equation for each substrate termination. Thereafter, values obtained by molecular dynamics were used in a surface diffusion model to calculate the surface concentration profile of adatoms. Alternating the surface termination has the potential to achieve nanoscale selective-area growth without the need of a dielectric film as a mask.

  9. A new Gompertz-type diffusion process with application to random growth.

    PubMed

    Gutiérrez-Jáimez, Ramón; Román, Patricia; Romero, Desirée; Serrano, Juan J; Torres, Francisco

    2007-07-01

    Stochastic models describing growth kinetics are very important for predicting many biological phenomena. In this paper, a new Gompertz-type diffusion process is introduced, by means of which bounded sigmoidal growth patterns can be modeled by time-continuous variables. The main innovation of the process is that the bound can depend on the initial value, a situation that is not provided by the models considered to date. After building the model, a comprehensive study is presented, including its main characteristics and a simulation of sample paths. With the aim of applying this model to real-life situations, and given its possibilities in forecasting via the mean function, discrete sampling based inference is developed. The likelihood equations are not directly solvable, and because of difficulties that arise with the usual numerical methods employed to solve them, an iterative procedure is proposed. The possibilities of the new process are illustrated by means of an application to real data, concretely, to growth in rabbits.

  10. A dual-phase-lag diffusion model for predicting thin film growth

    NASA Astrophysics Data System (ADS)

    Chen, J. K.; Beraun, J. E.; Tzou, D. Y.

    2000-03-01

    A dual-phase-lag diffusion (DPLD) model, which extends Fick's law by including two lagging times, icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> j for the mass flux vector and icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> icons/Journals/Common/rho" ALT="rho" ALIGN="MIDDLE"/> for the density gradient, is developed to predict thin film growth. Depending upon the phase lag ratio icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> icons/Journals/Common/rho" ALT="rho" ALIGN="MIDDLE"/> /icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> j , the DPLD model uniquely characterizes four types of growth kinetics as reported in the literature. The model validation with experimental data of silicon oxidation and Hg1-x Cdx Te film deposition demonstrates that the present model captures the anomalous behaviour of thin film growth from the very beginning of the process to relatively long times very well.

  11. Unified moving-boundary model with fluctuations for unstable diffusive growth

    NASA Astrophysics Data System (ADS)

    Nicoli, Matteo; Castro, Mario; Cuerno, Rodolfo

    2008-08-01

    We study a moving-boundary model of nonconserved interface growth that implements the interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous examples are found in thin-film production by chemical vapor deposition and electrochemical deposition. The model also incorporates noise terms that account for fluctuations in the diffusive and attachment processes. A small-slope approximation allows us to derive effective interface evolution equations (IEEs) in which parameters are related to those of the full moving-boundary problem. In particular, the form of the linear dispersion relation of the IEE changes drastically for slow or for instantaneous attachment kinetics. In the former case the IEE takes the form of the well-known (noisy) Kuramoto-Sivashinsky equation, showing a morphological instability at short times that evolves into kinetic roughening of the Kardar-Parisi-Zhang (KPZ) class. In the instantaneous kinetics limit, the IEE combines the Mullins-Sekerka linear dispersion relation with a KPZ nonlinearity, and we provide a numerical study of the ensuing dynamics. In all cases, the long preasymptotic transients can account for the experimental difficulties in observing KPZ scaling. We also compare our results with relevant data from experiments and discrete models.

  12. Numerical model of protein crystal growth in a diffusive field such as the microgravity environment.

    PubMed

    Tanaka, Hiroaki; Sasaki, Susumu; Takahashi, Sachiko; Inaka, Koji; Wada, Yoshio; Yamada, Mitsugu; Ohta, Kazunori; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki

    2013-11-01

    It is said that the microgravity environment positively affects the quality of protein crystal growth. The formation of a protein depletion zone and an impurity depletion zone due to the suppression of convection flow were thought to be the major reasons. In microgravity, the incorporation of molecules into a crystal largely depends on diffusive transport, so the incorporated molecules will be allocated in an orderly manner and the impurity uptake will be suppressed, resulting in highly ordered crystals. Previously, these effects were numerically studied in a steady state using a simplified model and it was determined that the combination of the diffusion coefficient of the protein molecule (D) and the kinetic constant for the protein molecule (β) could be used as an index of the extent of these depletion zones. In this report, numerical analysis of these depletion zones around a growing crystal in a non-steady (i.e. transient) state is introduced, suggesting that this model may be used for the quantitative analysis of these depletion zones in the microgravity environment. PMID:24121357

  13. Diffusion model of the formation of growth microdefects: A new approach to defect formation in crystals (Review)

    NASA Astrophysics Data System (ADS)

    Talanin, V. I.; Talanin, I. E.

    2016-03-01

    Theoretical studies of defect formation in semiconductor silicon play an important role in the creation of breakthrough ideas for next-generation technologies. A brief comparative analysis of modern theoretical approaches to the description of interaction of point defects and formation of the initial defect structure of dislocation-free silicon single crystals has been carried out. Foundations of the diffusion model of the formation of structural imperfections during the silicon growth have been presented. It has been shown that the diffusion model is based on high-temperature precipitation of impurities. The model of high-temperature precipitation of impurities describes processes of nucleation, growth, and coalescence of impurities during cooling of a crystal from 1683 to 300 K. It has been demonstrated that the diffusion model of defect formation provides a unified approach to the formation of a defect structure beginning with the crystal growth to the production of devices. The possibilities of using the diffusion model of defect formation for other semiconductor crystals and metals have been discussed. It has been shown that the diffusion model of defect formation is a platform for multifunctional solution of many key problems in modern solid state physics. Fundamentals of practical application of the diffusion model for engineering of defects in crystals with modern information technologies have been considered. An algorithm has been proposed for the calculation and analysis of a defect structure of crystals.

  14. The effects of plasma diffusion and viscosity on turbulent instability growth

    SciTech Connect

    Haines, Brian M. Vold, Erik L.; Molvig, Kim; Aldrich, Charles; Rauenzahn, Rick

    2014-09-15

    We perform two-dimensional simulations of strongly–driven compressible Rayleigh–Taylor and Kelvin–Helmholtz instabilities with and without plasma transport phenomena, modeling plasma species diffusion, and plasma viscosity in order to determine their effects on the growth of the hydrodynamic instabilities. Simulations are performed in hydrodynamically similar boxes of varying sizes, ranging from 1 μm to 1 cm in order to determine the scale at which plasma effects become important. Our results suggest that these plasma effects become noticeable when the box size is approximately 100 μm, they become significant in the 10 μm box, and dominate when the box size is 1 μm. Results suggest that plasma transport may be important at scales and conditions relevant to inertial confinement fusion, and that a plasma fluid model is capable of representing some of the kinetic transport effects.

  15. Influence of mass diffusion on the stability of thermophoretic growth of a solid from the vapor phase

    NASA Technical Reports Server (NTRS)

    Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.

    1991-01-01

    The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.

  16. Lateral diffusion of nerve growth factor receptor: modulation by ligand-binding and cell-associated factors.

    PubMed Central

    Venkatakrishnan, G; McKinnon, C A; Ross, A H; Wolf, D E

    1990-01-01

    We compared the properties in human melanoma cell line A875 and rat pheochromocytoma cell line PC12 of nerve growth factor receptor (NGFr). We also analyzed NGFr and a truncated NGFR lacking the cytoplasmic domain, which were transiently expressed in COS cells. The full-length NGFR expressed in COS cells bound nerve growth factor (NGF) with positive cooperativity, but A875 NGFr and truncated NGFr in COS cells did not display positive cooperativity. The anti-human NGFr monoclonal antibody NGFR5 was characterized and found not to compete with NGF for binding to NGFr. Fabs were prepared from NGFR5 and 192, an anti-rat NGFR monoclonal antibody that was previously shown not to compete with NGF for binding. Fluorescein-labeled Fabs were used to measure the distribution and lateral diffusion of the NGFr. NGFr expressed on COS and A875 cells are diffusely distributed, but NGFr on the surface of PC12 cells appeared, for some cells, to be patched. In A875 cells, 51% of the NGFr was free to diffuse with diffusion coefficient (D) approximately 7 X 10(-10) cm2/s. In COS cells, 43% diffused with D approximately 5 X 10(-10) cm2/s. There was no significant difference in diffusibility between the full-length NGFr and the truncated NGFr. We compared NGFr diffusion on PC12 cells in suspension or adherent to collagen-coated coverslips. For suspension cells, we obtained 32% recovery with D approximately 2.5 X 10(-9) cm2/s. On adherent cells, we obtained 17% recovery with 6 X 10(-9) cm2/s. Binding of NGF enhanced lateral diffusion of NGFr in A875 cells and in PC12 cells in suspension but did not alter lateral diffusion of NGFr in COS cells or in adherent PC12 cells. NGF had no effect on the diffusing fraction or the distribution of NGFR for any cell line. Images PMID:1964090

  17. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data.

    PubMed

    Hormuth, David A; Weis, Jared A; Barnes, Stephanie L; Miga, Michael I; Rericha, Erin C; Quaranta, Vito; Yankeelov, Thomas E

    2015-06-04

    Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor 'grown' for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model's accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.

  18. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Hormuth, David A., II; Weis, Jared A.; Barnes, Stephanie L.; Miga, Michael I.; Rericha, Erin C.; Quaranta, Vito; Yankeelov, Thomas E.

    2015-07-01

    Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor ‘grown’ for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.

  19. Cardiac looping may be driven by compressive loads resulting from unequal growth of the heart and pericardial cavity. Observations on a physical simulation model

    PubMed Central

    Bayraktar, Meriç; Männer, Jörg

    2014-01-01

    The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling) to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops) in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process toward the generation of only D- or L-loops, respectively. Our data are discussed with respect to observations made in biological “models.” We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces toward a biased generation of D- or L-loops. PMID

  20. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb

    PubMed Central

    Popławski, Nikodem J.; Swat, Maciej; Gens, J. Scott; Glazier, James A.

    2007-01-01

    A central question in developmental biology is how cells interact to organize into tissues? In this paper, we study the role of mesenchyme-ectoderm interaction in the growing chick limb bud using Glazier and Graner's cellular Potts model, a grid-based stochastic framework designed to simulate cell interactions and movement. We simulate cellular mechanisms including cell adhesion, growth, and division and diffusion of morphogens, to show that differential adhesion between the cells, diffusion of growth factors through the extracellular matrix, and the elastic properties of the apical ectodermal ridge together can produce the proper shape of the limb bud. PMID:18167520

  1. The time-periodic diffusive competition models with a free boundary and sign-changing growth rates

    NASA Astrophysics Data System (ADS)

    Wang, Mingxin; Zhang, Yang

    2016-10-01

    To understand the spreading of invasive and native species, in this paper we consider the diffusive competition models with a free boundary in the heterogeneous time-periodic environments, in which the variable intrinsic growth rates of these two species change signs and may be very negative in some large regions. We study the spreading-vanishing dichotomy, long-time dynamical behavior of solution, sharp criteria for spreading and vanishing, and estimates of the asymptotic spreading speed of the free boundary. Moreover, we establish the existence of positive solutions to a T-periodic boundary value problem of the diffusive competition system with sign-changing growth rates in the half line.

  2. A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion.

    PubMed

    Church, C C

    1988-11-01

    A reinterpretation of existing theory for rectified diffusion, the process by which bubbles in a sound field may grow in radius, is presented in order to quantitate the effect of acoustic microstreaming on bubble growth rates. The 1/t term in the growth rate equation is defined as the "decay term" and t as the "decay time," the time required for the gas concentration in the liquid contacting the bubble to rise (or fall) from its initial to its final value. In the absence of microstreaming, t is the duration of sonification. In the presence of microstreaming, t may be calculated from the streaming velocity and the bubble radius. A comparison between theory and the experimental results of Eller [A. Eller, J. Acoust. Soc. Am. 46, 1246-1250 (1969)] and of Gould [R.K. Gould, J. Acoust. Soc. Am. 56, 1740-1746 (1974)] shows reasonable agreement in the low kHz range. Theoretical results in the frequency range of 1-10 MHz at 1 and 4 bar are also presented.

  3. Random walk on lattices: Graph-theoretic approach to simulating long-range diffusion-attachment growth models

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate

    2014-03-01

    Interest in thin-film fabrication for industrial applications have driven both theoretical and computational aspects of modeling its growth. One of the earliest attempts toward understanding the morphological structure of a film's surface is through a class of solid-on-solid limited-mobility growth models such as the Family, Wolf-Villain, or Das Sarma-Tamborenea models, which have produced fascinating surface roughening behaviors. These models, however, restrict the motion of an incidence atom to be within the neighborhood of its landing site, which renders them inept for simulating long-distance surface diffusion such as that observed in thin-film growth using a molecular-beam epitaxy technique. Naive extension of these models by repeatedly applying the local diffusion rules for each hop to simulate large diffusion length can be computationally very costly when certain statistical aspects are demanded. We present a graph-theoretic approach to simulating a long-range diffusion-attachment growth model. Using the Markovian assumption and given a local diffusion bias, we derive the transition probabilities for a random walker to traverse from one lattice site to the others after a large, possibly infinite, number of steps. Only computation with linear-time complexity is required for the surface morphology calculation without other probabilistic measures. The formalism is applied, as illustrations, to simulate surface growth on a two-dimensional flat substrate and around a screw dislocation under the modified Wolf-Villain diffusion rule. A rectangular spiral ridge is observed in the latter case with a smooth front feature similar to that obtained from simulations using the well-known multiple registration technique. An algorithm for computing the inverse of a class of substochastic matrices is derived as a corollary.

  4. Experimental growth of åkermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Gardés, Emmanuel; Abart, Rainer; Heinrich, Wilhelm

    2011-03-01

    Growth rates of monomineralic, polycrystalline åkermanite (Ca2MgSi2O7) rims produced by solid-state reactions between monticellite (CaMgSiO4) and wollastonite (CaSiO3) single crystals were determined at 0.5 GPa dry argon pressure, 1,000-1,200°C and 5 min to 60 h, using an internally heated pressure vessel. Inert Pt-markers, initially placed at the monticellite-wollastonite interface, indicate symmetrical growth into both directions. This and mass balance considerations demonstrate that rim growth is controlled by transport of MgO. At 1,200°C and run durations between 5 min and 60 h, rim growth follows a parabolic rate law with rim widths ranging from 0.4 to 16.3 μm indicating diffusion-controlled rim growth. The effective bulk diffusion coefficient D_{{eff,MgO}}^{{Ak}} is calculated to 10-15.8±0.1 m2 s-1. Between 1,000°C and 1,200°C, the effective bulk diffusion coefficient follows an Arrhenius law with E a = 204 ± 18 kJ/mol and D 0 = 10-8.6±1.6 m2 s-1. Åkermanite grains display a palisade texture with elongation perpendicular to the reaction interface. At 1,200°C, average grain widths measured normal to elongation, increase with the square root of time and range from 0.4 to 5.4 μm leading to a successive decrease in the grain boundary area fraction, which, however, does not affect D_{{eff,MgO}}^{{Ak}} to a detectible extent. This implies that grain boundary diffusion only accounts for a minor fraction of the overall chemical mass transfer, and rim growth is essentially controlled by volume diffusion. This is corroborated by the agreement between our estimates of the effective MgO bulk diffusion coefficient and experimentally determined volume diffusion data for Mg and O in åkermanite from the literature. There is sharp contrast to the MgO-SiO2 binary system, where grain boundary diffusion controls rim growth.

  5. Critical Analysis of Dry Storage Temperature Limits for Zircaloy-Clad Spent Nuclear Fuel Based on Diffusion Controlled Cavity Growth

    SciTech Connect

    Hayes, T.A.; Rosen, R.S.; Kassner, M.E.

    1999-12-01

    Interim dry storage of spent nuclear fuel (SNF) rods is of critical concern because a shortage of existing SNF wet storage capacity combined with delays in the availability of a permanent disposal repository has led to an increasing number of SNF rods being placed into interim dry storage. Safe interim dry storage must be maintained for a minimum of twenty years according to the Standard Review Plan for Dry Cask Storage Systems [1] and the Code of Federal Regulations, 10 CFR Part 72 [2]. Interim dry storage licensees must meet certain safety conditions when storing SNF rods to ensure that there is a ''very low probability (e.g. 0.5%) of cladding breach during long-term storage'' [1]. Commercial SNF typically consists of uranium oxide pellets surrounded by a thin cladding. The cladding is usually an {alpha}-zirconium based alloy know as ''Zircaloy''. In dry storage, the SNF rods are confined in one of several types of cask systems approved by the Nuclear Regulatory Commission (NRC). ''The cask system must be designed to prevent degradation of fuel cladding that results in a type of cladding breach, such as axial-splits or ductile fracture, where irradiated UO{sub 2} particles may be released. In addition, the fuel cladding should not degrade to the point where more than one percent of the fuel rods suffer pinhole or hairline crack type failure under normal storage conditions [1].'' The NRC has approved two models [3,4] for use by proposed dry storage licensees to determine the maximum initial temperature limit for nuclear fuel rods in dry storage that supposedly meet the above criteria and yield consistent temperature limits. Though these two models are based on the same fundamental failure theory, different assumptions have been made including the choice of values for material constants in the failure equation. This report will examine and compare the similarities and inconsistencies of these two models. It will illustrate some of the shortcomings of the current models and suggest modifications as well as some experiments that should be started in the near future. This report will also discuss changes in the current NRC standards with regard to the adoption of a strain-based model to be used to determine maximum allowable temperatures of the SNF.

  6. Diffusion-driven precipitate growth and ripening of oxygen precipitates in boron doped silicon by dynamical x-ray diffraction

    SciTech Connect

    Will, J. Gröschel, A.; Bergmann, C.; Magerl, A.; Spiecker, E.

    2014-03-28

    X-ray Pendellösung fringes from three silicon single crystals measured at 900 °C are analyzed with respect to density and size of oxygen precipitates within a diffusion-driven growth model and compared with TEM investigations. It appears that boron doped (p+) material shows a higher precipitate density and a higher strain than moderately (p-) boron crystals. In-situ diffraction reveals a diffusion-driven precipitate growth followed by a second growth regime in both materials. An interpretation of the second growth regime in terms of Ostwald ripening yields surface energy values (around 70 erg/cm{sup 2}) similar to published data. Further, an increased nucleation rate by a factor of ∼13 is found in the p+ sample as compared to a p- sample at a nucleation temperature of 450 °C.

  7. Hydrogen adsorption and diffusion, and subcritical-crack growth in high strength steels and nickel base alloys

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.

    1973-01-01

    Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.

  8. Evolution of Plasma-Exposed Tungsten Surfaces Due to Helium Diffusion and Bubble Growth

    NASA Astrophysics Data System (ADS)

    Hammond, Karl; Hu, Lin; Maroudas, Dimitrios; Wirth, Brian; PSI-SciDAC Team

    2013-10-01

    Helium from linear plasma devices and tokamak plasmas causes the formation of microscopic features, termed ``fuzz'' or ``coral,'' on the surface of plasma-exposed materials after only a few hours of plasma exposure. The details of such surface modifications are only beginning to be understood. This study examines the initial and intermediate stages of fuzz formation by large-length-scale molecular dynamics (MD) simulations of helium-implanted tungsten over time scales of up to microseconds using single-crystalline and polycrystalline supercell models of tungsten. The large-scale MD simulations employ state-of-the-art many-body interatomic potentials and implantation depth distributions for the insertion of helium atoms into the tungsten matrix constructed based on MD simulations of helium-atom impingement onto tungsten surfaces under prescribed thermal and implantation conditions. The large-scale MD simulations reveal surface features formed via the sequence of helium implantation, diffusion of helium atoms and their aggregation to form bubbles, growth of bubbles and consequent production of tungsten self-interstitial atoms, organization of those atoms into prismatic loops, glide of those loops to the surface, and bubble rupture.

  9. A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Hejazi, S. R.; Madaah Hosseini, H. R.

    2007-11-01

    A kinetic model for growth of ZnO nanorods via vapor-liquid-solid (VLS) mechanism based on the bulk diffusion of Zn atoms through the Au-Zn droplet is presented. The dependences of the growth rate on size are given quantitatively. A general expression for the growth rate of nanorods during VLS process is derived. The derived formula shows the dependences of growth rate on lateral size of nanorods, concentration and supersaturation of Zn atoms in the liquid droplet. Based on the presented kinetic model the smaller nanorods have faster growth rate. Au-catalyzed ZnO nanorods are grown by chemical vapor transport and condensation (CVTC) process experimentally. Theoretical and experimental rate/radius curves are compared to each other. Theoretical predictions are in good agreement with the experimental results.

  10. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity

    PubMed Central

    Grossman, Craig E.; Carter, Shirron L.; Czupryna, Julie; Wang, Le; Putt, Mary E.; Busch, Theresa M.

    2016-01-01

    Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm. PMID:26784170

  11. The Origins and Development of the Diffusion of Innovations Paradigm as an Example of Scientific Growth.

    ERIC Educational Resources Information Center

    Valente, Thomas W.; Rogers, Everett M.

    1995-01-01

    Describes some of the history of rural sociological research on the diffusion of agricultural innovations, and shows how research followed (and deviated from) the Kuhnian concept of paradigm development. Examines the Iowa Hybrid Seed Corn Study which contributed to the rise of sociological diffusion research. (103 references) (AEF)

  12. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  13. Growth morphology of vicinal hillocks on the (101) face of KH{sub 2}PO{sub 4}: Evidence of surface diffusion

    SciTech Connect

    Land, T.A.; De Yoreo, J.J.; Lee, J.D.; Ferguson, J.R.

    1995-01-10

    The growth morphologies of vicinal hillocks on KH{sub 2}PO{sub 4} (101) surfaces have been investigated using atomic force microscopy. Both 2D and spiral dislocation growth hillocks are observed on the same crystal surface at supersaturations of {approximately}5%. Growth occurs on monomolecular 5 {Angstrom} steps both by step-flow and through layer-by-layer growth. The distribution of islands on the terraces demonstrate that surface diffusion is an important factor during growth. Terraces that are less than the diffusion length do not contain any islands. This, together with the length scale of the inter island spacing and the denuded zones provide an estimate of the diffusion length. In situ experiments at very low supersaturation ({approximately}0.l%) show that growth is a discontinuous process due to step pinning. In addition, in situ images allow for the direct determination of the fundamental growth parameters {alpha}, the step edge energy, and {beta}, the kinetic coefficient.

  14. Cavity magnomechanics

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2016-01-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  15. Cavity magnomechanics.

    PubMed

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X

    2016-03-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  16. Cavity coalescence in superplastic deformation

    SciTech Connect

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  17. Selectivity in glycosaminoglycan binding dictates the distribution and diffusion of fibroblast growth factors in the pericellular matrix

    PubMed Central

    Marcello, Marco

    2016-01-01

    The range of biological outcomes generated by many signalling proteins in development and homeostasis is increased by their interactions with glycosaminoglycans, particularly heparan sulfate (HS). This interaction controls the localization and movement of these signalling proteins, but whether such control depends on the specificity of the interactions is not known. We used five fibroblast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent labelling, with well-characterized and distinct HS-binding properties, and measured their binding and diffusion in pericellular matrix of fixed rat mammary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS, whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate, and FGF20 did not bind detectably. The distribution of bound FGFs in the pericellular matrix was not homogeneous, and for FGF10 exhibited striking clusters. Fluorescence recovery after photobleaching showed that FGF2 and FGF6 diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile. The results demonstrate that the specificity of the interactions of proteins with glycosaminoglycans controls their binding and diffusion. Moreover, cells regulate the spatial distribution of different protein-binding sites in glycosaminoglycans independently of each other, implying that the extracellular matrix has long-range structure. PMID:27009190

  18. Analysis of monotectic growth: infinite diffusion in the L 2 phase

    NASA Astrophysics Data System (ADS)

    Coriell, S. R.; Mitchell, W. F.; Murray, B. T.; Andrews, J. B.; Arikawa, Y.

    1997-08-01

    The Jackson-Hunt model of eutectic solidification is applied to monotectic solidification in which a liquid (L 1) transforms into rods of a different liquid (L 2) in a solid matrix. Limiting cases of no diffusion and infinite diffusion (complete mixing) in the L 2 phase are considered. An adaptive refinement and multigrid algorithm (MGGHAT) is used to obtain numerical solutions for the concentration field in the L 1 phase; this allows consideration of a general phase diagram. Density differences between the three phases, which cause fluid flow, are treated approximately. Specific calculations are carried out for aluminum-indium alloys. Infinite diffusion in the L 2 phase has only a small effect on the relationship between interface undercooling and rod spacing.

  19. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays

    NASA Astrophysics Data System (ADS)

    Gotschke, T.; Schumann, T.; Limbach, F.; Stoica, T.; Calarco, R.

    2011-03-01

    Molecular beam epitaxy (MBE) on patterned Si/AlN/Si(111) substrates was used to obtain regular arrays of uniform-size GaN nanowires (NWs). The silicon top layer has been patterned with e-beam lithography, resulting in uniform arrays of holes with different diameters (dh) and periods (P). While the NW length is almost insensitive to the array parameters, the diameter increases significantly with dh and P till it saturates at P values higher than 800 nm. A diffusion induced model was used to explain the experimental results with an effective diffusion length of the adatoms on the Si, estimated to be about 400 nm.

  20. Growth of highly bright-white silica nanowires as diffusive reflection coating in LED lighting.

    PubMed

    Xi, Shuang; Shi, Tielin; Zhang, Lei; Liu, Dan; Lai, Wuxing; Tang, Zirong

    2011-12-19

    Large quantities of silica nanowires were synthesized through thermal treatment of silicon wafer in the atmosphere of N(2)/H(2)(5%) under 1200 °C with Cu as catalyst. These nanowires grew to form a natural bright-white mat, which showed highly diffusive reflectivity over the UV-visible range, with more than 60% at the whole range and up to 88% at 350 nm. The utilization of silica nanowires in diffusive coating on the reflector cup of LED is demonstrated, which shows greatly improved light distribution comparing with the specular reflector cup. It is expected that these nanowires can be promising coating material for optoelectronic applications.

  1. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses

    USGS Publications Warehouse

    Sio, Corliss Kin I.; Dauphas, Nicolas; Teng, Fang-Zhen; Chaussidon, Marc; Helz, Rosalind T.; Roskosz, Mathieu

    2013-01-01

    Mineral zoning is used in diffusion-based geospeedometry to determine magmatic timescales. Progress in this field has been hampered by the challenge to discern mineral zoning produced by diffusion from concentration gradients inherited from crystal growth. A zoned olivine phenocryst from Kilauea Iki lava lake (Hawaii) was selected for this study to evaluate the potential of Mg and Fe isotopes for distinguishing these two processes. Microdrilling of the phenocryst (∼300 μm drill holes) followed by MC-ICPMS analysis of the powders revealed negatively coupled Mg and Fe isotopic fractionations (δ26Mg from +0.1‰ to −0.2‰ and δ56Fe from −1.2‰ to −0.2‰ from core to rim), which can only be explained by Mg–Fe exchange between melt and olivine. The data can be explained with ratios of diffusivities of Mg and Fe isotopes in olivine scaling as D2/D1 = (m1/m2)β with βMg ∼0.16 and βFe ∼0.27. LA-MC-ICPMS and MC-SIMS Fe isotopic measurements are developed and are demonstrated to yield accurate δ56Fe measurements within precisions of ∼0.2‰ (1 SD) at spatial resolutions of ∼50 μm. δ56Fe and δ26Mg stay constant with Fo# in the rim (late-stage overgrowth), whereas in the core (original phenocryst) δ56Fe steeply trends toward lighter compositions and δ26Mg trends toward heavier compositions with higher Fo#. A plot of δ56Fe vs. Fo# immediately distinguishes growth-controlled from diffusion-controlled zoning in these two regions. The results are consistent with the idea that large isotopic fractionation accompanies chemical diffusion in crystals, whereas fractional crystallization induces little or no isotopic fractionation. The cooling timescale inferred from the chemical-isotope zoning profiles is consistent with the documented cooling history of the lava lake. In the absence of geologic context, in situ stable isotopic measurements may now be used to interpret the nature of mineral zoning. Stable isotope measurements by LA-MC-ICPMS and MC

  2. Electrochemical Growth of Ag Junctions and Diffusion Limited Aggregate (DLA) Fractal Simulation

    NASA Astrophysics Data System (ADS)

    Olson, Zak; Tuppan, Sam; Kim, Woo-Joong; Seattle University Team

    2015-03-01

    We attempt construction of a single atom connection between two copper wires. By applying a DC voltage across the wires when immersed in a silver nitrate solution, we deposit silver until a junction is formed. The deposited silver forms a fractal structure that can be simulated with a diffusion limited aggregation model.

  3. Curation-Based Network Marketing: Strategies for Network Growth and Electronic Word-of-Mouth Diffusion

    ERIC Educational Resources Information Center

    Church, Earnie Mitchell, Jr.

    2013-01-01

    In the last couple of years, a new aspect of online social networking has emerged, in which the strength of social network connections is based not on social ties but mutually shared interests. This dissertation studies these "curation-based" online social networks (CBN) and their suitability for the diffusion of electronic word-of-mouth…

  4. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays

    SciTech Connect

    Gotschke, T.; Schumann, T.; Limbach, F.; Calarco, R.; Stoica, T.

    2011-03-07

    Molecular beam epitaxy (MBE) on patterned Si/AlN/Si(111) substrates was used to obtain regular arrays of uniform-size GaN nanowires (NWs). The silicon top layer has been patterned with e-beam lithography, resulting in uniform arrays of holes with different diameters (d{sub h}) and periods (P). While the NW length is almost insensitive to the array parameters, the diameter increases significantly with d{sub h} and P till it saturates at P values higher than 800 nm. A diffusion induced model was used to explain the experimental results with an effective diffusion length of the adatoms on the Si, estimated to be about 400 nm.

  5. A Reactive-Transport Model Describing Methanogen Growth and Methane Production in Diffuse Flow Vents at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Algar, C. K.

    2015-12-01

    Hydrogenotrophic methanogenesis is an important mode of metabolism in deep-sea hydrothermal vents. Diffuse vent fluids often show a depletion in hydrogen with a corresponding increase in methane relative to pure-mixing of end member fluid and seawater, and genomic surveys show an enrichment in genetic sequences associated with known methanogens. However, because we cannot directly sample the subseafloor habitat where these organisms are living, constraining the size and activity of these populations remains a challenge and limits our ability to quantify the role they play in vent biogeochemistry. Reactive-transport modeling may provide a useful tool for approaching this problem. Here we present a reactive-transport model describing methane production along the flow-path of hydrothermal fluid from its high temperature end-member to diffuse venting at the seafloor. The model is set up to reflect conditions at several diffuse vents in the Axial Seamount. The model describes the growth of the two dominant thermophilic methanogens, Methanothermococcus and Methanocaldococcus, observed at Axial seamount. Monod and Arrhenius constants for Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii were obtained for the model using chemostat and bottle experiments at varying temperatures. The model is used to investigate the influence of different mixing regimes on the subseafloor populations of these methanogens. By varying the model flow path length and subseafloor cell concentrations, and fitting to observed hydrogen and methane concentrations in the venting fluid, the subseafloor biomass, fluid residence time, and methane production rate can be constrained.

  6. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  7. Zn Diffusion and α-Fe(Zn) Layer Growth During Annealing of Zn-Coated B Steel

    NASA Astrophysics Data System (ADS)

    Janik, Vit; Lan, Yongjun; Beentjes, Peter; Norman, David; Hensen, Guido; Sridhar, Seetharaman

    2016-01-01

    Direct hot press forming of Zn-coated 22MnB5 steels is impeded by micro-cracks that occur in the substrate due to the presence of Zn during the forming process. A study was therefore undertaken to quantify concentration of Zn across the α-Fe(Zn) coating and on grain boundaries in the α-Fe(Zn) layer and the underlying γ-Fe(Zn) substrate after isothermal annealing of Zn-coated 22MnB5 at 1173 K (900 °C) and to link the Zn distribution to the amount and type of micro-cracks observed in deformed samples. Finite difference model was developed to describe Zn diffusion and the growth of the α-Fe(Zn) layer. The penetration of Zn into the γ-Fe(Zn) substrate after 600 seconds annealing at 1173 K (900 °C) through bulk diffusion is estimated to be 3 μm, and the diffusion depth of Zn on the γ-Fe(Zn) grain boundaries is estimated to be 6 μm, which is significantly shorter than the maximum length (15 to 50 μm) of the micro-cracks formed in the severely stressed conditions, indicating that the Zn diffusion into the γ-Fe(Zn) from the α-Fe(Zn) during annealing is not correlated to the depth of micro-cracks. On the other hand, the maximum amount of Zn present in α-Fe(Zn) layer decreases with annealing time as the layer grows and Zn oxidizes, and the amount of Zn-enriched areas inside the α-Fe(Zn) layer is reduced leading to reduced length of cracking. Solid-Metal-Induced Embrittlement mechanism is proposed to explain the benefit of extended annealing on reduced depth of micro-crack penetration into the γ-Fe(Zn) substrate.

  8. Disrupting NOTCH Slows Diffuse Intrinsic Pontine Glioma Growth, Enhances Radiation Sensitivity, and Shows Combinatorial Efficacy with Bromodomain Inhibition

    PubMed Central

    Taylor, Isabella C.; Hütt-Cabezas, Marianne; Brandt, William D.; Kambhampati, Madhuri; Nazarian, Javad; Chang, Howard T.; Warren, Katherine E.; Eberhart, Charles G.; Raabe, Eric H.

    2015-01-01

    NOTCH regulates stem cells during normal development and stem-like cells in cancer but the roles of NOTCH in the lethal pediatric brain tumor diffuse intrinsic pontine glioma (DIPG) remain unknown. Because DIPGs express stem cell factors such as SOX2 and MYCN, we hypothesized that NOTCH activity would be critical for DIPG growth. We determined that primary DIPGs expressed high levels of NOTCH receptors, ligands, and downstream effectors. Treatment of the DIPG cell lines JHH-DIPG1 and SF7761 with the γ-secretase inhibitor MRK003 suppressed the level of the NOTCH effectors HES1, HES4, HES5, inhibited DIPG growth by 75%, and caused a 3-fold induction of apoptosis. Short hairpin RNAs targeting the canonical NOTCH pathway caused similar effects. Pre-treatment of DIPG cells with MRK003 suppressed clonogenic growth by more than 90% and enhanced the efficacy of radiation therapy. The high level of MYCN in DIPG led us to test sequential therapy with the bromodomain inhibitor JQ1 and MRK003, and we found that JQ1 and MRK003 inhibited DIPG growth and induced apoptosis. Together, these results suggest that dual targeting of NOTCH and MYCN in DIPG may be an effective therapeutic strategy in DIPG and that adding a γ-secretase inhibitor during radiation therapy may be efficacious initially or during re-irradiation. PMID:26115193

  9. Roles of aromatic side chains and template effects of the hydrophobic cavity of a self-assembled peptide nanoarchitecture for anisotropic growth of gold nanocrystals.

    PubMed

    Tomizaki, Kin-ya; Kishioka, Kohei; Kobayashi, Hiroki; Kobayashi, Akitsugu; Yamada, Naoki; Kataoka, Shunsuke; Imai, Takahito; Kasuno, Megumi

    2015-11-15

    Gold nanocrystals are promising as catalysts and for use in sensing/imaging systems, photonic/plasmonic devices, electronics, drug delivery systems, and for photothermal therapy due to their unique physical, chemical, and biocompatible properties. The use of various organic templates allows control of the size, shape, structure, surface modification and topology of gold nanocrystals; in particular, currently the synthesis of gold nanorods requires a cytotoxic surfactant to control morphology. To control the shape of gold nanocrystals, we previously demonstrated the de novo design and synthesis of a β-sheet-forming nonapeptide (RU006: Ac-AIAKAXKIA-NH2, X=L-2-naphthylalanine, Nal) and the fabrication of gold nanocrystals by mixing RU006 and HAuCl4 in water. The reaction afforded ultrathin gold nanoribbons 50-100 nm wide, several nanometers high, and microns long. To understand the mechanism underlying gold nanoribbon formation by the RU006 system, we here report (i) the effects of replacement of the Nal aromatic side chain in the RU006 sequence with other aromatic moieties, (ii) the electrochemical properties of aromatic side chains in the de novo designed template peptides to estimate the redox potential and number of electrons participating in the gold crystallization process, and (iii) the stoichiometry of the RU006 system for gold nanoribbon synthesis. Interestingly, RU006 bearing a naphthalene moiety (oxidation peak potential of 1.50 V vs Ag/Ag(+)) and an analog [Ant(6)]-RU006 bearing a bulky anthracene moiety (oxidation peak potential of 1.05 V vs Ag/Ag(+)) allowed the growth of anisotropic (ribbon-like) and isotropic (round) gold nanocrystals, respectively. This trend in morphology of gold nanocrystals was attributed to spatially-arranged hydrophobic cavities sufficiently large to accommodate the gold precursor and to allow directed crystal growth driven by cross-linking reactions among the naphthalene rings. Support for this mechanism was obtained by

  10. Roles of aromatic side chains and template effects of the hydrophobic cavity of a self-assembled peptide nanoarchitecture for anisotropic growth of gold nanocrystals.

    PubMed

    Tomizaki, Kin-ya; Kishioka, Kohei; Kobayashi, Hiroki; Kobayashi, Akitsugu; Yamada, Naoki; Kataoka, Shunsuke; Imai, Takahito; Kasuno, Megumi

    2015-11-15

    Gold nanocrystals are promising as catalysts and for use in sensing/imaging systems, photonic/plasmonic devices, electronics, drug delivery systems, and for photothermal therapy due to their unique physical, chemical, and biocompatible properties. The use of various organic templates allows control of the size, shape, structure, surface modification and topology of gold nanocrystals; in particular, currently the synthesis of gold nanorods requires a cytotoxic surfactant to control morphology. To control the shape of gold nanocrystals, we previously demonstrated the de novo design and synthesis of a β-sheet-forming nonapeptide (RU006: Ac-AIAKAXKIA-NH2, X=L-2-naphthylalanine, Nal) and the fabrication of gold nanocrystals by mixing RU006 and HAuCl4 in water. The reaction afforded ultrathin gold nanoribbons 50-100 nm wide, several nanometers high, and microns long. To understand the mechanism underlying gold nanoribbon formation by the RU006 system, we here report (i) the effects of replacement of the Nal aromatic side chain in the RU006 sequence with other aromatic moieties, (ii) the electrochemical properties of aromatic side chains in the de novo designed template peptides to estimate the redox potential and number of electrons participating in the gold crystallization process, and (iii) the stoichiometry of the RU006 system for gold nanoribbon synthesis. Interestingly, RU006 bearing a naphthalene moiety (oxidation peak potential of 1.50 V vs Ag/Ag(+)) and an analog [Ant(6)]-RU006 bearing a bulky anthracene moiety (oxidation peak potential of 1.05 V vs Ag/Ag(+)) allowed the growth of anisotropic (ribbon-like) and isotropic (round) gold nanocrystals, respectively. This trend in morphology of gold nanocrystals was attributed to spatially-arranged hydrophobic cavities sufficiently large to accommodate the gold precursor and to allow directed crystal growth driven by cross-linking reactions among the naphthalene rings. Support for this mechanism was obtained by

  11. Microfabricated diffusion source

    DOEpatents

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  12. Growth and properties of W-B-N diffusion barriers deposited by chemical vapor deposition

    SciTech Connect

    Fleming, J.G.; Roherty-Osmun, E.; Custer, J.; Smith, P.M.; Reid, J.S.; Nicolet, M.A.

    1995-10-01

    The authors have used chemical vapor deposition to grow ternary tungsten-based diffusion barriers to determine if they exhibit properties similar to those of sputter-deposited ternaries. A range of different W-B-N compositions in a band of compositions roughly between 20 and 40% W were produced. The deposition temperature was low, 350 C, and the precursors used are well accepted by the industry. Deposition rates are high for a diffusion barrier application. Resistivities range from 200 to 20,000 {micro}{Omega}-cm, the films with the best barrier properties having {approximately}1,000 {micro}{Omega}-cm resistivities. Adhesion to oxides is sufficient to allow these films to be used as the adhesion layer in a tungsten chemical mechanical polishing plug application. The films are x-ray amorphous as-deposited and have crystallization temperatures of up to 900 C. Barrier performance against Cu has been tested using diode test structures. A composition of W{sub .23}B{sub .49}N{sub .28} was able to prevent diode failure up to a 700 C, 30 minute anneal. These materials, deposited by CVD, display properties similar to those deposited by physical deposition techniques.

  13. Morphological transition between diffusion-limited and ballistic aggregation growth patterns.

    PubMed

    Ferreira, S C; Alves, S G; Brito, A Faissal; Moreira, J G

    2005-05-01

    In this work, the transition between diffusion-limited (DLA) and ballistic aggregation (BA) models was reconsidered using a model in which biased random walks simulate the particle trajectories. The bias is controlled by a parameter lambda, which assumes the value lambda=0 (1) for the ballistic (diffusion-limited) aggregation model. Patterns growing from a single seed were considered. In order to simulate large clusters, an efficient algorithm was developed. For lambda (not equal to) 0 , the patterns are fractal on small length scales, but homogeneous on large ones. We evaluated the mean density of particles (-)rho in the region defined by a circle of radius r centered at the initial seed. As a function of r, (-)rho reaches the asymptotic value rho(0)(lambda) following a power law (-)rho = rho(0) +Ar(-gamma) with a universal exponent gamma=0.46 (2) , independent of lambda . The asymptotic value has the behavior rho(0) approximately |1-lambda|(beta) , where beta=0.26 (1) . The characteristic crossover length that determines the transition from DLA- to BA-like scaling regimes is given by xi approximately |1-lambda|(-nu) , where nu=0.61 (1) , while the cluster mass at the crossover follows a power law M(xi) approximately |1-lambda(-alpha) , where alpha=0.97 (2) . We deduce the scaling relations beta=nugamma and beta=2nu-alpha between these exponents. PMID:16089530

  14. Volume diffusion-controlled growth kinetics and mechanisms in binary alloys

    SciTech Connect

    Trivedi, R.

    1981-01-01

    Growth kinetics and stability of simple precipitate morphologies which develop during solid-solid phase transformations in binary alloys will be briefly reviewed. Emphasis will be placed on our current understanding of the dependence of growth kinetics on the shape of precipitates and on the interfacial structure. As an example, we shall consider the lengthening kinetics of Widmanstatten precipitates and develop a stability criteria which determines the dimension of the advancing tip of these precipitates. These theoretical results will then be compared with the available experimental data in binary alloys. The importance of interface structure in determining growth kinetics will also be illustrated by considering the migration rate of partially coherent interphase boundaries with ledge structures. These results will then be synthesized to understand the development and stability of microstructures in binary alloys.

  15. Modeling tumor growth in the presence of a therapy with an effect on rate growth and variability by means of a modified Gompertz diffusion process.

    PubMed

    Román-Román, Patricia; Román-Román, Sergio; Serrano-Pérez, Juan José; Torres-Ruiz, Francisco

    2016-10-21

    In experimental studies on tumor growth, whenever the time evolution of the relative volume of a tumor in an untreated (control) group can be fitted by a Gompertz diffusion process there is a possibility that an antiproliferative therapy, which modifies the growth rate of the process that fits the treated group, may also affect its variability. The present paper proposes several procedures for the estimation of the time function included in the infinitesimal variance of the new process, as well as the time function affecting the growth rate (which is included in the infinitesimal mean). Also, a hypothesis testing is designed to confirm or refute the need for including such a time-dependent function in the infinitesimal variance. In order to validate and compare the proposed procedures a simulation study has been carried out. In addition, a proposal is made for a strategy aimed at finding the optimal combination of procedures for each case. A real data application concerning the effects of cisplatin on a patient-derived xenograft (PDX) tumor model showcases the advantages of this model over others that have been used in the past.

  16. A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data.

    PubMed

    Román-Román, Patricia; Romero, Desirée; Torres-Ruiz, Francisco

    2010-03-01

    The von Bertalanffy growth curve has been commonly used for modeling animal growth (particularly fish). Both deterministic and stochastic models exist in association with this curve, the latter allowing for the inclusion of fluctuations or disturbances that might exist in the system under consideration which are not always quantifiable or may even be unknown. This curve is mainly used for modeling the length variable whereas a generalized version, including a new parameter b > or = 1, allows for modeling both length and weight for some animal species in both isometric (b = 3) and allometric (b not = 3) situations. In this paper a stochastic model related to the generalized von Bertalanffy growth curve is proposed. This model allows to investigate the time evolution of growth variables associated both with individual behaviors and mean population behavior. Also, with the purpose of fitting the above-mentioned model to real data and so be able to forecast and analyze particular characteristics, we study the maximum likelihood estimation of the parameters of the model. In addition, and regarding the numerical problems posed by solving the likelihood equations, a strategy is developed for obtaining initial solutions for the usual numerical procedures. Such strategy is validated by means of simulated examples. Finally, an application to real data of mean weight of swordfish is presented.

  17. Diffusion of Ideas by 19th Century Feminists: The Growth of Women's Magazines.

    ERIC Educational Resources Information Center

    Jolliffe, Lee

    The communications of suffragist Lucy Stone illustrate the changes that the growth of women's magazines brought to nineteenth century feminists. As indicated in letters to friends and family, Lucy Stone became an active proponent of women's rights at a time when public speaking tours were the best means of reaching a wide audience. As the printing…

  18. Scaling exponent of the maximum growth probability in diffusion-limited aggregation.

    PubMed

    Jensen, Mogens H; Mathiesen, Joachim; Procaccia, Itamar

    2003-04-01

    An early (and influential) scaling relation in the multifractal theory of diffusion limited aggregation (DLA) is the Turkevich-Scher conjecture that relates the exponent alpha(min) that characterizes the "hottest" region of the harmonic measure and the fractal dimension D of the cluster, i.e., D=1+alpha(min). Due to lack of accurate direct measurements of both D and alpha(min), this conjecture could never be put to a serious test. Using the method of iterated conformal maps, D was recently determined as D=1.713+/-0.003. In this paper, we determine alpha(min) accurately with the result alpha(min)=0.665+/-0.004. We thus conclude that the Turkevich-Scher conjecture is incorrect for DLA. PMID:12786408

  19. A reaction-diffusion-advection model of harmful algae growth with toxin degradation

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Bin; Hsu, Sze-Bi; Zhao, Xiao-Qiang

    2015-10-01

    This paper is devoted to the study of a reaction-diffusion-advection system modeling the dynamics of a single nutrient, harmful algae and algal toxin in a flowing water habitat with a hydraulic storage zone. We introduce the basic reproduction ratio R0 for algae and show that R0 serves as a threshold value for persistence and extinction of the algae. More precisely, we prove that the washout steady state is globally attractive if R0 < 1, while there exists a positive steady state and the algae is uniformly persistent if R0 > 1. With an additional assumption, we obtain the uniqueness and global attractivity of the positive steady state in the case where R0 > 1.

  20. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models.

    PubMed

    Wu, X; van Zwieten, G J; van der Zee, K G

    2014-02-01

    We present unconditionally energy-stable second-order time-accurate schemes for diffuse-interface (phase-field) models; in particular, we consider the Cahn-Hilliard equation and a diffuse-interface tumor-growth system consisting of a reactive Cahn-Hilliard equation and a reaction-diffusion equation. The schemes are of the Crank-Nicolson type with a new convex-concave splitting of the free energy and an artificial-diffusivity stabilization. The case of nonconstant mobility is treated using extrapolation. For the tumor-growth system, a semi-implicit treatment of the reactive terms and additional stabilization are discussed. For suitable free energies, all schemes are linear. We present numerical examples that verify the second-order accuracy, unconditional energy-stability, and superiority compared with their first-order accurate variants. PMID:24023005

  1. Quantifying the rate of biofilm growth of S. meliloti strains in microfluidics via the diffusion coefficient of microspheres

    NASA Astrophysics Data System (ADS)

    Dorian, Matthew; Seitaridou, Effrosyni

    2014-03-01

    Understanding the rate of biofilm growth is essential for studying genes and preventing unwanted biofilms. In this study, the diffusion coefficient (D) of polystyrene microspheres was used to quantify biofilm growth rates of Sinorhizobia meliloti, a nitrogen fixing bacteria that forms a symbiotic relationship with alfalfa plants. Five strains were studied, two wild types (8530 expR+ and 1021) and three mutants in the exopolysaccharide (EPS I, EPS II) synthesis (8530 exoY , 9034 expG , and 9030-2 expA 1); 1021 and 9030-2 expA 1 are known to be unable to form biofilms. Each strain was inserted into a microfluidic channel with the microspheres. As the cultures grew, the spheres' D values were obtained every 24 hours for 4 days using fluorescence microscopy. Although the D values for 9030-2 expA 1 were inconclusive, 8530 expR+ , 8530 exoY , and 9034 expG showed significant decreases in D between 3 days of growth (| z | > 2 . 25 , p < 0 . 025). The data also indicated that 8530 expR+ and 8530 exoY grew at similar rates. There was no significant change in D for 1021 (χ2(2) = 5 . 76 , p > 0 . 05), which shows the lack of a structured biofilm community. Thus, D can be used as an indicator of the presence of a biofilm and its development.

  2. Surface Diffusion Directed Growth of Anisotropic Graphene Domains on Different Copper Lattices

    PubMed Central

    Jung, Da Hee; Kang, Cheong; Nam, Ji Eun; Jeong, Heekyung; Lee, Jin Seok

    2016-01-01

    Anisotropic graphene domains are of significant interest since the electronic properties of pristine graphene strongly depend on its size, shape, and edge structures. In this work, considering that the growth of graphene domains is governable by the dynamics of the graphene-substrate interface during growth, we investigated the shape and defects of graphene domains grown on copper lattices with different indices by chemical vapor deposition of methane at either low pressure or atmospheric pressure. Computational modeling identified that the crystallographic orientation of copper strongly influences the shape of the graphene at low pressure, yet does not play a critical role at atmospheric pressure. Moreover, the defects that have been previously observed in the center of four-lobed graphene domains grown under low pressure conditions were demonstrated for the first time to be caused by a lattice mismatch between graphene and the copper substrate. PMID:26883174

  3. Neonatal Neurobehavior and Diffusion MRI Changes in Brain Reorganization Due to Intrauterine Growth Restriction in a Rabbit Model

    PubMed Central

    Eixarch, Elisenda; Batalle, Dafnis; Illa, Miriam; Muñoz-Moreno, Emma; Arbat-Plana, Ariadna; Amat-Roldan, Ivan; Figueras, Francesc; Gratacos, Eduard

    2012-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with a high risk of abnormal neurodevelopment. The timing and patterns of brain reorganization underlying IUGR are poorly documented. We developed a rabbit model of IUGR allowing neonatal neurobehavioral assessment and high resolution brain diffusion magnetic resonance imaging (MRI). The aim of the study was to describe the pattern and functional correlates of fetal brain reorganization induced by IUGR. Methodology/Principal Findings IUGR was induced in 10 New Zealand fetal rabbits by ligation of 40–50% of uteroplacental vessels in one horn at 25 days of gestation. Ten contralateral horn fetuses were used as controls. Cesarean section was performed at 30 days (term 31 days). At postnatal day +1, neonates were assessed by validated neurobehavioral tests including evaluation of tone, spontaneous locomotion, reflex motor activity, motor responses to olfactory stimuli, and coordination of suck and swallow. Subsequently, brains were collected and fixed and MRI was performed using a high resolution acquisition scheme. Global and regional (manual delineation and voxel based analysis) diffusion tensor imaging parameters were analyzed. IUGR was associated with significantly poorer neurobehavioral performance in most domains. Voxel based analysis revealed fractional anisotropy (FA) differences in multiple brain regions of gray and white matter, including frontal, insular, occipital and temporal cortex, hippocampus, putamen, thalamus, claustrum, medial septal nucleus, anterior commissure, internal capsule, fimbria of hippocampus, medial lemniscus and olfactory tract. Regional FA changes were correlated with poorer outcome in neurobehavioral tests. Conclusions IUGR is associated with a complex pattern of brain reorganization already at birth, which may open opportunities for early intervention. Diffusion MRI can offer suitable imaging biomarkers to characterize and monitor

  4. Continuous analysis of δ¹⁸O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters.

    PubMed

    Munksgaard, Niels C; Wurster, Chris M; Bird, Michael I

    2011-12-30

    A novel sampling device suitable for continuous, unattended field monitoring of rapid isotopic changes in environmental waters is described. The device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ¹⁸O and δD values by Cavity Ring-Down Spectrometry (CRDS). Separation of the analysed water vapour from non-volatile dissolved and particulate contaminants in the liquid sample minimises spectral interferences associated with CRDS analyses of many aqueous samples. Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling-CRDS (DS-CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS-CRDS data. The internal precision for an integration period of 3 min (standard deviation (SD) = 0.1‰ and 0.3‰ for δ¹⁸O and δD values, respectively) is similar to analysis of water by CRDS using an autosampler to inject and evaporate discrete water samples. The isotopic effects of variable air temperature, water vapour concentration, water pumping rate and dissolved organic content were found to be either negligible or correctable by analysis of water standards. The DS-CRDS system was used to analyse the O and H isotope composition in short-lived rain events. Other applications where finely time resolved water isotope data may be of benefit include recharge/discharge in groundwater/river systems and infiltration-related changes in cave drip water.

  5. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth

    NASA Astrophysics Data System (ADS)

    Atuegwu, N. C.; Colvin, D. C.; Loveless, M. E.; Xu, L.; Gore, J. C.; Yankeelov, T. E.

    2012-01-01

    We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from -0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.

  6. A hybrid stochastic-deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay.

    PubMed

    Immonen, Taina; Gibson, Richard; Leitner, Thomas; Miller, Melanie A; Arts, Eric J; Somersalo, Erkki; Calvetti, Daniela

    2012-11-01

    We present a new hybrid stochastic-deterministic, spatially distributed computational model to simulate growth competition assays on a relatively immobile monolayer of peripheral blood mononuclear cells (PBMCs), commonly used for determining ex vivo fitness of human immunodeficiency virus type-1 (HIV-1). The novel features of our approach include incorporation of viral diffusion through a deterministic diffusion model while simulating cellular dynamics via a stochastic Markov chain model. The model accounts for multiple infections of target cells, CD4-downregulation, and the delay between the infection of a cell and the production of new virus particles. The minimum threshold level of infection induced by a virus inoculum is determined via a series of dilution experiments, and is used to determine the probability of infection of a susceptible cell as a function of local virus density. We illustrate how this model can be used for estimating the distribution of cells infected by either a single virus type or two competing viruses. Our model captures experimentally observed variation in the fitness difference between two virus strains, and suggests a way to minimize variation and dual infection in experiments.

  7. Nuclear magnetic resonance tomography with a toroid cavity detector

    SciTech Connect

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1995-02-01

    A new type of nuclear magnetic resonance (NMR) tomography has been developed at Argonne National Laboratory. The method uses the strong radio frequency field gradient within a cylindrical toroid cavity to provide high-resolution NMR spectral information while simultaneously resolving distances on the micron scale. The toroid cavity imaging technique differs from conventional magnetic resonance imaging (MRI) in that NMR structural information is not lost during signal processing. The new technique could find a wide range of applications in the characterization of surface layers and in the production of advanced materials. Potential areas of application include in situ monitoring of growth sites during ceramic formation processes, analysis of the oxygen annealing step for wires coated with high-temperature superconducting films, and investigation of the reaction chemistry as a function of distance within the diffusion layer for electrochemical processes.

  8. Interface proliferation and the growth of labyrinths in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Muraki, David J.; Petrich, Dean M.

    1996-04-01

    In the bistable regime of the FitzHugh-Nagumo model of reaction-diffusion systems, spatially homogeneous patterns may be nonlinearly unstable to the formation of compact "localized states." The formation of space-filling patterns from instabilities of such structures is studied in the context of a nonlocal contour dynamics model for the evolution of boundaries between high and low concentrations of the activator. An earlier heuristic derivation [D. M. Petrich and R. E. Goldstein,

    Phys. Rev. Lett. 72, 1120 (1994)
    ] is made more systematic by an asymptotic analysis appropriate to the limits of fast inhibition, sharp activator interfaces, and small asymmetry in the bistable minima. The resulting contour dynamics is temporally local, with the normal component of the velocity involving a local contribution linear in the interface curvature and a nonlocal component having the form of a screened Biot-Savart interaction. The amplitude of the nonlocal interaction is set by the activator-inhibitor coupling and controls the "lateral inhibition" responsible for the destabilization of localized structures such as spots and stripes, and the repulsion of nearby interfaces in the later stages of those instabilities. The phenomenology of pattern formation exhibited by the contour dynamics is consistent with that seen by Lee, McCormick, Ouyang, and Swinney
    [Science 261, 192 (1993)]
    in experiments on the iodide-ferrocyanide-sulfite reaction in a gel reactor. Extensive numerical studies of the underlying partial differential equations are presented and compared in detail with the contour dynamics. The similarity of these phenomena (and their mathematical description) with those observed in amphiphilic monolayers, type I superconductors in the intermediate state, and magnetic fluids in Hele-Shaw geometry is emphasized.

  9. Interface proliferation and the growth of labyrinths in a reaction-diffusion system

    SciTech Connect

    Goldstein, R.E.; Muraki, D.J.; Petrich, D.M. |

    1996-04-01

    In the bistable regime of the FitzHugh-Nagumo model of reaction-diffusion systems, spatially homogeneous patterns may be nonlinearly unstable to the formation of compact {open_quote}{open_quote}localized states.{close_quote}{close_quote} The formation of space-filling patterns from instabilities of such structures in the context of a nonlocal contour dynamics model for the evolution of boundaries between high and low concentrations of the activator. An earlier heuristic derivation [D. M. Petrich and R. E. Goldstein, Phys. Rev. Lett. {bold 72}, 1120 (1994)] is made more systematic by an asymptotic analysis appropriate to the limits of fast inhibition, sharp activator interfaces, and small asymmetry in the bistable minima. The resulting contour dynamics is temporally local, with the normal component of the velocity involving a local contribution linear in the interface curvature and a nonlocal component having the form of a screened Biot-Savart interaction. The amplitude of the nonlocal interaction is set by the activator-inhibitor coupling and controls the {open_quote}{open_quote}lateral inhibition{close_quote}{close_quote} responsible for the destabilization of localized structures such as spots and stripes, and the repulsion of nearby interfaces in the later stages of those instabilities. The phenomenology of pattern formation exhibited by the contour dynamics is consistent with that seen by Lee, McCormick, Ouyang, and Swinney in experiments on the iodide-ferrocyanide-sulfite reaction in a gel reactor. Extensive numerical studies of the underlying partial differential equations are presented and compared in detail with the contour dynamics. The similarity of these phenomena (and their mathematical description) with those observed in amphiphilic monolayers, type I superconductors in the intermediate state, and magnetic fluids in Hele-Shaw geometry are emphasized. {copyright} {ital 1996 The American Physical Society.}

  10. Cavity magnomechanics

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  11. Visualization of Hydrogen Diffusion in a Hydrogen-Enhanced Fatigue Crack Growth in Type 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hisao; Noda, Hiroshi

    2011-09-01

    To study the influence of hydrogen on the fatigue strength of AISI type 304 metastable austenitic stainless steel, specimens were cathodically charged with hydrogen. Using tension-compression fatigue tests, the behavior of fatigue crack growth from a small drill hole in the hydrogen-charged specimen was compared with that of noncharged specimen. Hydrogen charging led to a marked increase in the crack growth rate. Typical characteristics of hydrogen effect were observed in the slip band morphology and fatigue striation. To elucidate the behavior of hydrogen diffusion microscopically in the fatigue process, the hydrogen emission from the specimens was visualized using the hydrogen microprint technique (HMT). In the hydrogen-charged specimen, hydrogen emissions were mainly observed in the vicinity of the fatigue crack. Comparison between the HMT image and the etched microstructure image revealed that the slip bands worked as a pathway for hydrogen to move preferentially. Hydrogen-charging resulted in a significant change in the phase transformation behavior in the fatigue process. In the noncharged specimen, a massive type α' martensite was observed in the vicinity of the fatigue crack. On the other hand, in the hydrogen-charged specimen, large amounts of ɛ martensite and a smaller amount of α' martensite were observed along the slip bands. The results indicated that solute hydrogen facilitated the ɛ martensitic transformation in the fatigue process. Comparison between the results of HMT and EBSD inferred that martensitic transformations as well as plastic deformation itself can enhance the mobility of hydrogen.

  12. Modeling growth and dissemination of lymphoma in a co-evolving lymph node: a diffuse-domain approach

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; Cristini, Vittorio; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Lowengrub, John

    2013-03-01

    While partial differential equation models of tumor growth have successfully described various spatiotemporal phenomena observed for in-vitro tumor spheroid experiments, one challenge towards taking these models to further study in-vivo tumors is that instead of relatively static tissue culture with regular boundary conditions, in-vivo tumors are often confined in organ tissues that co-evolve with the tumor growth. Here we adopt a recently developed diffuse-domain method to account for the co-evolving domain boundaries, adapting our previous in-vitro tumor model for the development of lymphoma encapsulated in a lymph node, which may swell or shrink due to proliferation and dissemination of lymphoma cells and treatment by chemotherapy. We use the model to study the induced spatial heterogeneity, which may arise as an emerging phenomenon in experimental observations and model analysis. Spatial heterogeneity is believed to lead to tumor infiltration patterns and reduce the efficacy of chemotherapy, leaving residuals that cause cancer relapse after the treatment. Understanding the spatiotemporal evolution of in-vivo tumors can be an essential step towards more effective strategies of curing cancer. Supported by NIH-PSOC grant 1U54CA143907-01.

  13. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline

    PubMed Central

    Pulvino, Mary; Chen, Luojing; Oleksyn, David; Li, Jing; Compitello, George; Rossi, Randy; Spence, Stephen; Balakrishnan, Vijaya; Jordan, Craig; Poligone, Brian; Casulo, Carla; Burack, Richard; Shapiro, Joel L.; Bernstein, Steven; Friedberg, Jonathan W.; Deshaies, Raymond J.; Land, Hartmut; Zhao, Jiyong

    2015-01-01

    In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes. PMID:26142707

  14. Computer simulation of topological evolution in 2-d grain growth using a continuum diffuse-interface field model

    SciTech Connect

    Fan, D.; Geng, C.; Chen, L.Q.

    1997-03-01

    The local kinetics and topological phenomena during normal grain growth were studied in two dimensions by computer simulations employing a continuum diffuse-interface field model. The relationships between topological class and individual grain growth kinetics were examined, and compared with results obtained previously from analytical theories, experimental results and Monte Carlo simulations. It was shown that both the grain-size and grain-shape (side) distributions are time-invariant and the linear relationship between the mean radii of individual grains and topological class n was reproduced. The moments of the shape distribution were determined, and the differences among the data from soap froth. Potts model and the present simulation were discussed. In the limit when the grain size goes to zero, the average number of grain edges per grain is shown to be between 4 and 5, implying the direct vanishing of 4- and 5-sided grains, which seems to be consistent with recent experimental observations on thin films. Based on the simulation results, the conditions for the applicability of the familiar Mullins-Von Neumann law and the Hillert`s equation were discussed.

  15. Diffusion limited aggregation of particles with different sizes: Fractal dimension change by anisotropic growth

    NASA Astrophysics Data System (ADS)

    Braga, F. L.; Mattos, O. A.; Amorin, V. S.; Souza, A. B.

    2015-07-01

    Clusters formation models have been extensively studied in literature, and one of the main task of this research area is the analysis of the particle aggregation processes. Some work support that the main characteristics of this processes are strictly correlated to the cluster morphology, for example in DLA. It is expected that in the DLA clusters formation with particles containing different sizes the modification of the aggregation processes can be responsible for changes in the DLA morphology. The present article is going to analyze the formation of DLA clusters of particles with different sizes and show that the aggregates obtained by this approach generate an angle selection mechanism on dendritic growth that influences the shielding effect of the DLA edge and affect the fractal dimension of the clusters.

  16. Morphological diagram of diffusion driven aggregate growth in plane: Competition of anisotropy and adhesion

    NASA Astrophysics Data System (ADS)

    Menshutin, A. Yu.; Shchur, L. N.

    2011-09-01

    Two-dimensional structures grown with Witten and Sander algorithm are investigated. We analyze clusters grown off-lattice and clusters grown with antenna method with N=3,4,5,6,7 and 8 allowed growth directions. With the help of variable probe particles technique we measure fractal dimension of such clusters D(N) as a function of their size N. We propose that in the thermodynamic limit of infinite cluster size the aggregates grown with high degree of anisotropy ( N=3,4,5) tend to have fractal dimension D equal to 3/2, while off-lattice aggregates and aggregates with lower anisotropy ( N>6) have D≈1.710. Noise-reduction procedure results in the change of universality class for DLA. For high enough noise-reduction value clusters with N⩾6 have fractal dimension going to 3/2 when N→∞.

  17. CRAB Cavity in CERN SPS

    SciTech Connect

    Kim, H.J.; Sen, T.; /Fermilab

    2010-05-01

    Beam collisions with a crossing angle at the interaction point are often necessary in colliders to reduce the effects of parasitic collisions which induce emittance growth and decrease beam lifetime. The crossing angle reduces the geometrical overlap of the beams and hence the luminosity. Crab cavity offer a promising way to compensate the crossing angle and to realize effective head-on collisions. Moreover, the crab crossing mitigates the synchro-betatron resonances due to the crossing angle. A crab cavity experiment in SPS is proposed as a proof of principle before deciding on a full crab-cavity implementation in the LHC. In this paper, we investigate the effects of a single crab cavity on beam dynamics in the SPS and life time.

  18. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  19. Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    PubMed Central

    Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.

    2014-01-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435

  20. Characterization of Diffusion-Controlled Growth and Dissolution of Methane Hydrate in Aqueous Solution by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, W.; Ye, Y.; Chou, I.; Liu, C.; Burruss, R. C.; Wang, F.; Wang, M.

    2010-12-01

    Most submarine gas hydrates occur within the two-phase equilibrium region of hydrate and interstitial water at pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 2 to 20 °C. The dynamics of growth and dissolution of hydrate phases, in the absence of a vapor phase, due to the change of T, P, and salinity under geologic conditions are not well established by existing experimental studies. In this work, we observed growth and dissolution cycles of methane-hydrate crystals in an aqueous solution in a fused silica capillary capsule (FSCC) by changing T in a heating-cooling stage. The maximum T at which this hydrate (H) sample coexists with liquid water (Lw) and vapor was found to be 33.5 °C. At lower T, a ~6 mm long Lw section at one end of the capsule was always separated from the vapor phase at the other end by hydrate crystals in between. After several heating-cooling cycles at T below 30 °C, a large hydrate crystal was formed at the end of the Lw section, which was separated from the vapor phase by other hydrate crystals in between. After keeping the sample at room T for two weeks, we then kept the sample at 2 °C for 6.5 hours until the T was raised to 25 °C for 3 hours. During these T changes, the changes in length of the hydrate crystal were recorded by video, and the changes of methane concentration in Lw at four different points away from the initial H-Lw interface were monitored by Raman spectroscopy (Lu et al., 2006, Appl. Spectr., 60, 122). The rates of growth and dissolution of hydrate crystal were found to be controlled by the rate of methane transfer in solution, which was a function of the concentration gradient and the diffusion coefficient of methane in the solution. The measured apparent diffusion coefficients of methane in water in the presence of hydrate are found to be slightly lower than those without hydrate. Also, the dynamic exchange of methane between solid hydrate and the interstitial water was controlled by the difference

  1. Pump cavities for compact pulsed Nd:YAG lasers: a comparative study

    SciTech Connect

    Docchio, F.; Pallaro, L.; Svelto, O.

    1985-11-15

    Two elliptical cavities of different dimensions and eccentricity, one close-coupled diffusive cavity and one close-coupled reflecting cavity of our design, have been studied as a function of the type and geometry of the pumping cavity. A high efficiency is obtained with the two elliptical cavities, while a more uniform beam distribution is obtained with the two close-coupled cavities. The close-coupled reflective cavity gives comparable efficiency with respect to the diffusive type but a superior beam quality.

  2. Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth

    SciTech Connect

    Chun, J.; Petrov, I.; Greene, J.E.

    1999-10-01

    Low-temperature deposition of TiN by reactive evaporation or sputter deposition onto amorphous substrates leads to highly underdense layers which develop mixed 111/002 orientations through competitive growth. In contrast, we demonstrate here the growth of low-temperature (450&hthinsp;{degree}C) fully dense polycrystalline TiN layers with complete 111 texture. This was achieved by reactive magnetron sputter deposition using a combination of: (1) highly oriented 25-nm-thick 0002 Ti underlayers to provide 111 TiN orientation through texture inheritance (local epitaxy) and (2) high flux (J{sub N{sub 2}{sup +}}/J{sub Ti}=14), low-energy (E{sub N{sub 2}{sup +}}{approx_equal}20&hthinsp;eV), N{sub 2}{sup +} ion irradiation in a magnetically unbalanced mode to provide enhanced adatom diffusion leading to densification during TiN deposition. The Ti underlayers were also grown in a magnetically unbalanced mode, in this case with an incident Ar{sup +}/Ti flux ratio of 2 and E{sub Ar{sup +}}{approx_equal}11&hthinsp;eV. All TiN films were slightly overstoichiometric with a N/Ti ratio of 1.02{plus_minus}0.03. In order to assess the diffusion-barrier properties of dense 111-textured TiN, Al overlayers were deposited without breaking vacuum at 100&hthinsp;{degree}C. Al/TiN bilayers were then annealed at a constant ramp rate of 3thinsp{degree}Cthinsps{sup {minus}1} to 650thinsp{degree}Cthinsps{sup {minus}1} and the interfacial reaction between Al and TiN was monitored by {ital in situ} synchrotron x-ray diffraction measurements. As a reference point, we find that interfacial Al{sub 3}Ti formation is observed at 450&hthinsp;{degree}C in Al/TiN bilayers in which the TiN layer is deposited directly on SiO{sub 2} in a conventional magnetically balanced mode and, hence, is underdense with a mixed 111/002 orientation. However, the onset temperature for interfacial reaction was increased to 610&hthinsp;{degree}C in bilayers with fully dense TiN exhibiting complete 111 preferred orientation

  3. Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction--diffusion patterned catalysis of cell surface growth

    PubMed Central

    Holloway, D. M.

    1999-01-01

    Semi-cell morphogenesis in unicellular desmid algae of the genus Micrasterias generates a stellar shape by repeated dichotomous branching of growing tips of the cell surface. The numerous species of the genus display variations of the branching pattern that differ markedly in number of branchings, lobe width and lobe length. We have modelled this morphogenesis, following previous work by D. M. Harrison and M. Kolar (1988), on the assumptions that patterning occurs by chemical reaction-diffusion activity within the plasma membrane, leading to morphological expression by patterned catalysis of the extension of the cell surface. The latter has been simulated in simplified form by two-dimensional computations. Our results indicate that for generation of repeated branchings and for the control of diverse species-specific shapes, the loss of patterning activity and of rapid growth in regions separating the active growing tips is an essential feature. We believe this conclusion to be much more general than the specific details of our model. We discuss the limitations of the model especially in terms of what extra features might be addressed in three-dimensional computation.

  4. Diffusion and growth of nickel, iron and magnesium adatoms on the aluminum truncated octahedron: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yang, Jianyu; Hu, Wangyu; Wu, Yurong; Dai, Xiongying

    2012-06-01

    The structure of nickel (Ni), iron (Fe), and magnesium (Mg) adatoms on the aluminum (Al) truncated octahedron is studied using molecular dynamics and the analytic embedded atom method. First, the energy barriers of several typical diffusion processes of Ni, Fe, and Mg adatoms on the Al truncated octahedral cluster were calculated using the nudged elastic band method. The calculated energy barriers were found to be related to the surface energy and atomic radius of the adatom and substrate atom. The result shows that the incorporation of Ni and Fe atoms into Al core easily occurs, and the Mg atom should segregate at the surface of the Al cluster. Thus, the growth of Ni, Fe and Mg on the Al truncated octahedron with 1289 atoms was simulated at several temperatures. In the Ni-Al and Fe-Al cases, the core-shell structure was not obtained. For the Mg-Al system, a good Mg shell on the Al core was found at lower temperatures, and an almost perfect truncated octahedron with more Al shells emerged with an increase in temperature.

  5. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas.

    PubMed

    Naylor, Tara L; Tang, Huaping; Ratsch, Boris A; Enns, Andreas; Loo, Alice; Chen, Liqing; Lenz, Peter; Waters, Nigel J; Schuler, Walter; Dörken, Bernd; Yao, Yung-Mae; Warmuth, Markus; Lenz, Georg; Stegmeier, Frank

    2011-04-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) correlates with poor prognosis. The ABC subtype of DLBCL is associated with constitutive activation of the NF-κB pathway, and oncogenic lesions have been identified in its regulators, including CARD11/CARMA1 (caspase recruitment domain-containing protein 11), A20/TNFAIP3, and CD79A/B. In this study, we offer evidence of therapeutic potential for the selective PKC (protein kinase C) inhibitor sotrastaurin (STN) in preclinical models of DLBCL. A significant fraction of ABC DLBCL cell lines exhibited strong sensitivity to STN, and we found that the molecular nature of NF-κB pathway lesions predicted responsiveness. CD79A/B mutations correlated with STN sensitivity, whereas CARD11 mutations rendered ABC DLBCL cell lines insensitive. Growth inhibitory effects of PKC inhibition correlated with NF-κB pathway inhibition and were mediated by induction of G₁-phase cell-cycle arrest and/or cell death. We found that STN produced significant antitumor effects in a mouse xenograft model of CD79A/B-mutated DLBCL. Collectively, our findings offer a strong rationale for the clinical evaluation of STN in ABC DLBCL patients who harbor CD79 mutations also illustrating the necessity to stratify DLBCL patients according to their genetic abnormalities.

  6. Effect of Ni content on the diffusion-controlled growth of the product phases in the Cu(Ni)-Sn system

    NASA Astrophysics Data System (ADS)

    Baheti, Varun A.; Islam, Sarfaraj; Kumar, Praveen; Ravi, Raju; Narayanan, Ramesh; Hongqun, Dong; Vuorinen, Vesa; Laurila, Tomi; Paul, Aloke

    2016-01-01

    A strong influence of Ni content on the diffusion-controlled growth of the (Cu,Ni)3Sn and (Cu,Ni)6Sn5 phases by coupling different Cu(Ni) alloys with Sn in the solid state is reported. The continuous increase in the thickness ratio of (Cu,Ni)6Sn5 to (Cu,Ni)3Sn with the Ni content is explained by combined kinetic and thermodynamic arguments as follows: (i) The integrated interdiffusion coefficient does not change for the (Cu,Ni)3Sn phase up to 2.5 at.% Ni and decreases drastically for 5 at.% Ni. On the other hand, there is a continuous increase in the integrated interdiffusion coefficient for (Cu,Ni)6Sn5 as a function of increasing Ni content. (ii) With the increase in Ni content, driving forces for the diffusion of components increase for both components in both phases but at different rates. However, the magnitude of these changes alone is not large enough to explain the high difference in the observed growth rate of the product phases because of Ni addition. (iv) Kirkendall marker experiments indicate that the Cu6Sn5 phase grows by diffusion of both Cu and Sn in the binary case. However, when Ni is added, the growth is by diffusion of Sn only. (v) Also, the observed grain refinement in the Cu6Sn5 phase with the addition of Ni suggests that the grain boundary diffusion of Sn may have an important role in the observed changes in the growth rate.

  7. Cavity quantum electrodynamics: coherence in context.

    PubMed

    Mabuchi, H; Doherty, A C

    2002-11-15

    Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.

  8. Cavity Quantum Electrodynamics: Coherence in Context

    NASA Astrophysics Data System (ADS)

    Mabuchi, H.; Doherty, A. C.

    2002-11-01

    Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.

  9. Kinetics of growth of thin-films of Co2Si, Ni2Si, WSi2 and VSi2 during a reactive diffusion process

    NASA Astrophysics Data System (ADS)

    Akintunde, S. O.; Selyshchev, P. A.

    A theoretical approach is developed which describes the growth kinetics of thin films of near noble metal silicide (especially of cobalt silicide (Co2Si) and nickel silicide (Ni2Si)) and refractory metal silicide (particularly of tungsten disilicide (WSi2) and vanadium disilicide (VSi2)) at the interfaces of metal-silicon system. In this approach, metal species are presented as A-atoms, silicon as B-atoms, and silicide as AB-compound. The AB-compound is formed as a result of chemical transformation between A- and B-atoms at the reaction interfaces A/AB and AB/B. The growth of AB-compound at the interfaces occurs in two stages. The first growth stage is reaction controlled stage which takes place at the interface with excess A or B-atoms and the second stage is diffusion limited stage which occurs at both interfaces. The critical thickness of AB-compound and the corresponding time is determined at the transition point between the two growth stages. The result that follows from this approach shows that the growth kinetics of any growing silicides depends on the number of kinds of dominant diffusing species in the silicide layer and also on their number densities at the reaction interface. This result shows a linear-parabolic growth kinetics for WSi2, VSi2, Co2Si, and Ni2Si and it is in good agreement with experiment.

  10. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  11. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  12. Spectroscopic evaluation of photodynamic therapy of the intraperitoneal cavity

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.; Sandell, Julia L.; Zhu, Timothy C.; Lewis, Robert; Cengel, Keith A.; Hahn, Stephen M.

    2010-02-01

    We present the results of spectroscopic measurements of diffuse reflectance and fluorescence before and after photodynamic therapy of healthy canine peritoneal cavity. Animals were treated intra-operatively after iv injection of the benzoporphyrin derivative (BPD). The small bowel was treated using a uniform light field projected by a microlens-tipped fiber. The cavity was then filled with scattering medium and the remaining organs were treated using a moving diffuser. Diffuse reflectance and fluorescence measurements were made using a multi-fiber optical probe positioned on the surface of various tissues within the cavity before and after illumination. The measured data were analyzed to quantify hemoglobin concentration and oxygenation and sensitizer concentration.

  13. Effect of sputtered Cu film's diffusion barrier on the growth and field emission properties of carbon nanotubes by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Chen, Ting; Feng, Tao; Chen, Yiwei; Que, Wenxiu; Lin, Lifeng; Sun, Zhuo

    2008-03-01

    Growth of carbon nanotube (CNT) films with good field emission properties on glass is very important for low cost field emission display (FED) applications. In addition to Ni, Co and Fe, Cu can be a good catalyst for CNT growth on glass, but due to diffusion into SiO2 it is difficult to control the CNTs density and uniformity. In this paper, four metal barrier layers (W, Ni, Cr, Ti) were deposited by dc magnetron sputtering on glass to reduce the Cu diffusion. As-grown CNT films showed various morphologies with the use of different barrier metals. CNTs with uniform distribution and better crystallinity can be synthesized only on Ti/Cu and W/Cu. Voltage current measurements indicate that better field emission properties of CNT films can be obtained on titanium and tungsten barriered Cu, while chromium and nickel are not suitable barrier candidates for copper in CNT-FED applications because of the reduced emission performance.

  14. Effect of Cross-Interaction between Ni and Cu on Growth Kinetics of Intermetallic Compounds in Ni/Sn/Cu Diffusion Couples during Aging

    NASA Astrophysics Data System (ADS)

    Hong, K. K.; Ryu, J. B.; Park, C. Y.; Huh, J. Y.

    2008-01-01

    The solid-state, cross-interaction between the Ni layer on the component side and the Cu pad on the printed circuit board (PCB) side in ball grid array (BGA) solder joints was investigated by employing Ni(15 μm)/Sn(65 μm)/Cu ternary diffusion couples. The ternary diffusion couples were prepared by sequentially electroplating Sn and Ni on a Cu foil and were aged isothermally at 150, 180, and 200°C. The growth of the intermetallic compound (IMC) layer on the Ni side was coupled with that on the Cu side by the mass flux across the Sn layer that was caused by the difference in the Ni content between the (Cu1- x Ni x )6Sn5 layer on the Ni side and the (Cu1- y Ni y )6Sn5 layer on the Cu side. As the consequence of the coupling, the growth rate of the (Cu1- x Ni x )6 Sn5 layer on the Ni side was rapidly accelerated by decreasing Sn layer thickness and increasing aging temperature. Owing to the cross-interaction with the top Ni layer, the growth rate of the (Cu1- y Ni y )6Sn5 layer on the Cu side was accelerated at 150°C and 180°C but was retarded at 200°C, while the growth rate of the Cu3Sn layer was always retarded. The growth kinetic model proposed in an attempt to interpret the experimental results was able to reproduce qualitatively all of the important experimental observations pertaining to the growth of the IMC layers in the Ni/Sn/Cu diffusion couple.

  15. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth

    PubMed Central

    2012-01-01

    Background Reaction-diffusion based models have been widely used in the literature for modeling the growth of solid tumors. Many of the current models treat both diffusion/consumption of nutrients and cell proliferation. The majority of these models use classical transport/mass conservation equations for describing the distribution of molecular species in tumor spheroids, and the Fick's law for describing the flux of uncharged molecules (i.e oxygen, glucose). Commonly, the equations for the cell movement and proliferation are first order differential equations describing the rate of change of the velocity of the cells with respect to the spatial coordinates as a function of the nutrient's gradient. Several modifications of these equations have been developed in the last decade to explicitly indicate that the tumor includes cells, interstitial fluids and extracellular matrix: these variants provided a model of tumor as a multiphase material with these as the different phases. Most of the current reaction-diffusion tumor models are deterministic and do not model the diffusion as a local state-dependent process in a non-homogeneous medium at the micro- and meso-scale of the intra- and inter-cellular processes, respectively. Furthermore, a stochastic reaction-diffusion model in which diffusive transport of the molecular species of nutrients and chemotherapy drugs as well as the interactions of the tumor cells with these species is a novel approach. The application of this approach to he scase of non-small cell lung cancer treated with gemcitabine is also novel. Methods We present a stochastic reaction-diffusion model of non-small cell lung cancer growth in the specification formalism of the tool Redi, we recently developed for simulating reaction-diffusion systems. We also describe how a spatial gradient of nutrients and oncological drugs affects the tumor progression. Our model is based on a generalization of the Fick's first diffusion law that allows to model

  16. The growth and structure of double-diffusive cells adjacent to a cooled sidewall in a salt-stratified environment

    NASA Astrophysics Data System (ADS)

    Malki-Epshtein, Liora; Phillips, Owen M.; Huppert, Herbert E.

    2004-11-01

    Observations and measurements are reported on the patterns and rates of growth in time of the double-diffusive cells that form adjacent to a cooled sidewall in a saltstratified environment. Fluid near the wall is cooled and sinks a distance h where its density, increased by cooling, matches that of the salt-stratified ambient. The fluid separates from the wall, moving outwards as a cool, fresher layer beneath a warmer, more saline region. This leads to growing double-diffusive cells that advance outward at a rate, found by dimensional reasoning, to initially be proportional to N_{0}h, where N_{0} is the initial buoyancy frequency in the ambient and h is the intrusion's vertical thickness. Near the wall at the top of each cell, the sinking colder fluid is continually replaced by selective withdrawal from the ambient ‘far field’. The fluid being withdrawn from the ambient is always the least dense in the cell, and as the experiment proceeds, the straining of the fluid in the ambient region reduces the stratification. The vertical density gradient inside the cell relaxes by continuous hydrostatic adjustment (CHA) to match the ambient and the speed of advance reduces. Measurements of the rate of advance of the cell nose were made in tanks of different lengths L with a range of initial salinity gradients and temperature differences. A simple two-dimensional model is developed to describe the rate of extension of the cells and the internal density gradient as functions of time in which the tank length appears as an important variable. This effect does not seem to have been recognized previously. The rates of evolution in each run involve the time scale tau {=} L /( {C_H hN_0 }), where C_H {≈} 10({) - 2} is a heat transfer coefficient. The mean length of the cells skew2bar {l}(t)and the internal buoyancy frequency as functions of time are given by [ skew2bar {l}(t) / L = t/tau - ( t/2tau)^2,quad N = N_0 (1 - t / 2tau ). ] Inversion of the first of these expressions

  17. Void Nucleation, Growth and Coalescence in Irradiated Metals

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2008-01-11

    A novel computational treatment of dense, stiff, coupled reaction rate equations is introduced to study the nucleation, growth, and possible coalescence of cavities during neutron irradiation of metals. Radiation damage is modeled by the creation of Frenkel pair defects and helium impurity atoms. A multi-dimensional cluster size distribution function allows independent evolution of the vacancy and helium content of cavities, distinguishing voids and bubbles. A model with sessile cavities and no cluster-cluster coalescence can result in a bimodal final cavity size distribution with coexistence of small, high-pressure bubbles and large, low-pressure voids. A model that includes unhindered cavity diffusion and coalescence ultimately removes the small helium bubbles from the system, leaving only large voids. The terminal void density is also reduced and the incubation period and terminal swelling rate can be greatly altered by cavity coalescence. Temperature-dependent trapping of voids/bubbles by precipitates and alterations in void surface diffusion from adsorbed impurities and internal gas pressure may give rise to intermediate swelling behavior through their effects on cavity mobility and coalescence.

  18. Olivine-wadsleyite-pyroxene topotaxy: Evidence for coherent nucleation and diffusion-controlled growth at the 410-km discontinuity

    NASA Astrophysics Data System (ADS)

    Smyth, Joseph R.; Miyajima, Nobuyoshi; Huss, Gary R.; Hellebrand, Eric; Rubie, David C.; Frost, Daniel J.

    2012-06-01

    We have synthesized a hydrous peridotite-composition sample at 13 GPa and 1400 °C with co-existing coarse grains (˜100 μm) of olivine, wadsleyite, clinoenstatite, plus melt in a multi-anvil press. Some of the olivine grains contain fine-scale (0.5-2 μm-wide) lamellae of wadsleyite and clinoenstatite that likely resulted from transformation caused by small temperature fluctuations during the four-hour experiment. Phase compositions were determined by electron probe microanalysis (EPMA) and secondary ion mass spectroscopy (SIMS). The olivine ranges from Fo94 to Fo90 in composition and contains about 4000 ppm wt. H2O. The wadsleyite is Fo87±1 in composition and contains about 10,000 ppm wt. H2O. The clinoenstatite is En93±1 in composition and about 1400 ppm wt. H2O. Transmission electron microscopy of the wadsleyite lamellae and host olivine shows that the two phases share their close-packed oxygen planes so that the wadsleyite lamellae are nearly planar and perpendicular to the [1 0 0] of olivine. The wadsleyite lamellae thus have their {1 0 1} and {0 2 1} planes parallel to the (1 0 0) plane of olivine. Additionally, larger incoherent grains of wadsleyite in olivine are found. Dislocation microtexures in the olivine and iron concentration profiles across the lamella interface suggest heterogeneous nucleation and diffusion-controlled growth of coherent wadsleyite lamellae on defects in the olivine followed by the nucleation of faster-growing incoherent grains on the lamellae. The results show that, under hydrous conditions, the olivine-wadsleyite transformation occurs close to equilibrium at conditions of the 410-km discontinuity. Furthermore, inheritance of crystallographic preferred orientations (and therefore seismic anisotropy) across the 410-km discontinuity is unlikely to be significant. In addition, hydrogen distributions among the various phases indicate that dehydration by melt extraction at 410 km will be inefficient and that H contents greater than

  19. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    NASA Astrophysics Data System (ADS)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  20. Kinetic characteristics of crystallization from model solutions of the oral cavity

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Chikanova, E. S.

    2015-11-01

    The kinetic regularities of crystallization from model solutions of the oral cavity are investigated and the growth order and constants are determined for two systems: saliva and dental plaque fluid (DPF). It is found that the stage in which the number of particles increases occurs in the range of mixed kinetics and their growth occurs in the diffusion range. The enhancing effect of additives HCO- 3 > C6H12O6 > F- and the retarding effect of Mg2+ are demonstrated. The HCO- 3 and Mg2+ additives, taken in high concentrations, affect the corresponding rate constants. It is revealed the crystallization in DPF is favorable for the growth of small crystallites, while the model solution of saliva is, vice versa, favorable for the growth of larger crystals.

  1. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  2. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  3. Investigation of Cu(In,Ga)Se{sub 2} polycrystalline growth: Ga diffusion and surface morphology evolution

    SciTech Connect

    Han, Jun-feng; Liao, Cheng; Jiang, Tao; Xie, Hua-mu; Zhao, Kui

    2014-01-01

    Graphical abstract: - Highlights: • Ga diffusion in CIGS absorption layer after annealing treatment. • Phenomenon of surface reconstruction after annealing treatment. • Understand selenium effect on CIGS annealing process. • Explain the kinetic of Ga diffusion and MoSe{sub 2} formation. - Abstract: We report a study of selenization and annealing treatment of copper indium gallium selenide (CIGS) film. Morphologies and composition of surface and cross section were observed by scanning electron microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS). X-ray diffraction (XRD) and Raman spectra were used to investigate film structure. Depth profiles of element distributions were detected by Auger electron spectroscopy (AES). A double-layer structure was formed in the film by selenizing metallic precursor at 450 °C. Further annealing at 600 °C in pure argon enhanced gallium diffusion from the bottom to the top of the film, while additional selenium in the annealing had a negative effect. A MoSe{sub 2} layer was detected between CIGS and Mo layers with annealing in additional Se. The annealing treatment also significantly modified the film surface morphology. A large amount of triangular and polygon shaped islands were observed by SEM. That might be due to different nucleation kinetics for different crystal facets.

  4. Electromagnetic SCRF Cavity Tuner

    SciTech Connect

    Kashikhin, V.; Borissov, E.; Foster, G.W.; Makulski, A.; Pischalnikov, Y.; Khabiboulline, T.; /Fermilab

    2009-05-01

    A novel prototype of SCRF cavity tuner is being designed and tested at Fermilab. This is a superconducting C-type iron dominated magnet having a 10 mm gap, axial symmetry, and a 1 Tesla field. Inside the gap is mounted a superconducting coil capable of moving {+-} 1 mm and producing a longitudinal force up to {+-} 1.5 kN. The static force applied to the RF cavity flanges provides a long-term cavity geometry tuning to a nominal frequency. The same coil powered by fast AC current pulse delivers mechanical perturbation for fast cavity tuning. This fast mechanical perturbation could be used to compensate a dynamic RF cavity detuning caused by cavity Lorentz forces and microphonics. A special configuration of magnet system was designed and tested.

  5. Cavity enhanced terahertz modulation

    SciTech Connect

    Born, N.; Scheller, M.; Moloney, J. V.; Koch, M.

    2014-03-10

    We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Pérot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

  6. Characterization of cavity wakes

    NASA Astrophysics Data System (ADS)

    Kidd, James A.

    Scope and Method of Study. This research focused on flow over deep cavities at subsonic speeds with emphasis on the wake downstream of the cavity. Cavity wake behaviors have not been studied in detail and are a major concern for air vehicles with cavities and in particular for optical sensor systems installed in cavities. Other key behaviors for sensor survival and performance are cavity resonance and turbulence scales in the shear layer. A wind tunnel test apparatus was developed to explore cavity and wake characteristics. It consisted of a test section insert for the OSU Indraft Wind Tunnel with an additional contraction cone for significantly increased speed. The test section included a variable depth cavity in a boundary layer splitter plate/fairing assembly, a Y-Z traverse and pitot rake with in-situ pressure transducers for high frequency response. Flows were measured over clean cavities with length to depth (L/D) ratios of 4 to 1/2 and on cavities with a porous fence for resonance suppression. Measurements were taken in streamwise and cross-stream sections to three cavity lengths downstream of the cavity trailing edge. Flow visualization using laser sheet and smoke injection was also used. Findings and Conclusions. The high speed insert demonstrated a significant new capability for the OSU wind tunnel, reaching speeds of 0.35 Mach (390 feet/second) in a 14"x14" test section. Inlet room flow was found to be quite unsteady and recommendations are made for improved flow and quantitative visualization. Key findings for cavity wake flow include its highly three dimensional nature with asymmetric peaks in cross section with boundary layer thicknesses and integral length scales several times that of a normal flat plate turbulent boundary layer (TBL). Turbulent intensities (TI) of 35% to 55% of freestream speeds were measured for the clean configuration. Fence configuration TI's were 20% to 35% of free stream and, in both configurations, TI's decayed to

  7. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  8. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2009-11-03

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  9. Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals

    SciTech Connect

    Colombier, J. P.; Garrelie, F.; Faure, N.; Reynaud, S.; Bounhalli, M.; Audouard, E.; Stoian, R.; Pigeon, F.

    2012-01-15

    Metals exposed to ultrafast laser irradiation close to ablative regimes show often a submicron-scale (near 0.5 {mu}m) periodic organization of the surface as ripples. Using two classes of metallic materials (transition and noble), we have determined that the ripples amplitude is strongly correlated to the material transport properties, namely electron-phonon relaxation strength, electronic diffusion, and to the energy band characteristics of the electronic laser excitation. This particularly depends on the topology of the electronic structure, including d-band effects on electronic excitation. Comparing the effects of electron-phonon nonequilibrium lifetimes for the different metals under similar irradiation conditions, we indicate how the electron-phonon coupling strength affects the electronic thermal diffusion, the speed of phase transformation and impacts on the ripples contrast. The highest contrast is observed for ruthenium, where the electron-phonon coupling is the strongest, followed by tungsten, nickel, and copper, the latter with the least visible contrast. The dependence of surface patterns contrast with fluence is linked to the dependence of the relaxation characteristics with the electronic temperature.

  10. Effects of anatomical constraints on tumor growth

    NASA Astrophysics Data System (ADS)

    Capogrosso Sansone, B.; Delsanto, P. P.; Magnano, M.; Scalerandi, M.

    2001-08-01

    Competition for available nutrients and the presence of anatomical barriers are major determinants of tumor growth in vivo. We extend a model recently proposed to simulate the growth of neoplasms in real tissues to include geometrical constraints mimicking pressure effects on the tumor surface induced by the presence of rigid or semirigid structures. Different tissues have different diffusivities for nutrients and cells. Despite the simplicity of the approach, based on a few inherently local mechanisms, the numerical results agree qualitatively with clinical data (computed tomography scans of neoplasms) for the larynx and the oral cavity.

  11. Segmented Dyke Growth and Associated Seismicity at Bárðarbunga Volcanic System (Iceland) is Driven by Non-Linear Magma Pressure Diffusion

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.

    2015-12-01

    In August 2014 segmented lateral dyke growth has been observed in a rifting event at Bardarbunga volcanic system, Iceland. The temporal evolution of the magma source and the physical nature of magma flow process during dyke propagation and arrest are unclear. The epidemic-type aftershock sequence model has been used to detect fluid signals in seismicity data. We use the earthquake catalog recorded during the rifting event to reconstruct the magma flow signal at the feeding source of the dyke. We find that the segmentation of dyke growth is caused by a pulsating nature of the magma flow source. We identify two main magma flow pulses, which initiate and propagate the two main segments of the dyke. During phases of dyke arrest magma flow pulses are low and cannot further propagate the dyke. We use the reconstructed magma flow signal to set up a numerical model of non-linear magma pressure diffusion. By using the magma pressure changes resulting from magma flow, we simulate the earthquake catalog caused by the reduction of the effective principal stress. We observe an excellent agreement between the spatio-temporal characteristics of the simulated earthquake catalog and recorded seismicity. Our results suggest that the process of magma pressure relaxation can be described as a non-linear diffusion process. Because the opening of the dyke creates significant new fracture volume, the permeability of the rock is strongly increasing and the diffusion process becomes highly non-linear. Our analysis is based on lessons learned from analysis of seismicity observed during hydraulic fracturing of hydrocarbon reservoirs. Despite large differences in scale, the underlying physical processes are comparable. Finally, we analyze the decay of seismic activity after start of the effusive fissure eruption near the end of the dyke. The magma flow strongly decreases and seismic activity decays according to Omori's law, which describes the decay of aftershock activity after tectonic

  12. Nitrogen doping study in ingot niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  13. Liquid laser cavities

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Kellermeyer, G. L.; Mc Avoy, N.

    1969-01-01

    Liquid laser cavities have plenum chambers at the ends of the capillary cell which are terminated in transparent optical flats. By use of these cavities, several new europium chelates and a terbium chelate can provide laser action in solution at room temperature.

  14. CAVITY EXCITATION CIRCUIT

    DOEpatents

    Franck, J.V.

    1959-10-20

    An electronic oscillator is described for energizing a resonant cavity and to a system for stabilizing the operatin g frequency of the oscillator at the particular frequency necessary to establish a particular preferred field configuration or mode in the cavity, in this instance a linear accelerator. A freely rnnning oscillator has an output coupled to a resonant cavity wherein a field may be built up at any one of several adjacent frequencies. A pickup loop in the cavity is suitably shielded and positioned in the cavity so that only energy at the panticular desired frequency is fed back to stabilize the oscillator. A phase and gain control is in cluded in the feedback line.

  15. Passivated niobium cavities

    SciTech Connect

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  16. Megakaryocytic potentiating factor and mature mesothelin stimulate the growth of a lung cancer cell line in the peritoneal cavity of mice.

    PubMed

    Zhang, Jingli; Bera, Tapan K; Liu, Wenhai; Du, Xing; Alewine, Christine; Hassan, Raffit; Pastan, Ira

    2014-01-01

    The mesothelin (MSLN) gene encodes a 71 kilodalton (kDa) precursor protein that is processed into megakaryocytic potentiating factor (MPF), a 31 kDa protein that is secreted from the cell, and mature mesothelin (mMSLN), a 40 kDa cell surface protein. The mMSLN binds to CA125, an interaction that has been implicated in the intra-cavitary spread of mesothelioma and ovarian cancer. To better define the role of MPF and mMSLN, growth of the lung cancer cell line A549 was evaluated in immuno-deficient mice with inactivation of the Msln gene. We observed that Msln-/- mice xenografted with intraperitoneal A549 tumors survive significantly long than tumor-bearing Msln+/+ mice. When tumor-bearing Msln-/- mice are supplemented with recombinant MPF (and to a lesser extent mMSLN), most of this survival advantage is lost. These studies demonstrate that MPF and mMSLN have an important role in the growth of lung cancer cells in vivo and raise the possibility that inactivation of MPF may be a useful treatment for lung and other MSLN expressing cancers. PMID:25118887

  17. Crystal growth of phosphopantetheine adenylyltransferase, carboxypeptidase t, and thymidine phosphorylase on the international space station by the capillary counter-diffusion method

    SciTech Connect

    Kuranova, I. P. Smirnova, E. A.; Abramchik, Yu. A.; Chupova, L. A.; Esipov, R. S.; Akparov, V. Kh.; Timofeev, V. I.; Kovalchuk, M. V.

    2011-09-15

    Crystals of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis, thymidine phosphorylase from Escherichia coli, carboxypeptidase T from Thermoactinomyces vulgaris and its mutant forms, and crystals of complexes of these proteins with functional ligands and inhibitors were grown by the capillary counter-diffusion method in the Japanese Experimental Module Kibo on the International Space Station. The high-resolution X-ray diffraction data sets suitable for the determination of high-resolution three-dimensional structures of these proteins were collected from the grown crystals on the SPring-8 synchrotron radiation facility. The conditions of crystal growth for the proteins and the data-collection statistics are reported. The crystals grown in microgravity diffracted to a higher resolution than crystals of the same proteins grown on Earth.

  18. Crystal growth of phosphopantetheine adenylyltransferase, carboxypeptidase t, and thymidine phosphorylase on the international space station by the capillary counter-diffusion method

    NASA Astrophysics Data System (ADS)

    Kuranova, I. P.; Smirnova, E. A.; Abramchik, Yu. A.; Chupova, L. A.; Esipov, R. S.; Akparov, V. Kh.; Timofeev, V. I.; Kovalchuk, M. V.

    2011-09-01

    Crystals of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis, thymidine phosphorylase from Escherichia coli, carboxypeptidase T from Thermoactinomyces vulgaris and its mutant forms, and crystals of complexes of these proteins with functional ligands and inhibitors were grown by the capillary counter-diffusion method in the Japanese Experimental Module Kibo on the International Space Station. The high-resolution X-ray diffraction data sets suitable for the determination of high-resolution three-dimensional structures of these proteins were collected from the grown crystals on the SPring-8 synchrotron radiation facility. The conditions of crystal growth for the proteins and the data-collection statistics are reported. The crystals grown in microgravity diffracted to a higher resolution than crystals of the same proteins grown on Earth.

  19. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  20. Hydroforming of elliptical cavities

    DOE PAGES

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, Peter

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30–35 MV/m were measured after BCP and Eacc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have

  1. Tuned optical cavity magnetometer

    SciTech Connect

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  2. Hydroforming of elliptical cavities

    SciTech Connect

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, Peter

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30–35 MV/m were measured after BCP and Eacc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double

  3. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  4. Beam Dynamics in the Cebaf Superconducting Cavities.

    NASA Astrophysics Data System (ADS)

    Li, Zenghai

    1995-01-01

    This work is a study of beam dynamics in the CEBAF superconducting cavities under the influence of the fields generated by externally applied RF and beam particles. A full 3-D modeling of the CEBAF 5-cell superconducting cavity is carried out. Details of the modeling with MAFIA are discussed. Multipole fields due to the asymmetric couplers are studied by means of 3-D Fourier transforms. The cavity steering and focusing of the multipole fields are studied. Experimental measurements of these effects are performed to validate the modeling. Evaluation of the cavity misalignment is discussed. The emittance degradation effects in the CEBAF superconducting linacs and an FEL driver linac due to the head-tail effects of the cavity steering and the x - y coupling effects of the multipole fields are studied. The beam-cavity interactions for cases of v _{s}, v_{t} not= c are studied. The Lindman boundary condition is implemented to accommodate simulation of infinite long beam pipes of the beam line. A fourth-order finite-difference algorithm is derived in cylindrical coordinates to reduce the frequency dependent truncation errors, which were discovered in the process of calculating wake fields of very short bunches, of the second-order Yee algorithm. The effects of the slippage between the source particle and the test particle are considered in the wake function calculations. Radial scaling relations are obtained for calculating the wake functions on the axis from the integrated value at the beam pipe radius. The scaling found not only depends on the beam energy but also depends on the bunch length of the beam and the opening of the cavity. The conditions for the validity of the ultrarelativistic treatment of the wakefield are discussed. The emittance growth and the energy spread due to the combined effects of the cavity multipole fields and the wakefields in a 40 MeV IR FEL driver linac are studied.

  5. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  6. Insulin-like growth factor-1 content and pattern of expression correlates with histopathologic grade in diffusely infiltrating astrocytomas.

    PubMed

    Hirano, H; Lopes, M B; Laws, E R; Asakura, T; Goto, M; Carpenter, J E; Karns, L R; VandenBerg, S R

    1999-04-01

    Studies of experimental tumorigenesis have strongly implicated signaling of the insulin-like growth factor 1 (IGF-1) as a key component in astrocytic neoplasia; however, its role in the growth of low-grade and malignant human tumors is not well understood. Correlative analyses of IGF-1, p53, and Ki-67 (MIB-1) immunohistochemistry and IGF-1 receptor (IGF-1R) mRNA expression were performed to examine the cellular pattern of IGF-1 signaling in 39 cases of astrocytoma (World Health Organization grades II-IV). Tumor cells expressing IGF-1 and IGF-1R were present in all tumor grades. The proportion of tumor cells that expressed IGF-1 correlated with both histopathologic grade and Ki-67 labeling indices, while expression of IGF-1R mRNA correlated with Ki-67 indices. In cases where stereotactic tissue sampling could be identified with a specific tumor area by neuroimaging features, the numbers of IGF-1 immunoreactive cells correlated with the tumor zones of highest cellularity and Ki-67 labeling. In glioblastomas, the localization of IGF-1 immunoreactivity was notable for several features: frequent accentuation in the perivascular tumor cells surrounding microvascular hyperplasia; increased levels in reactive astrocytes at the margins of tumor infiltration; and selective expression in microvascular cells exhibiting endothelial/pericytic hyperplasia. IGF-1R expression was particularly prominent in tumor cells adjacent to both microvascular hyperplasia and palisading necrosis. These data suggest that IGF-1 signaling occurs early in astroglial tumorigenesis in the setting of cell proliferation. The distinctive correlative patterns of IGF-1 and IGF-1R expression in glioblastomas also suggest that IGF-1 signaling has an association with the development of malignant phenotypes related to aberrant angiogenesis and invasive tumor interactions with reactive brain.

  7. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  8. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.

    PubMed

    Singh, Shardendu K; Badgujar, Girish; Reddy, Vangimalla R; Fleisher, David H; Bunce, James A

    2013-06-15

    Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01mM) and two levels of CO2 concentration (ambient 400 and elevated 800μmolmol(-1)) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants

  9. An historical overview of cavity-enhanced methods

    NASA Astrophysics Data System (ADS)

    Paldus, B. A.; Kachanov, A. A.

    2005-10-01

    An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.

  10. Suppression of Cavity-Driven Flow Separation in a Simulated Mixed Compression Inlet

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.

    2000-01-01

    A test facility designed to simulate a bifurcated subsonic diffuser operating within a mixed compression inlet is described. The subsonic diffuser in this facility modeled a bypass cavity feature often used in mixed compression inlets for engine flow matching and normal shock control. A bypass cavity-driven flow separation was seen to occur in the subsonic diffuser without applied flow control. Flow control in the form of vortex generators and/or a partitioned bypass cavity cover plate were used to eliminate this flow separation, providing a 2% increase in area-averaged total pressure recovery, and a 70% reduction in circumferential distortion intensity.

  11. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.

    PubMed

    Khankhoje, U K; Kim, S-H; Richards, B C; Hendrickson, J; Sweet, J; Olitzky, J D; Khitrova, G; Gibbs, H M; Scherer, A

    2010-02-10

    In this paper, we present recent progress in the growth, modelling, fabrication and characterization of gallium arsenide (GaAs) two-dimensional (2D) photonic-crystal slab cavities with embedded indium arsenide (InAs) quantum dots (QDs) that are designed for cavity quantum electrodynamics (cQED) experiments. Photonic-crystal modelling and device fabrication are discussed, followed by a detailed discussion of different failure modes that lead to photon loss. It is found that, along with errors introduced during fabrication, other significant factors such as the presence of a bottom substrate and cavity axis orientation with respect to the crystal axis, can influence the cavity quality factor (Q). A useful diagnostic tool in the form of contour finite-difference time domain (FDTD) is employed to analyse device performance.

  12. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  13. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  14. Erbium diffusion in silicon dioxide

    SciTech Connect

    Lu Yingwei; Julsgaard, B.; Petersen, M. Christian; Jensen, R. V. Skougaard; Pedersen, T. Garm; Pedersen, K.; Larsen, A. Nylandsted

    2010-10-04

    Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

  15. Relativistic diffusive motion in thermal electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2013-04-01

    We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.

  16. Metasurface external cavity laser

    NASA Astrophysics Data System (ADS)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Chen, Qi-Sheng; Itoh, Tatsuo; Williams, Benjamin S.

    2015-11-01

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  17. Video Toroid Cavity Imager

    DOEpatents

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  18. Multicolor cavity soliton.

    PubMed

    Luo, Rui; Liang, Hanxiao; Lin, Qiang

    2016-07-25

    We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy. PMID:27464131

  19. Metasurface external cavity laser

    SciTech Connect

    Xu, Luyao Curwen, Christopher A.; Williams, Benjamin S.; Hon, Philip W. C.; Itoh, Tatsuo; Chen, Qi-Sheng

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  20. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    SciTech Connect

    Y. Park; J. Yoo; K. Huang; D. D. Keiser, Jr.; J. F. Jue; B. Rabin; G. Moore; Y. H. Sohn

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the a-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the a-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the a-U, Mo2Zr, and UZr2 phases.

  1. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    NASA Astrophysics Data System (ADS)

    Park, Y.; Yoo, J.; Huang, K.; Keiser, D. D.; Jue, J. F.; Rabin, B.; Moore, G.; Sohn, Y. H.

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45-345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.

  2. Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth.

    PubMed

    Pizzi, Marco; Piazza, Francesco; Agostinelli, Claudio; Fuligni, Fabio; Benvenuti, Pietro; Mandato, Elisa; Casellato, Alessandro; Rugge, Massimo; Semenzato, Gianpietro; Pileri, Stefano A

    2015-03-30

    Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of α catalytic and β regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2α immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-κB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL.

  3. Growth kinetics of MgSiO3 perovskite reaction rim between stishovite and periclase up to 50 GPa and its implication for grain boundary diffusivity in the lower mantle

    NASA Astrophysics Data System (ADS)

    Nishi, Masayuki; Nishihara, Yu; Irifune, Tetsuo

    2013-09-01

    The growth rate of MgSiO3 perovskite reaction rims between periclase and stishovite was investigated at 24-50 GPa and 1650-2150 K using a Kawai-type high-pressure apparatus. The textural observations of the recovered samples and rim growth kinetic data revealed that the reaction is controlled by coupled grain boundary diffusion of MgO and grain coarsening in the perovskite reaction layer. Assuming a high diffusivity of O compared with Mg, the grain boundary diffusivity of Mg in the perovskite was determined to be δDgbMg[m/s]=10-15.1exp{-[176,000+(P-24)×3.8×103]/RT}, which is ˜3-5 orders of magnitude faster than that of Si. We found that the bulk diffusivity of Mg in polycrystalline perovskite is affected by the grain boundary when we consider the possible grain sizes and temperatures in the lower mantle. Accordingly, grain boundary diffusion in perovskite may be an effective mechanism for chemical transportation of divalent cations in the lower mantle.

  4. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    SciTech Connect

    T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

    2004-07-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

  5. Discrete cavity solitons.

    PubMed

    Peschel, U; Egorov, O; Lederer, F

    2004-08-15

    We derive evolution equations describing light propagation in an array of coupled-waveguide resonators and predict the existence of discrete cavity solitons. We identify stable, unstable, and oscillating solitons by varying the coupling strength between the anticontinuous and the continuous limit. PMID:15357356

  6. Melatonin and Oral Cavity

    PubMed Central

    Cengiz, Murat İnanç; Cengiz, Seda; Wang, Hom-Lay

    2012-01-01

    While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers. PMID:22792106

  7. Coupled Geomechanical Simulations of UCG Cavity Evolution

    SciTech Connect

    Morris, J P; Buscheck, T A; Hao, Y

    2009-07-13

    This paper presents recent work from an ongoing project to develop predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (both natural and engineered) affecting underground coal gasification (UCG). In this paper we will focus upon the development of coupled geomechanical capabilities for simulating the evolution of the UCG cavity using discrete element methodologies. The Discrete Element Method (DEM) has unique advantages for facilitating the prediction of the mechanical response of fractured rock masses, such as cleated coal seams. In contrast with continuum approaches, the interfaces within the coal can be explicitly included and combinations of both elastic and plastic anisotropic response are simulated directly. Additionally, the DEM facilitates estimation of changes in hydraulic properties by providing estimates of changes in cleat aperture. Simulation of cavity evolution involves a range of coupled processes and the mechanical response of the host coal and adjoining rockmass plays a role in every stage of UCG operations. For example, cavity collapse during the burn has significant effect upon the rate of the burn itself. In the vicinity of the cavity, collapse and fracturing may result in enhanced hydraulic conductivity of the rock matrix in the coal and caprock above the burn chamber. Even far from the cavity, stresses due to subsidence may be sufficient to induce new fractures linking previously isolated aquifers. These mechanical processes are key in understanding the risk of unacceptable subsidence and the potential for groundwater contamination. These mechanical processes are inherently non-linear, involving significant inelastic response, especially in the region closest to the cavity. In addition, the response of the rock mass involves both continuum and discrete mechanical behavior. We have recently coupled the LDEC (Livermore Distinct Element Code) and NUFT (Non

  8. Transport and reactions of gold in silicon containing cavities

    SciTech Connect

    Myers, S.M.; Petersen, G.A.

    1998-03-01

    We quantified the strength of Au binding on cavity walls and in precipitates of the Au-Si molten phase within Si over the temperature range 1023{endash}1123 K. Also determined was the diffusivity-solubility product of interstitial Au. These properties were obtained by using ion implantation and annealing to form multiple layers containing cavities or Au-Si precipitates and then measuring by Rutherford backscattering spectrometry the rate and extent of Au redistribution between layers during isothermal heating. Results were incorporated into a diffusion-reaction formalism describing the evolution of the coupled concentrations of interstitial Au, substitutional Au, Si interstitial atoms, and Si vacancies. Cavities were shown to be effective sinks for the gettering of Au from solution in Si. {copyright} {ital 1998} {ital The American Physical Society}

  9. Cavity flow. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Habercom, G. E., Jr.

    1980-05-01

    Reports are cited on shallow and deep configurations, holes, cutouts, hollows, notches, gaps, orifices, flaps, and steps. Applications include bomb bays, aerodynamic windows, microwave cavitites, resonators, diffusers, laser cavities, and jets. This updated bibliography contains 260 abstracts, 29 of which are new entries to the previous edition.

  10. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  11. Broadband cavity electromagnetically induced transparency

    SciTech Connect

    Wei Xiaogang; Wang Yanhua; Zhang Jiepeng; Zhu Yifu

    2011-10-15

    Cavity electromagnetically induced transparency (EIT) is created in a three-level atomic system confined in a cavity and coupled to a free-space control laser and is manifested as a narrow transmission peak of a probe laser coupled into the cavity mode and tuned to the two-photon Raman resonance with the control laser. Cavity EIT can be observed with a control laser detuned from the atomic transition frequency in a range limited by the vacuum Rabi splitting of two cavity-atom normal modes. This leads to the broadband cavity EIT obtained in the coupled-cavity-atom system with a free-space, broadband control laser. We report an experimental observation of broadband cavity EIT in cold Rb atoms with a frequency-modulated control laser and discuss its application in multichannel and multifrequency light memory.

  12. Lithium diffusion at Si-C interfaces in silicon-graphene composites

    SciTech Connect

    Odbadrakh, Khorgolkhuu; McNutt, N. W.; Nicholson, D. M.; Rios, O.; Keffer, D. J.

    2014-08-04

    Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.

  13. Lithium diffusion at Si-C interfaces in Silicon-Graphene composites

    SciTech Connect

    Odbadrakh, Khorgolkhuu; McNutt, Nichiolas William; Nicholson, Donald M.; Rios, Orlando; Keffer, David J.

    2014-01-01

    Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using Density Functional Theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.

  14. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  15. Hopf bifurcation in the driven cavity

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Gustafson, Karl; Halasi, Kadosa

    1990-01-01

    The algorithm employed in the present incompressible two-dimensional calculations of an impulsively-started lid-driven cavity has its basis in the time-dependent stream-function equation. While a Crank-Nicholson differencing scheme is used for the diffusion terms, the Adams-Bashforth scheme is used for the convection terms. The periodic asymptotic solutions obtained for Reynolds numbers of 5000 and 10,000 are found to be precisely periodic; it is demonstrated that they have reached asymptotic states. The indicators of that achievement are discussed.

  16. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  17. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V.; Backer, Marina V.; Backer, Joseph M.; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t of ˜20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t of ˜30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t of ˜90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  18. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

    PubMed

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V; Backer, Marina V; Backer, Joseph M; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  19. Digital Cavity Resonance Monitor, alternative method of measuring cavity microphonics

    SciTech Connect

    Tomasz Plawski; G. Davis; Hai Dong; J. Hovater; John Musson; Thomas Powers

    2005-09-20

    As is well known, mechanical vibration or microphonics in a cryomodule causes the cavity resonance frequency to change at the vibration frequency. One way to measure the cavity microphonics is to drive the cavity with a Phase Locked Loop. Measurement of the instantaneous frequency or PLL error signal provides information about the cavity microphonic frequencies. Although the PLL error signal is available directly, precision frequency measurements require additional instrumentation, a Cavity Resonance Monitor (CRM). The analog version of such a device has been successfully used for several cavity tests [1]. In this paper we present a prototype of a Digital Cavity Resonance Monitor designed and built in the last year. The hardware of this instrument consists of an RF downconverter, digital quadrature demodulator and digital processor motherboard (Altera FPGA). The motherboard processes received data and computes frequency changes with a resolution of 0.2 Hz, with a 3 kHz output bandwidth.

  20. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  1. Access cavity preparation.

    PubMed

    Adams, N; Tomson, P L

    2014-03-01

    Each stage of root canal treatment should be carried out to the highest possible standard. The access cavity is arguably the most important technical stage, as subsequent preparation of the root canal(s) can be severely comprised if this is not well executed. Inadequate access can lead to canals being left untreated, poorly disinfected, difficult to shape and obturate, and may ultimately lead to the failure of the treatment. This paper highlights common features in root canal anatomy and outlines basic principles for locating root canals and producing a good access cavity. It also explores each phase of the preparation in detail and offers suggestions of instruments that have been specifically designed to overcome potential difficulties in the process. Good access design and preparation will result in an operative environment which will facilitate cleaning, shaping and obturation of the root canal system in order to maximise success.

  2. CAVITY CONTROL ALGORITHM

    SciTech Connect

    Tomasz Plawski, J. Hovater

    2010-09-01

    A digital low level radio frequency (RF) system typically incorporates either a heterodyne or direct sampling technique, followed by fast ADCs, then an FPGA, and finally a transmitting DAC. This universal platform opens up the possibilities for a variety of control algorithm implementations. The foremost concern for an RF control system is cavity field stability, and to meet the required quality of regulation, the chosen control system needs to have sufficient feedback gain. In this paper we will investigate the effectiveness of the regulation for three basic control system algorithms: I&Q (In-phase and Quadrature), Amplitude & Phase and digital SEL (Self Exciting Loop) along with the example of the Jefferson Lab 12 GeV cavity field control system.

  3. BEAM DIFFUSION MEASUREMENTS AT RHIC.

    SciTech Connect

    FLILLER,R.P.,IIIDREES,A.GASSNER,D.MCINTYRE,G.PEGGS,S.TRBOJEVIC,D.

    2003-05-12

    During a store, particles from the beam core continually diffuse outwards into the halo through a variety of mechanisms. Understanding the diffusion rate as a function of particle amplitude can help discover which processes are important to halo growth. A collimator can be used to measure the amplitude growth rate as a function of the particle amplitude. In this paper we present results of diffusion measurements performed at the Relativistic Heavy Ion Collider (RHIC) with fully stripped gold ions, deuterons, and protons. We compare these results with measurements from previous years, and simulations, and discuss any factors that relate to beam growth in RHIC.

  4. Dielectric cavity relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M. A.

    2010-02-01

    An alteration in the structure of the A6 relativistic magnetron is proposed, which introduces an extra degree of freedom to its design and enhances many of its quality factors. This modification involves the partial filling of the cavities of the device with a low-loss dielectric material. The operation of a dielectric-filled A6 is simulated; the results indicate single-mode operation at the desired π mode and a substantially cleaner rf spectrum.

  5. What Are Oral Cavity and Oropharyngeal Cancers?

    MedlinePlus

    ... about oral cavity and oropharyngeal cancers? What are oral cavity and oropharyngeal cancers? Cancer starts when cells in ... the parts of the mouth and throat. The oral cavity (mouth) and oropharynx (throat) The oral cavity includes ...

  6. Effective diffusion of confined active Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Dagdug, Leonardo

    2014-11-01

    We find theoretically the effect of confinement and thermal fluctuations, on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian Dynamics simulations and we obtain excellent agreement. L.D. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico, for partial support by Grant No. 176452. M. S. thanks CONACyT and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work under Grant No. 103.5/13/6732.

  7. Pb-Zn liquid metal diffusion

    NASA Technical Reports Server (NTRS)

    Pond, R. B., Sr.; Winter, J. M., Jr.

    1988-01-01

    The Lead-Zinc binary equilibrium system is currently being investigated. Ground based studies of this system were performed to examine the possibility of obtaining a couple which, after diffusion, could be examined continuously along the diffusion axis by quantitative metallography to determine the extent of diffusion. The specimens were analyzed by X-ray fluorescence in the scanning electron microscope to provide exact information on the chemical composition gradient. Two diffusion experiments were run simultaneously in the multipurpose furnace, each in its own isothermal cavity. Two flight samples, two flight backup samples, and two flight space samples were generated.

  8. Crab Cavities for Linear Colliders

    SciTech Connect

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; Shulte, D.; Jones, Roger M.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  9. RF Cavity Characterization with VORPAL

    SciTech Connect

    C. Nieter, C. Roark, P. Stoltz, C.D. Zhou, F. Marhauser

    2011-03-01

    When designing a radio frequency (RF) accelerating cavity structure various figures of merit are considered before coming to a final cavity design. These figures of merit include specific field and geometry based quantities such as the ratio of the shunt impedance to the quality factor (R/Q) or the normalized peak fields in the cavity. Other important measures of cavity performance include the peak surface fields as well as possible multipacting resonances in the cavity. High fidelity simulations of these structures can provide a good estimate of these important quantities before any cavity prototypes are built. We will present VORPAL simulations of a simple pillbox structure where these quantities can be calculated analytically and compare them to the results from the VORPAL simulations. We will then use VORPAL to calculate these figures of merit and potential multipacting resonances for two cavity designs under development at Jefferson National Lab for Project X.

  10. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.

    PubMed

    Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud

    2015-02-01

    Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities.

  11. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.

    PubMed

    Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud

    2015-02-01

    Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities. PMID:25424655

  12. Superconducting cavities and modulated RF

    SciTech Connect

    Farkas, Z.D.

    1981-02-01

    If a cavity has an infinite Q/sub o/, 81.5% of the energy contained in a pulse incident upon the cavity is transferred into the cavity by the end of the pulse if the cavity Q/sub e/ is chosen so that the cavity time constant is 0.796 pulse width (T/sub a/). As Q/sug o/ decreases, the energy in the cavity at the end of the pulse decreases very slowly as long as T/sub a/ is much less than the unloaded cavity time constant, T/sub co/. SC cavities with very high Q/sub o/ enable one to obtain very high gradients with a low power cw source. At high gradients, however, one often does not attain the high Q/sub o/ predicted by theory. Therefore, if one is inteerested in attaining maximum energy in the cavity, as is the case for RF processing and diagnostics, for a given available source energy there is no point in keeping the power on for longer than 0.1 T/sub co/ because the energy expended after 0.1 T/sub co/ is wasted. Therefore, to attain high fields at moderate Q/sub o/, pulsed operation is indicated. This note derives the fields and energy stored and dissipated in the cavity when Q/sub e/ is optimized for a given T/sub a/. It shows how to use this data to measure Q/sub o/ of an SC cavity as a function of field level, how to process the cavity with high RF fields, how to operate SC cavities in the pulsed mode to obtain higher efficiencies and gradients. Experimental results are also reported.

  13. Cavity optomechanical magnetometer.

    PubMed

    Forstner, S; Prams, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H

    2012-03-23

    A cavity optomechanical magnetometer is demonstrated. The magnetic-field-induced expansion of a magnetostrictive material is resonantly transduced onto the physical structure of a highly compliant optical microresonator and read out optically with ultrahigh sensitivity. A peak magnetic field sensitivity of 400  nT  Hz(-1/2) is achieved, with theoretical modeling predicting the possibility of sensitivities below 1  pT  Hz(-1/2). This chip-based magnetometer combines high sensitivity and large dynamic range with small size and room temperature operation.

  14. Water in channel-like cavities: structure and dynamics.

    PubMed Central

    Sansom, M S; Kerr, I D; Breed, J; Sankararamakrishnan, R

    1996-01-01

    Ion channels contain narrow columns of water molecules. It is of interest to compare the structure and dynamics of such intrapore water with those of the bulk solvent. Molecular dynamics simulations of modified TIP3P water molecules confined within channel-like cavities have been performed and the orientation and dynamics of the water molecules analyzed. Channels were modeled as cylindrical cavities with lengths ranging from 15 to 60 A and radii from 3 to 12 A. At the end of the molecular dynamics simulations water molecules were observed to be ordered into approximately concentric cylindrical shells. The waters of the outermost shell were oriented such that their dipoles were on average perpendicular to the normal of the wall of the cavity. Water dynamics were analyzed in terms of self-diffusion coefficients and rotational reorientation rates. For cavities of radii 3 and 6 A, water mobility was reduced relative to that of simulated bulk water. For 9- and 12-A radii confined water molecules exhibited mobilities comparable with that of the bulk solvent. If water molecules were confined within an hourglass-shaped cavity (with a central radius of 3 A increasing to 12 A at either end) a gradient of water mobility was observed along the cavity axis. Thus, water within simple models of transbilayer channels exhibits perturbations of structure and dynamics relative to bulk water. In particular the reduction of rotational reorientation rate is expected to alter the local dielectric constant within a transbilayer pore. Images FIGURE 6 PMID:8789086

  15. Anomalous Diffusion Near Resonances

    SciTech Connect

    Sen, Tanaji; /Fermilab

    2010-05-01

    Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

  16. Applications of cavity optomechanics

    SciTech Connect

    Metcalfe, Michael

    2014-09-15

    Cavity-optomechanics” aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  17. Multicolor cavity metrology.

    PubMed

    Izumi, Kiwamu; Arai, Koji; Barr, Bryan; Betzwieser, Joseph; Brooks, Aidan; Dahl, Katrin; Doravari, Suresh; Driggers, Jennifer C; Korth, W Zach; Miao, Haixing; Rollins, Jameson; Vass, Stephen; Yeaton-Massey, David; Adhikari, Rana X

    2012-10-01

    Long-baseline laser interferometers used for gravitational-wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by 4 orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational-wave detectors. The possibility for using multicolor techniques to overcome current quantum and thermal noise limits is also discussed. PMID:23201656

  18. Extremely Large Cusp Diamagnetic Cavities

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T. A.

    2002-05-01

    Extremely large diamagnetic cavities with a size of as large as 6 Re have been observed in the dayside high-altitude cusp regions. Some of the diamagnetic cavities were independent of the IMF directions, which is unexpected by the current MHD (or ISM) models, suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash, which provides a challenge to the existing MHD (or ISM) models. Associated with these cavities are ions with energies from 40 keV up to 8 MeV. The charge state distribution of these cusp cavity ions was indicative of their seed populations being a mixture of the ionospheric and the solar wind particles. The intensities of the cusp cavity energetic ions were observed to increase by as large as four orders of the magnitudes. During high solar wind pressure period on April 21, 1999, the POLAR spacecraft observed lower ion flux in the dayside high-latitude magnetosheath than that in the neighbouring cusp cavities. These observations indicate that the dayside high-altitude cusp diamagnetic cavity is a key region for transferring the solar wind energy, mass, and momentum into the Earth's magnetosphere. These energetic particles in the cusp diamagnetic cavity together with the cusp's connectivity have significant global impacts on the geospace environment research and will be shedding light on the long-standing unsolved fundamental issue about the origins of the energetic particles in the ring current and in upstream ion events.

  19. Extremely large cusp diamagnetic cavities

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T.; Siscoe, G.

    Extremely large diamagnetic cavities with a size of as large as 6 Re have been observed in the dayside high-altitude cusp regions. These diamagnetic cavities are always there day by day. Some of the diamagnetic cavities have been observed in the morningside during intervals when the IMF By component was positive (duskward), suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash predicted by MHD simulations. Associated with these cavities are ions with energies from 40 keV up to 8 MeV. The charge state distribution of these cusp cavity ions was indicative of their seed populations being a mixture of the ionospheric and the solar wind particles. The intensities of the cusp cavity energetic ions were observed to increase by as large as four orders of the magnitudes. These observations indicate that the dayside high-altitude cusp diamagnetic cavity is a key region for transferring the solar wind energy, mass, and momentum into the Earth's magnetosphere. These energetic particles in the cusp diamagnetic cavity together with the cusp's connectivity to the entire magnetopause may have significant global impacts on the geospace environment. They will possibly be shedding light on the long-standing unsolved fundamental issue about the origins of the energetic particles in the ring current and in the regions upstream of the subsolar magnetopause where energetic ion events frequently are observed.

  20. Nanofriction in Cavity Quantum Electrodynamics.

    PubMed

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. PMID:26684118

  1. Nanofriction in Cavity Quantum Electrodynamics.

    PubMed

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  2. Nanofriction in Cavity Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Fogarty, T.; Cormick, C.; Landa, H.; Stojanović, Vladimir M.; Demler, E.; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  3. Convection-Enhanced Transport into Open Cavities : Effect of Cavity Aspect Ratio.

    PubMed

    Horner, Marc; Metcalfe, Guy; Ottino, J M

    2015-09-01

    Recirculating fluid regions occur in the human body both naturally and pathologically. Diffusion is commonly considered the predominant mechanism for mass transport into a recirculating flow region. While this may be true for steady flows, one must also consider the possibility of convective fluid exchange when the outer (free stream) flow is transient. In the case of an open cavity, convective exchange occurs via the formation of lobes at the downstream attachment point of the separating streamline. Previous studies revealed the effect of forcing amplitude and frequency on material transport rates into a square cavity (Horner in J Fluid Mech 452:199-229, 2002). This paper summarizes the effect of cavity aspect ratio on exchange rates. The transport process is characterized using both computational fluid dynamics modeling and dye-advection experiments. Lagrangian analysis of the computed flow field reveals the existence of turnstile lobe transport for this class of flows. Experiments show that material exchange rates do not vary linearly as a function of the cavity aspect ratio (A = W/H). Rather, optima are predicted for A ≈ 2 and A ≈ 2.73, with a minimum occurring at A ≈ 2.5. The minimum occurs at the point where the cavity flow structure bifurcates from a single recirculating flow cell into two corner eddies. These results have significant implications for mass transport environments where the geometry of the flow domain evolves with time, such as coronary stents and growing aneurysms. Indeed, device designers may be able to take advantage of the turnstile-lobe transport mechanism to tailor deposition rates near newly implanted medical devices.

  4. Atomic entanglement mediated by various non-classical cavity fields

    SciTech Connect

    Saha, Papri; Majumdar, A. S.; Nayak, N

    2011-09-23

    In this paper several non-classical properties are described such as the entanglement of bipartite system in the multimode cavities, described by the Jaynes-Cummings as well as the Tavis-Cummings model. The modes are described quantum mechanically, which helps to bring out the non-classical features emerging from the interaction of atoms with the cavity modes. Effects such as the growth of the magnitude of atomic entanglement with the increase of the cavity photon number, arising out of the intensity dependent atom-cavity coupling lead to interesting dissimilarities from the case of entanglement generated by the standard Jaynes-Cummings interaction. The dynamics of a single Rydberg atom in an n-mode cavity are also described by oscillations at the rate of the interaction strength of the atom-field interaction, Finally, we investigate the entanglement dynamics in the presence of cavity dissipation under single mode Tavis-Cummings interaction. The atom-photon interactions and the generation of entanglement mediated through them are expected to play an important role in possible future practical realizations in the field of quantum communications for various atom-photon interaction models considered under single or multimode cavity.

  5. Vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  6. Power coupler kick of the TRIUMF ICM capture cavities

    NASA Astrophysics Data System (ADS)

    Yan, Fang; E. Laxdal, R.; Zvyagintsev, V.; Yu., Chao; C., Gong; Koscielniak, S.

    2011-06-01

    The TRIUMF Injector CryoModule (ICM) adapted two superconducting single cavities as the capture section for the low injecting energy of 100 keV electrons. Coupler kick induced beam deflection and projected emittance growth are one of the prime concerns of the beam stability, especially at low energies. In low energy applications, the electron velocity changes rapidly inside the cavity, which makes the numerical analysis much more complicated. The commonly used theoretical formulas of the direct integral or the Panofsky-Wenzel theorem is not suitable for the kick calculation of β < 1 electrons. Despite that, the above mentioned kick calculation method doesn't consider injecting electron energy, the beam offset due to the coupler kick may not be negligible because of the low injection energy even if the kick is optimized. Thus the beam dynamics code TRACK is used here for the simulation of the power coupler kick perturbation. The coupler kick can be compensated for by a judicious choice of the coupler position in successive cavities from upstream to downstream. The simulation shows that because of the adiabatic damping by the following superconducting 9-cell cavity, even for the worst orbit distortion case after two capture cavities, the kick is still acceptable at the exit of the ICM after reaching 10 MeV. This paper presents the analysis of the transverse kick and the projected emittance growth induced by the coupler for β < 1 electrons. The simulated results of the TRIUMF ICM capture cavities are described and presented.

  7. Updated Impedance Estimate of the PEP-II RF Cavity

    SciTech Connect

    Rimmer, R.A.; Byrd, J.; Irwin, M.; Goldberg, D.A.

    1996-06-01

    This paper presents an updated estimate of the higher-order mode impedance spectrum of the RF cavities for the PEP-II B-factory. The cavity is designed for continuous operation at 476 MHz with up to 150 kW wall dissipation and heavy beam loading. To reduce the growth rates of coupled-bunch instabilities the cavity higher-order modes are damped by three rectangular waveguides and broad-band loads. The results of detailed measurements on the first high-power cavity with all absorbers in place are presented and the damping effect due to the high-power coupler is discussed. Results are compared with earlier measurements of a cold-test model. Implications for the design of the broad-band bunch-by-bunch feedback systems and high-power HOM loads are discussed.

  8. Accessory oral cavity

    PubMed Central

    Gnaneswaran, Manica Ramamoorthy; Varadarajan, Usha; Srinivasan, Ramesh; Kamatchi, Sangeetha

    2012-01-01

    This is a rare case report of a patient around 11 years with the complaint of extra mouth who reported to the hospital for removal of that extra mouth. On examination there was accessory oral cavity with small upper and lower lips, seven teeth and saliva was drooling out. Under general anesthesia crevicular incision from 32 to 43 was put and labial gingiva with alveolar mucosa was reflected completely and bone exposed to lower border of mandible. There were seven teeth resembling lower permanent anterior teeth in the accessory mouth, which was excised with the accessory lips. 41 extracted and osteotomy carried out extending the incision from the extracted site and osteotomy carried out. Dermoid cyst both below and above the mylohyoid muscle and rudimentary tongue found and excised and the specimen sent for histopathological examination. The wound was closed and uneventful healing noted to the satisfaction of the patient. This is a rare and interesting case which has been documented. PMID:23833508

  9. A scanning cavity microscope.

    PubMed

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm(2); we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  10. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  11. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  12. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  13. FORWARD MODELING CAVITY DENSITY: A MULTI-INSTRUMENT DIAGNOSTIC

    SciTech Connect

    Schmit, D. J.; Gibson, S. E.

    2011-05-20

    The thermodynamic properties of coronal prominence cavities present a unique probe into the energy and mass budget of prominences. Using a three-dimensional morphological model, we forward model the polarization brightness and extreme-ultraviolet (EUV) emission of a cavity and its surrounding streamer. Using a genetic algorithm, we find the best-fit density model by comparing the models to Mauna Loa Solar Observatory MK4 and Hinode EUV Imaging Spectrometer data. The effect of temperature variations on the derived density is also measured. We have measured the density inside a cavity down to 1.05 R{sub sun} with height-dependent error bars. Our forward modeling technique compensates for optically thin projection effects. This method provides a complementary technique to traditional line ratio diagnostics that is useful for diffuse off-limb coronal structures.

  14. Quench studies of ILC cavities

    SciTech Connect

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari; Dai, Jin

    2011-07-01

    Quench limits accelerating gradient in SRF cavities to a gradient lower than theoretically expected for superconducting niobium. Identification of the quenching site with thermometry and OST, optical inspection, and replica of the culprit is an ongoing effort at Jefferson Lab aimed at better understanding of this limiting phenomenon. In this contribution we present our finding with several SRF cavities that were limited by quench.

  15. Trislot-cavity microstrip antenna

    NASA Technical Reports Server (NTRS)

    Ellis, H., Jr.

    1981-01-01

    Flush-mountable assembly composed of disk radiator sandwiched between planes of metal-clad dielectric board has greater bandwidths and beamwidths than simple disk antenna. Conducting planes connect so that disk is enclosed in cavity with Y-shaped slot in top plane. Cavity is excited by microwave energy from disk and radiates from trislot aperature.

  16. Impact of mesophyll diffusion on estimated global land CO2 fertilization

    DOE PAGES

    Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; Norby, Richard J.; Pallardy, Stephen G.; Hoffman, Forrest M.

    2014-10-13

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earthmore » System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr-1ppm-1. This finding implies that the contemporary terrestrial biosphere is more CO2-limited than previously thought.« less

  17. Impact of Mesophyll Diffusion on Estimated Global Land CO2 Fertilization

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Gu, L.; Dickinson, R. E.

    2014-12-01

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr-1ppm-1. This finding implies that the contemporary terrestrial biosphere is more CO2-limited than previously thought.

  18. Impact of mesophyll diffusion on estimated global land CO2 fertilization.

    PubMed

    Sun, Ying; Gu, Lianhong; Dickinson, Robert E; Norby, Richard J; Pallardy, Stephen G; Hoffman, Forrest M

    2014-11-01

    In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and therefore overestimate CO2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO2 fertilization effect (CFE) for global gross primary production (GPP) from 915 to 1,057 PgC for the period of 1901-2010. This increase represents a 16% correction, which is large enough to explain the persistent overestimation of growth rates of historical atmospheric CO2 by Earth system models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC/y/ppm. This finding implies that the contemporary terrestrial biosphere is more CO2 limited than previously thought.

  19. Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates.

    PubMed

    Kim, Jin-Soo; Choi, Jin Sik; Lee, Mi Jung; Park, Bae Ho; Bukhvalov, Danil; Son, Young-Woo; Yoon, Duhee; Cheong, Hyeonsik; Yun, Jun-Nyeong; Jung, Yousung; Park, Jeong Young; Salmeron, Miquel

    2013-01-01

    The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed. PMID:23896759

  20. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  1. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  2. Mechanical Properties of Niobium Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  3. Spatially-resolved spectral image of a microwave-induced plasma with Okamoto-cavity for nitridation of steel substrate.

    PubMed

    Sato, Shigeo; Arai, Yuuki; Wagatsuma, Kazuaki

    2014-01-01

    When a nitrogen microwave-induced plasma produced with an Okamoto-cavity was employed as a source for the nitridation of steel samples, the characteristics of the plasma were investigated by analyzing a spatially-resolved emission image of nitrogen excited species obtained with a two-dimensionally imaging spectrograph. Our previous study had reported on an excellent performance of the Okamoto-cavity microwave-induced plasma (MIP), enabling a nitrided layer having a several-micrometer-thickness to form on an iron substrate, even if the treatment is completed within 1 min, which is superior to a conventional plasma nitriding using low-pressure glow discharges requiring a prolonged treatment time. In this paper, the reason for this is discussed based on a spectrometric investigation. The emission images of band heads of nitrogen molecule and nitrogen molecule ion extended toward the axial/radial directions of the plasma at larger microwave powers supplied to the MIP, thus elevating the number density of the excited species of nitrogen, which would activate any chemical reaction on the iron substrate. However, a drastic increase in the growth rate of the nitrided layer when increasing the microwave power from 600 to 700 W, which had been observed in our previous study, could not be explained only from such a variation in the excited species of nitrogen. This result is probably because the growth process is dominantly controlled by thermal diffusion of nitrogen atom after it enters into the iron substrate, where the substrate temperature is the most important parameter concerning the mobility in the iron lattice. Therefore, the Okamoto-cavity MIP could contribute to a thermal source through radiative heating as well as a source of nitrogen excited species, especially in the growth process of the nitrided layer.

  4. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    SciTech Connect

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  5. Sucrose diffusion in aqueous solution.

    PubMed

    Price, Hannah C; Mattsson, Johan; Murray, Benjamin J

    2016-07-28

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  6. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  7. Stages of Lip and Oral Cavity Cancer

    MedlinePlus

    ... Cavity and Oropharyngeal Cancer Screening Research Lip and Oral Cavity Cancer Treatment (PDQ®)–Patient Version General Information About Lip and Oral Cavity Cancer Go to Health Professional Version Key Points ...

  8. [Evaluation of vitamin B6 and calcium pantothenate effectiveness on hair growth from clinical and trichographic aspects for treatment of diffuse alopecia in women].

    PubMed

    Brzezińska-Wcisło, L

    2001-01-01

    The aim of the study was the clinical and trichological examination (trichogram and hair loss evaluation) conducted comparatively before and after the treatment in 46 women between pubescence and 30 years of age who had symptoms of diffuse alopecia. Calcium pantothenate was administered twice a day orally in doses 100 mg for 4-5 months. Vitamin B6 was injected every day (i ampoule intramusculary) for the period of 20 to 30 days and repeated again after 6 month. On the basis of clinical and trichological studies it was revealed that vitamin B6 administered parenterally for a period of several weeks induces improvement in the hair condition in a number of women and it reduces the hair loss especially in alopecia of telogenic patomechanism. Whereas calcium pantothenate in feminine diffuse alopecia did not show clearly the positive effect. PMID:11344694

  9. Frequency-feedback cavity enhanced spectrometer

    SciTech Connect

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  10. Hopf bifurcation in the driven cavity

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Gustafson, Karl; Halasi, Kadosa

    1989-01-01

    Incompressible two dimensional calculations are reported for the impulsively started lid driven cavity with aspect ratio two. The algorithm is based on the time dependent streamfunction equation, with a Crank-Nicolson differencing scheme for the diffusion terms, and with an Adams-Bashforth scheme for the convection terms. A multigrid method is used to solve the linear implicit equations at each time step. Periodic asymptotic solutions have been found for Re = 10000 and for Re = 5000. The Re = 5000 results are validated by grid refinement calculations. The solutions are shown to be precisely periodic, and care is taken to demonstrate that asymptotic states were reached. A discussion is included about the indicators that are used to show that an asymptotic state was reached, and to show that the asymptotic state is indeed periodic.

  11. Preliminary Experience with ''In-Site'' Baking of Niobium Cavities

    SciTech Connect

    P. Kneisel

    2000-01-01

    In a series of experiments several single cell and multi-cell niobium cavities made from reactor grade and high RRR niobium (frequencies were 700 MHz, 1300 MHz and 1497 MHz) have been baked--after initial testing--in-situ around 145 C for up to 90 hours prior to being recooled. Surprisingly, all cavities showed significant improvements in Q-values between 4.2 and 1.6K. The BCS surface resistance was lowered by nearly a factor of two. This cannot be explained by solely a reduction of dielectric losses caused by adsorbates at the surface or by a decrease of the mean free path due to possibly diffusion of oxygen into the surface layer. In several experiments also the high field behavior of the cavity improved after the in-situ baking procedure. The observed effect opens the possibility for the CEBAF upgrade cavities, which in turn will permit to run the cavities at higher gradients if field emission loading can be prevented. Utilizing this effect can possibly translate into sizeable cost savings since fewer modules are needed for the upgrade program.

  12. Nonlocal Intracranial Cavity Extraction

    PubMed Central

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  13. Progressive cavity pump

    SciTech Connect

    Mueller, J.W.

    1989-04-04

    A progressive cavity pump is described, comprising: a first housing portion defining an inlet; a second housing portion attachable to the first housing portion and defining an outlet; a substantially elastomeric stator comprising an outer portion removably attached to the first and second housing portions, having a first end and a second end spaced from the first end, an inner portion defining a pumping chamber and spaced an annular end portion interconnecting the first ends of the outer and inner portions; a rotor disposed in the inner portion of the stator and extending through the pumping chamber for pumping fluid from the inlet to the outlet in response to rotation of the rotor; and an elongated member disposed in the housing portions and generally annularly between the inner and outer portions of the stator and longitudinally between the annular end portion of the stator and a portion of the second housing portion, the member being removable from the housing portions and separable from the stator.

  14. Nonlocal intracranial cavity extraction.

    PubMed

    Manjón, José V; Eskildsen, Simon F; Coupé, Pierrick; Romero, José E; Collins, D Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  15. Cavity-state preparation using adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Andersson, Erika

    2005-05-01

    We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an Einstein-Podolsky-Rosen state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are supported by numerical simulations.

  16. Shape Determination for Deformed Cavities

    SciTech Connect

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Lixin; Li, Zenghai; Ng, Cho; Xiao, Liling; Ko, Kwok; Ghattas, Omar; /Texas U.

    2006-10-04

    A realistic superconducting RF cavity has its shape deformed comparing to its designed shape due to the loose tolerance in the fabrication process and the frequency tuning for its accelerating mode. A PDE-constrained optimization problem is proposed to determine the deformation of the cavity. A reduce space method is used to solve the PDE-constrained optimization problem where design sensitivities were computed using a continuous adjoint approach. A proof-of-concept example is given in which the deformation parameters of a single cavity-cell with two different types of deformation were computed.

  17. Novel Crab Cavity RF Design

    SciTech Connect

    Dudas, A.; Neubauer, M. L.; Sah, R.; Rimmer, B.; Wang, H.

    2011-03-01

    A 20-50 MV integrated transverse voltage is required for the Electron-Ion Collider. The most promising of the crab cavity designs that have been proposed in the last five years are the TEM type crab cavities because of the higher transverse impedance. The TEM design approach is extended here to a hybrid crab cavity that includes the input power coupler as an integral part of the design. A prototype was built with Phase I monies and tested at JLAB. The results reported on, and a system for achieving 20-50 MV is proposed.

  18. A Comprehensive study of Cavities on the Sun: Structure, Formation, and Evolution

    NASA Astrophysics Data System (ADS)

    Karna, Nishu; Zhang, Jie; Pesnell, William D.

    2016-05-01

    pole. The long life of cavities was due to continuous and sustained adding of trailing flux from multiple active regions as their remnants diffused toward the pole.

  19. [Radiotherapy for oral cavity cancers].

    PubMed

    Lapeyre, M; Biau, J; Racadot, S; Moreira, J F; Berger, L; Peiffert, D

    2016-09-01

    Intensity modulated radiation therapy (IMRT) and brachytherapy are standard techniques for the irradiation of oral cavity cancers. These techniques are detailed in terms of indication, preparation, delineation and selection of the volumes, dosimetry and patient positioning control. PMID:27521039

  20. Geometry-invariant resonant cavities

    PubMed Central

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103

  1. Design of rf conditioner cavities

    SciTech Connect

    Govil, R.; Rimmer, R.A.; Sessler, A.; Kirk, H.G.

    1992-06-01

    Theoretical studies are made of radio frequency structures which can be used to condition electron beams so as to greatly reduce the stringent emittance requirements for successful lasing in a free-electron laser. The basic strategy of conditioning calls for modulating an electron beam in the transverse dimension, by a periodic focusing channel, while it traverses a series of rf cavities, each operating in a TM{sub 210} mode. In this paper, we analyze the cavities both analytically and numerically (using MAFIA simulations). We find that when cylindrical symmetry is broken the coupling impedance can be greatly enhanced. We present results showing various performance characteristics as a function of cavity parameters, as well as possible designs for conditioning cavities.

  2. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  3. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  4. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  5. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  6. Numerical and experimental study on flame structure characteristics in a supersonic combustor with dual-cavity

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Li, Li

    2015-12-01

    Combined numerical and experimental approaches have been implemented to investigate the quasi-steady flame characteristics of supersonic combustion in tandem and parallel dual-cavity. In simulation, a hybrid Large Eddy Simulation (LES)/assumed sub-grid Probability Density Function (PDF) closure model was carried out. Comparison of calculation and experiment as well as comparison of the two configurations are qualitatively and quantitatively performed regarding the flame structure and other flowfield features. Simulation shows a good level of agreement with experimental observation and measurement in terms of instantaneous and time-averaged results. Given the same fuel equivalence ratio, the parallel dual-cavity with the two opposite injections gathers the major combustion around the cavities, thus leading to the concentrated heat release, the greatly extended recirculation zones and the converging-diverging core flow path. Only intermittent stray flame packets can be found in the downstream region. Flame in the combustor with tandem dual-cavity appears to be stabilized by the upstream cavity shear layer and grows gradually to the second cavity, peaking its most intensity in the middle section between the two cavities. For both dual-cavity configurations, the strongest reaction takes place in near chemistry stoichiometric region around the flame edge, and is mainly confined in the supersonic region supported by the inner subsonic combustion. The coexistence of three parts plays a vital role in flame stabilization in the parallel and tandem dual-cavity: a reacting reservoir transferring hot products and activated radicals within the cavity recirculation zone, the hydrogen-rich premixed flame in the jet mixing region, and the downstream diffusion flames supported by the upstream premixed combustion region. In addition, for the parallel dual-cavity under the given condition, significant reaction are present near jet exit upstream the cavity leading edge.

  7. Probing Water Density and Dynamics in the Chaperonin GroEL Cavity

    PubMed Central

    2015-01-01

    ATP-dependent binding of the chaperonin GroEL to its cofactor GroES forms a cavity in which encapsulated substrate proteins can fold in isolation from bulk solution. It has been suggested that folding in the cavity may differ from that in bulk solution owing to steric confinement, interactions with the cavity walls, and differences between the properties of cavity-confined and bulk water. However, experimental data regarding the cavity-confined water are lacking. Here, we report measurements of water density and diffusion dynamics in the vicinity of a spin label attached to a cysteine in the Tyr71 → Cys GroES mutant obtained using two magnetic resonance techniques: electron-spin echo envelope modulation and Overhauser dynamic nuclear polarization. Residue 71 in GroES is fully exposed to bulk water in free GroES and to confined water within the cavity of the GroEL–GroES complex. Our data show that water density and translational dynamics in the vicinity of the label do not change upon complex formation, thus indicating that bulk water-exposed and cavity-confined GroES surface water share similar properties. Interestingly, the diffusion dynamics of water near the GroES surface are found to be unusually fast relative to other protein surfaces studied. The implications of these findings for chaperonin-assisted folding mechanisms are discussed. PMID:24888581

  8. Probabilistic Generation of Entanglement in Optical Cavities

    NASA Astrophysics Data System (ADS)

    Sørensen, Anders S.; Mølmer, Klaus

    2003-03-01

    We propose to produce entanglement by measuring the reflection from an optical cavity. Conditioned on the detection of a reflected photon, pairs of atoms in the cavity are prepared in maximally entangled states. The success probability depends on the cavity parameters, but high quality entangled states may be produced with a high probability even for cavities of moderate quality.

  9. Output coupler design of unstable cavities for excimer lasers.

    PubMed

    Giuri, C; Perrone, M R; Piccinno, V

    1997-02-20

    We tested the performance of a XeCl laser with unstable resonators using as an output coupler a phase unifying (PU) mirror, a super-Gaussian mirror, and a hard-edge mirror. The quantitative impact of the output coupler design on the energy extraction efficiency, near-field profile, far-field energy distribution, and spatial coherence time evolution has been investigated. Laser beams of larger brightness have been obtained with the PU unstable cavity. A faster growth of the laser beam spatial coherence has been observed with the PU cavity by time-resolved, far-field measurements. PMID:18250783

  10. Metastatic Renal Cell Carcinoma to the Oral Cavity.

    PubMed

    Guimarães, Douglas Magno; Pontes, Flavia Sirotheau Correa; Miyahara, Ligia Akiko Ninokata; Guerreiro, Marcella Yasmin Reis; de Almeida, Maria Clara Lopes; Pontes, Helder Antonio Rebelo; Pinto, Decio Dos Santos

    2016-09-01

    Metastases to the oral cavity are extremely rare events, representing less than 1% of all malignant oral tumors. Renal cell carcinoma constitutes about 3% of solid tumors in adults, and it is the most frequent kidney neoplasm, representing about 90% of kidney malignancies. Due to the silent growth of this neoplasm, most patients have no symptoms and the diagnosis is belated, usually after metastases. The present study reports an additional patient of metastatic renal cell carcinoma to the oral cavity regarding the clinical and pathologic features. PMID:27607131

  11. TEM observations of crack tip: cavity interactions

    SciTech Connect

    Horton, J.A.; Ohr, S.M.; Jesser, W.A.

    1981-01-01

    Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities.

  12. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  13. Experimental study on unsteady cloud cavity behaviour and induced pressure fluctuation in a convergent-divergent channel using simultaneous measurement technique

    NASA Astrophysics Data System (ADS)

    Chen, G. H.; Y Wang, G.; Huang, B.; Huang, X.; Gao, Y.

    2013-12-01

    To address the unsteady cavity behaviour and induced pressure fluctuation in cloud cavitating flow, cavitation images and pressure fluctuation signals are simultaneously acquired by high speed visualization system and 4 piezo-electric transducers in a convergent-divergent channel. The cavitation images are processed by using a home-developed software to obtain the time evolutions of global cavity area. Frequency analysis is conducted for both global cavity area and pressure signal. Bubble dynamics is introduced to analyze the correlation between pressure fluctuation in the downstream and global cavity behaviour. Two conclusions are achieved: First, in cloud cavitating flow, the time evolution of both the cavity behaviour and pressure fluctuation are quasi-periodic, one quasi-period can be divided into three main stages: growth of attached cavity, shedding of attached cavity, coalescence and collapse of detached cavity. Second, the dominant frequency of global cavity area and pressure fluctuation on 4 transducers are the same, it's 20Hz in this study. Third, it's found that during the stage of growth of attached cavity and growth, collapse of detached cavity, the correlation between global cavity area and induced pressure in the downstream is similar with that of a single bubble; while, such correlation is not clear when several travelling cavities exist at the same time.

  14. Normal Conducting RF Cavity for MICE

    SciTech Connect

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-05-23

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  15. The ESS elliptical cavity cryomodules

    SciTech Connect

    Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Renard, Bertrand; Olivier, Gilles; Thermeau, Jean-Pierre

    2014-01-29

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today’s leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.

  16. The ESS spoke cavity cryomodules

    SciTech Connect

    Bousson, Sebastien; Duthil, Patxi; Reynet, Denis; Thermeau, Jean-Pierre

    2014-01-29

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today’s leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. This paper introduces the thermo-mechanical design and expected operation of the ESS spoke cavity cryomodules. These cryomodules contain two double spoke bulk Niobium cavities operating at 2 K and at a frequency of 352.21 MHz. The superconducting section of the Spoke Linac accelerates the beam from 90 MeV to 220 MeV. A Spoke Cavity Cryomodule Technology Demonstrator will be built and tested in order to validate the ESS series production.

  17. Coupling of an overdriven cavity

    SciTech Connect

    Garbin, H.D.

    1993-11-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD`s ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled.

  18. Surface self-diffusion of organic glasses.

    PubMed

    Brian, Caleb W; Yu, Lian

    2013-12-19

    Surface self-diffusion coefficients have been determined for the organic glass Nifedipine using the method of surface grating decay. The flattening of 1000 nm surface gratings occurs by viscous flow at 12 K or more above the glass transition temperature and by surface diffusion at lower temperatures. Surface diffusion is at least 10(7) times faster than bulk diffusion, indicating a highly mobile surface. Nifedipine glasses have faster surface diffusion than the previously studied Indomethacin glasses, despite their similar bulk relaxation times. Both glasses exhibit fast surface crystal growth, and its rate scales with surface diffusivity. The observed rate of surface diffusion implies substantial surface rearrangement during the preparation of low-energy glasses by vapor deposition. The Random First Order Transition Theory and the Coupling Model successfully predict the large surface-enhancement of mobility and its increase on cooling, but disagree with the experimental observation of the faster surface diffusion of Nifedipine.

  19. Effects of heterogeneous structure and diffusion permeability of body tissues on decompression gas bubble dynamics.

    PubMed

    Nikolaev, V P

    2000-07-01

    To gain insight into the special nature of gas bubbles that may form in astronauts, aviators and divers, we developed a mathematical model which describes the following: 1) the dynamics of extravascular bubbles formed in intercellular cavities of a hypothetical tissue undergoing decompression; and 2) the dynamics of nitrogen tension in a thin layer of intercellular fluid and in a thick layer of cells surrounding the bubbles. This model is based on the assumption that, due to limited cellular membrane permeability for gas, a value of effective nitrogen diffusivity in the massive layer of cells in the radial direction is essentially lower compared to conventionally accepted values of nitrogen diffusivity in water and body tissues. Due to rather high nitrogen diffusivity in intercellular fluid, a bubble formed just at completion of fast one-stage reduction of ambient pressure almost instantly grows to the size determined by the initial volume of the intercellular cavity, surface tension of the fluid, the initial nitrogen tension in the tissue, and the level of final pressure. The rate of further bubble growth and maximum bubble size depend on comparatively low effective nitrogen diffusivity in the cell layer, the tissue perfusion rate, the initial nitrogen tension in the tissue, and the final ambient pressure. The tissue deformation pressure performs its conservative action on bubble dynamics only in a limited volume of tissue (at a high density of formed bubbles). Our model is completely consistent with the available data concerning the random latency times to the onset of decompression sickness (DCS) symptoms associated with hypobaric decompressions simulating extravehicular activity. We believe that this model could be used as a theoretical basis for development of more adequate methods for the DCS risk prediction.

  20. Precipitation and cavity formation in austenitic stainless steels during irradiation

    SciTech Connect

    Lee, E.H.; Rowcliffe, A.F.; Mansur, L.K.

    1981-01-01

    Microstructural evolution in austenitic stainless steels subjected to displacement damage at high temperature is strongly influenced by the interactions between helium atoms and second phase particles. Cavity nucleation occurs by the trapping of helium at partially coherent particle-matrix interfaces. The recent precipitate point defect collector theory describes the more rapid growth of precipitate-attached cavities compared to matrix cavities where the precipitate-matrix interface collects point defects to augment the normal point deflect flux to the cavitry. Data are presented which support these ideas. It is shown that during nickel ion irradiation of a titanium-modified stainless steel at 675/sup 0/C the rate of injection of helium has a strong effect on the total swelling and also on the nature and distribution of precipitate phases.

  1. An inductively heated hot cavity catcher laser ion source

    SciTech Connect

    Reponen, M.; Moore, I. D. Pohjalainen, I.; Savonen, M.; Voss, A.; Rothe, S.; Sonnenschein, V.

    2015-12-15

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary {sup 107}Ag{sup 21+} ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z {sup 94}Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  2. An inductively heated hot cavity catcher laser ion source.

    PubMed

    Reponen, M; Moore, I D; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined. PMID:26724021

  3. Illumination devices for photodynamic therapy of the oral cavity.

    PubMed

    Canavesi, Cristina; Fournier, Florian; Cassarly, William J; Foster, Thomas H; Rolland, Jannick P

    2010-11-23

    Three compact and efficient designs are proposed to deliver an average irradiance of 50 mW/cm(2) with spatial uniformity well above 90% over a 25 mm(2) target area for photodynamic therapy of the oral cavity. The main goal is to produce uniform illumination on the target while limiting irradiation of healthy tissue, thus overcoming the need of shielding the whole oral cavity and greatly simplifying the treatment protocol. The first design proposed consists of a cylindrical diffusing fiber placed in a tailored reflector derived from the edge-ray theorem with dimensions 5.5 × 7.2 × 10 mm(3); the second device combines a fiber illuminator and a lightpipe with dimensions 6.8 × 6.8 × 50 mm(3); the third design, inspired by the tailored reflector, is based on a cylindrical diffusing fiber and a cylinder reflector with dimensions 5 × 10 × 11 mm(3). A prototype for the cylinder reflector was built that provided the required illumination for photodynamic therapy of the oral cavity, producing a spatial uniformity on the target above 94% and an average irradiance of 51 mW/cm(2) for an input power of 70 mW.

  4. Illumination devices for photodynamic therapy of the oral cavity

    PubMed Central

    Canavesi, Cristina; Fournier, Florian; Cassarly, William J.; Foster, Thomas H.; Rolland, Jannick P.

    2010-01-01

    Three compact and efficient designs are proposed to deliver an average irradiance of 50 mW/cm2 with spatial uniformity well above 90% over a 25 mm2 target area for photodynamic therapy of the oral cavity. The main goal is to produce uniform illumination on the target while limiting irradiation of healthy tissue, thus overcoming the need of shielding the whole oral cavity and greatly simplifying the treatment protocol. The first design proposed consists of a cylindrical diffusing fiber placed in a tailored reflector derived from the edge-ray theorem with dimensions 5.5 × 7.2 × 10 mm3; the second device combines a fiber illuminator and a lightpipe with dimensions 6.8 × 6.8 × 50 mm3; the third design, inspired by the tailored reflector, is based on a cylindrical diffusing fiber and a cylinder reflector with dimensions 5 × 10 × 11 mm3. A prototype for the cylinder reflector was built that provided the required illumination for photodynamic therapy of the oral cavity, producing a spatial uniformity on the target above 94% and an average irradiance of 51 mW/cm2 for an input power of 70 mW. PMID:21157577

  5. An inductively heated hot cavity catcher laser ion source

    NASA Astrophysics Data System (ADS)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Rothe, S.; Savonen, M.; Sonnenschein, V.; Voss, A.

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z 94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  6. RRR Characteristics for SRF cavities

    NASA Astrophysics Data System (ADS)

    Jung, Yoochul; Hyun, Myungook; Joung, Mijoung

    2015-10-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes such as a quarter-wave resonator (QWR), a half-wave resonator (HWR) and a single-spoke resonator (SSR) were fabricated. One of the critical factors determining the performances of superconducting cavities is the residual resistance ratio (RRR). The RRR values essentially represent how pure niobium is and how fast niobium can transmit heat. In general, the RRR degrades during electron beam welding due to impurity incorporation. Thus, it is important to maintain the RRR above a certain value at which a niobium cavity shows target performance. In this study, RRR degradation related with electron beam welding conditions, for example, the welding power, welding speed, and vacuum level, will be discussed.

  7. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  8. A Diffusing Runner for Gravity Casting

    NASA Astrophysics Data System (ADS)

    Hsu, Fu-Yuan; Lin, Huey-Jiuan

    2009-12-01

    In gravity casting, the quality of an aluminum alloy casting relies on, among other things, the design of the runner system in which the ingate velocity into the mold cavity should be controlled to stay under a critical velocity (close to 0.5 m/s). In this study, a diffuser was proposed to reduce the velocity of liquid metal to below this critical value, while the flow rate remained almost unchanged. Flow separation and dead zones in the diffuser design were avoided. A computational modeling package and a real casting experiment (water analogy method) were employed for exploring and verifying the new design. The efficiency of the diffuser was quantified by the measurement of coefficient of discharge Cd. For this new diffuser, the pressure recovery coefficient C p and the loss coefficient K L were also estimated.

  9. Adipose-Derived Mesenchymal Stem Cell Exosomes Suppress Hepatocellular Carcinoma Growth in a Rat Model: Apparent Diffusion Coefficient, Natural Killer T-Cell Responses, and Histopathological Features

    PubMed Central

    Ko, Sheung-Fat; Yip, Hon-Kan; Zhen, Yen-Yi; Lee, Chen-Chang; Lee, Chia-Chang; Huang, Chung-Cheng; Ng, Shu-Hang; Lin, Jui-Wei

    2015-01-01

    We sought to evaluate the effects of adipose-derived mesenchymal stem cells (ADMSCs) exosomes on hepatocellular carcinoma (HCC) in rats using apparent diffusion coefficient (ADC), natural killer T-cell (NKT-cell) responses, and histopathological features. ADMSC-derived exosomes appeared as nanoparticles (30–90 nm) on electron microscopy and were positive for CD63, tumor susceptibility gene-101, and β-catenin on western blotting. The control (n = 8) and exosome-treated (n = 8) rats with N1S1-induced HCC underwent baseline and posttreatment day 10 and day 20 magnetic resonance imaging and measurement of ADC. Magnetic resonance imaging showed rapidly enlarged HCCs with low ADCs in the controls. The exosome-treated rats showed partial but nonsignificant tumor reduction, and significant ADC and ADC ratio increases on day 10. On day 20, the exosome-treated rats harbored significantly smaller tumors and volume ratios, higher ADC and ADC ratios, more circulating and intratumoral NKT-cells, and low-grade HCC (P < 0.05 for all comparisons) compared to the controls. The ADC and volume ratios exhibited significant inverse correlations (P < 0.001, R2 = 0.679). ADMSC-derived exosomes promoted NKT-cell antitumor responses in rats, thereby facilitating HCC suppression, early ADC increase, and low-grade tumor differentiation. ADC may be an early biomarker of treatment response. PMID:26345219

  10. Experimental cavity pressure distributions at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.

    1987-01-01

    An investigation was conducted to define pressure distributions for rectangular cavities over a range of free-stream Mach numbers and cavity dimensions. These pressure distributions together with schlieren photographs are used to define the critical values of cavity length-to-depth ratio that separate open type cavity flows from closed type cavity flows. For closed type cavity flow, the shear layer expands over the cavity leading edge and impinges on the cavity floor, whereas for open type cavity flow, the shear layer bridges the cavity. The tests were conducted by using a flat-plate model permitting the cavity length to be remotely varied from 0.5 to 12 in. Cavity depths and widths were varied from 0.5 to 2.5 in. The flat-plate boundary layer approaching the cavity was turbulent and had a thickness of approximately 0.2 in. at the cavity front face for the range of test Mach numbers from 1.5 to 2.86. Presented are a discussion of the results and a complete tabulation of the experimental data.

  11. The growth of Steroidobacter agariperforans sp. nov., a novel agar-degrading bacterium isolated from soil, is enhanced by the diffusible metabolites produced by bacteria belonging to Rhizobiales.

    PubMed

    Sakai, Masao; Hosoda, Akifumi; Ogura, Kenjiro; Ikenaga, Makoto

    2014-01-01

    An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5-B(T), belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FS(T), at the species level with 96.5% similarity. Strain KA5-B(T) was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15-37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0-8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso-C15:0, C16:1ω7c, and iso-C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FS(T) was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5-B(T) (JCM 18477(T) = KCTC 32107(T)) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed.

  12. The Growth of Steroidobacter agariperforans sp. nov., a Novel Agar-Degrading Bacterium Isolated from Soil, is Enhanced by the Diffusible Metabolites Produced by Bacteria Belonging to Rhizobiales

    PubMed Central

    Sakai, Masao; Hosoda, Akifumi; Ogura, Kenjiro; Ikenaga, Makoto

    2014-01-01

    An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5–BT, belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FST, at the species level with 96.5% similarity. Strain KA5–BT was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15–37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0–8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso–C15:0, C16:1ω7c, and iso–C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FST was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5–BT (JCM 18477T = KCTC 32107T) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed. PMID:24621511

  13. Energetics (Adenosine 5′-Triphosphate) of Mycobacterium lepraemurium in Diffusion Chambers Incubated In Vitro and in Mice

    PubMed Central

    Dhople, Arvind M.; Hanks, John H.

    1973-01-01

    Adenosine 5′-triphosphate (ATP) measurements and the processing of samples have been refined to a point where the energetics and growth potential of microscopic samples of unwashed host-grown, host-dependent microbes can be investigated. Mycobacterium lepraemurium, the noncultivated agent of murine leprosy, was employed to examine three reports of the slow microscopic growth of this organism in the absence of host cells. A few million bacterial cells were enclosed in Rightsel- and Ito-type diffusion chambers, which were incubated in vitro and in the peritoneal cavities of mice. In the in vitro experiments, a complex medium containing bovine serum and mouse brain extracts, renewed three times a week, did not sustain the energetics of the bacilli. The microscopic counts declined to 72% and the ATP per culture to 9% of the original values. Very different results were obtained from chambers incubated in the peritoneal cavities of mice. The bacterial biomass increased 2.7-fold and the ATP per culture increased 2.5-fold. Because the ATP per cell was 93% of the original, this system is regarded as the first to permit the extracellular growth of a so-called “obligate intracellular microbe.” The results obtained with only 1 × 106 host-grown cells per assay demonstrate a significant biochemical tool for investigating the growth potential of host-grown microbes during the progression, regression, and therapy of disease. PMID:4594117

  14. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2001-05-15

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  15. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2003-01-01

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  16. Progress on a Be Cavity Design

    SciTech Connect

    Li, D.; Palmer, R.; Stratakis, D.; Virostek, S.; Zisman, Michael S.

    2010-12-24

    Previous RF experiments with normal-conducting cavities have demonstrated that there is a significant degradation in maximum gradient when the cavity is subjected to a strong axial magnetic field. We have developed a model suggesting that a cavity with beryllium walls may perform better than copper cavities. In this paper we outline the issues that led us to propose fabricating a Be-wall cavity. We also discuss a concept for fabricating such a cavity and mention some of the manufacturing issues we expect to face.

  17. Cavity-QED enhancement of fluorescence yields in microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M.

    1993-12-31

    Measurements of the integrated fluorescence yield of Rhodamine 6G (R6G) in levitated microdroplets (4 to 16 {mu}m diameter) display a size dependence which is attributed to a decreased probability per excitation cycle of photochemical bleaching as a result of cavity-enhanced spontaneous emission rates. The average number of fluorescence photons detected per molecule in 4 {mu}m droplets (where emission rate enhancement has been previously demonstrated) is shown to be approximately a factor of 2 larger than the yield measured for larger droplets where emission rate enhancement does not occur. Within some simple approximations, these results suggest that essentially no emission rate inhibition occurs in this system. A mechanism based on spectral diffusion is postulated for the apparent absence of cavity-inhibited emission and is illustrated by Monte Carlo calculations using time-dependent lineshape functions.

  18. 600-Hz linewidth short-linear-cavity fiber laser.

    PubMed

    Mo, Shupei; Huang, Xiang; Xu, Shanhui; Li, Can; Yang, Changsheng; Feng, Zhouming; Zhang, Weinan; Chen, Dongdan; Yang, Zhongmin

    2014-10-15

    We proposed a short-linear-cavity (SLC) fiber laser based on a virtual-folded-ring (VFR) resonator and a fiber Bragg grating Fabry-Perot filter. Spatial hole burning effect was reduced by retarding the polarization state of the counter-propagating light waves utilizing the VFR structure. The photon lifetime of the resonator was extended due to the multi-reflection inside the FBG FP, which increased the intra-cavity power and relatively suppressed the contribution of phase diffusion from spontaneous emission. The relaxation oscillation frequency is around 160 kHz due to the slow light effect. The linewidth of the SLC fiber laser was measured to be less than 600 Hz.

  19. Facing rim cavities fluctuation modes

    NASA Astrophysics Data System (ADS)

    Casalino, Damiano; Ribeiro, André F. P.; Fares, Ehab

    2014-06-01

    Cavity modes taking place in the rims of two opposite wheels are investigated through Lattice-Boltzmann CFD simulations. Based on previous observations carried out by the authors during the BANC-II/LAGOON landing gear aeroacoustic study, a resonance mode can take place in the volume between the wheels of a two-wheel landing gear, involving a coupling between shear-layer vortical fluctuations and acoustic modes resulting from the combination of round cavity modes and wheel-to-wheel transversal acoustic modes. As a result, side force fluctuations and tonal noise side radiation take place. A parametric study of the cavity mode properties is carried out in the present work by varying the distance between the wheels. Moreover, the effects due to the presence of the axle are investigated by removing the axle from the two-wheel assembly. The azimuthal properties of the modes are scrutinized by filtering the unsteady flow in narrow bands around the tonal frequencies and investigating the azimuthal structure of the filtered fluctuation modes. Estimation of the tone frequencies with an ad hoc proposed analytical formula confirms the observed modal properties of the filtered unsteady flow solutions. The present study constitutes a primary step in the description of facing rim cavity modes as a possible source of landing gear tonal noise.

  20. Piezoelectric tunable microwave superconducting cavity

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Fan, Y.; Tobar, M. E.

    2016-09-01

    In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.

  1. "Grinding" cavities in polyurethane foam

    NASA Technical Reports Server (NTRS)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  2. ADPF spoke cavity cryomodule concept

    SciTech Connect

    Kelley, J. P.; Roybal, P. L.; La Fave, R. P.; Waynert, J. A.; Schrage, D. L.; Schmierer, E. N.; Krawczyk, F. L.; Garnett, R. W.

    2001-01-01

    The Accelerator Driven Test Facility (ADTF) is being developed as a reactor concepts test bed for transmutation of nuclear waste. A 13.3 mA continuous-wave (CW) proton beam will be accelerated to 600 MeV and impinged on a spallation target. The subsequent neutron shower is used to create a nuclear reaction within a subcritical assembly of waste material that reduces the waste half-life from the order of 10{sup 5} years to 10{sup 2} years. Additionally, significant energy is produced that can be used to generate electrical power. The ADTF proton accelerator consists of room-temperature (RT) structures that accelerate the beam to 6.7-MeV and superconducting (SC) elements that boost the beam's energy to 600-MeV. Traditional SC elliptical cavities experience structural difficulties at low energies due to their geometry. Therefore, stiff-structured SC spoke cavities have been adopted for the energy range between 6.7 and 109 MeV. Elliptical cavities are used at the higher energies. This paper describes a multi-spoke-cavity cryomodule concept for ADTF.

  3. Fibre ring cavity semiconductor laser

    SciTech Connect

    Duraev, V P; Medvedev, S V

    2013-10-31

    This paper presents a study of semiconductor lasers having a polarisation maintaining fibre ring cavity. We examine the operating principle and report main characteristics of a semiconductor ring laser, in particular in single- and multiple-frequency regimes, and discuss its application areas. (lasers)

  4. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a... restorative materials. The device is intended to prevent penetration of restorative materials, such as...

  5. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a... restorative materials. The device is intended to prevent penetration of restorative materials, such as...

  6. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a... restorative materials. The device is intended to prevent penetration of restorative materials, such as...

  7. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  8. Understanding cavity resonances with intracavity dispersion properties

    SciTech Connect

    Sheng Jiteng; Wu Haibin; Mumba, M.; Gea-Banacloche, J.; Xiao Min

    2011-02-15

    We experimentally study the strongly coupled three-level atom-cavity system at both cavity and coupling frequency detuning cases. Side peak splitting and anti-crossing-like phenomena are observed under different experimental conditions. Intracavity dispersion properties are used to explain qualitatively the complicated cavity resonance structures in the composite system of inhomogeneously broadened three-level atoms inside an optical ring cavity with relatively strong driving intensities.

  9. Field Fluctuation Spectroscopy in a Reverberant Cavity with Moving Scatterers

    NASA Astrophysics Data System (ADS)

    de Rosny, Julien; Roux, Philippe; Fink, Mathias; Page, J. H.

    2003-03-01

    We report a study of transient ultrasonic waves inside a reverberant cavity containing moving scatterers. We show that the elastic mean free path and the dynamics of the scatterers govern the evolution of the autocorrelation of acoustic wave field. A parallel is established between these results and a closely related technique, diffusing acoustic wave spectroscopy. Excellent agreement is found between experiment and theory for a moving stainless steel ball in a water tank, thereby elucidating the underlying physics, and a potential application, fish monitoring inside aquariums, is demonstrated.

  10. Cavity Alighment Using Beam Induced Higher Order Modes Signals in the TTF Linac

    SciTech Connect

    Ross, M.; Frisch, J.; Hacker, K.E.; Jones, R.M.; McCormick, D.; O'Connell, C.; Smith, T.; Napoly, O.; Paparella, R.; Baboi, N.; Wendt, M.; /DESY

    2005-07-06

    Each nine cell superconducting (SC) accelerator cavity in the TESLA Test Facility (TTF) at DESY [1] has two higher order mode (HOM) couplers that efficiently remove the HOM power [2]. They can also provide useful diagnostic signals. The most interesting modes are in the first 2 cavity dipole passbands. They are easy to identify and their amplitude depends linearly on the beam offset from the cavity axis making them excellent beam position monitors (BPM). By steering the beam through an eight-cavity cryomodule, we can use the HOM signals to estimate internal residual alignment errors and minimize wakefield related beam emittance growth. We built and tested a time-domain based waveform recorder system that captures information from each mode in these two bands on each beam pulse. In this paper we present a preliminary experimental study of the single-bunch generated HOM signals at the TTF linac including estimates of cavity alignment precision and HOM BPM resolution.

  11. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared

    PubMed Central

    Shubina, T. V.; Pozina, G.; Jmerik, V. N.; Davydov, V. Yu.; Hemmingsson, C.; Andrianov, A. V.; Kazanov, D. R.; Ivanov, S. V.

    2015-01-01

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large ’ripened’ crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies. PMID:26656267

  12. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Pozina, G.; Jmerik, V. N.; Davydov, V. Yu.; Hemmingsson, C.; Andrianov, A. V.; Kazanov, D. R.; Ivanov, S. V.

    2015-12-01

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large ’ripened’ crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies.

  13. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  14. Power coupler for the ILC crab cavity

    SciTech Connect

    Burt, G.; Dexter, A.; Jenkins, R.; Beard, C.; Goudket, P.; McIntosh, P.A.; Bellantoni, Leo; /Fermilab

    2007-06-01

    The ILC crab cavity will require the design of an appropriate power coupler. The beam-loading in dipole mode cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

  15. The nasal cavity microbiota of healthy adults

    PubMed Central

    2014-01-01

    Background The microbiota of the nares has been widely studied. However, relatively few studies have investigated the microbiota of the nasal cavity posterior to the nares. This distinct environment has the potential to contain a distinct microbiota and play an important role in health. Results We obtained 35,142 high-quality bacterial 16S rRNA-encoding gene sequence reads from the nasal cavity and oral cavity (the dorsum of the tongue and the buccal mucosa) of 12 healthy adult humans and deposited these data in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) (Bioproject: PRJNA248297). In our initial analysis, we compared the bacterial communities of the nasal cavity and the oral cavity from ten of these subjects. The nasal cavity bacterial communities were dominated by Actinobacteria, Firmicutes, and Proteobacteria and were statistically distinct from those on the tongue and buccal mucosa. For example, the same Staphylococcaceae operational taxonomic unit (OTU) was present in all of the nasal cavity samples, comprising up to 55% of the community, but Staphylococcaceae was comparatively uncommon in the oral cavity. Conclusions There are clear differences between nasal cavity microbiota and oral cavity microbiota in healthy adults. This study expands our knowledge of the nasal cavity microbiota and the relationship between the microbiota of the nasal and oral cavities. PMID:25143824

  16. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is...

  17. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is...

  18. Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes.

    PubMed

    Cherstvy, Andrey G; Metzler, Ralf

    2016-08-24

    We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion. PMID:27523709

  19. A micropillar for cavity optomechanics

    SciTech Connect

    Kuhn, Aurélien; Neuhaus, Leonhard; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine; Van Brackel, Emmanuel; Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele

    2014-12-04

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  20. Status of the ILC Crab Cavity Development

    SciTech Connect

    Burt, G.; Dexter, A.; Beard, C.; Goudket, P.; McIntosh, P.; Bellantoni, L.; Grimm, T.; Li, Z.; Xiao, L.; /SLAC

    2011-10-20

    The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide in the horizontal plane, the cavity phase must be strictly controlled to avoid the bunch centre being deflected too much. In order to keep the phase stability within the required limits it is required that the cavity be superconducting to avoid thermal effects in both the cavity and its RF source. At the location of the crab cavity in the ILC there is only 23 cm separation between the centre of the cavity and the extraction line, hence the cavity must be small enough to fit in this space. This, along with the difficulty of making high frequency SRF components, set the frequency of the cavity to 3.9 GHz.

  1. Optomechanic interactions in phoxonic cavities

    SciTech Connect

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan; El-Jallal, Said

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  2. Botryomycosis in a lung cavity

    PubMed Central

    Vinay, D; Ramasubramanian, V; Gopalakrishnan, Ram; Jessani, Laxman G

    2016-01-01

    Botryomycosis is a rare pyogranulomatous disease characterized by suppurative and often granulomatous bacterial infection of the skin, soft tissues and viscera. Only about 90 cases have been reported in world literature till date: 75% of them are cases of cutaneous botryomycosis. Of the 18 reported cases of primary pulmonary botryomycosis, only one had histologically proven botryomycosis in a lung cavity. We report here a case of primary pulmonary botryomycosis occurring in a lung cavity, which is to the best of our knowledge first such case from India. The index case was a 62 year old female who presented to us with recurrent episodes of non-massive streaky hemoptysis with CT chest revealing ‘Air Crescent’ sign with a probable fungal ball in a left upper lobe cavity. Left upper pulmonary lobectomy was done and histopathology of the cavitary tissue revealed Splendore-Hoeppli phenomenon and features suggestive of Botryomycosis. Tissue culture from the cavitary specimen grew Pseudomonas aeruginosa. Botryomycosis can mimic Aspergilloma radiologically as was seen in our case, but therapy is often a combination of both medical and surgical measures unlike Aspergilloma. PMID:27625451

  3. Botryomycosis in a lung cavity

    PubMed Central

    Vinay, D; Ramasubramanian, V; Gopalakrishnan, Ram; Jessani, Laxman G

    2016-01-01

    Botryomycosis is a rare pyogranulomatous disease characterized by suppurative and often granulomatous bacterial infection of the skin, soft tissues and viscera. Only about 90 cases have been reported in world literature till date: 75% of them are cases of cutaneous botryomycosis. Of the 18 reported cases of primary pulmonary botryomycosis, only one had histologically proven botryomycosis in a lung cavity. We report here a case of primary pulmonary botryomycosis occurring in a lung cavity, which is to the best of our knowledge first such case from India. The index case was a 62 year old female who presented to us with recurrent episodes of non-massive streaky hemoptysis with CT chest revealing ‘Air Crescent’ sign with a probable fungal ball in a left upper lobe cavity. Left upper pulmonary lobectomy was done and histopathology of the cavitary tissue revealed Splendore-Hoeppli phenomenon and features suggestive of Botryomycosis. Tissue culture from the cavitary specimen grew Pseudomonas aeruginosa. Botryomycosis can mimic Aspergilloma radiologically as was seen in our case, but therapy is often a combination of both medical and surgical measures unlike Aspergilloma.

  4. Angioleiomyoma of the Nasal Cavity

    PubMed Central

    Arruda, Milena Moreira; Monteiro, Daniela Yasbek; Fernandes, Atilio Maximino; Menegatti, Vanessa; Thomazzi, Emerson; Hubner, Ricardo Arthur; Lima, Luiz Guilherme Cernaglia Aureliano de

    2014-01-01

    Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis. PMID:25992133

  5. Botryomycosis in a lung cavity.

    PubMed

    Vinay, D; Ramasubramanian, V; Gopalakrishnan, Ram; Jessani, Laxman G

    2016-01-01

    Botryomycosis is a rare pyogranulomatous disease characterized by suppurative and often granulomatous bacterial infection of the skin, soft tissues and viscera. Only about 90 cases have been reported in world literature till date: 75% of them are cases of cutaneous botryomycosis. Of the 18 reported cases of primary pulmonary botryomycosis, only one had histologically proven botryomycosis in a lung cavity. We report here a case of primary pulmonary botryomycosis occurring in a lung cavity, which is to the best of our knowledge first such case from India. The index case was a 62 year old female who presented to us with recurrent episodes of non-massive streaky hemoptysis with CT chest revealing 'Air Crescent' sign with a probable fungal ball in a left upper lobe cavity. Left upper pulmonary lobectomy was done and histopathology of the cavitary tissue revealed Splendore-Hoeppli phenomenon and features suggestive of Botryomycosis. Tissue culture from the cavitary specimen grew Pseudomonas aeruginosa. Botryomycosis can mimic Aspergilloma radiologically as was seen in our case, but therapy is often a combination of both medical and surgical measures unlike Aspergilloma. PMID:27625451

  6. Controlled directional scattering cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1982-01-01

    A specular cavity is provided in which an optical receiver is emplaced. The cavity is provided with a series of V groove-like indentations (or pyramidal-type indentations) which redirect energy entering between the receiver and cavity structure onto the receiver. The aperture opening of each V groove is less than half the cavity opening and in most preferred embodiments, much less than half. This enables the optical receiver to be emplaced a distance g from the cavity wherein 0.414r

  7. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  8. LHC crab-cavity aspects and strategy

    SciTech Connect

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  9. Acoustic cavity technology for high performance injectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.

  10. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    SciTech Connect

    Sun, Y.; Calaga, R.; Assmann, R.; Barranco, J.; Tomas, R.; Weiler, T.; Zimmermann, F.; Morita, A.

    2009-10-14

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit, also degrade the collimation cleaning efficiency, and so on. In this paper, we explore the principal feasibility of LHC crab cavities from a beam dynamics point of view. The implications of the crab cavities for the LHC optics, analytical and numerical luminosity studies, dynamic aperture, aperture and beta beating, emittance growth, beam-beam tune shift, long-range collisions, and synchrobetatron resonances, crab dispersion, and collimation efficiency will be discussed.

  11. Juvenile Nasopharyngeal Angiofibroma Extending into the Oral Cavity: A Rare Entity

    PubMed Central

    Chhibber, Neha; Agarwal, Deshant; Jain, Manish; Vijay, Pradkhshana

    2015-01-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a rare vascular tumour which is benign but locally aggressive and occurs invariably in young and adolescent males. It seldom involves the oral cavity but has the tendency to invade the adjacent structures. Its characteristic features include slow progression, aggressive growth & an increased rate of persistence and recurrence due to its location in inaccessible areas. In literature, very few cases of JNA have been reported with extension into the oral cavity. Here, a case of JNA with extension into the oral cavity has been discussed who reported to our institute. PMID:26266232

  12. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    Hall, B.; Burt, G.; Smith, J. D.A.; Rimmer, R.; Wang, H.; Delayen, J.; Calaga, R.

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  13. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  14. Shape Determination for Deformed Electromagnetic Cavities

    SciTech Connect

    Akcelik, Volkan; Ko, Kwok; Lee, Lie-Quan; Li, Zhenghai; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2007-12-10

    The measured physical parameters of a superconducting cavity differ from those of the designed ideal cavity. This is due to shape deviations caused by both loose machine tolerances during fabrication and by the tuning process for the accelerating mode. We present a shape determination algorithm to solve for the unknown deviations from the ideal cavity using experimentally measured cavity data. The objective is to match the results of the deformed cavity model to experimental data through least-squares minimization. The inversion variables are unknown shape deformation parameters that describe perturbations of the ideal cavity. The constraint is the Maxwell eigenvalue problem. We solve the nonlinear optimization problem using a line-search based reduced space Gauss-Newton method where we compute shape sensitivities with a discrete adjoint approach. We present two shape determination examples, one from synthetic and the other from experimental data. The results demonstrate that the proposed algorithm is very effective in determining the deformed cavity shape.

  15. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  16. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B.; Burt, G.; Lingwood, C.; Rimmer, Robert; Wang, Haipeng

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  17. Scaled experiments of explosions in cavities

    NASA Astrophysics Data System (ADS)

    Grun, J.; Cranch, G. A.; Lunsford, R.; Compton, S.; Walton, O. R.; Weaver, J.; Dunlop, W.; Fournier, K. B.

    2016-05-01

    Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulations show that shock pressures measured in the block exhibit a weak dependence on scaled cavity radius up to ˜25 m/kt1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. The applicability of this work to validating codes used to simulate full-scale cavity explosions is discussed.

  18. Organized Oscillations of Initially-Turbulent Flow Past a Cavity

    SciTech Connect

    J.C. Lin; D. Rockwell

    2002-09-17

    Flow past an open cavity is known to give rise to self-sustained oscillations in a wide variety of configurations, including slotted-wall, wind and water tunnels, slotted flumes, bellows-type pipe geometries, high-head gates and gate slots, aircraft components and internal piping systems. These cavity-type oscillations are the origin of coherent and broadband sources of noise and, if the structure is sufficiently flexible, flow-induced vibration as well. Moreover, depending upon the state of the cavity oscillation, substantial alterations of the mean drag may be induced. In the following, the state of knowledge of flow past cavities, based primarily on laminar inflow conditions, is described within a framework based on the flow physics. Then, the major unresolved issues for this class of flows will be delineated. Self-excited cavity oscillations have generic features, which are assessed in detail in the reviews of Rockwell and Naudascher, Rockwell, Howe and Rockwell. These features, which are illustrated in the schematic of Figure 1, are: (i) interaction of a vorticity concentration(s) with the downstream corner, (ii) upstream influence from this corner interaction to the sensitive region of the shear layer formed from the upstream corner of the cavity; (iii) conversion of the upstream influence arriving at this location to a fluctuation in the separating shear layer; and (iv) amplification of this fluctuation in the shear layer as it develops in the streamwise direction. In view of the fact that inflow shear-layer in the present investigation is fully turbulent, item (iv) is of particular interest. It is generally recognized, at least for laminar conditions at separation from the leading-corner of the cavity, that the disturbance growth in the shear layer can be described using concepts of linearized, inviscid stability theory, as shown by Rockwell, Sarohia, and Knisely and Rockwell. As demonstrated by Knisely and Rockwell, on the basis of experiments interpreted

  19. Stent hypersensitivity and infection in sinus cavities

    PubMed Central

    Soufras, George D.; Hahalis, George

    2013-01-01

    Persistent mucosal inflammation, granulation tissue formation, hypersensitivity, and multifactorial infection are newly described complications of retained drug-eluting stents from endoscopic sinus surgery for refractory rhinosinusitis. In an important report published in Allergy and Rhinology, a 45-year-old male patient suffering from recalcitrant chronic rhinosinusitis underwent functional endoscopic sinus surgery and was found, for the first time, to have steroid-eluting catheters that were inadvertently left in the ethmoid and frontal sinuses. The retained catheters had caused persistent mucosal inflammation and formation of granulation tissue denoting hypersensitivity reaction. These consequences had induced perpetuation of symptoms of chronic rhinosinusitis. Meticulous removal of the retained stents with the nitinol wings from inflamed tissues of the frontal, ethmoidal, and sphenoethmoidal recesses in which they were completely imbedded was successfully performed without polypoid regrowth. Cultures of specimens taken from both left and right stents showed heavy growth of Stenotrophomonas maltophilia and moderate growth of Klebsiella oxytoca, coagulase negative Staphylococcus, and beta-hemolytic Streptococcus anginosus. Fungal infection was not detected. The current knowledge and experience regarding stent hypersensitivity and infection in relation with the use of stents in sinus cavities is reviewed. PMID:24498522

  20. Optical Material Characterization Using Microdisk Cavities

    NASA Astrophysics Data System (ADS)

    Michael, Christopher P.

    + density and the control offered by the precise epitaxy. The growth and fabrication methods are discussed. Spectral measurements at cryogenic and room temperatures show negligible background losses and resonant Er3+ absorption strong enough to produce cavity-polaritons that persist to above 361 K. Cooperative relaxation and upconversion limit the optical performance in the telecommunications bands by transferring the excitations to quenching sites or by further exciting the ions up to visible transitions. Future prospects and alternative applications for Er2O3 and other epitaxial rare-earth oxides are also considered.

  1. Cavity Optomechanics at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  2. Influence of Er:YAG laser ablation on cavity surface and cavity shape

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Dostalova, Tatjana; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-04-01

    The cavity surface and shape after Er:YAG laser ablation at different energies, number of pulses and at a different repetition rate were observed. Longitudinal sections of extracted human incisors and transverse sections of ivory tusk were cut and polished to flat and glazed surfaces. The samples thickness was from 3 to 5 mm. The Er:YAG laser was operating in a free-running (long pulse) mode. The laser radiation was focused onto the tooth surface by CaF2 lens (f equals 55 mm). During the experiment, the teeth were steady and the radiation was delivered by a special mechanical arm fixed in a special holder; fine water mist was also used (water-mJ/min, a pressure of two atm, air-pressure three atm). The shapes of the prepared cavities were studied either by using a varying laser energies (from 70 mJ to 500 mJ) for a constant number of pulses, or a varying number of pulses (from one to thirty) for constant laser energy. The repetition rate was changed from 1 to 2 Hz. For evaluating the surfaces, shapes, and profiles, scanning electron microscopy and photographs from a light microscope were used. The results were analyzed both quantitatively and qualitatively. It is seen that there is no linear relation between the radiation pulse energy and the size of the prepared holes. With increasing the incident energy the cavity depth growth is limited. There exists some saturation not only in the enamel and dentin but especially in the homogeneous ivory.

  3. NIST Diffusion Data Center

    National Institute of Standards and Technology Data Gateway

    NIST Diffusion Data Center (Web, free access)   The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.

  4. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  5. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  6. 3-D Modeling of Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe Growth Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    A numerical calculation for a non-dilute alloy solidification was performed using the FIDAP finite element code. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. Estimates of convection contributions for various gravity conditions was performed parametrically. For gravity levels higher then 1 0 -7 of earth's gravity it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by factor of 50% for precise orientation of the ampoule in the microgravity environment. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D modeling are compared with previous 2-D finding. A video film featuring melt convection will be presented.

  7. Phase II open label study of the oral vascular endothelial growth factor-receptor inhibitor PTK787/ZK222584 (vatalanib) in adult patients with refractory or relapsed diffuse large B-cell lymphoma.

    PubMed

    Brander, Danielle; Rizzieri, David; Gockerman, Jon; Diehl, Louis; Shea, Thomas Charles; Decastro, Carlos; Moore, Joseph O; Beaven, Anne

    2013-12-01

    PTK787/ZK222584 (vatalanib), an orally active inhibitor of vascular endothelial growth factor receptors (VEGFRs), was evaluated in this phase II study of 20 patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Patients received once-daily PTK787/ZK222584 at a target dose of 1250 mg. Eighteen patients were evaluable for response: one patient had a complete response (CR), six patients had stable disease but subsequently progressed, 10 patients had progressive disease by three cycles and one subject withdrew before response evaluation. The patient who attained a CR underwent autologous stem cell transplant and remains disease-free 76 months after study completion. There were no grade 4 toxicities. Grade 3 thrombocytopenia occurred in 20% and grade 3 hypertension occurred in 10%. There were no episodes of grade 3 proteinuria. In conclusion, PTK787/ZK222584 was well tolerated in a heavily pretreated population of patients with DLBCL, although its therapeutic potential as a single agent in DLBCL appears limited. PMID:23488610

  8. Performance Capability of Single-Cavity Vortex Gaseous Nuclear Rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert G.

    1963-01-01

    An analysis was made to determine the maximum powerplant thrust-to-weight ratio possible with a single-cavity vortex gaseous reactor in which all the hydrogen propellant must diffuse through a fuel-rich region. An assumed radial temperature profile was used to represent conduction, convection, and radiation heat-transfer effects. The effect of hydrogen property changes due to dissociation and ionization was taken into account in a hydrodynamic computer program. It is shown that, even for extremely optimistic assumptions of reactor criticality and operating conditions, such a system is limited to reactor thrust-to-weight ratios of about 1.2 x 10(exp -3) for laminar flow. For turbulent flow, the maximum thrust-to-weight ratio is less than 10(exp -3). These low thrusts result from the fact that the hydrogen flow rate is limited by the diffusion process. The performance of a gas-core system with a specific impulse of 3000 seconds and a powerplant thrust-to-weight ratio of 10(exp -2) is shown to be equivalent to that of a 1000-second advanced solid-core system. It is therefore concluded that a single-cavity vortex gaseous reactor in which all the hydrogen must diffuse through the nuclear fuel is a low-thrust device and offers no improvement over a solid-core nuclear-rocket engine. To achieve higher thrust, additional hydrogen flow must be introduced in such a manner that it will by-pass the nuclear fuel. Obviously, such flow must be heated by thermal radiation. An illustrative model of a single-cavity vortex system employing supplementary flow of hydrogen through the core region is briefly examined. Such a system appears capable of thrust-to-weight ratios of approximately 1 to 10. For a high-impulse engine, this capability would be a considerable improvement over solid-core performance. Limits imposed by thermal radiation heat transfer to cavity walls are acknowledged but not evaluated. Alternate vortex concepts that employ many parallel vortices to achieve higher

  9. Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion

    NASA Astrophysics Data System (ADS)

    Chubynsky, Mykyta V.; Slater, Gary W.

    2014-08-01

    Wang et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009)] have found that in several systems the linear time dependence of the mean-square displacement (MSD) of diffusing colloidal particles, typical of normal diffusion, is accompanied by a non-Gaussian displacement distribution G(x ,t), with roughly exponential tails at short times, a situation they termed "anomalous yet Brownian" diffusion. The diversity of systems in which this is observed calls for a generic model. We present such a model where there is diffusivity memory but no direction memory in the particle trajectory, and we show that it leads to both a linear MSD and a non-Gaussian G(x ,t) at short times. In our model, the diffusivity is undergoing a (perhaps biased) random walk, hence the expression "diffusing diffusivity". G(x ,t) is predicted to be exactly exponential at short times if the distribution of diffusivities is itself exponential, but an exponential remains a good fit for a variety of diffusivity distributions. Moreover, our generic model can be modified to produce subdiffusion.

  10. A terahertz plasmon cavity detector

    SciTech Connect

    Dyer, G. C.; Vinh, N. Q.; Allen, S. J.; Aizin, G. R.; Mikalopas, J.; Reno, J. L.; Shaner, E. A.

    2010-11-08

    Sensitivity of a plasmonic detector is enhanced by integrating a broadband log-periodic antenna with a two-dimensional plasma cavity that is defined by source, drain, and multiple gates of a GaAs/AlGaAs high electron mobility transistor. Both narrow-band terahertz detection and a rich harmonic spectrum are evident. With a bolometric sensor in the channel, we report responsivity, on resonance at 235-240 GHz and at 20 K, of up to 7 kV/W and a noise equivalent power of 5x10{sup -10} W/Hz{sup 1/2}.

  11. [Dirofilaria in the abdominal cavity].

    PubMed

    Révész, Erzsébet; Markovics, Gabriella; Darabos, Zoltán; Tóth, Ildikó; Fok, Eva

    2008-10-01

    Number of cases of filariasis have been recently reported in the Hungarian medical literature, most of them caused by Dirofilaria repens . Dirofilaria repens is a mosquito-transmitted filarioid worm in the subcutaneous tissue of dogs and cats. Human infection manifests as either subcutaneous nodules or lung parenchymal disease, which may even be asymptomatic. The authors report a human Dirofilaria repens infection of the abdominal cavity in a 61-year-old man,who underwent laparotomy for acute abdomen. Intraoperatively, local peritonitis was detected caused by a white nemathhelminth, measured 8 cm in size. Histocytology confirmed that the infection was caused by Dirofilaria repens.

  12. Mass renormalization in cavity QED

    SciTech Connect

    Matloob, Reza

    2011-01-15

    We show that the presence of a background medium and a boundary surface or surfaces in cavity QED produces no change in the energy shift of a free charged particle due to its coupling to the fluctuating electromagnetic field of the vacuum. This clarifies that the electromagnetic and the observed mass of the charged particle are not affected by the modification of the field of the vacuum. The calculations are nonrelativistic and restricted to the dipole approximation but are otherwise based on the general requirements of causality.

  13. Basketballs as spherical acoustic cavities

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  14. Three-dimensional field structure in open unstable cavities Part II: Active cavity results.

    PubMed

    Oughstun, K; Khamnei, C

    1999-05-10

    The three-dimensional field distribution of the diffractive cavity mode structure in an active, open, unstable laser resonator is presented as a function of the equivalent Fresnel number of the cavity. The active cavity mode structures are compared to that of the corresponding passive cavity so that the effects of a spatially extended, homogeneously broadened, saturable gain medium on the cavity field structure may be ascertained. The qualitative structure of this intracavity field distribution, including the central intensity core (or oscillator filament), is explained in terms of the Fresnel zone structure defined over the cavity feedback aperture. PMID:19396296

  15. Cantilever piezoelectric energy harvester with multiple cavities

    NASA Astrophysics Data System (ADS)

    Srinivasulu Raju, S.; Umapathy, M.; Uma, G.

    2015-11-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity.

  16. Rebuild of Capture Cavity 1 at Fermilab

    SciTech Connect

    Harms, E.; Arkan, T.; Borissov, E.; Dhanaraj, N.; Hocker, A.; Orlov, Y.; Peterson, T.; Premo, K.

    2014-01-01

    The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.

  17. Tunable-cavity QED with phase qubits

    NASA Astrophysics Data System (ADS)

    Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.

  18. Cavity-Dumped Communication Laser Design

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    2003-01-01

    Cavity-dumped lasers have significant advantages over more conventional Q-switched lasers for high-rate operation with pulse position modulation communications, including the ability to emit laser pulses at 1- to 10-megahertz rates, with pulse widths of 0.5 to 5 nanoseconds. A major advantage of cavity dumping is the potential to vary the cavity output percentage from pulse to pulse, maintaining the remainder of the energy in reserve for the next pulse. This article presents the results of a simplified cavity-dumped laser model, establishing the requirements for cavity efficiency and projecting the ultimate laser efficiency attainable in normal operation. In addition, a method of reducing or eliminating laser dead time is suggested that could significantly enhance communication capacity. The design of a laboratory demonstration laser is presented with estimates of required cavity efficiency and demonstration potential.

  19. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  20. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  1. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  2. Breakthrough: Record-Setting Cavity

    SciTech Connect

    Ciovati, Gianluigi

    2012-03-01

    Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.

  3. Silicon Integrated Cavity Optomechanical Transducer

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  4. Cavity QED Deutsch quantum computer

    NASA Astrophysics Data System (ADS)

    Hollenberg, Lloyd C. L.; Salgueiro, A. N.; Nemes, M. C.

    2001-10-01

    The two-atom correlation scheme originally proposed by Davidovich, Brune, Raimond, and Haroche for measuring the decoherence of a mesoscopic superposition of coherent states of a QED cavity field is shown to be equivalent to a quantum computer solving Deutsch's problem. Using the existing analysis of decoherence in the Master equation formalism, and other important losses in this system, the final probability for obtaining the correct result for the computation is found in terms of the time period between atom traversals, the number of photons in the cavity, and the precision of the atomic velocity. The error due to decoherence in this system amounts to a phase error, and in the Master equation approach is a linear effect at small time scales. By explicitly considering the dynamics of the decoherence process when the system is coupled to a bath of oscillators with finite mode cutoff the error due to decoherence is found to decrease significantly and becomes a quadratic effect at short-time scales.

  5. SPINNING MOTIONS IN CORONAL CAVITIES

    SciTech Connect

    Wang, Y.-M.; Stenborg, G. E-mail: guillermo.stenborg.ctr.ar@nrl.navy.mi

    2010-08-20

    In movies made from Fe XII 19.5 nm images, coronal cavities that graze or are detached from the solar limb appear as continually spinning structures, with sky-plane projected flow speeds in the range 5-10 km s{sup -1}. These whirling motions often persist in the same sense for up to several days and provide strong evidence that the cavities and the immediately surrounding streamer material have the form of helical flux ropes viewed along their axes. A pronounced bias toward spin in the equatorward direction is observed during 2008. We attribute this bias to the poleward concentration of the photospheric magnetic flux near sunspot minimum, which leads to asymmetric heating along large-scale coronal loops and tends to drive a flow from higher to lower latitudes; this flow is converted into an equatorward spinning motion when the loops pinch off to form a flux rope. As sunspot activity increases and the polar fields weaken, we expect the preferred direction of the spin to reverse.

  6. Breakthrough: Record-Setting Cavity

    ScienceCinema

    Ciovati, Gianluigi

    2016-07-12

    Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.

  7. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers.

    PubMed

    Yoon, Taeshik; Mun, Jeong Hun; Cho, Byung Jin; Kim, Taek-Soo

    2014-01-01

    We report penetration and lateral diffusion behavior of environmental molecules on synthesized polycrystalline graphene. Penetration occurs through graphene grain boundaries resulting in local oxidation. However, when the penetrated molecules diffuse laterally, the oxidation region will expand. Therefore, we measured the lateral diffusion rate along the graphene-copper interface for the first time by the environment-assisted crack growth test. It is clearly shown that the lateral diffusion is suppressed due to the high van der Waals interaction. Finally, we employed bilayer graphene for a perfect diffusion barrier facilitated by decreased defect density and increased lateral diffusion path.

  8. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    NASA Astrophysics Data System (ADS)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  9. Compact Superconducting Crabbing and Deflecting Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika

    2012-09-01

    Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

  10. Grating cavity dual wavelength dye laser.

    PubMed

    Zapata-Nava, Oscar Javier; Rodríguez-Montero, Ponciano; Iturbe-Castillo, M David; Treviño-Palacios, Carlos Gerardo

    2011-02-14

    We report simultaneous dual wavelength dye laser emission using Littman-Metcalf and Littrow cavity configurations with minimum cavity elements. Dual wavelength operation is obtained by laser operation in two optical paths inside the cavity, one of which uses reflection in the circulating dye cell. Styryl 14 laser dye operating in the 910 nm to 960 nm was used in a 15%:85% PC/EG solvent green pumped with a Q-switched doubled Nd3+:YAG laser. PMID:21369171

  11. Ray splitting in paraxial optical cavities.

    PubMed

    Puentes, G; Aiello, A; Woerdman, J P

    2004-03-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray-splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent. PMID:15089394

  12. Passive venting technique for shallow cavities

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr. (Inventor); Wilcox, Floyd J., Jr. (Inventor)

    1989-01-01

    A device is introduced for reducing drag and store separation difficulties caused by shallow cavities on aircraft in supersonic flight consisting of a group of hollow pipes the same length as the cavity. The pipes are attached to the cavity floor so as to allow air to flow through the pipes. This device allows air to flow through the pipes opposite to the direction of flow outside the pipes. This results in reduced drag and improved store separation characteristics.

  13. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  14. Non linear effects in ferrite tuned cavities

    SciTech Connect

    Goren, Y.; Mahale, N.; Walling, L.; Enegren, T.; Hulsey, G. ); Yakoviev, V.; Petrov, V. )

    1993-05-01

    The phenomenon of dependence of the resonance shape and frequency on the RF power level in perpendicular biased ferrite-tuned cavities has been observed by G. Hulsey and C. Friedrichs in the SSC test cavity experiment. This paper presents a theoretical as well as numerical analysis of this phenomenon and compares the results with experimental data. The effect of this nonlinearity on the SSC low energy booster prototype cavity is discussed.

  15. Superconducting cavity driving with FPGA controller

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Koprek, Waldemar; Poźniak, Krzysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan; Brandt, Alexander; Chase, Brian; Carcagno, Ruben; Cancelo, Gustavo; Koeth, Timothy W.

    2006-12-01

    A digital control of superconducting cavities for a linear accelerator is presented. FPGA-based controller, supported by Matlab system, was applied. Electrical model of a resonator was used for design of a control system. Calibration of the signal path is considered. Identification of cavity parameters has been carried out for adaptive control algorithm. Feed-forward and feedback modes were applied in operating the cavities. Required performance has been achieved; i.e. driving on resonance during filling and field stabilization during flattop time, while keeping reasonable level of the power consumption. Representative results of the experiments are presented for different levels of the cavity field gradient.

  16. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  17. Large Scale Shape Optimization for Accelerator Cavities

    SciTech Connect

    Akcelik, Volkan; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Xiao, Li-Ling; Ko, Kwok; /SLAC

    2011-12-06

    We present a shape optimization method for designing accelerator cavities with large scale computations. The objective is to find the best accelerator cavity shape with the desired spectral response, such as with the specified frequencies of resonant modes, field profiles, and external Q values. The forward problem is the large scale Maxwell equation in the frequency domain. The design parameters are the CAD parameters defining the cavity shape. We develop scalable algorithms with a discrete adjoint approach and use the quasi-Newton method to solve the nonlinear optimization problem. Two realistic accelerator cavity design examples are presented.

  18. Mechanical Properties of Ingot Nb Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  19. Quantum teleportation with atoms trapped in cavities

    SciTech Connect

    Cho, Jaeyoon; Lee, Hai-Woong

    2004-09-01

    We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.

  20. Design of the ILC Crab Cavity System

    SciTech Connect

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin, A.; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  1. Solitary fibrous tumor of the oral cavity with a predominant leiomyomatous-like pattern: A potential diagnostic pitfall.

    PubMed

    Amico, Paolo; Colella, Giuseppe; Rossiello, Raffaele; Maria Vecchio, Giada; Leocata, Pietro; Magro, Gaetano

    2010-07-15

    The diagnosis of solitary fibrous tumor (SFT) is usually straightforward if the typical morphologic features, including a wide variety of growth patterns, are identified. We report the clinical, radiologic, and pathologic findings of a rare case of intraoral SFT which exhibited a predominant leiomyomatous-like appearance, closely reminiscent of a leiomyoma, at both incisional and excisional biopsy. Histologically, the tumor was composed predominantly of intersecting fascicles of eosinophilic spindle-shaped cells, variably set in a fibrous stroma. A focal hemangiopericytoma-like growth pattern with alternating hypercellular and hypocellular areas, as well as the deposition of dense keloid-type collagen, raising the suspicion of SFT, could be identified only after a careful examination of the whole tumor. Immunohistochemistry was helpful in confirming the diagnosis of SFT, revealing a diffuse staining of neoplastic cells for vimentin, CD34, bcl-2 protein, and, focally, CD99. Myogenic markers (alpha-smooth muscle actin, desmin, h-caldesmon) were not expressed. The pathologist should be aware of this variant of intraoral leiomyomatous-like SFT to avoid a misdiagnosis of leiomyoma. The distinction of SFT from leiomyoma in the oral cavity is important to assure both correct treatment and prognostic information.

  2. Manifestations and pathological features of solitary thin-walled cavity lung cancer observed by CT and PET/CT imaging

    PubMed Central

    QI, YUANGANG; ZHANG, QING; HUANG, YONG; WANG, DAOQING

    2014-01-01

    The aim of the present study was to analyze and improve the understanding of computed tomography (CT) and positron emission tomography (PET)/CT imaging and the pathological features of solitary thin-walled cavity lung cancer. A total of 16 patients with pathologically confirmed solitary thin-walled cavity lung cancer were included in the present study. All of the patients received CT scans. Among these, two patients underwent an additional PET/CT examination. The CT and PET/CT images were analyzed and a cross-check analysis of the pathological results was conducted. In total, 16 cases of lesions demonstrated thin-walled cavities on the CT images. Among these cases, three presented with an uneven thickening of the cavity walls, 10 cases exhibited wall nodules and three cases presented with compartments in the cavity. The standard uptake value (SUV) of the cavity wall increased in two patients who underwent PET/CT examinations. The 16 cases of lesions were pathologically confirmed as adenocarcinomas. Light microscopy revealed that the tumor cells, which were observed in 12 cases of lesions, had diffused along the inner cavity wall and the tumor cells of four cases had invaded the bronchial wall. Images of the chest that demonstrated a single thin-walled cavity accompanied by uneven thickening of the cavity wall or wall nodules, in addition to an increase in the SUV and compartments in the cavity, indicated potential lung cancer. Valves formed as a result of bronchial wall damage may have led to the cavity. PMID:24959262

  3. Natural cavities used by wood ducks in north-central Minnesota

    USGS Publications Warehouse

    Gilmer, D.S.; Ball, I.J.; Cowardin, L.M.; Mathisen, J.

    1978-01-01

    Radio telemetry was used to locate 31 wood duck (Aix sponsa) nest cavity sites in 16 forest stands. Stands were of 2 types: (1) mature (mean = 107 years) northern hardwoods (10 nest sites), and (2) mature (mean = 68 years) quaking aspen (Populus tremuloides) (21 nest sites). Aspen was the most important cavity-producing tree used by wood ducks and accounted for 57 percent of 28 cavities inspected. In stands used by wood ducks, the average density of suitable cavities was about 4 per hectare. Trees containing nests were closer to water areas (P < 0.05) and the nearest forest canopy openings (P < 0.01) than was a random sample of trees from the same stands. A significant (P < 0.005) relationship existed between the orientation of the cavity entrance and the nearest canopy opening. Potential wood duck cavities usually were clustered within a stand rather than randomly distributed. Selection of trees by woodpeckers for nest hole construction probably influenced the availability of cavities used by wood ducks. A plan for managing forests to benefit wood ducks and other wildlife dependent on old-growth timber is discussed.

  4. Comparing the antibacterial activity of gaseous ozone and chlorhexidine solution on a tooth cavity model

    PubMed Central

    Öztaş, Nurhan; Sümer, Zeynep

    2013-01-01

    Objective: To evaluate the antibacterial activity of gaseous ozone and chlorhexidine solution on a tooth cavity model. Study Design: Twenty-one human molars were divided into 3 groups. Cavities were then cut into the teeth (4 per tooth, 28 cavities per group). After sterilization, the teeth were left in broth cultures of 106 colony-forming units (CFU) ml-1 of Streptococcus mutans (S. mutans) at 36°C for 48 h. The appropriate treatment followed (group A, control; group B, 2% chlorhexidine solution; and group C, 80s of treatment with ozone, and the cavities were then filled with composite resin. After 72h, the restorations were removed, dentin chips were collected with an excavator, and the total number of microorganisms was determined. Results: Both of the treatments significantly reduced the number of S. mutans present compared with the control group and there was a significant difference between the all groups in terms of the amount of the microorganisms grown (p < 0.05). Group B was beter than group C; and group C was better than group A. Moreover, it was found that the amount of the growth in the group of chlorhexidine was significantly less than that of the ozone group (p < 0.05). Conclusion: Chlorhexidine solution was the antibacterial treatment most efficacious on S. mutans; however, ozone application could be an anlternative cavity disinfection method because of ozone’s cavity disinfection activity. Key words:Antibacterial activity, chlorhexidine, ozone, streptococcus mutans, tooth cavity. PMID:24455068

  5. Mineralogy and provenance of clays in miarolitic cavities of the Pikes Peak Batholith, Colorado

    USGS Publications Warehouse

    Kile, D.E.

    2005-01-01

    Clay samples from 105 cavities within miarolitic granitic pegmatites throughout the Pikes Peak batholith, in Colorado, were analyzed by powder X-ray diffraction (XRD). Smectite (beidellite), illite, and kaolinite were found within the cavities. Calculation of crystallite-thickness distribution (CTD), mean thickness of the crystallites, and variance in crystallite thickness, as deduced from XRD patterns, allowed a determination of provenance and mode of formation for illite and smectite. Authigenic miarolitic-cavity illite and smectite show lognormal CTDs and larger mean thicknesses of crystallites than do their soil-derived counterparts; non-lognormal illite in a cavity results from mixing of cavity and soil illite. Analysis of mean thickness and thickness variance shows that crystal growth of illite is initiated by a nucleation event of short duration, followed by surface-controlled kinetics. Crystallization of the miarolitic cavity clays is presumed to occur by neoformation from hydrothermal fluids. The assessment of provenance allows a determination of regional and local distributions of clay minerals in miarolitic cavities within the Pikes Peak batholith.

  6. Role of hydrogen generation by Klebsiella pneumoniae in the oral cavity.

    PubMed

    Kanazuru, Tomoko; Sato, Eisuke F; Nagata, Kumiko; Matsui, Hiroshi; Watanabe, Kunihiko; Kasahara, Emiko; Jikumaru, Mika; Inoue, June; Inoue, Masayasu

    2010-12-01

    Some gastrointestinal bacteria synthesize hydrogen (H(2)) by fermentation. Despite the presence of bactericidal factors in human saliva, a large number of bacteria also live in the oral cavity. It has never been shown that oral bacteria also produce H(2) or what role H(2) might play in the oral cavity. It was found that a significant amount of H(2) is synthesized in the oral cavity of healthy human subjects, and that its generation is enhanced by the presence of glucose but inhibited by either teeth brushing or sterilization with povidone iodine. These observations suggest the presence of H(2)-generating bacteria in the oral cavity. The screening of commensal bacteria in the oral cavity revealed that a variety of anaerobic bacteria generate H(2). Among them, Klebsiella pneumoniae (K. pneumoniae) generated significantly large amounts of H(2) in the presence of glucose. Biochemical analysis revealed that various proteins in K. pneumoniae are carbonylated under standard culture conditions, and that oxidative stress induced by the presence of Fe(++) and H(2)O(2) increases the number of carbonylated proteins, particularly when their hydrogenase activity is inhibited by KCN. Inhibition of H(2) generation markedly suppresses the growth of K. pneumoniae. These observations suggest that H(2) generation and/or the reduction of oxidative stress is important for the survival and growth of K. pneumoniae in the oral cavity.

  7. CO GAS INSIDE THE PROTOPLANETARY DISK CAVITY IN HD 142527: DISK STRUCTURE FROM ALMA

    SciTech Connect

    Perez, S.; Casassus, S.; Van der Plas, G.; Christiaens, V.; Ménard, F.; Roman, P.; Cieza, L.; Hales, A. S.; Pinte, C.

    2015-01-10

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue observations of the gas-rich disk HD 142527, in the J = 2-1 line of {sup 12}CO, {sup 13}CO, and C{sup 18}O obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. Based on our analysis of the gas in the dust cavity, the {sup 12}CO emission is optically thick, while {sup 13}CO and C{sup 18}O emissions are both optically thin. The total mass of residual gas inside the cavity is ∼1.5-2 M {sub Jup}. We model the gas with an axisymmetric disk model. Our best-fit model shows that the cavity radius is much smaller in CO than it is in millimeter continuum and scattered light observations, with a gas cavity that does not extend beyond 105 AU (at 3σ). The gap wall at its outer edge is diffuse and smooth in the gas distribution, while in dust continuum it is manifestly sharper. The inclination angle, as estimated from the high velocity channel maps, is 28 ± 0.5 deg, higher than in previous estimates, assuming a fix central star mass of 2.2 M {sub ☉}.

  8. Handheld Diffusion Test Cells

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photo shows the Handheld Diffusion Test Cell (HH-DTC) apparatus flown on the Space Shuttle. Similar cells (inside the plastic box) will be used in the Observable Protein Crystal Growth Apparatus (OPCGA) to be operated aboard the International Space Station (ISS). The principal investigator is Dr. Alex McPherson of the University of California, Irvine. Each individual cell comprises two sample chambers with a rotating center section that isolates the two from each other until the start of the experiment and after it is completed. The cells are made from optical-quality quartz glass to allow photography and interferometric observations. Each cell has a small light-emitting diode and lens to back-light the solution. In protein crystal growth experiments, a precipitating agent such as a salt solution is used to absorb and hold water but repel the protein molecules. This increases the concentration of protein until the molecules nucleate to form crystals. This cell is one of 96 that make up the experiment module portion of the OPCGA.

  9. Handheld Diffusion Test Cells

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photo shows an individual cell from the Handheld Diffusion Test Cell (HH-DTC) apparatus flown on the Space Shuttle. Similar cells will be used in the Observable Protein Crystal Growth Apparatus (OPCGA) to be operated aboard the International Space Station (ISS). The principal investigator is Dr. Alex McPherson of the University of California, Irvine. Each individual cell comprises two sample chambers with a rotating center section that isolates the two from each other until the start of the experiment and after it is completed. The cells are made from optical-quality quartz glass to allow photography and interferometric observations. Each cell has a small light-emitting diode and lens to back-light the solution. In protein crystal growth experiments, a precipitating agent such as a salt solution is used to absorb and hold water but repel the protein molecules. This increases the concentration of protein until the molecules nucleate to form crystals. This cell is one of 96 that make up the experiment module portion of the OPCGA.

  10. Four Decades of Utilizing Shadowgraph Techniques to study Natural Convection in Cavities: Literature Review

    NASA Astrophysics Data System (ADS)

    Aminuddin Aftab, Syed Mohammed; Younis, Obai; Al-Atabi, Musthak

    2012-09-01

    Natural convection in cavities has been a field of interest to researchers over the past 50 years. One of the basic techniques used to investigate the natural convection in cavities is shadowgraph flow visualisation, used to experimentally observe the boundary layer growth, formation of double layer structures, intrusions and plume generation. This paper accounts for Various other observations also made when fins are placed along the side wall of the cavity, the effect due to change in shape and orientation of the cavity, how these changes effect the natural convection have also been discussed. The applications of various types of shadowgraph methods to understand the flow variation with density have also been included. The paper summarizes the literature of shadowgraph techniques in natural convection.

  11. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    NASA Astrophysics Data System (ADS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-08-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  12. Analysis of hydrodynamic phenomena in simulant experiments investigating cavity interactions following postulated vessel meltthrough

    SciTech Connect

    Sienicki, J.J.; Spencer, B.W.

    1984-01-01

    An analysis of hydrodynamic phenomena in simulant experiments examining aspects of ex-vessel material interactions in a PWR reactor cavity following postulated core meltdown and localized breaching of the reactor vessel has been carried out. While previous analyses of the tests examined thresholds for the onset of sweepout of fluid from the cavity, the present analysis considers the progression of specific hydrodynamic phenomena involved in the dispersal process: crater formation due to gas jet impingement, radial wave motion and growth, entrainment and transport of liquid droplets, liquid layer formation due to droplet recombination, fluidization of liquid remaining in the cavity, removal of fluidized liquid droplets from the cavity, and the ultimate removal of the remaining liquid layer within the tunnel passageway. Phenomenological models which may be used to predict the phenomena are presented.

  13. Epithelial Dysplasia in Oral Cavity

    PubMed Central

    Shirani, Samaneh; Kargahi, Neda; Razavi, Sayed Mohammad; Homayoni, Solmaz

    2014-01-01

    Among oral lesions, we encounter a series of malignant epithelial lesions that go through clinical and histopathologic processes in order to be diagnosed. Identifying these processes along with the etiology knowledge of these lesions is very important in prevention and early treatments. Dysplasia is the step preceding the formation of squamous cell carcinoma in lesions which have the potential to undergo dysplasia. Identification of etiological factors, clinical and histopathologic methods has been the topic of many articles. This article, reviews various articles presenting oral cavity dysplasia, new clinical methods of identifying lesions, and the immunohistochemical research which proposes various markers for providing more precise identification of such lesions. This article also briefly analyzes new treatment methods such as tissue engineering. PMID:25242838

  14. Geophysical observations at cavity collapse

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  15. Effective emissivity of a blackbody cavity formed by two coaxial tubes.

    PubMed

    Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi

    2014-04-10

    A blackbody cavity is developed for continuously measuring the temperature of molten steel, which consists of a cylindrical outer tube with a flat bottom, a coaxial inner tube, and an aperture diaphragm. The ray-tracing approach based on the Monte Carlo method was applied to calculate the effective emissivity for the isothermal cavity with the diffuse walls. And the dependences of the effective emissivity on the inner tube relative length were calculated for various inner tube radii, outer tube lengths, and wall emissivities. Results indicate that the effective emissivity usually has a maximum corresponding to the inner tube relative length, which can be explained by the impact of the inner tube relative length on the probability of the rays absorbed after two reflections. Thus, these results are helpful to the optimal design of the blackbody cavity.

  16. [CORRECTION OF ENTERAL INSUFFICIENCY SYNDROME IN PATIENTS, SUFFERING DIFFUSE PERITONITIS].

    PubMed

    Ioffe, I V; Lesnoy, V V

    2016-02-01

    The results of treatment of 65 patients, suffering diffuse peritonitis, were analyzed. For the abdominal cavity sanation and intestinal decontamination the adopted selective bacteriophages (polyvalent pyobacteriophage, intesti-bacteriophage, and the coliproteus one) were applied. The abdominal cavity state was estimated while doing a programmed relaparotomy. Bacteriologic investigation of exudate, excreted along nasointestinal probe, and of peritoneal exudate was conducted. The intestinal motor-evacuation function restoration was estimated in accordance to data of ultrasonographic investigation. Application of the procedure proposed have promoted earlier restoration of intestinal motor and the barrier functions, and elimination of enteral insufficiency syndrome.

  17. Large grain cavities from pure niobium ingot

    SciTech Connect

    Myneni, Ganapati Rao; Kneisel, Peter; Cameiro, Tadeu

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  18. Continuous optical discharge in a laser cavity

    NASA Astrophysics Data System (ADS)

    Chivel', Yu. A.

    2016-08-01

    Optical discharge in a laser cavity is experimentally studied. A significant increase in the absorption of laser radiation (up to total absorption) is revealed. Optical schemes for initiation and maintaining of optical discharge in the cavity are proposed for technological applications of the optical discharge.

  19. Fast tuning of superconducting microwave cavities

    SciTech Connect

    Sandberg, M.; Wilson, C. M.; Persson, F.; Johansson, G.; Shumeiko, V.; Bauch, T.; Duty, T.; Delsing, P.

    2008-11-07

    Photons are fundamental excitations of electromagnetic fields and can be captured in cavities. For a given cavity with a certain size, the fundamental mode has a fixed frequency f which gives the photons a specific 'color'. The cavity also has a typical lifetime {tau}, which results in a finite linewidth {delta}f. If the size of the cavity is changed fast compared to {tau}, and so that the frequency change {delta}f>>{delta}f, then it is possible to change the 'color' of the captured photons. Here we demonstrate superconducting microwave cavities, with tunable effective lengths. The tuning is obtained by varying a Josephson inductance at one end of the cavity. We show data on four different samples and demonstrate tuning by several hundred linewidths in a time {delta}t<<{tau}. Working in the few photon limit, we show that photons stored in the cavity at one frequency will leak out from the cavity with the new frequency after the detuning. The characteristics of the measured devices make them suitable for different applications such as dynamic coupling of qubits and parametric amplification.

  20. Folded cavity design for a ruby resonator

    NASA Technical Reports Server (NTRS)

    Arunkumar, K. A.; Trolinger, James D.

    1988-01-01

    A folded cavity laser resonator operating in the TEM(00) mode has been built and tested. The new oscillator configuration leads to an increase in efficiency and to better line narrowing due to the increased number of passes through the laser rod and tuning elements, respectively. The modification is shown to lead to cavity ruggedization.

  1. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  2. Design of multilamp nonimaging laser pump cavities

    SciTech Connect

    Kuppenheimer, J.D. Jr.

    1989-12-01

    A technique has been developed to design single laser rod, multiple flash lamp pump cavities that allow all of the energy generated by the lamp to pass through the laser rod before entering another lamp cavity. The effective lamp and rod perimeters are matched, guaranteeing maximal concentration and uniformity of pumping.

  3. Mode suppression means for gyrotron cavities

    DOEpatents

    Chodorow, Marvin; Symons, Robert S.

    1983-08-09

    In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.

  4. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  5. TESLA cavity driving with FPGA controller

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof; Romaniuk, Ryszard; Simrock, Stefan

    2005-09-01

    The digital control of the TESLA (TeV-Energy Superconducting Linear Accelerator) resonator is presented. The laboratory setup of the CHECHIA cavity in DESY-Hamburg has been driven by the FPGA (Field Programmable Gate Array) technology system. This experiment focused attention to the general recognition of the cavity features and projected control methods. The electrical model of the resonator is taken as a consideration origin. The calibration of the signal channel is considered as a key preparation for an efficient cavity driving. The identification of the resonator parameters is confirmed as a proper approach for the required performance: driving on resonance during filling and field stabilization during flattop time with reasonable power consumption. The feed-forward and feedback modes were applied successfully for the CHECHIA cavity driving. Representative results of experiments are presented for different levels of the cavity field gradient.

  6. Experimental study of turbulent axisymmetric cavity flow

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Sung, H. J.

    1994-08-01

    An experimental study is made of turbulent axisymmetric cavity flow. The flow configuration consists of a sudden expansion and contraction pipe joint. In using the LDV system, in an effort to minimize refraction of laser beams at the curved interface, a refraction correction formula for the Reynolds shear stress is devised. Three values of the cavity length ( L = 300, 600 and 900 mm) are chosen, and the cavity height ( H) is fixed at 55 mm. Both open and closed cavities are considered. Special attention is given to the critical case L = 600 mm, where the cavity length L is nearly equal to the reattachment length of the flow. The Reynolds number, based on the inlet diameter ( D = 110 mm) is 73,000. Measurement data are presented for the static wall pressure, mean velocity profiles, vorticity thickness distributions, and turbulence quantities.

  7. Voltage control of cavity magnon polariton

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Yao, B. M.; Rao, J. W.; Gui, Y. S.; Hu, C.-M.

    2016-07-01

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  8. Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  9. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres. PMID:25860743

  10. Large Grain Superconducting RF Cavities at DESY

    SciTech Connect

    Singer, W.; Brinkmann, A.; Ermakov, A.; Iversen, J.; Kreps, G.; Matheisen, A.; Proch, D.; Reschke, D.; Singer, X.; Spiwek, M.; Wen, H.; Brokmeier, H. G.

    2007-08-09

    The DESY R and D program on cavities fabricated from large grain niobium explores the potential of this material for the production of approx. 1000 nine-cell cavities for the European XFEL. The program investigates basic material properties, comparing large grain material to standard sheet niobium, as well as fabrication and preparation aspects. Several single-cell cavities of TESLA shape have been fabricated from large grain niobium. A gradient up to 41 MV/m at Q0 = 1.4{center_dot}1010 (TB = 2K) was measured after electropolishing. The first three large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. The first tests have shown that all three cavities reach an accelerating gradient up to 30 MV/m after BCP (Buffered Chemical Polishing) treatment, what exceeds the XFEL requirements for RF test in the vertical cryostat.

  11. Microphonics Measurements in SRF Cavities for RIA

    SciTech Connect

    Kelly, M.P.; Fuerst, Joel; Kedzie, M.; Sharamentov, S.I.; Shepard, Kenneth; Delayen, Jean

    2003-05-01

    Phase stabilization of the RIA drift tube cavities in the presence of microphonics will be a key issue for RIA. Due to the relatively low beam currents (lte 0.5 pmA) required for the RIA driver, microphonics will impact the rf power required to control the cavity fields. Microphonics measurements on the ANL Beta=0.4 single spoke cavity and on the ANL Beta=0.4 two-cell spoke cavity have been performed many at high fields and using a new "cavity resonance monitor" device developed in collaboration with JLAB. Tests on a cold two-cell spoke are the first ever on a multi-cell spoke geometry. The design is essentially a production model with an integral stainless steel housing to hold the liquid helium bath.

  12. Performance of 3-cell Seamless Niobium cavities

    SciTech Connect

    Kneisel, Peter K.; Ciovati, Gianluigi; Jelezov, I.; Singer, W.; Singer, X.

    2009-11-01

    In the last several months we have surface treated and cryogenically tested three TESLA-type 3-cell cavities, which had been manufactured at DESY as seamless assemblies by hydroforming. The cavities were completed at JLab with beam tube/flange assemblies. All three cavities performed very well after they had been post-purified with titanium at 1250C for 3 hrs. The cavities, two of which consisted of an end cell and 2 center cells and one was a center cell assembly, achieved gradients of Eacc = 32 MV/m, 34 MV/m and 35 MV/m without quenches. The performance was limited by the appearance of the “Q-drop” in the absence of field emission. This contribution reports about the various measurements undertaken with these cavities.

  13. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  14. Casimir forces of metallic microstructures into cavities

    NASA Astrophysics Data System (ADS)

    Kenanakis, George; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-08-01

    A theoretical estimate of the Casimir force of a metallic structure embedded into a cubic cavity is proposed. We demonstrate that by calculating the eigenmodes of the system we can determine the Casimir force, which can be either attractive or repulsive, by simply changing the geometry of the structures relative to the walls of the cavity. In this analysis, several cases of structures are taken into account, from rectangular slabs to chiral "omega" particles, and the predicted data are consistent with recent literature. We demonstrate that the sidewalls of the studied cavity contribute decisively to the repulsive Casimir force between the system and the nearby top surface of the cavity. Finally, we provide evidence that the medium embedded into the studied cavity (and especially its permittivity) can change the intensity of the Casimir force, while its repulsive nature, once established (owing to favorable geometrical features), remains quite robust.

  15. Fast thermometry for superconducting rf cavity testing

    SciTech Connect

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  16. Aspergillosis complicating a microwave ablation cavity.

    PubMed

    Singh, Saurabh; Bandula, Steven; Brown, Jeremy; Whelan, Jeremy; Illing, Rowland

    2016-01-01

    We present a case of a patient who following chemotherapy developed semi-invasive pulmonary aspergillosis and an aspergilloma in a lung cavity previously formed by microwave ablation (MWA). A 55-year-old woman presented with cough and shortness of breath after finishing three cycles of chemotherapy for a metastatic nerve sheath tumour. She had been treated by MWA for pulmonary metastases 2 years previously which resulted in a residual right apical lung cavity. Postchemotherapy imaging showed that this cavity had enlarged, developed a thicker wall and contained lobulated soft tissue with a crescent sign on coronal reformats. In addition, the patient's Aspergillus-specific IgG was markedly raised. Treatment with itraconazole improved the symptoms and reduced the cavity size and wall thickness. This case shows that persisting lung cavities after MWA are a potential site for semi-invasive aspergillosis and has implications for the timing of chemotherapy in patient with metastatic lung disease. PMID:27624446

  17. Design of half-reentrant SRF cavities

    NASA Astrophysics Data System (ADS)

    Meidlinger, M.; Grimm, T. L.; Hartung, W.

    2006-07-01

    The shape of a TeSLA inner cell can be improved to lower the peak surface magnetic field at the expense of a higher peak surface electric field by making the cell reentrant. Such a single-cell cavity was designed and tested at Cornell, setting a world record accelerating gradient [V. Shemelin et al., An optimized shape cavity for TESLA: concept and fabrication, 11th Workshop on RF Superconductivity, Travemünde, Germany, September 8-12, 2003; R. Geng, H. Padamsee, Reentrant cavity and first test result, Pushing the Limits of RF Superconductivity Workshop, Argonne National Laboratory, September 22-24, 2004]. However, the disadvantage to a cavity is that liquids become trapped in the reentrant portion when it is vertically hung during high pressure rinsing. While this was overcome for Cornell’s single-cell cavity by flipping it several times between high pressure rinse cycles, this may not be feasible for a multi-cell cavity. One solution to this problem is to make the cavity reentrant on only one side, leaving the opposite wall angle at six degrees for fluid drainage. This idea was first presented in 2004 [T.L. Grimm et al., IEEE Transactions on Applied Superconductivity 15(6) (2005) 2393]. Preliminary designs of two new half-reentrant (HR) inner cells have since been completed, one at a high cell-to-cell coupling of 2.1% (high- kcc HR) and the other at 1.5% (low- kcc HR). The parameters of a HR cavity are comparable to a fully reentrant cavity, with the added benefit that a HR cavity can be easily cleaned with current technology.

  18. Superconducting cavity tuner performance at CEBAF

    SciTech Connect

    Marshall, J.; Preble, J.; Schneider, W.

    1993-06-01

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a 4 GeV, multipass CW electron beam is to be accelerated by 338 SRF, 5-cell niobium cavities operating at a resonant frequency of 1497 MHz. Eight cavities arranged as four pairs comprise a cyromodule, a croygenically isolated linac subdivision. The frequency is controlled by a mechanical tune attached to the first and fifth cell of the cavity which elastically deforms the cavity and thereby alters its resonant frequency. The tuner is driven by a stepper motor mounted external to the cryomodule that transfers torque through two rotary feedthroughs. A linear variable differential transducer (LVDT) mounted on the tuner monitors the displacement, and two limit switches interlock the movement beyond a 400 kHz bandwidth. Since the cavity has a loaded Q of 6.6 {center_dot} 10{sup 6}, the control system must maintain the frequency of the cavity to within {plus_minus} 50 Hz of the drive frequency for efficient coupling. This requirement is somewhat difficult to achieve since the difference in thermal contractions of the cavity and the tuner creates a frequency hystersis of approximately 10 kHz. The cavity is also subject to frequency shifts due to pressure fluctuations of the helium bath as well as radiation pressure. This requires that each cavity be characterized in terms of frequency change as a function of applied motor steps to allow proper tuning operations. This paper describes the electrical and mechanical performance of the cavity tuner during the commissioning and operation of the cryomodulus manufactured to date.

  19. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  20. Hybrid Diffusion Imaging

    PubMed Central

    Wu, Yu-Chien; Alexander, Andrew L.

    2007-01-01

    Diffusion measurements in the human central nervous system are complex to characterize and a broad spectrum of methods have been proposed. In this study, a comprehensive diffusion encoding and analysis approach, Hybrid Diffusion Imaging (HYDI), is described. The HYDI encoding scheme is composed of multiple concentric “shells” of constant diffusion-weighting, which may be used to characterize the signal behavior with low, moderate and high diffusion-weighting. HYDI facilitates the application of multiple data-analyses strategies including diffusion tensor imaging (DTI), multi-exponential diffusion measurements, diffusion spectrum imaging (DSI) and q-ball imaging (QBI). These different analysis strategies may provide complementary information. DTI measures (mean diffusivity and fractional anisotropy) may be estimated from either data in the inner shells or the entire HYDI data. Fast and slow diffusivities were estimated using a nonlinear least-squares bi-exponential fit on geometric means of the HYDI shells. DSI measurements from the entire HYDI data yield empirical model-independent diffusion information and are well-suited for characterizing tissue regions with complex diffusion behavior. DSI measurements were characterized using the zero displacement probability and the mean squared displacement. The outermost HYDI shell was analyzed using QBI analysis to estimate the orientation distribution function (ODF), which is useful for characterizing the directions of multiple fiber groups within a voxel. In this study, a HYDI encoding scheme with 102 diffusion-weighted measurements was obtained over most of the human cerebrum in under 30 minutes. PMID:17481920